Yoshida, Takahiro; Kates, Max; Sopko, Nikolai A; Liu, Xiaopu; Singh, Alok K; Bishai, William R; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J
2018-04-01
We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors. Copyright © 2017 Elsevier Inc. All rights reserved.
Rigby, Carolyn C.; Franks, L. M.
1970-01-01
Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601
Hexavalent Chromium Induces Chromosome Instability in Human Urothelial Cells
Wise, Sandra S.; Holmes, Amie L.; Liou, Louis; Adam, Rosalyn M.; Wise, John Pierce
2016-01-01
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of Cr(VI) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer specifically and may be a mechanism for metal-induced bladder cancer in general. PMID:26908176
Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1
Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng
2018-01-01
The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157
Hexavalent chromium induces chromosome instability in human urothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215
Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less
Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.
Beckham, Carla J; Olsen, Jayme; Yin, Peng-Nien; Wu, Chia-Hao; Ting, Huei-Ju; Hagen, Fred K; Scosyrev, Emelian; Messing, Edward M; Lee, Yi-Fen
2014-08-01
High grade bladder cancer is an extremely aggressive malignancy associated with high rates of morbidity and mortality. Understanding how exosomes may affect bladder cancer progression could reveal novel therapeutic targets. Exosomes derived from human bladder cancer cell lines and the urine of patients with high grade bladder cancer were assessed for the ability to promote cancer progression in standard assays. Exosomes purified from the high grade bladder cancer cell line TCC-SUP and the nonmalignant urothelial cell line SV-HUC were submitted for mass spectrometry analysis. EDIL-3 was identified and selected for further analysis. Western blot was done to determine EDIL-3 levels in urinary exosomes from patients with high grade bladder cancer. shRNA gene knockdown and recombinant EDIL-3 were applied to study EDIL-3 function. Exosomes isolated from high grade bladder cancer cells and the urine of patients with high grade bladder cancer promoted angiogenesis and migration of bladder cancer cells and endothelial cells. We silenced EDIL-3 expression and found that shEDIL-3 exosomes did not facilitate angiogenesis, and urothelial and endothelial cell migration. Moreover, exosomes purified from the urine of patients with high grade bladder cancer contained significantly higher EDIL-3 levels than exosomes from the urine of healthy controls. EDIL-3 activated epidermal growth factor receptor signaling while blockade of epidermal growth factor receptor signaling abrogated this EDIL-3 induced bladder cell migration. Exosomes derived from the urine of patients with bladder cancer contains bioactive molecules such as EDIL-3. Identifying these components and their associated oncogenic pathways could lead to novel therapeutic targets and treatment strategies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Using of cell biocomposite material in tissue engineering of the urinary bladder].
Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M
2017-06-01
In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.
MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shiqi; Xu, Xianglai; Xu, Xin
2013-11-29
Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell linesmore » with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.« less
Low Temperature Plasma Kills SCaBER Cancer Cells
NASA Astrophysics Data System (ADS)
Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir
2013-09-01
Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.
mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.
Hau, Andrew M; Leivo, Mariah Z; Gilder, Andrew S; Hu, Jing-Jing; Gonias, Steven L; Hansel, Donna E
2017-01-01
Mammalian target of rapamycin complex 2 (mTORC2) has been identified as a major regulator of bladder cancer cell migration and invasion. Upstream pathways that mediate mTORC2 activation remain poorly defined. Urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored membrane protein and known activator of cell-signaling. We identified increased uPAR expression in 94% of invasive human bladder cancers and in 54-71% of non-invasive bladder cancers, depending on grade. Normal urothelium was uPAR-immunonegative. Analysis of publicly available datasets identified uPAR gene amplification or mRNA upregulation in a subset of bladder cancer patients with reduced overall survival. Using biochemical approaches, we showed that uPAR activates mTORC2 in bladder cancer cells. Highly invasive bladder cancer cell lines, including T24, J82 and UM-UC-3 cells, showed increased uPAR mRNA expression and protein levels compared with the less aggressive cell lines, UROtsa and RT4. uPAR gene-silencing significantly reduced phosphorylation of Serine-473 in Akt, an mTORC2 target. uPAR gene-silencing also reduced bladder cancer cell migration and Matrigel invasion. S473 phosphorylation was observed by immunohistochemistry in human bladder cancers only when the tumors expressed high levels of uPAR. S473 phosphorylation was not controlled by uPAR in bladder cancer cell lines that are PTEN-negative; however, this result probably did not reflect altered mTORC2 regulation. Instead, PTEN deficiency de-repressed alternative kinases that phosphorylate S473. Our results suggest that uPAR and mTORC2 are components of a single cell-signaling pathway. Targeting uPAR or mTORC2 may be beneficial in patients with bladder cancer. Copyright © 2016. Published by Elsevier Inc.
Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng
2017-05-01
Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.
Michels, Jorg; Barbour, Sean; Cavers, Douglas; Chi, Kim N.
2010-01-01
Signet-ring cell cancers deriving from the bladder are rare entities and usually present with advanced incurable disease and associated poor outlook. No standard effective chemotherapeutic option has been described largely due to the rarity of this malignancy. We report a case of a patient with metastatic bladder cancer, signet-ring cell variant. The patient progressed rapidly on standard first-line bladder cancer chemotherapy with gemcitabine and carboplatin. He responded well to second-line capecitabine with a clinically meaningful progression-free survival. PMID:20368884
Kim, C J; Yuasa, T; Kushima, R; Tomoyoshi, T; Seto, A
1998-05-01
Peripheral blood lymphocytes (PBL) from patients with bladder cancer also contain cells possessing cytotoxic activity against autologous tumor cells. These cells are phenotypically heterogenous and include natural killer (NK) and cytotoxic T cells. This study investigated the role of cytotoxic lymphocytes directed against autologous bladder cancer cells. PBL were obtained at intervals before and after surgery and analyzed for cytotoxic activity against autologous bladder cancer cells in 4-hour 51Cr release assay. PBL stimulated with autologous tumor cells were also transformed with human T-lymphotropic virus type-1, establishing a cell line (KB31) which was analyzed for phenotype and cytotoxic activity against the autologous tumor cells. PBL preoperative cytotoxic activity was low, but increased after surgery. Cytotoxic activity was found not only against autologous bladder cancer cells, but also against heterologous bladder cancer (KK-47) and myeloid leukemia (K562) cells, with the highest activity against the heterologous cell lines. The cytotoxic activity of KB31 was 40% against autologous tumor cells 6 weeks after initiation of the cell line, but decreased to 5% by 6 months. This activity was lower than that against the other cell lines, and was similar to that of PBL in short-term culture. Fluorescence-activated cell sorter (FACS) analysis demonstrated that in KB31 cells at 6 weeks, CD8+ cells were dominant, but CD56+ cells predominated at 6 months. These results suggest that the presence of cytotoxic activity in the peripheral blood of the patient was due to both cytotoxic T cells and NK cells. The cytotoxic activity was lowest prior to surgery and increased postoperatively.
Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong
2007-01-01
To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.
Chen, Li-Mei; Verity, Nicole J; Chai, Karl X
2009-10-22
The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.
Talaat, Sherine; Somji, Seema; Toni, Conrad; Garrett, Scott H.; Zhou, Xu Dong; Sens, Mary Ann; Sens, Donald A.
2011-01-01
Objective The goal of this study was to confirm a microarray study that suggested that Kindlin-2 might play a role in the development and progression of bladder cancer. There has been no previous examination of Kindlin-2 expression in human bladder cancer. Methods A combination of real time PCR, western analysis and immunohistochemistry was used to characterize Kindlin-2 expression in arsenite (As+3) and cadmium (Cd+2) transformed human cell lines, their tumor transplants in immune-compromised mice, and in archival specimens of human bladder and bladder cancer. Results The results show that the Kindlin-2 expression patterns in the cell lines were not duplicated in the tumor tissues. However, it was shown that Kindlin-2 was expressed in the stromal element of all the transplanted tumors and archival specimens of human bladder cancer. It was also shown that a small number of high grade invasive urothelial cancers have focal expression of Kindlin-2 in the tumor cells. Conclusion Kindlin-2 is expressed in the stromal component of most, if not all, human bladder cancers. Kindlin-2 is not expressed in normal urothelium. Kindlin-2 is expressed in a small subset of high grade invasive bladder cancers and may have potential as a prognostic marker for tumor progression. PMID:21624607
Vásquez, Juan L; Gehl, Julie; Hermann, Gregers G
2012-12-01
Intravesical mitomycin instillation combined with electric pulses is being used experimentally for the treatment of T1 bladder tumors, in patients unfit for surgery. Electroporation may enhance the uptake of chemotherapeutics by permeabilization of cell membranes. We investigated if electroporation improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability was assessed by colorimetric assay (MTT). For both cell lines, mitomycin's IC_50 was approximately 1000μM in both pulsed and unpulsed cells. On T24 cells, electroporation and mitomycin caused (relative reduction) RR of survival of: 25%, 31% and 29%, by concentrations 0μM, 500μM and 1000μM respectively. For DC3F cells, the RRs of survival were: 28%, 29%, and 33%, by concentrations 0μM, 500μM and 1000μM respectively. In conclusion, electroporation and mitomycin together are about 30% more effective than mitomycin alone. The results help to elucidate the additive effect of mitomycin and electric pulses and support the use of this combination in the treatment of bladder cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Bryan, R T; Regan, H L; Pirrie, S J; Devall, A J; Cheng, K K; Zeegers, M P; James, N D; Knowles, M A; Ward, D G
2015-03-17
Better biomarkers must be found to develop clinically useful urine tests for bladder cancer. Proteomics can be used to identify the proteins released by cancer cell lines and generate candidate markers for developing such tests. We used shotgun proteomics to identify proteins released into culture media by eight bladder cancer cell lines. These data were compared with protein expression data from the Human Protein Atlas. Epidermal growth factor receptor (EGFR) was identified as a candidate biomarker and measured by ELISA in urine from 60 noncancer control subjects and from 436 patients with bladder cancer and long-term clinical follow-up. Bladder cancer cell lines shed soluble EGFR ectodomain. Soluble EGFR is also detectable in urine and is highly elevated in some patients with high-grade bladder cancer. Urinary EGFR is an independent indicator of poor bladder cancer-specific survival with a hazard ratio of 2.89 (95% CI 1.81-4.62, P<0.001). In multivariable models including both urinary EGFR and EpCAM, both biomarkers are predictive of bladder cancer-specific survival and have prognostic value over and above that provided by standard clinical observations. Measuring urinary EGFR and EpCAM may represent a simple and useful approach for fast-tracking the investigation and treatment of patients with the most aggressive bladder cancers.
MicroRNA-320c inhibits tumorous behaviors of bladder cancer by targeting Cyclin-dependent kinase 6
2014-01-01
Background Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to human disease including cancer. Previous miRNA microarray analysis illustrated that miR-320c is down-regulated in various cancers. However, the roles of miR-320c in human bladder cancer have not been well elucidated. Therefore, this study was performed to investigate the biological functions and molecular mechanisms of miR-320c in human bladder cancer cell lines, discussing whether it could be a therapeutic biomarker of bladder cancer in the future. Methods Two human bladder cancer cell lines and samples from thirteen patients with bladder cancer were analyzed for the expression of miR-320c by quantitative RT-PCR. Over-expression of miR-320c was established by transfecting mimics into T24 and UM-UC-3. Cell proliferation and cell cycle were assessed by cell viability assay, flow cytometry and colony formation assay. Cell motility ability was evaluated by transwell assay. The target gene of miR-320c was determined by luciferase assay, quantitative RT-PCR and western blot. The regulation of cell cycle and mobility by miR-320c was analyzed by western blot. Results We observed that miR-320c was down-regulated in human bladder cancer tissues and bladder cancer cell lines T24 and UM-UC-3. Over-expression of miR-320c could induce G1 phase arrest in UM-UC-3 and T24 cells, and subsequently inhibited cell growth. We also indentified miR-320c could impair UM-UC-3 and T24 cell motility. In addition, we identified CDK6, a cell cycle regulator, as a novel target of miR-320c. Moreover, we demonstrated miR-320c could induce bladder cancer cell cycle arrest and mobility via regulating CDK6. We also observed that inhibition of miR-320c or restoration of CDK6 in miR-320c-over-expressed bladder cancer cells partly reversed the suppressive effects of miR-320c. Conclusions miR-320c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. Our study revealed that miR-320c could be a therapeutic biomarker of bladder cancer in the future. PMID:25178497
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M.; ...
2016-01-22
Here, we report the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formationmore » and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M.
Here, we report the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formationmore » and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.« less
Laaksovirta, S; Rajala, P; Nurmi, M; Tammela, T L; Laato, M
1999-01-01
Retinoids have been shown to have activity in both preclinical and clinical bladder cancer studies but their exact role in its treatment and prevention remains obscure. In this study cytostatic activity of a novel 9-cis-retinoic acid (9-cis-RA) was compared with two other retinoids: tretinoin and isotretinoin, in three different bladder cancer cell lines: RT4 (well differentiated), 5637 (moderately differentiated) and T24 (poorly differentiated). The three retinoids were incubated at concentrations of 0.3, 3 and 30 microg/ml with bladder cancer cells in microtitre plates for 3 and 6 days. The cytostatic effect was estimated by using luminometric measuring of ATP activity of viable cells in suspension. Compared with the older retinoids, tretinoin and isotretinoin, the highest concentration of 9-cis-RA had a cytostatic efficacy in all three bladder cancer cell lines tested. A clear dose response relationship was observed in isotretinoin-treated cultures after 6 days and in all 9-cis-RA-treated cultures. Tretinoin was either ineffective or had a stimulating effect on poorly differentiated tumour cells. To conclude, isotretinoin and 9-cis-RA had a cytostatic effect on human bladder cancer cells in vitro. However, the possibility of stimulating cancer growth at small doses, at least with tretinoin, and toxicity at high doses must be considered when planning clinical trials.
Identification of differentially expressed proteins during human urinary bladder cancer progression.
Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J
2005-01-01
Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.
Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K
2014-12-01
Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Cancer Medicine published by John Wiley & Sons Ltd.
Altered Redox Status Accompanies Progression to Metastatic Human Bladder Cancer
Hempel, Nadine; Ye, Hanqing; Abessia, Bryan; Mian, Badar; Melendez, J. Andres
2009-01-01
The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O2-.) to hydrogen peroxide (H2O2), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H2O2 production in the 253J B-V line. Expression of pro-metastatic and –angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H2O2-dependent, as removal of H2O2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive pro-tumorigenic and pro-metastatic genes such as VEGF and MMP-9. PMID:18930813
Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin
2016-10-01
TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.
2011-01-01
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383
Larson, Jennifer L.; Somji, Seema; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2010-01-01
The expression of beclin-1 in normal human bladder and in Cd+2 and As+3 exposed and transformed urothelial cells (UROtsa) was examined in this study. It was shown using a combination of real time PCR, western analysis and immunohistochemistry that beclin-1 was expressed in the urothelial cells of the normal bladder. It was also demonstrated that the parental UROtsa cell line expressed beclin-1 mRNA and protein at levels similar to that of the in situ urothelium. The level of beclin-1 expression underwent only modest alterations when the UROtsa cells were malignantly transformed by Cd+2 or As+3 or when the parental cells were exposed acutely to Cd+2 or As+3. While there were instances of significant alterations at individual time points and within cell line-to-cell line comparisons there was no evidence of a dose response relationship or correlations to the phenotypic properties of the cell lines. Similar results were obtained for the expression of the Atg-5, Atg-7, Atg-12 and LC3B autophagy-related proteins. The findings provide initial evidence for beclin-1 expression in normal bladder and that large alterations in the expression of beclin-1 and associated proteins do not occur when human urothelial cells are malignantly transformed with, or exposed to, either Cd+2 or As+3. PMID:20206246
PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes.
Greco, Kristin A; Franzen, Carrie A; Foreman, Kimberly E; Flanigan, Robert C; Kuo, Paul C; Gupta, Gopal N
2016-05-01
To use exosomes as a vector to deliver small interfering ribonucleic acid (siRNA) to silence the polo-like kinase 1 (PLK-1) gene in bladder cancer cells. Exosomes were isolated from both human embryonic kidney 293 (HEK293) cell and mesenchymal stem cell (MSC) conditioned media. Fluorescently labeled exosomes were co-cultured with bladder cancer and normal epithelial cells and uptake was quantified by image cytometry. PLK-1 siRNA and negative control siRNA were loaded into HEK293 and MSC exosomes using electroporation. An invasive bladder cancer cell line (UMUC3) was co-cultured with the electroporated exosomes. Quantitative reverse transcriptase polymerase chain reaction was performed. Protein analysis was performed by Western blot. Annexin V staining and MTT assays were used to investigate effects on apoptosis and viability. Bladder cancer cell lines internalize an increased percentage of HEK293 exosomes when compared to normal bladder epithelial cells. Treatment of UMUC3 cells with exosomes electroporated with PLK-1 siRNA achieved successful knockdown of PLK-1 mRNA and protein when compared to cells treated with negative control exosomes. HEK293 and MSC exosomes were effectively used as a delivery vector to transport PLK-1 siRNA to bladder cancer cells in vitro, resulting in selective gene silencing of PLK-1. The use of exosomes as a delivery vector for potential intravesical therapy is attractive. Copyright © 2016 Elsevier Inc. All rights reserved.
Modulating the internalization of bacille Calmette-Guérin by cathelicidin in bladder cancer cells.
Choi, Se Young; Kim, Soon-Ja; Chi, Byung Hoon; Kwon, Jong Kyou; Chang, In Ho
2015-04-01
To confirm the role of cathelicidin (LL-37) in the internalization of bacille Calmette-Guérin (BCG) into bladder cancer cells. Enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction analysis evaluated the changes in protein and messenger ribonucleic acid (RNA) expression with BCG incubation after LL-37 pretreatment in 5637 and T24 human bladder cancer cells. The internalization rate was evaluated by a double immunofluorescence assay, and confocal microscopy confirmed the function of LL-37 in BCG internalization. We also investigated the difference in internalization rates and cell viability between LL-37, anti-LL-37 antibody, and LL-37 plus anti-LL-37 antibody. The levels of LL-37 increased after BCG exposure in bladder cancer cells in dose- and time-dependent manners. Increasing LL-37 levels using recombinant LL-37 protein further dose dependently decreased BCG internalization in both cell lines. The internalization rates of BCG after LL-37 instillation were lower compared with the controls, and the internalization rate of BCG after anti-LL-37 antibody instillation was significantly higher compared with the controls in both cell lines (P <.05). Viability of LL-37 plus BCG group was higher compared with the BCG-alone group. The anti-LL-37 antibody plus BCG group had decreased cell viability compared with the BCG-alone group in both cell lines. Bladder cancer cells produce cathelicidin when infected with BCG and upregulate cathelicidin to defend against BCG by inhibiting its internalization. Blocking the action of cathelicidin may increase the internalization and effectiveness of BCG in reducing bladder cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.
Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G
2000-10-31
We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L; Pratt, Rachel N; Trump, Donald L; Johnson, Candace S
2017-09-01
Metastasis is the major cause of bladder cancer death. 1,25D 3 , the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D 3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D 3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D 3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D 3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using "wound" healing, chemotactic migration and Matrigel-based invasion assays. 1,25D 3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D 3 on migration and invasion in 253J-BV cells. Further, 1,25D 3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D 3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D 3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level.
Ma, Yingyu; Luo, Wei; Bunch, Brittany L.; Pratt, Rachel N.; Trump, Donald L.; Johnson, Candace S.
2017-01-01
Metastasis is the major cause of bladder cancer death. 1,25D3, the active metabolite of vitamin D, has shown anti-metastasis activity in several cancer model systems. However, the role of 1,25D3 in migration and invasion in bladder cancer is unknown. To investigate whether 1,25D3 affects migration and invasion, four human bladder cell lines with different reported invasiveness were selected: low-invasive T24 and 253J cells and highly invasive 253J-BV and TCCSUP cells. All of the four bladder cancer cells express endogenous and inducible vitamin D receptor (VDR) as examined by immunoblot analysis. 1,25D3 had no effect on the proliferation of bladder cancer cells as assessed by MTT assay. In contrast, 1,25D3 suppressed migration and invasion in the more invasive 253J-BV and TCCSUP cells, but not in the low-invasive 253J and T24 cells using “wound” healing, chemotactic migration and Matrigel-based invasion assays. 1,25D3 promoted the expression of miR-101-3p and miR-126-3p in 253J-BV cells as examined by qRT-PCR. miR-101-3p inhibitor partially abrogated and pre-miR-101-3p further suppressed the inhibition of 1,25D3 on migration and invasion in 253J-BV cells. Further, 1,25D3 enhanced VDR recruitment to the promoter region of miR-101-3p using ChIP-qPCR assay. 1,25D3 enhanced the promoter activity of miR-101-3p as evaluated by luciferase reporter assay. Taken together, 1,25D3 suppresses bladder cancer cell migration and invasion in two invasive/migration competent lines but not in two less invasive/motile lines, which is partially through the induction of miR-101-3p expression at the transcriptional level. PMID:28947955
Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T
2001-09-01
The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.
The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.
Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K
2015-01-01
Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.
Chen, Yule; Zhu, Guodong; Wu, Kaijie; Gao, Yang; Zeng, Jin; Shi, Qi; Guo, Peng; Wang, Xinyang; Chang, Luke S; Li, Lei; He, Dalin
2016-04-01
Patients with superficial bladder cancer can be definitively cured by one single transurethral resection (TUR) with additional intravesical chemotherapy; however, up to 75 % of cases display frequent and multiple recurrences. One of the major causes of recurrence is that chemotherapeutic drugs used in intravesical regimens may induce chemoresistance. However, the mechanisms by which these chemoresistant cells develop into recurrent tumors remain unclear. Recent clinical evidence revealed that the expression of pro-angiogenic factor FGF2 was associated with early local relapse in patients with superficial bladder cancer. In this study, we conducted a preliminary investigation of the mechanisms of chemoresistant cells mediated bladder cancer recurrence, focusing on FGF2-initiated tumor cell-endothelial cell interaction on chemoresistant cancer cell growth. We found that the expression of FGF2 was increased in chemoresistant bladder cell lines and in bladder tissues after intravesical chemotherapy. Although chemoresistant bladder cells grow slower than parental cells, chemoresistant bladder cancer cells had stronger ability than parental cells to stimulate endothelial cell migration, growth, and tube formation by producing FGF2. Inversely, endothelial cells significantly promoted chemoresistant bladder cancer growth in vitro and in vivo. Thus, targeting chemotherapy-induced FGF2 upregulation may provide a promising approach to manage the recurrence of superficial bladder cancer.
Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping
2017-03-01
Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.
Sgnaolin, V; Pereira, T C B; Bogo, M R; Zanin, R; Battastini, A M O; Morrone, F B; Campos, M M
2013-08-01
Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg(9)-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg(9)-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg(9)-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.
Enzalutamide inhibits androgen receptor-positive bladder cancer cell growth.
Kawahara, Takashi; Ide, Hiroki; Kashiwagi, Eiji; El-Shishtawy, Kareem A; Li, Yi; Reis, Leonardo O; Zheng, Yichun; Miyamoto, Hiroshi
2016-10-01
Emerging preclinical evidence suggests that androgen-mediated androgen receptor (AR) signals promote bladder cancer progression. However, little is known about the efficacy of an AR signaling inhibitor, enzalutamide, in the growth of bladder cancer cells. In this study, we compared the effects of enzalutamide and 2 other classic antiandrogens, flutamide and bicalutamide, on androgen-induced bladder cancer cell proliferation, migration, and invasion as well as tumor growth in vivo. Thiazolyl blue cell viability assay, flow cytometry, scratch wound-healing assay, transwell invasion assay, real-time polymerase chain reaction, and reporter gene assay were performed in AR-positive (e.g., UMUC3, TCCSUP, and 647V-AR) and AR-negative (e.g., UMUC3-AR-short hairpin RNA [shRNA], TCCSUP-AR-shRNA, 647V) bladder cancer lines treated with dihydrotestosterone and each AR antagonist. We also used a mouse xenograft model for bladder cancer. Dihydrotestosterone increased bladder cancer cell proliferation, migration, and invasion indicating that endogenous or exogenous AR was functional. Enzalutamide, hydroxyflutamide, and bicalutamide showed similar inhibitory effects, without significant agonist activity, on androgen-mediated cell viability/apoptosis, cell migration, and cell invasion in AR-positive lines. No significant effects of dihydrotestosterone as well as AR antagonists on the growth of AR-negative cells were seen. Correspondingly, in UMUC3 cells, these AR antagonists down-regulated androgen-induced expression of AR, matrix metalloproteinase-2, and interleukin-6. Androgen-enhanced AR-mediated transcriptional activity was also blocked by each AR antagonist exhibiting insignificant agonist activity. In UMUC3 xenograft-bearing mice, oral gavage treatment with each antiandrogen retarded tumor growth, and only enzalutamide demonstrated a statistically significant suppression compared with mock treatment. Our current data support recent observations indicating the involvement of the AR pathway in bladder cancer growth and further suggest that AR antagonists, including enzalutamide, are of therapeutic benefit in AR-positive bladder cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Tessmann, Josiane Weber; Buss, Julieti; Begnini, Karine Rech; Berneira, Lucas Moraes; Paula, Favero Reisdorfer; de Pereira, Claudio Martin Pereira; Collares, Tiago; Seixas, Fabiana Kömmling
2017-10-01
Bladder cancer is a genitourinary malignant disease common worldwide. Current chemotherapy is often limited mainly due to toxicity and drug resistance. Thus, there is a continued need to discover new therapies. Recently evidences shows that pyrazoline derivatives are promising antitumor agents in many types of cancers, but there are no studies with bladder cancer. In order to find potent and novel chemotherapy drugs for bladder cancer, a series of pyrazoline derivatives 2a-2d were tested for their antitumor activity in two human bladder cancer cell lines 5647 and T24. The MTT assay showed that the compounds 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-1H-pyrazole (2a) and 1-thiocarbamoyl-5-(4-chlorophenyl)-3-phenyl-4,5-dihydro-1H-pyrazole (2c) decrease the cell viability of 5637 cells. Molecular modeling indicated that these compounds had a good oral bioavailability and low toxicities. Clonogenic assay and flow cytometric analysis were used to assess colony formation, apoptosis induction and cell cycle distribution. Overall, our results suggest that pyrazoline 2a and 2c, with the substituents hydrogen and chlorine respectively, may decrease cell viability and colony formation of bladder cancer 5637 cell line by inhibition of cell cycle progression, and for pyrazoline 2a, by induction of apoptosis. As indicated by the physicochemical properties of these compounds, the steric factor influences the activity. Therefore, these pyrazoline derivatives can be considered promising anticancer agents for the treatment of bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Qi; Zhang, Cheng; Ding, Xianting; Deng, Hui; Zhang, Daming; Cui, Wei; Xu, Hongwei; Wang, Yingwei; Xu, Wanhai; Lv, Lei; Zhang, Hongyu; He, Yinghua; Wu, Qiong; Szyf, Moshe; Ho, Chih-Ming; Zhu, Jingde
2015-06-01
Therapeutic outcomes of combination chemotherapy have not significantly advanced during the past decades. This has been attributed to the formidable challenges of optimizing drug combinations. Testing a matrix of all possible combinations of doses and agents in a single cell line is unfeasible due to the virtually infinite number of possibilities. We utilized the Feedback System Control (FSC) platform, a phenotype oriented approach to test 100 options among 15,625 possible combinations in four rounds of assaying to identify an optimal tri-drug combination in eight distinct chemoresistant bladder cancer cell lines. This combination killed between 82.86% and 99.52% of BCa cells, but only 47.47% of the immortalized benign bladder epithelial cells. Preclinical in vivo verification revealed its markedly enhanced anti-tumor efficacy as compared to its bi- or mono-drug components in cell line-derived tumor xenografts. The collective response of these pathways to component drugs was both cell type- and drug type specific. However, the entire spectrum of pathways triggered by the tri-drug regimen was similar in all four cancer cell lines, explaining its broad spectrum killing of BCa lines, which did not occur with its component drugs. Our findings here suggest that the FSC platform holdspromise for optimization of anti-cancer combination chemotherapy.
OK-432 Suppresses Proliferation and Metastasis by Tumor Associated Macrophages in Bladder Cancer.
Tian, Yuan-Feng; Tang, Kun; Guan, Wei; Yang, Tao; Xu, Hua; Zhuang, Qian-Yuan; Ye, Zhang-Qun
2015-01-01
OK-432, a Streptococcus-derived anticancer immunotherapeutic agent, has been applied in clinic for many years and achieved great progress in various cancers. In the present study, we investigated its anticancer effect on bladder cancer through tumor associated macrophages (TAMs). MTS assay validated OK-432 could inhibit proliferation in both T24 and EJ bladder cell lines. OK-432 also induced apoptosis of bladder cancer cells in vitro. Consequently, we demonstrated that OK-432 could suppress the bladder cancer cells migration and invasion by altering the EMT-related factors. Furthermore, using SD rat model, we revealed that OK-432 inhibited tumor growth, suppressed PCNA expression and inhibited metastasis in vivo. Taken together, these findings strongly suggest that OK-432 inhibits cell proliferation and metastasis through inducing macrophages to secret cytokines in bladder cancer.
Hu, Ting; Pan, Qinxin; Andrew, Angeline S; Langer, Jillian M; Cole, Michael D; Tomlinson, Craig R; Karagas, Margaret R; Moore, Jason H
2014-04-11
Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies.
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.
2014-01-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658
Li, Xiaohui; Han, Xingtao; Yang, Jinhui; Sun, Jiantao; Wei, Pengtao
2017-10-01
Objective To observe the effect of microRNA-503-5p (miR-503-5p) on the growth of T24 and EJ bladder cancer cells, and explore the possible molecular mechanism. Methods The miR-504-5p mimics or miR-NC was transfected into T24 and EJ cells. The target gene of miR-503-5p was predicted by bioinformatics. The expressions of E2F transcription factor 3 (E2F3) mRNA and Rb/E2F signaling pathway mRNA were detected by the real-time quantitative PCR (qPCR). The expressions of Rb/E2F signal pathway proteins E2F3, cyclin E, CDK2, Rb and p-Rb were detected by Western blotting. The cell cycle of bladder cancer cell lines was determined by flow cytometry. MTT assay and plate cloning assay were performed to observe the proliferation ability of bladder cancer cells. Results After miR-503-5p mimics transfection, the expression of miR-503-5p in bladder cancer cells significantly increased. The increased expression of miR-503-5p significantly reduced the expressions of E2F3 mRNA and Rb/E2F signaling pathway mRNA in bladder cancer cells. What's more, the expressions of Rb/E2F signal pathway proteins were down-regulated. The bladder cancer cells were arrested in G0/G1 phase, and their growth was significantly inhibited by miR-503-5p. Conclusion The miR-503-5p over-expression can inhibit the growth of bladder cancer cell lines T24 and EJ by down-regulating the expression of the Rb/E2F signaling pathway.
Roudnicky, Filip; Dieterich, Lothar C; Poyet, Cedric; Buser, Lorenz; Wild, Peter; Tang, Dave; Camenzind, Peter; Ho, Chien Hsien; Otto, Vivianne I; Detmar, Michael
2017-06-01
Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jun; Dai, Wenbin, E-mail: daiwenbin271@163.com; Song, Jianming
2016-02-05
microRNAs (miRNAs) have been demonstrated to contribute to tumor progression and metastasis and proposed to be key regulators of diverse biological processes. In this study, we report that miR-1182 is deregulated in bladder cancer tissues and cell lines. To characterize the role of miR-1182 in bladder cancer cells, we performed functional assays. The overexpression of miR-1182 significantly inhibits bladder cancer cell proliferation, colony formation, and invasion. Moreover, its up-regulation induced cell cycle arrest and apoptosis and mediated chemosensitivity to cisplatin in bladder cancer. Furthermore, a luciferase reporter assay and a rescue experiment indicated that miR-1182 directly targets hTERT by bindingmore » its 3′UTR. In conclusion, these results demonstrate that miR-1182 acts as a tumor suppressor and may be a potential biomarker for bladder cancer diagnosis and treatment.« less
Poupel, Farhad; Aghaei, Mahmoud; Movahedian, Ahmad; Jafari, Seyyed Mehdi; Shahrestanaki, Mohammad Keyvanloo
2017-01-01
Background: Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has antiproliferative effect. However, such effects of DHA have not yet been revealed for bladder cancer cells. Methods: We used as bladder cancer cell lines to examine the effect of DHA on the cell viability, cell apoptosis, and monitoring of mitochondrial membrane potential (ΔΨm) changes. Furthermore, the effect of DHA on the reactive oxygen species (ROS) production and cytochrome c release were also detected. We employed MTT assay to investigate the cell proliferation effect of DHA on the EJ-138 and HTB-9 human bladder cancer cells. Annexin/PI staining, caspase-3 activity assay, Bcl-2/Bax protein expression, mitochondrial membrane potential assay, cytochrome c release, and ROS analysis were used for apoptosis detection. Results: DHA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of DHA was suppressed by N-acetylcysteine. The growth inhibition effect of DHA was related to the induction of cell apoptosis, which were manifested by annexin V-FITC staining, activation of caspase-3. DHA also increased ROS generation, cytochrome c release, and loss of mitochondrial transmembrane potential (ΔΨm) in cells. In addition, the downregulation of regulatory protein Bcl-2 and upregulation of Bax protein by DHA were also observed. Conclusions: These findings demonstrated that DHA induces apoptosis through mitochondrial signaling pathway. These suggest that DHA may be a potential agent for induction of apoptosis in human bladder cancer cells. PMID:29114376
Lu, Y.; Nerurkar, V.R.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Yanagihara, R.
1999-01-01
Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30A? C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.
Kim, Mi-Sung; Kim, Jong-Eun; Lim, Do Young; Huang, Zunnan; Chen, Hanyong; Langfald, Alyssa; Lubet, Ronald A.; Grubbs, Clinton J.; Dong, Zigang; Bode, Ann M.
2014-01-01
Naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid) is a potent nonsteroidal anti-inflammatory drug that inhibits both COX-1 and COX-2 and is widely used as an over-the-counter medication. Naproxen exhibits analgesic, anti-pyretic, and anti-inflammatory activities. Naproxen, as well as other NSAIDS, has been reported to be effective in the prevention of urinary bladder cancer in rodents. However, potential targets other than the COX isozymes have not been reported. We examined potential additional targets in urinary bladder cancer cells and in rat bladder cancers. Computer kinase profiling results suggested that phosphatidylinositol 3-kinase (PI3-K) is a potential target for naproxen. In vitro kinase assay data revealed that naproxen interacts with PI3-K and inhibits its kinase activity. Pull-down binding assay data confirmed that PI3-K directly binds with naproxen in vitro and ex vivo. Western blot data showed that naproxen decreased phosphorylation of Akt, and subsequently decreased Akt signaling in UM-UC-5 and UMUC-14 urinary bladder cancer cells. Furthermore, naproxen suppressed anchorage-independent cell growth and decreased cell viability by targeting PI3-K in both cell lines. Naproxen caused an accumulation of cells at the G1 phase mediated through CDK4, cyclin D1 and p21. Moreover, naproxen induced significant apoptosis, accompanied with increased levels of cleaved caspase 3, caspase 7, and poly (ADP-ribose) polymerase (PARP) in both cell types. Naproxen-induced cell death was mainly due to apoptosis in which a prominent down-regulation of Bcl-2 and up-regulation of Bax were involved. Naproxen also caused apoptosis and inhibited Akt phosphorylation in rat urinary bladder cancers induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN). PMID:24327721
Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.
Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K
2017-02-01
Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1 -/- MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Takeuchi, Hisashi; Taoka, Rikiya; Mmeje, Chinedu O; Jinesh, Goodwin G; Safe, Stephen; Kamat, Ashish M
2016-08-01
The objective is to determine whether methyl 2-cyano-3,11-dioxo-18b-olean-1,12-dien-30-oate (CDODA-Me) has therapeutic potential in bladder cancer. We investigated the effects of CDODA-Me on the growth and survival of bladder cancer cells, and expression of specificity protein (Sp) transcription factors that regulate genes associated with cancer cell proliferation and survival. J82, RT4P, and 253JB-V bladder cancer cell lines were treated with vehicle alone or with CDODA-Me with or without the antioxidant l-glutathione. Cell viability and DNA fragmentation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and propidium iodide-fluorescence-activated cell sorting (FACS) analysis, respectively. Intracellular reactive oxygen species (ROS) were measured by 2',7'-dichlorofluorescin diacetate-FACS analysis. We assessed CDODA's effects on the levels of Sp and Sp-regulated proteins and induction of apoptosis in bladder cancer cells by Western blotting. We also assessed the anticancer effects of CDODA-Me in nude mice bearing RT4v6 bladder cancer. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and FACS analysis revealed that CDODA-Me inhibited the proliferation and survival of the 3 bladder cancer cell lines in a dose-dependent manner. FACS analysis also indicated that CDODA-Me-induced intracellular ROS, and Western blot analysis indicated that CDODA-Me decreased levels of Sp and Sp-regulated proteins and induced apoptosis in a dose-dependent and time-dependent manner. l-Glutathione attenuated CDODA-Me's down-regulation of Sp and Sp-regulated proteins. Compared with the control treatment, CDODA-Me substantially inhibited tumor growth in vivo. CDODA-Me has antineoplastic activity in bladder cancer cells by inducing ROS, which down-regulate Sp and Sp-regulated proteins. Thus, CDODA-Me has therapeutic potential in bladder cancer, and additional studies of the agent's efficacy and mode of action are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena
2016-01-01
Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982
Mills, Melody; Meysick, Karen C.; O'Brien, Alison D.
2000-01-01
Pathogenic Escherichia coli associated with urinary tract infections (UTIs) in otherwise healthy individuals frequently produce cytotoxic necrotizing factor type 1 (CNF1), a member of the family of bacterial toxins that target the Rho family of small GTP-binding proteins. To gain insight into the function of CNF1 in the development of E. coli-mediated UTIs, we examined the effects of CNF1 intoxication on a panel of human cell lines derived from physiologically relevant sites (bladder, ureters, and kidneys). We identified one uroepithelial cell line that exhibited a distinctly different CNF1 intoxication phenotype from the prototypic one of multinucleation without cell death that is seen when HEp-2 or other epithelial cells are treated with CNF1. The 5637 bladder cell line detached from the growth surface within 72 h of CNF1 intoxication, a finding that suggested frank cytotoxicity. To determine the basis for the unexpected toxic effect of CNF1 on 5637 cells, we compared the degree of toxin binding, actin fiber formation, and Rho modification with those CNF1-induced events in HEp-2 cells. We found no apparent difference in the amount of CNF1 bound to 5637 cells and HEp-2 cells. Moreover, CNF1 modified Rho, in vivo and in vitro, in both cell types. In contrast, one of the classic responses to CNF1 in HEp-2 and other epithelial cell lines, the formation of actin stress fibers, was markedly absent in 5637 cells. Indeed, actin stress fiber induction by CNF1 did not occur in any of the other human bladder cell lines that we tested (J82, SV-HUC-1, or T24). Furthermore, the appearance of lamellipodia and filopodia in 5637 cells suggested that CNF1 activated the Cdc42 and Rac proteins. Finally, apoptosis was observed in CNF1-intoxicated 5637 cells. If our results with 5637 cells reflect the interaction of CNF1 with the transitional uroepithelium in the human bladder, then CNF1 may be involved in the exfoliative process that occurs in that organ after infection with uropathogenic E. coli. PMID:10992497
Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio
2008-09-01
To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.
CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiajia; Zhu, Xi; Zhang, Jie, E-mail: zhangjiebjmu@163.com
2014-03-28
Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCRmore » and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.« less
Lima, Luís; Azevedo, Rita; Soares, Janine; Cotton, Sofia; Parreira, Beatriz; Neves, Manuel; Amaro, Teresina; Tavares, Ana; Teixeira, Filipe; Palmeira, Carlos; Rangel, Maria; Silva, André M.N.; Reis, Celso A.; Santos, Lúcio Lara; Oliveira, Maria José; Ferreira, José Alexandre
2016-01-01
Invasive bladder tumours express the cell-surface Sialyl-Tn (STn) antigen, which stems from a premature stop in protein O-glycosylation. The STn antigen favours invasion, immune escape, and possibly chemotherapy resistance, making it attractive for target therapeutics. However, the events leading to such deregulation in protein glycosylation are mostly unknown. Since hypoxia is a salient feature of advanced stage tumours, we searched into how it influences bladder cancer cells glycophenotype, with emphasis on STn expression. Therefore, three bladder cancer cell lines with distinct genetic and molecular backgrounds (T24, 5637 and HT1376) were submitted to hypoxia. To disclose HIF-1α-mediated events, experiments were also conducted in the presence of Deferoxamine Mesilate (Dfx), an inhibitor of HIF-1α proteasomal degradation. In both conditions all cell lines overexpressed HIF-1α and its transcriptionally-regulated protein CA-IX. This was accompanied by increased lactate biosynthesis, denoting a shift toward anaerobic metabolism. Concomitantly, T24 and 5637 cells acquired a more motile phenotype, consistent with their more mesenchymal characteristics. Moreover, hypoxia promoted STn antigen overexpression in all cell lines and enhanced the migration and invasion of those presenting more mesenchymal characteristics, in an HIF-1α-dependent manner. These effects were reversed by reoxygenation, demonstrating that oxygen affects O-glycan extension. Glycoproteomics studies highlighted that STn was mainly present in integrins and cadherins, suggesting a possible role for this glycan in adhesion, cell motility and invasion. The association between HIF-1α and STn overexpressions and tumour invasion was further confirmed in bladder cancer patient samples. In conclusion, STn overexpression may, in part, result from a HIF-1α mediated cell-survival strategy to adapt to the hypoxic challenge, favouring cell invasion. In addition, targeting STn-expressing glycoproteins may offer potential to treat tumour hypoxic niches harbouring more malignant cells. PMID:27542232
Ler, Lian Dee; Ghosh, Sujoy; Chai, Xiaoran; Thike, Aye Aye; Heng, Hong Lee; Siew, Ee Yan; Dey, Sucharita; Koh, Liang Kai; Lim, Jing Quan; Lim, Weng Khong; Myint, Swe Swe; Loh, Jia Liang; Ong, Pauline; Sam, Xin Xiu; Huang, Dachuan; Lim, Tony; Tan, Puay Hoon; Nagarajan, Sanjanaa; Cheng, Christopher Wai Sam; Ho, Henry; Ng, Lay Guat; Yuen, John; Lin, Po-Hung; Chuang, Cheng-Keng; Chang, Ying-Hsu; Weng, Wen-Hui; Rozen, Steven G; Tan, Patrick; Creasy, Caretha L; Pang, See-Tong; McCabe, Michael T; Poon, Song Ling; Teh, Bin Tean
2017-02-22
Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A -mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A -null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A -null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A -null cell lines. EZH2 inhibition delayed tumor onset in KDM6A -null cells and caused regression of KDM6A -null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A , which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2. Copyright © 2017, American Association for the Advancement of Science.
Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu
2010-09-01
We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.
G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro.
Du, Yiheng; Bi, Wenhuan; Zhang, Fei; Wu, Wenbo; Xia, Shujie; Liu, Haitao
2015-01-01
Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease
Fu, Yi-Ping; Kohaar, Indu; Moore, Lee E.; Lenz, Petra; Figueroa, Jonine D.; Tang, Wei; Porter-Gill, Patricia; Chatterjee, Nilanjan; Scott-Johnson, Alexandra; Garcia-Closas, Montserrat; Muchmore, Brian; Baris, Dalsu; Paquin, Ashley; Ylaya, Kris; Schwenn, Molly; Apolo, Andrea B.; Karagas, Margaret R.; Tarway, McAnthony; Johnson, Alison; Mumy, Adam; Schned, Alan; Guedez, Liliana; Jones, Michael A.; Kida, Masatoshi; Monawar Hosain, GM; Malats, Nuria; Kogevinas, Manolis; Tardon, Adonina; Serra, Consol; Carrato, Alfredo; Garcia-Closas, Reina; Lloreta, Josep; Wu, Xifeng; Purdue, Mark; Andriole, Gerald L.; Grubb, Robert L.; Black, Amanda; Landi, Maria T.; Caporaso, Neil E.; Vineis, Paolo; Siddiq, Afshan; Bueno-de-Mesquita, H. Bas; Trichopoulos, Dimitrios; Ljungberg, Börje; Severi, Gianluca; Weiderpass, Elisabete; Krogh, Vittorio; Dorronsoro, Miren; Travis, Ruth C.; Tjønneland, Anne; Brennan, Paul; Chang-Claude, Jenny; Riboli, Elio; Prescott, Jennifer; Chen, Constance; De Vivo, Immaculata; Govannucci, Edward; Hunter, David; Kraft, Peter; Lindstrom, Sara; Gapstur, Susan M.; Jacobs, Eric J.; Diver, W. Ryan; Albanes, Demetrius; Weinstein, Stephanie J.; Virtamo, Jarmo; Kooperberg, Charles; Hohensee, Chancellor; Rodabough, Rebecca J.; Cortessis, Victoria K.; Conti, David V.; Gago-Dominguez, Manuela; Stern, Mariana C.; Pike, Malcolm C.; Van Den Berg, David; Yuan, Jian-Min; Haiman, Christopher A.; Cussenot, Olivier; Cancel-Tassin, Geraldine; Roupret, Morgan; Comperat, Eva; Porru, Stefano; Carta, Angela; Pavanello, Sofia; Arici, Cecilia; Mastrangelo, Giuseppe; Grossman, H. Barton; Wang, Zhaoming; Deng, Xiang; Chung, Charles C.; Hutchinson, Amy; Burdette, Laurie; Wheeler, William; Fraumeni, Joseph; Chanock, Stephen J.; Hewitt, Stephen M.; Silverman, Debra T.; Rothman, Nathaniel; Prokunina-Olsson, Ludmila
2014-01-01
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell cycle protein. We performed genetic fine mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r2≥0.7) associated with increased bladder cancer risk. From this group we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWAS, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele odds ratio (OR) =1.18 (95%CI=1.09-1.27, p=4.67×10−5 vs. OR =1.01 (95%CI=0.93-1.10, p=0.79) for non-aggressive disease, with p=0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (p=0.013) and, independently, with each rs7257330-A risk allele (ptrend=0.024). Over-expression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E over-expression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models. PMID:25320178
Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G; Horn, Adam J; Lele, Subodh M; Theodorescu, Dan; Batra, Surinder K
2014-01-01
Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.
1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.
Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S
2015-04-01
Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.
In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines.
Osborn, Stephanie L; Kurzrock, Eric A
2018-01-01
Bioengineering of bladder tissue, particularly for those patients who have advanced bladder disease, requires a source of urothelium that is healthy, capable of significant proliferation in vitro and immunologically tolerated upon transplant. As pluripotent stem cells have the potential to fulfill such criteria, they provide a critical cell source from which urothelium might be derived in vitro and used clinically. Herein, we describe the in vitro differentiation of urothelium from the H9 human embryonic stem cell (hESC) line through the definitive endoderm (DE) phase via selective culture techniques. The protocol can be used to derive urothelium from other hESCs or human-induced pluripotent stem cells.
Fickweiler, S; Steinbach, P; Wörle, K; Hofstädter, F
1996-01-01
The effects of high-energy shock waves (HESW) generated by an experimental Siemens lithotripter in combination with 137Cs gamma-rays were examined in vitro. Proliferation after treatment of immobilised pellets of either single cells or multicellular spheroids of the bladder cancer cell line RT4 was determined using colony-forming assays and cell cycle analysis. Surviving and cell cycle fractions were calculated for each shock wave and radiation application mode separately, and for sequential combination in different successions for the purpose of characterizing the interaction of both treatment modalities. Combination of HESW and ionising radiation turned out to act additively or slightly supra-additively on both biologic models.
Nakai, Yasushi; Tatsumi, Yoshihiro; Miyake, Makito; Anai, Satoshi; Kuwada, Masaomi; Onishi, Sayuri; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide
2016-03-01
The mechanism underlying the increased levels of protoporphyrin IX in bladder cancer remains unclear. Here, we focus on proteins associated with protoporphyrin IX accumulation in bladder cancer cells and investigate the protein that plays a key role in increased protoporphyrin IX accumulation in bladder cancer cells. Western blotting was used to determine the expression of peptide transporter 1, hydroxymethylbilane synthase, ferrochelatase, ATP-binding cassette 2, and heme oxygenase-1 in bladder cancer cell line cells. We evaluated the correlation between the expression of each protein and accumulated protoporphyrin IX in these cells using Pearson's correlation analysis. Immunohistochemistry was used to estimate the expression of the same five proteins in samples from 75 patients who underwent transurethral resection of bladder tumors. The correlation between the expression of each protein in cells from resected bladder specimens and accumulated protoporphyrin IX in bladder cancer cells in voided urine was evaluated using Pearson's correlation analysis. The expression of ferrochelatase showed a significant negative correlation with protoporphyrin IX accumulation in vitro (p=0.04). The expression of peptide transporter 1 (p<0.01, R=0.39), heme oxygenase-1 (p<0.01, R=0.33), and ferrochelatase (p<0.01, R=0.75) in resected bladder specimens by immunohistochemistry was correlated with protoporphyrin IX accumulation in bladder cancer cells in voided urine. On multivariate analysis, the expression of ferrochelatase (p=0.03) was significant factors to predict positive 5-aminolevulinic acid-induced fluorescent cytology. The expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer. Copyright © 2015 Elsevier B.V. All rights reserved.
Begnini, Karine Rech; Rizzi, Caroline; Campos, Vinicius Farias; Borsuk, Sibele; Schultze, Eduarda; Yurgel, Virginia Campello; Nedel, Fernanda; Dellagostin, Odir Antônio; Collares, Tiago; Seixas, Fabiana Kömmling
2013-02-01
BCG therapy remains at the forefront of immunotherapy for treating patients with superficial bladder cancer. The high incidence of local side effects and the presence of non-responder diseases have led to efforts to improve the therapy. Hence, we proposed that an auxotrophic recombinant BCG strain overexpressing Ag85B (BCG ∆leuD/Ag85B), could enhance the cytotoxicity to the human bladder carcinoma cell line 5637. The rBCG was generated using an expression plasmid encoding the mycobacterial antigen Ag85B to transform a BCG ∆leuD strain. The inhibitory effect of BCG ∆leuD/Ag85B on 5637 cells was determined by the MTT method, morphology observation and a LIVE/DEAD assay. Gene expression profiles for apoptotic, cell cycle-related and oxidative stress-related genes were investigated by qRT-PCR. Bax, bcl-2 and p53 induction by BCG ∆leuD/Ag85B treatment was evaluated by Western blotting. BCG ∆leuD/Ag85B revealed a superior cytotoxicity effect compared to the control strains used in this study. The results showed that the expression level of pro-apoptotic and cell cycle-related genes increased after BCG ∆leuD/Ag85B treatment, whereas the mRNA levels of anti-apoptotic genes decreased. Interestingly, BCG ∆leuD/Ag85B also increased the mRNA level of antioxidant enzymes in the bladder cancer cell line. Bax and p53 proteins levels increased following treatment. In conclusion, these results suggest that treatment with BCG ∆leuD/Ag85B enhances cytotoxicity for superficial bladder cancer cells in vitro. Therefore, rBCG therapy may have potential benefits in the treatment of bladder cancer.
Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.
Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin
2017-07-01
Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.
