Sample records for bladder tissue engineering

  1. Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.

    PubMed

    Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz

    2014-03-01

    Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.

  2. Tissue engineering of the bladder--reality or myth? A systematic review.

    PubMed

    Sloff, Marije; Simaioforidis, Vasileios; de Vries, Rob; Oosterwijk, Egbert; Feitz, Wout

    2014-10-01

    We systematically reviewed preclinical studies in the literature to evaluate the potential of tissue engineering of the bladder. Study outcomes were compared to the available clinical evidence to assess the feasibility of tissue engineering for future clinical use. Preclinical studies of tissue engineering for bladder augmentation were identified through a systematic search of PubMed and Embase™ from January 1, 1980 to January 1, 2014. Primary studies in English were included if bladder reconstruction after partial cystectomy was performed using a tissue engineered biomaterial in any animal species, with cystometric bladder capacity as an outcome measure. Outcomes were compared to clinical studies available at http://www.clinicaltrials.gov and published clinical studies. A total of 28 preclinical studies are included, demonstrating remarkable heterogeneity in study characteristics and design. Studies in which preoperative bladder volumes were compared to postoperative volumes were considered the most clinically relevant (18 studies). Bladder augmentation through tissue engineering resulted in a normal bladder volume in healthy animals, with the influence of a cellular component being negligible. Furthermore, experiments in large animal models (pigs and dogs) approximated the desired bladder volume more accurately than in smaller species. The initial clinical experience was based on seemingly predictive healthy animal models with a promising outcome. Unfortunately these results were not substantiated in all clinical trials, revealing dissimilar outcomes in different clinical/disease backgrounds. Thus, the translational predictability of a model using healthy animals might be questioned. Through this systematic approach we present an unbiased overview of all published preclinical studies investigating the effect of bladder tissue engineering on cystometric bladder capacity. Preclinical research in healthy animals appears to show the feasibility of bladder augmentation by tissue engineering. However, in view of the disappointing clinical results based on healthy animal models new approaches should also be evaluated in preclinical models using dysfunctional/diseased bladders. This endeavor may aid in the development of clinically applicable tissue engineered bladder augmentation with satisfactory long-term outcome. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Tissue engineering of urinary bladder - current state of art and future perspectives.

    PubMed

    Adamowicz, Jan; Kowalczyk, Tomasz; Drewa, Tomasz

    2013-01-01

    Tissue engineering and biomaterials science currently offer the technology needed to replace the urinary tract wall. This review addresses current achievements and barriers for the regeneration of the urinary blad- der based on tissue engineering methods. Medline was search for urinary bladder tissue engineering regenerative medicine and stem cells. Numerous studies to develop a substitute for the native urinary bladder wall us- ing the tissue engineering approach are ongoing. Stem cells combined with biomaterials open new treatment methods, including even de novo urinary bladder construction. However, there are still many issues before advances in tissue engineering can be introduced for clinical application. Before tissue engineering techniques could be recognize as effective and safe for patients, more research stud- ies performed on large animal models and with long follow-up are needed to carry on in the future.

  4. Outlines on nanotechnologies applied to bladder tissue engineering.

    PubMed

    Alberti, C

    2012-01-01

    Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.

  5. Augmentation cystoplasty in neurogenic bladder

    PubMed Central

    Kocjancic, Ervin; Demirdağ, Çetin

    2016-01-01

    The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction. PMID:27617312

  6. Tissue Engineering of Urinary Bladder and Urethra: Advances from Bench to Patients

    PubMed Central

    Bouhout, Sara; Chabaud, Stéphane; Bolduc, Stéphane

    2013-01-01

    Urinary tract is subjected to many varieties of pathologies since birth including congenital anomalies, trauma, inflammatory lesions, and malignancy. These diseases necessitate the replacement of involved organs and tissues. Shortage of organ donation, problems of immunosuppression, and complications associated with the use of nonnative tissues have urged clinicians and scientists to investigate new therapies, namely, tissue engineering. Tissue engineering follows principles of cell transplantation, materials science, and engineering. Epithelial and muscle cells can be harvested and used for reconstruction of the engineered grafts. These cells must be delivered in a well-organized and differentiated condition because water-seal epithelium and well-oriented muscle layer are needed for proper function of the substitute tissues. Synthetic or natural scaffolds have been used for engineering lower urinary tract. Harnessing autologous cells to produce their own matrix and form scaffolds is a new strategy for engineering bladder and urethra. This self-assembly technique avoids the biosafety and immunological reactions related to the use of biodegradable scaffolds. Autologous equivalents have already been produced for pigs (bladder) and human (urethra and bladder). The purpose of this paper is to present a review for the existing methods of engineering bladder and urethra and to point toward perspectives for their replacement. PMID:24453796

  7. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  8. [Using of cell biocomposite material in tissue engineering of the urinary bladder].

    PubMed

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-06-01

    In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.

  9. Whyever bladder tissue engineering clinical applications still remain unusual even though many intriguing technological advances have been reached?

    PubMed

    Alberti, C

    2016-01-01

    To prevent problematic outcomes of bowel-based bladder reconstructive surgery, such as prosthetic tumors and systemic metabolic complications, research works, to either regenerate and strengthen failing organ or build organ replacement biosubstitute, have been turned, from 90s of the last century, to both regenerative medicine and tissue engineering.Various types of acellular matrices, naturally-derived materials, synthetic polymers have been used for either "unseeded" (cell free) or autologous "cell seeded" tissue engineering scaffolds. Different categories of cell sources - from autologous differentiated urothelial and smooth muscle cells to natural or laboratory procedure-derived stem cells - have been taken into consideration to reach the construction of suitable "cell seeded" templates. Current clinically validated bladder tissue engineering approaches essentially consist of augmentation cystoplasty in patients suffering from poorly compliant neuropathic bladder. No clinical applications of wholly tissue engineered neobladder have been carried out to radical-reconstructive surgical treatment of bladder malignancies or chronic inflammation-due vesical coarctation. Reliable reasons why bladder tissue engineering clinical applications so far remain unusual, particularly imply the risk of graft ischemia, hence its both fibrous contraction and even worse perforation. Therefore, the achievement of graft vascular network (vasculogenesis) could allow, together with the promotion of host surrounding vessel sprouting (angiogenesis), an effective graft blood supply, so avoiding the ischemia-related serious complications.

  10. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    PubMed Central

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering. PMID:26880982

  11. [Tissue engineering of urinary bladder using acellular matrix].

    PubMed

    Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M

    2017-04-01

    Tissue engineering has become a new promising strategy for repairing damaged organs of the urinary system, including the bladder. The basic idea of tissue engineering is to integrate cellular technology and advanced bio-compatible materials to replace or repair tissues and organs. of the study is the objective reflection of the current trends and advances in tissue engineering of the bladder using acellular matrix through a systematic search of preclinical and clinical studies of interest. Relevant studies, including those on methods of tissue engineering of urinary bladder, was retrieved from multiple databases, including Scopus, Web of Science, PubMed, Embase. The reference lists of the retrieved review articles were analyzed for the presence of the missing relevant publications. In addition, a manual search for registered clinical trials was conducted in clinicaltrials.gov. Following the above search strategy, a total of 77 eligible studies were selected for further analysis. Studies differed in the types of animal models, supporting structures, cells and growth factors. Among those, studies using cell-free matrix were selected for a more detailed analysis. Partial restoration of urothelium layer was observed in most studies where acellular grafts were used for cystoplasty, but no the growth of the muscle layer was observed. This is the main reason why cellular structures are more commonly used in clinical practice.

  12. Bladder tissue engineering through nanotechnology.

    PubMed

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  13. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    PubMed

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  14. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.

    PubMed

    Horst, Maya; Milleret, Vincent; Noetzli, Sarah; Gobet, Rita; Sulser, Tullio; Eberli, Daniel

    2017-04-01

    Poly(lactic-co-glycolic acid) (PLGA) based biomaterials for soft tissue engineering have inherent disadvantages, such as a relative rigidity and a limited variability in the mechanical properties and degradation rates. In this study, a novel electrospun biomaterial based on degradable polyesterurethane (PEU) (DegraPol ® ) was investigated for potential use for bladder engineering in vitro and in vivo. Hybrid microfibrous PEU and PLGA scaffolds were produced by direct electrospinning of the polymer onto a bladder acellular matrix. The scaffold morphology of the scaffold was analyzed, and the biological performance was tested in vitro and in vivo using a rat cystoplasty model. Anatomical and functional outcomes after implantation were analyzed macroscopically, histologically and by cystometry, respectively. Scanning electron microscopy analysis showed that PEU samples had a lower porosity (p < 0.001) and were slightly thinner (p = 0.009) than the PGLA samples. Proliferation and survival of the seeded smooth muscle cells in vitro were comparable on PEU and PLGA scaffolds. After 8 weeks in vivo, the PEU scaffolds exhibited no shrinkage. However, cystometry of the reconstructed bladders exhibited a slightly greater functional bladder capacity in the PLGA group. Morphometric analyses revealed significantly better tissue healing (p < 0.05) and, in particular, better smooth muscle regeneration, as well as a lower rate of inflammatory responses at 8 weeks in the PEU group. Collectively, the results indicated that PEU-hybrid scaffolds promote bladder tissue formation with excellent tissue integration and a low inflammatory reaction in vivo. PEU is a promising biomaterial, particularly with regard to functional tissue engineering of the bladder and other hollow organs. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 658-667, 2017. © 2015 Wiley Periodicals, Inc.

  15. Tissue engineering for human urethral reconstruction: systematic review of recent literature.

    PubMed

    de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O

    2015-01-01

    Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.

  16. Current status of tissue engineering applied to bladder reconstruction in humans.

    PubMed

    Gasanz, C; Raventós, C; Morote, J

    2018-01-11

    Bladder reconstruction is performed to replace or expand the bladder. The intestine is used in standard clinical practice for tissue in this procedure. The complications of bladder reconstruction range from those of intestinal resection to those resulting from the continuous contact of urine with tissue not prepared for this contact. In this article, we describe and classify the various biomaterials and cell cultures used in bladder tissue engineering and reviews the studies performed with humans. We conducted a review of literature published in the PubMed database between 1950 and 2017, following the principles of the PRISM declaration. Numerous in vitro and animal model studies have been conducted, but only 18 experiments have been performed with humans, with a total of 169 patients. The current evidence suggests that an acellular matrix, a synthetic polymer with urothelial and autologous smooth muscle cells attached in vitro or stem cells would be the most practical approach for experimental bladder reconstruction. Bladder replacement or expansion without using intestinal tissue is still a challenge, despite progress in the manufacture of biomaterials and the development of cell therapy. Well-designed studies with large numbers of patients and long follow-up times are needed to establish an effective clinical translation and standardisation of the check-up functional tests. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Optical assessment of tissue anisotropy in ex vivo distended rat bladders

    NASA Astrophysics Data System (ADS)

    Alali, Sanaz; Aitken, Karen J.; Shröder, Annette; Bagli, Darius J.; Alex Vitkin, I.

    2012-08-01

    Microstructural remodelling in epithelial layers of various hollow organs, including changes in tissue anisotropy, are known to occur under mechanical distension and during disease processes. In this paper, we analyze how bladder distension alters wall anisotropy using polarized light imaging (followed by Mueller matrix decomposition). Optical retardance values of different regions of normal rat bladders under different distension pressures are derived. Then optical coherence tomography is used to measure local bladder wall thicknesses, enabling the calculation of the tissue birefringence maps as a measure of the tissue anisotropy. Selected two-photon microscopy is also performed to better understand the compositional origins of the obtained anisotropy results. The dome region of the bladder shows maximum birefringence when the bladder is distended to high pressures, whereas the ventral remains roughly isotropic during distension. In addition, the average anisotropy direction is longitudinal, along the urethra to dome. The derived wall anisotropy trends are based on birefringence as an intrinsic property of the tissue organization independent of its thickness, to aid in understanding the structure-functions relation in healthy bladders. These new insights into the wall microstructure of ex vivo distending bladders may help improve the functionality of the artificially engineered bladder tissues.

  18. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.

    PubMed

    Cheng, Hai-Ling Margaret; Loai, Yasir; Beaumont, Marine; Farhat, Walid A

    2010-08-01

    Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.

  19. Use of donor bladder tissues for in vitro research.

    PubMed

    Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer

    2014-01-01

    To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.

  20. Tissue engineering as innovative chance for organ replacement in radical tumor surgery.

    PubMed

    Alberti, C

    2013-03-01

    Different pathological conditions such as congenital organ absence, severe organ injuries, end-stage organ failure and malignancy-related organ removal, have few effective therapeutic options a part from a whole organ transplant, that, however, often meets with a serious shortage of suitable donor organs. The purpose of this paper consists in highlighting what the novel tissue engineering approaches might help to solve such problems. EMERGING CONCEPTS: A recent approach in tissue/organ engineering, particularly to build bioartificial airways, is the procedure of decellularizing a whole donor organ to obtain a complex 3D-biomatrix-scaffold maintaining the intrinsic vascular network, that is subsequently recellularized with recipient's autologous organ-specific differentiated cells or/and stem cells, to build a potentially functional biological substitute. Such strategy has been clinically used to replace organ in trachea/broncus tumor patients. In another approach, mainly used to construct a bioartificial urinary bladder tissue, different types of either biodegradable synthetic polymers or naturally-derived matrices or even polymer/biomatrix-composite materials are used as scaffold for either cell-free or autologous cell-seeded tissue engineering procedures. So far, such technique has been mainly used to make an augmentation cystoplasty in patients with end-stage poorly compliant neuropathic bladder or in exstrophic bladder subjects. Intriguing developments in biomaterial science, nanotechnologies, stem cell biology, and further improvements in bioreactor manufacturing will allow to generate, in the near future, tissue engineered organs that, as for structure/function so the native one-like, might represent the optimum solution to replace organs in tumor surgery.

  1. Tubular organ epithelialisation

    PubMed Central

    Saksena, Rhea; Gao, Chuanyu; Wicox, Mathew; de Mel, Achala

    2016-01-01

    Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell–scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts. PMID:28228931

  2. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  3. Implantation of In Vitro Tissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially Restore In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury

    DTIC Science & Technology

    2014-01-01

    thickness abdominal wall defects. Tissue Eng 12, 1929, 2006. 7. Gamba, P.G., Conconi, M.T., Lo Piccolo, R., Zara , G., Spi nazzi, R., and Parnigotto... Zara , G., Sabatti, M., Marzaro, M., et al. Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue engineering approach to

  4. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.

    PubMed

    Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad

    2013-10-01

    To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.

  5. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model.

    PubMed

    Zhou, Zhe; Yan, Hao; Liu, Yidong; Xiao, Dongdong; Li, Wei; Wang, Qiong; Zhao, Yang; Sun, Kang; Zhang, Ming; Lu, Mujun

    2018-04-01

    The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.

  6. Bladder tissue engineering using biocompatible nanofibrous electrospun constructs: feasibility and safety investigation.

    PubMed

    Shakhssalim, Nasser; Dehghan, Mohammad Mehdi; Moghadasali, Reza; Soltani, Mohammad Hossein; Shabani, Iman; Soleimani, Masoud

    2012-01-01

    To investigate the feasibility and safety of using biocompatible, nanofibrous electrospun polycaprolactone (PCL) and combination of polylactic acid (PLLA) and PCL mats in a canine model. Plasma-treated electrospun unseeded mats were implanted in three dogs. The first dog was sacrificed after 3 months and the second and third ones after 4 months, and then, the graft was examined macroscopically with subsequent morphological and histochemical evaluation. Both films showed high levels of cell infiltration and tissue formation, but body response to PLLA/PCL mat in comparison to PCL mat was very low. All three implantation models showed the same light microscopic morphology, immunohistochemistry, and scanning electron microscopy results; nevertheless, only the PCL/PLLA model showed favorable clinical results. Based on these data, nanofibrous PLLA/PCL scaffolding could be a suitable material for the bladder tissue engineering; however, it deserves further investigations.

  7. Linearized texture of three-dimensional extracellular matrix is mandatory for bladder cancer cell invasion.

    PubMed

    Alfano, Massimo; Nebuloni, Manuela; Allevi, Raffaele; Zerbi, Pietro; Longhi, Erika; Lucianò, Roberta; Locatelli, Irene; Pecoraro, Angela; Indrieri, Marco; Speziali, Chantal; Doglioni, Claudio; Milani, Paolo; Montorsi, Francesco; Salonia, Andrea

    2016-10-25

    In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC). Next, binding and invasion of bladder metastatic cell line was observed on synthetic scaffold recapitulating anisotropy of tumoral ECM, but not on scaffold with disorganized texture typical of non-neoplastic lamina propria. This study provided information regarding the ultrastructure and geometry of healthy human bladder and BC ECMs. Likewise, using synthetic scaffolds we identified linearization of the texture as a mandatory feature for BC cell invasion. Integrating microstructure and geometry with biochemical and mechanical factors could support the development of an innovative synthetic bladder substitute or a tumoral scaffold predictive of chemotherapy outcomes.

  8. In vivo magnetic resonance imaging of type I collagen scaffold in rat: improving visualization of bladder and subcutaneous implants.

    PubMed

    Sun, Yi; Geutjes, Paul; Oosterwijk, Egbert; Heerschap, Arend

    2014-12-01

    Noninvasive monitoring of implanted scaffolds is important to understand their behavior and role in tissue engineering, in particular to follow their degradation and interaction with host tissue. Magnetic resonance imaging (MRI) is well suited for this goal, but its application is often hampered by the low contrast of scaffolds that are prepared from biomaterials such as type I collagen. The aim of this study was to test iron oxide particles incorporation in improving their MRI contrasts, and to follow their degradation and tissue interactions. Scaffolds with and without iron oxide particles were implanted either subcutaneously or on the bladder of rats. At predetermined time points, in vivo MRI were obtained and tissues were then harvested for histology analysis and transmission electron microscopy. The result showed that the incorporation of iron oxide particles improved MRI contrast of the implants, providing information on their location, shapes, and degradation. Second, the host tissue reaction to the type I collagen implants could be observed in both MRI and histology. Finally, MRI also revealed that the degradation and host tissue reaction of iron particles-loaded scaffolds differed between subcutaneous and bladder implantation, which was substantiated by histology.

  9. Production of urothelium from pluripotent stem cells for regenerative applications.

    PubMed

    Osborn, Stephanie L; Kurzrock, Eric A

    2015-01-01

    As bladder reconstruction strategies evolve, a feasible and safe source of transplantable urothelium becomes a major consideration for patients with advanced bladder disease, particularly cancer. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are attractive candidates from which to derive urothelium as they renew and proliferate indefinitely in vitro and fulfill the non-autologous and/or non-urologic criteria, respectively, that is required for many patients. This review presents the latest advancements in differentiating urothelium from pluripotent stem cells in vitro in the context of current bladder tissue engineering strategies.

  10. Introduction to regenerative medicine and tissue engineering.

    PubMed

    Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D

    2012-01-01

    Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.

  11. Biomedical engineering for health research and development.

    PubMed

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  12. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.

    PubMed

    Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro

    2016-01-01

    Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. © 2015 Wiley Periodicals, Inc.

  13. Neurogenic bladder in spinal cord injury patients

    PubMed Central

    Taweel, Waleed Al; Seyam, Raouf

    2015-01-01

    Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury. PMID:26090342

  14. Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder.

    PubMed

    Morales-Orcajo, Enrique; Siebert, Tobias; Böl, Markus

    2018-05-25

    The mechanical properties of the urinary bladder wall are important to understand its filling-voiding cycle in health and disease. However, much remains unknown about its mechanical properties, especially regarding regional heterogeneities and wall microstructure. The present study aimed to assess the regional differences in the mechanical properties and microstructure of the urinary bladder wall. Ninety (n=90) samples of porcine urinary bladder wall (ten samples from nine different locations) were mechanically and histologically analysed. Half of the samples (n=45) were equibiaxially tested within physiological conditions, and the other half, matching the sample location of the mechanical tests, was frozen, cryosectioned, and stained with Picro-Sirius red to differentiate smooth muscle cells, extracellular matrix, and fat. The bladder wall shows a non-linear stress-stretch relationship with hysteresis and softening effects. Regional differences were found in the mechanical response and in the microstructure. The trigone region presents higher peak stresses and thinner muscularis layer compared to the rest of the bladder. Furthermore, the ventral side of the bladder presents anisotropic characteristics, whereas the dorsal side features perfect isotropic behaviour. This response matches the smooth muscle fibre bundle orientation within the tunica muscularis. This layer, comprising approximately 78% of the wall thickness, is composed of two fibre bundle arrangements that are cross-oriented, one with respect to the other, varying the angle between them across the organ. That is, the ventral side presents a 60°/120° cross-orientation structure, while the muscle bundles were oriented perpendicular in the dorsal side. In the present study, we demonstrate that the mechanical properties and the microstructure of the urinary bladder wall are heterogeneous across the organ. The mechanical properties and the microstructure of the urinary bladder wall within nine specific locations matching explicitly the mechanical and structural variations have been examined. On the one hand, the results of this study contribute to the understanding of bladder mechanics and thus to their functional understanding of bladder filling and voiding. On the other hand, they are relevant to the fields of constitutive formulation of bladder tissue, whole bladder mechanics, and bladder-derived scaffolds i.e., tissue-engineering grafts. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Tissue Quality Assessment Using a Novel Direct Elasticity Assessment Device (The E-Finger): A Cadaveric Study of Prostatectomy Dissection

    PubMed Central

    Good, Daniel W.; Khan, Ashfaq; Hammer, Steven; Scanlan, Paul; Shu, Wenmiao; Phipps, Simon; Parson, Simon H.; Stewart, Grant D.; Reuben, Robert; McNeill, S. Alan

    2014-01-01

    Introduction Minimally invasive radical prostatectomy (RP) (robotic and laparoscopic), have brought improvements in the outcomes of RP due to improved views and increased degrees of freedom of surgical devices. Robotic and laparoscopic surgeries do not incorporate haptic feedback, which may result in complications secondary to inadequate tissue dissection (causing positive surgical margins, rhabdosphincter damage, etc). We developed a micro-engineered device (6 mm2 sized) [E-finger]) capable of quantitative elasticity assessment, with amplitude ratio, mean ratio and phase lag representing this. The aim was to assess the utility of the device in differentiating peri-prostatic tissue types in order to guide prostate dissection. Material and Methods Two embalmed and 2 fresh frozen cadavers were used in the study. Baseline elasticity values were assessed in bladder, prostate and rhabdosphincter of pre-dissected embalmed cadavers using the micro-engineered device. A measurement grid was created to span from the bladder, across the prostate and onto the rhabdosphincter of fresh frozen cadavers to enable a systematic quantitative elasticity assessment of the entire area by 2 independent assessors. Tissue was sectioned along each row of elasticity measurement points, and stained with haematoxylin and eosin (H&E). Image analysis was performed with Image Pro Premier to determine the histology at each measurement point. Results Statistically significant differences in elasticity were identified between bladder, prostate and sphincter in both embalmed and fresh frozen cadavers (p = <0.001). Intra-class correlation (ICC) reliability tests showed good reliability (average ICC = 0.851). Sensitivity and specificity for tissue identification was 77% and 70% respectively to a resolution of 6 mm2. Conclusions This cadaveric study has evaluated the ability of our elasticity assessment device to differentiate bladder, prostate and rhabdosphincter to a resolution of 6 mm2. The results provide useful data for which to continue to examine the use of elasticity assessment devices for tissue quality assessment with the aim of giving haptic feedback to surgeons performing complex surgery. PMID:25384014

  16. Building vascular networks.

    PubMed

    Bae, Hojae; Puranik, Amey S; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A; Khademhosseini, Ali

    2012-11-14

    Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.

  17. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  18. Silk fibroin in tissue engineering.

    PubMed

    Kasoju, Naresh; Bora, Utpal

    2012-07-01

    Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering

    PubMed Central

    Gelain, Fabrizio

    2008-01-01

    Over the last decades, tissue engineering has demonstrated an unquestionable potential to regenerate damaged tissues and organs. Some tissue-engineered solutions recently entered the clinics (eg, artificial bladder, corneal epithelium, engineered skin), but most of the pathologies of interest are still far from being solved. The advent of stem cells opened the door to large-scale production of “raw living matter” for cell replacement and boosted the overall sector in the last decade. Still reliable synthetic scaffolds fairly resembling the nanostructure of extracellular matrices, showing mechanical properties comparable to those of the tissues to be regenerated and capable of being modularly functionalized with biological active motifs, became feasible only in the last years thanks to newly introduced nanotechnology techniques of material design, synthesis, and characterization. Nanostructured synthetic matrices look to be the next generation scaffolds, opening new powerful pathways for tissue regeneration and introducing new challenges at the same time. We here present a detailed overview of the advantages, applications, and limitations of nanostructured matrices with a focus on both electrospun and self-assembling scaffolds. PMID:19337410

  20. Nanotechnology for regenerative medicine.

    PubMed

    Khang, Dongwoo; Carpenter, Joseph; Chun, Young Wook; Pareta, Rajesh; Webster, Thomas J

    2010-08-01

    Future biomaterials must simultaneously enhance tissue regeneration while minimizing immune responses and inhibiting infection. While the field of tissue engineering has promised to develop materials that can promote tissue regeneration for the entire body, such promises have not become reality. However, tissue engineering has experienced great progress due to the recent emergence of nanotechnology. Specifically, it has now been well established that increased tissue regeneration can be achieved on almost any surface by employing novel nano-textured surface features. Numerous studies have reported that nanotechnology accelerates various regenerative therapies, such as those for the bone, vascular, heart, cartilage, bladder and brain tissue. Various nano-structured polymers and metals (alloys) have been investigated for their bio (and cyto) compatibility properties. This review paper discusses several of the latest nanotechnology findings in regenerative medicine (also now called nanomedicine) as well as their relative levels of success.

  1. Cell-Based Therapies in Lower Urinary Tract Disorders.

    PubMed

    Gopinath, Chaitanya; Ponsaerts, Peter; Wyndaele, Jean Jacques

    2015-01-01

    Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.

  2. Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra.

    PubMed

    de Graaf, Petra; van der Linde, E Martine; Rosier, Peter F W M; Izeta, Ander; Sievert, Karl-Dietrich; Bosch, J L H Ruud; de Kort, Laetitia M O

    2017-06-01

    Tissue-engineered (TE) urethra is desirable in men with urethral disease (stricture or hypospadias) and shortage of local tissue. Although ideally a TE graft would contain urethral epithelium cells, currently, bladder epithelium (urothelium) is widely used, but morphologically different. Understanding the differences and similarities of urothelium and urethral epithelium could help design a protocol for in vitro generation of urethral epithelium to be used in TE grafts for the urethra. To understand the development toward urethral epithelium or urothelium to improve TE of the urethra. A literature search was done following PRISMA guidelines. Articles describing urethral epithelium and bladder urothelium development in laboratory animals and humans were selected. Twenty-nine studies on development of urethral epithelium and 29 studies on development of urothelium were included. Both tissue linings derive from endoderm and although adult urothelium and urethral epithelium are characterized by different gene expression profiles, the signaling pathways underlying their development are similar, including Shh, BMP, Wnt, and FGF. The progenitor of the urothelium and the urethral epithelium is the early fetal urogenital sinus (UGS). The urethral plate and the urothelium are both formed from the p63+ cells of the UGS. Keratin 20 and uroplakins are exclusively expressed in urothelium, not in the urethral epithelium. Further research has to be done on unique markers for the urethral epithelium. This review has summarized the current knowledge about embryonic development of urothelium versus urethral epithelium and especially focuses on the influencing factors that are potentially specific for the eventual morphological differences of both cell linings, to be a basis for developmental or tissue engineering of urethral tissue.

  3. THE SIGNIFICANCE OF EPIDERMAL GROWTH FACTOR RECEPTOR AND SURVIVIN EXPRESSION IN BLADDER CANCER TISSUE AND URINE CYTOLOGY OF PATIENTS WITH TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER.

    PubMed

    Kehinde, E O; Al-Maghrebi, M; Anim, J T; Kapila, K; George, S S; Al-Juwaiser, A; Memon, A

    2013-01-01

    To assess whether epidermal growth factor receptor (EGFR) and survivin immunostaining of tumour cells in urinary cytology and tissue of patients with bladder cancer has a prognostic significance. Prospective study Department of Surgery (Division of Urology), Mubarak Al-Kabeer Teaching Hospital and Faculty of Medicine, Kuwait University, Kuwait Urine cytology smears obtainedpriorto cystoscopy in patients with transitional cell carcinoma (TCC) of the bladder were immunostained for EGFR and survivin. Bladder cancer tissue resected at surgery was also immunostained for EGFR and survivin expression. Tissue expression of EGFR and survivin in TCC of the bladder was compared to their expression in urine cytology and relationship to tumour grade and stage. 178 patients were studied (43 newly diagnosed bladder cancer, 58 with recurrent TCC and 77 in disease remission). Twenty five patients with normal urothelium served as controls. The mean sensitivity of urine cytology, tissue survivin immunohistochemistry (IHC) and tissue EGFR IHC was 30.5%, 62% and 59% respectively. The corresponding mean specificity was 95%, 79% and 38% respectively. For grades 1, 2 and 3 bladder tumors, tissue expression positivity for EGFR was 47.8%, 92.9%, 100% and for tissue survivin it was 27.8%, 18.2% and 33.3% respectively. For grades 1, 2 and 3 bladder tumors, urine expression positivity for EGFR was 35.7%, 40% and 67.7% and for urine survivin it was 8.3%, 42.9% and 33.3% respectively. Positive EGFR immunostaining of urine cytology specimen or tumour tissue increases with histological grade of TCC of the bladder. Survivin expression is less consistent in both urine cytology specimen and tissue samples. EGFR immunostaining may provide a useful tool in the grading of bladder TCC and aid in the selection of patients that may benefit from administration of EGFR inhibitors.

  4. Stem cell bioprocessing: fundamentals and principles

    PubMed Central

    Placzek, Mark R.; Chung, I-Ming; Macedo, Hugo M.; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Min Cha, Jae; Fauzi, Iliana; Kang, Yunyi; Yeo, David C.L.; Yip Joan Ma, Chi; Polak, Julia M.; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2008-01-01

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications. PMID:19033137

  5. Stem cell bioprocessing: fundamentals and principles.

    PubMed

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-06

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  6. Implantation of In Vitro Tissue Engineered Muscle Repair Constructs and Bladder Acellular Matrices Partially Restore In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss Injury

    PubMed Central

    Corona, Benjamin T.; Ward, Catherine L.; Baker, Hannah B.; Walters, Thomas J.

    2014-01-01

    The frank loss of a large volume of skeletal muscle (i.e., volumetric muscle loss [VML]) can lead to functional debilitation and presents a significant problem to civilian and military medicine. Current clinical treatment for VML involves the use of free muscle flaps and physical rehabilitation; however, neither are effective in promoting regeneration of skeletal muscle to replace the tissue that was lost. Toward this end, skeletal muscle tissue engineering therapies have recently shown great promise in offering an unprecedented treatment option for VML. In the current study, we further extend our recent progress (Machingal et al., 2011, Tissue Eng; Corona et al., 2012, Tissue Eng) in the development of tissue engineered muscle repair (TEMR) constructs (i.e., muscle-derived cells [MDCs] seeded on a bladder acellular matrix (BAM) preconditioned with uniaxial mechanical strain) for the treatment of VML. TEMR constructs were implanted into a VML defect in a tibialis anterior (TA) muscle of Lewis rats and observed up to 12 weeks postinjury. The salient findings of the study were (1) TEMR constructs exhibited a highly variable capacity to restore in vivo function of injured TA muscles, wherein TEMR-positive responders (n=6) promoted an ≈61% improvement, but negative responders (n=7) resulted in no improvement compared to nonrepaired controls, (2) TEMR-positive and -negative responders exhibited differential immune responses that may underlie these variant responses, (3) BAM scaffolds (n=7) without cells promoted an ≈26% functional improvement compared to uninjured muscles, (4) TEMR-positive responders promoted muscle fiber regeneration within the initial defect area, while BAM scaffolds did so only sparingly. These findings indicate that TEMR constructs can improve the in vivo functional capacity of the injured musculature at least, in part, by promoting generation of functional skeletal muscle fibers. In short, the degree of functional recovery observed following TEMR implantation (BAM+MDCs) was 2.3×-fold greater than that observed following implantation of BAM alone. As such, this finding further underscores the potential benefits of including a cellular component in the tissue engineering strategy for VML injury. PMID:24066899

  7. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction.

    PubMed

    Bačáková, L; Novotná, K; Pařízek, M

    2014-01-01

    Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.

  8. Spectroscopic analysis of bladder cancer tissues using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Al-Muslet, Nafie A.; Ali, Essam E.

    2012-03-01

    Bladder cancer is one of the most common cancers in Africa. It takes several days to reach a diagnosis using histological examinations of specimens obtained by endoscope, which increases the medical expense. Recently, spectroscopic analysis of bladder cancer tissues has received considerable attention as a diagnosis technique due to its sensitivity to biochemical variations in the samples. This study investigated the use of Fourier transform infrared (FTIR) spectroscopy to analyze a number of bladder cancer tissues. Twenty-two samples were collected from 11 patients diagnosed with bladder cancer from different hospitals without any pretreatment. From each patient two samples were collected, one normal and another cancerous. FTIR spectrometer was used to differentiate between normal and cancerous bladder tissues via changes in spectra of these samples. The investigations detected obvious changes in the bands of proteins (1650, 1550 cm-1), lipids (2925, 2850 cm-1), and nucleic acid (1080, 1236 cm-1). The results show that FTIR spectroscopy is promising as a rapid, accurate, nondestructive, and easy to use alternative method for identification and diagnosis of bladder cancer tissues.

  9. Chromium in urothelial carcinoma of the bladder.

    PubMed

    Golabek, Tomasz; Socha, Katarzyna; Kudelski, Jacek; Darewicz, Barbara; Markiewicz-Zukowska, Renata; Chlosta, Piotr; Borawska, Maria

    2017-12-23

    Many epidemiological and experimental studies report a strong role of chemical carcinogens in the etiology of bladder cancer. However, the involvement of heavy metals in tumourigenesis of urothelial carcinoma of the bladder has been poorly investigated. Therefore, the aim of this study was to examine the relationship between chromium (Cr) and bladder cancer. Chromium concentration in two 36-sample series of bladder cancer tissue and sera from patients with this neoplasm were matched with those of a control group. The amount of trace elements in every tissue sample was determined using atomic absorption spectrometry. This was correlated with tumour stage. While the median chromium concentration levels reached statistically higher values in the bladder cancer tissue, compared with the non-cancer tissue (99.632ng/g and 33.144ng/g, respectively; p<0.001), the median Cr levels in the sera of the patients with this carcinoma showed no statistical difference when compared to those of the control group (0.511μg/l and 0.710μg/l, respectively; p=0.408). The median levels of Cr in the bladder tissue, depending on the stage of the tumour, compared with the tissue without the neoplasm, observed the same relationship for both non-muscle invasive and muscle-invasive tumours (p<0.001 and p<0.01, respectively). This study shows that patients with urothelial carcinoma of the bladder had higher tissue Cr levels than people without tumour, while no difference was found in the Cr serum levels between the two groups of patients under investigation.

  10. The Role of Genetically Modified Mesenchymal Stem Cells in Urinary Bladder Regeneration.

    PubMed

    Snow-Lisy, Devon C; Diaz, Edward C; Bury, Matthew I; Fuller, Natalie J; Hannick, Jessica H; Ahmad, Nida; Sharma, Arun K

    2015-01-01

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with CD34+ hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molecular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs. These cell lines were engineered to independently over-express Wnt5a or Cyr61, or to exhibit reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At 4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/mm2) and bladder smooth muscle content (~42% vs ~36%) in Cyr61OX (over-expressing) vs Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/mm2 and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in peripheral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for both Cyr61OX and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at both time-points in all animals. Results from this study indicate that MSC-based Cyr61OX and Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vasculature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously observed with the co-transplantation of MSCs with CD34+ HSPCs and may be specifically targeted as an alternate means to achieve functional bladder regeneration.

  11. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer.

    PubMed

    Lee, Jun Taik; Lee, Sang Don; Lee, Jeong Zoo; Chung, Moon Kee; Ha, Hong Koo

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10(-2) and 1.99×10(-2) in benign bladder tissue and 1.39×10(-2) and 2.32×10(-2) in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets.

  12. Evidence of Nonuniformity in Urothelium Barrier Function between the Upper Urinary Tract and Bladder.

    PubMed

    Williams, Nicholas A; Barnard, Luke; Allender, Chris J; Bowen, Jenna L; Gumbleton, Mark; Harrah, Tim; Raja, Aditya; Joshi, Hrishi B

    2016-03-01

    We compared the relative permeability of upper urinary tract and bladder urothelium to mitomycin C. Ex vivo porcine bladder, ureters and kidneys were dissected out and filled with 1 mg ml(-1) mitomycin C. At 60 minutes the organs were emptied and excised tissue samples were sectioned parallel to the urothelium. Sectioned tissue was homogenized and extracted mitomycin C was quantified. Transurothelial permeation across the different urothelia was calculated by normalizing the total amount of drug extracted to the surface area of the tissue sample. Average mitomycin C concentrations at different tissue depths (concentration-depth profiles) were calculated by dividing the total amount of drug recovered by the total weight of tissue. Mitomycin C permeation across the ureteral urothelium was significantly greater than across the bladder and renal pelvis urothelium (9.07 vs 0.94 and 3.61 μg cm(-2), respectively). Concentrations of mitomycin C in the ureter and kidney were markedly higher than those achieved in the bladder at all tissue depths. Average urothelial mitomycin C concentrations were greater than 6.5-fold higher in the ureter and renal pelvis than in the bladder. To our knowledge we report for the first time that the upper urinary tract and bladder show differing permeability to a single drug. Ex vivo porcine ureter is significantly more permeable to mitomycin C than bladder urothelium and consequently higher mitomycin C tissue concentrations can be achieved after topical application. Data in this study correlate with the theory that mammalian upper tract urothelium represents a different cell lineage than that of the bladder and it is innately more permeable to mitomycin C. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Monitoring of permeability of different analytes in human normal and cancerous bladder tissues in vitro using optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingsong Lei; Xiaoyuan Deng; Huajiang Wei

    2014-12-31

    We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less

  14. Experimental investigations on intracavity sonography. Part 2: Alteration of imaging by artificial alterations in the wall of isolated porcine urinary bladders.

    PubMed

    Jaeger, N; Vahlensieck, W

    1986-01-01

    Because the determination of the depth of urinary bladder tumors by means of intracavity sonography depends on several factors (tumor size, reflection behavior of the tumor etc.), we checked the imaging of this diagnostic technique in the isolated porcine urinary bladder under various experimental conditions. Different tissues of defined size were fixed on the inner or outer surface of the bladder wall; both the bladder mucosa and the foreign tissue were damaged thermally or by incision. The importance of a limited depth of sound penetration or of a sound shadow depending on the characteristics of the tissue under investigation was revealed; tissue types could not be distinguished unequivocally by the reflection pattern; above all, a sonographic diagnosis of the tumor was not possible in the presence of histo-pathologically detectable tissue changes due to thermal damage.

  15. Ultrasound and Biomarker Tests in Predicting Cancer Aggressiveness in Tissue Samples of Patients With Bladder Cancer

    ClinicalTrials.gov

    2017-06-23

    Bladder Papillary Urothelial Carcinoma; Stage 0a Bladder Urothelial Carcinoma; Stage 0is Bladder Urothelial Carcinoma; Stage I Bladder Cancer With Carcinoma In Situ; Stage I Bladder Urothelial Carcinoma; Stage II Bladder Urothelial Carcinoma; Stage III Bladder Urothelial Carcinoma; Stage IV Bladder Urothelial Carcinoma

  16. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model.

    PubMed

    Leonhäuser, Dorothea; Stollenwerk, Katja; Seifarth, Volker; Zraik, Isabella M; Vogt, Michael; Srinivasan, Pramod K; Tolba, Rene H; Grosse, Joachim O

    2017-01-04

    The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model. Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy. Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period. We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.

  17. Use of regenerative tissue for urinary diversion.

    PubMed

    Sopko, Nikolai A; Kates, Max; Bivalacqua, Trinity J

    2015-11-01

    There is a large interest in developing tissue engineered urinary diversions (TEUDs) in order to reduce the significant morbidity that results from utilization of the alimentary tract in the urinary system. Preclinical trials have been favorable but durable clinical results have not been realized. The present article will review the pertinent concepts for the clinical development of a successful TEUD. Studies continue to identify novel scaffold materials and cell populations that are combined to generate TEUDs. Scaffold composition range from synthetic material to decelluarized bladder tissue. Cell types vary from fully differentiated adult populations such as smooth muscle cells isolated from the bladder to stem cell populations including mesenchymal stem cells and induced pluripotent stem cells. Each scaffold and cell type has its advantages and disadvantages with no clear superior component having been identified. Recent clinical trials have been disappointing, supporting the need for additional investigation. Successful application of TEUDs requires a complex interplay of scaffold, cells, and host environment. Studies continue to investigate candidate scaffold materials, cell populations, and combinations thereof to determine which will best recapitulate the complex structure of the human genitourinary tract.

  18. Dynamic reciprocity in cell-scaffold interactions.

    PubMed

    Mauney, Joshua R; Adam, Rosalyn M

    2015-03-01

    Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of shielded or unshielded laser and electrohydraulic lithotripsy on rabbit bladder.

    PubMed

    Bhatta, K M; Rosen, D I; Flotte, T J; Dretler, S P; Nishioka, N S

    1990-04-01

    The pulsed dye laser and electrohydraulic lithotriptor (EHL) are both effective devices for fragmenting urinary and biliary calculi. Both fragment stones by producing a plasma-mediated shockwave. Recently, a plasma shield consisting of a hollow spring and a metal end cap has been described for use with the laser and EHL devices in an attempt to minimize tissue damage without adversely affecting stone fragmentation rates. The tissue effects produced by a pulsed dye laser and an EHL device with and without plasma shields were examined and compared using rabbit urinary bladders. If blood was present, the unshielded laser perforated the bladder wall in two pulses. However, in the absence of blood, over 100 pulses were needed for the laser to perforate the bladder. A mean of six pulses were required to perforate the bladder wall with a shielded laser. The unshielded EHL perforated the bladder wall in two pulses, whereas, the shielded EHL required a mean of 35 pulses. Microscopically, areas of exposure revealed hemorrhage and tissue ablation. We conclude that all devices examined can produce significant tissue damage when discharged directly onto bladder epithelium.

  20. Whole-organ re-engineering: a regenerative medicine approach to digestive organ replacement.

    PubMed

    Yagi, Hiroshi; Soto-Gutierrez, Alejandro; Kitagawa, Yuko

    2013-06-01

    Recovery from end-stage organ failure presents a challenge for the medical community, considering the limitations of extracorporeal assist devices and the shortage of donors when organ replacement is needed. There is a need for new methods to promote recovery from organ failure and regenerative medicine is an option that should be considered. Recent progress in the field of tissue engineering has opened avenues for potential clinical applications, including the use of microfluidic devices for diagnostic purposes, and bioreactors or cell/tissue-based therapies for transplantation. Early attempts to engineer tissues produced thin, planar constructs; however, recent approaches using synthetic scaffolds and decellularized tissue have achieved a more complex level of tissue organization in organs such as the urinary bladder and trachea, with some success in clinical trials. In this context, the concept of decellularization technology has been applied to produce whole organ-derived scaffolds by removing cellular content while retaining all the necessary vascular and structural cues of the native organ. In this review, we focus on organ decellularization as a new regenerative medicine approach for whole organs, which may be applied in the field of digestive surgery.

  1. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  2. Expression analysis and clinical significance of CXCL16/CXCR6 in patients with bladder cancer

    PubMed Central

    LEE, JUN TAIK; LEE, SANG DON; LEE, JEONG ZOO; CHUNG, MOON KEE; HA, HONG KOO

    2013-01-01

    The interactions between chemokines and their receptors are closely involved in the progression and metastasis of cancer. We hypothesized that the CXCL16-CXCR6 ligand-receptor system plays an important role in bladder cancer progression. To evaluate this hypothesis, the expression levels of CXCL16 and CXCR6 were evaluated in 160 patients, including 155 patients with bladder cancer and 5 patients with benign bladder disease. The tissues were analyzed by immunohistochemical (IHC) staining and real-time reverse-transcription polymerase chain reaction. We compared the expression of CXCL16/CXCR6 in bladder cancer and benign bladder disease. The expression of CXCR6 was increased in patients with bladder cancer compared with benign bladder disease in RT-PCR. The mRNA expression levels of CXCL16 and CXCR6 were 1.75×10−2 and 1.99×10−2 in benign bladder tissue and 1.39×10−2 and 2.32×10−2 in bladder cancer tissue, respectively. In IHC staining, the expression of CXCL16/CXCR6 in bladder cancer tissues was higher compared with benign bladder tissues. On multivariate analysis, the IHC staining of CXCL16 was correlated with the 2004 WHO grade and lymphovascular invasion (P=0.021 and P=0.011, respectively). CXCR6 was correlated with the 1973 WHO grade (P=0.001), 2004 WHO grade (P<0.001), pathological T stage (P=0.002) and perineural invasion (P=0.031). However, Cox regression analysis revealed that the expression of CXCL16 and CXCR6 was not correlated with cancer recurrence and cancer-specific survival (P=0.142 and P=0.324, respectively). The expression of CXCL16/CXCR6 was higher in bladder cancer compared to benign disease and correlated with aggressive cancer behavior. Based on our results, the CXCL16/CXCR6 axis appears to be important in the progression of bladder cancer. Thus, CXCL16 and CXCR6 serve as potential therapeutic targets. PMID:23255926

  3. CIP2A is a predictor of survival and a novel therapeutic target in bladder urothelial cell carcinoma.

    PubMed

    Xue, Yijun; Wu, Gengqing; Wang, Xiaoning; Zou, Xiaofeng; Zhang, Guoxi; Xiao, Rihai; Yuan, Yuanhu; Long, Dazhi; Yang, Jun; Wu, Yuting; Xu, Hui; Liu, Folin; Liu, Min

    2013-03-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently identified human oncoprotein that stabilizes the c-MYC protein. Herein, we aimed to investigate its expression pattern, clinical significance, and biological function in urothelial cell carcinoma (UCC) of the bladder. CIP2A expression was examined in 20 fresh bladder UCC tissues and paired adjacent normal bladder tissues by RT-PCR and Western blot. Immunohistochemistry for CIP2A was performed on additional 117 bladder UCC tissues. The clinical significance of CIP2A expression was analyzed. CIP2A downregulation was performed in bladder UCC cell line T24 with high abundance of CIP2A, and the effects of CIP2A silencing on cell proliferation, migration, invasion in vitro, and tumor growth in vivo were evaluated. We found that CIP2A expression was upregulated in bladder UCC tissues relative to adjacent normal bladder tissues. Clinicopathological analysis showed that CIP2A expression was significantly associated with tumor stage (P = 0.004), histological grade (P = 0.007), and lymph node status (P = 0.001). The Kaplan-Meier survival curves revealed that CIP2A expression was associated with poor prognosis in bladder UCC patients (log-rank value = 14.704, P < 0.001). CIP2A expression was an independent prognostic marker of overall patient survival in a multivariate analysis (P = 0.015). Knockdown of the CIP2A expression reduced cell proliferation, anchorage-independent growth, migration, invasion, and tumor growth in xenograft model mice. Our findings suggest that CIP2A is an independent predictor of poor prognosis of bladder UCC patients, and inhibition of its expression might be of therapeutic significance.

  4. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    PubMed Central

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems. PMID:23705900

  5. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review.