Lea, Michael A; Altayyar, Mansour; desBordes, Charles
2015-11-01
In seven out of eight human bladder cell lines that were examined herein, growth was more dependent on the presence in the incubation medium of glucose rather than glutamine. The exception was the slowly growing RT4 cells that were more glutamine-dependent. Growth of all the cell lines was reduced by an inhibitor of 6-phosphofructo-2-kinase/2,6-bisphosphatase 3, namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). Growth was also reduced by three compounds that reduce the conversion of glucose to lactate: namely 2-deoxyglucose, butyrate and dichloroacetate. Additive effects were seen when these molecules were combined with 3PO. Treatment of bladder cancer cells with phenformin resulted in growth inhibition that was frequently accompanied by increased glucose uptake and acidification of the medium that was blocked by co-incubation with 3PO. The actions of 3PO suggest that inhibitors of PFKB3 merit further investigation in the treatment of bladder cancer and they may be useful agents in combination with other drugs that inhibit cancer cell proliferation. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Eggenschwiler, Jenny; von Balthazar, Leopold; Stritt, Bianca; Pruntsch, Doreen; Ramos, Mac; Urech, Konrad; Rist, Lukas; Simões-Wüst, A Paula; Viviani, Angelika
2007-01-01
Background Preparations of mistletoe (Viscum album) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin. Methods Using colorimetric assays, we have now compared the cytotoxic effects of Viscum album preparations (VAPs) obtained from mistletoe growing on oak (Quercus robur and Q. petraea, VAP-Qu), apple tree (Malus domestica,, VAP-M), pine (Pinus sylvestris, VAP-P) or white fir (Abies pectinata, VAP-A), on the in vitro growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines. Results Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC50) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the lectin-rich VAP-Qu, on all tested bladder and breast carcinoma cell lines. Conclusion The results suggest the existence of cytotoxic components other than mistletoe lectin in VAP-A and reveal an unexpected potential of this preparation for the treatment of breast and bladder cancer. PMID:17493268
Wang, Wentao; Li, Changfu; Chen, Yongsheng; Teng, Lichen; Cao, Yan; Xu, Yongpeng; Pan, Hongxin; An, Ruihua
2018-04-30
Bladder cancer has shown great challenge for people's life. Traditional therapeutics against bladder cancer including surgery could not bring much benefit for patients, particularly for the late stage patients. So it is necessary to keep in mind why and how bladder cancer cells survive in our body. In this study, we explored the function and the molecular mechanism of GGN gene in bladder cancer. GGN was shown to be expressed at a high level in bladder cancer tissues compared to the control and was associated with the unsatisfactory survival rate of patients. GGN was also expressed abundantly in bladder cancer cell lines such as T24, 5637 and BIU87. Then GGN was knocked down in 5637 cells and T24 cells at both RNA and protein level. In accordance, aberrant growth and proliferation were demonstrated in bladder cancer cells. The ability of migration and invasion of bladder cancer cells was also inhibited. The in vivo data further proved that the xenograft tumor growth was dramatically suppressed by GGN knockdown. Then we demonstrated that the level of IκB, bax and truncated caspase3 was upregulated after GGN was knocked down in 5637 cells. In contrast, expression level of NFκB, IKK, c-Myc, cyclin D1 and Bcl-2 was reduced. Further, the phosphorylation level of IκB was also downregulated. These data suggest that NFκB/caspase3-mediated apoptosis signaling was regulated by GGN. Conclusively, GGN played a tumor-promoting role in bladder cancer through regulation of NFκB/caspase3-mediated apoptosis signaling. This study provides a new clue for the treatment of patients with bladder cancer. Copyright © 2018 Elsevier B.V. All rights reserved.
Xia, Shunyao; Jin, Chengjun; Yin, Huaifu; Zhao, Weiming; Wu, Qiong
2014-01-01
There is increasing evidence suggesting that dysregulation of some microRNAs (miRNAs) may contribute to tumor progression and metastasis and have been proposed to be key regulators of diverse biological processes such as transcriptional regulation, cell growth and tumorigenesis. Previous studies have shown that miR-137 is dysregulated in some malignancies, but its role in bladder cancer is still unknown. In our study, we find that miR-137 is up-regulated in human bladder cancer tissues and cell lines. Moreover, the higher level of miR-137 was associated with pM or pTNM stage in clinical bladder cancer patients. Enforced expression of miR-137 in bladder cancer cells significantly enhanced their proliferation, migration and invasion. Bioinformatics analysis identified the tumor suppressor gene PAQR3 as a potential miR-137 target gene. Further studies indicated that miR-137 suppressed the expression of PAQR3 by binding to its 3′-untranslated region. Silencing of PAQR3 by small interfering RNAs phenocopied the effects of miR-137 overexpression, whereas restoration of PAQR3 in bladder cancer cells bladder cancer cells overexpressing miR-137, partially reversed the suppressive effects of miR-137. These findings indicate that miR-137 could be a potential oncogene in bladder cancer. PMID:25330156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conde, Vanessa R.; Oliveira, Pedro F.; Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP
Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similarmore » in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.« less
Ye, C; Chen, S; Pei, X; Li, L; Feng, K
1999-08-01
To evaluate the therapeutic efficacy of retroviral-mediated hygromycin phosphotransferase-thymidine kinase fusion gene (HyTK)/GCV on human bladder carcinoma cell. A retroviral expression vector pL (HyTK) SN was constructed. By using FuGENE 6-mediated transfection and "ping-pong effect" technique, high-titer of retroviral supernatant was obtained and HyTK gene was transferred into EJ cells. A retroviral vector encoding, enhanced green fluorescent protein, EGFP was used to rapidly detect the transduction efficiency. Antitumor effects were observed after GCV treatment. In vitro experiments demonstrated the EJ cells transferred by HyTK gene were killed in the GCV treatment. Non-transduced parental cells were not sensitive to GCV, but they were dead by the bystander killing of neighboring cells when mixed with EJ/HyTK cells at various ratios. In addition, this not only affect wild-type EJ cells but also cells from different bladder carcinoma cell lines. Retroviral-mediated HyTK/GCV systems were a promising suicide gene therapy for bladder carcinoma. EGFP may act as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in bladder carcinoma cells.
Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana
2013-09-01
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.
BROMINATED TRIHALOMETHANE (BrTHM) TOXICITY IN HUMAN BLADDER CELL LINES
Epidemiology studies have consistently found that greater exposure to drinking water disinfection byproducts (DBPs) is associated with an increased risk for bladder cancer. In 2010, Cantor et al. (Environ. Health Perspect. 118: 1545) reported that this increased risk was depende...
Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.
Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue
2013-01-01
Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.
Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium
Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue
2013-01-01
Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711
Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E
2016-05-01
Heat shock protein 90 (Hsp90) is a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in multiple oncogenic signaling pathways. Hsp90 holds a prominent role in tumorigenesis, as numerous members of its broad clientele are involved in the generation of the hallmark traits of cancer. 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) specifically targets Hsp90 and interferes with its function as a molecular chaperone, impairing its intrinsic ATPase activity and undermining proper folding of multiple protein clients. In this study, we have examined the effects of 17-DMAG on the regulation of Hsp90-dependent tumorigenic signaling pathways directly implicated in cell cycle progression, survival, and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semiquantitative PCR (sqPCR), immunofluorescence, and scratch-wound assays in RT4 (p53(wt)), RT112 (p53(wt)), T24 (p53(mt)), and TCCSUP (p53(mt)) human urinary bladder cancer cell lines. We have demonstrated that, upon exposure to 17-DMAG, bladder cancer cells display prominent cell cycle arrest and commitment to apoptotic and autophagic cell death, in a dose-dependent manner. Furthermore, 17-DMAG administration induced pronounced downregulation of multiple Hsp90 protein clients and other downstream oncogenic effectors, therefore causing inhibition of cell proliferation and decline of cell motility due to the molecular "freezing" of critical cytoskeletal components. In toto, we have clearly demonstrated the dose-dependent and cell type-specific effects of 17-DMAG on the hallmark traits of cancer, appointing Hsp90 as a key molecular component in bladder cancer targeted therapy.
Alfano, Massimo; Nebuloni, Manuela; Allevi, Raffaele; Zerbi, Pietro; Longhi, Erika; Lucianò, Roberta; Locatelli, Irene; Pecoraro, Angela; Indrieri, Marco; Speziali, Chantal; Doglioni, Claudio; Milani, Paolo; Montorsi, Francesco; Salonia, Andrea
2016-10-25
In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC). Next, binding and invasion of bladder metastatic cell line was observed on synthetic scaffold recapitulating anisotropy of tumoral ECM, but not on scaffold with disorganized texture typical of non-neoplastic lamina propria. This study provided information regarding the ultrastructure and geometry of healthy human bladder and BC ECMs. Likewise, using synthetic scaffolds we identified linearization of the texture as a mandatory feature for BC cell invasion. Integrating microstructure and geometry with biochemical and mechanical factors could support the development of an innovative synthetic bladder substitute or a tumoral scaffold predictive of chemotherapy outcomes.
Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder
Hertting, Olof; Holm, Åsa; Lüthje, Petra; Brauner, Hanna; Dyrdak, Robert; Jonasson, Aino Fianu; Wiklund, Peter; Chromek, Milan; Brauner, Annelie
2010-01-01
The urinary tract is frequently being exposed to potential pathogens and rapid defence mechanisms are therefore needed. Cathelicidin, a human antimicrobial peptide is expressed and secreted by bladder epithelial cells and protects the urinary tract from infection. Here we show that vitamin D can induce cathelicidin in the urinary bladder. We analyzed bladder tissue from postmenopausal women for expression of cathelicidin, before and after a three-month period of supplementation with 25-hydroxyvitamin D3 (25D3). Cell culture experiments were performed to elucidate the mechanisms for cathelicidin induction. We observed that, vitamin D per se did not up-regulate cathelicidin in serum or in bladder tissue of the women in this study. However, when the bladder biopsies were infected with uropathogenic E. coli (UPEC), a significant increase in cathelicidin expression was observed after 25D3 supplementation. This observation was confirmed in human bladder cell lines, even though here, cathelicidin induction occurred irrespectively of infection. Vitamin D treated bladder cells exerted an increased antibacterial effect against UPEC and colocalization to cathelicidin indicated the relevance of this peptide. In the light of the rapidly growing problem of resistance to common urinary tract antibiotics, we suggest that vitamin D may be a potential complement in the prevention of UTI. PMID:21179490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Jie; Xie Liping; Zheng Xiangyi
Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulationmore » of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer.« less
Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G.; Horn, Adam J.; Lele, Subodh M.; Theodorescu, Dan; Batra, Surinder K.
2014-01-01
Purpose Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Material and Methods Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. Results MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). Conclusion The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma. PMID:24671186
Disruption of the FA/BRCA pathway in bladder cancer.
Neveling, K; Kalb, R; Florl, A R; Herterich, S; Friedl, R; Hoehn, H; Hader, C; Hartmann, F H; Nanda, I; Steinlein, C; Schmid, M; Tonnies, H; Hurst, C D; Knowles, M A; Hanenberg, H; Schulz, W A; Schindler, D
2007-01-01
Bladder carcinomas frequently show extensive deletions of chromosomes 9p and/or 9q, potentially including the loci of the Fanconi anemia (FA) genes FANCC and FANCG. FA is a rare recessive disease due to defects in anyone of 13 FANC genes manifesting with genetic instability and increased risk of neoplasia. FA cells are hypersensitive towards DNA crosslinking agents such as mitomycin C and cisplatin that are commonly employed in the chemotherapy of bladder cancers. These observations suggest the possibility of disruption of the FA/BRCA DNA repair pathway in bladder tumors. However, mutations in FANCC or FANCG could not be detected in any of 23 bladder carcinoma cell lines and ten surgical tumor specimens by LOH analysis or by FANCD2 immunoblotting assessing proficiency of the pathway. Only a single cell line, BFTC909, proved defective for FANCD2 monoubiquitination and was highly sensitive towards mitomycin C. This increased sensitivity was restored specifically by transfer of the FANCF gene. Sequencing of FANCF in BFTC909 failed to identify mutations, but methylation of cytosine residues in the FANCF promoter region was demonstrated by methylation-specific PCR, HpaII restriction and bisulfite DNA sequencing. Methylation-specific PCR uncovered only a single instance of FANCF promoter hypermethylation in surgical specimens of further 41 bladder carcinomas. These low proportions suggest that in contrast to other types of tumors silencing of FANCF is a rare event in bladder cancer and that an intact FA/BRCA pathway might be advantageous for tumor progression. Copyright (c) 2007 S. Karger AG, Basel.
Hu, Xudong; Zhang, Zhiqiang; Liang, Zhaofeng; Xie, Dongdong; Zhang, Tao; Yu, Dexin; Zhong, Caiyun
2017-02-01
Feline sarcoma-related protein (Fer) is a nuclear and cytoplasmic non-receptor protein tyrosine kinase and Fer overexpression is associated with various biological processes. However, the clinicopathological characteristics and molecular mechanisms of Fer expression in bladder urothelial cell carcinoma (UCC) have yet to be elucidated. The present study demonstrated that Fer was significantly upregulated in bladder UCC tissues and cell lines. A clinicopathological analysis suggested that Fer expression was significantly associated with tumor stage, histological grade and lymph node status, and Fer expression was a prognostic factor for overall survival in a multivariate analysis. Furthermore, small interfering RNA (siRNA) was used to silence the expression of the Fer gene in human bladder UCC T24 cells, and was shown to significantly reduce the migration and invasion of the cells. It was also observed that Fer-siRNA caused the T24 cells to acquire an epithelial cobblestone phenotype, and was able to reverse the epithelial-mesenchymal transition of the cells. Subsequently, Fer-knockdown was shown to deactivate the extracellular signal-regulated kinase/activator protein-1 signaling pathway in T24 cells. These results indicated, for the first time, that Fer has a critical role in bladder UCC progression and may be a potential therapeutic target for bladder UCC metastasis.
The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells.
Gándara, L; Sandes, E; Di Venosa, G; Prack Mc Cormick, B; Rodriguez, L; Mamone, L; Batlle, A; Eiján, A M; Casas, A
2014-04-05
Photodynamic Therapy (PDT) is an anticancer treatment based on photosensitisation of malignant cells. The precursor of the photosensitiser Protoporphyrin IX, 5-aminolevulinic acid (ALA), has been used for PDT of bladder cancer. Silybin is a flavonoid extracted from Silybum marianum, and it has been reported to increase the efficacy of several anticancer treatments. In the present work, we evaluated the cytotoxicity of the combination of ALA-PDT and silybin in the T24 and MB49 bladder cancer cell lines. MB49 cells were more sensitive to PDT damage, which was correlated with a higher Protoporphyrin IX production from ALA. Employing lethal light doses 50% (LD50) and 75% (LD75) and additional silybin treatment, there was a further increase of toxicity driven by PDT in both cell lines. Using the Chou-Talalay model for drug combination derived from the mass-action law principle, it was possible to identify the effect of the combination as synergic when using LD75, whilst the use of LD50 led to an additive effect on MB49 cells. On the other hand, the drug combination turned out to be nearly additive on T24 cells. Apoptotic cell death is involved both in silybin and PDT cytotoxicity in the MB49 line but there is no apparent correlation with the additive or synergic effect observed on cell viability. On the other hand, we found an enhancement of the PDT-driven impairment of cell migration on both cell lines as a consequence of silybin treatment. Overall, our results suggest that the combination of silybin and ALA-PDT would increase PDT outcome, leading to additive or synergistic effects and possibly impairing the occurrence of metastases. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Ying; Liu, Jiali; Smith, Elizabeth; Zhou, Kang; Liao, Jie; Yang, Guang-Yu; Tan, Ming; Zhan, Xi
2007-03-01
Missing in metastasis (MIM) gene encodes a putative metastasis suppressor. However, the role of MIM in tumorigenesis and metastasis has not yet been established. Western blot analysis using a MIM specific antibody demonstrated that MIM protein is present at varying levels in a variety of normal cells as well as tumor cell lines. Immunohistochemical staining of adult mouse tissues revealed abundant MIM immunoreactivity in uroepithelial cells in the bladder, neuron Purkinje cells in the cerebellum, and megakaryocytes in the bone marrow and spleen in addition. MIM immunoreactivity also was found in human normal bladder transitional epithelial cells. However, the reactivity was not seen in 69 percent of human primary transitional cell carcinoma specimens. Over 51 percent of the tumors at low grade display MIM staining similarly to the normal cells, whereas only 16.7 percent of the tumors at high-grade with poor differentiation show faint or mild staining. Furthermore, full-length MIM protein is highly expressed in SV-HUC-L an immortalized normal transitional epithelial cell line, moderately expressed in T24 and poorly expressed in J82 and TCCSUP transitional cell carcinoma cells. This finding indicates that downegulation of MIM expression may correlate with the transition of tumor cells from distinct epithelium-like morphology to less differentiated carcinomas.
LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.
Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan
2018-06-01
This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.
A novel role for drebrin in regulating progranulin bioactivity in bladder cancer.
Xu, Shi-Qiong; Buraschi, Simone; Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C; Gomella, Leonard G; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea
2015-05-10
We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.
Yamada, Takahiro; Ueda, Takashi; Shibata, Yasuhiro; Ikegami, Yosuke; Saito, Masaki; Ishida, Yusuke; Ugawa, Shinya; Kohri, Kenjiro; Shimada, Shoichi
2010-08-01
To investigate the functional expression of the transient receptor potential vanilloid 2 (TRPV2) channel protein in human urothelial carcinoma (UC) cells and to determine whether calcium influx into UC cells through TRPV2 is involved in apoptotic cell death. The expression of TRPV2 mRNA in bladder cancer cell lines (T24, a poorly differentiated UC cell line and RT4, a well-differentiated UC cell line) was analyzed using reverse transcriptase-polymerase chain reaction. The calcium permeability of TRPV2 channels in T24 cells was investigated using a calcium imaging assay that used cannabidiol (CBD), a relatively selective TRPV2 agonist, and ruthenium red (RuR), a nonselective TRPV channel antagonist. The death of T24 or RT4 cells in the presence of CBD was evaluated using a cellular viability assay. Apoptosis of T24 cells caused by CBD was confirmed using an annexin-V assay and small interfering RNA (siRNA) silencing of TRPV2. TRPV2 mRNA was abundantly expressed in T24 cells. The expression level in UC cells was correlated with high-grade disease. The administration of CBD increased intracellular calcium concentrations in T24 cells. In addition, the viability of T24 cells progressively decreased with increasing concentrations of CBD, whereas RT4 cells were mostly unaffected. Cell death occurred via apoptosis caused by continuous influx of calcium through TRPV2. TRPV2 channels in UC cells are calcium-permeable and the regulation of calcium influx through these channels leads directly to the death of UC cells. TRPV2 channels in UC cells may be a potential new therapeutic target, especially in higher-grade UC cells. Copyright 2010 Elsevier Inc. All rights reserved.
Salehi, Shima; Mansoori, Behzad; Mohammadi, Ali; Davoudian, Sadaf; Musavi Shenas, Seyed Mohammad Hossein; Shajari, Neda; Majidi, Jafar; Baradaran, Behzad
2017-12-01
Snail-1 actively participates in tumor progression, invasion, and migration. Targeting snail-1 expression can suppress the EMT process in cancer. The aim of this study was to investigate the effect of snail1 silencing on urinary bladder cancer. Quantitative RT-PCR was used to detect snail-1 and other related metastatic genes expression following siRNA knockdown in urinary bladder cancer EJ-138 cells. The protein level of snail1 was assessed by Western blot. MTT and TUNEL assays were assessed to understand if snail-1 had survival effects on EJ-138 cells. Scratch wound healing assay measured cell motility effects after snail1 suppression. The significant silencing of snail-1 reached 60pmol siRNA in a 48-h post-transfection. The result of scratch assay showed that snail-1 silencing significantly decreased Vimentin, MMPs, and CXCR4 expression; however, expression of E-cadherin was induced. The cell death assay indicated that snail-1 played the crucial role in bladder cancer survival rate. These results propose that snail-1 plays a major role in the progression and migration of urinary bladder cancer, and can be a potential therapeutic target for target therapy of invasive urinary bladder cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Xue, Yijun; Wu, Gengqing; Wang, Xiaoning; Zou, Xiaofeng; Zhang, Guoxi; Xiao, Rihai; Yuan, Yuanhu; Long, Dazhi; Yang, Jun; Wu, Yuting; Xu, Hui; Liu, Folin; Liu, Min
2013-03-01
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that stabilizes the c-MYC protein. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in urothelial cell carcinoma (UCC) of the bladder. CIP2A expression was examined in 20 fresh bladder UCC tissues and paired adjacent normal bladder tissues by RT-PCR and Western blot. Immunohistochemistry for CIP2A was performed on additional 117 bladder UCC tissues. The clinical significance of CIP2A expression was analyzed. CIP2A downregulation was performed in bladder UCC cell line T24 with high abundance of CIP2A, and the effects of CIP2A silencing on cell proliferation, migration, invasion in vitro, and tumor growth in vivo were evaluated. We found that CIP2A expression was upregulated in bladder UCC tissues relative to adjacent normal bladder tissues. Clinicopathological analysis showed that CIP2A expression was significantly associated with tumor stage (P = 0.004), histological grade (P = 0.007), and lymph node status (P = 0.001). The Kaplan-Meier survival curves revealed that CIP2A expression was associated with poor prognosis in bladder UCC patients (log-rank value = 14.704, P < 0.001). CIP2A expression was an independent prognostic marker of overall patient survival in a multivariate analysis (P = 0.015). Knockdown of the CIP2A expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumor growth in xenograft model mice. Our findings suggest that CIP2A is an independent predictor of poor prognosis of bladder UCC patients, and inhibition of its expression might be of therapeutic significance.
Garg, Manoj; Kanojia, Deepika; Seth, Amlesh; Kumar, Rajive; Gupta, Anju; Surolia, Avadhesha; Suri, Anil
2010-01-01
Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma.
Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu
2017-08-25
To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor microenvironment to facilitate tumor growth and development though secreting the oncogenic lncRNA-UCA1-enriched exosomes and exosomal lncRNA-UCA1 in human serum has the possibility as a diagnostic biomarker for bladder cancer.
Dehnavi, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ataei, Zahra; Aryan, Hajar
2009-06-01
Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.
Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H
2016-10-01
The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.
Afferent Nerve Regulation of Bladder Function in Health and Disease
de Groat, William C.; Yoshimura, Naoki
2012-01-01
The afferent innervation of the urinary bladder consists primarily of small myelinated (Aδ) and unmyelinated (C-fiber) axons that respond to chemical and mechanical stimuli. Immunochemical studies indicate that bladder afferent neurons synthesize several putative neurotransmitters, including neuropeptides, glutamic acid, aspartic acid, and nitric oxide. The afferent neurons also express various types of receptors and ion channels, including transient receptor potential channels, purinergic, muscarinic, endothelin, neurotrophic factor, and estrogen receptors. Patch-clamp recordings in dissociated bladder afferent neurons and recordings of bladder afferent nerve activity have revealed that activation of many of these receptors enhances neuronal excitability. Afferent nerves can respond to chemicals present in urine as well as chemicals released in the bladder wall from nerves, smooth muscle, inflammatory cells, and epithelial cells lining the bladder lumen. Pathological conditions alter the chemical and electrical properties of bladder afferent pathways, leading to urinary urgency, increased voiding frequency, nocturia, urinary incontinence, and pain. Neurotrophic factors have been implicated in the pathophysiological mechanisms underlying the sensitization of bladder afferent nerves. Neurotoxins such as capsaicin, resiniferatoxin, and botulinum neurotoxin that target sensory nerves are useful in treating disorders of the lower urinary tract. PMID:19655106
Fang, Yong; Cao, Zipeng; Hou, Qi; Ma, Chen; Yao, Chunsuo; Li, Jingxia; Wu, Xue-Ru; Huang, Chuanshu
2013-01-01
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum, and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying ISO anti-cancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that ISO showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G0/G1 arrest as well as downregulation of Cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that ISO down-regulated Cyclin D1 gene transcription via inhibition of SP1 transactivation. Moreover, ectopic expression of GFP-Cyclin D1 rendered UMUC3 cells resistant to induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth by ISO treatment. Together, our studies demonstrate that ISO is an active compound that mediates for Gnetum Cleistostachyum’s induction of cell cycle G0/G1 arrest and inhibition of cancer cell anchorage-independent growth through down-regulating SP1/Cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anti-cancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate ISO. PMID:23723126
Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder.
Abraham, Shaji; Knapp, Deborah W; Cheng, Liang; Snyder, Paul W; Mittal, Suresh K; Bangari, Dinesh S; Kinch, Michael; Wu, Lan; Dhariwal, Jay; Mohammed, Sulma I
2006-01-15
The EphA2 receptor tyrosine kinase is believed to play a role in tumor growth and metastasis. The clinical significance of the expression of EphA2 was observed in breast, prostate, colon, skin, cervical, ovarian, and lung cancers. The purpose of this work was to determine the expression of EphA2 and its ligand, Ephrin A-1, and E-cadherin in carcinoma of the urinary bladder, and determine EphA2 as a new target for therapy in bladder cancer. EphA2 mRNA and protein expression was investigated by reverse transcription-PCR and Western blot, respectively, in bladder cancer cell lines. In addition, the expression of EphA2, Ephrin A-1, and E-cadherin in tissues from patients with different stages of urinary bladder cancer was determined by immunohistochemistry. Furthermore, the ability of Ephrin A-1 to inhibit growth of bladder cancer cells was also investigated using an adenoviral delivery system. Western blot analysis showed high EphA2 expression in TCCSUP, T24, and UMUC-3 cell lines. In tissues, the staining intensity of EphA2 was less in normal urothelium but increased greatly in advancing stages of urothelial carcinoma (P < 0.05). Similarly, the staining intensity of Ephrin A-1 was low in normal tissues and high in cancerous tissues, but it was similar across the various stages of urothelial carcinoma (T(a)-T(4)). E-cadherin immunoreactivity decreased in urothelial cancer. Association of EphA2 and Ephrin A-1 expression was found to be significant between T(a) stage and T(1)-T(2) (P < 0.04) and T(a) and T(3)-T(4) stages (P < 0.0001). Adenovirus delivery of Ephrin A-1 inhibited proliferation of TCCSUP cells. EphA2 may serve as a novel target for bladder cancer therapy.
Glucocorticoid receptor beta increases migration of human bladder cancer cells.
McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D
2016-05-10
Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p < 0.05) increased expression of GRβ compared to UMUC-3, which also correlated with higher migration rates. Knockdown of GRβ in the T24 cells resulted in a decreased migration rate. Mutational analysis of the 3' untranslated region (UTR) of human GRβ revealed that miR144 might positively regulate expression. Indeed, overexpression of miR144 increased GRβ by 3.8 fold. In addition, miR144 and GRβ were upregulated during migration. We used a peptide nucleic acid conjugated to a cell penetrating-peptide (Sweet-P) to block the binding site for miR144 in the 3'UTR of GRβ. Sweet-P effectively prevented miR144 actions and decreased GRβ expression, as well as the migration of the T24 human bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.
NASA Astrophysics Data System (ADS)
Palmer, S.; Litvinova, Karina; Rafailov, E. U.; Nabi, G.
2015-02-01
Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.
Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K
2012-05-25
Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.
A novel role for drebrin in regulating progranulin bioactivity in bladder cancer
Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C.; Gomella, Leonard G.; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V.; Morrione, Andrea
2015-01-01
We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer. PMID:25839164
Sex-dependent expression of TRPV1 in bladder arterioles
Phan, Thieu X.; Ton, Hoai T.; Chen, Yue; Basha, Maureen E.
2016-01-01
Transient receptor potential vanilloid type 1 (TRPV1) is a major nociceptive ion channel implicated in bladder physiology and/or pathophysiology. However, the precise expression of TRPV1 in neuronal vs. nonneuronal bladder cells is uncertain. Here we used reporter mouse lines (TRPV1-Cre:tdTomato and TRPV1PLAP-nlacZ) to map expression of TRPV1 in postnatal bladder. TRPV1 was not detected in the urothelium, however, we found marked expression of TRPV1 lineage in sensory nerves, and surprisingly, in arterial/arteriolar smooth muscle (ASM) cells. Tomato fluorescence was prominent in the vesical arteries and in small-diameter (15–40 μm) arterioles located in the suburothelial layer with a near equal distribution in bladder dome and base. Notably, arteriolar TRPV1 expression was greater in females than in males and increased in both sexes after 90 days of age, suggesting sex hormone and age dependency. Analysis of whole bladder and vesical artery TRPV1 mRNA revealed a similar sex and developmental dependence. Pharmacological experiments confirmed functional TRPV1 protein expression; capsaicin increased intracellular Ca2+ in ∼15% of ASM cells from wild-type female bladders, but we observed no responses to capsaicin in bladder arterioles isolated from TRPV1-null mice. Furthermore, capsaicin triggered arteriole constriction that was rapidly reversed by the TRPV1 antagonist, BCTC. These data show that predominantly in postpubertal female mice, bladder ASM cells express functional TRPV1 channels that may act to constrict arterioles. TRPV1 may therefore play an important role in regulating the microcirculation of the female bladder, and this effect may be of significance during inflammatory conditions. PMID:27654891
Yang, Delin; Huo, Qian; Luan, Ting; Wang, Jiansong; Tang, Zhaoran; Wang, Haifeng
2016-08-01
In order to investigate how valsartan-the angiotensin II 1 receptor (AT1R) antagonist-affects the expressions of AT1R antigen, matrix metalloproteinases (MMPs) -2 and -9 in carcinoma of urinary bladder (CUB) cell lines with different invasive abilities. Three cell lines, EJ-M3, EJ, and BIU-87, with different invasive abilities were cultured and treated with valsartan. Cell proliferation states were determined by the methyl thiazolyl tetrazolium (MTT) method. The expressions at protein level and gene level were determined by Western blot and real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR), respectively. The invasive abilities and migratory abilities of the three cell lines were determined by Transwell in vitro cell invasion assay and wound healing assay, respectively. MTT results show that valsartan can inhibit the proliferation of CUB cells, and the inhibition effect is enhanced with the increase of concentration. AngII promotes the MMP2 and MMP9 expressions (both protein and gene levels) in CUB cells through AT1R, but their expressions can be effectively inhibited by valsartan, the AngII inhibitor. AngII inhibitor may become a novel drug that can inhibit CUB metastasis and prolong the survival of CUB patients.
Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin
2013-09-01
The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p <0.001), indicating P-glycoprotein transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
2012-01-01
Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transformed urothelial cells. Results It was shown that in the renal system both the non-glycosylated and glycosylated form of ZIP8 was expressed in the proximal tubule cells with localization of ZIP8 to the cytoplasm and cell membrane; findings in line with previous studies on ZIP8. The studies in the bladder were the first to show that ZIP8 was expressed in normal urothelium and that ZIP8 could be localized to the paranuclear region. Studies in the UROtsa cell line confirmed a paranuclear localization of ZIP8, however addition of growth medium to the cells increased the expression of the protein in the UROtsa cells. In archival human samples of the normal urothelium, the expression of ZIP8 was variable in intensity whereas in urothelial cancers ZIP8 was expressed in 13 of 14 samples, with one high grade invasive urothelial cancer showing no expression. The expression of ZIP8 was similar in the Cd+2 and As+3 transformed UROtsa cell lines and their tumor transplants. Conclusion This is the first study which shows that ZIP8 is expressed in the normal urothelium and in bladder cancer. In addition the normal UROtsa cell line and its transformed counterparts show similar expression of ZIP8 compared to the normal urothelium and the urothelial cancers suggesting that the UROtsa cell line could serve as a model system to study the expression of ZIP8 in bladder disease. PMID:22550998
NASA Astrophysics Data System (ADS)
Kerr, Laura T.; Adams, Aine; O'Dea, Shirley; Domijan, Katarina; Cullen, Ivor; Hennelly, Bryan M.
2014-05-01
Raman microspectroscopy can be applied to the urinary bladder for highly accurate classification and diagnosis of bladder cancer. This technique can be applied in vitro to bladder epithelial cells obtained from urine cytology or in vivo as an optical biopsy" to provide results in real-time with higher sensitivity and specificity than current clinical methods. However, there exists a high degree of variability across experimental parameters which need to be standardised before this technique can be utilized in an everyday clinical environment. In this study, we investigate different laser wavelengths (473 nm and 532 nm), sample substrates (glass, fused silica and calcium fluoride) and multivariate statistical methods in order to gain insight into how these various experimental parameters impact on the sensitivity and specificity of Raman cytology.
Leonhäuser, Dorothea; Stollenwerk, Katja; Seifarth, Volker; Zraik, Isabella M; Vogt, Michael; Srinivasan, Pramod K; Tolba, Rene H; Grosse, Joachim O
2017-01-04
The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model. Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy. Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period. We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.
Clinical significance and biological roles of CARMA3 in human bladder carcinoma.
Man, Xiaojun; He, Jiani; Kong, Chuize; Zhu, Yuyan; Zhang, Zhe
2014-05-01
Caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) was reported as an oncoprotein overexpressed in several cancers. The expression pattern of CARMA3 and its clinical significance in human bladder cancer have not been well characterized. In the present study, CARMA3 expression was analyzed in 90 archived bladder cancer specimens using immunohistochemistry, and the correlation between CARMA3 expression and clinicopathological parameters was evaluated. We found that CARMA3 was overexpressed in 35 of 90 (38.8%) bladder cancer specimens. Significant association was observed between CARMA3 overexpression with tumor status (p = 0.081) and tumor grade (p = 0.027). To further explore the biological functions of CARMA3 in bladder cancer, we depleted CARMA3 in T24 and 5637 cell lines using small interfering RNA (siRNA). Using cell counting kit-8 (CCK8) assay and colony formation assay, we were able to show that CARMA3 depletion inhibited cell proliferation and colony number. Further study demonstrated that CARMA3 depletion decreased an expression of nuclear factor kappa B (NF-κB) targets cyclin D1 and Bcl-2 expression, as well as IκB phosphorylation. Luciferase reporter assay showed that CARMA3 depletion could downregulate NF-κB reporter activity. In conclusion, CARMA3 is overexpressed in bladder cancer and regulates malignant cell growth and NF-κB signaling, which makes CARMA3 a candidate therapeutic target for bladder cancer.
Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang
2012-08-01
Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer. Copyright © 2012 Wiley Periodicals, Inc.
Nguyen-Khuong, Terry; White, Melanie Y; Hung, Tzong-Tyng; Seeto, Shona; Thomas, Melissa L; Fitzgerald, Anna M; Martucci, Carlos E; Luk, Sharon; Pang, Shiu-Fu; Russell, Pamela J; Walsh, Bradley J
2009-04-01
Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.
Yamazaki, Hiroki; Iwano, Tomomi; Otsuka, Saori; Kagawa, Yumiko; Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro; Takagi, Satoshi
2015-04-01
Transitional cell carcinoma (TCC) in dogs is an aggressive malignant neoplasm, originating in the epithelium of the urinary bladder. The DEK nuclear protein is overexpressed in several types of human bladder cancer, where it is involved in chromatin reconstruction, gene transcription and apoptosis. Since DEK represents a potential therapeutic target for canine TCC, this study was designed to investigate DEK expression in canine TCC and to determine the effects of DEK mRNA silencing on TCC cells in vitro. The gene expression profiles of seven selected cancer-associated genes was assessed in four canine TCC cell lines and expression of DEK protein was evaluated in bladder tissue biopsies from healthy dogs and those affected with cystitis or TCC. After transfection of four canine TCC cell lines with DEK-specific or scrambled siRNA, annexin V staining was performed to evaluate apoptosis, and methylthiazole tetrazolium assays were performed to assess both cell viability and sensitivity to carboplatin. DEK mRNA expression was relatively high in canine TCC cells and expression of the DEK protein was significantly greater in TCC tumours compared with the other tissue samples. After transfection with DEK-specific siRNA, apoptosis, cell growth inhibition, and enhanced sensitivity to carboplatin were observed in all TCC cells assessed. These research findings suggest that DEK could be a potential therapeutic target for canine TCC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia
2016-10-21
High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana
2017-01-01
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells. PMID:28703782
Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana
2017-07-13
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are-for the time being-not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.
Larson, Jennifer; Yasmin, Tahmina; Sens, Donald A.; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Dunlevy, Jane R.; Cao, Ling; Somji, Seema
2010-01-01
SPARC belongs to a class of extracellular matrix-associated proteins that have counteradhesive properties. The ability of SPARC to modulate cell-cell and cell-matrix interactions provides a strong rationale for studies designed to determine its expression in cancer. The objective of this study was to determine if SPARC expression was altered in cadmium (Cd+2) and arsenite (As+3) induced bladder cancer and if these alterations were present in archival specimens of human bladder cancer. The expression of SPARC was determined in human parental UROtsa cells, their Cd+2 and As+3 transformed counterparts and derived tumors, and in archival specimens of human bladder cancer using a combination of real time reverse transcriptase polymerase chain reaction, western blotting, immunofluoresence localization and immunohistochemical staining. It was demonstrated that SPARC expression was down-regulated in Cd+2 and As+3 transformed UROtsa cells. In addition, the malignant epithelial component of tumors derived from these cell lines were also down-regulated for SPARC expression, but the stromal cells recruited to these tumors was highly reactive for SPARC. This finding was shown to translate to specimens of human bladder cancer where tumor cells were SPARC negative, but stromal cells were positive. Acute exposure of UROtsa cells to both cadmium and arsenite reduced the expression of SPARC through a mechanism that did not involve changes in DNA methylation or histone acetylation. These studies suggest that environmental exposure to As+3 or Cd+2 can alter cell-cell and cell-matrix interactions in normal urothelial cells through a reduction in the expression of SPARC. The SPARC associated loss of cell-cell and cell-matrix contacts may participate in the multi-step process of bladder carcinogenesis. PMID:20837119
Yuan, Run; Yu, Wei-Min; Cheng, Fan; Zhang, Xiao-Bin; Ruan, Yuan; Cao, Zhi-Xiu; Larré, Stéphane
2015-10-01
Quantum dots (QDs) are a type of fluorescent label with applications in biological molecules, cells and in vivo imaging. The current study investigated the effect of QDs on the toxicity, proliferation, migration and invasion of the EJ human bladder cancer cell line in vitro. The cell counting kit‑8 test was used to measure the survival rate of EJ cells following incubation with varying concentrations of QDs. Additionally, the effect of QDs on tumor cell migration and invasion was evaluated using the Transwell chamber assay, and cell proliferation rate was assessed using a hemocytometer. Data from the current study demonstrated no significant differences in survival rate between the experimental and control groups with the conventionally used concentrations (5, 10 and 20 nM) of QD605 (P>0.05). However, with high concentrations of QD605 (40 and 80 nM), significant differences were observed (P<0.001). The survival rate of EJ cells, however, remained at 92.6%. In addition, no significant differences were observed between the EJ cells labeled with transactivator of transcription (TAT)‑QD605 and the unlabeled EJ cells with regard to proliferation, migration and invasion (P>0.05). Thus, the results of the current study indicate that QDs exhibit a certain degree of influence on the activity of the EJ bladder cancer cell line at high concentrations. However, at the concentrations that QDs are conventionally used, there was little impact on the survival of the EJ cells. In addition, the proliferation, migration and invasion abilities of the EJ cells were not affected by TAT‑QDs. Therefore, the peptide‑conjugated QDs have potential to be applied in the imaging and tracking of live cells in vitro and of animals in vivo. Notably, QDs may provide the foundation for a novel, non‑invasive imaging strategy for the early diagnosis of tumors.
Iyer, Janaki Kannan; Dickey, Alexia; Rouhani, Parvaneh; Kaul, Anil; Govindaraju, Nirmal; Singh, Raj Narain; Kaul, Rashmi
2018-01-01
About 25-44% of women will experience at least one episode of recurrent UTI and the causative agent in over 70% of UTI cases is uropathogenic Escherichia coli (UPEC). UPEC cause recurrent UTI by evading the bladder's innate immune system through internalization into the bladder epithelium where antibiotics cannot reach or be effective. Thus, it is important to develop novel therapeutics to eliminate these intracellular pathogens. Nanodiamonds (NDs) are biocompatible nanomaterials that serve as promising candidates for targeted therapeutic applications. The objective of the current study was to investigate if 6 or 25 nm NDs can kill extracellular and intracellular UPEC in infected bladder cells. We utilized the human bladder epithelial cell line, T24, and an invasive strain of UPEC that causes recurrent UTI. We found that acid-purified 6 nm NDs displayed greater antibacterial properties towards UPEC than 25 nm NDs (11.5% vs 94.2% CFU/mL at 100 μg/mL of 6 and 25 nm, respectively; P<0.001). Furthermore, 6 nm NDs were better than 25 nm NDs in reducing the number of UPEC internalized in T24 bladder cells (46.1% vs 81.1% CFU/mL at 100 μg/mL of 6 and 25 nm, respectively; P<0.01). Our studies demonstrate that 6 nm NDs interacted with T24 bladder cells in a dose-dependent manner and were internalized in 2 hours through an actin-dependent mechanism. Finally, internalization of NDs was required for reducing the number of intracellular UPEC in T24 bladder cells. These findings suggest that 6 nm NDs are promising candidates to treat recurrent UTIs.
Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin
2010-01-01
Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991
The Contrasting Role of the Mediator Subunit MED30 in the Progression of Bladder Cancer.
Syring, Isabella; Weiten, Richard; Müller, Tim; Schmidt, Doris; Steiner, Susanne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg
2017-12-01
The Mediator complex is a key regulator of gene transcription, and several studies have demonstrated altered expression of particular subunits in diverse human diseases, especially cancer. To date, nothing is known about the role of MED30 in bladder cancer. We, therefore, performed an RNA expression and survival analysis of the subunit MED30 in 537 samples of bladder cancer by using the database cBioPortal. To validate these data on the protein level, we practiced immunohistochemical staining against MED30 on a tissue microarray containing 210 samples of all tumour stages and performed survival analyses. For functional analysis, the siRNA-mediated knockdown of MED30 was performed in the cell lines T24 and TCCSUP followed by proliferation, migration, and invasion assays. On the mRNA and protein levels, higher expression of MED30 is associated with better patient survival. In accordance with this, advanced T- and N-stages showed lower expression of MED30. In contrast, knockdown of MED30 led to reduction of the tumour parameters proliferation, migration, and invasion in the BCa cell lines. MED30 appears to be integrated in the progression of the urothelial tumour in the bladder. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
The photokilling of bladder carcinoma cells in vitro by phenothiazine dyes.
Fowler, G J; Rees, R C; Devonshire, R
1990-09-01
The potential photodynamic therapy photosensitizers Methylene Blue, Azure C, Methylene Violet, Thionine, Methylene Green, Haematoporphyrin, Nile Blue A, chloroaluminium phthalocyanine and bis-aluminium phthalocyanine were examined for their photoeffects and dark toxicity against a human superficial bladder carcinoma cell-line. By examination of [3H]thymidine uptake into dye-treated cells after irradiation with a copper-vapour pumped dye laser, it was found that Methylene Blue was the most phototoxic and dark toxic of all the dyes tested, suggesting that the dye might be of some use as a topically applied photodrug for use in photodynamic therapy of superficial or early-recurring carcinomas.
Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.
2014-01-01
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795
Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth.
Cha, Tai-Lung; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Sun, Kuang-Hui; Chen, Tzu-Ting; Sun, Guang-Huan; Chang, Sun-Yran; Yu, Cheng-Ping; Ho, Jar-Yi; Liu, Shu-Yu; Huang, Shih-Ming; Yu, Dah-Shyong
2015-03-01
The deregulation of epigenetics was involved in early and subsequent carcinogenic events. Reversing cancer epigenetics to restore a normal epigenetic condition could be a rational approach for cancer treatment and specialized prevention. In the present study, we found that the expression levels of two epigenetic markers, histone H3K27 trimethylation (H3K27me3), was low but histone H3S10 phosphorylation (pH3Ser10) was high in human bladder cancer tissues, which showed opposite expression patterns in their normal counterparts. Thus, we investigated whether a natural product, emodin, has the ability to reverse these two epigenetic modifications and inhibit bladder cancer cell growth. Emodin significantly inhibited the cell growth of four bladder cancer cell lines in a dose- and time-dependent manner. Emodin treatment did not induce specific cell cycle arrest, but it altered epigenetic modifications. Emodin treatment resulted in the suppression of pH3Ser10 and increased H3K27me3, contributing to gene silencing in bladder cancer cells. Microarray analysis demonstrated that oncogenic genes including fatty acid binding protein 4 (FABP4) and fibroblast growth factor binding protein 1 (HBP17), RGS4, tissue inhibitor of metalloproteinase 3 (TIMP3), WNT5b, URB, and collagen, type VIII, alpha 1 (COL8A1) responsible for proliferation, survival, inflammation, and carcinogenesis were significantly repressed by emodin. The ChIP assays also showed that emodin increased H3K27me3 but decreased pH3Ser10 modifications on the promoters of repressed genes, which indicate that emodin reverses the cancer epigenetics towards normal epigenetic situations. In conclusion, our work demonstrates the significant anti-neoplastic activity of emodin on bladder cancer cells and elucidates the novel mechanisms of emodin-mediated epigenetic modulation of target genes. Our study warrants further investigation of emodin as an effective therapeutic or preventive agent for bladder cancer. © 2013 Wiley Periodicals, Inc.
Atezolizumab: A PD-L1-Blocking Antibody for Bladder Cancer.
Inman, Brant A; Longo, Thomas A; Ramalingam, Sundhar; Harrison, Michael R
2017-04-15
Atezolizumab (Tecentriq, MPDL3280A; Genentech/Roche) is an FcγR binding-deficient, fully humanized IgG1 mAb designed to interfere with the binding of PD-L1 ligand to its two receptors, PD-1 and B7.1. By blocking the PD-L1/PD-1 immune checkpoint, atezolizumab reduces immunosuppressive signals found within the tumor microenvironment and, consequently, increases T-cell-mediated immunity against the tumor. Atezolizumab has been FDA approved as second-line therapy for advanced bladder cancer. This accelerated approval was based on phase II trial data in patients with metastatic bladder cancer that showed unexpected and durable tumor responses. In subjects whose tumors progressed on first-line platinum-based chemotherapy, the objective response rate was 15%, the complete response rate was 5%, and 1-year overall survival was 36%. In subjects that were chemotherapy naïve and cisplatin ineligible, the objective response rate was 24%, the complete response rate was 7%, and 1-year overall survival was 57%. Better responses were associated with higher PD-L1 expression on the tumor-infiltrating leukocytes. These data suggest that patients with advanced bladder cancer treated with atezolizumab have significantly better response rates and survival than historical controls treated with other second-line regimens. The toxicity profile of atezolizumab is also favorable. Trials are currently assessing whether atezolizumab is effective in earlier bladder cancer stages and in the first-line metastatic setting. Clin Cancer Res; 23(8); 1886-90. ©2016 AACR . ©2016 American Association for Cancer Research.
Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer
2018-01-01
Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757
Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin
2017-01-01
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.
Moll, R.; Achtstätter, T.; Becht, E.; Balcarova-Ständer, J.; Ittensohn, M.; Franke, W. W.
1988-01-01
The pattern of cytokeratins expressed in normal urothelium has been compared with that of various forms of transitional cell carcinomas (TCCs; 21 cases) and cultured bladder carcinoma cell lines, using immunolocalization and gel electrophoretic techniques. In normal urothelium, all simple-epithelium-type cytokeratins (polypeptides 7, 8, 18, 19) were detected in all cell layers, whereas antibodies to cytokeratins typical for stratified epithelia reacted with certain basal cells only or, in the case of cytokeratin 13, with cells of the basal and intermediate layers. This pattern was essentially maintained in low-grade (G1, G1/2) TCCs but was remarkably modified in G2 TCCs. In G3 TCCs simple-epithelial cytokeratins were predominant whereas the amounts of component 13 were greatly reduced. Squamous metaplasia was accompanied generally by increased or new expression of some stratified-epithelial cytokeratins. The cytokeratin patterns of cell culture lines RT-112 and RT-4 resembled those of G1 and G2 TCCs, whereas cell line T-24 was comparable to G3 carcinomas. The cell line EJ showed a markedly different pattern. The results indicate that, in the cell layers of the urothelium, the synthesis of stratification-related cytokeratins such as component 13 is inversely oriented compared with that in other stratified epithelia where these proteins are suprabasally expressed, that TCCs retain certain intrinsic cytoskeletal features of urothelium, and that different TCCs can be distinguished by their cytokeratin patterns. The potential value of these observations in histopathologic and cytologic diagnoses is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:2456018
Li, Zuwei; Lin, Canbin; Zhao, Liwen; Zhou, Liang; Pan, Xiang; Quan, Jing; Peng, Xiqi; Li, Weiqing; Li, Hang; Xu, Jinling; Xu, Weijie; Guan, Xin; Chen, Yun; Lai, Yongqing
2018-06-05
Bladder cancer, the ninth-most-common malignancy worldwide with an estimated 356,000 new cases and 145,000 deaths annually, has a propensity to relapse, requiring lifelong monitoring after diagnosis. 75% patients diagnosed with BC are non-muscle invasive BC and over 50% of them experience recurrences within 6-12 years of initial diagnosis. miRNA are small, noncoding RNA and shown to be oncogenes or anti-oncogenes in bladder cancer, contributing to numerous BC cell processes, including cell proliferation, differentiation, migration and apoptosis. RT-qPCR were performed to detect the expression of miR-187-5p in tissues and cell lines, After which, clinicopathological variables and the prognostic value of altered miR-187-5p expression in BC was analyzed with the 48 formalin-fixed paraffin-embedded BC samples. Moreover, Cell functional assays (wound healing assay, CCK-8 assay, transwell assay and flow cytometry assay) were performed to explore the relationship between miR-187-5p expression and cell proliferation, migration, invasion and apoptosis in BC. Up-regulation of miR-187-5p was observed in BC tissues and BC cell lines. Cox proportional hazard regression analysis demonstrated that the patients with low expression of miR-187-5p experience lower risks of recurrence in the univariate and multivariate analysis. The Kaplan-Meier recurrence-free curves suggested that the patients with low expression of miR-187-5p experience lower risks of recurrence. Up-regulation of miR-187-5p promotes cell proliferation and mobility and inhibits the apoptosis of 5637 and UM-UC-3 cell, while down-regulation of miR-187-5p reverses these effects. The results of our study demonstrated that oncogene miR-187-5p is associated with cellular proliferation, migration, invasion, apoptosis and an increased risk of recurrence in bladder cancer. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Jaiswal, Manish K; Pradhan, Lina; Vasavada, Shaleen; De, Mrinmoy; Sarma, H D; Prakash, Anand; Bahadur, D; Dravid, Vinayak P
2015-12-01
Bladder cancer is one of the deadliest forms of cancer in modern medicine which despite recent progress has remained incurable and challenging for researchers. There is unmet need to address this endemic as the number of patients are growing by about 10,000 every year world-wide. Here, we report a minimally invasive magnetic chemotherapy method to address this problem where polyethylene glycol (PEG) functionalized Fe3O4 magnetic nanostructures (MNS) are homogeneously embedded in thermally responsive poly(N-isopropylacrylamide, NIPAAm) hydrogels (HG). The system (HG-MNS) loaded with anti-cancer drug doxorubicin (DOX) incubated with cancer cell lines subjected to external radiofrequency (RF) field can remotely stimulate the release of drug smartly at the site. The in vitro efficacy investigated on bladder cancer (T-24) cell lines showed the potential of the system in dealing with the disease successfully. Further, the materials preferential accumulation via systemic delivery was studied using swiss mice model. Vital tissue organs like liver, lung and heart were analysed by magnetic resonance imaging (MRI). A detail accounts of the materials optimization, cytotoxicity and anti-proliferation activity tests with apoptosis analysis by flow cytometry after RF exposure (250 kHz) to the cells and in vivo biodistribution data are discussed in the paper. Copyright © 2015 Elsevier B.V. All rights reserved.
Kauffman, Eric C; Robinson, Brian D; Downes, Martin J; Powell, Leagh G; Lee, Ming Ming; Scherr, Douglas S; Gudas, Lorraine J; Mongan, Nigel P
2011-12-01
Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone lysine-demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1, and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1), and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen-induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition. Copyright © 2011 Wiley Periodicals, Inc.
Shintani, Terumichi; Kusuhara, Yoshito; Daizumoto, Kei; Dondoo, Tsogt-Ochir; Yamamoto, Hiroki; Mori, Hidehisa; Fukawa, Tomoya; Nakatsuji, Hiroyoshi; Fukumori, Tomoharu; Takahashi, Masayuki; Kanayama, Hiroomi
2017-03-01
To clarify the invasive mechanisms of muscle-invasive bladder cancer (BCa) would be useful for the determination of appropriate treatment strategies. We previously showed that hepatocyte growth factor (HGF)-MET signaling is correlated with invasiveness of BCa cells. Here, we investigated the effects of the MET inhibitor, cabozantinib (XL184), on BCa cells. We first conducted Western blot analysis to investigate MET expression in BCa cell lines. Next, we examined the effect of cabozantinib on their proliferation and invasive abilities using MTT and Matrigel invasion assays, respectively. Invasion assays were performed using the xCELLigence system. Additionally, to investigate the biological function of HGF-MET signaling, we analyzed gene expression profiles and performed real-time polymerase chain reaction analyses of 5637 cells that were cultivated with or without HGF stimulation, with or without cabozantinib. MET was highly expressed in 4 of 5 BCa cell lines, and 5637 and T24 cells showed especially high protein expression of MET. Cabozantinib suppressed cell proliferation and invasion (cell index; mock, 1.49 vs HGF, 2.26 vs HGF + XL184, 1.47, P < .05). Gene expression profile analysis indicated that matrix metalloproteinase 1 (MMP1) was significantly elevated at the mRNA level with addition of HGF. Moreover, cabozantinib suppressed HGF-induced MMP1 expression in 5637 T24 cells. These data indicate that cabozantinib suppressed MMP1 expression by blocking HGF-MET signaling and that HGF-MET-MMP1 signaling is involved in the invasiveness and proliferation of BCa cells. These results suggest that cabozantinib might prove useful for future treatment of muscle-invasive BCa. Copyright © 2016 Elsevier Inc. All rights reserved.
Iyer, Janaki Kannan; Dickey, Alexia; Rouhani, Parvaneh; Kaul, Anil; Govindaraju, Nirmal; Singh, Raj Narain
2018-01-01
About 25–44% of women will experience at least one episode of recurrent UTI and the causative agent in over 70% of UTI cases is uropathogenic Escherichia coli (UPEC). UPEC cause recurrent UTI by evading the bladder’s innate immune system through internalization into the bladder epithelium where antibiotics cannot reach or be effective. Thus, it is important to develop novel therapeutics to eliminate these intracellular pathogens. Nanodiamonds (NDs) are biocompatible nanomaterials that serve as promising candidates for targeted therapeutic applications. The objective of the current study was to investigate if 6 or 25 nm NDs can kill extracellular and intracellular UPEC in infected bladder cells. We utilized the human bladder epithelial cell line, T24, and an invasive strain of UPEC that causes recurrent UTI. We found that acid-purified 6 nm NDs displayed greater antibacterial properties towards UPEC than 25 nm NDs (11.5% vs 94.2% CFU/mL at 100 μg/mL of 6 and 25 nm, respectively; P<0.001). Furthermore, 6 nm NDs were better than 25 nm NDs in reducing the number of UPEC internalized in T24 bladder cells (46.1% vs 81.1% CFU/mL at 100 μg/mL of 6 and 25 nm, respectively; P<0.01). Our studies demonstrate that 6 nm NDs interacted with T24 bladder cells in a dose-dependent manner and were internalized in 2 hours through an actin-dependent mechanism. Finally, internalization of NDs was required for reducing the number of intracellular UPEC in T24 bladder cells. These findings suggest that 6 nm NDs are promising candidates to treat recurrent UTIs. PMID:29324795
STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors
Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.
1999-01-01
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738
Effect of parathyroid hormone on transport by toad and turtle bladder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabatini, S.; Kurtzman, N.A.
1987-01-01
The authors recently demonstrated that parathyroid hormone (PTH) inhibited both vasopressin- and cyclic AMP-stimulated water transport in the toad bladder. This was associated with an increase in calcium uptake by isolated epithelial cells. They postulated that PTH exerts its action on H/sub 2/O transport by directly stimulating calcium uptake. The current study was designed to compare the effects of PTH and the calcium ionophore, A23187, on H/sub 2/O and Na transport and H..mu.. secretion in toad and turtle bladders. In toad bladder, PTH and A23187 decreased arginine vasopressin (AVP)-stimulated H/sub 2/O flow and short-circuit current (SCC) after 60 min serosalmore » incubation. In turtle bladder A23187 decreased SCC to 79.3 +/- 3.6% of base line (P < 0.05), and significantly decreased RSCC as well. PTH had no effect on SCC or H/sup +/ secretion in turtle bladders. Both PTH and A23187 increased /sup 45/Ca uptake in toad bladder epithelial cells; only A23187 increased /sup 45/Ca uptake in the turtle bladder. The different action of PTH in these two membranes, compared with that of the calcium ionophore, illustrates the selectivity of PTH on membrane transport. PTH increases calcium uptake and decreases transport only in a hormone-sensitive epithelium, whereas the ionophore works in virtually all living membranes. The mode of action of these two agents to increase calcium uptake is, therefore likely different.« less
Green, K J; Stappenbeck, T S; Noguchi, S; Oyasu, R; Nilles, L A
1991-03-01
The expression and distribution of the desmosomal plaque proteins, desmoplakins (DPs) I and II, were studied in nontumorigenic (RBE-8) and a series of tumorigenic (AY34, R-4909, SS-24B, RBTCC-8, and 804G) rat bladder epithelial cell lines. These cell lines ranged from slow-growing papillary transitional cells (AY34) to rapidly metastatic carcinoma cells (RBTCC-8). DPs I and II were shown by immunoblotting and Northern analysis to be present in nontumorigenic RBE-8 cells as well as in all of the tumorigenic cell lines, albeit in differing amounts. Immunofluorescence microscopy revealed striking differences in DP distribution, corresponding in general with increases in tumorigenic potential. Whereas DPs of normal RBE-8 cells and less tumorigenic AY34 cells were localized predominantly at cell interfaces, the more tumorigenic lines exhibited a high proportion of DP in the form of cytoplasmic dots, a distribution reminiscent of that seen in epithelial cells maintained in low levels of extracellular calcium. In 804G cells, which represented the most extreme example of this phenomenon, the majority of DPs were organized as cytoplasmic dots. Electron microscopy revealed intermediate filament (IF)-associated spots in the cytoplasm as well as an elaborate array of IF-associated plaques at the cell-substratum interface. The IF-associated spots in the cytoplasm reacted with anti-DP antibody in immunogold labeling experiments while those at the cell-substratum did not react. In more dense cultures of 804G cells, certain cells stratified and expressed increased amounts of DP followed by the induction of new keratins including those of the skin type. Decreasing extracellular calcium resulted in a rearrangement of DP in each cell line; staining at cell-cell interfaces disappeared and was replaced with a pattern of cytoplasmic dots. These results demonstrate a possible relationship between desmosome assembly and/or maintenance and tumorigenic potential.
Amaranthus caudatus extract inhibits the invasion of E. coli into uroepithelial cells.
Mohanty, Soumitra; Zambrana, Silvia; Dieulouard, Soizic; Kamolvit, Witchuda; Nilsén, Vera; Gonzales, Eduardo; Östenson, Claes-Göran; Brauner, Annelie
2018-06-28
Amaranthus caudatus is traditionally used to treat infections. Based on its traditional usage, we investigated the effect of A. caudatus on the bladder epithelial cells in the protection of E. coli infection. The direct antimicrobial effects of A. caudatus on uropathogenic bacteria were investigated using minimum inhibitory concentration (MIC) assay. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli strain #12 were used to investigate the effect of A. caudatus. Bacterial adhesion and invasion into bladder cells treated with A. caudatus was analyzed. Expression of uroplakin-1a (UPK1A), β1 integrin (ITGB1), caveolin-1 (CAV1) and the antimicrobial peptides human β defensin-2 (DEFB4A) and LL-37 (CAMP) was evaluated using RT-PCR. No direct antibacterial effect on E. coli or any of the tested uropathogenic strains was observed by A. caudatus. However, we demonstrated reduced mRNA expression of uroplakin-1a and caveolin-1, but not β1 integrin after treatment of uroepithelial cells, mirrored by the decreased adhesion and invasion of E. coli. A. caudatus treatment did not induce increased gene expression of the antimicrobial peptides, LL-37 and human β-defensin-2. Our results showed that A. caudatus has a protective role on bladder epithelial cells against uropathogenic E. coli infection by decreasing the bacterial adhesion and invasion, thereby preventing infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Inoue, Satoshi; Ide, Hiroki; Mizushima, Taichi; Jiang, Guiyang; Netto, George J; Gotoh, Momokazu; Miyamoto, Hiroshi
2018-06-01
We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 ( P = 0.015)/phospho-NF-κB/p65 ( P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade ( P = 0.015)/muscle-invasive ( P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression ( P < 0.001) and cancer-specific mortality ( P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N -butyl- N -(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR . ©2018 American Association for Cancer Research.
Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737.
Mani, Jens; Antonietti, Patrick; Rakel, Stefanie; Blaheta, Roman; Bartsch, Georg; Haferkamp, Axel; Kögel, Donat
2016-02-01
BAG3 is overexpressed in several malignancies and mediates a non-canonical, selective form of (macro)autophagy. By stabilizing pro-survival Bcl-2 proteins in complex with HSP70, BAG3 can also exert an apoptosis-antagonizing function. ABT-737 is a high affinity Bcl-2 inhibitor that fails to target Mcl-1. This failure may confer resistance in various cancers. Urothelial cancer cells were treated with the BH3 mimetics ABT-737 and (-)-gossypol, a pan-Bcl-2 inhibitor which inhibits also Mcl-1. To clarify the importance of the core autophagy regulator ATG5 and BAG3 in ABT-737 treatment, cell lines carrying a stable lentiviral knockdown of ATG5 and BAG3 were created. The synergistic effect of ABT-737 and pharmaceutical inhibition of BAG3 with the HSF1 inhibitor KRIBB11 or sorafenib was also evaluated. Total cell death and apoptosis were quantified by FACS analysis of propidium iodide, annexin. Target protein analysis was conducted by Western blotting. Knockdown of BAG3 significantly downregulated Mcl-1 protein levels and sensitized urothelial cancer cells to apoptotic cell death induced by ABT-737, while inhibition of bulk autophagy through depletion of ATG5 had no discernible effect on cell death. Similar to knockdown of BAG3, pharmacological targeting of the BAG3/Mcl-1 pathway with KRIBB11 was capable to sensitize both cell lines to treatment with ABT-737. Our results show that BAG3, but not bulk autophagy has a major role in the response of bladder cancer cells to BH3 mimetics. They also suggest that BAG3 is a suitable target for combined therapies aimed at synergistically inducing apoptosis in bladder cancer.
System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells
Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung
2011-01-01
This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685
Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L
2009-06-01
Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.
Stem Cell Therapy in Bladder Dysfunction: Where Are We? And Where Do We Have to Go?
Lee, Sang-Rae; Song, Yun Seob; Lee, Hong Jun
2013-01-01
To date, stem cell therapy for the bladder has been conducted mainly on an experimental basis in the areas of bladder dysfunction. The therapeutic efficacy of stem cells was originally thought to be derived from their ability to differentiate into various cell types. Studies about stem cell therapy for bladder dysfunction have been limited to an experimental basis and have been less focused than bladder regeneration. Bladder dysfunction was listed in MESH as “urinary bladder neck obstruction”, “urinary bladder, overactive”, and “urinary bladder, neurogenic”. Using those keywords, several articles were searched and studied. The bladder dysfunction model includes bladder outlet obstruction, cryoinjured, diabetes, ischemia, and spinal cord injury. Adipose derived stem cells (ADSCs), bone marrow stem cells (BMSCs), and skeletal muscle derived stem cells (SkMSCs) are used for transplantation to treat bladder dysfunction. The main mechanisms of stem cells to reconstitute or restore bladder dysfunction are migration, differentiation, and paracrine effects. The aim of this study is to review the stem cell therapy for bladder dysfunction and to provide the status of stem cell therapy for bladder dysfunction. PMID:24151627
In humans, the biomethylation of arsenic (As) is catalyzed by an As(III)-methyltransferase (Cyt19) and yields pentavalent and trivalent methylated arsenicals. Cyt19 activity and expression levels vary among tissues. For example, Cyt19 mRNA is not detected in UROtsa cells, a h...
Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Loukas, Marios; Doberzstyn, Theresa; Summers, Jack L
2010-05-01
A human bladder carcinoma cell line RT4 was sham-treated with buffer or treated with ascorbate (VC) alone, menadione alone (VK(3)), or a combination of ascorbate:menadione (VC+VK(3)) for 1, 2, and 4 h. Cytotoxic damage was found to be treatment-dependent in this sequence: VC+VK(3)>VC>VK(3)>sham. The combined treatment induced the greatest oxidative stress, with early tumor cell injury affecting the cytoskeletal architecture and contributing to the self-excisions of pieces of cytoplasm freed from organelles. Additional damage, including a reduction in cell size, organelle alterations, nuclear damage, and nucleic acid degradation as well as compromised lysosome integrity, is caused by reactivation of DNases and the redox cycling of VC or VC+VK(3). In addition, cell death caused by VC+VK(3) treatment as well as by prolonged VC treatment is consistent with cell demise by autoschizis, not apoptosis. This report confirms and complements previous observations about this new mode of tumor cell death. It supports the contention that a combination of VC+VK(3), also named Apatone, could be co-administered as a nontoxic adjuvant with radiation and/or chemotherapies to kill bladder tumor cells and other cancer cells without any supplementary risk or side effects for patients.
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
Liang, Yuguang; Zhu, Junlan; Huang, Haishan; Xiang, Daimin; Li, Yang; Zhang, Dongyun; Li, Jingxia; Wang, Yulei; Jin, Honglei; Jiang, Guosong; Liu, Zeyuan; Huang, Chuanshu
2016-08-02
Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer.
NASA Astrophysics Data System (ADS)
Fradet, Yves; Islam, Nazrul; Boucher, Lucie; Parent-Vaugeois, Carmen; Tardif, Marc
1987-10-01
Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up.
Raman microscopy of bladder cancer cells expressing green fluorescent protein
NASA Astrophysics Data System (ADS)
Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.
2016-11-01
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
NASA Astrophysics Data System (ADS)
Harvey, T. J.; Hughes, C.; Ward, A. D.; Gazi, E.; Faria, E. Correia; Clarke, N. W.; Brown, M.; Snook, R.; Gardner, P.
2008-11-01
Here we report on investigations into using Raman optical tweezers to analyse both live and chemically fixed prostate and bladder cells. Spectra were subjected to chemometric analysis to discriminate and classify the cell types based on their spectra. Subsequent results revealed the potential of Raman tweezers as a potential clinical diagnostic tool.
Andersson, Karl-Erik
2013-01-01
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria (“mucosa”) produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions. PMID:23589830
Nephrogenic Adenoma of the Urinary Bladder: A Review of the Literature
Venyo, Anthony Kodzo-Grey
2015-01-01
Background. Nephrogenic adenoma of the urinary bladder (NAUB) is a rare lesion associated with nonspecific symptoms and could inadvertently be misdiagnosed. Aim. To review the literature. Methods. Various internet search engines were used. Results. NAUB is a benign tubular and papillary lesion of the bladder, is more common in men and adults, and has been associated with chronic inflammation/irritation, previous bladder surgery, diverticula, renal transplantation, and intravesical BCG; recurrences and malignant transformations have been reported. Differential diagnoses include clear cell adenocarcinoma, endocervicosis, papillary urothelial carcinoma, prostatic adenocarcinoma of bladder, and nested variant of urothelial carcinoma; most NAUBs have both surface papillary and submucosal tubular components; both the papillae and tubules tend to be lined by a single layer of mitotically inactive bland cells which have pale to clear cytoplasm. Diagnosis may be established by using immunohistochemistry (positive staining with racemase; PAX2; keratins stain positive with fibromyxoid variant), electron microscopy, DNA analysis, and cytological studies. Treatment. Endoscopic resection is the treatment but recurrences including sporadic malignant transformation have been reported. Conclusions. There is no consensus on best treatment. A multicentre study is required to identify the treatment that would reduce the recurrence rate, taking into consideration that intravesical BCG is associated with NAUB. PMID:27347540
Ruan, Jun; Wei, Bingbing; Xu, Zhuoqun; Yang, Shudong; Zhou, You; Yu, Minhong; Liang, Jiabei; Jin, Ke; Huang, Xing; Lu, Peng; Cheng, Huan
2013-03-01
Sox2 is thought to be an important regulator of self-renewal in embryonic stem cell. According to the cancer stem cell (CSC) theory, the overexpression of Sox2 is potentially involved in carcinogenesis and could affect tumor recurrence and metastasis. Previous study proved Sox2 might be prognostic marker for multiple human malignancies. The purpose of this study was to investigate the clinicopathological significance of Sox2 expression in human non-muscle-invasive bladder cancer. We examined Sox2 expression in 32 paired non-muscle-invasive bladder cancer tissues and adjacent non-cancerous tissues by quantitative real-time RT-PCR (qrtRT-PCR). In addition, we analyzed Sox2 and Ki-67 expression in 126 non-muscle-invasive bladder cancer samples and bladder cancer cell line T24 by immunohistochemistry and immunofluorescence assays. The recurrence-free survival was determined by Kaplan-Meier method and log-rank test. Cox regression was adopted for univariate and multivariate analyses of prognostic factors. The expression of Sox2 was significantly increased in non-muscle-invasive bladder cancer tissues. Sox2 expression was significantly correlated with that of Ki-67 (P < 0.001). The expression of Sox2 was significantly associated with tumor size (P = 0.006), tumor number (P = 0.037), and tumor grade (P < 0.001). Patients with high Sox2 expression had significantly poorer recurrence-free survival (P = 0.0002) when compared with patients with the low expression of Sox2. On multivariate analysis, Sox2 expression and tumor grade were found to be independent prognostic factors for recurrence-free survival (P < 0.05). Our data suggested for the first time that the high expression of Sox2 may contribute to the development of non-muscle-invasive bladder cancer and serve as a novel prognostic marker in patients with T1 bladder cancer.
Gilloteaux, J; Jamison, J M; Arnold, D; Taper, H S; Summers, J L
2001-01-01
Scanning and transmission electron microscopy were employed to further characterize the cytotoxic effects of a ascorbic acid/menadione (or vitamin C/vitamin K3) combination on a human bladder carcinoma T24 cell line. Following 1-h treatment T24 cells display membrane and mitochondrial defects as well as excision of cytoplasmic fragments that contain no organelles. These continuous self-excisions reduce the cell size. Concomitant, nuclear changes, chromatin disassembly, nucleolar condensation and fragmentation, and decreased nuclear volume lead to cell death via a process similar to karyorrhexis and karyolysis. Because this cell death is achieved through a progressive loss of cytoplasm due to self-morsellation, the authors named this mode of cell death autoschizis (from the Greek autos, self, and schizein, to split, as defined in Scanning. 1998; 20: 564-575). This morphological characterization of autoschizic cell death confirms and extends the authors previous reports and demonstrates that this cell death is distinct from apoptosis.
Phase II Pazopanib in Combination With Weekly Paclitaxel in Refractory Urothelial Cancer
2017-05-08
Bladder Cancer; Bladder (Urothelial, Transitional Cell) Cancer; Bladder (Urothelial, Transitional Cell) Cancer Superficial (Non-Invasive); Bladder (Urothelial, Transitional Cell) Cancer Resectable (Pre-Cystectomy); Bladder (Urothelial, Transitional Cell) Cancer Metastatic or Unresectable
Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang
2016-08-01
The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.
Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad
2013-10-01
To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.
Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line.
Boyer, B; Tucker, G C; Vallés, A M; Gavrilovic, J; Thiery, J P
1989-01-01
Two distinct mechanisms by which bladder carcinoma cells of the NBT-II cell line dissociate and migrate away from an in vitro reconstituted epithelial sheet were examined as regards intercellular adhesion and cell locomotion. Scattering of NBT-II bladder carcinoma cell line was promoted by 2 distinct culture protocols: (i) deposition of some components of the extracellular matrix onto the culture substratum (glass or plastic) induced cell dispersion of the epithelial sheet of carcinoma cells, and (ii) addition of Ultroser G, a serum substitute, to the culture medium induced scattering and acquisition of motility of NBT-II cells. Under both culture conditions, NBT-II cells dissociated, lost their epithelial morphology, acquired fibroblastic shape and migrated actively. We show that, among different extracellular matrix proteins, only collagens were able to promote the transition towards fibroblastic phenotype (referred as epithelium-to-mesenchyme transition or EMT). Furthermore, the native 3-dimensional helical structure of collagens was required for their function. During induction of EMT of NBT-II cells with Ultroser G, the junctions between epithelial cells were split, polarized epithelial cell organization was lost, and the resulting individual cells became motile and assumed a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy techniques, we demonstrate that this change is accompanied by redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by reorganization of the cytokeratin and the actin-fodrin filament systems. Intermediate-sized filaments of the vimentin type were formed de novo in the fibroblastoid cell form. The observed transition towards fibroblastic phenotype (epithelium-to-mesenchyme transition or EMT) was fully reversed by removing the inducing factors from the culture medium, as shown by the disappearance of vimentin filaments and the reappearance of desmosomes in the newly formed epithelial cells.
Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon
2010-04-01
Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.
Formation and regeneration of the urothelium.
Yamany, Tammer; Van Batavia, Jason; Mendelsohn, Cathy
2014-06-01
This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.
Sorafenib in Treating Patients With Regional or Metastatic Cancer of the Urothelium
2014-05-20
Adenocarcinoma of the Bladder; Distal Urethral Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Squamous Cell Carcinoma of the Bladder; Stage III Bladder Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer
d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2016-01-01
The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878
d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2016-08-11
The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.
d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Esposito, Davide; Donnarumma, Erminia; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2015-01-01
Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity.
d’Emmanuele di Villa Bianca, Roberta; Donnarumm, Erminia; Russo, Annapina; Fusco, Ferdinando; Ianaro, Angela; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella
2015-01-01
Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity. PMID:26368121
Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris
2009-07-15
Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.
Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D
2018-01-01
Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.
2014-10-10
Adenocarcinoma of the Bladder; Distal Urethral Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Squamous Cell Carcinoma of the Bladder; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer
Sano, Takeshi; Kobayashi, Takashi; Negoro, Hiromitsu; Sengiku, Atsushi; Hiratsuka, Takuya; Kamioka, Yuji; Liou, Louis S; Ogawa, Osamu; Matsuda, Michiyuki
2016-11-01
To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal-regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two-photon excitation microscope and a vacuum-stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch-induced ERK activation was reproduced in an hTERT-immortalized human urothelial cell line (TRT-HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch-induced ERK activation in TRT-HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP-induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor-expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Saling, Mark; Duckett, Jordan K; Ackers, Ian; Coschigano, Karen; Jenkinson, Scott; Malgor, Ramiro
2017-01-01
Bladder cancer is the fourth most common cancer in men and the most common malignancy of the urinary tract. Bladder cancers detected at an early stage have a very high five-year survival rate, but when detected after local metastasis the rate is only about 50%. Our group recently reported a positive correlation between the expression of Wnt5a, a member of the Wnt proteins family, and histopathological grade and stage of urothelial carcinoma (UC). The objective of this study was to analyze UC cases reported in Athens, Ohio and investigate the major components of Wnt5a / planar cell polarity (PCP) signaling pathway in UC human tissue samples and UC cell lines. Formalin fixed and paraffin embedded transurethral resection tissues were immunostained for Wnt5a, Ror-2, CTHRC1 and E-cadherin. In addition, in vitro studies using UC cell lines were investigated for Wnt5a/PCP signaling and epithelial mesenchymal transition (EMT) gene expression. The IHC results showed a correlation between the expression of Wnt5a, Ror2 and CTHRC1 with high histological grade of the tumor, while E-cadherin showed an opposite trend of expression. Real time RT-PCR results showed that RNA expression of the Wnt5a/ PCP pathway genes vary in low and high grade UC cell lines and that the high grade cell lines exhibited signs of EMT. These findings support that Wnt5a-Ror2 signaling plays a role in UC, support the potential use of Wnt5a as a prognostic marker and provide evidence that Wnt5a signaling may be used as an effective molecular target for novel therapeutic tools. PMID:28427201
Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar
2012-09-01
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu
2009-01-01
Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180
Kobrosly, R W; Meliker, J R; Nriagu, J O
2009-10-01
To determine whether employees in the automobile industry in Michigan are at elevated risk of urinary bladder cancer. The authors conducted a population-based case-control study including 418 cases and 571 controls. History of employment within the automobile industry was coded according to the US Census Bureau Index of Occupations. Logistic regression analyses were adjusted for age at interview, cigarette smoking status, and highest education level, and used to assess associations between bladder cancer and (1) ever working in particular occupations within the automobile industry; and (2) usual occupation - defined as occupation of longest duration for each subject. Ever having worked in the automobile industry and usual employment within the industry exhibited elevated non-significant risks for bladder cancer among assembly line workers, painters and foremen. A higher risk was seen for those who worked for 20 or more years on the assembly line (OR = 2.10, 95% CI 1.15 to 3.80). Statistical interaction between usual employment on the assembly line and smoking status (>5 pack-years) was demonstrated (OR = 6.19, 95% CI 2.69 to 14.24). Among workers on the assembly line for at least 20 years, we observed an approximately twofold risk for bladder cancer. Heavy smokers working on the assembly line experience a sixfold risk for bladder cancer. Further research is necessary to verify this finding, identify the exposures that might be contributing to bladder cancer on the assembly line, and examine whether those exposures continue to persist in today's workplace.
Induction of the p75NTR by Aryl Propionic Acids in Prostate Cancer Cells
2008-12-01
and ketoprofen among others. Long term ibuprofen use is associated with a decreased risk of prostate cancer (9-10). Treatment with the enantiomer R...different metastatic hormone-refractory prostate cancer cell lines, PC-3 and DU-145. Of those tested, the enantiomer R-flurbiprofen and ibuprofen were...class of NSAIDs. Treatment of T24 bladder cancer cells and HCT-116 colon cancer cells with ibuprofen or the enantiomer R- flurbiprofen, which lacks COX
Induction of the p75NTR by Aryl Propionic Acids in Prostate Cancer Cells
2007-12-01
among others. Long term ibuprofen use is associated with a decreased risk of prostate cancer (9-10). Treatment with the enantiomer R-flurbiprofen...cancer cell lines, PC-3 and DU-145. Of those tested, the enantiomer R-flurbiprofen and ibuprofen were the most effective. These drugs were also...Treatment of T24 bladder cancer cells and HCT-116 colon cancer cells with ibuprofen or the enantiomer R-flurbiprofen, which lacks COX inhibitory
Zhang, Ruowen; Wang, Yulei; Li, Jingxia; Jin, Honglei; Song, Shaojiang; Huang, Chuanshu
2014-01-01
Yuanhuacine (YHL-14), the major component of daphnane diterpene ester isolated from the flower buds of Daphne genkwa, has been reported to have activity against cell proliferation in various cancer cell lines. Nevertheless, the potential mechanism has not been explored yet. Here we demonstrate that YHL-14 inhibits bladder and colon cancer cell growth through up-regulation of p21 expression in an Sp1-dependent manner. We found that YHL-14 treatment resulted in up-regulation of p21 expression and a significant G2/M phase arrest in T24T and HCT116 cells without affecting p53 protein expression and activation. Further studies indicate that p21 induction by YHL-14 occurs at the transcriptional level via up-regulation of Sp1 protein expression. Moreover, our results show that p38 is essential for YHL-14-mediated Sp1 protein stabilization, G2/M growth arrest induction, and anchorage-independent growth inhibition of cancer cells. Taken together, our studies demonstrate a novel mechanism of YHL-14 against cancer cell growth in bladder and colon cancer cell lines, which provides valuable information for the design and synthesis of other new conformation-constrained derivatives on the basis of the structure of YHL-14 for cancer therapy. PMID:24451377
Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines
NASA Astrophysics Data System (ADS)
Coughlin, Mark F.; Fredberg, Jeffrey J.
2013-12-01
Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshino, Hirofumi; Enokida, Hideki, E-mail: enokida@m.kufm.kagoshima-u.ac.jp; Chiyomaru, Takeshi
2012-01-06
Highlights: Black-Right-Pointing-Pointer Tumor suppressive miRNA-1 directly inhibits splicing factor serine/arginine-rich 9 (SRSF9). Black-Right-Pointing-Pointer SRSF9 mRNA expression was up-regulated in bladder cancer specimens compared to normal tissues. Black-Right-Pointing-Pointer Cell viability (proliferation, migration, and invasion) was reduced in SRSF9 knockdown cells. Black-Right-Pointing-Pointer SRSF9 knockdown by miR-1 induced cell apoptosis through caspase-3/7 activation in BC cell lines. -- Abstract: We have previously found that restoration of tumor suppressive microRNA-1 (miR-1), induced cell apoptosis in bladder cancer (BC) cell lines. However, the apoptosis mechanism induced by miR-1 was not fully elucidated. Alternative splicing of mRNA precursors provides cancer cells with opportunities to translate manymore » oncogenic protein variants, which promote cell proliferation and survival under unpreferable condition for cancer development. Serine/arginine-rich (SR) protein family, which involved in alternative pre-mRNA splicing, plays a critical role for regulating apoptosis by splicing apoptosis-related genes. However, transcriptional regulation of SR proteins, themselves, has not been elucidated. In this study, we focused on splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) on the basis of our previous genome-wide gene expression analysis using miR-1-transfected BC cell lines because putative target sites of miR-1 are existed in 3 Prime -untranslated region (UTR) of SRSF9 mRNA. The expression levels of mRNA of SRSF9 were extremely reduced in the miR-1 transfectants. A luciferase activity significantly decreased in the transfectants suggesting that actual binding occurred between miR-1 and 3 Prime UTR of SRSF9 mRNA. Loss-of-function assays demonstrated that significant inhibitions of cell proliferation, migration, and invasion were observed in the si-SRSF9 transfectants. Apoptosis assays demonstrated that cell apoptosis fraction increased and that caspase-3/7 was activated in the si-SRSF9 transfectants. Our data indicated that tumor suppressive miR-1 induces apoptosis through direct inhibition of SRSF9 in BC. The identification of molecular mechanisms between miRNAs and SR proteins could provide novel apoptosis pathways and their epigenetic regulations and offer new strategies for BC treatment.« less
Li, Xiuqing; Choi, Wesley W; Yan, Rui; Yu, Haiyang; Krasnoperov, Valery; Kumar, S Ram; Schuckman, Anne; Klumpp, David J; Pan, Chong-Xian; Quinn, David; Gill, Inderbir S; Gill, Parkash S; Liu, Ren
2014-01-01
Effective treatment of transitional cell carcinoma (TCC) of the bladder requires early diagnosis. Identifying novel molecular markers in TCC would guide the development of diagnostic and therapeutic targets. Ephrins mediate signals via tyrosine kinase activity that modulates diverse physiologic and developmental processes, and ephrins are increasingly implicated in carcinogenesis. The aim of our study was to examine the differential regulation of EphB4 and EphB2 in normal bladder and in TCC of the bladder in 40 patients undergoing radical cystectomy for curative intent. Immunostaining and Western blotting revealed that normal urothelium expresses EphB2 (20 of 24 cases, 83% of the time) not EphB4 (0 of 24 cases, 0%). In sharp contrast, TCC specimens show loss of EphB2 expression (0 of 34 cases, 0%) and gain of EphB4 expression (32 of 34, 94%). Furthermore, EphB4 signal strength statistically correlated with higher tumor stage, and trended toward the presence of carcinoma in situ (CIS). These results are confirmed by analysis of normal urothelial and tumor cell lines. EphB2 is not a survival factor in normal urothelium, while EphB4 is a survival factor in TCC. Treatment of bladder tumor xenograft with an EphB4 inhibitor sEphB4-HSA leads to 62% tumor regression and complete remission when combined with Bevacizumab. Furthermore, tissue analysis revealed that sEphB4-HSA led to increased apoptosis, decreased proliferation, and reduced vessel density, implicating direct tumor cell targeting as well as anti-angiogenesis effect. In summary loss of EphB2 and gain of EphB4 expression represents an inflection point in the development, growth and possibly progression of TCC. Therapeutic compounds targeting EphB4 have potential for diagnosing and treating TCC.
ELECTRON MICROSCOPY OF ABSORPTION OF TRACER MATERIALS BY TOAD URINARY BLADDER EPITHELIUM
Choi, Jae Kwon
1965-01-01
The absorption of Thorotrast and saccharated iron oxide by the epithelium of the toad urinary bladder was studied by electron microscopy. Whether the toads were hydrated, dehydrated, or given Pitressin, no significant differences in transport of colloidal particles by epithelial cells were observed. This implies that these physiological factors had little effect on the transport of the tracer particles. Tracer particles were encountered in three types of epithelial cells which line the bladder lumen, but most frequently in the mitochondria-rich cells. Tracer materials were incorporated into the cytoplasm of epithelial cells after being adsorbed to the coating layer covering the luminal surface of the cells. In the intermediate stage (1 to 3 hours after introducing tracer) particles were present in small vesicles, tubules, and multivesicular bodies. In the later stages (up to 65 hours), the particles were more commonly seen to be densely packed within large membrane-bounded bodies which were often found near the Golgi region. These large bodies probably were formed by the fusion of small vesicles. Irrespective of the stages of absorption, no particles were found in the intercellular spaces or in the submucosa. Particles apparently did not penetrate the intercellular spaces of the epithelium beyond the level of the tight junction. PMID:14287173
Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Stefanie E; Chess-Williams, Russ; McDermott,
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2 h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROSmore » formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE{sub 2} release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents. - Highlights: • Intravesical gemcitabine has recently been introduced to treat bladder cancer. • Gemcitabine is selectively toxic for malignant urothelial cells. • Urothelial ATP, PGE{sub 2} and inflammatory cytokines were altered by gemcitabine. • Selectivity of gemcitabine may account for less frequent urological side effects.« less
A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model.
John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert
2017-02-01
The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.
Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F.
2016-01-01
Purpose Lines of evidence suggest that Rho-associated protein kinase (ROCK) mediated myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation play a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of RhoA/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Materials and Methods Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. Results In the dose-course studies, carbachol showed significant increase of phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15 μM to 100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 hr (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Conclusions Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction. PMID:27118568
Liu, Benchun; Lee, Yung-Chin; Alwaal, Amjad; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lin, Guiting; Lue, Tom F
2016-08-01
Lines of evidence suggest that Rho-associated protein kinase (ROCK)-mediated myosin phosphatase-targeting subunit 1 (MYPT1) phosphorylation plays a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of Rho A/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. In the dose-course studies, carbachol showed significant increase in phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15-100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 h (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction.
[Mechanisms for effect of osthole on inhibiting the growth and invasion of bladder cancer cells].
Liu, Jun; Xu, Ran; Zhao, Xiaokun
2016-04-01
To investigate the effect of osthole on epidermal growth factor receptor tyrosine kinase (EGFR-TPK), matrix-metalloproteinase-2 (MMP-2), aminopeptidase N (APN) in bladder cancer cell and the underlying mechanism. The T24 cell lines were cultured. The inhibitory effects of osthole on EGFR-TPK, APN and MMP-2 were evaluated by spectrophotometric and MTT assay. The caspase-3 activity and the expression COX-2 and VEGF in T24 were examined. The activity of NF-κB was determined by electrophoretic mobility shift assay. The half inhibition concentrations (IC50) of osthole on EGFR-TPK, APN and MMP-2 were (45.33±3.98), (28.21±3.23) and (8.11±0.54) µmol/L, respectively. The growth inhibitory rates for T24 cells were increased in a dose-dependent manner (P<0.05). The caspase-3 activities were significantly increased in T24 cells in the osthole group compared with control group, while the expression of angiogenesis related-protein COX-2, VEGF, and NF-κB in T24 cells were decreased. Through the inhibitory effect on EGFR-TPK, APN and MMP-2, osthole can decrease COX-2, VEGF and NF-κB expression while increase the activity of caspase-3, eventually blocking the growth and invasion of bladder cancer cell.
Is electrolyte transfer across the urothelium important?: ICI-RS 2015.
McCloskey, Karen D; Vahabi, Bahareh; Fry, Christopher H
2017-04-01
This article summarizes discussion at the International Consultation on Incontinence Research Society (ICI-RS) 2015 meeting of urine modification in the urinary tract by the urothelium. It considers the literature and proposes pertinent questions that need to be addressed to understand this phenomenon within a physiological context. Following the ICI-RS meeting, publications in PubMed relating to urine modification in the renal pelvis, ureter, and bladder were reviewed. Historically, the urothelium has been simply considered as a passive, impermeable barrier, preventing contact between urine and the underlying cells. In addition to the ability of the umbrella cells to modify the surface area of the urothelium during bladder filling, the urothelium may also be involved in modifying urine composition. Several lines of evidence support the hypothesis that electrolytes and water can be reabsorbed by the urothelium and that this may have physiological relevance. Firstly, urothelial cells express several types of aquaporins and ion channels; the membrane expression of which is modulated by the extracellular concentration of ions including Na + . Secondly, studies of urine composition in the renal pelvis and bladder demonstrate urine modification, indicating that water and/or electrolyte transport has occurred. Thirdly, hibernating mammals, with urothelial and bladder wall histology similar to non-hibernating mammals are known to produce and reabsorb urine daily, during long periods of hibernation. The phenomenon of urine modification by the urothelium may be physiologically important during normal bladder filling. Research should be focused on investigating how this may change in conditions of urinary dysfunction. © 2017 Wiley Periodicals, Inc.
Bentley, Johanne; Diggle, Christine P.; Harnden, Patricia; Knowles, Margaret A.; Kiltie, Anne E.
2004-01-01
In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PKcs. These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer. PMID:15466592
Weitz, Andrew C; Lee, Nan Sook; Yoon, Chi Woo; Bonyad, Adrineh; Goo, Kyo Suk; Kim, Seaok; Moon, Sunho; Jung, Hayong; Zhou, Qifa; Chow, Robert H; Shung, K Kirk
2017-01-01
Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145) and bladder (T24/83) cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84). In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making.
Weitz, Andrew C.; Lee, Nan Sook; Yoon, Chi Woo; Bonyad, Adrineh; Goo, Kyo Suk; Kim, Seaok; Moon, Sunho; Jung, Hayong; Zhou, Qifa; Chow, Robert H.; Shung, K. Kirk
2017-01-01
Cancer cells undergo a number of biophysical changes as they transform from an indolent to an aggressive state. These changes, which include altered mechanical and electrical properties, can reveal important diagnostic information about disease status. Here, we introduce a high-throughput, functional technique for assessing cancer cell invasion potential, which works by probing for the mechanically excitable phenotype exhibited by invasive cancer cells. Cells are labeled with fluorescent calcium dye and imaged during stimulation with low-intensity focused ultrasound, a non-contact mechanical stimulus. We show that cells located at the focus of the stimulus exhibit calcium elevation for invasive prostate (PC-3 and DU-145) and bladder (T24/83) cancer cell lines, but not for non-invasive cell lines (BPH-1, PNT1A, and RT112/84). In invasive cells, ultrasound stimulation initiates a calcium wave that propagates from the cells at the transducer focus to other cells, over distances greater than 1 mm. We demonstrate that this wave is mediated by extracellular signaling molecules and can be abolished through inhibition of transient receptor potential channels and inositol trisphosphate receptors, implicating these proteins in the mechanotransduction process. If validated clinically, our technology could provide a means to assess tumor invasion potential in cytology specimens, which is not currently possible. It may therefore have applications in diseases such as bladder cancer, where cytologic diagnosis of tumor invasion could improve clinical decision-making. PMID:28824873
Radiation absorbed dose to bladder walls from positron emitters in the bladder content.
Powell, G F; Chen, C T
1987-01-01
A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.
Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer.
Zhu, Xin-Xing; Yan, Ya-Wei; Ai, Chun-Zhi; Jiang, Shan; Xu, Shan-Shan; Niu, Min; Wang, Xiang-Zhen; Zhong, Gen-Shen; Lu, Xi-Feng; Xue, Yu; Tian, Shaoqi; Li, Guangyao; Tang, Shaojun; Jiang, Yi-Zhou
2017-04-11
Bladder cancer is the most common urologic malignancy in China, with an increase of the incidence and mortality rates over past decades. Recent studies suggest that bladder tumors are maintained by a rare fraction of cells with stem cell proprieties. Targeting these bladder tumor initiating cell (TICs) population can overcome the drug-resistance of bladder cancer. However, the molecular and genetic mechanisms regulating TICs in bladder cancer remain poorly defined. Jarid2 is implicated in signaling pathways regulating cancer cell epithelial-mesenchymal transition, and stem cell maintenance. The goal of our study was to examine whether Jarid2 plays a role in the regulation of TICs in bladder cancer. We found that knockdown of Jarid2 was able to inhibit the invasive ability and sphere-forming capacity in bladder cancer cells. Moreover, knockdown of Jarid2 reduced the proportion of TICs and impaired the tumorigenicity of bladder cancer TICs in vivo. Conversely, ectopic overexpression of Jarid2 promoted the invasive ability and sphere-forming capacity in bladder cancer cells. Mechanistically, reduced Jarid2 expression led to the upregulation of p16 and H3K27me3 level at p16 promoter region. Collectively, we provided evidence that Jarid2 via modulation of p16 is a putative novel therapeutic target for treating malignant bladder cancer.
Coughlin, Mark F; Bielenberg, Diane R; Lenormand, Guillaume; Marinkovic, Marina; Waghorne, Carol G; Zetter, Bruce R; Fredberg, Jeffrey J
2013-03-01
We quantified mechanical properties of cancer cells differing in metastatic potential. These cells included normal and H-ras-transformed NIH3T3 fibroblast cells, normal and oncoprotein-overexpressing MCF10A breast cancer cells, and weakly and strongly metastatic cancer cell line pairs originating from human cancers of the skin (A375P and A375SM cells), kidney (SN12C and SN12PM6 cells), prostate (PC3M and PC3MLN4 cells), and bladder (253J and 253JB5 cells). Using magnetic twisting cytometry, cytoskeletal stiffness (g') and internal friction (g″) were measured over a wide frequency range. The dependencies of g' and g″ upon frequency were used to determine the power law exponent x which is a direct measure of cytoskeletal fluidity and quantifies where the cytoskeleton resides along the spectrum of solid-like (x = 1) to fluid-like (x = 2) states. Cytoskeletal fluidity x increased following transformation by H-ras oncogene expression in NIH3T3 cells, overexpression of ErbB2 and 14-3-3-ζ in MCF10A cells, and implantation and growth of PC3M and 253J cells in the prostate and bladder, respectively. Each of these perturbations that had previously been shown to enhance cancer cell motility and invasion are shown here to shift the cytoskeleton towards a more fluid-like state. In contrast, strongly metastatic A375SM and SN12PM6 cells that disseminate by lodging in the microcirculation of peripheral organs had smaller x than did their weakly metastatic cell line pairs A375P and SN12C, respectively. Thus, enhanced hematological dissemination was associated with decreased x and a shift towards a more solid-like cytoskeleton. Taken together, these results are consistent with the notion that adaptations known to enhance metastatic ability in cancer cell lines define a spectrum of fluid-like versus solid-like states, and the position of the cancer cell within this spectrum may be a determinant of cancer progression.
Zhang, Ming; Peng, Yubing; Zhou, Zhe; Zhou, Juan; Wang, Zhong; Lu, Mujun
2013-02-01
To investigated the urothelium differentiation potential of adipose-derived stem cells (ASCs) that were coimplanted with the immortalized human bladder urothelium cell line (SV-HUC-1) into the subcutaneous tissue of athymic mice. The ASCs were isolated from the human adipose tissue of patients undergoing liposuction procedures and were expanded in vitro. After labeling with CM-DiI, the ASCs were mixed with SV-HUC-1 and implanted into the subcutaneous tissue of athymic mice for 2 and 4 weeks. The urothelium-specific markers uroplakin-Ia and uroplakin-II were detected by immunofluorescence. The transformation rate of ASCs into the urothelium phenotype was evaluated at each measurement point. We found that 25.87% ± 1.38% of ASCs expressed the urothelium-specific marker uroplakin-Ia and 23.60% ± 2.57% of ASCs expressed uroplakin-II 2 weeks after coimplantation with SV-HUC-1 in vivo. After 4 weeks, 70.07% ± 3.84% of ASCs expressed uroplakin-Ia and 65.56% ± 2.94% expressed uroplakin-II. However, no obvious organizational multilayered urothelium structure, such as that of the native bladder mucosa, was found in the subcutaneous tissues of the athymic mice. The results of our study have demonstrated that ASCs could be differentiated toward the urothelium-like phenotype when they were coimplanted in direct contact with cells of a mature urothelium cell line, and the proportion of differentiated cells increased from 2 to 4 weeks. The differentiation potential of ASCs toward the urothelial cell type suggests that ASCs might have potential to be used in urinary tract repair with a tissue engineering approach in the future. Copyright © 2013 Elsevier Inc. All rights reserved.
Wen, Wu; Li, Jingying; Wang, Longwang; Xing, Yifei; Li, Xuechao; Ruan, Hailong; Xi, Xiaoqing; Xiong, Jianhua; Kuang, Renrui
2017-08-18
The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.
Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio
2016-01-01
Epidemiological data indicate that the daily consumption of extra-virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra-virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose-dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co-treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies. PMID:27748855
Bitsika, Vasiliki; Roubelakis, Maria G; Zagoura, Dimitra; Trohatou, Ourania; Makridakis, Manousos; Pappa, Kalliopi I; Marini, Frank C; Vlahou, Antonia; Anagnou, Nicholas P
2012-05-01
Recent studies support cell-based therapies for cancer treatment. An advantageous cell type for such therapeutic schemes are the mesenchymal stem cells (MSCs) that can be easily propagated in culture, genetically modified to express therapeutic proteins, and exhibit an innate tropism to solid tumors in vivo. Recently, we successfully isolated and expanded MSCs from second-trimester amniotic fluid (AF-MSCs). The main characteristic of AF-MSCs is their efficient and rapid expansion in vitro. Herein, we investigated the AF-MSCs tropism and capability to transport interferon beta (IFNβ) to the region of neoplasia in a bladder tumor model. To this end, we used the T24M bladder cancer cell line, previously generated from our studies, and developed a disease progression model in immunosuppressed mice, that can recapitulate the molecular events of bladder carcinogenesis. Our results documented that AF-MSCs exhibited high motility, when migrated either to T24M cells or to T24M-conditioned medium, and we further identified and studied the secreted factors which may trigger these enhanced migratory properties. Further, lentivirus-transduced AF-MSCs, expressing green fluorescent protein (GFP) or IFNβ, were intravenously administered to T24M tumor-bearing animals at multiple doses to examine their therapeutic effect. GFP- and IFNβ-AF-MSCs successfully migrated and colonized at the tumor site. Notably, significant inhibition of tumor growth as well as prolonged survival of mice were observed in the presence of IFNβ-AF-MSCs. Collectively, these results document the great potential of AF-MSCs as anti-cancer vehicles, implemented by the targeting of the tumor site and further facilitated by their high proliferation rate and expansion efficiency in culture.
Miyake, Makito; Hori, Shunta; Morizawa, Yosuke; Tatsumi, Yoshihiro; Toritsuka, Michihiro; Ohnishi, Sayuri; Shimada, Keiji; Furuya, Hideki; Khadka, Vedbar S.; Deng, Youping; Ohnishi, Kenta; Iida, Kota; Gotoh, Daisuke; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Tanaka, Nobumichi; Konishi, Noboru; Fujimoto, Kiyohide
2017-01-01
Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder. PMID:28415608
Ixabepilone in Treating Patients With Advanced Urinary Tract Cancer
2013-01-23
Distal Urethral Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer
Yang, Zhao; Li, Chong; Fan, Zusen; Liu, Hongjie; Zhang, Xiaolong; Cai, Zhiming; Xu, Liqin; Luo, Jian; Huang, Yi; He, Luyun; Liu, Chunxiao; Wu, Song
2017-01-01
Cancer stem cells are considered responsible for many important aspects of tumors such as their self-renewal, tumor-initiating, drug-resistance and metastasis. However, the genetic basis and origination of human bladder cancer stem cells (BCSCs) remains unknown. Here, we conducted single-cell sequencing on 59 cells including BCSCs, bladder cancer non-stem cells (BCNSCs), bladder epithelial stem cells (BESCs) and bladder epithelial non-stem cells (BENSCs) from three bladder cancer (BC) specimens. Specifically, BCSCs demonstrate clonal homogeneity and suggest their origin from BESCs or BCNSCs through phylogenetic analysis. Moreover, 21 key altered genes were identified in BCSCs including six genes not previously described in BC (ETS1, GPRC5A, MKL1, PAWR, PITX2 and RGS9BP). Co-mutations of ARID1A, GPRC5A and MLL2 introduced by CRISPR/Cas9 significantly enhance the capabilities of self-renewal and tumor-initiating of BCNSCs. To our knowledge, our study first provides an overview of the genetic basis of human BCSCs with single-cell sequencing and demonstrates the biclonal origin of human BCSCs via evolution analysis. Human bladder cancer stem cells show the high level of consistency and may derived from bladder epithelial stem cells or bladder cancer non-stem cells. Mutations of ARID1A, GPRC5A and MLL2 grant bladder cancer non-stem cells the capability of self-renewal. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Wei, Yi; Gao, Li; Wang, Lu; Shi, Lin; Wei, Erdong; Zhou, Baotong; Zhou, Li; Ge, Bo
2017-11-01
We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand-receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.
Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio
2015-01-01
Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells. PMID:26097873
Juszczak, K; Gil, K; Wyczolkowski, M; Thor, P J
2010-08-01
Neurogenic inflammation is linked to urinary bladder overactivity development. Cyclophosphamide (CYP) damages all mucosal defence lines of urinary bladder and induces cystitis with overactivity. The aim of this study was to estimate the effect of CYP on rat urinary bladder function, histological structure and mastocytes numbers following acute and chronic CYP treatment. Fourty two female rats were divided into four groups: I (control), II (acute cystitis), III (chronic cystitis), IV (sham group). Acute and chronic cystitis were induced by CYP in single dose and four doses (1(st), 3(rd), 5(th), 7(th) day), respectively. In group I-III the cystometric evaluation was performed. Sections of the bladder were stained with HE and toluidine blue for the detection of mastocytes. The severity of inflammation was examined according to mucosal abrasion, haemorrhage, leukocyte infiltration and oedema. Acute and chronic CYP treatment caused inflammatory macroscopic and microscopic changes (mucosal abrasion, haemorrhage, oedema) and increased infiltration of inflammatory cells in urinary bladder. Acute treatment induced the infiltration of mastocytes within bladder wall contrary to chronic one decrement. Acute treatment caused more severe mucosal abrasion, whereas chronic one revealed more developed haemorrhage changes. Additionally, cystometric evaluation revealed urinary bladder overactivity development in both types of cystitis. Basal pressure and detrusor overactivity index after acute treatment increased considerably in comparison with the increase obtained after chronic one. Our results proved that acute model of CYP-induced cystitis in rats is more credible for further evaluation of neurogenic inflammation response in pathogenesis of overactive bladder as compared to chronic one.
p63 expression defines a lethal subset of muscle-invasive bladder cancers.