    PubMed

    Vrana, Nihal E; Lavalle, Philippe; Dokmeci, Mehmet R; Dehghani, Fariba; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2013-12-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the microscale and provide the necessary tools for the next generation of multicellular engineered tissues and organ-on-a-chip systems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul-Yann; Lin, Yung-Lun; Huang, Chin-Chin

    Epidemiological studies have revealed that exposure to an arsenic-contaminated environment correlates with the incidence of bladder cancer. Bladder cancer is highly recurrent after intravesical therapy, and most of the deaths from this disease are due to invasive metastasis. In our present study, the role of inorganic arsenic in bladder carcinogenesis is characterized in a mouse model. This work provides the first evidence that inorganic arsenic in drinking water promotes N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN)-induced bladder tissue damage, including the urothelium and submucosal layer. This damage to the bladder epithelium induced by BBN includes thickening of the submucosal layer, the loss of the glycosaminoglycanmore » layer and an increase in both the deoxyguanosine oxidation and cytosine methylation levels in the DNA. Further, when 10 ppm inorganic arsenic is combined with BBN, the number of bladder submucosal capillaries is increased. In addition, inorganic arsenic also increases the deoxyguanosine oxidation level, alters the cytosine methylation state, decreases the activities of glutathione reductase and glucose-6-phosphate dehydrogenase, decreases the protein expression of NAD(P)H quinone oxidoreductase-1 (NQO-1) and increases the protein expression of specific protein 1 (Sp1) in bladder tissues. In summary, our data reveal that inorganic arsenic in drinking water promotes the BBN-induced pre-neoplastic damage of bladder tissue in mice, and that the 8-hydroxy-2′-deoxyguanosine, 5-methylcytosine, NQO-1 protein and Sp1 protein levels may be pre-neoplastic markers of bladder tumors. -- Highlights: ► The role of inorganic arsenic in bladder carcinogenesis is characterized in mice. ► We examine the changes in the histology and biochemistry of bladder tissues. ► Inorganic arsenic enhances BBN-induced DNA oxidation while decreases BBN-induced DNA methylation in the mouse bladder. ► Inorganic arsenic alters the activities of the anti-oxidant enzymes in the mouse bladder. ► Inorganic arsenic increases Sp1 while decreases NQO-1 protein expression in the mouse whole bladder.« less

  7. Potential role of melastatin-related transient receptor potential cation channel subfamily M gene expression in the pathogenesis of urinary bladder cancer.

    PubMed

    Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit

    2016-12-01

    Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer.

  8. Mast Cell IL-10 Drives Localized Tolerance in Chronic Bladder Infection

    PubMed Central

    Chan, Cheryl Y.; St. John, Ashley L.; Abraham, Soman N.

    2013-01-01

    The lower urinary tract’s virtually inevitable exposure to external microbial pathogens warrants efficient tissue-specialized defenses to maintain sterility. The observation that the bladder can become chronically infected in combination with clinical observations that antibody responses following bladder infections are not detectable, suggest defects in the formation of adaptive immunity and immunological memory. We have identified a broadly immunosuppressive transcriptional program specific to the bladder, but not the kidney, during infection of the urinary tract that is dependent on tissue-resident mast cells (MCs). This involves localized production of interleukin-10 and results in suppressed humoral and cell mediated responses and bacterial persistence. Therefore, in addition to the previously described role of MCs orchestrating the early innate immunity during bladder infection, they subsequently play a tissue-specific immunosuppressive role. These findings may explain the prevalent recurrence of bladder infections and suggest the bladder as a site exhibiting an intrinsic degree of MC-maintained immune privilege. PMID:23415912

  9. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices.

    PubMed

    Hoogenkamp, Henk R; Pot, Michiel W; Hafmans, Theo G; Tiemessen, Dorien M; Sun, Yi; Oosterwijk, Egbert; Feitz, Wout F; Daamen, Willeke F; van Kuppevelt, Toin H

    2016-10-01

    The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders. Copyright © 2016. Published by Elsevier Ltd.

  10. Collecting and Studying Blood and Tissue Samples From Patients With Locally Recurrent or Metastatic Prostate or Bladder/Urothelial Cancer

    ClinicalTrials.gov

    2017-12-04

    Healthy Control; Localized Urothelial Carcinoma of the Renal Pelvis and Ureter; Metastatic Malignant Neoplasm in the Bone; Metastatic Malignant Neoplasm in the Soft Tissues; Metastatic Urothelial Carcinoma of the Renal Pelvis and Ureter; Recurrent Bladder Carcinoma; Recurrent Prostate Carcinoma; Recurrent Urothelial Carcinoma of the Renal Pelvis and Ureter; Stage IV Bladder Cancer; Stage IV Bladder Urothelial Carcinoma; Stage IV Prostate Cancer

  11. Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosomahaematobium infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ning; Thanan, Raynoo; Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie

    Highlights: {yields} Oct3/4-positive cells increase in Schistosoma haematobium (SH)-associated bladder cancer. {yields} iNOS-dependent DNA lesion, 8-nitroguanine, was formed in Oct3/4-positive cells. {yields} 8-Nitroguanine formed in stem-like cells plays a role in SH-induced carcinogenesis. {yields} Mutant stem cells may participate in inflammation-related carcinogenesis. -- Abstract: To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-{kappa}B (NF-{kappa}B) and induciblemore » nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-{kappa}B in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-{kappa}B activation, leading to tumor development.« less

  12. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium.

    PubMed

    Jerman, Urška Dragin; Veranič, Peter; Kreft, Mateja Erdani

    2014-04-01

    The amniotic membrane (AM) is a naturally derived biomaterial that possesses biological and mechanical properties of great importance for tissue engineering. The aim of our study was to determine whether the AM enables the formation of a normal urinary bladder epithelium-urothelium--and to reveal any differences in the urothelial cell (UC) growth and differentiation when using different AM scaffolds. Cryopreserved human AM was used as a scaffold in three different ways. Normal porcine UCs were seeded on the AM epithelium (eAM), denuded AM (dAM), and stromal AM (sAM) and were cultured for 3 weeks. UC growth on AM scaffolds was monitored daily. By using electron microscopy, histochemical and immunofluorescence techniques, we here provide evidence that all three AM scaffolds enable the development of the urothelium. The fastest growth and the highest differentiation of UCs were demonstrated on the sAM scaffold, which enables the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of the native urothelium. Most importantly, the highly differentiated urothelia on the sAM scaffolds provide important experimental models for future drug delivery studies and developing tissue engineering strategies considering that subtle differences are identified before translation to the clinical settings.

  13. Regenerative medicine as applied to solid organ transplantation: current status and future challenges

    PubMed Central

    Orlando, Giuseppe; Baptista, Pedro; Birchall, Martin; De Coppi, Paolo; Farney, Alan; Guimaraes-Souza, Nadia K.; Opara, Emmanuel; Rogers, Jeffrey; Seliktar, Dror; Shapira-Schweitzer, Keren; Stratta, Robert J.; Atala, Anthony; Wood, Kathryn J.; Soker, Shay

    2013-01-01

    Summary In the last two decades, regenerative medicine has shown the potential for “bench-to-bedside” translational research in specific clinical settings. Progress made in cell and stem cell biology, material sciences and tissue engineering enabled researchers to develop cutting-edge technology which has lead to the creation of nonmodular tissue constructs such as skin, bladders, vessels and upper airways. In all cases, autologous cells were seeded on either artificial or natural supporting scaffolds. However, such constructs were implanted without the reconstruction of the vascular supply, and the nutrients and oxygen were supplied by diffusion from adjacent tissues. Engineering of modular organs (namely, organs organized in functioning units referred to as modules and requiring the reconstruction of the vascular supply) is more complex and challenging. Models of functioning hearts and livers have been engineered using “natural tissue” scaffolds and efforts are underway to produce kidneys, pancreata and small intestine. Creation of custom-made bioengineered organs, where the cellular component is exquisitely autologous and have an internal vascular network, will theoretically overcome the two major hurdles in transplantation, namely the shortage of organs and the toxicity deriving from lifelong immuno-suppression. This review describes recent advances in the engineering of several key tissues and organs. PMID:21062367

  14. Magnetic Fluid Hyperthermia for Bladder Cancer: A Preclinical Dosimetry Study

    PubMed Central

    Oliveira, Tiago R.; Stauffer, Paul R.; Lee, Chen-Ting; Landon, Chelsea D.; Etienne, Wiguins; Ashcraft, Kathleen A.; McNerny, Katie L.; Mashal, Alireza; Nouls, John; Maccarini, Paolo F.; Beyer, Wayne F.; Inman, Brant; Dewhirst, Mark W.

    2014-01-01

    Purpose This paper describes a preclinical investigation of the feasibility of thermotherapy treatment of bladder cancer with Magnetic Fluid Hyperthermia (MFH), performed by analyzing the thermal dosimetry of nanoparticle heating in a rat bladder model. Materials and Methods The bladders of twenty-five female rats were instilled with magnetite-based nanoparticles, and hyperthermia was induced using a novel small animal magnetic field applicator (Actium Biosystems, Boulder, CO). We aimed to increase the bladder lumen temperature to 42°C in <10 min and maintain that temperature for 60 min. Temperatures were measured within the bladder lumen and throughout the rat with seven fiberoptic probes (OpSens Technologies, Quebec, Canada). An MRI analysis was used to confirm the effectiveness of the catheterization method to deliver and maintain various nanoparticle volumes within the bladder. Thermal dosimetry measurements recorded the temperature rise of rat tissues for a variety of nanoparticle exposure conditions. Results Thermal dosimetry data demonstrated our ability to raise and control the temperature of rat bladder lumen ≥1°C/min to a steady-state of 42°C with minimal heating of surrounding normal tissues. MRI scans confirmed the homogenous nanoparticle distribution throughout the bladder. Conclusion These data demonstrate that our MFH system with magnetite-based nanoparticles provide well-localized heating of rat bladder lumen with effective control of temperature in the bladder and minimal heating of surrounding tissues. PMID:24050253

  15. HAMLET treatment delays bladder cancer development.

    PubMed

    Mossberg, Ann-Kristin; Hou, Yuchuan; Svensson, Majlis; Holmqvist, Bo; Svanborg, Catharina

    2010-04-01

    HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. [Feasibility of using connective tissue prosthesis for autoplastic repair of urinary bladder wall defects (an experimental study)].

    PubMed

    Tyumentseva, N V; Yushkov, B G; Medvedeva, S Y; Kovalenko, R Y; Uzbekov, O K; Zhuravlev, V N

    2016-12-01

    Experiments on laboratory rats have shown the feasibility of autoplastic repair of urinary bladder wall defects using a connective-tissue capsule formed as the result of an inflammatory response to the presence of a foreign body. The formation of connective tissue prosthesis is characterized by developing fibrous connective tissue, ordering of collagen fibers, reducing the number of cells per unit area with a predominance of more mature cells - fibroblasts. With increasing time of observation, connective tissue prostheses were found to acquire a morphological structure similar to that of the urinary bladder wall. By month 12, the mucosa, the longitudinal and circular muscle layers were formed. The proposed method of partial autoplastic repair of urinary bladder wall is promising, has good long-term results, but requires further experimental studies.

  17. [Epithelial intestine cells transdifferentiate into bladder urothelium in experiments in vivo].

    PubMed

    Popov, B K; Zaĭchik, A M; Bud'ko, M B; Zlobina, O V; Tolkunova, E N; Zhidkova, O V; Petrov, N S

    2011-01-01

    The autoplastic surgery by intestine tissue has been used for reconstructive therapy of the urinary tract since the middle of the last century; however, cell mechanisms of the urothelium engraftment are still obscure. Intestine stem cells possess plasticity and presumably enable after the autoplastic surgery to transdifferentiate into mature cells of urinary tract. Using the preliminary developed in vivo model for evaluation of somatic cells transdifferentiation into urothelium, we have found that the epithelial intestine cells producing Gfp transdifferentiate into the cryoinjured bladder urothelium of the syngenetic C57BL mice. Gfp was detected in the bladder tissue of mice-recipients using reverted polymerase chain reaction, primary fluorescence and immunofluorescence, while colocalization of the Gfp and Her-4 revealing similar to urothelium staining pattern was demonstrated in a few urothelium cells by double immunohistochemical staining of the bladder tissue with specific antibodies. The results obtained suggest that epithelial intestine cells enable to transdifferentiate into bladder urothelium, however the transdifferentiation level is low and presumably can not provide full functional urothelium engraftment in the case of autoplastic bladder surgery by intestine tissue.

  18. Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.

    PubMed

    Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael

    2014-06-01

    Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Quantitative Evaluation of Heavy Metals and Trace Elements in the Urinary Bladder: Comparison Between Cancerous, Adjacent Non-cancerous and Normal Cadaveric Tissue.

    PubMed

    Abdel-Gawad, Mahmoud; Elsobky, Emad; Shalaby, Mahmoud M; Abd-Elhameed, Mohamed; Abdel-Rahim, Mona; Ali-El-Dein, Bedeir

    2016-12-01

    The role of heavy metals and trace elements (HMTE) in the development of some cancers has been previously reported. Bladder carcinoma is a frequent malignancy of the urinary tract. The most common risk factors for bladder cancer are exposure to industrial carcinogens, cigarette smoking, gender, and possibly diet. The aim of this study was to evaluate HTME concentrations in the cancerous and adjacent non-cancerous tissues and compare them with those of normal cadaveric bladder. This prospective study included 102 paired samples of full-thickness cancer and adjacent non-cancerous bladder tissues of radical cystectomy (RC) specimens that were histologically proven as invasive bladder cancer (MIBC). We used 17 matched controls of non-malignant bladder tissue samples from cadavers. All samples were processed and evaluated for the concentration of 22 HMTE by using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Outcome analysis was made by the Mann-Whitney U, chi-square, Kruskal-Wallis, and Wilcoxon signed ranks tests. When compared with cadaveric control or cancerous, the adjacent non-cancerous tissue had higher levels of six elements (arsenic, lead, selenium, strontium, zinc, and aluminum), and when compared with the control alone, it had a higher concentration of calcium, cadmium, chromium, potassium, magnesium, and nickel. The cancerous tissue had a higher concentration of cadmium, lead, chromium, calcium, potassium, phosphorous, magnesium, nickel, selenium, strontium, and zinc than cadaveric control. Boron level was higher in cadaveric control than cancerous and adjacent non-cancerous tissue. Cadmium level was higher in cancerous tissue with node-positive than node-negative cases. The high concentrations of cadmium, lead, chromium, nickel, and zinc, in the cancerous together with arsenic in the adjacent non-cancerous tissues of RC specimens suggest a pathogenic role of these elements in BC. However, further work-up is needed to support this conclusion by the application of these HMTE on BC cell lines.

  20. Stokes polarimetry imaging of dog prostate tissue

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Johnston, William K., III; Walsh, Joseph T., Jr.

    2010-02-01

    Prostate cancer is the second leading cause of death in the United States in 2009. Radical prostatectomy (complete removal of the prostate) is the most common treatment for prostate cancer, however, differentiating prostate tissue from adjacent bladder, nerves, and muscle is difficult. Improved visualization could improve oncologic outcomes and decrease damage to adjacent nerves and muscle important for preservation of potency and continence. A novel Stokes polarimetry imaging (SPI) system was developed and evaluated using a dog prostate specimen in order to examine the feasibility of the system to differentiate prostate from bladder. The degree of linear polarization (DOLP) image maps from linearly polarized light illumination at different visible wavelengths (475, 510, and 650 nm) were constructed. The SPI system used the polarization property of the prostate tissue. The DOLP images allowed advanced differentiation by distinguishing glandular tissue of prostate from the muscular-stromal tissue in the bladder. The DOLP image at 650 nm effectively differentiated prostate and bladder by strong DOLP in bladder. SPI system has the potential to improve surgical outcomes in open or robotic-assisted laparoscopic removal of the prostate. Further in vivo testing is warranted.

  1. Identification of Carbonic Anhydrase IX as a Novel Target for Endoscopic Molecular Imaging of Human Bladder Cancer.

    PubMed

    Wang, Jiaqi; Fang, Ruizhe; Wang, Lu; Chen, Guang; Wang, Hongzhi; Wang, Zhichao; Zhao, Danfeng; Pavlov, Valentin N; Kabirov, Ildar; Wang, Ziqi; Guo, Pengyu; Peng, Li; Xu, Wanhai

    2018-06-27

    Emerging novel optical imaging techniques with cancer-specific molecular imaging agents offer a powerful and promising platform for cancer detection and resection. White-light cystoscopy and random bladder biopsies remain the most appropriate but nonetheless suboptimal diagnostic technique for bladder cancer, which is associated with high morbidity and recurrence. However, white-light cystoscopy has intrinsic shortcomings. Although current optical imaging technologies hold great potential for improved diagnostic accuracy, there are few imaging agents for specific molecular targeting. Carbonic anhydrase IX (CAIX) plays a pivotal role in tumorigenesis and tumor progression with potential value as an imaging target. Here, we investigated the feasibility of CAIX as a target and validated the diagnostic performance and significance of CAIX as an imaging agent. We first analyzed the data from The Cancer Genome Atlas (TCGA). Pairs of samples comprising bladder cancer and adjacent normal tissue were collected. All tissue samples were used for real-time PCR and immunohistochemistry to compare CAIX expression in normal and cancer tissue. Using blue-light cystoscopy, we observed the optical distribution of fluorescently labeled CAIX antibody in freshly excised human bladders and obtained random bladder biopsies to assess sensitivity and specificity. The TCGA data revealed that CAIX expression was significantly higher in bladder cancer specimens than in normal tissue. The outcome was similar in quantitative real-time PCR analysis. In immunohistochemical analysis, bladder cancer specimens classified in four pathological subtypes presented a variety of positive staining intensities, whereas no benign specimens showed CAIX staining. Using blue-light cystoscopy, we distinguished bladder cancers that were mainly papillary, some variants of urothelial carcinoma, and less carcinoma in situ, from benign tissue, despite the presence of suspicious-appearing mucosa. The sensitivity and specificity for CAIX-targeted imaging were 88.00% and 93.75%, respectively. CAIX-targeted molecular imaging could be a feasible and adaptive alternative approach for the accurate diagnosis and complete resection of bladder cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Genome-wide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma.

    PubMed

    Wang, Longxin; Fu, Dian; Qiu, Yongbin; Xing, Xiaoxiao; Xu, Feng; Han, Conghui; Xu, Xiaofeng; Wei, Zhifeng; Zhang, Zhengyu; Ge, Jingping; Cheng, Wen; Xie, Hai-Long

    2014-07-10

    To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis

    PubMed Central

    Gao, Jia-Min; Huang, Lin-Zhen; Huang, Zhi-Guang; He, Rong-Quan

    2018-01-01

    The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I–II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919–0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments. PMID:29616090

  4. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis.

    PubMed

    Gao, Jia-Min; Huang, Lin-Zhen; Huang, Zhi-Guang; He, Rong-Quan

    2018-04-01

    The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.

  5. The Urinary Bladder Transcriptome and Proteome Defined by Transcriptomics and Antibody-Based Profiling

    PubMed Central

    Habuka, Masato; Fagerberg, Linn; Hallström, Björn M.; Pontén, Fredrik; Yamamoto, Tadashi; Uhlen, Mathias

    2015-01-01

    To understand functions and diseases of urinary bladder, it is important to define its molecular constituents and their roles in urinary bladder biology. Here, we performed genome-wide deep RNA sequencing analysis of human urinary bladder samples and identified genes up-regulated in the urinary bladder by comparing the transcriptome data to those of all other major human tissue types. 90 protein-coding genes were elevated in the urinary bladder, either with enhanced expression uniquely in the urinary bladder or elevated expression together with at least one other tissue (group enriched). We further examined the localization of these proteins by immunohistochemistry and tissue microarrays and 20 of these 90 proteins were localized to the whole urothelium with a majority not yet described in the context of the urinary bladder. Four additional proteins were found specifically in the umbrella cells (Uroplakin 1a, 2, 3a, and 3b), and three in the intermediate/basal cells (KRT17, PCP4L1 and ATP1A4). 61 of the 90 elevated genes have not been previously described in the context of urinary bladder and the corresponding proteins are interesting targets for more in-depth studies. In summary, an integrated omics approach using transcriptomics and antibody-based profiling has been used to define a comprehensive list of proteins elevated in the urinary bladder. PMID:26694548

  6. 78 FR 18255 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... engine oil leak. This proposed AD would require replacement of the propeller hydraulic bladder diaphragm. We are proposing this AD to prevent propeller hydraulic bladder diaphragm rupture, loss of engine oil, damage to the engine, and loss of the airplane. DATES: We must receive comments on this proposed AD by...

  7. Activation of RAS family genes in urothelial carcinoma.

    PubMed

    Boulalas, I; Zaravinos, A; Karyotis, I; Delakas, D; Spandidos, D A

    2009-05-01

    Bladder cancer is the fifth most common malignancy in men in Western society. We determined RAS codon 12 and 13 point mutations and evaluated mRNA expression levels in transitional cell carcinoma cases. Samples from 30 human bladder cancers and 30 normal tissues were analyzed by polymerase chain reaction/restriction fragment length polymorphism and direct sequencing to determine the occurrence of mutations in codons 12 and 13 of RAS family genes. Moreover, we used real-time reverse transcriptase-polymerase chain reaction to evaluate the expression profile of RAS genes in bladder cancer specimens compared to that in adjacent normal tissues. Overall H-RAS mutations in codon 12 were observed in 9 tumor samples (30%). Two of the 9 patients (22%) had invasive bladder cancer and 7 (77%) had noninvasive bladder cancer. One H-RAS mutation (11%) was homozygous and the remaining 89% were heterozygous. All samples were WT for K and N-RAS oncogenes. Moreover, 23 of 30 samples (77%) showed over expression in at least 1 RAS family gene compared to adjacent normal tissue. K and N-RAS had the highest levels of over expression in bladder cancer specimens (50%), whereas 27% of transitional cell carcinomas demonstrated H-RAS over expression relative to paired normal tissues. Our results underline the importance of H-RAS activation in human bladder cancer by codon 12 mutations. Moreover, they provide evidence that increased expression of all 3 RAS genes is a common event in bladder cancer that is associated with disease development.

  8. The inhibitory effect of vitamin E on cigarette smoke-induced oxidative damage to the rat urothelium: can it prevent transitional cell carcinoma?

    PubMed

    Onol, Fikret Fatih; Demir, Aslan; Temiz, Yusuf; Yüksel, Meral; Eren, Funda; Türkeri, Levent N

    2007-01-01

    We aimed to detect reactive oxygen species (ROS) and assess subsequent carcinogenesis in terms of cellular proliferation in the bladder and kidney epithelial tissues of rats exposed to cigarette smoke (CS), and to investigate the changes following vitamin E treatment. Twenty-four male Sprague-Dawley rats were divided into 3 groups: group 1 was kept intact; group 2 was subjected to CS exposure for 8 weeks, and group 3 received intraperitoneal vitamin E injections (200 mg/kg/week) for 8 weeks in addition to CS exposure. Histological examination and Ki67 antigen expression measurements were made from bladder and renal pelvic tissue sections. Luminol-amplified chemiluminescence was used to measure ROS levels. All results were compared using a one-way ANOVA test. In CS-exposed rats, light microscopy of renal and bladder tissues revealed nonspecific epithelial changes; however, Ki67 expression was significantly increased in bladder tissues compared to other groups (17.5 +/- 4.7, 35 +/- 2.9 and 18.7 +/- 5.1% in groups 1, 2 and 3, respectively, p < 0.05). Chemiluminescence levels in bladder and renal tissues were also significantly higher in the CS-exposed animals (78.1 +/- 11.4, 148 +/- 13.3, 97.8 +/- 6.1 rlu/mg for the bladder, and 99.8 +/- 12.2, 176.1 +/- 27.9, 67.1 +/- 9 rlu/mg, for renal pelvic tissues, respectively, p < 0.05). Vitamin E can alleviate CS-induced oxidative damage in rat bladder and kidney epithelium suggesting a potential role for vitamin E in the prevention of CS-mediated carcinogenesis. 2007 S. Karger AG, Basel

  9. Use of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  10. Bladder cancer diagnosis during cystoscopy using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Draga, R. O. P.; van Diest, P.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. H. L. R.

    2009-02-01

    Raman spectroscopy is an optical technique that can be used to obtain specific molecular information of biological tissues. It has been used successfully to differentiate normal and pre-malignant tissue in many organs. The goal of this study is to determine the possibility to distinguish normal tissue from bladder cancer using this system. The endoscopic Raman system consists of a 6 Fr endoscopic probe connected to a 785nm diode laser and a spectral recording system. A total of 107 tissue samples were obtained from 54 patients with known bladder cancer during transurethral tumor resection. Immediately after surgical removal the samples were placed under the Raman probe and spectra were collected and stored for further analysis. The collected spectra were analyzed using multivariate statistical methods. In total 2949 Raman spectra were recorded ex vivo from cold cup biopsy samples with 2 seconds integration time. A multivariate algorithm allowed differentiation of normal and malignant tissue with a sensitivity and specificity of 78,5% and 78,9% respectively. The results show the possibility of discerning normal from malignant bladder tissue by means of Raman spectroscopy using a small fiber based system. Despite the low number of samples the results indicate that it might be possible to use this technique to grade identified bladder wall lesions during endoscopy.

  11. A Murine Model of Inflammatory Bladder Disease: Cathelicidin Peptide Induced Bladder Inflammation and Treatment With Sulfated Polysaccharides

    PubMed Central

    Oottamasathien, Siam; Jia, Wanjian; McCoard, Lindsi; Slack, Sean; Zhang, Jianxing; Skardal, Aleksander; Job, Kathleen; Kennedy, Thomas P.; Dull, Randal O.; Prestwich, Glenn D.