Choi, Woonyoung; Shah, Jay B; Tran, Mai; Svatek, Robert; Marquis, Lauren; Lee, I-Ling; Yu, Dasom; Adam, Liana; Wen, Sijin; Shen, Yu; Dinney, Colin; McConkey, David J; Siefker-Radtke, Arlene
2012-01-01
p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear. We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT) in human bladder cancer cell lines (n = 15) and primary tumors (n = 101). We correlated tumor marker expression with stage, disease-specific (DSS), and overall survival (OS). Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1) bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2-T4) tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001). However, OS was shorter in patients with muscle-invasive tumors that retained p63 (p = 0.007). Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the "epithelial" marker p63 in muscle-invasive tumors is associated with a worse outcome.
Sorafenib in Treating Patients With Advanced or Metastatic Cancer of the Urinary Tract
2015-08-04
Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder
Dudek, Aleksandra M; van Kampen, Jasmijn G M; Witjes, J Alfred; Kiemeney, Lambertus A L M; Verhaegh, Gerald W
2018-06-01
Approximately 20% of patients with bladder cancer are diagnosed with muscle-invasive disease (MIBC). The treatment involves radical cystectomy, but almost 50% of patients with MIBC eventually relapse and develop metastasis. The use of platinum-based chemotherapy in the neoadjuvant setting or for metastatic patients has been shown to improve the overall survival in a subset of patients. Unfortunately, no biomarkers are available to select patients with MIBC who will benefit from chemotherapy or to monitor the efficacy of the treatment. Recently, long noncoding RNAs (lncRNAs) were shown to regulate a variety of processes involved in the development and progression of cancer, including bladder cancer. Moreover, several lncRNAs have been shown to play a role in chemotherapy resistance. Here, we analyzed lncRNA expression associated with response to platinum-based chemotherapy in metastatic MIBC using data from the MiTranscriptome lncRNA expression database. Expression of the lncRNA, LINC00857, was found to be upregulated in tumors from patients that did not respond to platinum-based chemotherapy. Moreover, high expression of LINC00857 is correlated with shorter recurrence-free and overall survival of patients with MIBC. Knockdown of LINC00857 significantly decreased cell viability of bladder cancer cell lines through the induction of apoptosis. Furthermore, LINC00857 knockdown sensitized UM-UC-3 and T24 bladder cancer cells to cisplatin, via the negative regulation of the LMAN1 gene. Our data indicate that LINC00857 plays an important role in the regulation of response to platinum-based chemotherapy. LINC00857 potentially could serve as a novel prognostic and predictive biomarker and might be a therapeutic target to overcome cisplatin resistance in patients with MIBC. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells
Lin, Ji-Fan; Lin, Yi-Chia; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng
2017-01-01
Purpose Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC). Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines. Materials and methods Human BC cells (5637 and T24) were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3)-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL) formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1), chloroquine (CQ), and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12) were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation. Results Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose-and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of cisplatin toward BC cells. These results indicated that cisplatin induced protective autophagy which may contribute to the development of cisplatin resistance and resulted in treatment failure. Mechanistically, upregulation of beclin-1 (BECN1) was detected in cisplatin-treated cells, and knockdown of BECN1 using shRNA attenuated cisplatin-induced autophagy and subsequently enhanced cisplatin-induced apoptosis. Conclusion Collectively, the study results indicated that cisplatin-induced autophagy is mediated by BECN1 in BC cells. Therefore, combinative treatment using cisplatin and autophagy inhibitors could potentially overcome cisplatin resistance related to autophagy induction. PMID:28553083
Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells.
Lin, Ji-Fan; Lin, Yi-Chia; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng
2017-01-01
Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC). Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines. Human BC cells (5637 and T24) were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3)-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL) formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1), chloroquine (CQ), and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12) were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation. Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose-and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of cisplatin toward BC cells. These results indicated that cisplatin induced protective autophagy which may contribute to the development of cisplatin resistance and resulted in treatment failure. Mechanistically, upregulation of beclin-1 (BECN1) was detected in cisplatin-treated cells, and knockdown of BECN1 using shRNA attenuated cisplatin-induced autophagy and subsequently enhanced cisplatin-induced apoptosis. Collectively, the study results indicated that cisplatin-induced autophagy is mediated by BECN1 in BC cells. Therefore, combinative treatment using cisplatin and autophagy inhibitors could potentially overcome cisplatin resistance related to autophagy induction.
Folate receptor‐targeted aminoglycoside‐derived polymers for transgene expression in cancer cells
Godeshala, Sudhakar; Nitiyanandan, Rajeshwar; Thompson, Brian; Goklany, Sheba; Nielsen, David R.
2016-01-01
Abstract Targeted delivery of anticancer therapeutics can potentially overcome the limitations associated with current chemotherapeutic regimens. Folate receptors are overexpressed in several cancers, including ovarian, triple‐negative breast and bladder cancers, making them attractive for targeted delivery of nucleic acid therapeutics to these tumors. This work describes the synthesis, characterization and evaluation of folic acid‐conjugated, aminoglycoside‐derived polymers for targeted delivery of transgenes to breast and bladder cancer cell lines. Transgene expression was significantly higher with FA‐conjugated aminoglycoside‐derived polymers than with Lipofectamine, and these polymers demonstrated minimal cytotoxicty. Competitive inhibition using free folic acid significantly reduced transgene expression efficacy of folate‐targeted polymers, suggesting a role for folate receptor‐mediated uptake. High efficacy FA‐targeted polymers were employed to deliver a plasmid expressing the TRAIL protein, which induced death in cancer cells. These results indicate that FA‐conjugated aminoglycoside‐derived polymers are promising for targeted delivery of nucleic acids to cancer cells that overexpress folate receptors. PMID:29313013
Tsai, Y-S; Shiau, A-L; Chen, Y-F; Tsai, H-T; Tzai, T-S; Wu, C-L
2010-01-01
The objective of this study was to develop an HER2-targeted, envelope-modified Moloney murine leukemia virus (MoMLV)-based gammaretroviral vector carrying interleukin (IL)-12 gene for bladder cancer therapy. It displayed a chimeric envelope protein containing a single-chain variable fragment (scFv) antibody to the HER2 receptor and carried the mouse IL-12 gene. The fragment of anti-erbB2scFv was constructed into the proline-rich region of the viral envelope of the packaging vector lacking a transmembrane subunit of the carboxyl terminal region of surface subunit. As compared with envelope-unmodified gammaretroviruses, envelope-modified ones had extended viral tropism to human HER2-expressing bladder cancer cell lines, induced apoptosis, and affected cell cycle progression despite lower viral titers. Moreover, animal studies showed that envelope-modified gammaretroviruses carrying IL-12 gene exerted higher antitumor activity in terms of retarding tumor growth and prolonging the survival of tumor-bearing mice than unmodified ones, which were associated with enhanced tumor cell apoptosis as well as increased intratumoral levels of IL-12, interferon-gamma, IL-1beta, and tumor necrosis factor-alpha proteins. Therefore, the antitumor activity of gammaretroviruses carrying the IL-12 gene was enhanced through genetic modification of the envelope targeting HER2 receptor, which may be a promising strategy for bladder cancer therapy.
Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells.
Péchery, Adeline; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle
2016-11-01
GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.
Secondary signet-ring cell adenocarcinoma of urinary bladder from a gastric primary.
Sharma, Pramod K; Vijay, Mukesh K; Das, Ranjit K; Chatterjee, Uttara
2011-05-01
Primary bladder tumor is a frequent urological malignancy, whereas the incidence of secondary bladder tumor from a distant organ is quite rare. Secondary bladder neoplasms represent 1% of all malignant bladder tumors, of which distant metastases from stomach account for about 4% of cases. We present the case of a 30-year-old male who underwent partial gastrectomy for Signet-ring cell carcinoma of the stomach and presented 2 years later with hematuria. On computerized tomography scan, a bladder tumor was found which was resected cystoscopically. The histopathological examination revealed secondary Signet-ring cell adenocarcinoma of the urinary bladder.
Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu
2016-07-01
Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American Association for Cancer Research.
Gupta, Sounak; Hau, Andrew M.; Al-Ahmadie, Hikmat A.; Harwalkar, Jyoti; Shoskes, Aaron C.; Elson, Paul; Beach, Jordan R.; Hussey, George S.; Schiemann, William P.; Egelhoff, Thomas T.; Howe, Philip H.; Hansel, Donna E.
2017-01-01
Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β–induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. PMID:26988652
Glaser, Alexander P.; Fantini, Damiano; Wang, Yiduo; Yu, Yanni; Rimar, Kalen J.; Podojil, Joseph R.; Miller, Stephen D.; Meeks, Joshua J.
2018-01-01
APOBEC enzymes are responsible for a mutation signature (TCW>T/G) implicated in a wide variety of tumors. We explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival using sequencing data from The Cancer Genome Atlas (n = 395), Beijing Genomics Institute (n = 99), and Cancer Cell Line Encyclopedia. Tumors were split into “APOBEC-high” and “APOBEC-low” based on APOBEC enrichment. Patients with APOBEC-high tumors have better overall survival compared to those with APOBEC-low tumors (38.2 vs. 18.5 months, p = 0.005). APOBEC-high tumors are more likely to have mutations in DNA damage response genes (TP53, ATR, BRCA2) and chromatin regulatory genes (ARID1A, MLL, MLL3), while APOBEC-low tumors are more likely to have mutations in FGFR3 and KRAS. APOBEC3A and APOBEC3B expression correlates with mutation burden, regardless of bladder tumor molecular subtype. APOBEC mutagenesis is associated with increased expression of immune signatures, including interferon signaling, and expression of APOBEC3B is increased after stimulation of APOBEC-high bladder cancer cell lines with IFNγ. In summary, APOBEC-high tumors are more likely to have mutations in DNA damage response and chromatin regulatory genes, potentially providing more substrate for APOBEC enzymes, leading to a hypermutational phenotype and the subsequent enhanced immune response. PMID:29435122
2013-06-04
Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Stage III Bladder Cancer; Stage III Urethral Cancer; Stage IV Bladder Cancer; Stage IV Urethral Cancer; Transitional Cell Carcinoma of the Bladder; Ureter Cancer
Wang, Amy; Robertson, John L; Holladay, Steven D; Tennant, Alan H; Lengi, Andrea J; Ahmed, S Ansar; Huckle, William R; Kligerman, Andrew D
2007-12-01
Urinary bladder transitional epithelium is the main site of bladder cancer, and the use of transitional cells to study carcinogenesis/genotoxicity is recommended over the use of whole bladders. Because the transitional epithelium is only a small fraction of the whole bladder, the alkaline single cell gel electrophoresis assay (Comet assay), which requires only a small number of cells per sample, is especially suitable for measuring DNA damage in transitional cells. However, existed procedures of cell collection did not yield transitional cells with a high purity, and pooling of samples was needed for Comet assay. The goal of this study was to develop an optimized protocol to evaluate DNA damage in the urinary bladder transitional epithelium. This was achieved by an enzymatic stripping method (trypsin-EDTA incubation plus gentle scraping) to selectively harvest transitional cells from rat bladders, and the use of the alkaline Comet assay to detect DNA strand breaks, alkaline labile sites, and DNA-protein crosslinks. Step by step procedures are reported here. Cells collected from a single rat bladder were sufficient for multiple Comet assays. With this new protocol, increases in DNA damage were detected in transitional cells after in vitro exposure to the positive control agents, hydrogen peroxide or formaldehyde. Repair of the induced DNA damage occurred within 4h. This indicated the capacity for DNA repair was maintained in the harvested cells. The new protocol provides a simple and inexpensive method to detect various types of DNA damage and to measure DNA damage repair in urinary bladder transitional cells.
Mullerad, Michael; Bochner, Bernard H.; Adusumilli, Prasad S.; Bhargava, Amit; Kikuchi, Eiji; Hui-Ni, Chen; Kattan, Michael W.; Chou, Ting-Chao; Fong, Yuman
2005-01-01
Purpose Oncolytic replication-competent herpes simplex virus type-1 (HSV) mutants have the ability to replicate in and kill malignant cells. We have previously demonstrated the ability of replication-competent HSV to control bladder cancer growth in an orthotopic murine model. We hypothesized that a combination of a chemotherapeutic agent used for intravesical treatment - mitomycin-C (MMC) - and oncolytic HSV would exert a synergistic effect in the treatment of human transitional cell carcinoma (TCC). Materials and Methods We used the mutant HSV NV1066, which is deleted for viral genes ICP0 and ICP4 and selectively infects cancer cells, to treat TCC lines, KU19-19 and SKUB. Cell survival was determined by lactate dehydrogenase (LDH) assay for each agent as well as for drug-viral combinations from days 1 to 5. The isobologram method and the combination index method of Chou-Talalay were used to assess for synergistic effect. Results NV1066 enhanced MMC mediated cytotoxicity at all combinations tested for both KU19-19 and SKUB. Combination of both agents demonstrated a synergistic effect and allowed dose reduction by 12 and 10.4 times (NV1066) and by 3 and 156 times (MMC) in the treatment of KU19-19 and SKUB respectively, while achieving an estimated 90% cell kill. Conclusion These data provide the cellular basis for the clinical investigation of combined mitomycin-C and oncolytic HSV therapy in the treatment of bladder cancer. PMID:16006968
Secondary signet-ring cell adenocarcinoma of urinary bladder from a gastric primary
Sharma, Pramod K.; Vijay, Mukesh K.; Das, Ranjit K.; Chatterjee, Uttara
2011-01-01
Primary bladder tumor is a frequent urological malignancy, whereas the incidence of secondary bladder tumor from a distant organ is quite rare. Secondary bladder neoplasms represent 1% of all malignant bladder tumors, of which distant metastases from stomach account for about 4% of cases. We present the case of a 30-year-old male who underwent partial gastrectomy for Signet-ring cell carcinoma of the stomach and presented 2 years later with hematuria. On computerized tomography scan, a bladder tumor was found which was resected cystoscopically. The histopathological examination revealed secondary Signet-ring cell adenocarcinoma of the urinary bladder. PMID:21747602
2018-06-08
Infiltrating Bladder Urothelial Carcinoma; Recurrent Bladder Carcinoma; Stage I Prostate Cancer; Stage I Renal Cell Cancer; Stage II Bladder Urothelial Carcinoma; Stage II Renal Cell Cancer; Stage IIA Prostate Cancer; Stage IIB Prostate Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer
Beecken, Wolf-Dietrich C; Engl, Tobias; Ringel, Eva M; Camphausen, Kevin; Michaelis, Martin; Jonas, Dietger; Folkman, Judah; Shing, Yuen; Blaheta, Roman A
2006-09-01
Invasive cell carcinoma of the bladder often develops after complete transurethral excision of superficial transitional cell carcinoma. It has been postulated that primary tumors release angiogenesis-blocking proteins which suppress distant metastases. We have identified an endogenous protein which might be responsible for tumor dormancy. A transitional cell carcinoma cell line was developed (UMUC-3i) which inhibits the growth of a tumor implant at a distant site in SCID mice. Conditioned media of UMUC-3i cultured cells was first pooled and then fractioned, and the capacity of individual components to block endothelial cell growth was tested. The protein fraction responsible for blocking endothelial cell growth was identified by N-terminal amino acid sequencing as well as by mass-spectrometry. The effects of the purified protein in preventing endothelial cell proliferation and tube formation in an in vitro angiogenesis assay was investigated. The plasma protein beta(2)-glycoprotein-I (beta(2)gpI) was isolated and identified from conditioned medium of UMUC-3i cultured cells. Based on the in vitro angiogenesis assay, beta(2)gpI strongly inhibited endothelial cell growth and tube formation, whereby the inhibitory activity corresponded to the clipped version of beta(2)gpI (cbeta(2)gpI). Clipping was induced by adding plasmin at a molar ratio 1:15 (plasmin:substrate). Further analysis indicated that cbeta(2)gpI effects were mediated by annexin II surface receptors expressed on endothelial cells. cbeta2gpI may be involved in blocking angiogenic processes and bladder cancer progression. In this case, cbeta2gpI may be a promising tool in bladder cancer therapy.
Szepeshazi, Karoly; Schally, Andrew V; Keller, Gunhild; Block, Norman L; Benten, Daniel; Halmos, Gabor; Szalontay, Luca; Vidaurre, Irving; Jaszberenyi, Miklos; Rick, Ferenc G
2012-07-01
Many bladder cancers progress to invasion with poor prognosis; new therapeutic methods are needed. We developed a cytotoxic LH-RH analog, AN-152 (AEZS-108) containing doxorubicin (DOX), for targeted therapy of cancers expressing LHRH receptors. We investigated the expression of LH-RH receptors in clinical bladder cancers and in HT-1376, J82, RT-4 and HT-1197 human bladder cancer lines. The effect of analog, AN-152, on growth of these tumor lines xenografted into nude mice was analyzed. Using molecular and functional assays, we also evaluated the differences between the effects of AN-152, and DOX alone. We demonstrated the expression of LH-RH receptors on 18 clinical bladder cancers by immunohistochemistry and on four human urinary bladder cancer lines HT-1376, J82, RT-4 and HT-1197 by Western blotting and binding assays. AN-152 powerfully inhibited growth of these bladder cancers in nude mice. AN-152 exerted greater effects than DOX and was less toxic. DOX activated strong multidrug resistance mechanisms in RT-4 and HT-1197 cancers, while AN-152 had no or less such effect. PCR assays and in vitro studies revealed differences in the action of AN-152 and DOX on the expression of genes involved in apoptosis. These results suggest that targeted cytotoxic LH-RH analog, AN-152 (AEZS- 108), should be examined for treatment of patients with LH-RH receptor positive invasive bladder cancers.
[Primary upper urinary tract tumors and subsequent location in the bladder].
Azémar, M-D; Audouin, M; Revaux, A; Misraï, V; Comperat, E; Bitker, M-O; Chartier-Kastler, E; Richard, F; Cussenot, O; Rouprêt, M
2009-10-01
The urothelium is the epithelium that lines the upper and lower urinary tract. Over 95% of urothelial carcinomas are derived from urothelium. They can be located in the lower tract (bladder, urethra) or upper tract (pyelocaliceal cavities, ureter). Urothelial carcinomas are the fourth most common tumours after prostate (or breast) cancer, lung cancer and colorectal cancer. On one hand, bladder tumours account for 90-95% of urothelial carcinomas. It is the most common malignancy of the urinary tract and the second most common malignancy of the urogenital tract after prostate cancer. It accounts for 5-10% of all cancers diagnosed each year in Europe. On the other hand, upper urinary tract urothelial cell carcinomas (UUT-UCC) are scarce and account for only 5-10% of urothelial carcinomas. Recurrence in the bladder after primary UUT-UCC occurs in 15-50% of UUT-UCC. Differences in treatment modalities of the primary UUT-UCC do not play a key role in the subsequent appearance of a bladder recurrence. However, others factors have been described such as stage and location in the upper tract of the primary tumour or upper tract tumour multifocality. Previous history of bladder tumour is also associated with the risk that another tumour arises in the bladder subsequently. However, it becomes difficult to distinguish between natural history of bladder tumour and evolution of UUT-UCC in these cases. In most cases, bladder cancer occurs in the first two years after UUT-UCC management. Surveillance protocol is based on cystoscopy and on urinary cytology during at least every three months for two years. Current surveillance regimen have a low level of evidence considering the paucity of UUT-UCC.
Schulz, Helene; Dahlhoff, Maik; Glogowska, Aleksandra; Zhang, Lin; Arnold, Georg J; Fröhlich, Thomas; Schneider, Marlon R; Klonisch, Thomas
2015-08-01
The epidermal growth factor (EGF)-like ligands and their cognate ERBB1-4 receptors represent important signaling pathways that regulate tissue and cell proliferation, differentiation and regeneration in a wide variety of tissues, including the urogenital tract. Betacellulin (BTC) can activate all four ERBB tyrosine kinase receptors and is a multifunctional EGF-like ligand with diverse roles in β cell differentiation, bone maturation, formation of functional epithelial linings and vascular permeability in different organs. Using transgenic BTC mice, we have studied the effect of constitutive systemic BTC over-expression on the urinary bladder. BTC was detected in microvascular structures of the stromal bladder compartment and in umbrella cells representing the protective apical lining of the uroepithelium. ERBB1 and ERBB4 receptors were co-localized in the urothelium. Mice transgenic for BTC and double transgenic for both BTC and the dominant kinase-dead mutant of EGFR (Waved 5) developed hyperplasia of the uroepithelium at 5months of age, suggesting that urothelial hyperplasia was not exclusively dependent on ERBB1/EGFR. Mass spectrometric analysis of urine revealed a significant down-regulation of major urinary proteins in female BTC transgenic mice, suggesting a novel role for systemic BTC in odor-based signaling in female transgenic BTC mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C
2013-07-01
We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E
2016-05-01
Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.
Hyperammonemic encephalopathy due to suture line breakdown after bladder operation.
Boogerd, W; Zoetmulder, F A; Moffie, D
1990-01-01
A patient is described with a severe encephalopathy and hyperammonemia in absence of liver dysfunction, attributed to urine absorption into the systemic circulation due to suture line breakdown after bladder dome resection. At autopsy characteristic Alzheimer type II astrocytes were found in the basal ganglia.
Nrf2 protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaojun; Sun Zheng; Chen Weimin
2007-12-01
Arsenic is widely spread in our living environment and imposes a big challenge on human health worldwide. Arsenic damages biological systems through multiple mechanisms including the generation of reactive oxygen species. The transcription factor Nrf2 regulates the cellular antioxidant response that protects cells from various insults. In this study, the protective role of Nrf2 in arsenic toxicity was investigated in a human bladder urothelial cell line, UROtsa. Using a UROtsa cell line stably infected with Nrf2-siRNA, we clearly demonstrate that compromised Nrf2 expression sensitized the cells to As(III)- and MMA(III)-induced toxicity. On the other hand, the activation of the Nrf2more » pathway by tert-butylhydroquinone (tBHQ) and sulforaphane (SF), the known Nrf2-inducers, rendered UROtsa cells more resistant to As(III) and MMA(III). Furthermore, the wild-type mouse embryo fibroblast (WT-MEF) cells were protected from As(III)- and MMA(III)-induced toxicity following Nrf2 activation by tBHQ or SF, whereas neither tBHQ nor SF conferred protection in the Nrf2{sup -/-}MEF cells, demonstrating that tBHQ- or SF-mediated protection against As(III)- and MMA(III)-induced toxicity depends on Nrf2 activation. These results, obtained by both loss of function and gain of function analyses, clearly demonstrate the protective role of Nrf2 in arsenic-induced toxicity. The current work lays the groundwork for using Nrf2 activators for therapeutic and dietary interventions against adverse effects of arsenic.« less
Liu, Quanliang; Wang, Xinghuan
2013-11-01
Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro . Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro . TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma.
LIU, QUANLIANG; WANG, XINGHUAN
2013-01-01
Transient receptor potential vanilloid 2 (TRPV2), a nonselective cation channel, has become an attractive target gene for tumor studies due to its wide range of physiological and pathological functions. However, its specific role in bladder cancer development and progression remains unclear. The aim of the present study was to investigate the effects of TRPV2 on the proliferation, migration and invasion of 5637 bladder cancer cells in vitro. Rat TRPV2 cDNA was transfected into 5637 bladder cancer cells and changes in the behavior of the cells were detected. It was observed that TRPV2 enhanced bladder cancer cell migration and invasion; however, it did not affect cell proliferation in vitro. TRPV2 activity, which may be mediated by direct matrix metalloproteinase 2 (MMP2) regulation, is important in bladder tumor development and progression. The results of this study suggest that TRPV2 channels are a potential therapeutic target for bladder carcinoma. PMID:24223658
Pazopanib in Treating Patients With Metastatic Urothelial Cancer
2014-05-22
Distal Urethral Cancer; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer
2013-05-01
Distal Urethral Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Proximal Urethral Cancer; Recurrent Bladder Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Stage IV Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Urethral Cancer Associated With Invasive Bladder Cancer
Zhao, Junjie; Shi, Lei; Zeng, Shuxiong; Ma, Chong; Xu, Weidong; Zhang, Zhensheng; Liu, Qingzuo; Zhang, Peng; Sun, Yinghao; Xu, Chuanliang
2018-06-01
We recently determined that a novel oncogene, IPO11 from 5q12, participates in bladder cancer (BCa) progression. However, the biological function of IPO11 and the molecular mechanisms through which it contributes to BCa progression remain unclear. The aim of this study was to investigate the role of IPO11 in BCa aggressiveness and elucidate the molecular mechanisms underlying its effects in BCa. The mRNA expression levels of IPO11 in BIU-87, RT4, UMUC3, EJ, 5637, T24, J82, and HT-1376 cell lines were determined using quantitative real-time polymerase chain reaction. Expression of importin-11 was detected in 134 formalin-fixed and paraffin-embedded (FFPE) BCa tissues and 10 paired nonneoplastic bladder tissue specimens by immunohistochemistry. The copy number of IPO11 was examined in 25 FFPE BCa specimens using fluorescent in situ hybridization. The effects of IPO11 on migration, invasion, and cell proliferation were investigated in EJ and 5637 cell lines using RNA interference. Potential molecular mechanisms were investigated using whole transcriptome sequencing and bioinformatic approaches in EJ cells and IPO11-silenced EJ cells and verified using quantitative real-time polymerase chain reaction. Endogenous IPO11 mRNA was highly expressed in 6 invasive BCa cell lines (EJ, HT-1376, UMUC3, 5637, J82, and T24) but had a low expression in the noninvasive BCa cell line BIU-87 and the papillary BCa cell line RT4. Immunohistochemical staining revealed that 87 (64.9%) of 134 FFPE BCa tissues displayed importin-11 overexpression. Moreover, importin-11 overexpression was positively associated with increased tumor stages and tumor grades, lymphatic invasion, and lymph node metastasis. Furthermore, importin-11 overexpression was detected in 100% (14/14) of BCa tissues with IPO11 amplification, and IPO11 amplification was not observed in 2 additional BCa tissues with importin-11 overexpression. Small interfering RNA-mediated knockdown of IPO11 is sufficient to inhibit the motility and invasiveness of EJ and 5637 cells. IPO11 knockdown also inhibited cell proliferation in EJ cells, whereas this was not observed in 5637 cells or the in vivo experiments. Using whole transcriptome sequencing, we found that 22 genes (including IPO11) were differentially expressed in IPO11-silenced EJ cells compared with wild-type EJ cells, 4 of which were upregulated, and 18 of which were downregulated. KEGG pathway enrichment analysis of the significantly differentially expressed genes showed that the proteoglycans in cancer pathway (pathway Id: hsa05205) was most significantly enriched among 10 genetically altered pathways and referred to 6 significantly altered genes (CDKN1A, HBEGF, PTK2, THBS1, CCNG2, and EGR1). The next 3 most significantly enriched pathways in order were the p53, ErbB, and BCa pathways. CDKN1A and THBS1 were the most 2 frequently covered genes and were involved in 9 and 6 pathways, respectively. They were also 2 key proteins in the BCa pathway (pathway Id: hsa05219) that were downregulated in IPO11-knockdown EJ cells compared with wild-type EJ cells. Importin-11 overexpression can promote BCa cell invasiveness, probably associated with the deregulation of CDKN1A and THBS1 primarily through the activation of the proteoglycans in cancer pathway and the classical BCa pathway. Importin-11 may be a useful target through which the progression of noninvasive BCa to invasive BCa can be blocked. Copyright © 2018 Elsevier Inc. All rights reserved.
Chu, Maolin; Zhang, Chunying
2018-01-24
Angiogenesis plays an important role in bladder cancer (BCa). The immunosuppressive drug leflunomide has attracted worldwide attention. However, the effects of leflunomide on angiogenesis in cancer remain unclear. Here, we report the increased expression of soluble ephrin-A1 (sEphrin-A1) in supernatants of BCa cell lines (RT4, T24, and TCCSUP) co-cultured with human umbilical vein endothelial cells (HUVECs) compared with that in immortalized uroepithelial cells (SV-HUC-1) co-cultured with HUVECs. sEphrin-A1 is released from BCa cells as a monomeric protein that is a functional form of the ligand. The co-culture supernatants containing sEphrin-A1 caused the internalization and down-regulation of EphA2 on endothelial cells and dramatic functional activation of HUVECs. This sEphrin-A1/EphA2 system is mainly functional in regulating angiogenesis in BCa tissue. We showed that leflunomide (LEF) inhibited angiogenesis in a N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder carcinogenesis model and a tumor xenograft model, as well as in BCa cell and HUVEC co-culture systems, via significant inhibition of the sEphrin-A1/EphA2 system. Ephrin-A1 overexpression could partially reverse LEF-induced suppression of angiogenesis and subsequent tumor growth inhibition. Thus, LEF has a significant anti-angiogenesis effect on BCa cells and BCa tissue via its inhibition of the functional angiogenic sEphrin-A1/EphA2 system and may have potential for treating BCa beyond immunosuppressive therapy.
Hata, Shuko; Ise, Kazue; Azmahani, Abdullah; Konosu-Fukaya, Sachiko; McNamara, Keely May; Fujishima, Fumiyoshi; Shimada, Keiji; Mitsuzuka, Koji; Arai, Yoichi; Sasano, Hironobu; Nakamura, Yasuhiro
2017-12-01
Bladder urothelial carcinoma is increasing in incidence with age and its prognosis could become worse when accompanied with metastasis. Effective treatment of these advanced patients is required and it becomes important to understand its underlying biology of this neoplasm, especially with regard to its biological pathways. A potential proposed pathway is androgen receptor (AR)-mediated intracellular signaling but the details have remained relatively unexplored. The expression of AR, 5α-reductase type1 (5αR1) and 5α-reductase type2 (5αR2) were examined in the bladder cancer cell line T24 and surgical pathology specimens. We also evaluated the status of androgen related cell proliferation and migration using the potent, non-aromatizable androgen agonist 5α-dihydrotestosterone (DHT). DHT treatment significantly increased AR mRNA expression level, but not those of 5αR1 and 5αR2 in T24 cells. DHT also suppressed cellular migration with weaker and opposite effects on cell proliferation. A significant inverse correlation was detected between pT stage and AR, 5αR1 and 5αR2 immunoreactivity. Inverse correlations detected between tumor grade and AR/androgen metabolizing enzyme also suggested that the loss of AR and androgen-producing enzymes could be associated with tumor progression. Effects of DHT on cells also suggest that androgens may regulate cellular behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Expression of cyclooxygenase-2 in transitional cell carcinoma of the urinary bladder in dogs.
Khan, K N; Knapp, D W; Denicola, D B; Harris, R K
2000-05-01
To evaluate expression of cyclooxygenase (COX)-1 and COX-2 in the urinary bladder epithelium of clinically normal dogs and in transitional cell carcinoma cells of dogs. 21 dogs with transitional cell carcinoma of the urinary bladder and 8 dogs with clinically normal urinary bladders. COX-1 and COX-2 were evaluated by use of isoform-specific antibodies with standard immunohistochemical methods. COX-1, but not COX-2, was constitutively expressed in normal urinary bladder epithelium; however, COX-2 was expressed in neoplastic epithelium in primary tumors and in metastatic lesions of all 21 dogs and in new proliferating blood vessels in 3 dogs. Also, COX-1 was expressed in the neoplastic cells. Lack of expression of COX-2 in normal bladder epithelium and its substantial expression in transitional cell carcinoma cells suggest that this isoform may be involved in tumor cell growth. Inhibition of COX-2 is a likely mechanism of the antineoplastic effects of non steroidal antiinflammatory drugs.
Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer.
Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide
2018-04-13
Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB.
Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer
Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide
2018-01-01
Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB. PMID:29731962
An orthotopic model of murine bladder cancer.
Dobek, Georgina L; Godbey, W T
2011-02-06
In this straightforward procedure, bladder tumors are established in female C57 mice through the use of catheterization, local cauterization, and subsequent cell adhesion. After their bladders are transurethrally catheterized and drained, animals are again catheterized to permit insertion of a platinum wire into bladders without damaging the urethra or bladder. The catheters are made of Teflon to serve as an insulator for the wire, which will conduct electrical current into the bladder to create a burn injury. An electrocautery unit is used to deliver 2.5W to the exposed end of the wire, burning away extracellular layers and providing attachment sites for carcinoma cells that are delivered in suspension to the bladder through a subsequent catheterization. Cells remain in the bladder for 90 minutes, after which the catheters are removed and the bladders allowed to drain naturally. The development of tumor is monitored via ultrasound. Specific attention is paid to the catheterization technique in the accompanying video.
2014-01-27
Anterior Urethral Cancer; Localized Transitional Cell Cancer of the Renal Pelvis and Ureter; Posterior Urethral Cancer; Recurrent Bladder Cancer; Recurrent Urethral Cancer; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Transitional Cell Carcinoma of the Bladder; Ureter Cancer; Urethral Cancer Associated With Invasive Bladder Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongxue; Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002; Li, Xuechao
Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cellmore » apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.« less
Hayashi, Masamichi; Bernert, Heike; Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O
2014-05-30
To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes.
Larsen, M P; Steinberg, G D; Brendler, C B; Epstein, J I
1990-01-01
We used Ulex europaeus agglutinin I (UEAI)-immunoperoxidase staining of endothelium to study the accuracy of hematoxylin and eosin (H&E) diagnosis, occurrence, and significance of lymphvascular invasion in transitional cell carcinoma (TCC) of the bladder invading the lamina propria (Stage T1). Original histologic slides from cases (1967 to 1985) with and without vascular invasion were destained and restained with UEAI-immunoperoxidase. Only 5 of 36 biopsies originally diagnosed with lymphvascular invasion had tumor nests within endothelium-lined spaces. The 31 negative biopsies had extensive retraction artifacts lined by connective tissue and fibroblasts around tumor nests. Thirty-five control biopsies remained negative for lymphvascular invasion. Clinical follow-up of the five patients with proven lymphvascular invasion found three without progression of disease 3 to 10 yr postbiopsy, one dead of a local recurrence of TCC 1.67 yr postbiopsy, and one lost to follow-up. Based on this study, we feel that lymphvascular invasion by TCC in Stage T1 tumors is unusual, is frequently misdiagnosed on H&E stain, and does not necessarily portend a poor prognosis.
2018-05-23
Lymphoma; Metastatic Malignant Solid Neoplasm; Metastatic Melanoma; Metastatic Renal Cell Cancer; Recurrent Bladder Carcinoma; Recurrent Classical Hodgkin Lymphoma; Recurrent Head and Neck Squamous Cell Carcinoma; Recurrent Lymphoma; Recurrent Malignant Solid Neoplasm; Recurrent Renal Cell Carcinoma; Stage III Bladder Cancer; Stage III Lymphoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage III Renal Cell Cancer; Stage III Skin Melanoma; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Skin Melanoma; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma; Stage IV Bladder Cancer; Stage IV Lymphoma; Stage IV Non-Small Cell Lung Cancer AJCC v7; Stage IV Renal Cell Cancer; Stage IV Skin Melanoma; Stage IVA Bladder Cancer; Stage IVB Bladder Cancer; Unresectable Head and Neck Squamous Cell Carcinoma; Unresectable Solid Neoplasm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kuiqing; Chen, Xu; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinasemore » p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.« less
Du, Xiangnan; Lin, Benjamin C; Wang, Qian-Rena; Li, Hao; Ingalla, Ellen; Tien, Janet; Rooney, Isabelle; Ashkenazi, Avi; Penuel, Elicia; Qing, Jing
2014-12-15
The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3. Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study. MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer. These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer. ©2014 American Association for Cancer Research.
Use of donor bladder tissues for in vitro research.
Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer
2014-01-01
To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.
Prerequisite for successful surgical outcome in urothelium lined seromuscular colocystoplasty.
Jung, Hyun Jin; Lee, Hyeyoung; Im, Young Jae; Lee, Yong Seung; Hong, Chang Hee; Han, Sang Won
2012-04-01
Urothelium lined seromuscular colocystoplasty is an ideal method of augmentation cystoplasty that avoids various complications caused by the use of gastrointestinal segments. We reviewed the long-term outcomes using this technique at a single institution. We retrospectively analyzed 34 patients who underwent urothelium lined seromuscular colocystoplasty between January 1996 and December 2007. A total of 33 patients, excluding 1 who had previously undergone artificial urinary sphincter implantation, were included in the study. Changes in urodynamic parameters, duration of anticholinergic use, incontinence and surgical complications were analyzed. Mean±SD age at surgery was 10.0±5.7 years (range 3.0 to 26.0) and duration of followup was 6.0±2.3 years (2.7 to 13.4). A total of 17 patients (51.5%) underwent simultaneous anti-incontinence surgery and urothelium lined seromuscular colocystoplasty. Mean bladder capacity increased by a factor of 2.96 and mean percentage of expected bladder capacity for age increased by a factor of 1.96 postoperatively. Of patients who underwent anti-incontinence surgery 4 of 10 whose abdominal leak point pressure was less than 40 cm H2O required additional surgery, whereas none whose abdominal leak point pressure was 40 to 60 cm H2O required reoperation. Two of 16 patients who did not undergo anti-incontinence surgery eventually required continence surgery. A total of 13 patients (39.4%) were able to discontinue anticholinergics at 47.3 months postoperatively. There were no bladder perforations, bowel obstructions or metabolic abnormalities. Urothelium lined seromuscular colocystoplasty can be primarily considered in patients without prior bladder mucosal injury. Constant high bladder outlet pressure to facilitate adhesion of bladder mucosa and seromuscular patch is critical for the best results. We recommend abdominal leak point pressure 60 cm H2O or less as an indication for simultaneous anti-incontinence surgery and urothelium lined seromuscular colocystoplasty. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lobo, Marcio M; Viau, Cassiana M; Dos Santos, Josiane M; Bonacorso, Helio G; Martins, Marcos A P; Amaral, Simone S; Saffi, Jenifer; Zanatta, Nilo
2015-08-28
The synthesis of a series of 14 new 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones from the 1,3-dipolar cycloaddition reaction of 1-allyl-4-(trihalomethyl)pyrimidin-2(1H)-ones with aryl nitrile oxides is described. Also, the antiproliferative activity of the title compounds was tested against five human tumoral cell lines: MCF-7 breast cancer cell line, ER+ (estrogen receptor positive); HepG-2 (hepatoma); T-24 (bladder cancer); HCT-116 cell (colorectal carcinoma); and CACO-2. The preliminary results are promising, since three compounds presented IC50 values below 2 μM, as well as moderate to high selectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Photodynamic diagnosis of bladder cancer in ex vivo urine cytology
NASA Astrophysics Data System (ADS)
Fu, C. Y.; Ng, B. K.; Razul, S. Gulam; Olivo, Malini C.; Lau, Weber K. O.; Tan, P. H.; Chin, William
2006-02-01
Bladder cancer is the fourth common malignant disease worldwide, accounting for 4% of all cancer cases. In Singapore, it is the ninth most common form of cancer. The high mortality rate can be reduced by early treatment following precancerous screening. Currently, the gold standard for screening bladder tumors is histological examination of biopsy specimen, which is both invasive and time-consuming. In this study ex vivo urine fluorescence cytology is investigated to offer a timely and biopsy-free means for detecting bladder cancers. Sediments in patients' urine samples were extracted and incubated with a novel photosensitizer, hypericin. Laser confocal microscopy was used to capture the fluorescence images at an excitation wavelength of 488 nm. Images were subsequently processed to single out the exfoliated bladder cells from the other cells based on the cellular size. Intensity histogram of each targeted cell was plotted and feature vectors, derived from the histogram moments, were used to represent each sample. A difference in the distribution of the feature vectors of normal and low-grade cancerous bladder cells was observed. Diagnostic algorithm for discriminating between normal and low-grade cancerous cells is elucidated in this paper. This study suggests that the fluorescence intensity profiles of hypericin in bladder cells can potentially provide an automated quantitative means of early bladder cancer diagnosis.
[Epithelial intestine cells transdifferentiate into bladder urothelium in experiments in vivo].
Popov, B K; Zaĭchik, A M; Bud'ko, M B; Zlobina, O V; Tolkunova, E N; Zhidkova, O V; Petrov, N S
2011-01-01
The autoplastic surgery by intestine tissue has been used for reconstructive therapy of the urinary tract since the middle of the last century; however, cell mechanisms of the urothelium engraftment are still obscure. Intestine stem cells possess plasticity and presumably enable after the autoplastic surgery to transdifferentiate into mature cells of urinary tract. Using the preliminary developed in vivo model for evaluation of somatic cells transdifferentiation into urothelium, we have found that the epithelial intestine cells producing Gfp transdifferentiate into the cryoinjured bladder urothelium of the syngenetic C57BL mice. Gfp was detected in the bladder tissue of mice-recipients using reverted polymerase chain reaction, primary fluorescence and immunofluorescence, while colocalization of the Gfp and Her-4 revealing similar to urothelium staining pattern was demonstrated in a few urothelium cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestine cells enable to transdifferentiate into bladder urothelium, however the transdifferentiation level is low and presumably can not provide full functional urothelium engraftment in the case of autoplastic bladder surgery by intestine tissue.
Zhou, Zhe; Yan, Hao; Liu, Yidong; Xiao, Dongdong; Li, Wei; Wang, Qiong; Zhao, Yang; Sun, Kang; Zhang, Ming; Lu, Mujun
2018-04-01
The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.
Lu, Yan; Liu, Pengyuan; Van den Bergh, Francoise; Zellmer, Victoria; James, Michael; Wen, Weidong; Grubbs, Clinton J; Lubet, Ronald A; You, Ming
2012-02-01
The epidermal growth factor receptor inhibitor Iressa has shown strong preventive efficacy in the N-butyl-N-(4-hydroxybutyl)-nitrosamine (OH-BBN) model of bladder cancer in the rat. To explore its antitumor mechanism, we implemented a systems biology approach to characterize gene expression and signaling pathways in rat urinary bladder cancers treated with Iressa. Eleven bladder tumors from control rats, seven tumors from rats treated with Iressa, and seven normal bladder epithelia were profiled by the Affymetrix Rat Exon 1.0 ST Arrays. We identified 713 downregulated and 641 upregulated genes in comparing bladder tumors versus normal bladder epithelia. In addition, 178 genes were downregulated and 96 genes were upregulated when comparing control tumors versus Iressa-treated tumors. Two coexpression modules that were significantly correlated with tumor status and treatment status were identified [r = 0.70, P = 2.80 × 10(-15) (bladder tumor vs. normal bladder epithelium) and r = 0.63, P = 2.00 × 10(-42) (Iressa-treated tumor vs. control tumor), respectively]. Both tumor module and treatment module were enriched for genes involved in cell-cycle processes. Twenty-four and twenty-one highly connected hub genes likely to be key drivers in cell cycle were identified in the tumor module and treatment module, respectively. Analysis of microRNA genes on the array chips showed that tumor module and treatment module were significantly associated with expression levels of let-7c (r = 0.54, P = 3.70 × 10(-8) and r = 0.73, P = 1.50 × 10(-65), respectively). These results suggest that let-7c downregulation and its regulated cell-cycle pathway may play an integral role in governing bladder tumor suppression or collaborative oncogenesis and that Iressa exhibits its preventive efficacy on bladder tumorigenesis by upregulating let-7 and inhibiting the cell cycle. Cell culture study confirmed that the increased expression of let-7c decreases Iressa-treated bladder tumor cell growth. The identified hub genes may also serve as pharmacodynamic or efficacy biomarkers in clinical trials of chemoprevention in human bladder cancer. ©2011 AACR.
Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder.
Buscarini, Maurizio; Quek, Marcus L; Gilliam-Hegarich, Susan; Kasahara, Nori; Bochner, Bernard
2007-01-01
The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment. 2007 S. Karger AG, Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ning; Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie
Highlights: {yields} Oct3/4-positive cells increase in Schistosoma haematobium (SH)-associated bladder cancer. {yields} iNOS-dependent DNA lesion, 8-nitroguanine, was formed in Oct3/4-positive cells. {yields} 8-Nitroguanine formed in stem-like cells plays a role in SH-induced carcinogenesis. {yields} Mutant stem cells may participate in inflammation-related carcinogenesis. -- Abstract: To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-{kappa}B (NF-{kappa}B) and induciblemore » nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-{kappa}B in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-{kappa}B activation, leading to tumor development.« less
NASA Astrophysics Data System (ADS)
Higbee, Russell G.; Irwin, Bryan S.; Nguyen, Michael N.; Zhang, Yuanyuan; Warren, William L.
2005-04-01
Nearly 80% of patients with newly diagnosed bladder cancer present with superficial bladder tumors (confined to the bladder lining such as transitional cell carcinoma [90%], squamous cell carcinoma [6-8%], and adenocarcinoma[2%]) in stages Ta, Tis, or T1. Segmental cystectomy is one surgical treatment for patients who have a low-grade invasive tumor. Transposition of small intestine is a viable surgical treatment option. Success of the transplantation is also dependent upon removal of the entire SI mucosal layer. A Clark Spitfire Ti:Sapphire laser operating at 775 nm and 1 kHz repetition rate, was used to investigate the damage induced to fresh cadaveric porcine small intestinal mucosal epithelium. The laser was held constant at a focal spot diameter of 100 μm using a 200 mm focal point lens, with a power output maximum of 257 mW. A high resolution motorized X-Y-Z stage translated the SI tissue through the beam at 500 μm/sec with a line spacing of 50 μm. This produced a 50% overlap in the laser etching for each pass over a 1 cm x 1.5 cm grid. To determine if the mucosal lining of the SI was adequately removed, the targeted area was covered with 1% fluorescein solution for 30 seconds and then rinsed with phosphate buffered saline. Fluorescein staining was examined under UV illumination, to determine the initial degree of mucosal removal. Tissues were fixed and processed for light and scanning electron microscopy by standard protocols. Brightfield light microscopy of hematoxylin and eosin stained 4 μm thick cross sections, scanning electron microscopy were examined to determine the degree of mucosal tissue removal. Clear delineation of the submucosal layer by fluorescein staining was also observed. The Ti:Sapphire laser demonstrated precise, efficient removal of the mucosal epithelium with minimal submucosal damage.
Tanaka, H; Kaneko, T
1992-07-01
The pharmacokinetics and biological activities of recombinant human granulocyte colony-stimulating factor (hG-CSF) produced in Escherichia coli were compared with those of hG-CSF purified from human bladder carcinoma cell line 5637 culture medium (5637-hG-CSF). Recombinant hG-CSF was biologically active in a bone marrow cell proliferation assay in vitro, with a dose-response curve similar to that of 5637-hG-CSF. The effects of 5637- and recombinant hG-CSF administered via i.v. injection to rats showed similar response patterns of neutrophil counts in peripheral blood. From these results, it is concluded that the O-linked sugar chain of hG-CSF does not contribute to the in vitro and in vivo biological activities. The pharmacokinetics of both forms of hG-CSF in rats were investigated using a sandwich enzyme-linked immunosorbent assay. After i.v. administration, the serum concentration-time curves of 5637- and recombinant hG-CSF declined biexponentially. Total body clearance and steady-state volume of distribution of 5637-hG-CSF were smaller than those for the recombinant form. After s.c. administration, a lower peak serum level, smaller AUC, and lower bioavailability of 5637-hG-CSF were observed compared to recombinant hG-CSF.
Therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.
Huang, Yen Ta; Cheng, Chuan Chu; Chiu, Ted H; Lai, Pei Chun
2015-11-01
Controversial effects of thalidomide for solid malignancies have been reported. In the present study, we evaluate the effects of thalidomide for transitional cell carcinoma (TCC), the most common type of bladder cancer. Thalidomide precipitates were observed when its DMSO solution was added to the culture medium. No precipitation was found when thalidomide was dissolved in 45% γ-cyclodextrin, and this concentration of γ-cyclodextrin elicited slight cytotoxicity on TCC BFTC905 and primary human urothelial cells. Thalidomide-γ-cyclodextrin complex exerted a concentration-dependent cytotoxicity in TCC cells, but was relatively less cytotoxic (with IC50 of 200 µM) in BFTC905 cells than the other 3 TCC cell lines, possibly due to upregulation of Bcl-xL and HIF-1α mediated carbonic anhydrase IX, and promotion of quiescence. Gemcitabine-resistant BFTC905 cells were chosen for additional experiments. Thalidomide induced apoptosis through downregulation of survivin and securin. The secretion of VEGF and TNF-α was ameliorated by thalidomide, but they did not affect cell proliferation. Immune-modulating lenalidomide and pomalidomide did not elicit cytotoxicity. In addition, cereblon did not play a role in the thalidomide effect. Oxidative DNA damage was triggered by thalidomide, and anti-oxidants reversed the effect. Thalidomide also inhibited TNF-α induced invasion through inhibition of NF-κB, and downregulation of effectors, ICAM-1 and MMP-9. Thalidomide inhibited the growth of BFTC905 xenograft tumors in SCID mice via induction of DNA damage and suppression of angiogenesis. Higher average body weight, indicating less chachexia, was observed in thalidomide treated group. Sedative effect was observed within one-week of treatment. These pre-clinical results suggest therapeutic potential of thalidomide for gemcitabine-resistant bladder cancer.
Lee, Myung-Shin; Lee, Jisu; Kim, Joo Heon; Kim, Won Tae; Kim, Wun-Jae; Ahn, Hanjong; Park, Jinsung
2015-01-01
The expression and function of caldesmon (CAD) in urothelial bladder carcinoma (BC) have not been reported. Here, we investigated the expression, prognostic value, and potential functional mechanism of CAD in primary non-muscle-invasive bladder cancer (NMIBC). Protein profiling of tissue samples using antibody microarrays showed significantly higher CAD expression in muscle-invasive BC tissues compared with NMIBC tissues. We then validated the CAD expression in BC cells by immunohistochemistry analysis using paraffin-embedded tissue blocks and western blots using BC cell lines. In addition, we examined the expression of CAD variants by reverse transcription-polymerase chain reaction, and confirmed the expression of low-molecular-weight isoforms (L-CAD), specifically encoded by WI-38 L-CAD II (transcript variant 2), in BC cells. Survival analysis in an independent primary NMIBC cohort comprising 132 patients showed that positive CAD expression was significantly associated with poorer prognosis than no CAD expression with regard to recurrence- and progression-free survival (p = 0.001 and 0.014, respectively). Multivariate analyses further indicated that positive CAD expression was an independent predictor of progression-free survival (p = 0.032; HR = 5.983). Data obtained from in vitro silencing and overexpression studies indicated that L-CAD promotes migration and invasiveness of BC cells. Immunofluorescence assays showed dramatic structural changes in the actin cytoskeleton of BC cells after L-CAD overexpression. Our findings collectively suggest that L-CAD overexpression in primary NMIBC is significantly associated with tumor progression and that a possible mechanism for L-CAD's activity is implicated in increased cell motility and invasive characteristics through morphological changes in BC cells. PMID:26430961
Chen, Jun-Feng; Yu, Bi-Xia; Yu, Rui; Ma, Liang; Lv, Xiu-Yi; Cheng, Yue; Ma, Qi
2017-02-01
Epirubicin (EPI) is one of the most used intravesical chemotherapy agents after transurethral resection to non-muscle invasive bladder tumors (NMIBC) to prevent cancer recurrence and progression. However, even after resection of bladder tumors and intravesical chemotherapy, half of them will recur and progress. RON is a membrane tyrosine kinase receptor usually overexpressed in bladder cancer cells and associated with poor pathological features. This study aims to investigate the effects of anti-RON monoclonal antibody Zt/g4 on the chemosensitivity of bladder cells to EPI. After Zt/g4 treatment, cell cytotoxicity was significantly increased and cell invasion was markedly suppressed in EPI-treated bladder cancer cells. Further investigation indicated that combing Zt/g4 with EPI promoted cell G1/S-phase arrest and apoptosis, which are the potential mechanisms that RON signaling inhibition enhances chemosensitivity of EPI. Thus, combing antibody-based RON targeted therapy enhances the therapeutic effects of intravesical chemotherapy, which provides new strategy for further improvement of NMIBC patient outcomes.