    2013-01-01

    Purpose Studies show that LL-37 is a naturally occurring urinary defensin peptide that is up-regulated during urinary tract infections. Although normal urinary LL-37 levels are antimicrobial, we propose that increased LL-37 may trigger bladder inflammation. We further suggest that anti-inflammatory sulfated polysaccharides known as semi-synthetic glycosaminoglycan ether compounds can treat/prevent LL-37 mediated bladder inflammation. Materials and Methods C57BL/6 mice were catheterized/instilled with LL-37 (320 μM at 150 μl) for 45 minutes. Animals were sacrificed at 12 and 24 hours, and tissues were examined using hematoxylin and eosin. Separate experiments were performed for myeloperoxidase to quantify inflammation. GM-1111 semi-synthetic glycosaminoglycan ether treatments involved instillation of 10 mg/ml for 45 minutes directly before or after LL-37. Tissues were harvested at 24 hours. To compare semi-synthetic glycosaminoglycan ether efficacy experiments were performed using 10 mg/ml heparin. Finally, tissue localization of semi-synthetic glycosaminoglycan ether was examined using a fluorescent GM-1111-Alexa Fluor® 633 conjugate. Results Profound bladder inflammation developed after LL-37. Greater tissue inflammation occurred after 24 hours compared to that at 12 hours. Myeloperoxidase assays revealed a 21 and 61-fold increase at 12 and 24 hours, respectively. Semi-synthetic glycosaminoglycan ether treatment after LL-37 showed mild attenuation of inflammation with myeloperoxidase 2.5-fold below that of untreated bladders. Semi-synthetic glycosaminoglycan ether treatment before LL-37 demonstrated almost complete attenuation of inflammation. Myeloperoxidase results mirrored those in controls. In heparin treated bladders minimal attenuation of inflammation occurred. Finally, instillation of GM-1111-Alexa Fluor 633 revealed urothelial coating, significant tissue penetration and binding to endovasculature. Conclusions We developed what is to our knowledge a new model of inflammatory bladder disease by challenge with the naturally occurring urinary peptide LL-37. We also noted that a new class of anti-inflammatory sulfated polysaccharides prevents and mitigates bladder inflammation. PMID:21855919

  12. MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shiqi; Xu, Xianglai; Xu, Xin

    2013-11-29

    Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell linesmore » with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.« less

  13. Organ engineering--combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation.

    PubMed

    Murphy, Sean Vincent; Atala, Anthony

    2013-03-01

    Often the only treatment available for patients suffering from diseased and injured organs is whole organ transplant. However, there is a severe shortage of donor organs for transplantation. The goal of organ engineering is to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Recent progress in stem cell biology, biomaterials, and processes such as organ decellularization and electrospinning has resulted in the generation of bioengineered blood vessels, heart valves, livers, kidneys, bladders, and airways. Future advances that may have a significant impact for the field include safe methods to reprogram a patient's own cells to directly differentiate into functional replacement cell types. The subsequent combination of these cells with natural, synthetic and/or decellularized organ materials to generate functional tissue substitutes is a real possibility. This essay reviews the current progress, developments, and challenges facing researchers in their goal to create replacement tissues and organs for patients. Copyright © 2013 WILEY Periodicals, Inc.

  14. In vivo fluorescence imaging of an orthotopic rat bladder tumor model indicates differential uptake of intravesically instilled near-infrared labeled 2-deoxyglucose analog by neoplastic urinary bladder tissues

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.

    2017-02-01

    Bladder cancer is one of the most expensive cancers to manage due to frequent recurrences requiring life-long surveillance and treatment. A near-infrared labeled 2-deoxy-d-glucose probe IRDye800CW-DG targeting glucose metabolism pathway has shown to enhance the sensitivity of diagnosing several types of cancers as tested on tumor models not including bladder tumor. This pilot study has explored differential uptake of intravesically administered IRDye800CW-DG in an orthotopic rat bladder tumor model. Twenty-five female Fischer rats were randomly grouped to four conditions: no-tumor-control (n=3), no-tumor-control intravesically instilled with IRDye800CWDG (n=6), rats bearing GFP-labeled AY-27 rat bladder urothelial cell carcinoma cells and washed with saline (n=5), and rats bearing AY-27 tumors and intravesically instilled with IRDye800CW-DG (n=11). Near-infrared fluorescence was measured from the opened bladder wall of anesthetized rat at an excitation wavelength of 750nm and an emission wavelength of 776nm, by using an in-house fluorescence imaging system. There is no statistically significant difference of the peak fluorescence intensity among the no-tumor-control bladders (n=3), the no-tumorcontrol bladders instilled with IRDye800CW-DG (n=6), and the GFP-labeled AY-27 treated bladders washed by saline (n=5). When compared to that of the no-tumor-control bladders instilled with IRDye800CW-DG (n=6), the fluorescence intensity of GFP-labeled AY-27 treated bladders instilled with IRDye800CW-DG and with histology confirmed neoplastic bladder tissue (n=11) was remarkably more intense (3.34 fold of over the former) and was also statistically significant (p<0.0001). The differential uptake of IRDye800CW-DG by the neoplastic urinary bladder tissues suggests the potential for cystoscopy-adaptation to enhance diagnosis and guiding surgical management of flat urinary bladder cancer.

  15. Update on Urological Management of Spina Bifida from Prenatal Diagnosis to Adulthood.

    PubMed

    Snow-Lisy, Devon C; Yerkes, Elizabeth B; Cheng, Earl Y

    2015-08-01

    We review the current literature regarding urological management of spina bifida from prenatal diagnosis to adulthood. We searched MEDLINE(®), EMBASE(®) and PubMed(®) for English articles published through December 2014 using search terms "spina bifida," "spinal dysraphism" and "bladder." Based on review of titles and abstracts, 437 of 1,869 articles were identified as addressing topics related to open spina bifida in pediatric patients, or long-term or quality of life outcomes in adults with spina bifida. We summarize this literature to inform clinical guidelines and create a framework for disease management. The birth prevalence of spina bifida in the United States has recently plateaued at approximately 30 per 100,000. With improved management more individuals are surviving to adulthood, with an economic impact of $319,000 during the lifetime of an individual with spina bifida. Recent advances in prenatal surgery have demonstrated that prenatal closure of spina bifida is possible. To assess safety and efficacy, the National Institutes of Health sponsored Management of Myelomeningocele Study was undertaken, in which subjects were randomized to prenatal or postnatal closure. Until the urological results of this trial are published, the impact of prenatal intervention on future bladder function remains unclear. Controversy continues regarding the optimal use and timing of urodynamic studies, and the indications for initiation of clean intermittent catheterization and anticholinergics in infants and children. Many favor expectant management, while others argue for a more proactive approach. Based on the current literature, both approaches appear to protect the child from renal injury, although delayed intervention may increase rates of bladder augmentation. The current literature regarding this topic is difficult to interpret and compare due to heterogeneity of patient populations, variable outcome measures and lack of reporting of quality of life outcomes. Surgical intervention is indicated for those at risk for renal deterioration and/or is considered for children who fail to achieve satisfactory continence with medical management. Traditionally surgery concentrates on the bladder and bladder neck, and creation of catheterizable channels. For those with a hostile bladder, enterocystoplasty remains the gold standard for bladder augmentation, although use of bowel for augmentation remains suboptimal due to secondary complications, including increased risk of infections, metabolic abnormalities, neoplastic transformation and risk of life threatening perforation. Recent advances in tissue engineering technology may provide an alternative to traditional augmentation. However, recent results from phase II trials using current techniques to augment the bladder with engineered bladder tissue are disappointing. Catheterizable channels to the bladder and ascending colon further facilitate continence measures and promote independent care. While surgical reconstruction is clearly successful in improving continence, recent outcome studies have questioned the true impact of this type of surgery on quality of life. With improved survival transitional care issues, including health related independence, sexual health needs and development of a support system, are increasingly important. Transitional care remains a significant issue for which few public health measures are being quantitatively evaluated. Despite consensus regarding early urological involvement in the care of patients with spina bifida, controversy remains regarding optimal management. Major reconstructive urological surgeries still have a major role in the management of these cases to protect the upper urinary tract and to achieve continence. However, future studies are needed to better clarify the true impact on quality of life that these interventions have on patients and their families. Transition of urological care to adulthood remains a major avenue for improvement in disease management. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  16. Multimodal, 3D pathology-mimicking bladder phantom for evaluation of cystoscopic technologies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Optical coherence tomography (OCT) and blue light cystoscopy (BLC) have shown significant potential as complementary technologies to traditional white light cystoscopy (WLC) for early bladder cancer detection. Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing new technology designs, the diagnostic potential of systems, and novel image processing algorithms prior to validation in real tissue. Importantly, the phantom should mimic features of healthy and diseased tissue as they appear under WLC, BLC, and OCT, which are sensitive to tissue color and structure, fluorescent contrast, and optical scattering of subsurface layers, respectively. We present a phantom posing the hollow shape of the bladder and fabricated using a combination of 3D-printing and spray-coating with Dragon Skin (DS) (Smooth-On Inc.), a highly elastic polymer to mimic the layered structure of the bladder. Optical scattering of DS was tuned by addition of titanium dioxide, resulting in scattering coefficients sufficient to cover the human bladder range (0.49 to 2.0 mm^-1). Mucosal vasculature and tissue coloration were mimicked with elastic cord and red dye, respectively. Urethral access was provided through a small hole excised from the base of the phantom. Inserted features of bladder pathology included altered tissue color (WLC), fluorescence emission (BLC), and variations in layered structure (OCT). The phantom surface and underlying material were assessed on the basis of elasticity, optical scattering, layer thicknesses, and qualitative image appearance. WLC, BLC, and OCT images of normal and cancerous features in the phantom qualitatively matched corresponding images from human bladders.

  17. Distribution of mast cell subtypes in interstitial cystitis: implications for novel diagnostic and therapeutic strategies?

    PubMed

    Malik, Shabana T; Birch, Brian R; Voegeli, David; Fader, Mandy; Foria, Vipul; Cooper, Alan J; Walls, Andrew F; Lwaleed, Bashir A

    2018-05-15

    To identify the presence and geographical distribution of mast cell (MC) subtypes: MC T (tryptase positive-chymase negative) and MC TC (tryptase positive-chymase positive) in bladder tissue. Bladder tissue was obtained from patients with painful bladder syndrome/interstitial cystitis (n=14) and normal histology from University Hospital Southampton tissue bank. Sequential tissue slices were immunohistochemically stained for MC subtypes using anti-MC tryptase (for MC T and MC TC ) and anti-MC chymase (for MC TC ). Stained sections were photographed, and positively stained MCs were quantified using ImageJ. Data were analysed using descriptive statistics and individual paired t-tests. There was a significant difference in the density of MCs between each layer of the disease bladder, with the greatest accumulation within the detrusor (p<0.001). There was a significant increase in MC TC subtype in the lamina (p=0.009) in painful bladder syndrome/interstitial cystitis. Our results suggest that mastocytosis is present within all layers of disease bladder, especially the muscle layer. The varying increase in MC subtypes in the lamina and mucosa may explain the variability in painful bladder syndrome/interstitial cystitis symptoms. A high influx of MC TC in the mucosa of individuals who also had ulceration noted within their diagnostic notes may be of the Hunner's ulcer subclassification. These findings suggest a relationship between the pathogenesis of MC subtypes and the clinical presentation of painful bladder syndrome/interstitial cystitis. A cohort study would further elucidate the diagnostic and/or therapeutic potential of MCs in patients with painful bladder syndrome/interstitial cystitis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Citrate chemistry and biology for biomaterials design.

    PubMed

    Ma, Chuying; Gerhard, Ethan; Lu, Di; Yang, Jian

    2018-05-04

    Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor.

    PubMed

    Kim, Su-Jin; Lee, Dong-Sup; Kim, In-Gul; Sohn, Dong-Wan; Park, Jung-Yul; Choi, Bum-Kyoo; Kim, Sae-Woong

    2012-03-01

    As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG), polydimethylsiloxane (PDMS) and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously. Copyright © 2012. Published by Elsevier B.V.

  20. A novel role for drebrin in regulating progranulin bioactivity in bladder cancer.

    PubMed

    Xu, Shi-Qiong; Buraschi, Simone; Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C; Gomella, Leonard G; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-05-10

    We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.

  1. A microangiographic study of the effect of hyperthermia on the rabbit bladder

    NASA Technical Reports Server (NTRS)

    Hietala, S. O.; Howells, R.; Hazra, I. A.

    1978-01-01

    A model was used to study the effect of hyperthermia on a normal tissue. The model selected was the rabbit bladder and the end point measured was the changes in the micro-vasculature of the bladder wall. It was already demonstrated clinically that hot water bladder infusions produce regression in bladder tumors.

  2. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  3. Bladder cancer and occupational exposure to diesel and gasoline engine emissions among Canadian men.

    PubMed

    Latifovic, Lidija; Villeneuve, Paul J; Parent, Marie-Élise; Johnson, Kenneth C; Kachuri, Linda; Harris, Shelley A

    2015-12-01

    The International Agency for Research on Cancer has classified diesel exhaust as a carcinogen based on lung cancer evidence; however, few studies have investigated the effect of engine emissions on bladder cancer. The purpose of this study was to investigate the association between occupational exposure to diesel and gasoline emissions and bladder cancer in men using data from the Canadian National Enhanced Cancer Surveillance System; a population-based case-control study. This analysis included 658 bladder cancer cases and 1360 controls with information on lifetime occupational histories and a large number of possible cancer risk factors. A job-exposure matrix for engine emissions was supplemented by expert review to assign values for each job across three dimensions of exposure: concentration, frequency, and reliability. Odds ratios (OR) and their corresponding 95% confidence intervals were estimated using logistic regression. Relative to unexposed, men ever exposed to high concentrations of diesel emissions were at an increased risk of bladder cancer (OR = 1.64, 0.87-3.08), but this result was not significant, and those with >10 years of exposure to diesel emissions at high concentrations had a greater than twofold increase in risk (OR = 2.45, 1.04-5.74). Increased risk of bladder cancer was also observed with >30% of work time exposed to gasoline engine emissions (OR = 1.59, 1.04-2.43) relative to the unexposed, but only among men that had never been exposed to diesel emissions. Taken together, our findings support the hypothesis that exposure to high concentrations of diesel engine emissions may increase the risk of bladder cancer. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Tissue Specific Dysregulated Protein Subnetworks in Type 2 Diabetic Bladder Urothelium and Detrusor Muscle*

    PubMed Central

    Tomechko, Sara E.; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C. Thomas; Gupta, Sanjay; Chance, Mark R.; Daneshgari, Firouz

    2015-01-01

    Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. PMID:25573746

  5. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle.

    PubMed

    Tomechko, Sara E; Liu, Guiming; Tao, Mingfang; Schlatzer, Daniela; Powell, C Thomas; Gupta, Sanjay; Chance, Mark R; Daneshgari, Firouz

    2015-03-01

    Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Tissue Permeability Effects Associated with the Use of Mucoadhesive Cationic Nanoformulations of Docetaxel in the Bladder.

    PubMed

    Pandey, Rakhi; Jackson, John K; Mugabe, Clement; Liggins, Richard; Burt, Helen M

    2016-08-01

    Recently, efficacy studies in mice have shown that amine-terminated cationic (CNP) nanoparticulate carriers of DTX offer an improved formulation of the drug for intravesical delivery. It is hypothesized that this improved efficacy may arise from a carrier mediated bladder exfoliation process that removes the urothelial barrier allowing for increased drug uptake into bladder tissue. The objective of this study was to investigate exfoliation processes in fresh pig's bladders (ex vivo) exposed to three cationic polyglycerols with increasing degrees of amination (denoted 350, 580 and 780). The study also compared the tissue depth profile of DTX uptake into these tissues using these different carriers. Aminated polyglycerols were synthesized and characterized in the laboratory with low (CNP-360), medium (CNP-580) and high (CNP-780) levels of amine content. CNP-based DTX solutions and commercial DTX solutions in polysorbate 80 (Taxotere®) were doped with (3)H-radiolabeled DTX and prepared by solvent evaporation from acetonitrile, followed by drying and reconstitution in pH 6.4 buffer. Sections of fresh pig's bladder tissue were clamped into Franz diffusion cells and the urothelial side was exposed to the DTX solutions for 2 h. Tissue sections were then frozen for sectioning by cryotome sectioning and subsequently processed for drug analysis by liquid scintillation counting. Alternatively tissue sections were fixed in 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer for the purposes of scanning electron microscopy (SEM). Exposure of the urothelial surface to the amine-terminated polyglycerol solutions resulted in the exfoliation of bladder tissues in a time- and concentration-dependent manner. Exfoliation was significantly more pronounced when using CNPs with a medium or high levels of amination whereas only minor levels of exfoliation were seen with low levels. Following incubation of tissues in Tween-based commercial formulations (Taxotere) of DTX (0.5 mg/mL) the drug was detectable at low levels (10-40 μg/g tissue) in all depths of tissue. Similar drug uptake was observed using the CNP-360 formulation. However drug uptake levels were increased to 60-100 μg/g tissue when samples were incubated with either the CNP-580 or CNP-780 formulations. The use of cationic polyglycerols with higher levels of amine termination allows for an enhanced uptake of DTX into bladder tissues as compared to commercial (Taxotere) formulations. These increased drug levels probably arise from exfoliation processes resulting in a temporary elimination of the urothelial permeability barrier and increased drug penetration into the tissue.

  7. The mitochondrial C16069T polymorphism, not mitochondrial D310 (D-loop) mononucleotide sequence variations, is associated with bladder cancer.

    PubMed

    Shakhssalim, Nasser; Houshmand, Massoud; Kamalidehghan, Behnam; Faraji, Abolfazl; Sarhangnejad, Reza; Dadgar, Sepideh; Mobaraki, Maryam; Rosli, Rozita; Sanati, Mohammad Hossein

    2013-12-05

    Bladder cancer is a relatively common and potentially life-threatening neoplasm that ranks ninth in terms of worldwide cancer incidence. The aim of this study was to determine deletions and sequence variations in the mitochondrial displacement loop (D-loop) region from the blood specimens and tumoral tissues of patients with bladder cancer, compared to adjacent non-tumoral tissues. The DNA from blood, tumoral tissues and adjacent non-tumoral tissues of twenty-six patients with bladder cancer and DNA from blood of 504 healthy controls from different ethnicities were investigated to determine sequence variation in the mitochondrial D-loop region using multiplex polymerase chain reaction (PCR), DNA sequencing and southern blotting analysis. From a total of 110 variations, 48 were reported as new mutations. No deletions were detected in tumoral tissues, adjacent non-tumoral tissues and blood samples from patients. Although the polymorphisms at loci 16189, 16261 and 16311 were not significantly correlated with bladder cancer, the C16069T variation was significantly present in patient samples compared to control samples (p < 0.05). Interestingly, there was no significant difference (p > 0.05) of C variations, including C7TC6, C8TC6, C9TC6 and C10TC6, in D310 mitochondrial DNA between patients and control samples. Our study suggests that 16069 mitochondrial DNA D-Loop mutations may play a significant role in the etiology of bladder cancer and facilitate the definition of carcinogenesis-related mutations in human cancer.

  8. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain, frequency, and duty cycle. Cells grown on protein-conjugated silicone membranes showed a morphological change while undergoing bioreactor stress. Analyzing change in muscle strips undergoing bioreactor stress is an area for future research. The overall goal of this research was to move engineered smooth muscle towards tissues capable of contracting with physiologically relevant strength and frequency. This approach first increased survival of smooth muscle constructs, and then sought to improve contractile ability of smooth muscle cells.

  9. [The role of telomerase activity in non-invasive diagnostics of bladder cancer].

    PubMed

    Glybochko, P V; Alyaev, J G; Potoldykova, N V; Polyakovsky, K A; Vinarov, A Z; Glukhov, A I; Gordeev, S A

    2016-08-01

    To evaluate the potentials of determining the telomerase activity (TA) in the cellular material of the urine for noninvasive diagnosis of bladder cancer (BC). Evaluation of TA was performed in the urine of 48 patients with bladder cancer (study group) before and after transurethral resection of the bladder wall (n=38), an open resection of the bladder (n=4), and cystectomy (n=6). TA was also evaluated in 48 tumor tissue samples obtained from these patients during removal of the bladder tumor. Each sample of the tumor tissue was separated into two parts, one of which was subjected to histological examination, and the latter was used to determine the telomerase activity. In all cases, the diagnosis of bladder cancer was confirmed morphologically. Determination of TA in the samples was performed by the modified TRAP-method (telomerase repeat amplification protocol), RT-PCR, PCR, and electrophoresis. As a control, cell material of the urine and tissue in 12 patients with chronic cystitis was investigated. TA before surgery was found in 45 (93.75%) of 48 samples of cellular material of the urine from patients with suspected bladder cancer. BC was histologically verified in all patients in this group. In the postoperative period, TA was not observed in the 48 samples of cellular material of the urine from patients with BC. In the control group of patients with histologically verified cystitis, weak TA was determined only in one sample of cellular material of the urine. The analysis indicates statistically significant predominance of patients with bladder cancer in case of TA in the urine (P=0.001). TA was detected in all samples of tumor tissue. We also analyzed the dependence of TA levels in urine and tissue on the degree of BC differentiation. In patients with highly differentiated BC, mean AT in the cellular materials of the urine was 0,61% (n=15), in patients with moderately differentiated BC - 0.95% (n=23), in patients with low-grade bladder cancer - 1.33% (n=10); in other words, increase in the TA levels with decreasing the degree of differentiation was observed. This finding can be used in the prognosis of the course of disease based on determining the TA level in these patients. Preliminary data indicate the possibility of use of determining the TA in cellular material of the urine for the diagnosis and monitoring of bladder cancer recurrence.

  10. Transplantation of autologous differentiated urothelium in an experimental model of composite cystoplasty.

    PubMed

    Turner, Alex; Subramanian, Ramnath; Thomas, David F M; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer

    2011-03-01

    Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Bladder augmentation with in vitro-generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  11. Transplantation of Autologous Differentiated Urothelium in an Experimental Model of Composite Cystoplasty

    PubMed Central

    Turner, Alex; Subramanian, Ramnath; Thomas, David F.M.; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer

    2011-01-01

    Background Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. Objective To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Design, setting, and participants Bladder augmentation with in vitro–generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Measurements Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Results and limitations Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. Conclusions The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. PMID:21195539

  12. Mechanisms of Visceral Organ Crosstalk: Importance of Alterations in Permeability in Rodent Models

    PubMed Central

    Greenwood-Van Meerveld, B; Mohammadi, E; Tyler, K; Van Gordon, S; Parker, A; Towner, R; Hurst, R

    2015-01-01

    Purpose The pathophysiology of painful bladder syndrome (PBS) is poorly understood; however, there is evidence of female predominance and comorbidity with irritable bowel syndrome (IBS). Our hypothesis is that cross-sensitization between the bladder and colon is due to altered permeability in one organ affecting the other organ. Materials and methods Experiments were performed in anesthetized, ovariectomized (OVX) female rats. In separate groups, protamine sulfate was infused into the bladder or TNBS was infused into the colon, with untreated rats serving as controls. Both bladder and colonic tissue were harvested for all rats at 1, 3, and 5 days post-treatment. Permeability was assessed in vitro in Ussing chambers via measurements of transepithelial electrical resistance (TEER) and macromolecular flux of Fluorescein isothiocyanate (FITC)-4 dextran. Results Exposing the bladder to protamine sulfate induced a significant (p<0.05) decrease in bladder TEER and an increase in the translocation of FITC across the tissue compared to controls at 1 and 3 days. Colonic tissue from rats with enhanced bladder permeability exhibited a significant (p<0.05) decrease in TEER and increase in FITC when compared to untreated controls at all time points. Conversely, when colonic permeability was increased with TNBS, we observed an increase in bladder permeability in the absence of any changes to the bladder urothelium. Conclusions Changes in epithelial permeability may represent a novel mechanism for visceral organ crosstalk and may explain the overlapping symptomology of PBS and IBS. PMID:25776913

  13. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxue; Department of Urology, Hospital of Xinjiang Production and Construction Corps, Urumqi 830002; Li, Xuechao

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cellmore » apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.« less

  14. Effects of increased Kindlin-2 expression in bladder cancer stromal fibroblasts.

    PubMed

    Wu, Jitao; Yu, Cuicui; Cai, Li; Lu, Youyi; Jiang, Lei; Liu, Chu; Li, Yongwei; Feng, Fan; Gao, Zhenli; Zhu, Zhe; Yu, Shengqiang; Yuan, Hejia; Cui, Yuanshan

    2017-08-01

    Kindlin-2 is a focal adhesion protein highly expressed in bladder cancer stromal fibroblasts. We investigated the prognostic significance of Kindlin-2 in bladder cancer stromal fibroblasts and evaluated the effects of Kindlin-2 on the malignant behaviors of tumor cells. Immunohistochemical staining of 203 paraffin-embedded bladder cancer tissues showed that Kindlin-2 expression correlated with advanced stage, high grade, and relapse of bladder cancer. Kaplan-Meier survival analysis demonstrated that patients exhibiting high Kindlin-2 expression had shorter survival times than those with low Kindlin-2 expression ( p < 0.01). Multivariate analysis revealed that high Kindlin-2 expression leads to poor prognosis in bladder cancer. Using cancer-associated fibroblasts (CAFs) isolated from human bladder cancer tissue, we observed that Kindlin-2 knockdown decreased CAFs activation, resulting in decreased expression of α-smooth muscle actin (α-SMA) and the extracellular matrix protein fibronectin. Kindlin-2 suppression also reduced CAF-induced bladder cancer cell migration and invasion. Moreover, we found that Kindlin-2 activates CAFs and promotes the invasiveness of bladder cancer cells by stimulating TGF-β-induced epithelial-mesenchymal transition. These results support targeting Kindlin-2 and the corresponding activated CAFs in bladder cancer therapy.

  15. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage.

    PubMed

    Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio

    2008-09-01

    To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.

  16. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie, E-mail: zhangjiebjmu@163.com

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCRmore » and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.« less

  17. A novel role for drebrin in regulating progranulin bioactivity in bladder cancer

    PubMed Central

    Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C.; Gomella, Leonard G.; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V.; Morrione, Andrea

    2015-01-01

    We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer. PMID:25839164

  18. Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder.

    PubMed

    Buscarini, Maurizio; Quek, Marcus L; Gilliam-Hegarich, Susan; Kasahara, Nori; Bochner, Bernard

    2007-01-01

    The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment. 2007 S. Karger AG, Basel

  19. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering.

    PubMed

    Nair, Reshma S; Ameer, Jimna Mohamed; Alison, Malcolm R; Anilkumar, Thapasimuthu V

    2017-09-01

    Extracellular matrices of xenogeneic origin have been extensively used for biomedical applications, despite the possibility of heterogeneity in structure. Surface modification of biologically derived biomaterials using nanoparticles is an emerging strategy for improving topographical homogeneity when employing these scaffolds for sophisticated tissue engineering applications. Recently, as a tissue engineering scaffold, cholecyst derived extracellular matrix (C-ECM) has been shown to have several advantages over extracellular matrices derived from other organs such as jejunum and urinary bladder. This study explored the possibility of adding gold nanoparticles, which have a large surface area to volume ratio on C-ECM for achieving homogeneity in surface architecture, a requirement for cardiac tissue engineering. In the current study, gold nanoparticles (AuNPs) were synthesized and functionalised for conjugating with a porcine cholecystic extracellular matrix scaffold. The conjugation of nanoparticles to C-ECM was achieved by 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide/N-hydroxysuccinimide chemistry and further characterized by Fourier transform infrared spectroscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The physical properties of the modified scaffold were similar to the original C-ECM. Biological properties were evaluated by using H9c2 cells, a cardiomyoblast cell line commonly used for cellular and molecular studies of cardiac cells. The modified scaffold was found to be a suitable substrate for the growth and proliferation of the cardiomyoblasts. Further, the non-cytotoxic nature of the modified scaffold was established by direct contact cytotoxicity testing and live/dead staining. Thus, the modified C-ECM appears to be a potential biomaterial for cardiac tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  1. Correlation between messenger RNA expression and protein expression of immune checkpoint-associated molecules in bladder urothelial carcinoma: A retrospective study.

    PubMed

    Le Goux, Constance; Damotte, Diane; Vacher, Sophie; Sibony, Mathilde; Delongchamps, Nicolas Barry; Schnitzler, Anne; Terris, Benoit; Zerbib, Marc; Bieche, Ivan; Pignot, Géraldine

    2017-05-01

    Immunotherapy for bladder cancer seems to have promising results. Here, we evaluated the association between messenger RNA (mRNA) and protein levels and possible prognostic value of the programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immune checkpoint pathways during bladder carcinogenesis. Tumor samples were obtained from 155 patients (84 with muscle-invasive bladder cancer [MIBC], and 71 non-muscle-invasive bladder cancer [NMIBC]) and normal bladder tissue from 15 patients. We evaluated the mRNA expression of 3 genes in the PD-1 pathway (PD-1, PD-L1, and PD-L2) and 4 in the CTLA4 pathway (CTLA4, CD28, CD80, and CD86) in normal and tumoral human bladder samples by quantitative real-time reverse transcription polymerase chain reaction, with immunohistochemistry used to evaluate the protein expression of PD-1 and PD-L1 in tumor and immune cells. Results of molecular analyses were compared with survival analyses. As compared with normal bladder tissue, MIBC tissue showed PD-1, PD-L1, CTLA4, and CD80 overexpression (59.5%, 60.7%, 84.5%, and 92.9%, respectively), whereas overexpression was lower in NMIBC tissue (22.5%, 4.2%, 35.2%, and 46.5%, respectively). The results of reverse transcription polymerase chain reaction analysis were confirmed by immunohistochemistry, with a high correlation between mRNA and protein expression. On multivariate analyses, overexpression of the studied genes was not associated with prognosis in relapse or progression of NMIBC or in recurrence-free and overall survival of MIBC. The CTLA4 pathway appears to be deregulated along with the PD-1/PD-L1 pathway in bladder carcinogenesis, with good correlation between mRNA and protein expression endorsing the useful role of immune checkpoints, especially for a large subgroup of MIBC. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bioadhesive drug delivery system using glyceryl monooleate for the intravesical administration of paclitaxel.

    PubMed

    Lee, Seung-Ju; Kim, Sae Woong; Chung, Hesson; Park, Yeong Taek; Choi, Young Wook; Cho, Yong-Hyun; Yoon, Moon Soo

    2005-10-01

    Many reports have shown that the efficacy of intravesical therapy for bladder cancer is in part limited by the poor penetration of drugs into the urothelium. The present study evaluated the effect of glyceryl monooleate (GMO) on the absorption of intravesically administered paclitaxel in a rabbit model of bladder cancer. Urine, plasma, and tissue pharmacokinetics were determined in rabbits treated for 120 min with paclitaxel (500 microg/20 ml) by intravesical instillation. Two formulations of GMO/paclitaxel were evaluated using different proportions of water, 15 and 30%, and Taxol was used as a control. Animals were observed for clinical signs of toxicity and necropsy was performed. 120 min after instillation, the bladder was emptied and excised. In the urine, paclitaxel concentration was decreased by 39.6 and 41.2% in the two experimental groups and by 25.2% in the control group. The paclitaxel concentrations in the urothelium were 53 and 56% of the urine concentration in both experimental groups, but 11% in the control group. The concentration then declined exponentially in the underlying capillary-perfused tissues, reaching equilibrium at a depth of 1,400-1,700 microm. The plasma concentrations were extremely low compared with concentrations in urine and bladder tissues and were not associated with clinical toxicity. We conclude that GMO has a significantly increased bioadhesiveness to bladder mucosa. Therefore, intravesical administration of GMO/paclitaxel/water provides a significant advantage for drugs targeting the bladder tissue, and paclitaxel represents a viable option for intravesical bladder cancer therapy. Copyright 2005 S. Karger AG, Basel.

  3. Expression of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in bladder transitional cell carcinoma.

    PubMed

    Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk

    2008-10-01

    An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.

  4. Bladder augmentation and artificial sphincter implantation: urodynamic behavior and effects on continence.

    PubMed

    Rodó, Juan S; Cáceres, Freud A; Lerena, Javier R; Rossy, Enrica

    2008-02-01

    To quantify changes in bladder capacity, pressure and compliance after isolated bladder augmentation or augmentation associated with implantation of an artificial sphincter, and to compare the various types of augmentation. Preoperative and postoperative urodynamic studies were performed in a group of 38 patients (18 males and 20 females; age range 2-19 years), who underwent a type of bladder augmentation. The bladder improved in capacity in all patients (mean values: initial 137 ml, final 336 ml, individual increase 229 ml; 434%) except two, in which the augmentation was done with ureter. The mean pressure improved (initial 32 cm of H(2)O, final 14, decrease per patient 18 cm of H2O; 49%). The curve of compliance, progressively increasing typical of hyperreflexia and poor compliance, present in 70% of the cases preoperatively, improved in 78% cases postoperatively, although there were several different patterns. Urodynamic behavior was analyzed with regard to the tissue used for augmentation (ileum, ureter or sigmoid colon). In the sigmoid colon group, there were no significant differences in the urodynamic behavior of the bladder neo-reservoir in relation to the configuration used. With bladder augmentation comes an increase in bladder capacity, a reduction in pressure, and an improvement in compliance and continence. The level of change in capacity, pressure and compliance varies with the tissue used and the length and caliber of the insert. When the procedure is carried out using sigmoid colon tissue, there are no noteworthy differences among the various possible configurations.

  5. Curcumin inhibits bladder cancer progression via regulation of β-catenin expression.

    PubMed

    Shi, Jing; Wang, Yunpeng; Jia, Zhuomin; Gao, Yu; Zhao, Chaofei; Yao, Yuanxin

    2017-07-01

    Bladder cancer has a considerable morbidity and mortality impact with particularly poor prognosis. Curcumin has been recently noticed as a polyphenolic compound separated from turmeric to regulate tumor progression. However, the precise molecular mechanism by which curcumin inhibits the invasion and metastasis of bladder cancer cells is not fully elucidated. In this study, we investigate the effect of curcumin on the bladder cancer as well as possible mechanisms of curcumin. The expression of β-catenin was detected by quantitative real-time polymerase chain reaction and immunohistochemical analysis in a series of bladder cancer tissues. In addition, bladder cancer cell lines T24 and 5637 cells were treated with different concentrations of curcumin. The cytotoxic effect of curcumin on cell proliferation of T24 and 5637 cells was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The migration and invasion capacity of T24 and 5637 cells were measured by transwell assay. The effects of curcumin on expression levels of β-catenin and epithelial-mesenchymal transition marker were determined by western blotting. The β-catenin expression was significantly upregulated in bladder cancer tissues when compared with corresponding peri-tumor tissues. Furthermore, curcumin inhibited the cell proliferation of T24 and 5637 cells, and curcumin reduced the migration and invasive ability of T24 and 5637 cells via regulating β-catenin expression and reversing epithelial-mesenchymal transition. Curcumin may be a new drug for bladder cancer.

  6. Infiltrating T Cells Promote Bladder Cancer Progression via Increasing IL1→Androgen Receptor→HIF1α→VEGFa Signals.

    PubMed

    Tao, Le; Qiu, Jianxin; Jiang, Ming; Song, Wenbin; Yeh, Shuyuan; Yu, Hong; Zang, Lijuan; Xia, Shujie; Chang, Chawnshang

    2016-08-01

    The tumor microenvironment impacts tumor progression and individual cells, including CD4(+) T cells, which have been detected in bladder cancer tissues. The detailed mechanism of how these T cells were recruited to the bladder cancer tumor and their impact on bladder cancer progression, however, remains unclear. Using a human clinical bladder cancer sample survey and in vitro coculture system, we found that bladder cancer has a greater capacity to recruit T cells than surrounding normal bladder tissues. The consequences of higher levels of recruited T cells in bladder cancer included increased bladder cancer metastasis. Mechanism dissection revealed that infiltrating T cells might function through secreting the cytokine IL1, which increases the recruitment of T cells to bladder cancer and enhances the bladder cancer androgen receptor (AR) signaling that results in increased bladder cancer cell invasion via upregulation of hypoxia-inducible factor-1α (HIF1α)/VEGFa expression. Interruption of the IL1→AR→HIF1α→VEGFa signals with inhibitors of HIF1α or VEGFa partially reversed the enhanced bladder cancer cell invasion. Finally, in vivo mouse models of xenografted bladder cancer T24 cells with CD4(+) T cells confirmed in vitro coculture studies and concluded that infiltrating CD4(+) T cells can promote bladder cancer metastasis via modulation of the IL1→AR→HIF1α→VEGFa signaling. Future clinical trials using small molecules to target this newly identified signaling pathway may facilitate the development of new therapeutic approaches to better suppress bladder cancer metastasis. Mol Cancer Ther; 15(8); 1943-51. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22-59.

    PubMed

    Türedi, Sibel; Kerimoğlu, Gökçen; Mercantepe, Tolga; Odacı, Ersan

    2017-09-01

    To investigate the effect on male rat kidney and bladder tissues of exposure to 900-megahertz (MHz) electromagnetic field (EMF) applied on postnatal days 22-59, inclusive. Twenty-four male Sprague Dawley rats, aged 21 days, were used. These were divided equally into one of three groups, control (CG), sham (SG) or EMF (EMFG). CG was not exposed to any procedure. SG rats were kept inside a cage, without being exposed to the effect of EMF, for 1 h a day on postnatal days 22-59, inclusive. EMFG rats were exposed to continuous 900-MHz EMF for 1 h a day under the same conditions as those for the SG rats. Rats were sacrificed on postnatal day 60, and the kidney and bladder tissues were removed. Tissues were stained with hematoxylin and eosin (H&E) and Masson trichrome for histomorphological evaluation. The TUNEL method was used to assess apoptosis. Transmission electron microscopy (TEM) was also used for the kidney tissue. Oxidant/antioxidant parameters were studied in terms of biochemical values. The findings showed that tissue malondialdehyde increased in EMFG compared to CG and SG in both kidney (p = 0.004 and p = 0.004, respectively) and bladder tissue (p = 0.004, p = 0.006, respectively), while catalase and glutathione levels decreased compared to CG (p = 0.004; p = 0.004, respectively) and SG (p = 0.004; p = 0.004, respectively). In the EMF group, pathologies such as dilatation and vacuolization in the distal and proximal tubules, degeneration in glomeruli and an increase in cells tending to apoptosis were observed in kidney tissue. In bladder tissue, degeneration in the transitional epithelium and stromal irregularity and an increase in cells tending to apoptosis were observed in EMFG. Additionally, EMFG samples exhibited glomerular capillary degeneration with capillary basement membranes under TEM. We conclude that continuous exposure to the effect of 900-MHz EMF for 1 h a day on postnatal days 22-59, inclusive, causes an increase in oxidative stress and various pathological changes in male rat kidney and bladder tissues.

  8. Proceedings of the 3rd Annual Albert Institute for Bladder Cancer Research Symposium.

    PubMed

    Flaig, Thomas W; Kamat, Ashish M; Hansel, Donna; Ingersoll, Molly A; Barton Grossman, H; Mendelsohn, Cathy; DeGraff, David; Liao, Joseph C; Taylor, John A

    2017-07-27

    The Third Annual Albert Institute Bladder Symposium was held on September 8-10th, 2016, in Denver Colorado. Participants discussed several critical topics in the field of bladder cancer: 1) Best practices for tissue analysis and use to optimize correlative studies, 2) Modeling bladder cancer to facilitate understanding and innovation, 3) Targeted therapies for bladder cancer, 4) Tumor phylogeny in bladder cancer, 5) New Innovations in bladder cancer diagnostics. Our understanding of and approach to treating urothelial carcinoma is undergoing rapid advancement. Preclinical models of bladder cancer have been leveraged to increase our basic and mechanistic understanding of the disease. With the approval of immune checkpoint inhibitors for the treatment of advanced urothelial carcinoma, the treatment approach for these patients has quickly changed. In this light, molecularly-defined subtypes of bladder cancer and appropriate pre-clinical models are now essential to the further advancement and appropriate application of these therapeutic improvements. The optimal collection and processing of clinical urothelial carcinoma tissues samples will also be critical in the development of predictive biomarkers for therapeutic selection. Technological advances in other areas including optimal imaging technologies and micro/nanotechnologies are being applied to bladder cancer, especially in the localized setting, and hold the potential for translational impact in the treatment of bladder cancer patients. Taken together, advances in several basic science and clinical areas are now converging in bladder cancer. These developments hold the promise of shaping and improving the clinical care of those with the disease.

  9. Prospective Clinical Trial of Bladder Filling and Three-Dimensional Dosimetry in High-Dose-Rate Vaginal Cuff Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Alexandra J.; Cormack, Robert A.; Lee, Hang

    2008-11-01

    Purpose: To investigate the effect of bladder filling on dosimetry and to determine the best bladder dosimetric parameter for vaginal cuff brachytherapy. Methods and Materials: In this prospective clinical trial, a total of 20 women underwent vaginal cylinder high-dose-rate brachytherapy. The bladder was full for Fraction 2 and empty for Fraction 3. Dose-volume histogram and dose-surface histogram values were generated for the bladder, rectum, and urethra. The midline maximal bladder point (MBP) and the midline maximal rectal point were recorded. Paired t tests, Pearson correlations, and regression analyses were performed. Results: The volume and surface area of the irradiated bladdermore » were significantly smaller when the bladder was empty than when full. Of the several dose-volume histogram and dose-surface histogram parameters evaluated, the bladder maximal dose received by 2 cm{sup 3} of tissue, volume of bladder receiving {>=}50% of the dose, volume of bladder receiving {>=}70% of the dose, and surface area of bladder receiving {>=}50% of the dose significantly predicted for the difference between the empty vs. full filling state. The volume of bladder receiving {>=}70% of the dose and the maximal dose received by 2 cm{sup 3} of tissue correlated significantly with the MBP. Bladder filling did not alter the volume or surface area of the rectum irradiated. However, an empty bladder did result in the nearest point of bowel being significantly closer to the vaginal cylinder than when the bladder was full. Conclusions: Patients undergoing vaginal cuff brachytherapy treated with an empty bladder have a lower bladder dose than those treated with a full bladder. The MBP correlated well with the volumetric assessments of bladder dose and provided a noninvasive method for reporting the MBP dose using three-dimensional imaging. The MBP can therefore be used as a surrogate for complex dosimetry in the clinic.« less

  10. Intrafraction Bladder Motion in Radiation Therapy Estimated From Pretreatment and Posttreatment Volumetric Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foroudi, Farshad, E-mail: farshad.foroudi@petermac.org; Pham, Daniel; Bressel, Mathias

    2013-05-01

    Purpose: The use of image guidance protocols using soft tissue anatomy identification before treatment can reduce interfractional variation. This makes intrafraction clinical target volume (CTV) to planning target volume (PTV) changes more important, including those resulting from intrafraction bladder filling and motion. The purpose of this study was to investigate the required intrafraction margins for soft tissue image guidance from pretreatment and posttreatment volumetric imaging. Methods and Materials: Fifty patients with muscle-invasive bladder cancer (T2-T4) underwent an adaptive radiation therapy protocol using daily pretreatment cone beam computed tomography (CBCT) with weekly posttreatment CBCT. A total of 235 pairs of pretreatmentmore » and posttreatment CBCT images were retrospectively contoured by a single radiation oncologist (CBCT-CTV). The maximum bladder displacement was measured according to the patient's bony pelvis movement during treatment, intrafraction bladder filling, and bladder centroid motion. Results: The mean time between pretreatment and posttreatment CBCT was 13 minutes, 52 seconds (range, 7 min 52 sec to 30 min 56 sec). Taking into account patient motion, bladder centroid motion, and bladder filling, the required margins to cover intrafraction changes from pretreatment to posttreatment in the superior, inferior, right, left, anterior, and posterior were 1.25 cm (range, 1.19-1.50 cm), 0.67 cm (range, 0.58-1.12 cm), 0.74 cm (range, 0.59-0.94 cm), 0.73 cm (range, 0.51-1.00 cm), 1.20 cm (range, 0.85-1.32 cm), and 0.86 cm (range, 0.73-0.99), respectively. Small bladders on pretreatment imaging had relatively the largest increase in pretreatment to posttreatment volume. Conclusion: Intrafraction motion of the bladder based on pretreatment and posttreatment bladder imaging can be significant particularly in the anterior and superior directions. Patient motion, bladder centroid motion, and bladder filling all contribute to changes between pretreatment and posttreatment imaging. Asymmetric expansion of CTV to PTV should be considered. Care is required in using image-guided radiation therapy protocols that reduce CTV to PTV margins based only on daily pretreatment soft tissue position.« less

  11. Paraganglioma of the Urinary Bladder: A Rare Cause of Hypertension and Urinary Tract Infections.

    PubMed

    Chaaya, Gerard; Morales, Jorge; Castiglioni, Analia; Subhani, Noman; Asmar, Abdo

    2018-02-01

    Pheochromocytoma is a neoplasm, which develops from cells of the chromaffin tissues that are derived from the ectodermic neural system and mostly situated within the adrenal medulla. Approximately 15% of pheochromocytoma cases arise from extra-adrenal chromaffin tissue. Pheochromocytoma of the bladder is rare and accounts for less than 0.06% of all bladder neoplasms and less than 1% of all pheochromocytomas. We report a case of a young woman who presented with uncontrolled hypertension, recurrent urinary tract infections and micturition attacks and was found to have a metastatic bladder paraganglioma. In addition, we provide a summary table of the clinical manifestations of paragangliomas based on anatomic locations. Published by Elsevier Inc.

  12. Unusual Presentation of Bladder Paraganglioma: Comparison of (131)I MIBG SPECT/CT and (68)Ga DOTANOC PET/CT.

    PubMed

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 ((131)I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 ((68)Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor.

  13. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less

  14. Gene therapy strategies for urological dysfunction.

    PubMed

    Chancellor, M B; Yoshimura, N; Pruchnic, R; Huard, J

    2001-07-01

    Novel molecular techniques such as conventional and ex vivo gene therapy, and tissue engineering have only recently been introduced to the field of urology. The lower urinary tract is ideally suited for minimally invasive therapy, and also ex vivo approaches would limit the risk of systemic side effects. Muscle-derived stem cells have been used successfully to treat stress incontinence, and rats with diabetic bladder dysfunction benefited from nerve growth factor (NGF)-based gene therapy. Nitric oxide synthase and capase-7 might provide suitable gene therapy targets for erectile dysfunction and benign prostatic hyperplasia, respectively.

  15. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  16. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.

    PubMed

    Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu

    2018-05-08

    The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.

  17. Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome.

    PubMed

    Colaco, Marc; Koslov, David S; Keys, Tristan; Evans, Robert J; Badlani, Gopal H; Andersson, Karl-Erik; Walker, Stephen J

    2014-10-01

    Interstitial cystitis and bladder pain syndrome are terms used to describe a heterogeneous chronic pelvic and bladder pain disorder. Despite its significant prevalence, our understanding of disease etiology is poor. We molecularly characterized interstitial cystitis/bladder pain syndrome and determined whether there are clinical factors that correlate with gene expression. Bladder biopsies from female subjects with interstitial cystitis/bladder pain syndrome and female controls without signs of the disease were collected and divided into those with normal and low anesthetized bladder capacity, respectively. Samples then underwent RNA extraction and microarray assay. Data generated by these assays were analyzed using Omics Explorer (Qlucore, Lund, Sweden), GeneSifter® Analysis Edition 4.0 and Ingenuity® Pathway Analysis to determine similarity among samples within and between groups, and measure differentially expressed transcripts unique to each phenotype. A total of 16 subjects were included in study. Principal component analysis and unsupervised hierarchical clustering showed clear separation between gene expression in tissues from subjects with low compared to normal bladder capacity. Gene expression in tissue from patients with interstitial cystitis/bladder pain syndrome who had normal bladder capacity did not significantly differ from that in controls without interstitial cystitis/bladder pain syndrome. Pairwise analysis revealed that pathways related to inflammatory and immune response were most involved. Microarray analysis provides insight into the potential pathological condition underlying interstitial cystitis/bladder pain syndrome. This pilot study shows that patients with this disorder who have low compared to normal bladder capacity have significantly different molecular characteristics, which may reflect a difference in disease pathophysiology. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Quality control and primo-diagnosis of transurethral bladder resections with full-field OCT

    NASA Astrophysics Data System (ADS)

    Montagne, P.; Ducesne, I.; Anract, J.; Yang, C.; Sibony, M.; Beuvon, F.; Delongchamps, N. B.; Dalimier, E.