2018-04-02
Clear Cell Renal Cell Carcinoma; Metastatic Malignant Neoplasm in the Bone; Metastatic Penile Carcinoma; Renal Pelvis Urothelial Carcinoma; Squamous Cell Carcinoma of the Penis; Stage III Bladder Adenocarcinoma AJCC v6 and v7; Stage III Bladder Squamous Cell Carcinoma AJCC v6 and v7; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage III Penile Cancer AJCC v7; Stage III Renal Cell Cancer AJCC v7; Stage III Renal Pelvis Cancer AJCC v7; Stage III Ureter Cancer AJCC v7; Stage III Urethral Cancer AJCC v7; Stage IIIa Penile Cancer AJCC v7; Stage IIIb Penile Cancer AJCC v7; Stage IV Bladder Adenocarcinoma AJCC v7; Stage IV Bladder Squamous Cell Carcinoma AJCC v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; Stage IV Penile Cancer AJCC v7; Stage IV Renal Cell Cancer AJCC v7; Stage IV Renal Pelvis Cancer AJCC v7; Stage IV Ureter Cancer AJCC v7; Stage IV Urethral Cancer AJCC v7; Ureter Urothelial Carcinoma; Urethral Urothelial Carcinoma
Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines.
Pawlak, Aleksandra; Kutkowska, Justyna; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej
2017-10-01
Methotrexate is an antimetabolite used in the treatment of cancer and non-malignant diseases including rheumatoid arthritis, psoriasis and graft vs. host disease. Combination therapy with methotrexate was successful in the treatment of canine lymphoma, mammary tumor and invasive urinary bladder cancer. Lymphoma, the most common hematopoietic cancer in dogs, and leukemia are sensitive to chemotherapy, which is why methotrexate may be an important treatment option for these diseases. Although methotrexate is already used in veterinary oncology its effects on canine cancer cells has not been tested. The aim of the study was to evaluate for the first time methotrexate concentration-dependent cytotoxicity and its capability of inducing apoptosis in selected canine lymphoma/leukemia cell lines: CLBL-1, GL-1 and CL-1 as a first step before the in vitro development of new therapeutic options with the use of methotrexate. Methotrexate exhibited concentration-dependent inhibitory effect on proliferation of all the examined cell lines with different degree of apoptosis induction. The most methotrexate sensitive cells belonged to CL-1 cell line derived from T cell neoplasia and previously characterized by high resistance to the majority of anticancer drugs used in the therapy of lymphoma/leukemia in dogs. Canine lymphoma and leukemia cell lines are sensitive to methotrexate, and this drug may be useful in effective treatment of canine neoplasms and especially of T-type leukemia/lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cell-Based Therapies in Lower Urinary Tract Disorders.
Gopinath, Chaitanya; Ponsaerts, Peter; Wyndaele, Jean Jacques
2015-01-01
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Swaminathan, Santhanam; Torino, Jennifer L; Burger, Melissa S
2002-01-29
The effect of the tumor suppressor gene TP53 on repair of genomic DNA damage was examined in human urinary bladder transitional cell carcinoma (TCC) cell lines. Utilizing TCC10 containing wild-type p53 (wt-p53) as the parental line, an isogenic set of cell lines was derived by retroviral infection that expressed a transdominant mutant p53 (Arg --> His at codon 273, TDM273-TCC10), or the human papilloma virus 16-E6 oncoprotein (E6-TCC10). 32P-postlabeling analyses were performed on DNA from TCC cultures obtained after treatment with N-hydroxy-4-aminobiphenyl (N-OH-ABP), N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) and N-acetoxy-4-acetylaminobiphenyl (N-OAc-AABP). The major adduct was identified as N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) with all three chemicals. The amount of adducts in urothelial DNA ranged between 0.1 and 20 per 10(6) nucleotides, N-OAc-AABP yielding the highest levels, followed by N-OH-ABP and N-OH-AABP. To determine, if the functional status of p53 affects the rate of repair of dG-C8-ABP in genomic DNA, TCC10 and the TDM273-TCC10 and E6-TCC10 isotypes were exposed to N-OH-AABP for 12h and the DNA damage was allowed to repair up to 24h. The adduct levels were quantified and compared between the TCC10 isotypes. The amounts of dG-C8-ABP that remained in genomic DNA from E6-TCC10 and TDM273-TCC10 were approximately two-fold higher, as compared to the parental TCC10. At the dose used for DNA repair studies, N-OH-AABP or N-OAc-AABP did not induce apoptosis in TCC10. However, N-OAc-AABP at high doses (>5 microM) induced apoptosis, as evidenced by DNA fragmentation analyses. Furthermore, N-OAc-AABP-mediated apoptosis was independent of the functional status of wt-p53, since both E6-TCC10 and the parental TCC10 exhibited DNA fragmentation following treatment. These results suggest that p53 might modulate the repair of DNA adducts generated from the human bladder carcinogen ABP in its target human uroepithelial cells. This implies that in p53 null cells the unrepaired DNA damage could cause accumulation of mutation, which might contribute to increased genomic instability and neoplastic progression.
The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells
NASA Astrophysics Data System (ADS)
Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.
2007-02-01
Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60μg/ml) + light at 630nm induced DNA fragmentation in a light dose-dependent manner; in contrast, PMF or light alone did not induce DNA fragmentation. In separate experiments, PMF alone treatment produced a dose-dependent DNA synthesis with a 90% inhibition at a concentration of 25μg/ml (IC90 = 25μg/ml). Expression of p53 and p27 cell cycle regulatory proteins was not altered by PMF alone, however, a dose-dependent increase in p21 expression was observed that correlates with PMF concentrations. Cyclin A and cyclin B protein levels showed a clear decrease inverse to the concentration of PMF. In the absence of light treatment, flow cytometry analysis showed that PMF alone results in G 0/G I cell cycle arrest, with a 2-fold increase in G 0/G I cells concomitant with 50% decrease in cells in both S and G II/M phases. However, flow cytometry on PMF alone-treated cells did not show sub G 0/G I peak, further evidence of the lack of apoptosis as a mechanism of effect of PMF in the dark. Conclusions: With respect to light treatment, apoptosis appears to play a vital role in PDT-induced cytotoxicity. The flow cytometry and DNA laddering results revealed that T24 cells demonstrated apoptotic responses in PMF-mediated PDT. Experiments conducted with PMF alone showed a dose-dependent inhibition of DNA synthesis associated with G 0/G I cell cycle arrest and the extract is able to coordinate changes in key cell cycle regulatory proteins in human bladder cancer cells. Both experimental conditions suggest PMF as a potent and effect anti-proliferative agent in cancer chemoprevention and therapy of human urothelial carcinoma cells.
Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi
2017-01-01
Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.
Hsu, Iawen; Chuang, Kun-Lung; Slavin, Spencer; Da, Jun; Lim, Wei-Xun; Pang, See-Tong; O'Brien, Jeanne H; Yeh, Shuyuan
2014-03-01
Epidemiological studies showed that women have a lower bladder cancer (BCa) incidence, yet higher muscle-invasive rates than men, suggesting that estrogen and the estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), may play critical roles in BCa progression. Using in vitro cell lines and an in vivo carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced mouse BCa model, we found that ERβ plays a positive role in promoting BCa progression. Knockdown of ERβ with ERβ-shRNA in ERβ-positive human BCa J82, 647v and T24 cell lines led to suppressed cell growth and invasion. Mice lacking ERβ have less cancer incidence with reduced expression of the proliferation marker Ki67 in BBN-induced BCa. Consistently, our results show that non-malignant urothelial cells with ERβ knockdown are more resistant to carcinogen-induced malignant transformation. Mechanism dissection found that targeting ERβ suppressed the expression of minichromosome maintenance complex component 5 (MCM5), a DNA replication licensing factor that is involved in tumor cell growth. Restoring MCM5 expression can partially reverse ERβ knockdown-mediated growth reduction. Supportively, treating cells with the ERβ-specific antagonist, 4-[2-Phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP), reduced BCa cell growth and invasion, as well as MCM5 expression. Furthermore, we provide the first evidence that BCa burden and mortality can be controlled by PHTPP treatment in the carcinogen-induced BCa model. Together, these results demonstrate that ERβ could play positive roles in promoting BCa progression via MCM5 regulation. Targeting ERβ through ERβ-shRNA, PHTPP or via downstream targets, such as MCM5, could serve as potential therapeutic approaches to battle BCa.
Adenocarcinoma arising in urinary bladder endocervicosis.
Nakaguro, Masato; Tsuzuki, Toyonori; Shimada, Satoko; Taki, Tetsuro; Tsuchiyama, Mari; Kitamura, Atsuko; Suzuki, Yasuhiko; Nakano, Yojiro; Ono, Kenzo
2016-02-01
Endocervicosis is a rare benign condition characterized by the presence of endocervical-type mucinous glands. Urinary bladder endocervicosis forms an elevated lesion in the posterior wall of the urinary bladder and is sometimes misdiagnosed as a malignant tumor clinically and pathologically. Herein we describe the first case of adenocarcinoma arising in urinary bladder endocervicosis. The patient, a 58-year-old woman, presented with asymptomatic hematuria. Cystoscopy revealed a nodular mass measuring 4 cm in diameter in the posterior wall, and total cystectomy was performed. Histology revealed that the elevated lesion of the bladder wall was composed of haphazard proliferation of cystic glands lined by benign endocervical-type epithelium. An adenocarcinoma arose at the center of this endocervicosis. Mucin histochemistry revealed the presence of sulfomucin in both the endocervicosis and adenocarcinoma components. Immunohistochemically, the endocervicosis was positive for cytokeratin (CK) 7, AE1/AE3, CAM5.2, HBME1, CA19-9, and estrogen receptor (ER), and negative for CK20, CDX2, progesterone receptor (PR), MUC5AC, and β-catenin. The adenocarcinoma showed similar immunohistochemical results, except for loss of ER expression and a slight increase in the ratio of Ki-67-positive cells. This case indicates that endocervicosis, known as a benign lesion, harbors the possibility of malignant transformation. © 2016 The Authors. Pathology International published by Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
First-Line Atezolizumab Effective in Bladder Cancer.
2016-08-01
Results from a phase II study indicate that the PD-L1 inhibitor atezolizumab, recently approved for advanced bladder cancer that's refractory to standard platinum chemotherapy, is effective as first-line therapy for this disease. Durable responses to atezolizumab were seen in nearly a quarter of the study patients, who were all ineligible to receive cisplatin. ©2016 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Taylor J.; Wozniak, Ryan J.; Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
2009-02-15
Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modificationsmore » and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.« less
Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz
2017-06-01
Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O.
2014-01-01
Background: To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. Methods: We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Results: Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Conclusion: Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes. PMID:24830820
Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts.
Wu, Jitao; Yu, Cuicui; Cai, Li; Lu, Youyi; Jiang, Lei; Liu, Chu; Li, Yongwei; Feng, Fan; Gao, Zhenli; Zhu, Zhe; Yu, Shengqiang; Yuan, Hejia; Cui, Yuanshan
2017-08-01
Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression ( p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.
NASA Astrophysics Data System (ADS)
Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick
2015-02-01
The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.
Squamous cell carcinoma in exstrophy of the bladder.
Sharma, Pramod Kumar; Pandey, Praveen Kumar; Vijay, Mukesh Kumar; Bera, Malay Kumar; Singh, Jitendra Pratap; Saha, Kaushik
2013-08-01
Exstrophy of the bladder is a rare congenital anomaly with an incidence of about 1 per 50,000 newborns. The malignant potential of the exstrophied bladder mucosa is well known; 95% are adenocarcinomas, and 3% to 5% are squamous cell carcinomas. Most of the malignant tumors (60%) associated with an exstrophy of the bladder occur during the fourth and fifth decades of life. Of the remaining, about 20% each occur after 60 years and before 40 years. Here we present a case in which squamous cell carcinoma developed in an unrepaired exstrophy of the bladder. We present the management of the case and a brief review of the literature.
Squamous Cell Carcinoma in Exstrophy of the Bladder
Pandey, Praveen Kumar; Vijay, Mukesh Kumar; Bera, Malay Kumar; Singh, Jitendra Pratap; Saha, Kaushik
2013-01-01
Exstrophy of the bladder is a rare congenital anomaly with an incidence of about 1 per 50,000 newborns. The malignant potential of the exstrophied bladder mucosa is well known; 95% are adenocarcinomas, and 3% to 5% are squamous cell carcinomas. Most of the malignant tumors (60%) associated with an exstrophy of the bladder occur during the fourth and fifth decades of life. Of the remaining, about 20% each occur after 60 years and before 40 years. Here we present a case in which squamous cell carcinoma developed in an unrepaired exstrophy of the bladder. We present the management of the case and a brief review of the literature. PMID:23956833
Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi
2013-02-01
UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.
Jo, Guk Heui; Kim, Gi-Young; Kim, Wun-Jae; Park, Kun Young; Choi, Yung Hyun
2014-10-01
Sulforaphane, a naturally occurring isothiocyanate found in cruciferous vegetables, has received a great deal of attention because of its ability to inhibit cell proliferation and induce apoptosis in cancer cells. In this study, we investigated the anticancer activity of sulforaphane in the T24 human bladder cancer line, and explored its molecular mechanism of action. Our results showed that treatment with sulforaphane inhibited cell viability and induced apoptosis in T24 cells in a concentration-dependent manner. Sulforaphane-induced apoptosis was associated with mitochondria dysfunction, cytochrome c release and Bcl-2/Bax dysregulation. Furthermore, the increased activity of caspase-9 and -3, but not caspase-8, was accompanied by the cleavage of poly ADP-ribose polymerase, indicating the involvement of the mitochondria-mediated intrinsic apoptotic pathway. Concomitant with these changes, sulforaphane triggered reactive oxygen species (ROS) generation, which, along with the blockage of sulforaphane-induced loss of mitochondrial membrane potential and apoptosis, was strongly attenuated by the ROS scavenger N-acetyl-L-cysteine. Furthermore, sulforaphane was observed to activate endoplasmic reticulum (ER) stress and the nuclear factor-E2-related factor-2 (Nrf2) signaling pathway, as demonstrated by the upregulation of ER stress‑related proteins, including glucose-regulated protein 78 and C/EBP-homologous protein, and the accumulation of phosphorylated Nrf2 proteins in the nucleus and induction of heme oxygenase-1 expression, respectively. Taken together, these results demonstrate that sulforaphane has antitumor effects against bladder cancer cells through an ROS-mediated intrinsic apoptotic pathway, and suggest that ER stress and Nrf2 may represent strategic targets for sulforaphane-induced apoptosis.
Hydrogels Derived from Central Nervous System Extracellular Matrix
Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel
2012-01-01
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935
Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu
There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and withoutmore » an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.« less
Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad
2015-11-01
Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.
Dozmorov, Mikhail G; Yang, Qing; Wu, Weijuan; Wren, Jonathan; Suhail, Mahmoud M; Woolley, Cole L; Young, D Gary; Fung, Kar-Ming; Lin, Hsueh-Kung
2014-01-01
Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. The effects of frankincense (1,400-600 dilutions) (v/v) and sandalwood (16,000-7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography-mass spectrometry. Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest.
2014-01-01
Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348
Atezolizumab in urothelial bladder carcinoma.
Hamilou, Zineb; Lavaud, Pernelle; Loriot, Yohann
2018-02-01
Metastatic bladder cancer is an aggressive malignancy with a poor prognosis when presenting with advanced stage. Cisplatin-based therapy has been the mainstay of first-line treatment but therapy in second-line setting has been an unmet medical need for decades. Moreover, many patients are unable to receive cisplatin-based therapy. Recently, immune-checkpoint inhibitors transformed the management and prognosis of many malignancies and will certainly redefine the standard of care for bladder cancer. Atezolizumab, an anti-PD-L1 antibody, was the first immune-checkpoint inhibitor to be approved by the US FDA in May 2016 for patients with urothelial carcinoma. In this review, we discuss the evidence behind this promising drug.
Kruppel-like factor 5 is Required for Formation and Differentiation of the Bladder Urothelium
Bell, Sheila. M.; Zhang, Liqian; Mendell, Angela; Xu, Yan; Haitchi, Hans Michael; Lessard, James L.; Whitsett, Jeffrey A.
2011-01-01
SUMMARY Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The ShhGfpCre transgene was used to delete the Klf5floxed alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra were unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth. PMID:21803035
Bladder Cancer—Patient Version
The most common type of bladder cancer is transitional cell carcinoma, also called urothelial carcinoma. Smoking is a major risk factor for bladder cancer. Bladder cancer is often diagnosed at an early stage. Start here to find information on bladder cancer treatment, screening, research, and statistics.
Alexander, Riley E; Hu, Yingchuan; Kum, Jennifer B; Montironi, Rodolfo; Lopez-Beltran, Antonio; Maclennan, Gregory T; Idrees, Muhammad T; Emerson, Robert E; Ulbright, Thomas M; Grignon, David G; Eble, John N; Cheng, Liang
2012-11-01
Squamous cell carcinoma of the urinary bladder is unusual and of unknown etiology. There is a well-established association between human papillomavirus (HPV) infection and the development of cervical and head/neck squamous cell carcinomas. However, the role of HPV in the pathogenesis of squamous cell carcinoma of the urinary bladder is uncertain. The purposes of this study were to investigate the possible role of HPV in the development of squamous cell carcinoma of the urinary bladder and to determine if p16 expression could serve as a surrogate marker for HPV in this malignancy. In all, 42 cases of squamous cell carcinoma of the urinary bladder and 27 cases of urothelial carcinoma with squamous differentiation were investigated. HPV infection was analyzed by both in situ hybridization at the DNA level and immunohistochemistry at the protein level. p16 protein expression was analyzed by immunohistochemistry. HPV DNA and protein were not detected in 42 cases of squamous cell carcinoma (0%, 0/42) or 27 cases of urothelial carcinoma with squamous differentiation (0%, 0/15). p16 expression was detected in 13 cases (31%, 13/42) of squamous cell carcinoma and 9 cases (33%, 9/27) of urothelial carcinoma with squamous differentiation. There was no correlation between p16 expression and the presence of HPV infection in squamous cell carcinoma of the bladder or urothelial carcinoma with squamous differentiation. Our data suggest that HPV does not play a role in the development of squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation. p16 expression should not be used as a surrogate marker for evidence of HVP infection in either squamous cell carcinoma of the urinary bladder or urothelial carcinoma with squamous differentiation as neither HVP DNA nor protein is detectable in these neoplasms.
Kageyama, Y; Kawakami, S; Fujii, Y; Kihara, K; Oshima, H
1997-03-01
Intravesical administration of bacillus Calmette-Guérin (BCG) is an effective and widely accepted treatment for superficial bladder cancer. Rapid progression of the disease after BCG therapy, however, has been reported in some cases refractory to the treatment. We examined whether BCG treatment and coexistence of peripheral blood mononuclear cells (PBMCs) alter the invasive potential of bladder cancer cells. Production and secretion of two type IV collagenases, matrix metalloproteinase (MMP) 2 and MMP 9, by PBMCs from five healthy donors or bladder cancer cells (T24, JTC 30, and JTC 32) were evaluated by gelatin zymography, western blot analysis, and northern blot analysis. Invasion of bladder cancer cells was also examined using reconstituted basement membrane (Matrigel). BCG (5, 50, and 500 micrograms/ml) had no effect on secretion of MMP 2 and MMP 9 by bladder cancer cells, but increased the production and secretion of MMP 9 by PBMCs in a dose-dependent manner. The coexistence of PBMCs increased invasion of T24 cells and BCG further enhanced the invasion. Thus, BCG promotes invasion of bladder cancer cells under certain conditions. An increase in the secretion of MMP 9 by PBMCs may account in part for the effect.
Jiang, Guosong; Huang, Chao; Li, Jingxia; Huang, Haishan; Wang, Jingjing; Li, Yawei; Xie, Fei; Jin, Honglei; Zhu, Junlan; Huang, Chuanshu
2018-03-08
There are few approved drugs available for the treatment of muscle-invasive bladder cancer (MIBC). Recently, we have demonstrated that isorhapontigenin (ISO), a new derivative isolated from the Chinese herb Gnetum cleistostachyum, effectively induces cell-cycle arrest at the G0/G1 phase and inhibits anchorage-independent cell growth through the miR-137/Sp1/cyclin D1 axis in human MIBC cells. Herein, we found that treatment of bladder cancer (BC) cells with ISO resulted in a significant upregulation of p27, which was also observed in ISO-treated mouse BCs that were induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Importantly, knockdown of p27 caused a decline in the ISO-induced G0-G1 growth arrest and reversed ISO suppression of anchorage-independent growth in BC cells. Mechanistic studies revealed that ISO promoted p27 expression at mRNA transcription level through increasing direct binding of forkhead box class O1 (FOXO1) to its promoter, while knockdown of FOXO1 attenuated ISO inhibition of BC cell growth. On the other hand, ISO upregulated the 3'-untranslated region (3'-UTR) activity of p27, which was accompanied by a reduction of miR-182 expression. In line with these observations, ectopic expression of miR-182 significantly blocked p27 3'-UTR activity, whereas mutation of the miR-182-binding site at p27 mRNA 3'-UTR effectively reversed this inhibition. Accordingly, ectopic expression of miR-182 also attenuated ISO upregulation of p27 expression and impaired ISO inhibition of BC cell growth. Our results not only provide novel insight into understanding of the underlying mechanism related to regulation of MIBC cell growth but also identify new roles and mechanisms underlying ISO inhibition of BC cell growth.
Savalia, Abhishek J; Kumar, Vikash; Kasat, Gaurav; Sawant, Ajit
2016-11-01
Untreated bladder exstrophy in an adult is rare, as the defect is obvious and primary reconstruction is usually done in infancy. There are less than 90 reported cases of primary adenocarcinoma in an untreated bladder exstrophy in literature and only two such case reports from India. Of these, only one case was of signet-ring cell type of mucinous adenocarcinoma. Here we report the second case of signet-ring cell adenocarcinoma in a 63 year old male with untreated bladder exstrophy (oldest patient in literature), to highlight the extreme rarity, yet distinct possibility and challenges faced in surgical management of such cases.
Turner, Alex; Subramanian, Ramnath; Thomas, David F M; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-03-01
Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Bladder augmentation with in vitro-generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Turner, Alex; Subramanian, Ramnath; Thomas, David F.M.; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-01-01
Background Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. Objective To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Design, setting, and participants Bladder augmentation with in vitro–generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Measurements Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Results and limitations Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. Conclusions The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. PMID:21195539
Wu, Ping; Liu, Siyuan; Su, Jianyu; Chen, Jianping; Li, Lin; Zhang, Runguang; Chen, Tianfeng
2017-10-18
Cancer cells are well known to require a constant supply of protein, lipid, RNA, and DNA via altered metabolism for accelerated cell proliferation. Targeting metabolic pathways is, therefore, a promising therapeutic strategy for cancers. Isoquercitrin (ISO) is widely distributed in dietary and medicinal plants and displays selective cytotoxicity to cancer cells, primarily by inducing apoptosis and cell cycle arrest. The aims of this study were to find out whether ISO could stabilize in a bladder-like acidic environment and inhibit bladder cancer cell proliferation by affecting their metabolism, and to investigate its molecular mechanism. In this study, the exposure of T24 bladder cancer cells to ISO (20-80 μM) decreased cell viability by causing ROS overproduction. This ROS change regulated the AMPK signaling pathway, and caused Caspase-dependent apoptosis as well as metabolism dysfunction. Metabolic alterations elevated metabolic pathway variation, which in turn destabilized lipid synthesis and altered anaerobic glycolysis. This linkage was proved by immunoblotting assay, and metabolomics as identified by UHPLC-QTOF-MS. Our findings provide comprehensive evidence that ISO influenced T24 bladder cancer cell metabolism, and that this process was mainly involved in activating the AMPK pathway. This study could lead to an understanding of how ISO suppresses bladder cancer cell growth, and whether the affected cancer metabolism is a common mechanism by which nutritional compounds suppress cancers.
Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer.
Prack Mc Cormick, Barbara; Langle, Yanina; Belgorosky, Denise; Vanzulli, Silvia; Balarino, Natalia; Sandes, Eduardo; Eiján, Ana M
2018-01-24
Conservative treatment for invasive bladder cancer (BC) involves a complete transurethral tumor resection combined with chemotherapy (CT) and radiotherapy (RT). The major obstacles of chemo-radiotherapy are the addition of the toxicities of RT and CT, and the recurrence due to RT and CT resistances. The flavonoid Silybin (Sb) inhibits pathways involved in cell survival and resistance mechanisms, therefore the purpose of this paper was to study in vitro and in vivo, the ability of Sb to improve the response to RT, in two murine BC cell lines, with different levels of invasiveness, placing emphasis on radio-sensitivity, and pathways involved in radio-resistance and survival. In vitro, Sb radio-sensitized murine invasive cells through the inhibition of RT-induced NF-κB and PI3K pathways, and the increase of oxidative stress, while non-invasive cells did not show to be sensitized. In vivo, Sb improved RT-response and overall survival in invasive murine tumors. As Sb is already being tested in clinical trials for other urological cancers and it improves RT-response in invasive BC, these results could have translational relevance, supporting further research. © 2018 Wiley Periodicals, Inc.
Bladder perivascular epithelioid cell tumor (PEComa): a case report and literature review.
Sarti, Alessandra; Rubilotta, Emanuele; Balzarro, Matteo; Cerruto, Maria Angela; Brunelli, Matteo; Artibani, Walter
2015-01-01
Perivascular epithelioid cell tumors (PEComa) are a very uncommon mesenchymal cancer with uncertain malignant potential. A computerized research on Pub Med was performed regarding bladder PEComa. We evaluated the literature cases and described a case of bladder PEComa. PEComa of the bladder is a very rare neoplasm and only 15 cases have been reported so far. Bladder PEComa involves young subjects of both genders, mostly under 40 years of age. Surgical treatment (partial or radical cystectomy) is the most common management.A long-term follow-up and larger series are required to better understand the best clinical approach to bladder PEComa.
Small cell carcinoma of the urinary bladder.
Terada, Tadashi
2012-01-01
Primary small cell carcinoma of the urinary bladder is very rare; only several studies have been reported in the English literature. A 62-year-old woman was admitted to our hospital because of hematuria and dysuria. Bladder endoscopy revealed a large polypoid tumor at the bladder base. Transurethral bladder tumorectomy (TUR-BT) was performed. Many TUR-BT specimens were obtained. Histologically, the bladder tumor was pure small cell carcinoma. Immunohistochemically, the tumor cells were positive for cytokeratin (CK) AE1/3, CK CAM5.2, CK8, CK18, neurone-specific enolase, chromogranin, NCAM (CD56), synaptophysin, Ki-67 (labeling=100%), p53, KIT (CD117), and platelet-derived growth factor receptor-α (PDGFRA). The tumor cells were negative for CK5/6, CK 34BE12, CK7, CK14, CK19, CK20, p63, CD45, and TTF-1. A molecular genetic analysis using PCR-direct sequencing showed no mutations of KIT (exons 9, 11, 13 and 17) and PDGFRA (exons 12 and 18) genes. No metastases were found by various imaging techniques. The patient is now treated by cisplatin-based chemotherapy.
HAMLET treatment delays bladder cancer development.
Mossberg, Ann-Kristin; Hou, Yuchuan; Svensson, Majlis; Holmqvist, Bo; Svanborg, Catharina
2010-04-01
HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassuk, James; Lendvay, Thomas S.; Sweet, Robert
Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functionalmore » protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo.To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.« less
2013-07-01
Advanced Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Regional Transitional Cell Cancer of the Renal Pelvis and Ureter; Stage III Bladder Cancer; Stage III Pancreatic Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Bladder Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Transitional Cell Carcinoma of the Bladder; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer
Estimation of bladder wall location in ultrasound images.
Topper, A K; Jernigan, M E
1991-05-01
A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.
Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej
2018-01-02
The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.
Salemis, Nikolaos S; Gakis, Christos; Zografidis, Andreas; Gourgiotis, Stavros
2011-01-01
Cutaneous metastasis from transitional cell bladder carcinoma is a rare clinical entity associated with poor prognosis. We present a case of cutaneous metastasis arising from a transitional cell bladder carcinoma in a male patient who had undergone a radical cystectomy and bilateral ureterostomy 17 months previously. The cutaneous metastasis became evident 3 months before the manifestations of generalized recurrent disease. An awareness of this rare clinical entity and high index of suspicion is needed to rule out metastatic spread in patients with a previous history of transitional cell bladder carcinoma presenting with cutaneous nodules. Definitive diagnosis requires a histological confirmation, but prognosis is generally poor.
... have an elevated risk of developing bladder cancer. Chronic bladder inflammation. Chronic or repeated urinary infections or inflammations (cystitis), ... the world, squamous cell carcinoma is linked to chronic bladder inflammation caused by the parasitic infection known as schistosomiasis. ...
Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen.
Huang, Weiren; Chen, Yuanbin; Liu, Yuchen; Zhang, Qiaoxia; Yu, Zhou; Mou, Lisha; Wu, Hanwei; Zhao, Li; Long, Ting; Qin, Danian; Gui, Yaoting
2015-01-01
Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB) is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1) were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.
Mast Cell IL-10 Drives Localized Tolerance in Chronic Bladder Infection
Chan, Cheryl Y.; St. John, Ashley L.; Abraham, Soman N.
2013-01-01
The lower urinary tract’s virtually inevitable exposure to external microbial pathogens warrants efficient tissue-specialized defenses to maintain sterility. The observation that the bladder can become chronically infected in combination with clinical observations that antibody responses following bladder infections are not detectable, suggest defects in the formation of adaptive immunity and immunological memory. We have identified a broadly immunosuppressive transcriptional program specific to the bladder, but not the kidney, during infection of the urinary tract that is dependent on tissue-resident mast cells (MCs). This involves localized production of interleukin-10 and results in suppressed humoral and cell mediated responses and bacterial persistence. Therefore, in addition to the previously described role of MCs orchestrating the early innate immunity during bladder infection, they subsequently play a tissue-specific immunosuppressive role. These findings may explain the prevalent recurrence of bladder infections and suggest the bladder as a site exhibiting an intrinsic degree of MC-maintained immune privilege. PMID:23415912
Effect of coffee drinking on cell proliferation in rat urinary bladder epithelium.
Lina, B A; Rutten, A A; Woutersen, R A
1993-12-01
A possible effect of freshly brewed drip coffee on urinary bladder carcinogenesis was investigated in male Wistar rats using cell proliferation in urinary bladder epithelium as the indicator of tumour promotion. Male rats were given either undiluted coffee brew (100% coffee), coffee diluted 10 times (10% coffee) or tap water (controls), as their only source of drinking fluid for 2 or 6 wk. Uracil, known to induce cell proliferation in urinary bladder epithelium, was included in the study as a positive control. In rats receiving 100% coffee, body weights, liquid intake and urinary volume were decreased. Neither histopathological examination of urinary bladder tissue nor the bromodeoxyuridine labelling index revealed biologically significant differences between rats receiving coffee and the tap water controls. Uracil increased the labelling index and induced hyperplasia of the urinary bladder epithelium, as expected. It was concluded that these results produced no evidence that drinking coffee predisposes to tumour development in the urinary bladder.
NASA Astrophysics Data System (ADS)
Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei
2011-02-01
Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.
Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.
Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu
2018-05-08
The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.
Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer
2011-01-01
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors. PMID:21507255
Cheng, Sheng-Fu; Jiang, Yuan-Hong; Kuo, Hann-Chorng
2018-01-01
Chronic kidney disease (CKD) or end-stage renal disease (ESRD) patients usually have lower urinary tract symptoms, such as frequency and urgency. Additionally, they frequently suffer from urinary tract infections. This study investigated dysfunction and chronic inflammation of the bladder urothelium in ESRD/CKD patients. This study enrolled 27 patients with CKD (n=13) or ESRD (n=14) for urodynamic studies and bladder biopsies. Patients presented with detrusor underactivity (DU; n=8) or bladder oversensitivity (BO; n=19). Bladder biopsies were performed in these patients and in 20 controls. The bladder mucosa was examined for E-cadherin and zonula occludens-1 (ZO-1) expression, activated mast cell count (through tryptase staining), and urothelial apoptosis (through terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling [TUNEL]). The urodynamic parameters were also compared with variables regarding urothelial dysfunction. The bladder mucosa samples of ESRD and CKD patients revealed significantly higher mast cell counts, more urothelial apoptosis, and lower levels of ZO-1 expression than the control samples. E-cadherin expression was significantly reduced in ESRD/CKD patients with DU, but not in ESRD/CKD patients with BO. Increased mast cell and apoptotic cell counts were also associated with ESRD/CKD with BO. Less expression of ZO-1 and E-cadherin was significantly associated with increased bladder sensation and a small bladder capacity. Bladder urothelial dysfunction and chronic inflammation were present to a noteworthy extent in patients with ESRD or CKD. Increased inflammation and defective barrier function were more notable in ESRD/CKD bladders with BO than in those with DU. The clinical characteristics of these patients may involve urothelial pathophysiology.
Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer.
Kashiwagi, Eiji; Ide, Hiroki; Inoue, Satoshi; Kawahara, Takashi; Zheng, Yichun; Reis, Leonardo O; Baras, Alexander S; Miyamoto, Hiroshi
2016-08-02
Cisplatin (CDDP)-based combination chemotherapy remains the mainstream treatment for advanced bladder cancer. However, its efficacy is often limited due to the development of resistance for which underlying mechanisms are poorly understood. Meanwhile, emerging evidence has indicated the involvement of androgen-mediated androgen receptor (AR) signals in bladder cancer progression. In this study, we aimed to investigate whether AR signals have an impact on sensitivity to CDDP in bladder cancer cells. UMUC3-control-short hairpin RNA (shRNA) cells with endogenous AR and AR-negative 647V/5637 cells stably expressing AR were significantly more resistant to CDDP treatment at its pharmacological concentrations, compared with UMUC3-AR-shRNA and 647V-vector/5637-vector control cells, respectively. A synthetic androgen R1881 significantly reduced CDDP sensitivity in UMUC3, 647V-AR, or 5637-AR cells, and the addition of an anti-androgen hydroxyflutamide inhibited the effect of R1881. In these AR-positive cells, R1881 treatment also induced the expression levels of NF-κB, which is known to involve CDDP resistance, and its phosphorylated form, as well as nuclear translocation of NF-κB. In CDDP-resistant bladder cancer sublines established following long-term culture with CDDP, the expression levels of AR as well as NF-κB and phospho-NF-κB were considerably elevated, compared with respective control sublines. In bladder cancer specimens, there was a strong trend to correlate between AR positivity and chemoresistance. These results suggest that AR activation correlates with CDDP resistance presumably via modulating NF-κB activity in bladder cancer cells. Targeting AR during chemotherapy may thus be a useful strategy to overcome CDDP resistance in patients with AR-positive bladder cancer.
Outlines on nanotechnologies applied to bladder tissue engineering.
Alberti, C
2012-01-01
Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.
Bladder Cancer—Health Professional Version
Transitional cell carcinoma of the bladder can be low-grade or high-grade. Bladder cancer is also divided into muscle-invasive and nonmuscle-invasive disease. Find evidence-based information on bladder cancer including treatment, screening, research, and statistics.
2018-05-15
Stage 0 Bladder Urothelial Carcinoma AJCC v6 and v7; Stage 0a Bladder Urothelial Carcinoma AJCC v6 and v7; Stage 0is Bladder Urothelial Carcinoma AJCC v6 and v7; Stage I Bladder Urothelial Carcinoma AJCC v6 and v7
Wang, Longxin; Fu, Dian; Qiu, Yongbin; Xing, Xiaoxiao; Xu, Feng; Han, Conghui; Xu, Xiaofeng; Wei, Zhifeng; Zhang, Zhengyu; Ge, Jingping; Cheng, Wen; Xie, Hai-Long
2014-07-10
To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Olbert, Peter Jochen; Schrader, Andres Jan; Simon, Corinna; Dalpke, Alexander; Barth, Peter; Hofmann, Rainer; Hegele, Axel
2009-06-01
Intravesical BCG instillation is established and efficient in the prophylaxis of recurrent transitional cell carcinoma. A Th-1 biased immune response is postulated. Recent work has proven the efficacy of synthetic CpG-Oligodeoxynucleotides (ODN) as inducers and adjuvants for a strong Th1-response and there is evidence for a direct and/or adjuvant anti-neoplastic effect. The purpose of this study was to examine the local effects of CpG-ODN on the murine bladder wall after intravesical instillation and the effects on cytokine expression in an orthotopic murine bladder cancer model. Histopathology, immunohistochemistry and fluorescence microscopy were performed after different instillation schedules of stimulatory, non-stimulatory biotinylized and FITC-labelled CpG-ODN into the murine bladder. MB-49 murine bladder cancer cells were tested for TLR-9 expression to exclude a potential direct responsiveness to CpG-ODN. Furthermore induction of apoptosis was tested by annexin V staining and FACS analysis of CpG-ODN stimulated tumor cells. In an orthotopic C57/Bl6 murine bladder cancer model, the expressions of IL-12, IFNgamma, IL-10 and TGF-beta were evaluated after repeated CpG-ODN treatment. Single and repeated instillation of CpG-ODN induced subepithelial and urothelial lymphocytic infiltrations with consecutive apoptoses. PBS and non-stimulative ODN induced no visible reaction. Bladder submucosa stained positive for biotin. Controls showed no endogenic biotin staining. FITC-labelled ODN adhered to the bladder mucosa and penetration of the mucosal barrier was not detected. MB-49 TCC cells did not express TLR-9 and CpG-ODN did not induce apoptosis in these cells. Repeated intravesical instillations of CpG-ODN in orthotopic murine tumor bearing urinary bladders resulted in significant up-regulation of both Th-1 and Th-2 cytokines. CpG-ODNs have promising anti-neoplastic potential. They exert a pronounced immunological response both in the native murine urinary bladder and in murine TCC. The mechanisms of action appear to be mediated immunologically, There was no direct effect of CpG-ODN on the tumor cells in this model.
Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling
2016-01-01
The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways. PMID:27570977
Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling
2016-01-01
The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-10-13
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.
Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun
2015-01-01
Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect. PMID:26458509
Mixed metazoan and bacterial infection of the gas bladder of the lined seahorse-a case report.
Anderson, Paul A; Petty, Barbara D
2013-03-01
Five wild-caught Lined Seahorses Hippocampus erectus from an aquarium system presented with altered buoyancy and distended upper trunks. Radiography of one specimen revealed a reduced air volume in the gas bladder. Pneumocystocentesis revealed a brown exudate of numerous leukocytes, parasite ova, and Gram- and acid-fast-positive bacilli under wet mounts and stains. Necropsies revealed enlarged, friable kidneys and distended gas bladders containing copious purulent exudate, necrotic tissue, and adult digeneans Dictysarca virens. Bacterial isolates from exudate cultures grown on Lowenstein-Jensen medium were identified as Gordonia sp. and Mycobacterium poriferae by high-performance liquid chromatography and 16S ribosomal DNA sequencing. Histopathology demonstrated a histiocytic response in kidney and gas bladder exudate, inflammation of the gas bladder wall, and infection of the gas bladder lumen with parasite ova and acid-fast-positive and Gomori's methenamine silver-positive bacilli. Praziquantel is prescribed for digenean infections but dissolves incompletely in seawater and is toxic to this host. Eradication of intermediate host vectors is a management option. Treatment of Gordonia infection has not been addressed in nonhuman animals, and there is no known effective treatment for Mycobacterium spp. infection in fishes. This is the first case report of digenean infection of the gas bladder in a syngnathid, Gordonia sp. infection in a nonhuman animal, and M. poriferae infection in a fish.
Ahn, Jinwoo; Kim, Kwang Hyun; Park, Sanghui; Ahn, Young-Ho; Kim, Ha Young; Yoon, Hana; Lee, Ji Hyun; Bang, Duhee; Lee, Dong Hyeon
2016-09-27
UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. UTY copy number loss was detected in 8 male patients (22.8%, 8/35). Of the 9 male patients with UTX mutations, 6 also had copy number loss (66.7%). To evaluate the functional roles of UTX and UTY in tumor progression, we designed UTX and UTY single knockout and UTX-UTY double knockout experiments using a CRISPR/Cas9 lentiviral system, and compared the proliferative capacities of two UBC cell lines in vitro. Single UTX or UTY knockout increased cell proliferation as compared to UTX-UTY wild-type cells. UTX-UTY double knockout cells exhibited greater proliferation than single knockout cells. These findings suggest both UTX and UTY function as dose-dependent suppressors of UBC development. While UTX escapes X chromosome inactivation in females, UTY may function as a male homologue of UTX, which could compensate for dosage imbalances.
Pure Small Cell Carcinoma of the Bladder: A Case Report
Trabelsi, Amel; Abdelkrim, Soumaya Ben; Tebra, Samah; Gharbi, Olfa; Jaidane, Lilia; Bouaouina, Noureddine; Abbassi, Dajla Bakir; Mokni, Moncef
2010-01-01
Small cell carcinoma of the urinary bladder is an uncommon tumor that has been described in case reports or small series. We report a new case in a 67-year-old male who presented with gross hematuria and irritative symptoms. Cystoscopy revealed an extensive mass of the bladder and computed tomography scan showed an important thickening of the bladder wall. Diagnosis of small cell carcinoma was established after radical cystectomy and microscopic examination. The patient received pelvic hemostatic radiotherapy and platinium-based chemotherapy. Three months after the diagnosis, he developed bone, renal and adrenal metastases. PMID:29147197
Pure Small Cell Carcinoma of the Bladder: A Case Report.
Trabelsi, Amel; Abdelkrim, Soumaya Ben; Tebra, Samah; Gharbi, Olfa; Jaidane, Lilia; Bouaouina, Noureddine; Abbassi, Dajla Bakir; Mokni, Moncef
2010-06-01
Small cell carcinoma of the urinary bladder is an uncommon tumor that has been described in case reports or small series. We report a new case in a 67-year-old male who presented with gross hematuria and irritative symptoms. Cystoscopy revealed an extensive mass of the bladder and computed tomography scan showed an important thickening of the bladder wall. Diagnosis of small cell carcinoma was established after radical cystectomy and microscopic examination. The patient received pelvic hemostatic radiotherapy and platinium-based chemotherapy. Three months after the diagnosis, he developed bone, renal and adrenal metastases.
The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.
Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen
2017-06-01
The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Li, Wei; Kidiyoor, Amritha; Hu, Yangyang; Guo, Changcheng; Liu, Min; Yao, Xudong; Zhang, Yuanyuan; Peng, Bo; Zheng, Junhua
2015-02-01
Transforming growth factor-β1 (TGF-β1) plays a dual role in apoptosis and in proapoptotic responses in the support of survival in a variety of cells. The aim of this study was to determine the function of TGF-β1 in bladder cancer cells and the relationship with POK erythroid myeloid ontogenic factor (Pokemon). TGF-β1 and its receptors mediate several tumorigenic cascades that regulate cell proliferation, migration, and survival of bladder cancer cells. Bladder cancer cells T24 were treated with different levels of TGF-β1. Levels of Pokemon, E-cadherin, Snail, MMP2, MMP9, Twist, VEGF, and β-catenin messenger RNA (mRNA) and protein were examined by real-time quantitative fluorescent PCR and Western blot analysis, respectively. The effects of TGF-β1 on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay, proliferation of T24 was evaluated with reference to growth curves with MTT assay, and cell invasive ability was investigated by Transwell assay. Data show that Pokemon was inhibited by TGF-β1 treatment; the gene and protein of E-cadherin and β-catenin expression level showed decreased markedly after TGF-β1 treatment (P < 0.05). While the bladder cancer cell after TGF-β1 treatment showed a significantly reduced wound-closing efficiency at 6, 12, and 24 h, mechanistic analyses demonstrated that different levels of TGF-β1 promotes tumor cell growth, migration, and invasion in bladder cancer cells (P < 0.01, P < 0.05, respectively). In summary, our findings suggest that TGF-β1 may inhibit the expression of Pokemon, β-catenin, and E-cadherin. The high expression of TGF-β1 leads to an increase in the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Related mechanism is worthy of further investigation.
Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang
2011-12-01
This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.
Lu, Jinjin; Zheng, Xiufen; Li, Fan; Yu, Yang; Chen, Zhong; Liu, Zheng; Wang, Zhihua; Xu, Hua; Yang, Weimin
2017-01-01
Intercellular transfer of organelles via tunneling nanotubes (TNTs) is a novel means of cell-to-cell communication. Here we demonstrate the existence of TNTs between co-cultured RT4 and T24 bladder cancer cells using light microscopy, fluorescence imaging, and scanning electron microscopy (SEM). Spontaneous unidirectional transfer of mitochondria from T24 to RT4 cells was detected using fluorescence imaging and flow cytometry. The distribution of mitochondria migrated from T24 cells was in good agreement with the original mitochondria in RT4 cells, which may imply mitochondrial fusion. We detected cytoskeleton reconstruction in RT4-Mito-T24 cells by observing F-actin redistribution. Akt, mTOR, and their downstream mediators were activated and increased. The resultant increase in the invasiveness of bladder cancer cells was detected in vitro and in vivo. These data indicate that TNTs promote intercellular mitochondrial transfer between heterogeneous cells, followed by an increase in the invasiveness of bladder cancer cells. PMID:28107184
Wang, Dong; Wang, Jian; Chen, Guojun
2013-12-01
To investigate the association of serum levels of decoy receptor 3(DcR3) protein and the clinicopathologic features of bladder transitional cell carcinoma. Enzyme-linked immunosorbent assay was used to examine the serum levels of DcR3 in patients with bladder transitional cell carcinoma for analysis of its association with the patients' age, gender, clinical stages and pathological classification. The patients with bladder transitional cell carcinoma showed a significantly elevated serum level of DcR3 (183.43 ∓78.45 pg/m1) compared with the normal level (116.65∓97.43 pg/m1, P<0.05). The serum level of DcR3 in the patients showed close correlations with the TNM stage and pathological classification of the tumor (P<0.05) but not with the patients' age or gender (P>0.05). In patients with bladder transitional cell carcinoma, a high serum level of DcR3 suggests a higher malignancy of the tumor.
Aydin, H; Ercan, F; Cetinel, S; San, T
2001-08-01
This morphological study aims to investigate the effects of defibrotide, a deoxyribonucleic acid derivative drug with cytoprotective, immunosuppressive and vasorelaxant effects, on protamine sulfate induced bladder injury. Wistar albino female rats were catheterized and intravesically infused with phosphate buffered solution (control group) or, either protamine sulfate (bladder injury group) or protamine sulfate+defibrotide (bladder injury+defibrotide group) dissolved in phosphate buffered solution. The morphology of the urinary bladder was investigated using light and electron microscopy. The number of mast cells in the mucosa, mucosal alterations, intercellular junctions, surface topography and the glycosaminoglycan (GAG) layer as well as microvillus formation on the luminal surface were evaluated. In the bladder injury group, ulcerated areas, irregularity of the GAG layer, increased number of mast cells, vacuole formation, dilated perinuclear cistern, formation of pleomorphic and uniform microvilli and dilatations in the intercellular spaces in the urothelium were observed. In the bladder injury+defibrotide group a relatively normal urothelial topography, GAG layer and a few mast cells in the mucosa, some dilatations between the intercellular areas, less uniform microvilli, regular perinuclear cistern and tight junctions were observed. These results show that defibrotide can inhibit PS induced bladder damage.
Chemotherapeutic potential of quercetin on human bladder cancer cells.
Oršolić, Nada; Karač, Ivo; Sirovina, Damir; Kukolj, Marina; Kunštić, Martina; Gajski, Goran; Garaj-Vrhovac, Vera; Štajcar, Damir
2016-07-28
In an effort to improve local bladder cancer control, we investigated the cytotoxic and genotoxic effects of quercetin on human bladder cancer T24 cells. The cytotoxic effect of quercetin against T24 cells was examined by MTT test, clonogenic assay as well as DNA damaging effect by comet assay. In addition, the cytotoxic effect of quercetin on the primary culture of papillary urothelial carcinoma (PUC), histopathological stage T1 of low- or high-grade tumours, was investigated. Our analysis demonstrated a high correlation between reduced number of colony and cell viability and an increase in DNA damage of T24 cells incubated with quercetin at doses of 1 and 50 µM during short term incubation (2 h). At all exposure times (24, 48 and 72 h), the efficacy of quercetin, administered at a 10× higher dose compared to T24 cells, was statistically significant (P < 0.05) for the primary culture of PUC. In conclusion, our study suggests that quercetin could inhibit cell proliferation and colony formation of human bladder cancer cells by inducing DNA damage and that quercetin may be an effective chemopreventive and chemotherapeutic agent for papillary urothelial bladder cancer after transurethral resection.
The effect of Pokemon on bladder cancer epithelial-mesenchymal transition.
Guo, Changcheng; Zhu, Kai; Sun, Wei; Yang, Bin; Gu, Wenyu; Luo, Jun; Peng, Bo; Zheng, Junhua
2014-01-24
This study aimed at detecting Pokemon expression in bladder cancer cell and investigating the relationship between Pokemon and epithelial-mesenchymal transition. Furthermore, we investigated the functions of Pokemon in the carcinogenesis and development of bladder cancer. This study was also designed to observe the inhibitory effects of siRNA expression vector on Pokemon in bladder cancer cell. The siRNA expression vectors which were constructed to express a short hairpin RNA against Pokemon were transfected to the bladder cancer cells T24 with a liposome. Levels of Pokemon, E-cadherin and β-catenin mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of Pokemon silencing on epithelial-mesenchymal transition of T24 cells were evaluated with wound-healing assay. Pokemon was strongly inhibited by siRNA treatment, especially siRNA3 treatment group, as it was reflected by Western blot and real-time PCR. The gene and protein of E-cadherin expression level showed increased markedly after Pokemon was inhibited by RNA interference. While there were no differences in the levels of gene and protein of β-catenin among five groups. The bladder cancer cell after Pokemon siRNA interference showed a significantly reduced wound-closing efficiency at 6, 12 and 24h. Our findings suggest Pokemon may inhibit the expression of E-cadherin. The low expression of E-cadherin lead to increasing the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last. Copyright © 2013 Elsevier Inc. All rights reserved.
Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells
Carrie, Peter J.; Chen, Kingsley D. D.
2000-10-24
A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.
Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma
Shin, Kunyoo; Lim, Agnes; Odegaard, Justin I.; Honeycutt, Jared D.; Kawano, Sally; Hsieh, Michael H.; Beachy, Philip A.
2014-01-01
Understanding how malignancies arise within normal tissues requires identification of the cancer cell of origin and knowledge of the cellular and tissue dynamics of tumor progression. Here we examine bladder cancer in a chemical carcinogenesis model that mimics muscle-invasive human bladder cancer. With no prior bias regarding genetic pathways or cell types, we prospectively mark or ablate cells to show that muscle-invasive bladder carcinomas arise exclusively from Sonic hedgehog (Shh)-expressing stem cells in basal urothelium. These carcinomas arise clonally from a single cell whose progeny aggressively colonize a major portion of the urothelium to generate a lesion with histological features identical to human carcinoma-in-situ. Shh-expressing basal cells within this precursor lesion become tumor-initiating cells, although Shh expression is lost in subsequent carcinomas. We thus find that invasive carcinoma is initiated from basal urothelial stem cells but that tumor cell phenotype can diverge significantly from that of the cancer cell-of-origin. PMID:24747439
[Neuroendocrine carcinoma of the urinary bladder. A case report].