    2017-02-01

    Transurethral resections are commonly used for bladder cancer diagnosis, treatment and follow-up. Cancer staging relies largely on the analysis of muscle in the resections; however, muscle presence is uncertain at the time of the resection. An extemporaneous quality control tool would be of great use to certify the presence of muscle in the resection, and potentially formulate a primo-diagnosis, in order to ensure optimum patient care. Full-field optical coherence tomography (FFOCT) offers a fast and non-destructive method of obtaining images of biological tissues at ultrahigh resolution (1μm in all 3 directions), approaching traditional histological sections. This study aimed to evaluate the potential of FFOCT for the quality control and the primo-diagnosis of transurethral bladder resections. Over 70 transurethral bladder resections were imaged with FFOCT within minutes, shortly after excision, and before histological preparation. Side-by-side comparison with histology allowed to establish reading criteria for the presence of muscle and cancer in particular. Images of 24 specimens were read blindly by three non-pathologists readers: two resident urologists and a junior bio-medical engineer, who were asked to notify the presence of muscle and tumor. Results showed that after appropriate training, 96% accuracy could be obtained on both tumour and muscle detection. FFOCT is a fast and nondestructive imaging technique that provides analysis results concordant with histology. Its implementation as a quality control and primo-diagnosis tool for transurethral bladder resections in the urology suite is feasible and lets envision high value for the patient.

  19. Unusual Presentation of Bladder Paraganglioma: Comparison of 131I MIBG SPECT/CT and 68Ga DOTANOC PET/CT

    PubMed Central

    Jain, Tarun Kumar; Basher, Rajender Kumar; Gupta, Nitin; Shukla, Jaya; Singh, Shrawan Kumar; Mittal, Bhagwant Rai

    2016-01-01

    Extraadrenal chromaffin cell-related tumors or paragangliomas are rare, especially in the bladder, accounting for less than 1% of cases. We report a 16-year-old boy who presented with hematuria and paroxysmal headache and was found to have a prostatic growth infiltrating the urinary bladder on anatomical imaging. Iodine-131 (131I) metaiodobenzylguanidine (MIBG) whole-body scanning and subsequently gallium-68 (68Ga) DOTANOC positron emission tomography/computed tomography (PET/CT) were performed. The MIBG scan revealed a non-tracer-avid soft-tissue mass, while DOTANOC PET/CT revealed a tracer-avid primary soft-tissue mass involving the urinary bladder and prostate with metastasis to the iliac lymph nodes. He underwent surgical management; histopathology of the surgical specimen revealed a bladder paraganglioma, whereas the prostate was found to be free of tumor. PMID:26912984

  20. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model.

    PubMed

    Petrut, Bogdan; Hogea, Maximiliam; Fetica, Bogdan; Kozan, Andrei; Feflea, Dragos; Sererman, Gabriel; Goezen, Ali Serdar; Rassweiler, Jens

    2013-01-01

    The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats' scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings.

  1. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model

    PubMed Central

    PETRUT, BOGDAN; HOGEA, MAXIMILIAM; FETICA, BOGDAN; KOZAN, ANDREI; FEFLEA, DRAGOS; SERERMAN, GABRIEL; GOEZEN, ALI SERDAR; RASSWEILER, JENS

    2013-01-01

    Aim The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. Methods The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats’ scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. Results All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. Conclusion The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings. PMID:26527981

  2. Development of a Natural Language Processing Engine to Generate Bladder Cancer Pathology Data for Health Services Research.

    PubMed

    Schroeck, Florian R; Patterson, Olga V; Alba, Patrick R; Pattison, Erik A; Seigne, John D; DuVall, Scott L; Robertson, Douglas J; Sirovich, Brenda; Goodney, Philip P

    2017-12-01

    To take the first step toward assembling population-based cohorts of patients with bladder cancer with longitudinal pathology data, we developed and validated a natural language processing (NLP) engine that abstracts pathology data from full-text pathology reports. Using 600 bladder pathology reports randomly selected from the Department of Veterans Affairs, we developed and validated an NLP engine to abstract data on histology, invasion (presence vs absence and depth), grade, the presence of muscularis propria, and the presence of carcinoma in situ. Our gold standard was based on an independent review of reports by 2 urologists, followed by adjudication. We assessed the NLP performance by calculating the accuracy, the positive predictive value, and the sensitivity. We subsequently applied the NLP engine to pathology reports from 10,725 patients with bladder cancer. When comparing the NLP output to the gold standard, NLP achieved the highest accuracy (0.98) for the presence vs the absence of carcinoma in situ. Accuracy for histology, invasion (presence vs absence), grade, and the presence of muscularis propria ranged from 0.83 to 0.96. The most challenging variable was depth of invasion (accuracy 0.68), with an acceptable positive predictive value for lamina propria (0.82) and for muscularis propria (0.87) invasion. The validated engine was capable of abstracting pathologic characteristics for 99% of the patients with bladder cancer. NLP had high accuracy for 5 of 6 variables and abstracted data for the vast majority of the patients. This now allows for the assembly of population-based cohorts with longitudinal pathology data. Published by Elsevier Inc.

  3. Vitamin D Induction of the Human Antimicrobial Peptide Cathelicidin in the Urinary Bladder

    PubMed Central

    Hertting, Olof; Holm, Åsa; Lüthje, Petra; Brauner, Hanna; Dyrdak, Robert; Jonasson, Aino Fianu; Wiklund, Peter; Chromek, Milan; Brauner, Annelie

    2010-01-01

    The urinary tract is frequently being exposed to potential pathogens and rapid defence mechanisms are therefore needed. Cathelicidin, a human antimicrobial peptide is expressed and secreted by bladder epithelial cells and protects the urinary tract from infection. Here we show that vitamin D can induce cathelicidin in the urinary bladder. We analyzed bladder tissue from postmenopausal women for expression of cathelicidin, before and after a three-month period of supplementation with 25-hydroxyvitamin D3 (25D3). Cell culture experiments were performed to elucidate the mechanisms for cathelicidin induction. We observed that, vitamin D per se did not up-regulate cathelicidin in serum or in bladder tissue of the women in this study. However, when the bladder biopsies were infected with uropathogenic E. coli (UPEC), a significant increase in cathelicidin expression was observed after 25D3 supplementation. This observation was confirmed in human bladder cell lines, even though here, cathelicidin induction occurred irrespectively of infection. Vitamin D treated bladder cells exerted an increased antibacterial effect against UPEC and colocalization to cathelicidin indicated the relevance of this peptide. In the light of the rapidly growing problem of resistance to common urinary tract antibiotics, we suggest that vitamin D may be a potential complement in the prevention of UTI. PMID:21179490

  4. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma

    PubMed Central

    Shin, Kunyoo; Lim, Agnes; Odegaard, Justin I.; Honeycutt, Jared D.; Kawano, Sally; Hsieh, Michael H.; Beachy, Philip A.

    2014-01-01

    Understanding how malignancies arise within normal tissues requires identification of the cancer cell of origin and knowledge of the cellular and tissue dynamics of tumor progression. Here we examine bladder cancer in a chemical carcinogenesis model that mimics muscle-invasive human bladder cancer. With no prior bias regarding genetic pathways or cell types, we prospectively mark or ablate cells to show that muscle-invasive bladder carcinomas arise exclusively from Sonic hedgehog (Shh)-expressing stem cells in basal urothelium. These carcinomas arise clonally from a single cell whose progeny aggressively colonize a major portion of the urothelium to generate a lesion with histological features identical to human carcinoma-in-situ. Shh-expressing basal cells within this precursor lesion become tumor-initiating cells, although Shh expression is lost in subsequent carcinomas. We thus find that invasive carcinoma is initiated from basal urothelial stem cells but that tumor cell phenotype can diverge significantly from that of the cancer cell-of-origin. PMID:24747439

  5. SU-E-J-214: Comparative Assessment On IGRT On Partial Bladder Cancer Treatment Between CT-On-Rails (CTOR) and KV Cone Beam CT (CBCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T; Ma, C

    2014-06-01

    Purpose: Image-Guided radiation therapy(IGRT) depends on reliable online patient-specific anatomy information to address random and progressive anatomy changes. Large margins have been suggested to bladder cancer treatment due to large daily bladder anatomy variation. KV Cone beam CT(CBCT) has been used in IGRT localization prevalently; however, its lack of soft tissue contrast makes clinicians hesitate to perform daily soft tissue alignment with CBCT for partial bladder cancer treatment. This study compares the localization uncertainties of bladder cancer IGRT using CTon- Rails(CTOR) and CBCT. Methods: Three T2N0M0 bladder cancer patients (total of 66 Gy to partial bladder alone) were localized dailymore » with either CTOR or CBCT for their entire treatment course. A total of 71 sets of CTOR and 22 sets of CBCT images were acquired and registered with original planning CT scans by radiation therapists and approved by radiation oncologists for the daily treatment. CTOR scanning entailed 2mm slice thickness, 0.98mm axial voxel size, 120kVp and 240mAs. CBCT used a half fan pelvis protocol from Varian OBI system with 2mm slice thickness, 0.98axial voxel size, 125kVp, and 680mAs. Daily localization distribution was compared. Accuracy of CTOR and CBCT on partial bladder alignment was also evaluated by comparing bladder PTV coverage. Results: 1cm all around PTV margins were used in every patient except target superior limit margin to 0mm due to bowel constraint. Daily shifts on CTOR averaged to 0.48, 0.24, 0.19 mms(SI,Lat,AP directions); CBCT averaged to 0.43, 0.09, 0.19 mms(SI,Lat,AP directions). The CTOR daily localization showed superior results of V100% of PTV(102% CTOR vs. 89% CBCT) and bowel(Dmax 69.5Gy vs. 78Gy CBCT). CTOR images showed much higher contrast on bladder PTV alignment. Conclusion: CTOR daily localization for IGRT is more dosimetrically beneficial for partial bladder cancer treatment than kV CBCT localization and provided better soft tissue PTV identification.« less

  6. Multimodal fiber-probe spectroscopy for the diagnostics and classification of bladder tumors

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Fantechi, Riccardo; Gacci, Mauro; Nesi, Gabriella; Carini, Marco; Pavone, Francesco S.

    2017-02-01

    The gold standard for the detection of bladder cancer is white light cystoscopy, followed by an invasive biopsy and pathological examination. Tissue pathology is time consuming and often prone to sampling errors. Recently, optical spectroscopy techniques have evolved as promising techniques for the detection of neoplasia. The specific goal of this study is to evaluate the application of combined auto-fluorescence (excited using 378 nm and 445 nm wavelengths) and diffuse reflectance spectroscopy to discriminate normal bladder tissue from tumor at different grades. The fluorescence spectrum at both excitation wavelengths showed an increased spectral intensity in tumors with respect to normal tissues. Reflectance data indicated an increased reflectance in the wavelength range 610 nm - 700 nm for different grades of tumors, compared to normal tissues. The spectral data were further analyzed using principal component analysis for evaluating the sensitivity and specificity for diagnosing tumor. The spectral differences observed between various grades of tumors provides a strong genesis for the future evaluation on a larger patient population to achieve statistical significance. This study indicates that a combined spectroscopic strategy, incorporating fluorescence and reflectance spectroscopy, could improve the capability for diagnosing bladder tumor as well as for differentiating tumors in different grades.

  7. Microwave radiometry for non-invasive detection of vesicoureteral reflux (VUR) following bladder warming

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Maccarini, Paolo F.; Arunachalam, Kavitha; De Luca, Valeria; Salahi, Sara; Boico, Alina; Klemetsen, Oystein; Birkelund, Yngve; Jacobsen, Svein K.; Bardati, Fernando; Tognolotti, Piero; Snow, Brent

    2011-03-01

    Background: Vesicoureteral reflux (VUR) is a serious health problem leading to renal scarring in children. Current VUR detection involves traumatic x-ray imaging of kidneys following injection of contrast agent into bladder via invasive Foley catheter. We present an alternative non-invasive approach for detecting VUR by radiometric monitoring of kidney temperature while gently warming the bladder. Methods: We report the design and testing of: i) 915MHz square slot antenna array for heating bladder, ii) EMI-shielded log spiral microstrip receive antenna, iii) high-sensitivity 1.375GHz total power radiometer, iv) power modulation approach to increase urine temperature relative to overlying perfused tissues, and v) invivo porcine experiments characterizing bladder heating and radiometric temperature of aaline filled 30mL balloon "kidney" implanted 3-4cm deep in thorax and varied 2-6°C from core temperature. Results: SAR distributions are presented for two novel antennas designed to heat bladder and monitor deep kidney temperatures radiometrically. We demonstrate the ability to heat 180mL saline in in vivo porcine bladder to 40-44°C while maintaining overlying tissues <38°C using time-modulated square slot antennas coupled to the abdomen with room temperature water pad. Pathologic evaluations confirmed lack of acute thermal damage in pelvic tissues for up to three 20min bladder heat exposures. The radiometer clearly recorded 2-6°C changes of 30mL "kidney" targets at depth in 34°C invivo pig thorax. Conclusion: A 915MHz antenna array can gently warm in vivo pig bladder without toxicity while a 1.375GHz radiometer with log spiral receive antenna detects >=2°C rise in 30mL "urine" located 3-4cm deep in thorax, demonstrating more than sufficient sensitivity to detect Grade 4-5 reflux of warmed urine for non-invasive detection of VUR.

  8. Microwave Radiometry for Non-Invasive Detection of Vesicoureteral Reflux (VUR) Following Bladder Warming.

    PubMed

    Stauffer, Paul R; Maccarini, Paolo F; Arunachalam, Kavitha; De Luca, Valeria; Salahi, Sara; Boico, Alina; Klemetsen, Oystein; Birkelund, Yngve; Jacobsen, Svein K; Bardati, Fernando; Tognolatti, Piero; Snow, Brent

    2011-01-01

    BACKGROUND: Vesicoureteral reflux (VUR) is a serious health problem leading to renal scarring in children. Current VUR detection involves traumatic x-ray imaging of kidneys following injection of contrast agent into bladder via invasive Foley catheter. We present an alternative non-invasive approach for detecting VUR by radiometric monitoring of kidney temperature while gently warming the bladder. METHODS: We report the design and testing of: i) 915MHz square slot antenna array for heating bladder, ii) EMI-shielded log spiral microstrip receive antenna, iii) high-sensitivity 1.375GHz total power radiometer, iv) power modulation approach to increase urine temperature relative to overlying perfused tissues, and v) invivo porcine experiments characterizing bladder heating and radiometric temperature of aaline filled 30mL balloon "kidney" implanted 3-4cm deep in thorax and varied 2-6°C from core temperature. RESULTS: SAR distributions are presented for two novel antennas designed to heat bladder and monitor deep kidney temperatures radiometrically. We demonstrate the ability to heat 180mL saline in in vivo porcine bladder to 40-44°C while maintaining overlying tissues <38°C using time-modulated square slot antennas coupled to the abdomen with room temperature water pad. Pathologic evaluations confirmed lack of acute thermal damage in pelvic tissues for up to three 20min bladder heat exposures. The radiometer clearly recorded 2-6°C changes of 30mL "kidney" targets at depth in 34°C invivo pig thorax. CONCLUSION: A 915MHz antenna array can gently warm in vivo pig bladder without toxicity while a 1.375GHz radiometer with log spiral receive antenna detects ≥2°C rise in 30mL "urine" located 3-4cm deep in thorax, demonstrating more than sufficient sensitivity to detect Grade 4-5 reflux of warmed urine for non-invasive detection of VUR.

  9. Differentiation of human adipose-derived stem cells co-cultured with urothelium cell line toward a urothelium-like phenotype in a nude murine model.

    PubMed

    Zhang, Ming; Peng, Yubing; Zhou, Zhe; Zhou, Juan; Wang, Zhong; Lu, Mujun

    2013-02-01

    To investigated the urothelium differentiation potential of adipose-derived stem cells (ASCs) that were coimplanted with the immortalized human bladder urothelium cell line (SV-HUC-1) into the subcutaneous tissue of athymic mice. The ASCs were isolated from the human adipose tissue of patients undergoing liposuction procedures and were expanded in vitro. After labeling with CM-DiI, the ASCs were mixed with SV-HUC-1 and implanted into the subcutaneous tissue of athymic mice for 2 and 4 weeks. The urothelium-specific markers uroplakin-Ia and uroplakin-II were detected by immunofluorescence. The transformation rate of ASCs into the urothelium phenotype was evaluated at each measurement point. We found that 25.87% ± 1.38% of ASCs expressed the urothelium-specific marker uroplakin-Ia and 23.60% ± 2.57% of ASCs expressed uroplakin-II 2 weeks after coimplantation with SV-HUC-1 in vivo. After 4 weeks, 70.07% ± 3.84% of ASCs expressed uroplakin-Ia and 65.56% ± 2.94% expressed uroplakin-II. However, no obvious organizational multilayered urothelium structure, such as that of the native bladder mucosa, was found in the subcutaneous tissues of the athymic mice. The results of our study have demonstrated that ASCs could be differentiated toward the urothelium-like phenotype when they were coimplanted in direct contact with cells of a mature urothelium cell line, and the proportion of differentiated cells increased from 2 to 4 weeks. The differentiation potential of ASCs toward the urothelial cell type suggests that ASCs might have potential to be used in urinary tract repair with a tissue engineering approach in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Expression of EphA2 and Ephrin A-1 in carcinoma of the urinary bladder.

    PubMed

    Abraham, Shaji; Knapp, Deborah W; Cheng, Liang; Snyder, Paul W; Mittal, Suresh K; Bangari, Dinesh S; Kinch, Michael; Wu, Lan; Dhariwal, Jay; Mohammed, Sulma I

    2006-01-15

    The EphA2 receptor tyrosine kinase is believed to play a role in tumor growth and metastasis. The clinical significance of the expression of EphA2 was observed in breast, prostate, colon, skin, cervical, ovarian, and lung cancers. The purpose of this work was to determine the expression of EphA2 and its ligand, Ephrin A-1, and E-cadherin in carcinoma of the urinary bladder, and determine EphA2 as a new target for therapy in bladder cancer. EphA2 mRNA and protein expression was investigated by reverse transcription-PCR and Western blot, respectively, in bladder cancer cell lines. In addition, the expression of EphA2, Ephrin A-1, and E-cadherin in tissues from patients with different stages of urinary bladder cancer was determined by immunohistochemistry. Furthermore, the ability of Ephrin A-1 to inhibit growth of bladder cancer cells was also investigated using an adenoviral delivery system. Western blot analysis showed high EphA2 expression in TCCSUP, T24, and UMUC-3 cell lines. In tissues, the staining intensity of EphA2 was less in normal urothelium but increased greatly in advancing stages of urothelial carcinoma (P < 0.05). Similarly, the staining intensity of Ephrin A-1 was low in normal tissues and high in cancerous tissues, but it was similar across the various stages of urothelial carcinoma (T(a)-T(4)). E-cadherin immunoreactivity decreased in urothelial cancer. Association of EphA2 and Ephrin A-1 expression was found to be significant between T(a) stage and T(1)-T(2) (P < 0.04) and T(a) and T(3)-T(4) stages (P < 0.0001). Adenovirus delivery of Ephrin A-1 inhibited proliferation of TCCSUP cells. EphA2 may serve as a novel target for bladder cancer therapy.

  11. Using gene chips to identify organ-specific, smooth muscle responses to experimental diabetes: potential applications to urological diseases.

    PubMed

    Hipp, Jason D; Davies, Kelvin P; Tar, Moses; Valcic, Mira; Knoll, Abraham; Melman, Arnold; Christ, George J

    2007-02-01

    To identify early diabetes-related alterations in gene expression in bladder and erectile tissue that would provide novel diagnostic and therapeutic treatment targets to prevent, delay or ameliorate the ensuing bladder and erectile dysfunction. The RG-U34A rat GeneChip (Affymetrix Inc., Sunnyvale, CA, USA) oligonucleotide microarray (containing approximately 8799 genes) was used to evaluate gene expression in corporal and male bladder tissue excised from rats 1 week after confirmation of a diabetic state, but before demonstrable changes in organ function in vivo. A conservative analytical approach was used to detect alterations in gene expression, and gene ontology (GO) classifications were used to identify biological themes/pathways involved in the aetiology of the organ dysfunction. In all, 320 and 313 genes were differentially expressed in bladder and corporal tissue, respectively. GO analysis in bladder tissue showed prominent increases in biological pathways involved in cell proliferation, metabolism, actin cytoskeleton and myosin, as well as decreases in cell motility, and regulation of muscle contraction. GO analysis in corpora showed increases in pathways related to ion channel transport and ion channel activity, while there were decreases in collagen I and actin genes. The changes in gene expression in these initial experiments are consistent with the pathophysiological characteristics of the bladder and erectile dysfunction seen later in the diabetic disease process. Thus, the observed changes in gene expression might be harbingers or biomarkers of impending organ dysfunction, and could provide useful diagnostic and therapeutic targets for a variety of progressive urological diseases/conditions (i.e. lower urinary tract symptoms related to benign prostatic hyperplasia, erectile dysfunction, etc.).

  12. Enhanced inhibition of urinary bladder cancer growth and muscle invasion by allyl isothiocyanate and celecoxib in combination

    PubMed Central

    Zhang, Yuesheng

    2013-01-01

    Allyl isothiocyanate (AITC) occurs in cruciferous vegetables that are commonly consumed by humans and has been shown to inhibit urinary bladder cancer growth and progression in previous preclinical studies. However, AITC does not significantly modulate cyclooxygenase-2 (Cox-2), whose oncogenic activity has been well documented in bladder cancer and other cancers. Celecoxib is a selective Cox-2 inhibitor and has been widely used for treatment of several diseases. Celecoxib has also been evaluated in bladder cancer patients, but its efficacy against bladder cancer as a single agent remains unclear. In a syngeneic rat model of orthotopic bladder cancer, treatment of the animals with the combination of AITC and celecoxib at low dose levels (AITC at 1mg/kg and celecoxib at 10mg/kg) led to increased or perhaps synergistic inhibition of bladder cancer growth and muscle invasion, compared with each agent used alone. The combination regime was also more effective than each single agent in inhibiting microvessel formation and stimulating microvessel maturation in the tumor tissues. The anticancer efficacy of the combination regime was associated with depletion of prostaglandin E2, a key downstream signaling molecule of Cox-2, caspase activation and downregulation of vascular endothelial growth factor in the tumor tissues. These data show that AITC and celecoxib complement each other for inhibition of bladder cancer and provide a novel combination approach for potential use for prevention or treatment of human bladder cancer. PMID:23946495

  13. Pitfalls and Limitations of Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Urinary Bladder Cancer

    PubMed Central

    Lin, Wei-Ching; Chen, Jeon-Hor

    2015-01-01

    Adequately selecting a therapeutic approach for bladder cancer depends on accurate grading and staging. Substantial inaccuracy of clinical staging with bimanual examination, cystoscopy, and transurethral resection of bladder tumor has facilitated the increasing utility of magnetic resonance imaging to evaluate bladder cancer. Diffusion-weighted imaging (DWI) is a noninvasive functional magnetic resonance imaging technique. The high tissue contrast between cancers and surrounding tissues on DWI is derived from the difference of water molecules motion. DWI is potentially a useful tool for the detection, characterization, and staging of bladder cancers; it can also monitor posttreatment response and provide information on predicting tumor biophysical behaviors. Despite advancements in DWI techniques and the use of quantitative analysis to evaluate the apparent diffusion coefficient values, there are some inherent limitations in DWI interpretation related to relatively poor spatial resolution, lack of cancer specificity, and lack of standardized image acquisition protocols and data analysis procedures that restrict the application of DWI and reproducibility of apparent diffusion coefficient values. In addition, inadequate bladder distension, artifacts, thinness of bladder wall, cancerous mimickers of normal bladder wall and benign lesions, and variations in the manifestation of bladder cancer may interfere with diagnosis and monitoring of treatment. Recognition of these pitfalls and limitations can minimize their impact on image interpretation, and carefully applying the analyzed results and combining with pathologic grading and staging to clinical practice can contribute to the selection of an adequate treatment method to improve patient care. PMID:26055180

  14. Spontaneously released substance P and bradykinin from isolated guinea-pig bladder.

    PubMed

    Saban, R; Franz, J; Bjorling, D E

    1997-04-01

    To investigate whether the isolated urinary bladder spontaneously releases substance P (SP) or bradykinin (BK), which can act as potent mediators of pain and inflammation of the urinary bladder, and whether peptidase inhibitors enhance peptide release. Urinary bladder segments (2 x 10 x 0.8-1 mm) were isolated from guinea pigs and studied in vitro; tissue contraction was assessed using force-displacement transducers and the release of peptides by specific enzyme immunoassays. In the absence of any exogenous agonists, the inhibition of neutral endopeptidase and angiotensin-converting enzyme by phosphoramidon and captopril, respectively, increased the frequency and magnitude of spontaneous motility of isolated bladder strips. Phosphoramidon increased the net release of SP-like immunoreactivity (SP-LI) and captopril increased the net release of SP-LI and BK-LI, concomitant with contraction. Peptide-LI was recovered primarily from bladder mucosa and to a lesser degree from detrusor smooth muscle. Similarly, peptidase inhibitors primarily affected the bladder mucosa; phosphoramidon induced a fourfold increase in SP-LI and captopril induced a significant increase of SP-LI and BK-LI from the mucosa. Tissues contracted in response to peptidase inhibitors in the presence of atropine and indomethacin, but contraction was reduced significantly by in vitro capsaicin desensitization or removal of bladder mucosa. BK stimulated SP-LI release from mucosa but not detrusor. SP stimulated increased BK-LI release from mucosa and detrusor. These findings indicate the basal release of peptide-like immunoreactivity by isolated bladder and further support the concept that peptidases located in the bladder mucosa are important in terminating the effects of endogenous peptides.

  15. [Multiple bladder diverticula caused by occipital horn syndrome].

    PubMed

    Legros, L; Revencu, N; Nassogne, M-C; Wese, F-X; Feyaerts, A

    2015-11-01

    We report on the case of a child who presented with recurrent, multiple, and voluminous bladder diverticula. Bladder diverticula are defined as a herniation of the mucosa through the bladder muscle or the detrusor. Causes are numerous and diverticula can be classified into primary congenital diverticula (para-ureteral - or Hutch diverticula - and posterolateral diverticula); secondary diverticula (resulting from chronic mechanical obstruction or from neurological disease; and diverticula secondary to connective tissue or muscle fragility. The latter is seen in disease entities such as prune belly syndrome, Ehlers-Danlos syndrome, cutis laxa syndrome, OHS (occipital horn syndrome), Menkes disease, and Williams-Beuren syndrome. In this patient, the cause of these diverticula was OHS, a genetic, recessive X-chromosome-linked syndrome, responsible for abnormal tissue caused by a disorder in copper metabolism. This case reminds us of the importance of pushing the diagnostic workup when presented with multiple and/or large bladder diverticula, and in particular to search for rare malformation syndromes after exclusion of an obstacle. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Matthews, Frazer; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)—with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)—with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)—a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SELcum and SELss respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders. PMID:23055066

  18. Tissue responses to hexyl 5-aminolevulinate-induced photodynamic treatment in syngeneic orthotopic rat bladder cancer model: possible pathways of action

    NASA Astrophysics Data System (ADS)

    Arum, Carl-Jørgen; Gederaas, Odrun A.; Larsen, Eivind L. P.; Randeberg, Lise L.; Hjelde, Astrid; Krokan, Hans E.; Svaasand, Lars O.; Chen, Duan; Zhao, Chun-Mei

    2011-02-01

    Orthotopic bladder cancer model in rats mimics human bladder cancer with respect to urothelial tumorigenesis and progression. Utilizing this model at pT1 (superficial stage), we analyze the tissue responses to hexyl 5-aminolevulinate-induced photodynamic therapy (HAL-PDT). In comparison to untreated rats, HAL-PDT causes little change in tumor-free rat bladder but induces inflammatory changes with increased lymphocytes and mononuclear cell infiltration in rat bladders with tumor. Immunohistochemistry reveals that HAL-PDT is without effect on proliferating cell nuclear antigen expression within the tumor and increases caspase-3 expression in both normal urothelium and the tumor. Transmission electron microscopy reveals severe mitochondrial damage, formations of apoptotic bodies, vacuoles, and lipofuscin bodies, but no microvillus-formed niches in HAL-PDT-treated bladder cancer rats. Bioinformatics analysis of the gene expression profile indicates an activation of T-cell receptor signaling pathway in bladder cancer rats without PDT. HAL-PDT increases the expression of CD3 and CD45RA in the tumor (determined by immunohistochemistry). We suggest that pathways of action of HAL-PDT may include, at least, activations of mitochondrial apoptosis and autophagy, breakdown of cancer stem cell niches, and importantly, enhancement of T-cell activation.

  19. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Matthews, Frazer; Carlson, Thomas J; Popper, Arthur N

    2012-12-07

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)--with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)--with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)--a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SEL(cum) and SEL(ss) respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders.

  20. Bladder Involvement in Stage I Endometriosis.

    PubMed

    Brady, Paula C; Missmer, Stacey A; Laufer, Marc R

    2017-08-01

    Endometriosis-the ectopic implantation of endometrial-like tissue-affects 10% of adolescent females and adults. Bladder involvement, causing dysuria and hematuria, occurs in a very small number of endometriosis patients. The patient presented at age 12 years with dysuria and pelvic pain. Laparoscopy revealed stage I endometriosis. Postoperatively, she reported persistent dysuria and passage of tissue in her urine. Cystoscopy showed diffuse erythema; urine cytology revealed glandular and spindle cells suggestive of endometriosis. She was transitioned from oral contraceptives to an intranasal gonadotropin-releasing hormone agonist, with symptom resolution. Intravesicular endometriosis coinciding with stage I disease supports a mechanism of endometriosis dissemination other than direct bladder infiltration. Patients with endometriosis who complain of urinary symptoms warrant assessment, because intravesicular bladder involvement cannot be excluded using pelviscopy. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  1. Increased autophagy contributes to impaired smooth muscle function in neurogenic lower urinary tract dysfunction.

    PubMed

    Eberli, Daniel; Horst, Maya; Mortezavi, Ashkan; Andersson, Karl-Erik; Gobet, Rita; Sulser, Tullio; Simon, Hans-Uwe; Salemi, Souzan

    2018-05-24

    To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle. © 2018 Wiley Periodicals, Inc.

  2. A new problem in inflammatory bladder diseases: use of mobile phones!

    PubMed

    Koca, Orhan; Gokce, Ali Murat; Akyuz, Mehmet; Ercan, Feriha; Yurdakul, Necati; Karaman, Muhammet Ihsan

    2014-01-01

    Technological developments provide a lot of conveniences to our lives. This issue is one of the risks that arise along with these conveniences. In our study we tried to understand the impact of electromagnetic waves from mobile phones on bladder tissue. Twenty-one adult male albino rats were divided into three equal groups. Group 1 was exposed to electromagnetic wave for 8 hours per day for 20 days and then their bladders were taken off immediately. Group 2 was firstly exposed to electromagnetic wave for 8 hours per day for 20 days then secondly another for 20 days without exposition to electromagnetic wave and then their bladders were taken off. Group 3 was the control group and they were not exposed to electromagnetic wave. Under microscopic examination of bladder tissue, in the first group severe inflammatory cell infiltration was seen in lamina propria and muscle layer in contrast to intact urothelium. In the second group mild inflammatory cell infiltration was seen in lamina propria and muscle layer. The mean scores for the three groups were 5.5 ± 2.5, 0.8 ± 1.3 and 1.2 ± 1.5 respectively. Mean score of group 1 was statistically higher than others (p = 0.001). Intensive use of mobile phones has negative impact on bladder tissue as well as the other organs. Keeping a minimum level of mobile phone use makes it easy to be kept under control of diseases in which inflammation is an etiologic factor.

  3. Inflammation and Tissue Remodeling in the Bladder and Urethra in Feline Interstitial Cystitis

    PubMed Central

    Kullmann, F. Aura; McDonnell, Bronagh M.; Wolf-Johnston, Amanda S.; Lynn, Andrew M.; Getchell, Samuel E.; Ruiz, Wily G.; Zabbarova, Irina V.; Ikeda, Youko; Kanai, Anthony J.; Roppolo, James R.; Bastacky, Sheldon I.; Apodaca, Gerard; Buffington, C. A. Tony; Birder, Lori A.

    2018-01-01

    Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn’s nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a “sensory network” and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome. PMID:29706873

  4. [DAB2IP expression in bladder transitional cell carcinoma and its correlation with clinical outcome].

    PubMed

    Zhu, Jian-Ning; Wu, Kai-Jie; Guan, Zhen-Feng; Liu, Li-Xia; Ning, Zhong-Yun; Zhou, Jian-Cheng; Wang, Xin-Yang; Fan, Jin-Hai

    2014-07-01

    To investigate the expression of DAB2IP in bladder transitional cell carcinoma (BTCC) and its correlation with clinical characteristics and prognosis of BTCC patients. Immunohistochemical staining was applied to detect DAB2IP protein level in 79 cases of TCCB tissues and 11 cases of normal bladder tissues, and the relationships of the staining results with pathological grade, stage, lymph node metastasis, gender, age and the 3-year survival rate of the patients were analyzed. The expression of DAB2IP in BTCC tissues was significantly lower than that in normal bladder epithelium, and the expression score and rate of DAB2IP in the high-grade, invasive and metastatic BTCC were significantly lower than those in low-grade, superficial and non-metastatic BTCC (P < 0.05). The 3-year survival rate of the patients with high DAB2IP expression was significantly higher than that of the patients with low DAB2IP expression. DAB2IP may be one of the important inhibitory factors during the occurrence and progression of BTCC.

  5. Androgen receptor signals regulate UDP-glucuronosyltransferases in the urinary bladder: a potential mechanism of androgen-induced bladder carcinogenesis.

    PubMed

    Izumi, Koji; Zheng, Yichun; Hsu, Jong-Wei; Chang, Chawnshang; Miyamoto, Hiroshi

    2013-02-01

    UDP-glucuronosyltransferases (UGTs), major phase II drug metabolism enzymes, play an important role in urinary bladder cancer initiation by detoxifying carcinogens. We aimed to determine if androgens regulate UGT expression via the androgen receptor (AR) pathway in the bladder. Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to assess UGT1A levels in the normal urothelium SVHUC cell line stably expressed with AR and in bladder tissues from AR knockout (ARKO) and castrated male mice. Immunohistochemistry was also performed in radical cystectomy specimens. Dihydrotestosterone (DHT) treatment in SVHUC-AR reduced mRNA expression of all the UGT1A subtypes (19-75% decrease), and hydroxyflutamide antagonized the DHT effects. In contrast, DHT showed only marginal effects on UGT1A expression in SVHUC-Vector. Of note were higher expression levels of UGT1As in SVHUC-Vector than in SVHUC-AR. In ARKO mice, all the Ugt1a subtypes were up-regulated, compared to wild-type littermates. In wild-type male mice, castration increased the expression of Ugt1a8, Ugt1a9, and Ugt1a10. Additionally, wild-type female mice had higher levels of Ugt1a than wild-type males. Immunohistochemical studies showed strong (3+) UGT1A staining in 11/24 (46%) cancer tissues, which was significantly lower than in corresponding benign tissues [17/18 (94%) cases (P = 0.0009)]. These results suggest that androgen-mediated AR signals promote bladder carcinogenesis by down-regulating the expression of UGTs in the bladder. Copyright © 2011 Wiley Periodicals, Inc.

  6. High expression of insulin receptor on tumour-associated blood vessels in invasive bladder cancer predicts poor overall and progression-free survival.

    PubMed

    Roudnicky, Filip; Dieterich, Lothar C; Poyet, Cedric; Buser, Lorenz; Wild, Peter; Tang, Dave; Camenzind, Peter; Ho, Chien Hsien; Otto, Vivianne I; Detmar, Michael

    2017-06-01

    Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Predictive value of Sox2 expression in transurethral resection specimens in patients with T1 bladder cancer.

    PubMed

    Ruan, Jun; Wei, Bingbing; Xu, Zhuoqun; Yang, Shudong; Zhou, You; Yu, Minhong; Liang, Jiabei; Jin, Ke; Huang, Xing; Lu, Peng; Cheng, Huan

    2013-03-01

    Sox2 is thought to be an important regulator of self-renewal in embryonic stem cell. According to the cancer stem cell (CSC) theory, the overexpression of Sox2 is potentially involved in carcinogenesis and could affect tumor recurrence and metastasis. Previous study proved Sox2 might be prognostic marker for multiple human malignancies. The purpose of this study was to investigate the clinicopathological significance of Sox2 expression in human non-muscle-invasive bladder cancer. We examined Sox2 expression in 32 paired non-muscle-invasive bladder cancer tissues and adjacent non-cancerous tissues by quantitative real-time RT-PCR (qrtRT-PCR). In addition, we analyzed Sox2 and Ki-67 expression in 126 non-muscle-invasive bladder cancer samples and bladder cancer cell line T24 by immunohistochemistry and immunofluorescence assays. The recurrence-free survival was determined by Kaplan-Meier method and log-rank test. Cox regression was adopted for univariate and multivariate analyses of prognostic factors. The expression of Sox2 was significantly increased in non-muscle-invasive bladder cancer tissues. Sox2 expression was significantly correlated with that of Ki-67 (P < 0.001). The expression of Sox2 was significantly associated with tumor size (P = 0.006), tumor number (P = 0.037), and tumor grade (P < 0.001). Patients with high Sox2 expression had significantly poorer recurrence-free survival (P = 0.0002) when compared with patients with the low expression of Sox2. On multivariate analysis, Sox2 expression and tumor grade were found to be independent prognostic factors for recurrence-free survival (P < 0.05). Our data suggested for the first time that the high expression of Sox2 may contribute to the development of non-muscle-invasive bladder cancer and serve as a novel prognostic marker in patients with T1 bladder cancer.

  8. Folate hydrolase (prostate-specific membrane [corrected] antigen) 1 expression in bladder cancer subtypes and associated tumor neovasculature.

    PubMed

    Samplaski, Mary K; Heston, Warren; Elson, Paul; Magi-Galluzzi, Cristina; Hansel, Donna E

    2011-11-01

    Folate hydrolase (prostate-specific antigen) 1 (FH(PSA)1), also known as prostate-specific membrane antigen (PSMA), is a transmembrane receptor expressed on prostate cancer cells that correlates with a more aggressive phenotype. Recent studies have demonstrated FH(PSA)1 expression in numerous benign and malignant tissue types, as well as the malignant neovasculature. As FH(PSA)1 represents a diagnostic immunomarker for prostate cancer, we explored its expression pattern in various subtypes of bladder cancer. Immunohistochemical analysis (IHC) of FH(PSA)1 was performed using tissue microarrays constructed from 167 bladder cancers, including 96 urothelial carcinomas (UCCs), 37 squamous cell carcinomas, 17 adenocarcinomas and 17 small cell carcinomas. We used a FH(PSA)1 monoclonal antibody obtained from Dako (clone 3E6, dilution 1:100), which recognizes the epitope present in the 57-134 amino acid region of the extracellular portion of the PSMA molecule. Intensity of IHC staining was scored as 0 (no expression) to 3+ (strong expression), with 2-3+ IHC considered a positive result. FH(PSA)1 demonstrated expression in a subset of bladder cancers and was most common in small cell carcinoma (3/17; 18%), with concurrent expression in non-small cell components in a subset of cases (2/6). FH(PSA)1 expression was less frequent in UCC (3/96; 3%) and adenocarcinoma (2/17; 12%). None of the squamous cell carcinomas demonstrated tumor cell expression of FH(PSA)1. However, all bladder cancers examined expressed FH(PSA)1 in the tumor vasculature, suggesting a potential role for this molecule in mediating new vessel ingrowth. FH(PSA)1 may occasionally be expressed in various subtypes of bladder cancer. These findings suggest cautious use of FH(PSA)1 as a diagnostic marker for prostatic tissue invading the bladder. The finding of FH(PSA)1 in the bladder cancer neovasculature suggests that this molecule may promote tumor growth and may represent a potential new vascular target in this disease.

  9. Diagnostic and Prognostic Significance of Serum and Tissue Galectin 3 Expression in Patients with Carcinoma of the Bladder

    PubMed Central

    Gendy, Hoda El; Madkour, Bothina; Abdelaty, Sara; Essawy, Fayza; Khattab, Dina; Hammam, Olfat; Nour, Hani H.

    2014-01-01

    Background Galectins are group of proteins found in the cytoplasm, nucleus, cell surface and extracellular matrix. Galectin 3 (Gal-3) displays pathological expression in a variety of processes such as tumorigenesis. Patients and Method 70 patients classified into the control group, cystitis group, transitional cell carcinoma group, and squamous cell carcinoma group were enrolled in this study which aimed to detect the serum level and the intensity of tissue expression of Gal-3. Results Both serum level and tissue expression of Gal-3 were statistically higher in bladder cancer patients compared to the other groups. Gal-3 level expression increased from low to high grade urothelial tumors, with a statistically significant increase of its level and expression between muscle invasive and non-muscle invasive Ta urothelial tumors. Conclusion The serum Gal-3 level is sensitive and specific for the diagnosis of bladder cancer. The prognostic significance of tissue expression is to be confirmed. PMID:26195948

  10. Homing peptide guiding optical molecular imaging for the diagnosis of bladder cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-feng; Pang, Jian-zhi; Liu, Jie-hao; Zhao, Yang; Jia, Xing-you; Li, Jun; Liu, Reng-xin; Wang, Wei; Fan, Zhen-wei; Zhang, Zi-qiang; Yan, San-hua; Luo, Jun-qian; Zhang, Xiao-lei

    2014-11-01

    Background: The limitations of primary transurethral resection of bladder tumor (TURBt) have led the residual tumors rates as high as 75%. The intraoperative fluorescence imaging offers a great potential for improving TURBt have been confirmed. So we aim to distinguish the residual tumors and normal mucosa using fluorescence molecular imaging formed by conjugated molecule of the CSNRDARRC bladder cancer homing peptide with fluorescent dye. The conjugated molecule was abbreviated FIuo-ACP. In our study, we will research the image features of FIuo-ACP probe targeted bladder cancer for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo. Methods: After the FIuo-ACP probe was synthetized, the binding sites, factors affecting binding rates, the specificity and the targeting of Fluo-ACP labeled with bladder cancer cells were studied respectively by laser scanning confocal microscope (LSCM), immunofluorescence and multispectral fluorescence ex vivo optical molecular imaging system. Results: The binding sites were located in nucleus and the binding rates were correlated linearly with the dose of probe and the grade of pathology. Moreover, the probe has a binding specificity with bladder cancer in vivo and ex vivo. Tumor cells being labeled by the Fluo-ACP, bright green spots were observed under LSCM. The tissue samples and tumor cells can be labeled and identified by fluorescence microscope. Optical molecular imaging of xenograft tumor tissues was exhibited as fluorescent spots under EMCCD. Conclusion: The CSNRDARRC peptides might be a useful bladder cancer targeting vector. The FIuo-ACP molecular probe was suitable for fluorescence molecular imaging diagnosis for bladder cancer in vivo and ex vivo.

  11. Bladder welding in rats using controlled temperature CO2 laser system.

    PubMed

    Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A

    1999-05-01

    Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into tissues.

  12. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    NASA Astrophysics Data System (ADS)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  13. [Bladder-conserving treatment for bladder cancer: potential of and developments in radiotherapy].

    PubMed

    Hulshof, Maarten C C M; Pieters, Bradley R; Koning, Caro C E

    2013-01-01

    The standard treatment for muscle-invasive bladder cancer is surgical removal of the bladder and construction of a neobladder. Recently, important improvements have been made in the potential for bladder-conserving treatment using radiotherapy. External beam radiotherapy has undergone technological improvements, as a result of which it is possible to radiate the tumour more precisely while decreasing radiation to healthy tissue. Radiochemotherapy improves local recurrence-free and overall survival compared with radiotherapy alone. The results of this combined treatment are comparable with those of surgery. Additionally, Dutch radiotherapy departments have collected data in a national database of 1040 selected patients with confined bladder cancer. These patients were treated with external beam radiation, limited surgery and brachytherapy. The 5-year local recurrence-free survival was 75%. Bladder conserving treatment options for muscle-invasive bladder cancer should be discussed during the multidisciplinary meeting.

  14. Polymorphic Expression of a Human Superficial Bladder Tumor Antigen Defined by Mouse Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Fradet, Yves; Islam, Nazrul; Boucher, Lucie; Parent-Vaugeois, Carmen; Tardif, Marc

    1987-10-01

    Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up.

  15. A case of large cell neuroendocrine carcinoma of the bladder with prolonged spontaneous remission

    PubMed Central

    Chong, Vincent; Zwi, Jonathan; Hanning, Fritha; Lim, Remy; Cadwallader, Jon

    2017-01-01

    Abstract Large cell neuroendocrine carcinoma (LCNEC) of the urinary bladder are rare. We present a case of a 72-year-old man who presented with back pain and acute renal failure. Ultrasound showed a soft tissue mass in the base of the bladder causing bilateral ureteric obstruction. Subsequent biopsy of this mass demonstrated neuroendocrine carcinoma. He was commenced on neoadjuvant chemotherapy (carboplatin/etoposide) and proceeded to a radical cysto-prostatectomy. Histology revealed a LCNEC involving the bladder, T4a with invasion through to adipose tissue and posteriorly at perivesical resection margins. In addition, there was a Gleason score 9 prostatic adenocarcinoma, distinct from the neuroendocrine carcinoma. Following surgery, the patient developed gross local-regional recurrence and refused further systemic therapy. However, 1 year following referral to palliative care, a further CT-PET showed complete spontaneous remission of his disease. There are only few case reports of LCNEC of the urinary bladder therefore the pathogenesis and treatment protocol are still unclear. This case report highlights the unpredictable nature of this disease. PMID:28560016

  16. A case of large cell neuroendocrine carcinoma of the bladder with prolonged spontaneous remission.

    PubMed

    Chong, Vincent; Zwi, Jonathan; Hanning, Fritha; Lim, Remy; Williams, Andrew; Cadwallader, Jon

    2017-05-01

    Large cell neuroendocrine carcinoma (LCNEC) of the urinary bladder are rare. We present a case of a 72-year-old man who presented with back pain and acute renal failure. Ultrasound showed a soft tissue mass in the base of the bladder causing bilateral ureteric obstruction. Subsequent biopsy of this mass demonstrated neuroendocrine carcinoma. He was commenced on neoadjuvant chemotherapy (carboplatin/etoposide) and proceeded to a radical cysto-prostatectomy. Histology revealed a LCNEC involving the bladder, T4a with invasion through to adipose tissue and posteriorly at perivesical resection margins. In addition, there was a Gleason score 9 prostatic adenocarcinoma, distinct from the neuroendocrine carcinoma. Following surgery, the patient developed gross local-regional recurrence and refused further systemic therapy. However, 1 year following referral to palliative care, a further CT-PET showed complete spontaneous remission of his disease. There are only few case reports of LCNEC of the urinary bladder therefore the pathogenesis and treatment protocol are still unclear. This case report highlights the unpredictable nature of this disease.

  17. Vesicoureteral reflux in children: a phantom study of microwave heating and radiometric thermometry of pediatric bladder.

    PubMed

    Birkelund, Yngve; Klemetsen, Øystein; Jacobsen, Svein K; Arunachalam, Kavitha; Maccarini, Paolo; Stauffer, Paul R

    2011-11-01

    We have investigated the use of microwave heating and radiometry to safely heat urine inside a pediatric bladder. The medical application for this research is to create a safe and reliable method to detect vesicoureteral reflux, a pediatric disorder, where urine flow is reversed and flows from the bladder back up into the kidney. Using fat and muscle tissue models, we have performed both experimental and numerical simulations of a pediatric bladder model using planar dual concentric conductor microstrip antennas at 915 MHz for microwave heating. A planar elliptical antenna connected to a 500 MHz bandwidth microwave radiometer centered at 3.5 GHz was used for noninvasive temperature measurement inside tissue. Temperatures were measured in the phantom models at points during the experiment with implanted fiberoptic sensors, and 2-D distributions in cut planes at depth in the phantom with an infrared camera at the end of the experiment. Cycling between 20 s with 20 Watts power for heating, and 10 s without power to allow for undisturbed microwave radiometry measurements, the experimental results show that the target tissue temperature inside the phantom increases fast and that the radiometer provides useful measurements of spatially averaged temperature of the illuminated volume. The presented numerical and experimental results show excellent concordance, which confirms that the proposed system for microwave heating and radiometry is applicable for safe and reliable heating of pediatric bladder.

  18. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.