Aragón-Tovar, Anel Rogelio; Pineda-Rodríguez, Marco Elí; Puente-Gallegos, Francisco Edgardo; Zavala-Pompa, Angel
2014-01-01
Small cell carcinoma of the urinary bladder is an infrequent lesion. We present the case of a 68-year-old male who arrived at the emergency room with a history of 24-h gross hematuria. Imaging studies show a urinary bladder tumor with a 218 cc volume that during a 20-day period increased to 426 cc. Histopathological images with hematoxylin-eosin show an infiltrating solid mass with uneven borders. It is composed of neoplastic cells with evident nuclei predominance and scant cytoplasm (small cells). Chromogranin immunohistochemical staining shows a diffusely positive cytoplasmic granular pattern on neoplastic cells. High molecular weight cytokeratin staining shows a negative pattern on neoplastic cells along with a positive pattern on reporsurrounding normal urothelium. Tumoral mass is positive for synaptophysin and CD-56 and negative for CK-7 and CK-20. Patient therapy was based on radiation plus chemotherapy. Small cell carcinoma of the urinary bladder represents 0.35-0.70% of urinary bladder tumors. Histological and immunohistochemical identification are key elements in the diagnosis. Treatment approach is based on cisplatin-based chemotherapy plus radical cystectomy, except when metastatic disease is present.
Cytokine expression in patients with bladder pain syndrome/interstitial cystitis ESSIC type 3C.
Logadottir, Yr; Delbro, Dick; Fall, Magnus; Gjertsson, Inger; Jirholt, Pernilla; Lindholm, Catharina; Peeker, Ralph
2014-11-01
Bladder wall nitric oxide production in patients with bladder pain syndrome type 3C is increased compared to undetectable nitric oxide in patients with nonHunner bladder pain syndrome and healthy controls. However, the underlying mechanism/s of the increased nitric oxide production is largely unknown. We compared mRNA expression of a select group of cytokines in patients with bladder pain syndrome/interstitial cystitis type 3C and in pain-free controls. Cold cup biopsies from 7 patients with bladder pain syndrome type 3C and 6 healthy subjects were analyzed. mRNA expression of IL-4, 6, 10 and 17A, iNOS, TNF-α, TGF-β and IFN-γ was estimated by real-time polymerase chain reaction. IL-17 protein expression was determined by immunohistochemistry. Mast cells were labeled with tryptase to evaluate cell appearance and count. IL-6, 10 and 17A, and iNOS mRNA levels as well as the number of mast cells infiltrating the bladder mucosa were significantly increased in patients with bladder pain syndrome type 3C compared to healthy controls. TNF-α, TGF-β and IFN-γ mRNA levels were similar in patients and controls. IL-17A expression at the protein level was up-regulated and localized to inflammatory cells and urothelium in patients with bladder pain syndrome type 3C. Patients with bladder pain syndrome/interstitial cystitis had increased mRNA levels of IL-17A, 10 and 6, and iNOS. IL-17A might be important in the inflammatory process. To our knowledge the increase in IL-17A is a novel finding that may have new treatment implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira
2017-01-01
Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380
Margulis, Vitaly; Shariat, Shahrokh F; Ashfaq, Raheela; Thompson, Melissa; Sagalowsky, Arthur I; Hsieh, Jer-Tsong; Lotan, Yair
2007-03-01
We compared the differential expression of cyclooxygenase-2 in normal bladder tissue, primary bladder transitional cell carcinoma and transitional cell carcinoma metastases to lymph nodes, and determined whether cyclooxygenase-2 expression is associated with molecular alterations commonly found in bladder transitional cell carcinoma and clinical outcomes after radical cystectomy. Immunohistochemical staining for cyclooxygenase-2, survivin (Novus Biologicals, Littleton, Colorado), p21, p27, pRB, p53, MIB-1, Bax, Bcl-2, cyclin D(1) (Dakotrade mark), cyclin E (Oncogene, Cambridge, Massachusetts) and caspase-3 (Cell Signaling, Beverley, Massachusetts) was performed on archival bladder specimens from 9 subjects who underwent cystectomy for benign causes, 21 patients who underwent transurethral resection and 157 consecutive patients after radical cystectomy, and on 41 positive lymph nodes. Cyclooxygenase-2 was expressed in none of the 9 normal bladder specimens (0%), 52% of transurethral resection specimens, 62% of cystectomy specimens and 80% of lymph nodes involved with transitional cell carcinoma. Cyclooxygenase-2 expression was associated with higher pathological stage, lymphovascular invasion and metastases to lymph nodes (p=0.001, 0.045 and 0.002, respectively). Cyclooxygenase-2 expression was associated with altered expression of p53 (p=0.039), pRB (p=0.025), cyclin D1 (p=0.034) and caspase-3 (p=0.014). On univariate analysis cyclooxygenase-2 expression was associated with an increased risk of disease recurrence and bladder cancer specific mortality (p=0.0189 and 0.0472, respectively). However, on multivariate analysis only pathological stage and metastases to lymph nodes were associated with disease recurrence (p<0.001 and <0.001) and survival (p<0.001 and 0.015, respectively). Cyclooxygenase-2 is not expressed in normal bladder urothelium. Cyclooxygenase-2 over expression is associated with pathological and molecular features of biologically aggressive disease, suggesting a role for cyclooxygenase-2 in bladder cancer development and invasion.
Evaluation of the Efficacy of the Plasma Pencil Against Cancer Cells
NASA Astrophysics Data System (ADS)
Mohades, Soheila; Barekzi, Nazir; Razavi, Hamid; Laroussi, Mounir
2014-10-01
The plasma pencil generates low temperature and atmospheric pressure plasma. To generate the plasma, high voltage pulses with short width (from nanosecond to microsecond) are applied to a noble gas. The working gas can be helium, argon or a mixture of these with air or oxygen. Generating plasma with helium provides a tolerable temperature for biological cells and tissues. Diagnostic measurements on the plasma plume has revealed the presence of active agents such as reactive oxygen species (ROS) and nitrogen reactive species (RNS), which are known to have biological implications. Recently, low temperature plasma has drawn attention to its potential in cancer therapy. In our lab, the plasma pencil has been used to treat leukemia, prostate and epithelial cancer cells. The cancer cell line used here is the SCaBER (ATCC®HTB3™) cell line originating from a human bladder cancer. The results indicate that specific species induce the molecular mechanisms associated with cell death. The death of cells after plasma treatment will be studied using assays, such as DNA laddering and Caspase-3 activation, to elucidate the mechanism of the apoptotic or necrotic pathways.
Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy
NASA Astrophysics Data System (ADS)
Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.
2011-02-01
Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.
Hu, Ke Yao; Wang, De Gui; Liu, Peng Fei; Cao, Yan Wei; Wang, Yong Hua; Yang, Xue Cheng; Hu, Cheng Xia; Sun, Li Jiang; Niu, Hai Tao
2016-08-01
Phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) and monocarboxylate transporter 1 (MCT1) play important roles in tumor endothelial cells (ECs) and several biological processes. The present study was conducted to study the effects of PFKFB3 and MCT1 on cell proliferation and apoptosis in the tumor microenvironment by co-culture of HUVECs and T24, a bladder cancer (BC) cell line, using a microfluidic device. Immunofluorescence assay showed that HUVEC activity was significantly enhanced under co-culture with T24 cells, according to the stronger fluorescence intensity of CD31 and CD105 than that in the signal‑cultured cells. Quercetin treatment inhibited MCT1 expression but did not affect PFKFB3 expression. Knockdown of MCT1 or/and PFKFB3 increased the apoptosis rate of the HUVECs under single-culture and co-culture situations by staining with calcein and propidium iodide. Meanwhile, cell proliferation and lactic concentration were significantly decreased after the blocking of MCT1 or/and PFKFB3, as compared with that in the control group. No obvious differences in the effects on apoptosis, proliferation and lactic concentration were found between cells treated with quercetin and siMCT1. Thus, we concluded that the targeting of MCT1 and PFKFB3 regulated cell proliferation and apoptosis in BC cells by altering the tumor microenvironment, and quercetin exhibited a potential antitumor effect by targeting MCT1.
Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro
2016-01-01
Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. © 2015 Wiley Periodicals, Inc.
Cytological Diagnosis of Small Cell Carcinoma of Urinary Bladder in a Patient with CLL
Şimşek, Gülçin Güler; Güreşçi, Servet; Oğuz, Ural; Ünsal, Ali
2014-01-01
Small cell carcinoma of the urinary bladder (SCCUB) is an extremely rare bladder malignancy characterized by an aggressive clinical behavior. So, it is important to diagnose this high grade disease by urinary cytology. We report a case of SCCUB in an old man with chronic lymphocytic leukemia (CLL) in remission, while bladder tumor was diagnosed by cytology. With this article, we aimed to review and to update the literature concerning this tumor. PMID:24518979
Gender Differences in Bladder Cancer Treatment Decision Making.
Pozzar, Rachel A; Berry, Donna L
2017-03-01
To explore gender differences in bladder cancer treatment decision making. . Secondary qualitative analysis of interview transcripts. . One multidisciplinary genitourinary oncology clinic (Dana-Farber Cancer Institute) and two urology clinics (Brigham and Women's Hospital and Beth Israel Deaconess Medical Center) in Boston, MA. . As part of the original study, 45 men and 15 women with bladder cancer participated in individual interviews. Participants were primarily Caucasian, and most had at least some college education. . Word frequency reports were used to identify thematic differences between the men's and women's statements. Line-by-line coding of constructs prevalent among women was then performed on all participants in NVivo 9. Coding results were compared between genders using matrix coding queries. . The role of family in the decision-making process was found to be a dominant theme for women but not for men. Women primarily described family members as facilitators of bladder cancer treatment-related decisions, but men were more likely to describe family in a nonsupportive role. . The results suggest that influences on the decision-making process are different for men and women with bladder cancer. Family may play a particularly important role for women faced with bladder cancer treatment-related decisions. . Clinical nurses who care for individuals with bladder cancer should routinely assess patients' support systems and desired level of family participation in decision making. For some people with bladder cancer, family may serve as a stressor. Nurses should support the decision-making processes of all patients and be familiar with resources that can provide support to patients who do not receive it from family.
Dong, Xiao; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Ihara, Tatsuya; Kira, Satoru; Sawada, Norifumi; Mitsui, Takahiko; Takeda, Masayuki
2018-03-22
To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca 2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca 2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca 2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. Tadalafil attenuates Ca 2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction. © 2018 Wiley Periodicals, Inc.
Nanoparticle Albumin-Bound Rapamycin in Treating Patients With Advanced Cancer With mTOR Mutations
2018-06-01
Advanced Malignant Neoplasm; Cervical Squamous Cell Carcinoma; Endometrial Carcinoma; Malignant Uterine Neoplasm; Recurrent Bladder Carcinoma; Recurrent Breast Carcinoma; Recurrent Cervical Carcinoma; Recurrent Head and Neck Carcinoma; Recurrent Malignant Neoplasm; Recurrent Ovarian Carcinoma; Recurrent Prostate Carcinoma; Recurrent Renal Cell Carcinoma; Solid Neoplasm; Stage III Bladder Cancer; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage IIIA Breast Cancer; Stage IIIA Cervical Cancer; Stage IIIA Ovarian Cancer; Stage IIIB Breast Cancer; Stage IIIB Cervical Cancer; Stage IIIB Ovarian Cancer; Stage IIIC Breast Cancer; Stage IIIC Ovarian Cancer; Stage IV Breast Cancer; Stage IV Ovarian Cancer; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IVA Bladder Cancer; Stage IVA Cervical Cancer; Stage IVB Bladder Cancer; Stage IVB Cervical Cancer
Single cell network profiling assay in bladder cancer.
Covey, Todd M; Vira, Manish A; Westfall, Matt; Gulrajani, Michael; Cholankeril, Michelle; Okhunov, Zhamshid; Levey, Helen R; Marimpietri, Carol; Hawtin, Rachael; Fields, Scott Z; Cesano, Alessandra
2013-04-01
The aim of this study was to assess the feasibility of applying the single cell network profiling (SCNP) assay to the examination of signaling networks in epithelial cancer cells, using bladder washings from 29 bladder cancer (BC) and 15 nonbladder cancer (NC) subjects. This report describes the methods we developed to detect rare epithelial cells (within the cells we collected from bladder washings), distinguish cancer cells from normal epithelial cells, and reproducibly quantify signaling within these low frequency cancer cells. Specifically, antibodies against CD45, cytokeratin, EpCAM, and cleaved-PARP (cPARP) were used to differentiate nonapoptotic epithelial cells from leukocytes, while measurements of DNA content to determine aneuploidy (DAPI stain) allowed for distinction between tumor and normal epithelial cells. Signaling activity in the PI3K and MAPK pathways was assessed by measuring intracellular levels of p-AKT and p-ERK at baseline and in response to pathway modulation; 66% (N = 19) of BC samples and 27% (N = 4) of NC samples met the "evaluable" criteria, i.e., at least 400,000 total cells available upon sample receipt with >2% of cells showing an epithelial phenotype. The majority of epithelial cells detected in BC samples were nonapoptotic and all signaling data were generated from identified cPARP negative cells. In four of 19 BC samples but in none of the NC specimens, SCNP assay identified epithelial cancer cells with a quantifiable increase in epidermal growth factor-induced p-AKT and p-ERK levels. Furthermore, preincubation with the PI3K inhibitor GDC-0941 reduced or completely inhibited basal and epidermal growth factor-induced p-AKT but, as expected, had no effect on p-ERK levels. This study demonstrates the feasibility of applying SCNP assay using multiparametric flow cytometry to the functional characterization of rare, bladder cancer cells collected from bladder washing. Following assay standardization, this method could potentially serve as a tool for disease characterization and drug development in bladder cancer and other solid tumors. Copyright © 2013 International Society for Advancement of Cytometry.
Li, Qiaqia; Li, Chao; Chen, Jinbo; Liu, Peihua; Cui, Yu; Zhou, Xinyi; Li, Huihuang; Zu, Xiongbing
2018-06-01
To explore the function of NORAD in bladder cancer (BC), and to verify whether NORAD could be used as a biomarker to determine preoperative presence of progression and lymph node metastasis. To our knowledge, it is the first study investigating NORAD and its implications in BC. BC specimens of 90 patients underwent bladder cystectomy or transurethral resection between January 2012 to December 2016 were tested by fluorescence in situ hybridization. The association between NORAD expression and clinicopathological features and prognosis of the patients was analyzed using Kaplan-Meier survival analysis and Cox regression analysis. Quantitative real-time polymerase chain reaction was performed in 4 BC cell lines and 10 fresh tumor sample together with adjacent tissues. MTT, colony formation assay, and Annexin-V apoptosis detection were performed after knockdown of NORAD using shRNA in TSSCUP cells. Western blot was performed to related proteins extracted from these cells. Fluorescence in situ hybridization indicated that high NORAD expression was associated with more advanced histological grade and clinical stage for patients with BC. Higher NORAD expression resulted in lower overall survival, and was an independent prognostic indicator. Real-time polymerase chain reaction showed that the expression of NORAD in BC tissues was higher than those measured in adjacent normal tissues. MTT and colony formation assay demonstrated that knockdown of NORAD results in lower proliferation in TSSCUP cells, whereas PUM2 expression was upregulated and E2F3 downregulated. High NORAD expression could serve as an independent prognostic factor for overall survival of patients with transitional BC. NORAD could be considered as a promising candidate for novel biomarker and therapeutic target for human BC. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Qiong; Xiao, Dong-Dong; Yan, Hao; Zhao, Yang; Fu, Shi; Zhou, Juan; Wang, Zhong; Zhou, Zhe; Zhang, Ming; Lu, Mu-Jun
2017-06-24
Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation. A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo. For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells. The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.
Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian
2009-10-01
The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.
[A simple and efficient method for establishing a mouse model of orthotopic MB49 bladder cancer].
Liang, Zhong-kun; Zhang, Lin; Hu, Zhi-ming; Chen, Zhong; Huang, Xin; Shi, Xiang-hua; Tan, Wan-long; Gao, Ji-min
2009-04-01
To establish a simple and efficient method for establishing a mouse model of orthotopic superficial bladder cancer. C57BL/6 mice were anesthetized with sodium pentobarbital and catheterized with modified IV catheter (24 G). The mice were intravesically pretreated with HCl and then with NaOH, and after washing the bladders with phosphate-buffered saline (PBS), 100 microl (1 x 10(7)) MB49 cells were infused and allowed to incubate in the bladder for 2 h followed intravesical mitomycin C (MMC) administration. The tumor formation rate, survival, gross hematuria, and bladder weight were determined as the outcome variables, and the pathology of the bladders was observed. Instillation of MB49 tumor cells resulted in a tumor formation rates of 100% in all the pretreated groups while 0% in the control group without pretreatment. MMC significantly reduced the bladder weight as compared to PBS. We have successfully established a stable, reproducible, and reliable orthotopic bladder cancer model in mice.
Squamous cell carcinoma of the bladder mimicking interstitial cystitis and voiding dysfunction.
Prudnick, Colton; Morley, Chad; Shapiro, Robert; Zaslau, Stanley
2013-01-01
Squamous cell carcinoma (SCC) of the bladder is a relatively uncommon cause of bladder cancer accounting for <5% of bladder tumors in the western countries. SCC has a slight male predominance and tends to occur in the seventh decade of life. The main presenting symptom of SCC is hematuria, and development of this tumor in the western world is associated most closely with chronic indwelling catheters and spinal cord injuries. A 39-year-old Caucasian female presented with bladder and lower abdominal pain, urinary frequency, and nocturia which was originally believed to be interstitial cystitis (IC) but was later diagnosed as SCC of the bladder. Presentation of SCC without hematuria is an uncommon presentation, but the absence of this symptom should not lead a practitioner to exclude the diagnosis of SCC. This case is being reported in an attempt to explain the delay and difficulty of diagnosis. Background on the risk factors for SCC of the bladder and the typical presenting symptoms of bladder SCC and IC are also reviewed.
Samplaski, Mary K; Heston, Warren; Elson, Paul; Magi-Galluzzi, Cristina; Hansel, Donna E
2011-11-01
Folate hydrolase (prostate-specific antigen) 1 (FH(PSA)1), also known as prostate-specific membrane antigen (PSMA), is a transmembrane receptor expressed on prostate cancer cells that correlates with a more aggressive phenotype. Recent studies have demonstrated FH(PSA)1 expression in numerous benign and malignant tissue types, as well as the malignant neovasculature. As FH(PSA)1 represents a diagnostic immunomarker for prostate cancer, we explored its expression pattern in various subtypes of bladder cancer. Immunohistochemical analysis (IHC) of FH(PSA)1 was performed using tissue microarrays constructed from 167 bladder cancers, including 96 urothelial carcinomas (UCCs), 37 squamous cell carcinomas, 17 adenocarcinomas and 17 small cell carcinomas. We used a FH(PSA)1 monoclonal antibody obtained from Dako (clone 3E6, dilution 1:100), which recognizes the epitope present in the 57-134 amino acid region of the extracellular portion of the PSMA molecule. Intensity of IHC staining was scored as 0 (no expression) to 3+ (strong expression), with 2-3+ IHC considered a positive result. FH(PSA)1 demonstrated expression in a subset of bladder cancers and was most common in small cell carcinoma (3/17; 18%), with concurrent expression in non-small cell components in a subset of cases (2/6). FH(PSA)1 expression was less frequent in UCC (3/96; 3%) and adenocarcinoma (2/17; 12%). None of the squamous cell carcinomas demonstrated tumor cell expression of FH(PSA)1. However, all bladder cancers examined expressed FH(PSA)1 in the tumor vasculature, suggesting a potential role for this molecule in mediating new vessel ingrowth. FH(PSA)1 may occasionally be expressed in various subtypes of bladder cancer. These findings suggest cautious use of FH(PSA)1 as a diagnostic marker for prostatic tissue invading the bladder. The finding of FH(PSA)1 in the bladder cancer neovasculature suggests that this molecule may promote tumor growth and may represent a potential new vascular target in this disease.
Sex steroid receptors in male human bladder: expression and biological function.
Chavalmane, Aravinda K; Comeglio, Paolo; Morelli, Annamaria; Filippi, Sandra; Fibbi, Benedetta; Vignozzi, Linda; Sarchielli, Erica; Marchetta, Matilde; Failli, Paola; Sandner, Peter; Saad, Farid; Gacci, Mauro; Vannelli, Gabriella B; Maggi, Mario
2010-08-01
In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. To investigate the effects of changing sex steroids on bladder smooth muscle. ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway. © 2010 International Society for Sexual Medicine.
Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D
2017-01-05
The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study the pharmacogenomics of BCa.
Abdel-Gawad, Mahmoud; Elsobky, Emad; Shalaby, Mahmoud M; Abd-Elhameed, Mohamed; Abdel-Rahim, Mona; Ali-El-Dein, Bedeir
2016-12-01
The role of heavy metals and trace elements (HMTE) in the development of some cancers has been previously reported. Bladder carcinoma is a frequent malignancy of the urinary tract. The most common risk factors for bladder cancer are exposure to industrial carcinogens, cigarette smoking, gender, and possibly diet. The aim of this study was to evaluate HTME concentrations in the cancerous and adjacent non-cancerous tissues and compare them with those of normal cadaveric bladder. This prospective study included 102 paired samples of full-thickness cancer and adjacent non-cancerous bladder tissues of radical cystectomy (RC) specimens that were histologically proven as invasive bladder cancer (MIBC). We used 17 matched controls of non-malignant bladder tissue samples from cadavers. All samples were processed and evaluated for the concentration of 22 HMTE by using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Outcome analysis was made by the Mann-Whitney U, chi-square, Kruskal-Wallis, and Wilcoxon signed ranks tests. When compared with cadaveric control or cancerous, the adjacent non-cancerous tissue had higher levels of six elements (arsenic, lead, selenium, strontium, zinc, and aluminum), and when compared with the control alone, it had a higher concentration of calcium, cadmium, chromium, potassium, magnesium, and nickel. The cancerous tissue had a higher concentration of cadmium, lead, chromium, calcium, potassium, phosphorous, magnesium, nickel, selenium, strontium, and zinc than cadaveric control. Boron level was higher in cadaveric control than cancerous and adjacent non-cancerous tissue. Cadmium level was higher in cancerous tissue with node-positive than node-negative cases. The high concentrations of cadmium, lead, chromium, nickel, and zinc, in the cancerous together with arsenic in the adjacent non-cancerous tissues of RC specimens suggest a pathogenic role of these elements in BC. However, further work-up is needed to support this conclusion by the application of these HMTE on BC cell lines.
Production of urothelium from pluripotent stem cells for regenerative applications.
Osborn, Stephanie L; Kurzrock, Eric A
2015-01-01
As bladder reconstruction strategies evolve, a feasible and safe source of transplantable urothelium becomes a major consideration for patients with advanced bladder disease, particularly cancer. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are attractive candidates from which to derive urothelium as they renew and proliferate indefinitely in vitro and fulfill the non-autologous and/or non-urologic criteria, respectively, that is required for many patients. This review presents the latest advancements in differentiating urothelium from pluripotent stem cells in vitro in the context of current bladder tissue engineering strategies.
Song, Tao; Zhang, Xu; Yang, Guoqiang; Song, Yong; Cai, Wei
2015-01-01
Aberrant miRNA expression is implicated in tumorigenesis. However, the role of miRNAs in bladder urothelial carcinoma still remains largely unknown. In this study, miR-199a-5p was validated to be significantly down-regulated in bladder urothelial carcinoma. In addition, restoring expression of miR-199a-5p inhibited the tumorigenesis of bladder urothelial carcinoma in vitro and in vivo by inducing the apoptosis and suppressing the proliferation of bladder cancerous cells. Further investigation reported that MLK3 was a direct target of miR-199a-5p. Moreover, the expression level of miR-199a-5p was conversely correlated with MLK3 in bladder cancerous cells. In addition, reintroduction of MLK3 was identified to promote the proliferation and inhibit the apoptotic rate of cells, which have been altered by miR-199a-5p through activating the NF-κB pathway. All together, decrement of miR-199a-5p contributes to the tumorigenesis of bladder cancer by directly regulating MLK3/NF-κB pathway and miR-199a-5p might be developed as a therapeutic target for treatment of the bladder urothelial carcinoma. PMID:26885275
Alberti, C
2016-01-01
To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.
Cavanaugh, Alice; Juengst, Brendon; Sheridan, Kathleen; Danella, John F.; Williams, Heinric
2015-01-01
Heat shock protein 90 (HSP90) plays a critical role in the survival of cancer cells including muscle invasive bladder cancer (MIBC). The addiction of tumor cells to HSP90 has promoted the development of numerous HSP90 inhibitors and their use in clinical trials. This study evaluated the role of inhibiting HSP90 using STA9090 (STA) alone or in combination with the HSP70 inhibitor VER155008 (VER) in several human MIBC cell lines. While both STA and VER inhibited MIBC cell growth and migration and promoted apoptosis, combination therapy was more effective. Therefore, the signaling pathways involved in MIBC were systematically interrogated following STA and/or VER treatments. STA and not VER reduced the expression of proteins in the p53/Rb, PI3K and SWI/SWF pathways. Interestingly, STA was not as effective as VER or combination therapy in degrading proteins involved in the histone modification pathway such as KDM6A (demethylase) and EP300 (acetyltransferase) as predicted by The Cancer Genome Atlas (TCGA) data. This data suggests that dual HSP90 and HSP70 inhibition can simultaneously disrupt the key signaling pathways in MIBC. PMID:26556859
Wu, Kaijie; Ning, Zhongyun; Zeng, Jin; Fan, Jinhai; Zhou, Jiancheng; Zhang, Tingting; Zhang, Linlin; Chen, Yule; Gao, Yang; Wang, Bin; Guo, Peng; Li, Lei; Wang, Xinyang; He, Dalin
2013-12-01
Muscle-invasive bladder cancer is associated with a high frequency of metastasis, and fewer therapies substantially prolong survival. Silibinin, a nontoxic natural flavonoid, has been shown to exhibit pleiotropic anticancer effects in many cancer types, including bladder cancer. Our and other previous studies have demonstrated that silibinin induced apoptosis and inhibited proliferation of bladder cancer cells, whether silibinin could suppress bladder cancer metastasis has not been elucidated. In the present study, we utilized a novel highly metastatic T24-L cell model, and found that silibinin treatment not only resulted in the suppression of cell migration and invasion in vitro, but also decreased bladder cancer lung metastasis and prolonged animal survival in vivo. Mechanistically, silibinin could inhibit glycogen synthase kinase-3β (GSK3β) phosphorylation, β-catenin nuclear translocation and transactivation, and ZEB1 gene transcription that subsequently regulated the expression of cytokeratins, vimentin and matrix metalloproteinase-2 (MMP2) to reverse epithelial-mesenchymal transition (EMT). On the other hand, silibinin inhibited ZEB1 expression and then suppressed the properties of cancer stem cells (CSCs), which were evidenced as decreased spheroid colony formation, side population, and the expression of stem cell factor CD44. Overall, this study reveals a novel mechanism for silibinin targeting bladder cancer metastasis, in which inactivation of β-catenin/ZEB1 signaling by silibinin leads to dual-block of EMT and stemness. © 2013.
Paner, Gladell P; McKenney, Jesse K; Epstein, Jonathan I; Amin, Mahul B
2008-07-01
Rhabdomyosarcoma (RMS) represents the most common malignant soft tissue tumor in children and adolescents with the urinary bladder representing a frequent site. Most of these urinary bladder tumors are embryonal RMS, predominantly the botryoid subtype. RMSs of the urinary bladder in adults are distinctively rare and the subject of only case reports. We report the clinicopathologic features of 5 bladder neoplasms with rhabdomyosarcomatous differentiation in adults and emphasize the differential diagnosis in the adult setting. The patients, 4 men and 1 woman, ranged in age from 23 to 85 years (mean 65.4 y). Gross hematuria was the most common initial symptom, although 2 patients had metastatic disease at presentation. Four cases were pure primary RMSs of the bladder and 1 case was a sarcomatoid urothelial carcinoma with RMS representing the extensive heterologous component. All 5 cases demonstrated a diffuse growth pattern (ie, non-nested), of which 4 cases had nuclear anaplasia (Wilms criteria without the atypical mitotic figure requirement); only 1 case (the sarcomatoid carcinoma) showed obvious rhabdomyoblastic differentiation (ie, strap cells). Three cases were of the alveolar subtype (1 admixed with embryonal histology) and 2 were RMS, not further classified. Microscopically, all tumors had a primitive undifferentiated morphology with cells containing scant cytoplasm, varying round to fusiform nuclei with even chromatin distribution, and frequent mitoses. The degree of morphologic overlap with small cell carcinoma of the bladder, a relatively more common round cell tumor in adults, was striking. The epithelial component of the sarcomatoid carcinoma was high-grade invasive urothelial carcinoma with glandular differentiation. No other case had previous history of bladder cancer or concurrent carcinoma in situ or invasive urothelial carcinoma. All tumors showed immunohistochemical expression for desmin, myogenin, and/or MyoD1. Synaptophysin was performed in 4 cases, and 3 showed weak cytoplasmic immunoreactivity. Two patients received chemotherapy, 2 underwent cystectomy, and 1 had transurethral resection alone. Outcome data were available in 4 cases, and all 4 died of disease (1, 4, 8, and 8 mo). In conclusion, (1) RMS of the urinary bladder in adults more commonly presents as a primitive round blue cell neoplasm that has significant morphologic and immunohistochemical overlap with small cell carcinoma of the bladder. (2) Although RMS in children generally have a botryoid embryonal histology with favorable outcome, bladder RMS in adults frequently demonstrates alveolar or unclassified histology, commonly with anaplasia, and have a uniformly aggressive clinical course.
Amigo-Benavent, M; Wang, S; Mateos, R; Sarriá, B; Bravo, L
2017-08-01
This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Raspollini, Maria Rosaria; Paglierani, Milena; Taddei, Gian Luigi
2009-03-01
Transitional cell carcinoma (TCC) of the ovary is a recently recognized subtype of ovarian surface epithelial-stromal cancer that morphologically resembles a TCC of the bladder. The most frequent metastases to ovaries come from the gastrointestinal tract and from breast carcinoma, but metastatic TCCs from the urinary tract to the ovary have been reported. TCC of the bladder is the sixth most common cancer in European and North American countries and its incidence has been increasing. We recently observed a woman, who previously had undergone endoscopic resection of a TCC of the bladder. She was affected by an ovarian bilateral tumor with features of malignant transitional cell tumor, characterized by papillae with multilayered transitional epithelium infiltrating the ovarian stroma. In this study, we showed the utility of WT1 and a panel of immunohistochemical markers in the difficult differential diagnosis between bladder and ovarian TCC.
Characterization and zoonotic potential of uropathogenic Escherichia coli isolated from dogs.
Nam, Eui-Hwa; Ko, Sungjin; Chae, Joon-Seok; Hwang, Cheol-Yong
2013-03-01
The aim of this study was to investigate the characteristics of canine uropathogenic Escherichia coli (UPEC) and the interaction between canine UPEC and human bladder epithelial cells. Ten E. coli isolates collected from dogs with cystitis were analyzed for antimicrobial resistance patterns, the presence of virulence factors, and biofilm formation. The ability of these isolates to induce cytotoxicity, invade human bladder epithelial cells, and stimulate an immune response was also determined. We observed a high rate of antimicrobial resistance among canine UPEC isolates. All virulence genes tested (including adhesins, iron acquisition, and protectin), except toxin genes, were detected among the canine UPEC isolates. We found that all isolates showed varying degrees of biofilm formation (mean, 0.26; range, 0.07 to 0.82), using a microtiter plate assay to evaluate biofilm formation by the isolates. Cytotoxicity to human bladder epithelial cells by the canine UPEC isolates increased in a time-dependent manner, with a 56.9% and 36.1% reduction in cell viability compared with the control at 6 and 9 h of incubation, respectively. We found that most canine UPEC isolates were able to invade human bladder epithelial cells. The interaction between these isolates and human bladder epithelial cells strongly induced the production of proinflammatory cytokines such as IL-6 and IL-8. We demonstrated that canine UPEC isolates can interact with human bladder epithelial cells, although the detailed mechanisms remain unknown. The results suggest that canine UPEC isolates, rather than dogspecific pathogens, have zoonotic potential.
Yin, Lijuan; Bu, Hong; Chen, Min; Yu, Jianqun; Zhuang, Hua; Chen, Jie; Zhang, Hongying
2012-12-31
Perivascular epithelioid cell neoplasms (PEComas) of the urinary bladder are extremely rare and the published cases were comprised predominantly of middle-aged patients. Herein, the authors present the first urinary bladder PEComa occurring in an adolescent. This 16-year-old Chinese girl present with a 3-year history of abdominal discomfort and a solid mass was documented in the urinary bladder by ultrasonography. Two years later, at the age of 18, the patient underwent transurethral resection of the bladder tumor. Microscopically, the tumor was composed of spindled cells mixed with epithelioid cells. Immunohistochemically, the tumor were strongly positive for HMB45, smooth muscle actin, muscle-specific actin, and H-caldesmon. Fluorescence in situ hybridization analysis revealed no evidence of EWSR1 gene rearrangement. The patient had been in a good status without evidence of recurrence 13 months after surgery. Urinary bladder PEComa is an extremely rare neoplasm and seems occur predominantly in middle-aged patients. However, this peculiar lesion can develop in pediatric population and therefore it should be rigorously distinguished from their mimickers. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1870004378817301.
Lightweight bladder lined pressure vessels
Mitlitsky, Fred; Myers, Blake; Magnotta, Frank
1998-01-01
A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.
Cytoplasmic involvement in ADH-mediated osmosis across toad urinary bladder.
DiBona, D R
1983-11-01
Several lines of investigation have suggested that antidiuretic hormone (ADH) may have direct effects on the cytoskeletal organization of granular epithelial cells in the toad urinary bladder. To some extent, these effects are in concert with the well-established action of ADH on the hydraulic permeability of the mucosal plasma membrane, but it appears that other conformational adjustments (largely cytoplasmic) may be of comparable importance. The thrust of this review is that the hormone brings about a general restructuring of the granular cells so that the epithelium as a whole may function efficiently as an osmotic pathway. Details of cytoskeletal changes are far from clear as yet, but interference with or modulation of these particular effects infer that cytoplasmic organization is the seat of feedback control of osmotic flow rate, the basis for viability in the presence of dramatic cytosolic dilution and a major factor in the observed disparity in osmotic and diffusional permeability coefficients. In the interest of stimulating new thoughts and experiments in this area, a number of preliminary findings have been freely cited.
Brown, Robin; Donnelly, Deirdre E; Allen, Derek; Loughrey, Maurice B; Morrison, Patrick J
2014-01-01
Familial Urothelial cell bladder cancer is rare. We report two families with urothelial cell carcinoma (UCC) of bladder with family history in other relatives, displaying probable autosomal dominant inheritance and a late onset pure UCC phenotype, and document the phenotype in each family. Descriptive familial study on two pedigrees over three generations. Two families with UCC bladder were identified, and the phenotype documented, each family having three cases of late onset UCC. Some cases of UCC are hereditary and may display autosomal dominant inheritance with late onset of the cancer. Clinicians should be aware of the existence of a familial late onset UCC phenotype when managing cases of UCC.
Khan, Kashif M; Nahar, Lutfun; Al-Groshi, Afaf; Zavoianu, Alexandra G; Evans, Andrew; Dempster, Nicola M; Wansi, Jean D; Ismail, Fyaz M D; Mannan, Abdul; Sarker, Satyajit D
2016-10-01
Trillium govanianum Wall. (Melanthiaceae alt. Trilliaceae), commonly known as 'nag chhatri' or 'teen patra', is a native species of the Himalayas. It is used in various traditional medicines containing both steroids and sex hormones. In folk medicine, the rhizomes of T. govanianum are used to treat boils, dysentery, inflammation, menstrual and sexual disorders, as an antiseptic and in wound healing. With the only exception of the recent report on the isolation of a new steroidal saponin, govanoside A, together with three known steroidal compounds with antifungal property from this plant, there has been no systematic pharmacological and phytochemical work performed on T. govanianum. This paper reports, for the first time, on the cytotoxicity of the methanol extract of the roots of T. govanianum and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549) and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cytotoxicity assay and liquid chromatography and electrospray ionization quadrupole time-of-flight mass spectrometry analysis of the SPE fractions. The methanol extract and all SPE fractions exhibited considerable levels of cytotoxicity against all cell lines, with the IC 50 values ranging between 5 and 16 µg/mL. Like other Trillium species, presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography mass spectrometry data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Bladder Cancer in HIV-infected Adults: An Emerging Issue? Case-Reports and Systematic Review.
Chawki, Sylvain; Ploussard, Guillaume; Montlahuc, Claire; Verine, Jérome; Mongiat-Artus, Pierre; Desgrandchamps, François; Molina, Jean-Michel
2015-01-01
Non-AIDS-related malignancies now represent a frequent cause of death among HIV-infected patients. Albeit bladder cancer is one of the most common malignancies worldwide, it has been rarely reported among HIV-infected patients. We wished to assess the prevalence and characteristics of bladder cancer in HIV-infected patients. We conducted a single center retrospective study from 1998 to 2013 in a university hospital in Paris. Cases of bladder cancer among HIV-infected patients were identified using the electronic records of the hospital database and of the HIV-infected cohort. Patient characteristics and outcomes were retrieved from patients charts. A systematic review of published cases of bladder cancers in patients with HIV-infection was also performed. During the study period we identified 15 HIV-infected patients (0.2% of the cohort) with a bladder cancer. Patients were mostly men (73%) and smokers (67%), with a median age of 56 years at cancer diagnosis. Bladder cancer was diagnosed a median of 14 years after HIV-infection. Most patients were on ART (86%) with median current and nadir CD4 cell counts of 506 and 195 cells/mm3, respectively. Haematuria (73%) was the most frequent presenting symptom and HPV-associated lesions were seen in 6/10 (60%) patients. Histopathology showed transitional cell carcinoma in 80% and a high proportion of tumors with muscle invasion (47%) and high histologic grade (73%). One-year survival rate was 74.6%. The systematic review identified 13 additional cases of urothelial bladder cancers which shared similar features. Bladder cancers in HIV-infected patients remain rare but may occur in relatively young patients with a low nadir CD4 cell count, have aggressive pathological features and can be fatal.
Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C; Gomella, Leonard G; Belfiore, Antonino; Black, Peter C; Iozzo, Renato V; Morrione, Andrea
2016-06-28
We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.
Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C.; Gomella, Leonard G.; Belfiore, Antonino; Black, Peter C.; Iozzo, Renato V.; Morrione, Andrea
2016-01-01
We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer. PMID:27220888
2018-05-02
Metastatic Transitional Cell Carcinoma; Metastatic Urothelial Carcinoma; Recurrent Bladder Carcinoma; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; TSC1 Gene Mutation; TSC2 Gene Mutation
Bladder Cancer Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version
There are three types of bladder cancer. Transitional cell carcinoma, or urothelial carcinoma, is the most common type. Signs of bladder cancer can include blood in the urine and pain during urination. Find out about other symptoms, risk factors, tests to diagnose, and stages of bladder cancer.
Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois
2016-04-01
Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Current status of tissue engineering applied to bladder reconstruction in humans.
Gasanz, C; Raventós, C; Morote, J
2018-01-11
Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Coon, Brian G.; Crist, Scott; González-Bonet, Andrés M.; Kim, Hee-Kwon; Sowa, Jennifer; Thompson, David H.; Ratliff, Timothy L.; Aguilar, R. Claudio
2011-01-01
The adjuvant therapy of choice for superficial bladder cancer is the intravesical instillation of live Mycobacterium bovis Bacillus Calmette-Guerin (BCG). In spite of the fact that this therapy is the most effective treatment for superficial bladder cancer, intravesical administration of BCG is associated with high local morbidity and the potential for systemic infection. Therefore, there is a need for the development of safer, less toxic approaches to fight this disease. Since fibronectin attachment protein (FAP) is a key element in BCG retention and targeting to cells, we hypothesize that this protein can be used as targeting agent to deliver cytotoxic cargo for the treatment of bladder tumors. Here we evaluated the ability of bladder tumor cells to bind and endocytose FAP via fibronectin-integrin complexes. We found that microaggregation induced by an anti-FAP polyclonal antibody accelerated FAP uptake by T24 bladder tumor cells. FAP was determined to be internalized via a clathrin-independent, caveolae-dependent mechanism. Further, once within the endosomal compartment, FAP was targeted to the lysosomal compartment with negligible recycling to the plasma membrane. Importantly, we demonstrated that FAP microaggregation and internalization could also be triggered by multivalent Ni2+NTA-bearing liposomes. Overall, our studies validate the use of FAP as a targeting vector and provide the foundation for the design of more effective, less toxic bladder cancer therapeutics. PMID:21901746
Lima, L; Severino, P F; Silva, M; Miranda, A; Tavares, A; Pereira, S; Fernandes, E; Cruz, R; Amaro, T; Reis, C A; Dall'Olio, F; Amado, F; Videira, P A; Santos, L; Ferreira, J A
2013-01-01
Background: High risk of recurrence/progression bladder tumours is treated with Bacillus Calmette-Guérin (BCG) immunotherapy after complete resection of the tumour. Approximately 75% of these tumours express the uncommon carbohydrate antigen sialyl-Tn (Tn), a surrogate biomarker of tumour aggressiveness. Such changes in the glycosylation of cell-surface proteins influence tumour microenvironment and immune responses that may modulate treatment outcome and the course of disease. The aim of this work is to determine the efficiency of BCG immunotherapy against tumours expressing sTn and sTn-related antigen sialyl-6-T (s6T). Methods: In a retrospective design, 94 tumours from patients treated with BCG were screened for sTn and s6T expression. In vitro studies were conducted to determine the interaction of BCG with high-grade bladder cancer cell line overexpressing sTn. Results: From the 94 cases evaluated, 36 had recurrence after BCG treatment (38.3%). Treatment outcome was influenced by age over 65 years (HR=2.668; (1.344–5.254); P=0.005), maintenance schedule (HR=0.480; (0.246–0.936); P=0.031) and multifocallity (HR=2.065; (1.033–4.126); P=0.040). sTn or s6T expression was associated with BCG response (P=0.024; P<0.0001) and with increased recurrence-free survival (P=0.001). Multivariate analyses showed that sTn and/or s6T were independent predictive markers of recurrence after BCG immunotherapy (HR=0.296; (0.148–0.594); P=0.001). In vitro studies demonstrated higher adhesion and internalisation of the bacillus to cells expressing sTn, promoting cell death. Conclusion: s6T is described for the first time in bladder tumours. Our data strongly suggest that BCG immunotherapy is efficient against sTn- and s6T-positive tumours. Furthermore, sTn and s6T expression are independent predictive markers of BCG treatment response and may be useful in the identification of patients who could benefit more from this immunotherapy. PMID:24064971
Sabater Marco, Vicente; Navalón Verdejo, Pedro; Morera Faet, Arturo
2012-09-01
Inverted papilloma of the urinary bladder is an uncommon urothelial neoplasm that may be specially difficult to distinguish from urothelial carcinoma. Two patients with obstructive symptoms and hematuria have been studied. In the transurethral resection, accidentally, one showed a papillary lesion in the context of nodular hyperplasia of the prostate, where as the other showed a polypoid tumor of the urinary bladder Histologically, in both cases, a bladder inverted papilloma was demonstrated, originating from the surface transitional epithelium. Basal cells exhibited peripheral palisading pattern in the trabecular form. In the glandular type, Dogiel or umbrella cells into the gland-like structures, were recognized. Immunohistochemical stains for p53 and Ki-67 were negative. Umbrella cells were positive for cytokeratin 20. Two cases of bladder inverted papilloma with relevant morphological aspects are presented, which we consider useful for the differential diagnosis with urothelial carcinoma.
The Epigenetics of Kidney Cancer and Bladder Cancer
Hoffman, Amanda M.; Cairns, Paul
2012-01-01
Summary This review focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, histone modifications or RNA interference in cancer cells. The current knowledge of hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the microRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genitourinary cancers. There are management issues with the high recurrence rate of superficial bladder cancer while muscle invasive bladder cancer has a poor prognosis. These clinical problems are the basis for translational application of gene hypermethylation to the diagnosis and prognosis of kidney and bladder cancer. PMID:22126150
NOTCH pathway inactivation promotes bladder cancer progression
Maraver, Antonio; Fernandez-Marcos, Pablo J.; Cash, Timothy P.; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L.; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M.; Real, Francisco X.; Serrano, Manuel
2015-01-01
NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features. PMID:25574842
Oulidi, Agathe; Bokhobza, Alexandre; Gkika, Dimitra; Vanden Abeele, Fabien; Lehen'kyi, V'yacheslav; Ouafik, L'houcine; Mauroy, Brigitte; Prevarskaya, Natalia
2013-01-01
Adrenomedullin (AM) is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.
Torino, J L; Burger, M S; Reznikoff, C A; Swaminathan, S
2001-01-01
The global genomic repair of DNA adducts was examined in human papillary transitional cell carcinoma (TCC) cell lines after exposure to N:-hydroxy-4-acetylaminobiphenyl (N-OH-AABP), the proximate carcinogenic metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). (32)P-post-labeling analysis of TCC cultures exposed to N-OH-AABP revealed a major adduct, identified as the 3',5'-bisphosphate derivative of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP). The amount of adduct formation in TCC10 was dependent upon the dose and the duration of exposure and ranged between 1 and 5 adducts/10(7) nucleotides. To test if p53 regulates repair of the dG-C8-ABP adduct in genomic DNA, an isogeneic set of cell lines was obtained by infection of the TCC10 cultures with a retroviral construct expressing a trans-dominant mutant of p53, namely a Val-->Ala mutation at codon 143. The TDM143-TCC10 line expressing the mutant form of p53 was selected. The rate of repair of dG-C8-ABP was compared between TCC10 and TDM143-TCC10 cultures after treatment with 15 microM N-OH-AABP. The rate of disappearance of the adduct was monitored over a period of time after chemical treatment. (32)P-post-labeling analysis of dG-C8-ABP in parental TCC10 showed its rapid removal, the majority of adducts disappearing within 48 h. In contrast to TCC10, TDM143-TCC10 was relatively slower in removal of dG-C8-ABP. After 24 h DNA repair TDM143-TCC10 showed an approximately 3-fold greater amount of dG-C8-ABP compared with TCC10. These results imply that p53 plays a role in the repair of ABP adducts and that in p53 null cells the unrepaired DNA damage could cause accumulation of mutations, which might contribute to increased genomic instability and neoplastic progression.
Reshetnikova, Galina; Sidorenko, Viktoriya S; Whyard, Terry; Lukin, Mark; Waltzer, Wayne; Takamura-Enye, Takeji; Romanov, Victor
2016-11-15
3-Nitrobenzanthrone (3-NBA), a potential human carcinogen, is present in diesel exhaust. The main metabolite of 3-NBA, 3-aminobenzanthrone, was detected in urine of miners occupationally exposed to diesel emissions. Environmental and occupational factors play an important role in development of bladder cancer (BC), one of the most frequent malignancies. It is expected that exposure of urothelium to 3-NBA and its metabolites may induce BC initiation and/or progression. To test this hypothesis, we studied geno- and cytotoxicity of 3-NBA using an in vitro BC model. 3-NBA induced higher levels of DNA adducts, reactive oxygen species and DNA breaks in aggressive T24 cells than in more differentiated RT4 cells. To understand the nature of this difference we examined the role of several enzymes that were identified as 3-NBA bio activators. However, the difference in DNA adduct formation cannot be directly linked to the different activity of any of the examined enzymes. Conversely, the difference of tested cell lines in p53 status can partly explain the distinct levels of 3-NBA-DNA adducts and DNA damage induced by 3-NBA. Therefore, we assume that more aggressive T24 cells are more predisposed for DNA adduct formation, DNA damage and, possibly, mutations and as a result further tumorigenesis. Copyright © 2016. Published by Elsevier Inc.
Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370
Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A
2014-01-01
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.
Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D
2013-01-01
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426
[Glandular squamous cell carcinoma of the urinary bladder].
Kovylina, M V; Pushkar', D Iu; Zaĭrat'iants, O V; Rasner, P I
2006-01-01
The paper gives a clinical observation of a 52 year-old male with a rare histological urinary bladder tumor primary grandular-squamous-cell carcinoma (pT3N IM0). The tumor is represented by two components large acinic-cell adenocarcinoma and squamous-cell carcinoma with keratinization, which smoothly pass one into another; the tumor has grown through all layers of the urinary bladder wall but it has failed to grow into the peritoneum. A microscopic study has indicated that the urachus is intact. Metastases were found in 3 of 8 lymph nodes: one showed high-grade adenocarcinoma and two others displayed average-grade squamous-cell carcinoma.
Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K
2014-05-01
Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer
NASA Astrophysics Data System (ADS)
Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.
2009-06-01
Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.
[Can MRI be used to distinguish between superficial and invasive transitional cell bladder cancer?].
Tillou, X; Grardel, E; Fourmarier, M; Bernasconi, T; Demailly, M; Hakami, F; Saint, F; Petit, J
2008-07-01
To determine the sensitivity and specificity of MRI to distinguish between superficial and invasive transitional cell bladder cancer. Sixty patients (52 men and eight women) with a mean age of 66.8 years were assessed by bladder MRI between May 2002 and November 2005 for a primary bladder cancer diagnosed by endoscopy, followed by transurethral resection and histological examination of the bladder cancer. Patients presenting a discordance between MRI findings and histological examination were analysed. Imaging and pathology staging was concordant for 49 bladder cancers (40 superficial and nine invasive). Ten tumours considered to be invasive on MRI were superficial on histological examination and six of them relapsed at the resection scar at one or three months. The sensitivity of MRI was 80% for a specificity of 90% and a positive predictive value of 97.5%. MRI is a reliable examination to confirm the superficial nature of bladder cancer. When MRI and histological examination of a bladder cancer resection specimen are discordant, second look surgery is recommended to treat residual disease, which was present in 60% of cases in the present series.
Attenuated XPC Expression Is Not Associated with Impaired DNA Repair in Bladder Cancer
Naipal, Kishan A. T.; Raams, Anja; Bruens, Serena T.; Brandsma, Inger; Verkaik, Nicole S.; Jaspers, Nicolaas G. J.; Hoeijmakers, Jan H. J.; van Leenders, Geert J. L. H.; Pothof, Joris; Kanaar, Roland; Boormans, Joost; van Gent, Dik C.
2015-01-01
Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors. PMID:25927440
Erman, Andreja; Hergouth, Veronika Križan; Blango, Matthew G; Kos, Mojca Kerec; Mulvey, Matthew A; Veranic, Peter
2017-08-01
Uropathogenic Escherichia coli (UPEC), the primary causative agents of urinary tract infections, colonize and invade the epithelial cells of the bladder urothelium. Infection of immature urothelial cells can result in the formation of persistent intracellular reservoirs that are refractory to antibiotic treatments. Previously, we defined a novel therapeutic strategy that used the bladder cell exfoliant chitosan to deplete UPEC reservoirs. However, although a single treatment of chitosan followed by ciprofloxacin administration had a marked effect on reducing UPEC titers within the bladder, this treatment failed to prevent relapsing bacteriuria. We show here that repeated use of chitosan in conjunction with the antibiotic ciprofloxacin completely eradicates UPEC from the urinary tract and prevents the development of relapsing bouts of bacteriuria. In addition, microscopy revealed rapid restoration of bladder integrity following chitosan treatment, indicating that chitosan can be used to effectively combat recalcitrant bladder infections without causing lasting harm to the urothelium. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
McGarvey, Terry; Wang, Huiyi; Lal, Priti; Puthiyaveettil, Raghunath; Tomaszewski, John; Sepulveda, Jorge; Labelle, Ed; Weiss, Jayne S.; Nickerson, Michael L.; Kruth, Howard S.; Brandt, Wolfgang; Wessjohann, Ludger A.; Malkowicz, S. Bruce
2011-01-01
Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression. PMID:21740188
Wilson, P D; Nathrath, W B; Trejdosiewicz, L K
1982-01-01
Immunoelectron microscope cytochemistry was carried out on 2% paraformaldehyde fixed, 50 mu sections of normal urothelium and bladder carcinoma cells in culture using antisera raised in rabbits to human 40-63 000 MW epidermal "broad spectrum" keratin and calf urothelial "luminal epithelial antigen" (aLEA) Both the unconjugated and indirect immunoperoxidase-DAB techniques were used before routine embedding. The localisation of both keratin and luminal epithelial antigen (LEA) was similar in normal and neoplastic cells and reaction product was associated not only with tonofilaments but also lining membrane vesicles and on fine filaments in the cytoplasmic ground substance.
Burkhard, Fiona C; Monastyrskaya, Katia; Studer, Urs E; Draeger, Annette
2005-01-01
The decline in contractile properties is a characteristic feature of the dysfunctional bladder as a result of infravesical outlet obstruction. During clinical progression of the disease, smooth muscle cells undergo structural modifications. Since adaptations to constant changes in length require a high degree of structural organization within the sarcolemma, we have investigated the expression of several proteins, which are involved in smooth muscle membrane organization, in specimens derived from normal and dysfunctional organs. Specimen from patients with urodynamically normal/equivocal (n = 4), obstructed (n = 2), and acontractile (n = 2) bladders were analyzed relative to their structural features and sarcolemmal protein profile. Smooth muscle cells within the normal urinary bladder display a distinct sarcolemmal domain structure, characterized by firm actin-attachment sites, alternating with flexible "hinge" regions. In obstructed bladders, foci of cells displaying degenerative sarcolemmal changes alternate with areas of hypertrophic cells in which the membrane appears unaffected. In acontractile organs, the overall membrane structure remains intact, however annexin 6, a protein belonging to a family of Ca2+-dependent, "membrane-organizers," is downregulated. Degenerative changes in smooth muscle cells, which are chronically working against high resistance, are preferentially located within the actin-attachment sites. In acontractile bladders, the downregulation of annexin 6 might have a bearing on the fine-tuning of the plasma membrane during contraction/relaxation cycles. Copyright 2005 Wiley-Liss, Inc.
Expression of ERβ and its co-regulators p300 and NCoR in human transitional cell bladder cancer.
Kontos, Stylianos; Papatsoris, Athanasios; Kominea, Athina; Melachrinou, Maria; Tanoglidi, Anna; Kachrilas, Stefanos; Karavitakis, Markos; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia
2011-01-01
Several data support a possible role of estrogens in bladder carcinogenesis, mediated mainly through estrogen receptor-β (ERβ). We study the expression of ERβ and its co-regulators p300 and nuclear co-repressor (NCoR) in patients with bladder cancer. One hundred and eleven consecutive patients (74 males and 37 females), aged 23-90 years (mean 70 ± 10) diagnosed with transitional cell bladder cancer were included in this study. The control group consisted of 29 patients that underwent transurethral prostatectomy and consented to simultaneous bladder biopsies. Immunohistochemical studies took place on formalin-fixed, paraffin-embedded sections from the TUR (transurethral resection) specimens. We studied the expression of ERβ, p300 and NCoR.χ(2) test was used to evaluate the relationship between the histological grade and ERβ expression, grade and co-regulators expression and grade and gender. Spearman rank correlation coefficient (r) was used in order to estimate the direction and strength of correlations between histological grade and ERβ-p300-NCoR expressions. The Cochran-Armitage test for trend was applied in order to examine possible trends across the ordered levels of histological grade. ERβ was more frequently expressed in the nucleus of normal bladder epithelium compared to malignant bladder epithelium with statistical significant association (r = -0.25, p = 0.003). The p300 was expressed only in the nucleus of bladder cancer cells and a positive correlation between molecular expression and cancer progression was demonstrated (r = 0.55, p < 0.001). NCoR immunostaining was demonstrated in the nuclei of bladder cells. Nuclear staining was significantly higher in normal tissue than in cancer cells (r = -0.33, p < 0.001), with negative correlation. Furthermore, its expression in grade I tumors was significantly higher than in grade II (r = -0.46, p < 0.001) and grade III tumors (r = -0.51, p < 0.001). Thus, like ERβ, NCoR expression in bladder epithelium decreased during cancer progression and loss of cell differentiation. There was no correlation between the levels of expression of the three proteins in normal bladder epithelium, but there was an inverse correlation between the nuclear expression of ERβ and p300 in carcinomas (r = -3.88, p = 0.042). Statistical significant association was established when correlating ERβ expression with NCoR expression (r = 0.273, p = 0.005), while co-regulators' nuclear expression did not correlate with each other (p > 0.05). In bladder carcinogenesis, we demonstrated inhibition in the expression of ERβ and its co-repressor NCoR as well as increased expression of the co-activator p300. Copyright © 2011 S. Karger AG, Basel.
Sex differences in the MB49 syngeneic, murine model of bladder cancer
White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M.
2016-01-01
OBJECTIVE The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). METHODS Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro. RESULTS MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro. CONCLUSIONS The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice. PMID:26998503
2012-01-01
Abstract Perivascular epithelioid cell neoplasms (PEComas) of the urinary bladder are extremely rare and the published cases were comprised predominantly of middle-aged patients. Herein, the authors present the first urinary bladder PEComa occurring in an adolescent. This 16-year-old Chinese girl present with a 3-year history of abdominal discomfort and a solid mass was documented in the urinary bladder by ultrasonography. Two years later, at the age of 18, the patient underwent transurethral resection of the bladder tumor. Microscopically, the tumor was composed of spindled cells mixed with epithelioid cells. Immunohistochemically, the tumor were strongly positive for HMB45, smooth muscle actin, muscle-specific actin, and H-caldesmon. Fluorescence in situ hybridization analysis revealed no evidence of EWSR1 gene rearrangement. The patient had been in a good status without evidence of recurrence 13 months after surgery. Urinary bladder PEComa is an extremely rare neoplasm and seems occur predominantly in middle-aged patients. However, this peculiar lesion can develop in pediatric population and therefore it should be rigorously distinguished from their mimickers. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1870004378817301 PMID:23276164
Sex differences in the MB49 syngeneic, murine model of bladder cancer.
White-Gilbertson, Shai; Davis, Megan; Voelkel-Johnson, Christina; Kasman, Laura M
The MB49 syngeneic, murine model of bladder cancer has been widely used for more than 35 years. In humans, bladder cancer is one third as prevalent in women as in men, with a trend toward lower prevalence in parous compared to nulliparous women. Our objective was to determine if the MB49 bladder cancer model reproduces the sex differences observed in humans, and to determine its sensitivity to testosterone and the pregnancy hormone, human chorionic gonadotropin (hCG). Male and female C57BL/6 mice were implanted with MB49 murine bladder cancer cells, and observed for tumor growth. MB49 dose responses to hCG and dihydrotestosterone were determined in vitro . MB49 tumor growth was significantly greater in male mice than female mice. Pregnancy did not affect MB49 tumor growth in female mice. MB49 cells did not proliferate in response to hCG in vitro and the functional receptor for gonadotropins was absent. Dihydrotestosterone strongly stimulated growth of MB49 cells in vitro . The MB49 murine model of bladder cancer reproduced some aspects of the sex differences observed in humans. Our results suggest that testosterone may stimulate MB49 cell proliferation, which may explain the more rapid MB49 tumor growth observed in male mice.
The water avoidance stress induces bladder pain due to a prolonged alpha1A adrenoceptor stimulation.
Matos, Rita; Serrão, Paula; Rodriguez, Larissa; Birder, Lori Ann; Cruz, Francisco; Charrua, Ana
2017-08-01
Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) remains an elusive disease with the cause for the pain unclear. BPS/IC patients present increased sympathetic activity and high levels of urinary noradrenaline. At the experimental level, it has been shown that chronic adrenergic stimulation produces pain and bladder changes through an alpha 1A adrenoceptor mediated mechanism. Water avoidance stress (WAS) in rodents reproduces signs of nociception and bladder changes seen in BPS/IC patients. In this study, we explore the possible role of alpha 1A adrenoceptor in bladder pain and morphological changes. WAS was induced in a group of female Wistar rats. A separate WAS group received 0.2 mg/kg day silodosin (WAS + S). Lower abdominal pain was determined by performing sensitivity to Von Frey filaments. Bladder reflex activity was determined by cystometry in anaesthetised animals. Urine was collected for noradrenaline quantification by HPLC. Bladders were harvested and stained with Haematoxylin-eosin (to analyse urothelial morphology and to determine the disruption of surface umbrella cells) or with Toluidine Blue 0.1% to analyse mast cell infiltration. WAS increased urinary noradrenaline level and bladder frequency and decreased mechanical pain threshold, which was reversed by silodosin. WAS induced lymphocytic and mast cells infiltration in the mucosa and mild urothelial disruption, which was absent in WAS + S group. Alpha 1A adrenoceptor stimulation has an important role in the appearance of bladder pain in rats. Since BPS/IC patients present high levels of noradrenaline, alpha 1A stimulation may be an additional trigger for bladder dysfunction presented by these patients. Further studies will determine the clinical relevance of this finding in the treatment of BPS/IC patients.
Komyakov, B K; Sergeev, A V; Fadeev, V A; Ismailov, K I; Ulyanov, A Yu; Shmelev, A Yu; Onoshko, M V
2017-09-01
To determine the incidence of spreading bladder transitional cell carcinoma and primary adenocarcinoma to the prostate in patients with bladder cancer undergoing radical cystectomy. From 1995 to 2016, 283 men underwent radical cystectomy with removal of the bladder, perivesical tissue, prostate, seminal vesicles and pelvic lymph nodes. Prostate sparing cystectomy was performed in 45 (13.7%) patients. The whole prostate and the apex of the prostate were preserved in 21 (6.4%) and 24 (7.3%) patients, respectively. The spread of transitional cell cancer of the bladder to the prostate occurred in 50 (15.2%) patients. Twelve (3.6%) patients were found to have primary prostate adenocarcinoma. Clinically significant prostate cancer was diagnosed in 4 (33.3%) patients. We believe that the high oncological risk of prostate sparing cystectomy, despite some functional advantages, dictates the need for complete removal of the prostate in the surgical treatment of bladder cancer.
Carlstrom, Jr., Charles M.
2001-01-01
An end plate assembly is disclosed for use in a fuel cell assembly in which the end plate assembly includes a housing having a cavity, and a bladder receivable in the cavity and engageable with the fuel cell stack. The bladder includes a two-phase fluid having a liquid portion and a vapor portion. Desirably, the two-phase fluid has a vapor pressure between about 100 psi and about 600 psi at a temperature between about 70 degrees C. to about 110 degrees C.
Abdou, Asmaa Gaber; El-Wahed, Moshira Mohammed Abd; Kandil, Mona Abd-Elhalim; Samaka, Rehab Monir; Elkady, Noha
2013-10-01
Most tumors contain a minor population of cancer stem cells that are responsible for tumor heterogeneity, resistance to therapy and recurrence. Oct-4 is a transcription factor responsible for self-renewal of stem cells, whereas the Notch family of receptors and ligands may play a pivotal role in the regulation of stem cell maintenance and differentiation. This study aimed at an evaluation of Oct-4 and Notch-1 expression in both carcinoma and stromal cells of 83 cases of primary bladder carcinoma and to study the relationship between them. Notch-1 was expressed in carcinoma and stromal cells of all malignant cases, where expression in both cell types was correlated with parameters indicating differentiation, such as low grade (p < 0.05) and less proliferation (p < 0.05). However, Notch-1 expression in stromal cells was associated with nodal metastasis (p = 0.016) and advanced stage (p = 0.030). 56.6 and 75.9% of carcinoma and stromal cells of malignant cases showed Oct-4 expression, respectively. Oct-4 expression in carcinoma cells or stromal cells was associated with aggressive features of bladder carcinoma, such as poor differentiation (p = 0.001), high proliferation (p < 0.001, 0.030), and liability for recurrence (p = 0.010, p < 0.001). There was an inverse relationship between Notch-1 and Oct-4 expression in carcinoma cells (p = 0.002), but stromal expression of Notch-1 was found to be associated with a nuclear pattern of Oct-4 expression in carcinoma cells (p = 0.030). Oct-4 as a stem cell marker is expressed in carcinoma cells and in stromal cells of bladder carcinoma, where they may cooperate in the progression of bladder carcinoma by acquiring aggressive features, such as a liability for recurrence and dissemination. Notch-1 is also expressed in both carcinoma cells and stromal cells of bladder carcinoma. Although they could share in enhancing differentiation, stromal expression of Notch-1 may have a bad impact, possibly through up-regulation of the active nuclear form of Oct-4 in carcinoma cells. © 2013 APMIS Published by Blackwell Publishing Ltd.
Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer
NASA Astrophysics Data System (ADS)
Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei
2014-11-01
Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.
Sonography of tumors and tumor-like lesions that mimic carcinoma of the urinary bladder
Szopiński, Tomasz; Gołąbek, Tomasz; Ostasz, Oksana; Bojko, Stefania
2014-01-01
One of the basic abdominal organs that is assessed during transabdominal ultrasound examination for urological reasons is the urinary bladder. The bladder must be filled with urine. This is a prerequisite for a reliable assessment and, at the same time, an acoustic window in examining adjacent structures and organs, for instance the prostate gland. In some cases, doubts occur with respect to the nature of lesions detected. The paper presents anatomic lesions, defects and pathologies which might be erroneously interpreted as tumors of the urinary bladder, i.e. transitional cell carcinoma of the urinary bladder. The following lesions are discussed: 1) anatomic defects (including urachus remnants, ligaments that stabilize the bladder or cyst in the opening of the ureter into the bladder – ureterocele); 2) tumor- like lesions in the lumen of the urinary bladder (such as blood clots, fungus balls, stones or foreign bodies); 3) bladder wall pathologies (i.e. cystitis or endometriosis), focal decidual transformation of stromal cells or inflammatory pseudotumor; 4) lesions impressing on the bladder from the outside (the mesentery of the sigmoid colon, the bowel, pathological lesions in organs adjacent to the urinary bladder, inflammatory infiltration, vasogenic compression of the bladder, pelvic lipomatosis, pathological lesions of the pubic symphysis); 5) postoperative lesions. All these lesions may mimic carcinoma of the urinary bladder in sonography. Bearing this fact in mind is significant in establishing a diagnosis. Due to the malignant character of carcinoma of the urinary bladder and the need for aggressive surgical treatment, a correct diagnosis of this disease is essential for patients, particularly because the lack of adequate treatment and delayed treatment considerably affect prognosis. PMID:26672732
Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung
2018-01-01
Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer. PMID:29534504
Lee, Haesol; Lee, Dahae; Kang, Ki Sung; Song, Ji Hoon; Choi, You-Kyoung
2018-03-12
Cisplatin is a well-known anticancer drug frequently used for treating solid tumors, including ovarian, testicular, bladder, and cervical tumors. However, usage of cisplatin has been limited because of its adverse effects, particularly nephrotoxicity. Therefore, the present study sought to investigate the protective effect of formononetin against cisplatin-induced cytotoxicity in LLC-PK1 pig kidney epithelial cells as well as the anticancer effect of cisplatin in three different human cervical cancer cell lines, including HeLa, SiHa, and CaSKi cells. We first demonstrated that formononetin strongly prevented cisplatin-induced LLC-PK1 cell death. Although formononetin had no anticancer effect, it did not interrupt the anticancer effect of cisplatin in human cervical carcinoma cell lines. Furthermore, the treatment with formononetin reduced reactive oxygen species (ROS) accumulation and chromatin condensation. The percentage of Annexin V-positive cells also increased following cisplatin treatment. Finally, formononetin-inhibited c-Jun N-terminal kinase (JNK) phosphorylation, cleavage of caspase-8 and caspase-3, and the ratio of Bax to Bcl-2 increased with cisplatin. Taken together, these findings suggest that formononetin may be a possible option to prevent nephrotoxicity induced by cisplatin during treatment for cervical cancer.
Implantable Bladder Sensors: A Methodological Review
Dakurah, Mathias Naangmenkpeong; Koo, Chiwan; Choi, Wonseok; Joung, Yeun-Ho
2015-01-01
The loss of urinary bladder control/sensation, also known as urinary incontinence (UI), is a common clinical problem in autistic children, diabetics, and the elderly. UI not only causes discomfort for patients but may also lead to kidney failure, infections, and even death. The increase of bladder urine volume/pressure above normal ranges without sensation of UI patients necessitates the need for bladder sensors. Currently, a catheter-based sensor is introduced directly through the urethra into the bladder to measure pressure variations. Unfortunately, this method is inaccurate because measurement is affected by disturbances in catheter lines as well as delays in response time owing to the inertia of urine inside the bladder. Moreover, this technique can cause infection during prolonged use; hence, it is only suitable for short-term measurement. Development of discrete wireless implantable sensors to measure bladder volume/pressure would allow for long-term monitoring within the bladder, while maintaining the patient’s quality of life. With the recent advances in microfabrication, the size of implantable bladder sensors has been significantly reduced. However, microfabricated sensors face hostility from the bladder environment and require surgical intervention for implantation inside the bladder. Here, we explore the various types of implantable bladder sensors and current efforts to solve issues like hermeticity, biocompatibility, drift, telemetry, power, and compatibility issues with popular imaging tools such as computed tomography and magnetic resonance imaging. We also discuss some possible improvements/emerging trends in the design of an implantable bladder sensor. PMID:26620894
Kim, Geun-Young; Park, Soon Yong; Jo, Ara; Kim, Mira; Leem, Sun-Hee; Jun, Woo-Jin; Shim, Sang In; Lee, Sang Chul; Chung, Jin Woong
2015-09-01
Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536].
Wang, Junpeng; Chen, Yang; Gu, Di; Zhang, Guihao; Chen, Jiawei; Zhao, Jie; Wu, Peng
2017-10-01
Bladder wall fibrosis is a major complication of ketamine-induced cystitis (KC), but the underlying pathogenesis is poorly understood. The aim of the present study was to elucidate the mechanism of ketamine-induced fibrosis in association with epithelial-to-mesenchymal transition (EMT) mediated by transforming growth factor-β1 (TGF-β1). Sprague-Dawley rats were randomly distributed into four groups, which received saline, ketamine, ketamine combined with a TGF-β receptor inhibitor (SB-505124) for 16 wk, or 12 wk of ketamine and 4 wk of abstinence. In addition, the profibrotic effect of ketamine was confirmed in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. The ketamine-treated rats displayed voiding dysfunction and decreased bladder compliance. Bladder fibrosis was accompanied by the appearance of a certain number of cells expressing both epithelial and mesenchymal markers, indicating that epithelial cells might undergo EMT upon ketamine administration. Meanwhile, the expression level of TGF-β1 was significantly upregulated in the urothelium of bladders in ketamine-treated rats. Treatment of SV-HUC-1 cells with ketamine increased the expression of TGF-β1 and EMT-inducing transcription factors, resulting in the downregulation of E-cadherin and upregulation of fibronectin and α-smooth muscle actin. Administration of SB-505124 inhibited EMT and fibrosis both in vitro and vivo. In addition, withdrawal from ketamine did not lead to recovery of bladder urinary function or decreased fibrosis. Taken together, our study shows for the first time that EMT might contribute to bladder fibrosis in KC. TGF-β1 may have an important role in bladder fibrogenesis via an EMT mechanism. Copyright © 2017 the American Physiological Society.
Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U
2007-09-01
Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.
Intravesical treatments of bladder pain syndrome/interstitial cystitis.
Neuhaus, Jochen; Schwalenberg, Thilo
2012-12-01
Bladder pain syndrome/interstitial cystitis (BPS/IC) is a disabling chronic condition that affects up to 7% of women in the USA. In men, BPS/IC seems to be less common, but might be underestimated because it can be confused with chronic prostatitis. The aetiology and pathophysiology of BPS/IC are not well understood. Consequently, diagnosis and treatment is challenging and most therapies used to date are off-label. These therapies include bladder instillation with dimethyl sulfoxide (DMSO) and BCG, as well as hyperbaric oxygen therapy. Overall, botulinum neurotoxin A injection, intravesical sodium hyaluronate instillation and DMSO instillation seem to be the best-performing treatments, with response rates of 79%, 76% and 75%, respectively, and can be used effectively as second-line or third-line therapies for BPS/IC. However, additional high-quality randomized controlled trials are necessary to improve the available data.
Heparanase 2 expression inversely correlates with bladder carcinoma grade and stage
Gross-Cohen, Miriam; Feld, Sari; Naroditsky, Inna; Nativ, Ofer; Ilan, Neta; Vlodavsky, Israel
2016-01-01
While the pro-tumorigenic function of heparanase is well taken, the role of its close homolog, heparanase 2 (Hpa2) in cancer is by far less investigated. Utilizing immunohistochemical analysis we found that Hpa2 is expressed by normal bladder transitional epithelium and its levels are decreased substantially in bladder cancer. Notably, tumors that retain high levels of Hpa2 were diagnosed as low grade (p=0.001) and low stage (p=0.002), suggesting that Hpa2 is required to preserve cell differentiation and halt cell motility. Indeed, migration of 5637 bladder carcinoma cells was attenuated significantly by exogenous addition of purified Hpa2, and over expression of Hpa2 in 5637 cells resulted in smaller tumors that were diagnosed as low grade. We also noted that tumors produced by Hpa2 over expressing cells are abundantly decorated with stromal cells and collagen deposition evident by Masson's/Trichrome staining, correlating with a marked increase in lysyl oxidase (LOX) staining. The association between Hpa2 and LOX was further confirmed clinically, because of the 16 cases that exhibited strong staining of Hpa2, 14 (87.5%) were also stained strongly for LOX (p=0.05). Collectively, our results suggest that Hpa2 functions as a tumor suppressor in bladder cancer, maintaining cellular differentiation and decreasing cell motility in a manner that appears to be independent of regulating heparanase activity. PMID:26968815
Wallis, M Chad; Oottamasathien, Siam; Wicher, Chris; Hadley, David; Snow, Brent W; Cartwright, Patrick C
2013-12-01
Several methods have been described for immobilization of the pelvis following bladder exstrophy closure, which can be challenging to manage. We hypothesized that immobilization can be significantly simplified using a modified mermaid wrap with padded Velcro® straps around the thigh and lower leg. We retrospectively reviewed all patients who underwent bladder exstrophy closure in the newborn period at our institution from 1990 through 2010. Patients with cloacal exstrophy and those who underwent delayed closure due to other medical conditions were excluded. We collected data on closure technique, length of stay and complications of the primary closure as outcomes. A total of 20 boys and 7 girls underwent closure of classic bladder exstrophy. Followup ranged from 2 to 22 years. Seven boys underwent complete primary repair and 13 underwent staged repair. All patients had the legs stabilized with a modified wrap technique using 2 lengths of Velcro straps lined with self-adhering open cell foam pads for 3 weeks. Complications of exstrophy closure included bladder dehiscence in 1 patient (4%) and incisional hernia in 2 (7%). Following complete primary repair urethrocutaneous fistula developed in 2 patients and urethral stricture in 2. Average length of stay for patients without significant prematurity was 15 days. Padded Velcro strap immobilization simplifies postoperative care, provides secure fixation, decreases length of stay, and enables parents to hold and bond with the child shortly after repair. We advocate this simplified technique, which can be applied with a rate of complications that is comparable to other procedures. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Sukov, William R; Cheville, John C; Amin, Mahul B; Gupta, Ruta; Folpe, Andrew L
2009-02-01
The perivascular epithelioid cell family of tumors (PEComas) includes familiar lesions such as angiomyolipoma, lymphangioleiomyoma, and clear-cell "sugar" tumors of the lung. Less frequently, PEComas arise in various other locations throughout the body including soft tissue, bone, and visceral organs. We report 3 cases of PEComa arising in the urinary bladder in 2 men in their fourth decade, and 1 woman in her third decade. All 3 tumors showed histologic features characteristic of PEComa including spindled and epithelioid cell morphology with variable clear cell change, and all coexpressed melanocytic and smooth muscle associated markers by immunohistochemistry. Follow-up demonstrated an indolent course for 2 patients with no evidence of disease at 10 and 21 months, respectively, and the third case was recently diagnosed. We also provide a review of the 4 previously reported PEComas occurring in the bladder. PEComas of the urinary bladder should be carefully distinguished from a variety of histologically similar, but clinically dissimilar entities.
Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias
2015-01-01
To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548
Endoscopic Optical Coherence Tomography in Urology
NASA Astrophysics Data System (ADS)
Pan, Yingtian; Waltzer, Wayne; Ye, Zhangqun
Clinical statistics has shown a stable prevalence of bladder cancer in recent years, which by far remains among the most common types of malignancy in the USA. With smoking as the most well-established risk factor, bladder cancer is the fourth most common cancer occurrences in male population [1]. In the year of 2014, an estimated 74,690 new cases are expected to occur with estimated 15,580 deaths. Bladder cancer often refers to transitional cell carcinoma (TCC) as it originates primarily from the epithelial cell layer (i.e., urothelium) of the bladder. Unlike prostate-specific antigen (PSA) for prostate cancer screening, there is currently no effective screening technique approved or recommended for the population at average risk [2-5]. As a result, hematuria (i.e., blood in the urine) is often the first clinical symptom of bladder cancer. Fortunately, urinary bladder is more accessible than prostate glands endoscopically; thus cytology following white-light cystoscopy has been the gold standard for current clinical detection of bladder cancer. This is important because bladder cancer if diagnosed prior to muscle invasion (e.g., superficial or at
Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A
2013-01-01
To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.
Characterization of the Olfactory Receptor OR10H1 in Human Urinary Bladder Cancer.
Weber, Lea; Schulz, Wolfgang A; Philippou, Stathis; Eckardt, Josephine; Ubrig, Burkhard; Hoffmann, Michéle J; Tannapfel, Andrea; Kalbe, Benjamin; Gisselmann, Günter; Hatt, Hanns
2018-01-01
Olfactory receptors (ORs) are a large group of G-protein coupled receptors predominantly found in the olfactory epithelium. Many ORs are, however, ectopically expressed in other tissues and involved in several diseases including cancer. In this study, we describe that one OR, OR10H1, is predominantly expressed in the human urinary bladder with a notably higher expression at mRNA and protein level in bladder cancer tissues. Interestingly, also significantly higher amounts of OR10H1 transcripts were detectable in the urine of bladder cancer patients than in the urine of control persons. We identified the sandalwood-related compound Sandranol as a specific agonist of OR10H1. This deorphanization allowed the functional characterization of OR10H1 in BFTC905 bladder cancer cells. The effect of receptor activation was morphologically apparent in cell rounding, accompanied by changes in the cytoskeleton detected by β-actin, T-cadherin and β-Catenin staining. In addition, Sandranol treatment significantly diminished cell viability, cell proliferation and migration and induced a limited degree of apoptosis. Cell cycle analysis revealed an increased G1 fraction. In a concentration-dependent manner, Sandranol application elevated cAMP levels, which was reduced by inhibition of adenylyl cyclase, and elicited intracellular Ca 2+ concentration increase. Furthermore, activation of OR10H1 enhanced secretion of ATP and serotonin. Our results suggest OR10H1 as a potential biomarker and therapeutic target for bladder cancer.
Analysis on pathogenesis of 50 cases of bladder proliferative lesions.
Chen, Zhiqiang; Lan, Ruzhu; Ye, Zhangqun; Yang, Weimin
2003-01-01
In order to study the pathogenesis, clinical and pathological characteristics of proliferative lesions of the bladder, 50 cases of proliferative lesions of the bladder from 150 patients with complaints of frequency, urgency, hematuria and dysuria were subjected to cystoscopic biopsy of the suspicious foci in the bladder. In combination with the symptoms, urine and urodynamics, the relationship of proliferative lesions of the bladder to the inflammation and obstruction of the lower urinary tract was analyzed. Of the 50 cases of proliferative bladder lesions, 44 cases (88%) had lower urinary tract infection and 29 (58%) lower urinary tract obstruction. The patients with lower urinary tract obstruction were all complicated with infection. Three cases were associated with transitional cell carcinoma. Malignant cells were detected in 1 case by urinary cytologic examination. Proliferative lesions of the bladder, especially those without other obvious mucosa changes under cystoscopy, are common histological variants of urothelium in the patients with chronic inflammation and obstruction of the lower urinary tract. Chronic inflammation and obstruction of the lower urinary tract might be the causes for proliferative lesions of the bladder. It is suggested that different treatments should be applied according to the scope and histological type of the proliferative lesions.
Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes
NASA Astrophysics Data System (ADS)
Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei
2015-03-01
Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.
Vanden Abeele, Fabien; Lehen’kyi, V’yacheslav; Ouafik, L’Houcine; Mauroy, Brigitte; Prevarskaya, Natalia
2013-01-01
Adrenomedullin (AM) is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level. PMID:23741410
Li, Xinxing; Wang, Haolu; Wang, Juan; Chen, Yuying; Yin, Xiaobin; Shi, Guiying; Li, Hui; Hu, Zhiqian; Liang, Xiaowen
2016-08-02
Chemoresistance is one of the most leading causes for tumor progression and recurrence of bladder cancer. Reactive oxygen species (ROS) plays a key role in the chemosensitivity of cancer cells. In the present study, emodin (1,3,8-trihydroxy-6-methylanthraquinone) was applied as a ROS generator in combination with cisplatin in T24 and J82 human bladder cancer cells. Cell viability and apoptosis rate of different treatment groups were detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry (FCM). The expression of transporters was measured at both the transcription and translation levels using PCR and western blotting. In vitro findings were confirmed by in vivo experiments using tumor-bearing mice. The expression of multidrug resistance-associated protein 1 (MRP1) in tumour tissue was measured using immunohistochemistry and side effects of the emodin/cisplatin co-treatment were investigated by histological examination. Emodin increased the cellular ROS level and effectively enhanced the cisplatin-induced cytotoxicity of T24 and J82 human bladder cancer cells through decreasing glutathione-cisplatin (GSH-cisplatin) conjugates. It blocked the chemoresistance of T24 and J82 cells to cisplatin through suppressing the expression of MRP1. This effect was specific in T24 and J82 cells but not in HCV-29 normal bladder epithelial cells. Consistent with in vitro experiments, emodin/cisplatin co-treatment increased the cell apoptosis and repressed the MRP1 expression in xenograft tumors, and without obvious systemic toxicity. This study revealed that emodin could increase the cisplatin-induced cytotoxicity against T24 and J82 cells via elevating the cellular ROS level and downregulating MRP1 expression. We suggest that emodin could serve as an effective adjuvant agent for the cisplatin-based chemotherapy of bladder cancer.
Feng, Chen; Sun, Ping; Hu, Jing; Feng, Hua; Li, Mingqiu; Liu, Guibo; Pan, Yanming; Feng, Ying; Xu, Yongliang; Feng, Kejian; Feng, Yukuan
2017-06-01
MicroRNAs (miRNAs) play critical roles in tumorigenesis and metastasis by negatively regulating gene expression through complementary binding to the 3'-untranslated region of target mRNAs. The role of miRNAs in expression of the tumor suppressor DAB2IP in bladder cancer (BC) remains unknown. The aim of the present study was to identify miRNAs targeting DAB2IP and determine their expression and function in BC. We predicted candidate miRNAs targeting DAB2IP using TargetScan software. Dual-luciferase reporter assays confirmed that miRNA-556-3p directly regulated DAB2IP expression. Quantitative RT-PCR and RNase protection assays showed that endogenous miRNA-556-3p expression was significantly upregulated in clinical samples of BC patients and BC cell lines and western blot analysis indicated that DAB2IP expression in BC tissues and BC cell lines was concurrently downregulated. Gain or loss of function studies showed that upregulation of miRNA-556-3p promoted proliferation, invasion, migration and colony formation of BC cells, whereas downregulation resulted in opposite effects. Importantly, restoration of DAB2IP expression rescued the effects induced by miRNA-556-3p. Overexpression of miRNA-556-3p in BC cells not only decreased DAB2IP expression, but also markedly increased Ras GTPase activity and ERK1/2 phosphorylation level. These findings suggest that DAB2IP is a direct target of miRNA-556-3p, and endogenous miRNA-556-3p expression shows inverse correlation with simultaneous DAB2IP expression in BC tissues and cells. miRNA-556-3p functions as a tumor promoter in tumorigenesis and metastasis of BC by targeting DAB2IP. Moreover, miRNA-556-3p-mediated DAB2IP suppression plays an oncogenic role by partial activation of the Ras-ERK pathway.
Lymphocytic infiltration of bladder after local cellular immunotherapy.
Ingram, M; Bishai, M B; Techy, G B; Narayan, K S; Saroufeem, R; Yazan, O; Marshall, C E
2000-01-01
This is a case report of a patient who received cellular immunotherapy, in the form of local injections of autologous stimulated lymphocytes (ASL) into individual tumors in the urinary bladder. A major consideration in cellular immunotherapy being the ability of immune cells to reach all target areas, we hypothesized that direct delivery of effector cells into individual bladder tumors might assure such access. ASL were generated by exposing the patient's PBL to phytohemagglutinin and culturing them in the presence of IL-2 to expand the population. ASL were injected into the base of individual bladder tumors three times at intervals of 3 weeks. The patient died of a myocardial infarct, unrelated to cell therapy, 20 days after the third injection. An autopsy was performed. Histological sections of the bladder showed extensive lymphocytic infiltration of virtually the entire organ. No conclusions about the therapeutic efficacy of local immunotherapy using ASL are possible. Nevertheless, the observations reported, taken together with reports of therapeutic efficacy of other immunotherapy regimens in the management of bladder cancer, suggest that ready access of stimulated lymphocytes to all regions of the organ may account, in part, for the relatively high rate of therapeutic success reported for various immunotherapy regimens for this malignancy.
de Graaf, Petra; van der Linde, E Martine; Rosier, Peter F W M; Izeta, Ander; Sievert, Karl-Dietrich; Bosch, J L H Ruud; de Kort, Laetitia M O
2017-06-01
Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.
PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma.
Ross, R L; McPherson, H R; Kettlewell, L; Shnyder, S D; Hurst, C D; Alder, O; Knowles, M A
2016-07-28
Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer.
Padilla-Nash, Hesed M.; Hathcock, Karen; McNeil, Nicole E.; Mack, David; Hoeppner, Daniel; Ravin, Rea; Knutsen, Turid; Yonescu, Raluca; Wangsa, Danny; Dorritie, Kathleen; Barenboim, Linda; Hu, Yue; Ried, Thomas
2011-01-01
Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, bi-nucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors upon injection into immuno-compromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process. PMID:22161874
Mydlo, J H; Weinstein, R; Shah, S; Solliday, M; Macchia, R J
1999-04-01
Perforation of the bladder during transurethral resection is a worrisome complication for most urologists. Little is known about the consequences of seeding of tumor cells into the peritoneum or retroperitoneum. We reviewed several hospital patient databases as well as the literature to determine the outcome of such situations. We performed a local multi-institutional case and MEDLINE review using key words, such as bladder neoplasm, neoplasm seeding, perforation, rupture, transurethral resection, peritonitis and tumor. We also contacted several urologists and oncologists at major cancer centers in the United States and Europe regarding the incidence and followup of perforated/violated bladder cancer cases. There were 16 bladder violations in the presence of transitional cell carcinoma, including 2 partial cystectomies that had negative margins and no subsequent metastatic recurrences, a bladder tumor that was detected during suprapubic prostatectomy and perforations during transurethral resection (extraperitoneal in 4 cases and intraperitoneal in 9). Two patients died of sepsis and existing metastatic disease, respectively. The only recurrence among the remaining 11 patients developed after intraperitoneal bladder perforation during transurethral resection for Ta grade 2 tumor. Several anecdotal reports discussed local and distal tumor recurrences, suggesting that even superficial transitional cell carcinoma can behave aggressively if grown in an environment outside the bladder. However, these reports are rare. Any benefit of prophylactic chemotherapy was not proved. While perforation of the bladder during transurethral resection for cancer and the possibility of tumor implantation are matters of concern, our review demonstrates that few patients return with an extravesical tumor recurrence either locally or distally compared to those with a nonruptured bladder after resection. Although our patient sample is small and there are a limited number of reports in the literature, the risk of recurrence still exists and the urologist should be aware of its possibility. Since recurrences are usually rapid, they may easily manifest to the urologist at followup. However, one should also consider chest x-rays and/or computerized tomography to rule out recurrences that are not clinically obvious.
Shamah, S M; Stiles, C D; Guha, A
1993-01-01
Malignant astrocytoma is the most common primary human brain tumor. Most astrocytomas express a combination of platelet-derived growth factor (PDGF) and PDGF receptor which could close an autocrine loop. It is not known whether these autocrine loops contribute to the transformed phenotype of astrocytoma cells or are incidental to that phenotype. Here we show that dominant-negative mutants of the PDGF ligand break the autocrine loop and revert the phenotype of BALB/c 3T3 cells transformed by the PDGF-A or PDGF-B (c-sis) gene. Then, we show that these mutants are selective in that they do not alter the phenotype of 3T3 cells transformed by an activated Ha-ras or v-src gene or by simian virus 40. Finally, we show that these mutants revert the transformed phenotype of two independent human astrocytoma cell lines. They have no effect on the growth of human medulloblastoma, bladder carcinoma, or colon carcinoma cell lines. These observations are consistent with the view that PDGF autocrine loops contribute to the transformed phenotype of at least some human astrocytomas. Images PMID:8246942
Deckmann, Klaus; Filipski, Katharina; Krasteva-Christ, Gabriela; Fronius, Martin; Althaus, Mike; Rafiq, Amir; Papadakis, Tamara; Renno, Liane; Jurastow, Innokentij; Wessels, Lars; Wolff, Miriam; Schütz, Burkhard; Weihe, Eberhard; Chubanov, Vladimir; Gudermann, Thomas; Klein, Jochen; Bschleipfer, Thomas; Kummer, Wolfgang
2014-06-03
Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.
Correlation of the cell surface antigens with stage and grade in cancer of the bladder.
Emmott, R C; Javadpour, N; Bergman, S M; Soares, T
1979-01-01
We examined 76 bladder tumors of various stages and grades for the presence of the ABO (H) cell surface antigen, using the specific red cell adherence technique. Of the grade I lesions studied 70 per cent were positive for the cell surface antigen and none of the 26 grade III tumors retained the antigens. When correlated with clinical stage the tumors showed no antigens for those of stages B1 to D, while 12 of 16 stage A lesions were positive for the antigen. When stage A lesions were studied and the findings were correlated with recurrence and metastasis/invasion rates the cell surface antigen was present on the initial tumor in only 1 lesion that recurred at an invasive stage. The findings of this study show that the specific red cell adherence technique may be valuable for predicting malignant potential in low grade, low stage cancer of the bladder. If supported by further investigation this technique may offer the capability of selecting low grade, low stage bladder tumors that are destined to invade or metastasize while they are at curable stages.
Cystitis glandularis in a cat.
Agut, Amalia; Carrillo, Juana D; Soler, Marta; García, Juan D; Belda, Eliseo; Gómez, Miguel A; Bernabe, Antonio
2014-04-01
An 8-year-old intact male Persian cat was presented for investigation of chronic haematuria. The cat had episodes of haematuria on several occasions that were non-responsive to antimicrobial therapy. Abdominal ultrasound examination revealed dilation of the renal pelvis and ureters of both kidneys. The urinary bladder wall was thickened, a mass of heterogeneous echogenicity filled the lumen of the bladder, and two parallel thin hyperechoic lines were identified within the lumen, which suggested a urethral catheter. Differential diagnoses for the urinary bladder mass included cystitis and neoplasia. The mass was surgically removed from the urinary bladder, and a urethral catheter was found embedded in the mass. Histopathological findings were consistent with cystitis glandularis of a typical type. Periodic bladder ultrasonographic studies were performed; at the time of writing, over 2 years later, recurrence had not been detected.
Paget's disease of the urethral meatus following transitional cell carcinoma of the bladder.
Tomaszewski, J E; Korat, O C; LiVolsi, V A; Connor, A M; Wein, A
1986-02-01
Pagetoid extension of transitional cell carcinoma onto the urethral meatus following cystectomy is a rare complication of bladder carcinoma. We report 2 cases associated with severe dysplasia and carcinoma in situ of the periurethral glands.
Lee, Jane-Dar; Lee, Ming-Huei; Yang, Wen-Kai; Wang, Kuan-Lin; Lee, Tsung-Han
2017-03-01
To investigate the changes including expression and localization of 2 potassium channels, renal outer medullary K + channel (ROMK) and voltage-gated K + channel 7.1 (KCNQ1), after increased urinary potassium leakage in patients with interstitial cystitis/painful bladder syndrome (IC/PBS). The study group included 24 patients with IC/PBS and a control group consisting of 12 volunteers without any IC/PBS symptoms. Bladder biopsies were taken from both groups. We determined the protein expression and distribution of potassium channels using immunoblotting, immunohistochemistry, and immunofluorescent staining under confocal laser microscopy. The results revealed that ROMK was predominantly expressed in apical cells of the bladder urothelium at significantly higher levels (3.3-fold) in the study group than in the control group. In contrast, KCNQ1 was expressed in the basolateral membrane according to confocal microscopy results and did not significantly differ between groups. Our data showed that the abundance of ROMK protein in apical cells was increased in the IC/PBS group, whereas KCNQ1, which was distributed in the basolateral membrane of the bladder urothelium, showed similar abundance between groups. These results suggest that upregulation of the ROMK channel in apical cells might permit avid potassium flux into the bladder lumen to maintain intracellular K + homeostasis in the dysfunctional urothelium. Copyright © 2016 Elsevier Inc. All rights reserved.
Update on tolterodine extended-release for treatment of overactive bladder
Omotosho, Tola; Chen, Chi Chiung Grace
2010-01-01
Overactive bladder is a prevalent condition which negatively impacts quality of life and puts a significant economical burden on society. First-line therapy often includes pharmacotherapy with antimuscarinic medications, and numerous research studies have demonstrated that tolterodine extended-release (ER) is an efficacious and tolerable formulation of this class of medication. This review provides an update on the clinical use of tolterodine ER, detailing the current literature on its efficacy, tolerability, adverse effects, and comparability with other commonly prescribed medications for the treatment of overactive bladder. PMID:24198627
NASA Astrophysics Data System (ADS)
Piao, Daqing; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.
2017-02-01
Bladder cancer is one of the most expensive cancers to manage due to frequent recurrences requiring life-long surveillance and treatment. A near-infrared labeled 2-deoxy-d-glucose probe IRDye800CW-DG targeting glucose metabolism pathway has shown to enhance the sensitivity of diagnosing several types of cancers as tested on tumor models not including bladder tumor. This pilot study has explored differential uptake of intravesically administered IRDye800CW-DG in an orthotopic rat bladder tumor model. Twenty-five female Fischer rats were randomly grouped to four conditions: no-tumor-control (n=3), no-tumor-control intravesically instilled with IRDye800CWDG (n=6), rats bearing GFP-labeled AY-27 rat bladder urothelial cell carcinoma cells and washed with saline (n=5), and rats bearing AY-27 tumors and intravesically instilled with IRDye800CW-DG (n=11). Near-infrared fluorescence was measured from the opened bladder wall of anesthetized rat at an excitation wavelength of 750nm and an emission wavelength of 776nm, by using an in-house fluorescence imaging system. There is no statistically significant difference of the peak fluorescence intensity among the no-tumor-control bladders (n=3), the no-tumorcontrol bladders instilled with IRDye800CW-DG (n=6), and the GFP-labeled AY-27 treated bladders washed by saline (n=5). When compared to that of the no-tumor-control bladders instilled with IRDye800CW-DG (n=6), the fluorescence intensity of GFP-labeled AY-27 treated bladders instilled with IRDye800CW-DG and with histology confirmed neoplastic bladder tissue (n=11) was remarkably more intense (3.34 fold of over the former) and was also statistically significant (p<0.0001). The differential uptake of IRDye800CW-DG by the neoplastic urinary bladder tissues suggests the potential for cystoscopy-adaptation to enhance diagnosis and guiding surgical management of flat urinary bladder cancer.
Montano, Ryan; Khan, Nadeem; Hou, Huagang; Seigne, John; Ernstoff, Marc S; Lewis, Lionel D; Eastman, Alan
2017-09-15
Gemcitabine irreversibly inhibits ribonucleotide reductase and induces S phase arrest but whether this occurs in tumors in mice or patients has not been established. Tumor cells in culture were incubated with gemcitabine for 6 h to approximate the administration schedule in a patient. Concentrations that induced persistent S phase arrest thereafter correlated with cell killing. Administration of gemcitabine to mice also demonstrated a persistent S phase arrest in their tumor. The minimum dose that induced almost complete S phase arrest after 24 h (40 mg/kg) was well below the maximum tolerated dose in mice. S phase arrest was also observed in tumors of bladder cancer patients receiving gemcitabine. The Chk1 inhibitor MK-8776 sensitized cells to gemcitabine with the greatest cell killing when added 18 h after gemcitabine. In mice, the administration of MK-8776 18 h after gemcitabine elicited positivity for the DNA damage marker γH2AX; this also occurred at relatively low dose (40 mg/kg) gemcitabine. Hence, in both cell culture and xenografts, MK-8776 can markedly enhance cell killing of cells reversibly arrested in S phase by gemcitabine. Some cell lines are hypersensitive to MK-8776 as monotherapy, but this was not observed in xenograft models. Effective monotherapy requires a higher dose of Chk1 inhibitor, and target inhibition over a longer time period as compared to its use in combination. These results have important implications for combining Chk1 inhibitors with gemcitabine and suggest that Chk1 inhibitors with increased bioavailability may have improved efficacy both in combination and as monotherapy.
Lobo, João; Henrique, Rui; Monteiro, Paula; Lobo, Cláudia
2017-04-01
Anaplastic large cell lymphoma is an aggressive T-cell neoplasm. It rarely involves the urinary bladder, with just twelve cases reported thus far and only one being ALK-negative. Immunophenotyping (particularly for ALK) is mandatory, both for prognostic and therapeutic reasons. Herein, we report the case of a patient with an ALK-negative anaplastic large cell lymphoma involving the bladder which was diagnosed and fully characterized by immunocytochemistry in urine cytology. The patient underwent a cystoscopy and the urine sample disclosed tumor diathesis background and aggregates of atypical cells, with evidence of multinucleation and mitotic figures. Immunocytochemistry revealed strong membrane/Golgi positivity for CD30 and negativity for ALK. The patient was submitted to transurethral resection for therapeutic purposes, which confirmed the diagnosis. To the best of our knowledge, this represents only the third case of anaplastic large cell lymphoma with bladder involvement diagnosed in urine cytology and the very first with diagnostic findings allowing for immunophenotyping of the disease in a bladder wash. The present report reinforces the role of urine cytology as a suitable method for establishing an earlier diagnosis and characterization of the disease, avoiding submitting patients to invasive procedures like transurethral resections. Diagn. Cytopathol. 2017;45:354-358. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kang, Minyong; Lee, Kyoung-Hwa; Lee, Hye Sun; Jeong, Chang Wook; Kwak, Cheol; Kim, Hyeon Hoe; Ku, Ja Hyeon
2017-02-04
Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR) inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1), chloroquine (CQ) and 3-methyladenine (3-MA) were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8) assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI) was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA) remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating a novel therapeutic strategy to treat advanced bladder cancer.
Hood, Brandy; Andersson, Karl-Erik
2013-01-01
The overactive bladder syndrome and detrusor overactivity are conditions that can have major effects on quality of life and social functioning. Antimuscarinic drugs are still first-line treatment. These drugs often have good initial response rates, but adverse effects and decreasing efficacy cause long-term compliance problems, and alternatives are needed. The recognition of the functional contribution of the urothelium/suburothelium, the autonomous detrusor muscle activity during bladder filling and the diversity of nerve transmitters involved has sparked interest in both peripheral and central modulation of overactive bladder syndrome/detrusor overactivity pathophysiology. Three drugs recently approved for treatment of overactive bladder syndrome/detrusor overactivity (mirabegron, tadalafil and onabotulinum toxin A), representing different pharmacological mechanisms; that is, β-adrenoceptor agonism, phosphodiesterase type 5 inhibition, and inhibition of nerve release of efferent and afferent transmitters, all seem to have one effect in common: inhibition of the afferent nervous activity generated by the bladder during filling. In the present review, the different mechanisms forming the pharmacological basis for the use of these drugs are discussed. PMID:23072271
Tao, Jun; Wu, Deyao; Xu, Bin; Qian, Weichun; Li, Pengchao; Lu, Qiang; Yin, Changjun; Zhang, Wei
2012-06-01
It has been shown that regulation of EGFR expression in prostate cancer cells is mostly at the transcriptional level. microRNA-133 (miR-133) has long been recognized as a muscle-specific miRNA which may regulate myoblast differentiation and participate in many myogenic diseases. Recently, it has been reported that miR-133 is also involved in other tumors, such as bladder cancer, esophageal cancer and may regulate cell motility in these cancer cells. In the present study, we examined the expression and effects of miR-133 in two hormone-insensitive prostate cancer cell lines. The expression of miR-133a and miR-133b were analyzed by quantitative RT-PCR. After transfection of miR-133a and miR-133b, cell viability assay, luciferase assay, western blot analysis, cell migration and invasion assay were conducted in Du145 and PC3 cells. In this study, we showed that miR‑133a and miR-133b are expressed at the detection limit in two hormone-insensitive prostate cancer cell lines, PC3 and DU145. Ectopic expression of miR-133 inhibited cell proliferation, migration and invasion in these cells. We also provide the first evidence that miR-133 may target EGFR. Our study provided the first glimpse of the functional role of miR-133 in two hormone-independent prostate cancer cell lines. These results may add to our knowledge on the molecular basis of prostate cancer progression.
Mechanisms of Disease: involvement of the urothelium in bladder dysfunction
Birder, Lori A; de Groat, William C
2011-01-01
SUMMARY Although the urinary bladder urothelium has classically been thought of as a passive barrier to ions and solutes, a number of novel properties have been recently attributed to urothelial cells. Studies have revealed that the urothelium is involved in sensory mechanisms (i.e. the ability to express a number of sensor molecules or respond to thermal, mechanical and chemical stimuli) and can release chemical mediators. Localization of afferent nerves next to the urothelium suggests that urothelial cells could be targets for neurotransmitters released from bladder nerves or that chemicals released by urothelial cells could alter afferent nerve excitability. Taken together, these and other findings highlighted in this article suggest a sensory function for the urothelium. Elucidation of mechanisms that influence urothelial function might provide insights into the pathology of bladder dysfunction. PMID:17211425
Radiation-induced cystitis following intracavitary irradiation for superficial bladder cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maatman, T.J.; Novick, A.C.; Montague, D.K.
Intracavitary irradiation is effective in the treatment of noninvasive papillary transitional cell carcinoma and carcinoma in situ of the bladder. Mortality has not been associated with this form of therapy. The morbidity associated with intracavitary irradiation consists of mild to severe radiation cystitis and we report 2 such cases. One patient is from a series of 65 patients with noninvasive bladder tumors treated with intracavitary irradiation at this clinic since 1965. The second patient had noninvasive bladder tumors and was treated with intracavitary irradiation elsewhere. In both patients severe radiation cystitis subsequently developed, requiring simple cystectomy and urinary diversion. Themore » potential for this serious side effect must be considered when choosing a form of therapy for patients with noninvasive papillary transitional cell carcinoma and carcinoma in situ of the bladder.« less
Aragon-Ching, Jeanny B; Trump, Donald L
2016-09-01
Bladder urothelial cancers remain an important urologic cancer with limited treatment options in the locally advanced and metastatic setting. While neoadjuvant chemotherapy for locally advanced muscle-invasive cancers has shown overall survival benefit, clinical uptake in practice have lagged behind. Controversies surrounding adjuvant chemotherapy use are also ongoing. Systemic therapies for metastatic bladder cancer have largely used platinum-based therapies without effective standard second-line therapy options for those who fail, although vinflunine is approved in Europe as a second-line therapy based on a Phase III trial, and most recently, atezolizumab, a checkpoint inhibitor, was approved by the US FDA. Given increasing recognition of mutational signatures expressed in urothelial carcinomas, several promising agents with use of VEGF-targeted therapies, HER2-directed agents and immunotherapies with PD-1/PD-L1 antibodies in various settings are discussed herein.