    PubMed

    Ejofodomi, O'tega A; Zderic, Vesna; Zara, Jason M

    2010-04-01

    Acoustic radiation force-optical coherence elastography (ARF-OCE) systems are novel imaging systems that have the potential to simultaneously quantify and characterize the optical and mechanical properties of in vivo tissues. This article presents the construction of bladder wall phantoms for use in ARF-OCE systems. Mechanical, acoustic, and optical properties are reported and compared to published values for the urinary bladder. The phantom consisted of 0.2000 +/- 0.0089 and 6.0000 +/- 0.2830 microm polystyrene microspheres (Polysciences Inc., Warrington, PA, Catalog Nos. 07304 and 07312), 7.5 +/- 1.5 microm copolymer microspheres composed of acrylonitrile and vinylidene chloride, (Expancel, Duluth, GA, Catalog No. 461 DU 20), and bovine serum albumin within a gelatin matrix. Young's modulus was measured by successive compression of the phantom and obtaining the slope of the resulting force-displacement data. Acoustic measurements were performed using the transmission method. The phantoms were submerged in a water bath and placed between transmitting and receiving 13 mm diameter unfocused transducers operating at a frequency of 3.5 MHz. A MATLAB algorithm to extract the optical scattering coefficient from optical coherence tomography (OCT) images of the phantom was used. The phantoms possess a Young's modulus of 17.12 +/- 2.72 kPa, a mass density of 1.05 +/- 0.02 g/cm3, an acoustic attenuation coefficient of 0.66 +/- 0.08 dB/cm/MHz, a speed of sound of 1591 +/- 8.76 m/s, and an optical scattering coefficient of 1.80 +/- 0.23 mm(-1). Ultrasound and OCT images of the bladder wall phantom are presented. A material that mimics the mechanical, optical, and acoustic properties of healthy bladder wall has been developed. This tissue-mimicking bladder wall phantom was developed as a control tool to investigate the feasibility of using ARF-OCE to detect the mechanical and optical changes that may be indicative of the onset or development of cancer in the urinary bladder. By following the methods used in this article, phantoms matching the optical, acoustic, and mechanical properties of other biological tissues can also be constructed.

  19. Expression of parathyroid hormone/parathyroid hormone-related peptide receptor 1 in normal and diseased bladder detrusor muscles: a clinico-pathological study.

    PubMed

    Nishikawa, Nobuyuki; Yago, Rie; Yamazaki, Yuichiro; Negoro, Hiromitsu; Suzuki, Mari; Imamura, Masaaki; Toda, Yoshinobu; Tanabe, Kazunari; Ogawa, Osamu; Kanematsu, Akihiro

    2015-01-21

    To investigate the expression of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor 1 (PTH1R) in clinical specimens of normal and diseased bladders. PTHrP is a unique stretch-induced endogenous detrusor relaxant that functions via PTH1R. We hypothesized that suppression of this axis could be involved in the pathogenesis of bladder disease. PTH1R expression in clinical samples was examined by immunohistochemistry. Normal kidney tissue from a patient with renal cancer and bladder specimens from patients undergoing ureteral reimplantation for vesicoureteral reflux or partial cystectomy for urachal cyst were examined as normal control organs. These were compared with 13 diseased bladder specimens from patients undergoing bladder augmentation. The augmentation patients ranged from 8 to 31 years old (median 15 years), including 9 males and 4 females. Seven patients had spinal disorders, 3 had posterior urethral valves and 3 non-neurogenic neurogenic bladders (Hinman syndrome). Renal tubules, detrusor muscle and blood vessels in normal control bladders stained positive for PTH1R. According to preoperative urodynamic studies of augmentation patients, the median percent bladder capacity compared with the age-standard was 43.6% (range 1.5-86.6%), median intravesical pressure at maximal capacity was 30 cmH2O (range 10-107 cmH2O), and median compliance was 3.93 ml/cmH2O (range 0.05-30.3 ml/cmH2O). Detrusor overactivity was observed in five cases (38.5%). All augmented bladders showed negative stainings in PTH1R expression in the detrusor tissue, but positive staining of blood vessels in majority of the cases. Downregulation of PTH1R may be involved in the pathogenesis of human end-stage bladder disease requiring augmentation.

  20. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

    PubMed

    Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin

    2017-01-01

    Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  1. Commentary on "tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl) nitrosamine as the basis for urothelial cell carcinogenesis." He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB, Department of Basic Science, New York University Dental College, NY, USA.: Mutat Res 2012;742(1-2):92-5 [Epub 2011 Dec 4].

    PubMed

    Scherr, Douglas S

    2014-02-01

    Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. An integral theory of female urinary incontinence. Experimental and clinical considerations.

    PubMed

    Petros, P E; Ulmsten, U I

    1990-01-01

    In this Theory paper, the complex interplay of the specific structures involved in female urinary continence are analyzed. In addition the effects of age, hormones, and iatrogenically induced scar tissue on these structures, are discussed specifically with regard to understanding the proper basis for treatment of urinary incontinence. According to the Theory stress and urge symptoms may both derive, for different reasons from the same anatomical defect, a lax vagina. This laxity may be caused by defects within the vaginal wall itself, or its supporting structures i.e. ligaments, muscles, and their connective tissue insertions. The vagina has a dual function. It mediates (transmits) the various muscle movements involved in bladder neck opening and closure through three separate closure mechanisms. It also has a structural function, and prevents urgency by supporting the hypothesized stretch receptors at the proximal urethra and bladder neck. Altered collagen/elastin in the vaginal connective tissue and/or its ligamentous supports may cause laxity. This dissipates the muscle contraction, causing stress incontinence, and/or activation of an inappropriate micturition reflex, ("bladder instability") by stimulation of bladder base stretch receptors. The latter is manifested by symptoms of frequency, urgency, nocturia with or without urine loss.

  3. Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1

    PubMed Central

    Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng

    2018-01-01

    The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157

  4. The Rare Togetherness of Bladder Leiomyoma and Neurofibromatosis.

    PubMed

    Yucel, Cem; Budak, Salih; Kisa, Erdem; Celik, Orcun; Kozacioglu, Zafer

    2018-01-01

    Neurofibromatosis Type 1 (Von Recklinghausen disease) is a common, autosomal dominant hereditary disorder characterized by involvement of multiple tissues derived from the neural crest. Urinary system involvement in neurofibromatosis is a rare condition. Leiomyoma of the bladder is a rare benign mesenchymal tumor. In this case, our experience and approach regarding the bladder leiomyoma development in a patient diagnosed with neurofibromatosis are presented and the literature data has been reviewed.

  5. Noninvasive Electromagnetic Detection of Bladder Cancer

    PubMed Central

    Cormio, Luigi; Vedruccio, Clarbruno; Leucci, Giorgio; Massenio, Paolo; Di Fino, Giuseppe; Cavaliere, Vincenzo; Carrieri, Giuseppe

    2014-01-01

    Objectives. Normal and neoplastic human tissues have different electromagnetic properties. This study aimed to determine the diagnostic accuracy of noninvasive electromagnetic detection of bladder cancer (BC) by the tissue-resonance interaction method (TRIM-prob). Patients and Methods. Consecutive patients were referred for cystoscopy because of (i) microscopic or gross hematuria and/or irritative voiding symptoms and (ii) bladder ultrasounds and urinary cytology findings negative or just suspicious of malignancy. Patients were first submitted to TRIM-prob bladder scanning by a single investigator and then to cystoscopy by another investigator blind to TRIM-prob data. Results. In 125 evaluated patients cystoscopy was positive for BC in 47 and negative in the remaining 78; conversely, TRIM-prob bladder scanning was positive for BC in 53 and negative in 72. In particular, TRIM-prob scanning yielded 7 false positives and only one false negative; therefore, its overall sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 97.9%, 89.9%, 86.8%, 98.6%, and 93.6%, respectively. Conclusions. TRIM-prob bladder scanning was a simple and quite accurate method for non-invasive electromagnetic detection of BC. If the elevated positive and negative predictive values will be replicated in further well-designed studies, it could be used to screen asymptomatic patients at high risk of BC. PMID:24563795

  6. Multilayered disease-mimicking bladder phantom with realistic surface topology for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Smith, Gennifer T.; Lurie, Kristen L.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.

    2014-03-01

    Optical coherence tomography (OCT) has shown potential as a complementary modality to white light cystoscopy (WLC), the gold standard for imaging bladder cancer. OCT can visualize sub-surface details of the bladder wall, which enables it to stage cancers and detect tumors that are otherwise invisible to WLC. Currently, OCT systems have too slow a speed and too small a field of view for comprehensive bladder imaging, which limits its clinical utility. Validation and feasibility testing of technological refinements aimed to provide faster imaging and wider fields of view necessitates a realistic bladder phantom. We present a novel process to fabricate the first such phantom that mimics both the optical and morphological properties of layers of the healthy and pathologic bladder wall as they characteristically appear with OCT. The healthy regions of the silicone-based phantom comprises three layers: the urothelium, lamina propria and muscularis propria, each containing an appropriate concentration of titanium dioxide to mimic its distinct scattering properties. As well, the layers each possess a unique surface appearance imposed by a textured mold. Within this phantom, pathologic tissue-mimicking regions are created by thickening specific layers or creating inclusions that disrupt the layered appearance of the bladder wall, as is characteristic of bladder carcinomas. This phantom can help to evaluate the efficacy of new OCT systems and software for tumor localization. Moreover, the procedure we have developed is highly generalizable for the creation of OCT-relevant, multi-layer phantoms for tissues that incorporate diseased states characterized by the loss of layered structures.

  7. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity

    PubMed Central

    Anderson, U A; Carson, C; Johnston, L; Joshi, S; Gurney, A M; McCloskey, K D

    2013-01-01

    Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder. PMID:23586426

  8. A place for precision medicine in bladder cancer: targeting the FGFRs.

    PubMed

    di Martino, Erica; Tomlinson, Darren C; Williams, Sarah V; Knowles, Margaret A

    2016-10-01

    Bladder tumors show diverse molecular features and clinical outcome. Muscle-invasive bladder cancer has poor prognosis and novel approaches to systemic therapy are urgently required. Non-muscle-invasive bladder cancer has good prognosis, but high recurrence rate and the requirement for life-long disease monitoring places a major burden on patients and healthcare providers. Studies of tumor tissues from both disease groups have identified frequent alterations of FGFRs, including mutations of FGFR3 and dysregulated expression of FGFR1 and FGFR3 that suggest that these may be valid therapeutic targets. We summarize current understanding of the molecular alterations affecting these receptors in bladder tumors, preclinical studies validating them as therapeutic targets, available FGFR-targeted agents and results from early clinical trials in bladder cancer patients.

  9. A place for precision medicine in bladder cancer: targeting the FGFRs

    PubMed Central

    di Martino, Erica; Tomlinson, Darren C; Williams, Sarah V; Knowles, Margaret A

    2016-01-01

    Bladder tumors show diverse molecular features and clinical outcome. Muscle-invasive bladder cancer has poor prognosis and novel approaches to systemic therapy are urgently required. Non-muscle-invasive bladder cancer has good prognosis, but high recurrence rate and the requirement for life-long disease monitoring places a major burden on patients and healthcare providers. Studies of tumor tissues from both disease groups have identified frequent alterations of FGFRs, including mutations of FGFR3 and dysregulated expression of FGFR1 and FGFR3 that suggest that these may be valid therapeutic targets. We summarize current understanding of the molecular alterations affecting these receptors in bladder tumors, preclinical studies validating them as therapeutic targets, available FGFR-targeted agents and results from early clinical trials in bladder cancer patients. PMID:27381494

  10. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    NASA Astrophysics Data System (ADS)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  11. Non-invasive quantification of tumour heterogeneity in water diffusivity to differentiate malignant from benign tissues of urinary bladder: a phase I study.

    PubMed

    Nguyen, Huyen T; Shah, Zarine K; Mortazavi, Amir; Pohar, Kamal S; Wei, Lai; Jia, Guang; Zynger, Debra L; Knopp, Michael V

    2017-05-01

    To quantify the heterogeneity of the tumour apparent diffusion coefficient (ADC) using voxel-based analysis to differentiate malignancy from benign wall thickening of the urinary bladder. Nineteen patients with histopathological findings of their cystectomy specimen were included. A data set of voxel-based ADC values was acquired for each patient's lesion. Histogram analysis was performed on each data set to calculate uniformity (U) and entropy (E). The k-means clustering of the voxel-wised ADC data set was implemented to measure mean intra-cluster distance (MICD) and largest inter-cluster distance (LICD). Subsequently, U, E, MICD, and LICD for malignant tumours were compared with those for benign lesions using a two-sample t-test. Eleven patients had pathological confirmation of malignancy and eight with benign wall thickening. Histogram analysis showed that malignant tumours had a significantly higher degree of ADC heterogeneity with lower U (P = 0.016) and higher E (P = 0.005) than benign lesions. In agreement with these findings, k-means clustering of voxel-wise ADC indicated that bladder malignancy presented with significantly higher MICD (P < 0.001) and higher LICD (P = 0.002) than benign wall thickening. The quantitative assessment of tumour diffusion heterogeneity using voxel-based ADC analysis has the potential to become a non-invasive tool to distinguish malignant from benign tissues of urinary bladder cancer. • Heterogeneity is an intrinsic characteristic of tumoral tissue. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information to improve cancer diagnosis accuracy. • Histogram analysis and k-means clustering can quantify tumour diffusion heterogeneity. • The quantification helps differentiate malignant from benign urinary bladder tissue.

  12. GENE EXPRESSION CHANGES IN MOUSE BLADDER TISSUE IN RESPONSE TO INORGANIC ARSENIC

    EPA Science Inventory

    Chronic human exposures to high arsenic concentrations are associated with lung, skin, and bladder cancer. Considerable controversy exists concerning arsenic mode of action and low dose extrapolation. This investigation was designed to identify dose-response changes in gene expre...

  13. Cascade Bioassay Evidence for the Existence of Urothelium-Derived Inhibitory Factor in Guinea Pig Urinary Bladder

    PubMed Central

    Guan, Na N.; Thor, Anna; Hallén, Katarina; Wiklund, N. Peter; Gustafsson, Lars E.

    2014-01-01

    Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1–5 µM in the presence of scopolamine 5–30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor. PMID:25084114

  14. Cascade bioassay evidence for the existence of urothelium-derived inhibitory factor in Guinea pig urinary bladder.

    PubMed

    Guan, Na N; Thor, Anna; Hallén, Katarina; Wiklund, N Peter; Gustafsson, Lars E

    2014-01-01

    Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1-5 µM in the presence of scopolamine 5-30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor.

  15. Protective effect of ketamine against hemorrhagic cystitis in rats receiving ifosfamide

    PubMed Central

    Ozguven, Ali A.; Yılmaz, Omer; Taneli, Fatma; Ulman, Cevval; Vatansever, Seda; Onag, Ali

    2014-01-01

    Objective: To investigate the possible protective effect of a single dose of ketamine and the synergistic effect between ketamine and 2-mercaptoethane sulfonate (mesna) against ifosfamide-induced hemorrhagic cystitis. Materials and Methods: 35 adult female wistar rats were divided into five groups and pretreated with ketamine at 10 mg/kg and/or mesna 400 mg/kg 30 minutes before intraperitoneal injection of IFS (400 mg/kg) or with saline (control group). Hemorrhagic cystitis was evaluated 24 hours after IFS injection according to bladder wet weight (BWW), and microscopic changes, i.e. edema, hemorrhage, cellular infiltration, and urothelial desquamation. The markers of oxidative damage including nitric oxide (NO) and malondialdehyde (MDA) levels and the expressions of tumor necrosis factor alpha (TNF-α), interleukin 1-beta (IL-1β), inducible nitric oxide synthase (i-NOS) and endothelial nitric oxide synthase (e-NOS) were also assayed in the bladder tissues. Results: Pretreatment with ketamine alone or ketamine in combination with mesna reduced the IFS-induced increase of BWW (58,47% and 63,33%, respectively, P < 0.05). IFS- induced microscopic alterations were also prevented by ketamine with or without mesna (P < 0.05). In addition, also statistically insignificant, the bladder tissue expressions of IL-1β were lower in ketamine and/or mesna-receiving groups (P > 0,05). The parameters of oxidative stress, the NO and the MDA contents of the bladder tissues of the study groups were not different. Conclusion: The results of the present study suggest that a single dose of ketamine pretreatment attenuates experimental IFS-induced bladder damage. It is therefore necessary to investigate ketamine locally and systematically with various dosing schedulesin order to reduce the bladder damage secondary to oxazaphosphorine-alkylating agents and these results may widen the spectrum of ketamine. PMID:24741183

  16. LncRNA AWPPH inhibits SMAD4 via EZH2 to regulate bladder cancer progression.

    PubMed

    Zhu, Feng; Zhang, Xinjun; Yu, Qinnan; Han, Guangye; Diao, Fengxia; Wu, Chunlei; Zhang, Yan

    2018-06-01

    This study aimed to investigate the effect and underlying mechanism of lncRNA AWPPH in bladder cancer (BC). A total of 20 Ta-T1 stage BC tissues, 20 T2-T4 stage BC tissues, and 20 normal bladder tissues, as well as human bladder epithelial cell line SV-HUC-1, human BC cell lines RT4, and T24 were obtained to detect the levels of AWPPH, enhancer of zeste homolog 2 (EZH2) and SMAD4 using RT-qPCR or Western blotting. RT4 cells were transfected with pc-AWPPH, pc-EZH2, or pc-control and T24 cells were transfected with si-AWPPH, si-EZH2, si-control, or pc-AWPPH + pc-SMAD4, respectively. Then, cell proliferation, apoptosis, autophagy, and migration, were detected using MTT assay, colony formation assay, Annexin V-FITC/PI method, Western blotting, and Transwell analysis, respectively. The relationship of AWPPH and EZH2 or SMAD4 was evaluated by RNA immunoprecipitation (RIP) assay or Chromatin immunoprecipitation (ChIP) assay. Compared with normal bladder tissues or cells, the levels of AWPPH and EZH2 were overexpressed, while SMAD4 was down-regulated in BC tissues or cells (all P < 0.01). Cell viability, colony number, and migration were significantly increased, while cell apoptosis ratio was reduced in cells with pc-AWPPH compared with cells with pc-control (all P < 0.05), meanwhile, these effects were reversed by the treatment of pc-SMAD4. Then, RIP assay revealed that AWPPH could bind to EZH2 and ChIP assay showed SMAD4 was regulated by EZH2. LncRNA AWPPH can promote cell proliferation, autophagy, and migration, as well as inhibit cell apoptosis in BC by inhibiting SMAD4 via EZH2. © 2017 Wiley Periodicals, Inc.

  17. Intravesical application of rebamipide promotes urothelial healing in a rat cystitis model.

    PubMed

    Funahashi, Yasuhito; Yoshida, Masaki; Yamamoto, Tokunori; Majima, Tsuyoshi; Takai, Shun; Gotoh, Momokazu

    2014-12-01

    Rebamipide is used as a topical therapeutic agent for various organs. We examined the healing effects of intravesical rebamipide on damaged urothelium in a rat model of chemically induced cystitis. Hydrochloride was injected in the bladder of female Sprague Dawley® rats to induce cystitis. On days 1 and 4 rebamipide (1 or 10 mM) or vehicle was administered in the bladder and maintained for 1 hour. Histopathology, urothelial permeability, cystometrogram and nociceptive behaviors were evaluated on day 7. Also, tissue rebamipide concentrations after the 1-hour bladder instillation were quantified using high performance liquid chromatography. Intravesically administered rebamipide permeated the bladder, particularly in hydrochloride treated rats, and the pharmacologically effective tissue dose remained for greater than 6 hours. Bladder histological evaluation revealed polymorphological inflammatory cell infiltration and decreased positive staining for uroplakin 3A in hydrochloride treated rats. Scanning electron microscopy showed damaged tight junctions in the hydrochloride group. Evans blue absorption in the bladder wall was increased in hydrochloride treated rats. These findings, which were associated with urothelial injury and increased permeability, were dependently suppressed by the rebamipide treatment dose. Cystometrogram demonstrated that the intercontraction interval was shorter in hydrochloride treated rats but prolonged by rebamipide. The increased nociceptive behaviors observed after intravesical resiniferatoxin administration were also suppressed by rebamipide. Intravesical rebamipide accelerated the repair of damaged urothelium, protected urothelial barrier function and suppressed bladder overactivity and nociception. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. The Rare Togetherness of Bladder Leiomyoma and Neurofibromatosis

    PubMed Central

    Celik, Orcun; Kozacioglu, Zafer

    2018-01-01

    Neurofibromatosis Type 1 (Von Recklinghausen disease) is a common, autosomal dominant hereditary disorder characterized by involvement of multiple tissues derived from the neural crest. Urinary system involvement in neurofibromatosis is a rare condition. Leiomyoma of the bladder is a rare benign mesenchymal tumor. In this case, our experience and approach regarding the bladder leiomyoma development in a patient diagnosed with neurofibromatosis are presented and the literature data has been reviewed. PMID:29736289

  19. Bladder tissue regeneration using acellular bi-layer silk scaffolds in a large animal model of augmentation cystoplasty.

    PubMed

    Tu, Duong D; Chung, Yeun Goo; Gil, Eun Seok; Seth, Abhishek; Franck, Debra; Cristofaro, Vivian; Sullivan, Maryrose P; Di Vizio, Dolores; Gomez, Pablo; Adam, Rosalyn M; Kaplan, David L; Estrada, Carlos R; Mauney, Joshua R

    2013-11-01

    Acellular scaffolds derived from Bombyx mori silk fibroin were investigated for their ability to support functional tissue regeneration in a porcine model of augmentation cystoplasty. Two bi-layer matrix configurations were fabricated by solvent-casting/salt leaching either alone (Group 1) or in combination with silk film casting (Group 2) to yield porous foams buttressed by heterogeneous surface pore occlusions or homogenous silk films, respectively. Bladder augmentation was performed with each scaffold group (6 × 6 cm(2)) in juvenile Yorkshire swine for 3 m of implantation. Augmented animals exhibited high rates of survival (Group 1: 5/6, 83%; Group 2: 4/4, 100%) and voluntary voiding over the course of the study period. Urodynamic evaluations demonstrated mean increases in bladder capacity over pre-operative levels (Group 1: 277%; Group 2: 153%) which exceeded nonsurgical control gains (144%) encountered due to animal growth.In addition, animals augmented with both matrix configurations displayed increases in bladder compliance over pre-operative levels(Group 1: 357%; Group 2: 338%) similar to growth-related elevations observed in non-surgical controls (354%) [corrected]. Gross tissue evaluations revealed that both matrix configurations supported extensive de novo tissue formation throughout the entire original implantation site which exhibited ultimate tensile strength similar to nonsurgical counterparts. Histological and immunohistochemical analyses showed that both implant groups promoted comparable extents of smooth muscle regeneration and contractile protein (α-smooth muscle actin and SM22α) expression within defect sites similar to controls. Parallel evaluations demonstrated the formation of a transitional, multi-layered urothelium with prominent cytokeratin, uroplakin, and p63 protein expression in both matrix groups. De novo innervation and vascularization processes were evident in all regenerated tissues indicated by synaptophysin-positive neuronal cells and vessels lined with CD31 expressing endothelial cells. Ex vivo organ bath studies demonstrated that regenerated tissues supported by both silk matrices displayed contractile responses to carbachol, α,β-methylene-ATP, KCl, and electrical field stimulation similar to controls. Our data detail the ability of acellular silk scaffolds to support regeneration of innervated, vascularized smooth muscle and urothelial tissues within 3 m with structural, mechanical, and functional properties comparable to native tissue in a porcine model of bladder repair. © 2013 Elsevier Ltd. All rights reserved.

  20. ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes--a possible sensory mechanism?

    PubMed Central

    Ferguson, D R; Kennedy, I; Burton, T J

    1997-01-01

    1. The responses of rabbit urinary bladder to hydrostatic pressure changes and to electrical stimulation have been investigated using both the Ussing chamber and a superfusion apparatus. These experiments enabled us to monitor changes in both ionic transport across the tissue and cellular ATP release from it. 2. The urinary bladder of the rabbit maintains an electrical potential difference across its wall as a result largely of active sodium transport from the urinary (mucosal) to the serosal surface. 3. Small hydrostatic pressure differences produced by removal of bathing fluid from one side of the tissue caused reproducible changes in both potential difference and short-circuit current. The magnitude of these changes increases as the volume of fluid removed increases. 3. Amiloride on the mucosal (urinary), but not the serosal, surface of the membrane reduces the transepithelial potential difference and short-circuit current with an IC50 of 300 nM. Amiloride reduces the size of, but does not abolish, transepithelial potential changes caused by alterations in hydrostatic pressure. 4. Field electrical stimulation of strips of