Gupta, K.; Chou, M. Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A. E.
2011-01-01
Purpose Cranberry proanthocyanidins have been identified as possible inhibitors of Escherichia coli adherence to uroepithelial cells. However, little is known about the dose range of this effect. Furthermore, it has not been studied directly in the urogenital system. To address these issues we tested the effect of a cranberry powder and proanthocyanidin extract on adherence of a P-fimbriated uropathogenic E. coli isolate to 2 new urogenital model systems, namely primary cultured bladder epithelial cells and vaginal epithelial cells. Materials and Methods E. coli IA2 was pre-incubated with a commercially available cranberry powder (9 mg proanthocyanidin per gm) or with increasing concentrations of proanthocyanidin extract. Adherence of E. coli IA2 to primary cultured bladder epithelial cells or vaginal epithelial cells was measured before and after exposure to these products. Results Cranberry powder decreased mean adherence of E. coli IA2 to vaginal epithelial cells from 18.6 to 1.8 bacteria per cell (p <0.001). Mean adherence of E. coli to primary cultured bladder epithelial cells was decreased by exposure to 50 μg/ml proanthocyanidin extract from 6.9 to 1.6 bacteria per cell (p <0.001). Inhibition of adherence of E. coli by proanthocyanidin extract occurred in linear, dose dependent fashion over a proanthocyanidin concentration range of 75 to 5 μg/ml. Conclusions Cranberry products can inhibit E. coli adherence to biologically relevant model systems of primary cultured bladder and vaginal epithelial cells. This effect occurs in a dose dependent relationship. These findings provide further mechanistic evidence and biological plausibility for the role of cranberry products for preventing urinary tract infection. PMID:17509358
Kiselyov, Alex; Bunimovich-Mendrazitsky, Svetlana; Startsev, Vladimir
2015-01-01
Intravesical Bacillus Calmette–Guerin (BCG) vaccine is the preferred first line treatment for non-muscle invasive bladder carcinoma (NMIBC) in order to prevent recurrence and progression of cancer. There is ongoing need for the rational selection of i) BCG dose, ii) frequency of BCG administration along with iii) synergistic adjuvant therapy and iv) a reliable set of biochemical markers relevant to tumor response. In this review we evaluate cellular and molecular markers pertinent to the immunological response triggered by the BCG instillation and respective mathematical models of the treatment. Specific examples of markers include diverse immune cells, genetic polymorphisms, miRNAs, epigenetics, immunohistochemistry and molecular biology ‘beacons’ as exemplified by cell surface proteins, cytokines, signaling proteins and enzymes. We identified tumor associated macrophages (TAMs), human leukocyte antigen (HLA) class I, a combination of Ki-67/CK20, IL-2, IL-8 and IL-6/IL-10 ratio as the most promising markers for both pre-BCG and post-BCG treatment suitable for the simulation studies. The intricate and patient-specific nature of these data warrants the use of powerful multi-parametral mathematical methods in combination with molecular/cellular biology insight and clinical input. PMID:26673853
Lightweight bladder lined pressure vessels
Mitlitsky, F.; Myers, B.; Magnotta, F.
1998-08-25
A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.
Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging
NASA Astrophysics Data System (ADS)
Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean
2016-06-01
Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.
Cost-effectiveness of Pembrolizumab in Second-line Advanced Bladder Cancer.
Sarfaty, Michal; Hall, Peter S; Chan, Kelvin K W; Virik, Kiran; Leshno, Moshe; Gordon, Noa; Moore, Assaf; Neiman, Victoria; Rosenbaum, Eli; Goldstein, Daniel A
2018-03-22
Immune-modulating drugs have recently been introduced to the second-line setting of advanced bladder cancer. Pembrolizumab increases overall survival and is associated with less toxicity compared with chemotherapy in this setting based on the Keynote 045 study. The high cost of immunotherapy necessitates an assessment of its value by considering both efficacy and cost. To estimate the cost-effectiveness of pembrolizumab for the second-line treatment of advanced bladder cancer from the perspective of payers in multiple countries. We developed a Markov model to compare the cost and effectiveness of pembrolizumab with those of chemotherapy in the second-line treatment of advanced bladder cancer based on the Keynote 045 study. Drug costs were acquired for the United States (US), United Kingdom (UK), Canada, and Australia. All costs were converted from local currency to US dollars at the exchange rates in September 2017. Health outcomes were measured in quality-adjusted life-years (QALYs). Pembrolizumab generated a gain of 0.36-0.37 QALYs compared with chemotherapy. Our analysis established the following incremental cost-effectiveness ratios (ICERs) for pembrolizumab versus chemotherapy in second-line advanced bladder cancer treatment: US $122 557/QALY; UK $91 995/QALY; Canada $90 099/QALY; and Australia $99 966/QALY. The willingness-to-pay (WTP) thresholds per QALY are considered to be around 100 000-150 000 US dollars for the US, 20 000-50 000 pounds for the UK (US$25 000-65 000), 20 000 -100 000 CAD for Canada (US$16 000-80 000), and 40 000-75 000 AUD for Australia (US$32 000-60 000). Cost-effectiveness and WTP thresholds vary between countries. Compared with the other countries examined, US drug prices were found to be the highest, leading to the highest ICER. With standard WTP thresholds, pembrolizumab may be considered cost-effective in the US but not in the other countries examined. This article assessed the cost-effectiveness of pembrolizumab for the treatment of patients with metastatic bladder cancer who had previously failed one treatment regimen. It would cost $122 557 in the United States, $91 995 in the United Kingdom, $90 099 in Canada, and $99 966 in Australia to gain one quality-adjusted life-year with pembrolizumab versus chemotherapy in these patients, which may be considered cost-effective only in the United States because of the differences in willingness-to-pay thresholds. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk
2014-04-01
The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.
Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia
2010-09-01
To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.
Risk factors for development of primary bladder squamous cell carcinoma
Hubbard, R; Swallow, D; Finch, W; Wood, SJ; Biers, SM
2017-01-01
INTRODUCTION The aim of this study was to investigate the prevalence of risk factors for primary squamous cell carcinoma (SCC) of the bladder. MATERIALS A total of 90 cases of primary SCC of the bladder were identified through multicentre analysis. Patient demographics, stage and grade of cancer at presentation, management and outcomes were recorded. The presence of known risk factors (catheter use, neuropathic bladder, smoking history, recurrent urinary tract infection and bladder stones) was also documented. RESULTS Over half of the patients had at least one identifiable risk factor for the development of primary bladder SCC: 13.9% of patients had a history of catheter use (clean intermittent self-catheterisation [CISC] in 11.1%), 10.0% of patients had a neuropathic bladder, 27.8% were smokers or ex-smokers and 20.0% had a documented history of recurrent urinary tract infection. Statistical analysis of the results showed no association between risk factors and grade of tumour at presentation. CONCLUSIONS These data further support the association between primary bladder SCC and several of the well documented risk factors for its development. Chronic use of CISC may confer a greater risk for development of SCC than thought previously. Further evidence of the role of CISC in primary SCC is required to justify routine screening and to determine exactly when surveillance of the bladder should begin for this group of patients. PMID:27869492
2006-12-01
magnetic beads (MACS) Our CD phenotyping result showed a layer of stromal cells beneath the bladder urothelium that was positive for CD13 whereas the...bladder, CD13 stains a subpopulation of stromal cells (black arrow) in the lamina propria as shown on the right. The partially denuded urothelium is
Erickson, Deborah R.; Tomaszewski, John E.; Kunselman, Allen R.; Stetter, Christina M.; Peters, Kenneth M.; Rovner, Eric S.; Demers, Laurence M.; Wheeler, Marcia A.; Keay, Susan K.
2009-01-01
Purpose To test for associations between urine markers, bladder biopsy features and bladder ulcers in interstitial cystitis/painful bladder syndrome (IC/PBS). Materials and Methods Subjects were 72 patients with IC/PBS undergoing bladder distention and biopsy. Urine was collected before the procedure. Urine marker levels were correlated with biopsy and cystoscopic findings. Patients with no previous IC/PBS treatments (n=47) were analyzed separately from previously treated patients (n=25). Results For untreated patients, urine IL-6 and cGMP were associated with urothelial EGF receptor staining (for IL-6 r=0.29, 95% CI (0.07, 0.51), p=0.01; for cGMP r=0.34, 95% CI (0.13, 0.55), p=0.002). Urine IL-8 was negatively associated with urothelial HB-EGF staining (r=-0.34, 95% CI (-0.55, -0.12), p=0.002) and positively associated with lamina propria mast cell count (r=0.29, 95% CI (0.06, 0.52), p=0.01). The latter association also was seen in treated patients (r=0.46, 95% CI (0.20, 0.73), p<0.001). None of the urine markers was significantly different for ulcer vs. nonulcer patients. All of the ulcer patients had extensive inflammation on bladder biopsy: severe mononuclear cell infiltration, moderate or strong IL-6 staining in the urothelium and lamina propria, and LCA staining in >10% of the lamina propria. However, these features also were seen in 24-76% of the nonulcer patients. Conclusions Overall, urine markers did not associate robustly with biopsy findings. The strongest association was a positive association between urine IL-8 levels and bladder mast cell count. Ulcer patients consistently had bladder inflammation, but the cystoscopic finding of ulcers was not a sensitive indicator of inflammation on bladder biopsy. PMID:18353383
Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon
2014-10-05
Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.
O’Brien, Valerie P.; Hannan, Thomas J.; Schaeffer, Anthony J.; Hultgren, Scott J.
2015-01-01
Purpose of review Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Recent findings Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. Summary The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact. PMID:25517222
O'Brien, Valerie P; Hannan, Thomas J; Schaeffer, Anthony J; Hultgren, Scott J
2015-02-01
Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.
Receptors, channels, and signalling in the urothelial sensory system in the bladder
Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.
2017-01-01
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246
Zhang, Ruowen; Che, Xun; Zhang, Jingjie; Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-10-11
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Li, Yang; Li, Jingxia; Deng, Xu; Zhu, Junlan; Jin, Honglei; Zhao, Qinshi; Huang, Chuanshu
2016-01-01
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer. PMID:27556506
Interstitial cystitis intravesical therapy
2017-01-01
Interstitial cystitis (IC) is a progressive bladder disorder that presents with symptoms of bladder urgency, frequency and pain. The aetiology of the disease remains uncertain, but it is postulated that there is an initial infective insult which damages the glycosaminoglycan (GAG) layer of the bladder urothelium. This defect allows an influx of ions, particularly potassium, which initiates an inflammatory reaction in the bladder wall, which incites the symptoms described above. Treatment initially involves behavioural and oral medication, with second line being intravesical instillation therapy. Treatment strategies focus on restoring lower urinary tract epithelial function, inhibiting neural activation, controlling allergies and relieving symptoms. In this review, current intravesical therapy will be discussed, as well as what lies on the horizon for intravesical therapy in IC. PMID:28791236
Bakali, Evangelia; Elliott, Ruth A; Taylor, Anthony H; Lambert, David G; Willets, Jonathon M; Tincello, Douglas G
2014-06-01
To characterize human urothelial cell lines' cannabinoid receptor expression and evaluate their possible use for studying signalling interactions with purinergic and muscarinic receptor activation. PCR was used to detect cannabinoid (CB), muscarinic and purinergic receptor transcripts in HCV29 and UROtsa cells, whilst immunofluorescence evaluated protein expression and localization of cannabinoid receptors. The effect of CB1 agonist (ACEA) on carbachol- and ATP-induced changes in intracellular calcium ([Ca(2+)]i) levels was measured using fluorimetry. The ability of ACEA to reduce intracellular cAMP was investigated in HCV29 cells. CB1 and GPR55 receptor transcripts were detected in HCV29 and UROtsa cells, respectively. Immunofluorescence showed positive staining for CB1 in the HCV29 cells. Both cell lines expressed transcript levels for muscarinic receptors, but carbachol did not raise [Ca(2+)]i levels indicating a lack or low expression of G(q)-coupled muscarinic receptors. Transcripts for purinergic receptors were detected; ATP significantly increased [Ca(2+)]i in HCV29 and UROtsa cells by 395 ± 61 and 705 ± 100 nM (mean ± SEM, n = 6), respectively. ACEA did not alter ATP-induced [Ca(2+)]i or cAMP levels in HCV29 cells. Whilst HCV29 cells expressed CB1 and UROtsa cells expressed GPR55 receptors, these were not functionally coupled to the existing purinergic-driven increase in Ca2+ as such they do not represent a good model to study signalling interactions.
NASA Astrophysics Data System (ADS)
Nseyo, Unyime; Kim, Albert; Stavropoulos, Nikos E.; Skalkos, Dimitris; Nseyo, Unwana U.; Chung, Theodore D.
2005-04-01
Refractory carcinoma in situ and resistant multifocal transitional cell carcinoma (TCC) of the human urinary bladder respond modestly to PHOTOFRIN (PII) PDT. Hypericum perforatum L., (St. John"s wort /Epirus" Vasalmo, Greece), a medicinal plant used for many human ailments, is under investigation as a new photosensitizer. We have reported on the antiproliferative activity of the lipophilic extract of the Hypericum perforatum L. (HP) against cultured T-24, and NBT-11 bladder cancer cells. We investigated response of the polar methanolic fraction (PMF) of the HP extract versus PHOTOFRIN in photodynamic therapy (PDT) of human bladder cancer cells, RT-4 and T-24.The PMF was extracted from the dry herb with methanol, followed by liquid extraction with petroleum ether. RT-4/T-24, were plated (105 cells/well) and placed in the incubator (370 C, 5%CO) for 24 hours prior to addition of drugs. PII 2ug/ml, or PMF 60ug /ml was added and incubation continued. After 24 hours, the cells were treated with laser light (630nm) with 0,1,2,4 and 8 Joules. The cells were then washed and reincubated for another 24 hours. After this incubation cell survival was assessed by the MTT assay. PMF-PDT induced percent cell kill of 0%, 0%, 0%, 29% and 75%, in RT-4 cells (primary noninvasive urinary bladder TCC) versus 5%, 9%, 13%, 69% and 86%, in T-24 cells(metastatic TTC) at 0,1,2,4 and 8 Joules respectively. PII-PDT induced cell kill of 0 %, 0% ,0%,0% and 9 %, in RT-4 cells versus 0%,10%,0%,21% and 77%, in T-24 cells at 0,1,2,4 and 8 Joules respectively.RT-24 cells were relatively more resistant than T-24 cells to PMF and PII-PDT. Understanding mechanisms of such differential responses might prove useful
Molecular biology of bladder cancer.
Martin-Doyle, William; Kwiatkowski, David J
2015-04-01
Classic as well as more recent large-scale genomic analyses have uncovered multiple genes and pathways important for bladder cancer development. Genes involved in cell-cycle control, chromatin regulation, and receptor tyrosine and PI3 kinase-mammalian target of rapamycin signaling pathways are commonly mutated in muscle-invasive bladder cancer. Expression-based analyses have identified distinct types of bladder cancer that are similar to subsets of breast cancer, and have prognostic and therapeutic significance. These observations are leading to novel therapeutic approaches in bladder cancer, providing optimism for therapeutic progress. Copyright © 2015 Elsevier Inc. All rights reserved.
Immunologic features of a carcinogen-induced murine bladder cancer: in vivo and in vitro studies.
Javadpour, N; Hyatt, C L; Soares, T
1979-01-01
Certain in vivo and in vitro immunologic features of carcinogen-induced murine bladder cancer have been studied. The consistency of tumor induction, its natural history, and immunogenicity both in vivo and in vitro render this syngeneic murine bladder tumor a suitable model for immunologic studies. Pre-immunization of strain C3H/Hen mice with mid-gestational fetal cells did not protect the animals from tumor challenge. Sera of mice immunized with mid-gestational fetal cells were not cytotoxic to cultured tumor cells in a microcytotoxicity assay indicative of dissimilarity between the tumor associated antigen and the syngeneic mid-gestational fetal antigen.
Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R
2004-12-15
Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.
[Myofibroblasts and afferent signalling in the urinary bladder. A concept].
Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U
2008-09-01
Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.
Patterson, Karl; Arya, Lovleen; Bottomley, Sarah; Morgan, Susan; Cox, Angela; Catto, James; Bryant, Helen E.
2016-01-01
RECQ helicases are a family of enzymes with both over lapping and unique functions. Functional autosomal recessive loss of three members of the family BLM, WRN and RECQL4, results in hereditary human syndromes characterized by cancer predisposition and premature aging, but despite the finding that RECQL5 deficient mice are cancer prone, no such link has been made to human RECQL5. Here we demonstrate that human urothelial carcinoma of the bladder (UCC) has increased expression of RECQL5 compared to normal bladder tissue and that increasing RECQL5 expression can drive proliferation of normal bladder cells and is associated with poor prognosis. Further, by expressing a helicase dead RECQL5 and by depleting bladder cancer cells of RECQL5 we show that inhibition of RECQL5 activity has potential as a new target for treatment of UCC. PMID:27764811
Kaleağasıoğlu, Ferda; Berger, Martin R
2014-03-01
The alkylphosphocholine, erucylphospho-N,N, N-trimethylpropanolamine (erufosine), has demonstrated anticancer effects in various cell lines, including leukemia, multiple myeloma, bladder, breast and oral squamous cell carcinoma cells. The purpose of the present study was to investigate its antiproliferative, antimigratory and pro-apoptotic effects in colorectal cancer cell lines, SW480 and CC531. The antiproliferative effect was determined by (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) (MTT) dye reduction assay following exposure to erufosine (3.1-100 µM) for 24-72 h. The antimigratory effect of erufosine (1.6-6 µM) was investigated by a wound healing assay for 12-48 h. Caspase-3/-7 activity was measured to detect apoptotic cell death. Erufosine inhibited cell proliferation in a dose- and time-dependent manner. The IC50 values following 72 h of incubation were 3.4 and 25.4 µM for SW480 and CC531 cells, respectively. erufosine at concentrations of 50 and 100 µM induced caspase-3/-7 activity concentration-dependently in SW480 cells, but only at 100 µM in CC531 cells. Incubation of SW480 cells with erufosine (1.56 µM) for 48 h inhibited migration into the scratched area by 54% as compared to the untreated cells; whereas in CC531 cells, the wound width in the erufosine-treated (1.56-6.25 µM) cells following 48 h was closed 2-fold slower than the rate in the untreated group. Erufosine (25 µM) attenuated osteonectin expression and abolished COL1A1 expression in CC531 cells. Erufosine appears to be a promising treatment agent for colorectal cancer. Rat CC531 cells are less sensitive to erufosine than human SW480 cells.
Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder
Eastman, Rocky; Leaf, Elizabeth M.; Zhang, Dianzhong; True, Lawrence D.; Sweet, Robert M.; Seidel, Kristy; Siebert, Joseph R.; Grady, Richard; Mitchell, Michael E.
2010-01-01
von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen. Histocytochemical analysis and keratin profiling demonstrated that nested cells exhibited a phenotype similar, but not identical, to that of urothelial cells of transitional epithelium. Immunostaining and in situ hybridization analysis of exstrophic tissue demonstrated that the FGF-10 receptor is synthesized and retained by cells of von Brunn's nest. In contrast, FGF-10 is synthesized and secreted by mesenchymal fibroblasts via a paracrine pathway that targets basal epithelial cells of von Brunn's nests. Small clusters of 10pRp cells, positive for both FGF-10 and its receptor, were observed both proximal to and inside blood vessels in the lamina propria. The collective evidence points to a mechanism where von Brunn's nests develop under the control of the FGF-10 signal transduction system and suggests that 10pRp cells may be the original source of nested cells. PMID:20719973
Gabig, Theodore G; Waltzer, Wayne C; Whyard, Terry; Romanov, Victor
2016-09-16
The current intravesical treatment of bladder cancer (BC) is limited to a few chemotherapeutics that show imperfect effectiveness and are associated with some serious complications. Thus, there is an urgent need for alternative therapies, especially for patients with high-risk non-muscle invasive (NMIBC). Clostridium perfringens enterotoxin (CPE), cytolytic protein binds to its receptors: claudin 3 and 4 that are expressed in epithelial cells. This binding is followed by rapid cell death. Claudin 4 is present in several epithelial tissue including bladder urothelium and its expression is elevated in some forms of BC. In addition to directly targeting BC cells, binding of CPE to claudins increases urothelium permeability that creates conditions for better accession of the tumor. Therefore, we evaluated CPE as a candidate for intravesical treatment of BC using a cellular model. We examined cytotoxicity of CPE against BC cells lines and 3D cultures of cells derived from surgical samples. To better elucidate cellular mechanisms, activated by CPE and to consider the use of CPE non-toxic fragment (C-CPE) for combination treatment with other drugs we synthesized C-CPE, compared its cytotoxic activity with CPE and examined claudin 4 expression and intracellular localization after C-CPE treatment. CPE induced cell death after 1 h in low aggressive RT4 cells, in moderately aggressive 5637 cells and in the primary 3D cultures of BC cells derived from NMIBC. Conversely, non-transformed urothelial cells and cells derived from highly aggressive tumor (T24) survived this treatment. The reason for this resistance to CPE might be the lower expression of CLDNs or their inaccessibility for CPE in these cells. C-CPE treatment for 48 h did not affect cell viability in tested cells, but declined expression of CLDN4 in RT4 cells. C-CPE increased sensitivity of RT4 cells to Mitommycin C and Dasatinib. To better understand mechanisms of this effect we examined expression and phosphorylation status of EphA2 and Src after C-CPE treatment and found changes in expression and phosphorylated status of these regulatory molecules. These observations show that after additional preclinical studies CPE and C-CPE in combinations with other drugs can be considered as a potential modalities for intravesical treatment of BC because of its ability to effectively destroy BC cells expressing claudin 4 and low toxicity against normal urothelium. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhen, Shuai; Hua, Ling; Liu, Yun-Hui; Sun, Xiao-Min; Jiang, Meng-Meng; Chen, Wei; Zhao, Le; Li, Xu
2017-02-07
CRISPR/Cas9 is a novel and effective genome editing technique, but its application is not widely expanded to manipulate long non-coding RNA (lncRNA) expression. The lncRNA urothelial carcinoma-associated 1 (UCA1) is upregulated in bladder cancer and promotes the progression of bladder cancer. Here, we design gRNAs specific to UCA1 and construct CRISPR/Cas9 systems targeting UCA1. Single CRISPR/Cas9-UCA1 can effectively inhibit UCA1 expression when transfected into 5637 and T24 bladder cancer cells, while the combined transfection of the two most effective CRISPR/Cas9-UCA1s can generate more satisfied inhibitory effect. CRISPR/Cas9-UCA1s attenuate UCA1 expression via targeted genome-specific DNA cleavage, resulting in the significant inhibition of cell proliferation, migration and invasion in vitro and in vivo. The mechanisms associated with the inhibitory effect of CRISPR/Cas9-UCA1 on malignant phenotypes of bladder cancer are attributed to the induction of cell cycle arrest at G1 phase, a substantial increase of apoptosis, and an enhanced activity of MMPs. Additionally, urinary UCA1 can be used as a non-invasive diagnostic marker for bladder cancer as revealed by a meta-analysis. Collectively, our data suggest that CRISPR/Cas9 technique can be used to down-modulate lncRNA expression, and urinary UCA1 may be used as a non-invasive marker for diagnosis of bladder cancer.
Chang, Matthew T; Penson, Alexander; Desai, Neil B; Socci, Nicholas D; Shen, Ronglai; Seshan, Venkatraman E; Kundra, Ritika; Abeshouse, Adam; Viale, Agnes; Cha, Eugene K; Hao, Xueli; Reuter, Victor E; Rudin, Charles M; Bochner, Bernard H; Rosenberg, Jonathan E; Bajorin, Dean F; Schultz, Nikolaus; Berger, Michael F; Iyer, Gopa; Solit, David B; Al-Ahmadie, Hikmat A; Taylor, Barry S
2018-04-15
Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1 , and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965-73. ©2017 AACR See related commentary by Oser and Jänne, p. 1775 . ©2017 American Association for Cancer Research.
King, Jane E; Aal Owaif, Hasan A; Jia, Jia; Roberts, Ian S
2015-07-01
Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTI). The K1 capsule on the surface of UPEC strains is a key virulence factor, and its expression may be important in the onset and progression of UTI. In order to understand capsule expression in more detail, we analyzed its expression in the UPEC strain UTI89 during growth in rich medium (LB medium) and urine and during infection of a bladder epithelial cell line. Comparison of capsule gene transcription using a chromosomal gfp reporter fusion showed a significant reduction in transcription during growth in urine compared to that during growth in LB medium. When examined at the single-cell level, following growth in both media, capsule gene expression appears to be heterogeneous, with two distinct green fluorescent protein (GFP)-expressing populations. Using anti-K1 antibody, we showed that this heterogeneity in gene expression results in two populations of encapsulated and unencapsulated cells. We demonstrated that the capsule hinders attachment to and invasion of epithelial cells and that the unencapsulated cells within the population preferentially adhere to and invade bladder epithelial cells. We found that once internalized, UTI89 starts to produce capsule to aid in its intracellular survival and spread. We propose that this observed phenotypic diversity in capsule expression is a fitness strategy used by the bacterium to deal with the constantly changing environment of the urinary tract. Copyright © 2015 King et al.
Urinary bladder organ hypertrophy is partially regulated by Akt1-mediated protein synthesis pathway.
Qiao, Li-Ya; Xia, Chunmei; Shen, Shanwei; Lee, Seong Ho; Ratz, Paul H; Fraser, Matthew O; Miner, Amy; Speich, John E; Lysiak, Jeffrey J; Steers, William D
2018-05-15
The present study aims to investigate the role of Akt in the regulation of urinary bladder organ hypertrophy caused by partial bladder outlet obstruction (pBOO). Male rats were surgically induced for pBOO. Real-time PCR and western blot were used to examine the levels of mRNA and protein. A phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was used to inhibit the activity of endogenous Akt. The urinary bladder developed hypertrophy at 2 weeks of pBOO. The protein but not mRNA levels of type I collagen and α-smooth muscle actin (αSMA) were increased in pBOO bladder when compared to sham control. The phosphorylation (activation) levels of Akt1 (p-Ser 473 ), mammalian target of rapamycin (mTOR), p70S6 kinase (p70S6K), and 4E-BP1 were also increased in pBOO bladder. LY294002 treatment reduced the phosphorylation levels of Akt1 and 4E-BP1, and the protein levels of type I collagen and αSMA in pBOO bladder. The mRNA and protein levels of proliferating cell nuclear antigen (PCNA) were increased in pBOO bladder, and PCNA up-regulation occurred in urothelial not muscular layer. LY294002 treatment had no effect on the mRNA and protein levels of PCNA in pBOO bladder. LY294002 treatment partially reduced the bladder weight caused by pBOO. pBOO-induced urinary bladder hypertrophy is attributable to fibrosis, smooth muscle cellular hypertrophy, and urothelium cell hyper-proliferation. Akt1-mediated protein synthesis in pBOO bladder contributes to type I collagen and αSMA but not PCNA up-regulation. Target of Akt1 is necessary but not sufficient in treatment of urinary bladder hypertrophy following pBOO. Copyright © 2018 Elsevier Inc. All rights reserved.
Tissue Engineering of Urinary Bladder and Urethra: Advances from Bench to Patients
Bouhout, Sara; Chabaud, Stéphane; Bolduc, Stéphane
2013-01-01
Urinary tract is subjected to many varieties of pathologies since birth including congenital anomalies, trauma, inflammatory lesions, and malignancy. These diseases necessitate the replacement of involved organs and tissues. Shortage of organ donation, problems of immunosuppression, and complications associated with the use of nonnative tissues have urged clinicians and scientists to investigate new therapies, namely, tissue engineering. Tissue engineering follows principles of cell transplantation, materials science, and engineering. Epithelial and muscle cells can be harvested and used for reconstruction of the engineered grafts. These cells must be delivered in a well-organized and differentiated condition because water-seal epithelium and well-oriented muscle layer are needed for proper function of the substitute tissues. Synthetic or natural scaffolds have been used for engineering lower urinary tract. Harnessing autologous cells to produce their own matrix and form scaffolds is a new strategy for engineering bladder and urethra. This self-assembly technique avoids the biosafety and immunological reactions related to the use of biodegradable scaffolds. Autologous equivalents have already been produced for pigs (bladder) and human (urethra and bladder). The purpose of this paper is to present a review for the existing methods of engineering bladder and urethra and to point toward perspectives for their replacement. PMID:24453796
Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals
Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo
ABSTRACT
Epidemiological studies have linked chronic ingestion of drinking water contai...
Steiner, Clara; Gevaert, Thomas; Ganzer, Roman; De Ridder, Dirk; Neuhaus, Jochen
2018-05-01
Interstitial cells (ICs) are thought to play a functional role in urinary bladder. Animal models are commonly used to elucidate bladder physiology and pathophysiology. However, inter-species comparative studies on ICs are rare. We therefore analyzed ICs and their distribution in the upper lamina propria (ULP), the deeper lamina propria (DLP) and the detrusor muscular layer (DET) of human, guinea pig (GP) and pig. Paraffin slices were examined by immunohistochemistry and 3D confocal immunofluorescence of the mesenchymal intermediate filament vimentin (VIM), alpha-smooth muscle actin (αSMA), platelet-derived growth factor receptor alpha (PDGFRα) and transient receptor potential cation channel A1 (TRPA1). Image stacks were processed for analysis using Huygens software; quantitative analysis was performed with Fiji macros. ICs were identified by immunoreactivity for VIM (excluding blood vessels). In all species ≥ 75% of ULP ICs were VIM + /PDGFRα + and ≥ 90% were VIM + /TRPA1 + . In human and pig ≥ 74% of ULP ICs were VIM + /αSMA + , while in GP the percentage differed significantly with only 37% VIM + /αSMA + ICs. Additionally, over 90% of αSMA + ICs were also TRPA1 + and PDGFRα + in human, GP and pig. In all three species, TRPA1 + and PDGFRα + ICs point to an active role for these cells in bladder physiology, regarding afferent signaling processes and signal modification. We hypothesize that decline in αSMA-positivity in GP reflects adaptation of bladder histology to smaller bladder size. In our experiments, pig bladder proved to be highly comparable to human urinary bladder and seems to provide safer interpretation of experimental findings than GP.
Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng
2011-01-01
Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034
Adenocarcinoma of the urinary bladder
Dadhania, Vipulkumar; Czerniak, Bogdan; Guo, Charles C
2015-01-01
Adenocarcinoma is an uncommon malignancy in the urinary bladder which may arise primarily in the bladder as well as secondarily from a number of other organs. Our aim is to provide updated information on primary and secondary bladder adenocarcinomas, with focus on pathologic features, differential diagnosis, and clinical relevance. Primary bladder adenocarcinoma exhibits several different growth patterns, including enteric, mucinous, signet-ring cell, not otherwise specified, and mixed patterns. Urachal adenocarcinoma demonstrates similar histologic features but it can be distinguished from bladder adenocarcinoma on careful pathologic examination. Secondary bladder adenocarcinomas may arise from the colorectum, prostate, endometrium, cervix and other sites. Immunohistochemical study is valuable in identifying the origin of secondary adenocarcinomas. Noninvasive neoplastic glandular lesions, adenocarcinoma in situ and villous adenoma, are frequently associated with bladder adenocarcinoma. It is also important to differentiate bladder adenocarcinoma from a number of nonneoplastic lesions in the bladder. Primary bladder adenocarcinoma has a poor prognosis largely because it is usually diagnosed at an advanced stage. Urachal adenocarcinoma shares similar histologic features with bladder adenocarcinoma, but it has a more favorable prognosis than bladder adenocarcinoma, partly due to the relative young age of patients with urachal adenocarcinoma. PMID:26309895
Cheng, Tiewei; Roth, Beat; Choi, Woonyoung; Black, Peter C; Dinney, Colin; McConkey, David J
2013-01-01
Fibroblast growth factor receptors (FGFRs) are activated by mutation and overexpressed in bladder cancers (BCs), and FGFR inhibitors are currently being evaluated in clinical trials in BC patients. However, BC cells display marked heterogeneity in their responses to FGFR inhibitors, and the biological mechanisms underlying this heterogeneity are not well defined. Here we used a novel inhibitor of FGFRs 1-3 and RNAi to determine the effects of inhibiting FGFR1 or FGFR3 in a panel of human BC cell lines. We observed that FGFR1 was expressed in BC cells that also expressed the "mesenchymal" markers ZEB1 and vimentin, whereas FGFR3 expression was restricted to the E-cadherin- and p63-positive "epithelial" subset. Sensitivity to the growth-inhibitory effects of BGJ-398 was also restricted to the "epithelial" BC cells and it correlated directly with FGFR3 mRNA levels but not with the presence of activating FGFR3 mutations. In contrast, BGJ-398 did not strongly inhibit proliferation but did block invasion in the "mesenchymal" BC cells in vitro. Similarly, BGJ-398 did not inhibit primary tumor growth but blocked the production of circulating tumor cells (CTCs) and the formation of lymph node and distant metastases in mice bearing orthotopically implanted "mesenchymal" UM-UC3 cells. Together, our data demonstrate that FGFR1 and FGFR3 have largely non-overlapping roles in regulating invasion/metastasis and proliferation in distinct "mesenchymal" and "epithelial" subsets of human BC cells. The results suggest that the tumor EMT phenotype will be an important determinant of the biological effects of FGFR inhibitors in patients.
Kang, Minyong; Jeong, Chang Wook; Ku, Ja Hyeon; Kwak, Cheol; Kim, Hyeon Hoe
2014-01-01
Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose) polymerase (PARP) antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1) by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer. PMID:24815071
Biomarkers in bladder cancer: present status and perspectives.
Kim, Wun-Jae; Park, Soongang; Kim, Yong-June
2007-03-27
Bladder cancers are a mixture of heterogeneous cell populations, and numerous factors are likely to be involved in dictating their recurrence, progression and the patient's survival. For any candidate prognostic marker to have considerable clinical relevance, it must add some predictive capacity beyond that offered by conventional clinical and pathologic parameters. Here, the current situation in bladder cancer research with respect to identification of suitable prognostic markers is reviewed. A number of individual molecular markers that might predict bladder cancer recurrence and progression have been identified but many are not sufficiently sensitive or specific for the whole spectrum of bladder cancer diseases seen in routine clinical practice. These limitations have led to interest in other molecular parameters that could enable more accurate prognosis for bladder cancer patients. Of particular interest is the epigenetic silencing of tumor suppressor genes. Since the methylation of these genes can correlate with a poor prognosis, the methylation profile may represent a new bio-marker that indicates the risk of transitional cell carcinoma development. In addition, bladder cancer research is likely to be revolutionized by high-throughput molecular technologies, which allow rapid and global gene expression analysis of thousands of tumor samples. Initial studies employing these technologies have considerably expanded our ability to classify bladder cancers with respect to their survivability. Future microarray analyses are likely to reveal particular gene expression signatures that predict the likelihood of bladder cancer progression and recurrence, as well as patient's survival and responsiveness to different anti-cancer therapies, with great specificity and sensitivity.
Management of Bladder Cancer After Renal Transplantation.
Demirdag, C; Citgez, S; Talat, Z; Onal, B
2017-03-01
In renal transplant recipients, the risk of developing bladder cancer and rate of diagnosis of advanced staged bladder cancer are generally higher than the general population. Also, it is more challenging to treat renal transplant recipients than the regular patient population. We aimed to evaluate the efficacy and safety of radical cystectomy (RC) and urinary diversion with ileal conduit in renal transplant recipients. We identified 2 patients with prior history of renal transplantation who underwent RC and ileal conduit urinary diversion for bladder cancer. Preoperative clinical and demographic data were presented and outcomes were assessed. The RC and ileal conduit urinary diversion were performed in the first patient 56 months after renal transplantation and in the second patient 64 months after renal transplantation. Clinical staging was high-grade T2 transitional cell cancer of the bladder for patient 1 and T2 with pure squamous cell cancer of the bladder for patient 2. No perioperative or postoperative complication and no graft dysfunction occurred in either patient. Our experience demonstrated that RC with ileal conduit reconstruction in renal transplant recipients is safe and feasible. Copyright © 2016 Elsevier Inc. All rights reserved.
Current management of overactive bladder.
Cartwright, Rufus; Renganathan, Arasee; Cardozo, Linda
2008-10-01
The concept of overactive bladder has helped us address the problem of urgency and urge incontinence from a symptomatic perspective. In this review, we provide a critical summary of clinically relevant recent publications, focusing in particular on advances in our understanding of assessment methods and therapeutic interventions for overactive bladder in women. According to current definitions, the prevalence of overactive bladder in western nations is now estimated as 13.0%. Although the prevalence increases with age, the symptoms of overactive bladder may follow a relapsing and remitting course. There has been a proliferation of validated symptom and quality of life measures and increasing sophistication in the analysis of bladder diaries. The role of urodynamics in the evaluation of urgency remains uncertain, with many trials showing limited benefit as a preoperative investigation. Fluid restriction and bladder retraining remain important first-line interventions. Many new anticholinergic medications have been licensed, with limited benefits compared with existing preparations. Intravesical botulinum toxin has become a popular alternative for patients who fail oral therapies. Although there have been few important therapeutic innovations, recent publications have led to greater sophistication in assessment methods and a clearer understanding of the role of existing interventions.
NMP22 BladderChek Test: point-of-care technology with life- and money-saving potential.
Tomera, Kevin M
2004-11-01
A new, relatively obscure tumor marker assay, the NMP22 BladderChek Test (Matritech, Inc.), represents a paradigm shift in the diagnosis and management of urinary bladder cancer (transitional cell carcinoma). Specifically, BladderChek should be employed every time a cystoscopy is performed, with corresponding changes in the diagnostic protocol and the guidelines of the American Urological Association for the diagnosis and management of bladder cancer. Currently, cystoscopy is the reference standard and NMP22 BladderChek Test in combination with cystoscopy improves the performance of cystoscopy. At every stage of disease, BladderChek provides a higher sensitivity for the detection of bladder cancer than cytology, which now represents the adjunctive standard of care. Moreover, BladderChek is four-times more sensitive than cytology and is available at half the cost. Early detection of bladder cancer improves prognosis, quality of life and survival. BladderChek may be analogous to the prostate-specific antigen test and eventually expand beyond the urologic setting into the primary care setting for the testing of high-risk patients characterized by smoking history, occupational exposures or age.
ATP release from bladder urothelium and serosa in a rat model of partial bladder outlet obstruction.
Shiina, Kazuhiro; Hayashida, Ken-Ichiro; Ishikawa, Kazuo; Kawatani, Masahito
2016-01-01
Overactive bladder is one of the major health problem especially in elderly people. Adenosine triphosphate (ATP) is released from urinary bladder cells and acts as a smooth muscle contraction and sensory signal in micturition but little is known about the role of ATP release in the pathophysiology of overactive bladder. To assess the relationship between ATP and overactive bladder, we used a partial bladder outlet obstruction (pBOO) model in rats. The bladder caused several changes by pBOO: An increase in bladder weight, hypertrophy of sub-urothelium and sub-serosal area, and frequent non-voiding bladder contraction during urine storage. Basal ATP release from urothelium and serosa of pBOO rats was significantly higher than that of normal rats. Distentioninduced ATP release from urothelium of normal and pBOO rats had no significant change. However, distention-induced ATP release from serosa of pBOO rats was higher than that of normal. These findings may identify ATP especially released from serosa as one of causes of non-voiding contractions and overactive bladder symptoms.
Prostate stem cell antigen is overexpressed in human transitional cell carcinoma.
Amara, N; Palapattu, G S; Schrage, M; Gu, Z; Thomas, G V; Dorey, F; Said, J; Reiter, R E
2001-06-15
Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigens, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. In addition to its expression in normal and malignant prostate, we recently reported that PSCA is expressed at low levels in the transitional epithelium of normal bladder. In the present study, we compared the expression of PSCA in normal and malignant urothelial tissues to assess its potential as an immunotherapeutic target in transitional cell carcinoma (TCC). Immunohistochemical analysis of PSCA protein expression was performed on tissue sections from 32 normal bladder specimens, as well as 11 cases of low-grade transitional cell dysplasia, 21 cases of carcinoma in situ (CIS), 38 superficial transitional cell tumors (STCC, stages T(a)-T(1)), 65 muscle-invasive TCCs (ITCCs, stages T(2)-T(4)), and 7 bladder cancer metastases. The level of PSCA protein expression was scored semiquantitatively by assessing both the intensity and frequency (i.e., percentage of positive tumor cells) of staining. We also examined PSCA mRNA expression in a representative sample of normal and malignant human transitional cell tissues. In normal bladder, PSCA immunostaining was weak and confined almost exclusively to the superficial umbrella cell layer. Staining in CIS and STCC was more intense and uniform than that seen in normal bladder epithelium (P < 0.001), with staining detected in 21 (100%) of 21 cases of CIS and 37 (97%) of 38 superficial tumors. PSCA protein was also detected in 42 (65%) of 65 of muscle-invasive and 4 (57%) of 7 metastatic cancers, with the highest levels of PSCA expression (i.e., moderate-strong staining in >50% of tumor cells) seen in 32% of invasive and 43% of metastatic samples. Higher levels of PSCA expression correlated with increasing tumor grade for both STCCs and ITCCs (P < 0.001). Northern blot analysis confirmed the immunohistochemical data, showing a dramatic increase in PSCA mRNA expression in two of five muscle-invasive transitional cell tumors when compared with normal samples. Confocal microscopy demonstrated that PSCA expression in TCC is confined to the cell surface. These data demonstrate that PSCA is overexpressed in a majority of human TCCs, particularly CIS and superficial tumors, and may be a useful target for bladder cancer diagnosis and therapy.
Differential tissue expression of enhanced green fluorescent protein in 'green mice'.
Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei
2010-06-01
In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.
Turner, R M; Love, C C; McDonnell, S M; Sweeney, R W; Twitchell, E D; Habecker, P L; Reilly, L K; Pozor, M A; Kenney, R M
1995-12-15
An 8-year-old stallion was evaluated because of recurrent urinary tract infections and chronic intermittent urospermia. After extensive diagnostic testing, it was hypothesized that the stallion had a reflex dyssynergia of the bladder and urethral sphincter. Initial attempts to manage the urospermia included semen fractionation, semen collection after voluntary urination, and use of semen extenders. None of these efforts reliably yielded a quality ejaculate. Administration of imipramine hydrochloride (1.2 mg/kg of body weight, PO, 4 hours prior to semen collection) was initiated in an attempt to enhance bladder neck closure during ejaculation. This treatment, combined with voluntary urination prior to ejaculation, resulted in ejaculates containing little or no urine. Using this protocol, 19 of 20 mares bred during the subsequent 2 years became pregnant. By the third year, the bladder dysfunction had progressed, and the urospermia was no longer manageable. Bladder catheterization, followed by manual expression of the bladder per rectum, were necessary prior to each semen collection to obtain a urine-free ejaculate. Three-and-a-half years after initial examination, transitional cell carcinoma of the bladder with metastasis was identified, and the stallion was euthanatized. It is not known whether the transitional cell carcinoma was related to the dysfunctional bladder. Imipramine hydrochloride did not eliminate, but did reduce, the frequency and degree of urospermia in the affected stallion for approximately 2 years.
Genetic Variants in the Wnt/β-Catenin Signaling Pathway as Indicators of Bladder Cancer Risk.
Pierzynski, Jeanne A; Hildebrandt, Michelle A; Kamat, Ashish M; Lin, Jie; Ye, Yuanqing; Dinney, Colin P N; Wu, Xifeng
2015-12-01
Genetic factors that influence bladder cancer risk remain largely unknown. Previous research has suggested that there is a strong genetic component underlying the risk of bladder cancer. The Wnt/β-catenin signaling pathway is a key modulator of cellular proliferation through its regulation of stem cell homeostasis. Furthermore, variants in the Wnt/β-catenin signaling pathway have been implicated in the development of other cancers, leading us to believe that this pathway may have a vital role in bladder cancer development. A total of 230 single nucleotide polymorphisms in 40 genes in the Wnt/β-catenin signaling pathway were genotyped in 803 bladder cancer cases and 803 healthy controls. A total of 20 single nucleotide polymorphisms were nominally significant for risk. Individuals with 2 variants of LRP6: rs10743980 were associated with a decreased risk of bladder cancer in the recessive model in the initial analysis (OR 0.76, 95% CI 0.58-0.99, p=0.039). This was validated using the bladder genome-wide association study chip (OR 0.51, 95% CI 0.27-1.00, p=0.049 and for combined analysis p=0.007). Together these findings implicate variants in the Wnt/β-catenin stem cell pathway as having a role in bladder cancer etiology. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Pathology of parainfluenza virus infection in patients with congenital immunodeficiency syndromes.
Madden, John F; Burchette, James L; Hale, Laura P
2004-05-01
Infection with parainfluenza virus typically produces a mild, self-limited upper respiratory infection. However, parainfluenza infections have become increasingly recognized as a source of severe morbidity and mortality in immunocompromised patients. In this retrospective study we identified 6 patients with congenital immunodeficiency and positive respiratory cultures for parainfluenza virus who died and underwent complete autopsy. Tissues obtained at autopsy were studied using hematoxylin and eosin-stained sections, immunoperoxidase staining for parainfluenza virus, and in selected cases, electron microscopy. All 6 patients exhibited typical cytopathic effects of parainfluenza virus, including giant cell formation, in lung and/or bronchial tissues. Parainfluenza virus infection was also documented by giant cell formation and immunohistochemistry in the pancreas (in 3 of 6 patients) and the kidney or bladder (in 2 of 4 patients). Anti-parainfluenza antibody also specifically reacted with cells in the gastrointestinal tract (in 2 of 4), spleen (in 4 of 6), thymus and/or lymph nodes (in 4 of 4), and small blood vessels in various organs (in 4 of 6). Pancreatic, bladder, colon, and thymic epithelial cell lines were susceptible to experimental infections with clinical isolates of parainfluenza virus type 3 in vitro. Parainfluenza virus infection was serious in patients with congenital immunodeficiencies, contributing directly to death in 5 of the 6 patients studied. Because this virus is capable of infecting tissues in the gastrointestinal and urinary systems as well as in the respiratory tract, body secretions and fluids from each of these locations should be considered potentially infectious.
THE PERMEABILITY OF RAT TRANSITIONAL EPITHELIUM
Hicks, R. M.
1966-01-01
Permeability barriers must exist in transitional epithelium to prevent the free flow of water from underlying blood capillaries through the epithelium into the hypertonic urine, and such a barrier has now been demonstrated in isolated bladders. This barrier is passive in function and can be destroyed by damaging the luminal surface of the transitional epithelium with sodium hydroxide and 8 M urea solutions, by digesting it with trypsin, lecithinase C, and lecithinase D, or by treating it with lipid solvents such as Triton x 100 and saponin. From this it is concluded that the barrier depends on the integrity of lipoprotein cell membranes. The barrier function is also destroyed by sodium thioglycollate solutions, and electron microscope investigations show that sodium thioglycollate damages the thick asymmetric membrane which limits the luminal face of the superficial squamous cell. Cytochemical staining shows the epithelium to contain disulfide and thiol groups and to have a concentration of these groups at the luminal margin of the superficial cells. It thus appears that the permeability barrier also depends on the presence of disulfide bridges in the epithelium, and it is presumed that these links are located in keratin. Because of the effect of thioglycollates, both on the barrier function and on the morphology of the membrane, it is suggested that keratin may be incorporated in the thick barrier membrane. It is proposed that the cells lining the urinary bladder and ureters should be regarded as a keratinizing epitheluim. PMID:5901498
Le Goux, Constance; Damotte, Diane; Vacher, Sophie; Sibony, Mathilde; Delongchamps, Nicolas Barry; Schnitzler, Anne; Terris, Benoit; Zerbib, Marc; Bieche, Ivan; Pignot, Géraldine
2017-05-01
Immunotherapy for bladder cancer seems to have promising results. Here, we evaluated the association between messenger RNA (mRNA) and protein levels and possible prognostic value of the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immune checkpoint pathways during bladder carcinogenesis. Tumor samples were obtained from 155 patients (84 with muscle-invasive bladder cancer [MIBC], and 71 non-muscle-invasive bladder cancer [NMIBC]) and normal bladder tissue from 15 patients. We evaluated the mRNA expression of 3 genes in the PD-1 pathway (PD-1, PD-L1, and PD-L2) and 4 in the CTLA4 pathway (CTLA4, CD28, CD80, and CD86) in normal and tumoral human bladder samples by quantitative real-time reverse transcription polymerase chain reaction, with immunohistochemistry used to evaluate the protein expression of PD-1 and PD-L1 in tumor and immune cells. Results of molecular analyses were compared with survival analyses. As compared with normal bladder tissue, MIBC tissue showed PD-1, PD-L1, CTLA4, and CD80 overexpression (59.5%, 60.7%, 84.5%, and 92.9%, respectively), whereas overexpression was lower in NMIBC tissue (22.5%, 4.2%, 35.2%, and 46.5%, respectively). The results of reverse transcription polymerase chain reaction analysis were confirmed by immunohistochemistry, with a high correlation between mRNA and protein expression. On multivariate analyses, overexpression of the studied genes was not associated with prognosis in relapse or progression of NMIBC or in recurrence-free and overall survival of MIBC. The CTLA4 pathway appears to be deregulated along with the PD-1/PD-L1 pathway in bladder carcinogenesis, with good correlation between mRNA and protein expression endorsing the useful role of immune checkpoints, especially for a large subgroup of MIBC. Copyright © 2017 Elsevier Inc. All rights reserved.
Avicenna's Canon of Medicine and modern urology: part II: bladder calculi.
Madineh, Sayed Mohammad Ali
2009-01-01
In the previous issue of the Urology Journal, a comparison of Avicenna's Canon of Medicine with modern urologic findings was done in part I of this article, addressing bladder anatomy and physiology and bladder calculi. In part II of this review, the remaining chapters of the Canon of Medicine on bladder calculi are reviewed. Avicenna points to perineal urethrostomy (perineostomy), which is today performed as the last therapeutic line or as a temporary remedy before surgical treatment. He also describes surgery via transperineal route and warns the surgeon of the proximity of vasa deferentia, prostate gland, and neurovascular bundle and their exposure in this position. Usage of grasping forceps for removal of bladder calculus and emphasis on removing all calculus fragments are the interesting points of this chapter. Avicenna explains a technique similar to the use of a Babcock forceps for prevention of calculus migration. Complications of bladder calculus surgery and cystostomy are also addressed with scientific precision in the Canon. It is noteworthy that 8 centuries before Fournier described necrotizing fasciitis in male genitalia, Avicenna had described Fournier gangrene in his book.
Zhang, S X; Kobayashi, T; Okada, T; García del Saz, E; Seguchi, H
1991-07-01
The cerium-based method was used to demonstrate cytochemically the ultrastructural localization of alkaline phosphatase (ALPase), 5'-nucleotidase (5'-Nase) and magnesium-dependent adenosine triphosphatase (Mg-ATPase) on the transitional epithelium of the rat urinary bladder. The reaction product for ALPase was found on the plasma membrane of all epithelial cells, except the luminal surface of superficial cells. The activity of 5'-Nase appeared on the plasma membrane of all bladder transitional epithelial cells, including the free surface of superficial cells. The Mg-ATPase reaction product was seen on the plasma membrane of superficial, intermediate and basal cells, but never on the luminal surface of superficial cells and it was only occasionally seen on the basal surface. The possible functions of these phosphatases have been discussed, and it was emphasized that the 5'-Nase activity present on the luminal surface of superficial cells may play a special role in the membrane movement of these cells in the transitional epithelium.
Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A.; Tang, Moon-shong
2014-01-01
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS. PMID:24939871
Janiuk, I.; Kasacka, I.
2015-01-01
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary. PMID:26150151
Janiuk, I; Kasacka, I
2015-04-13
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary.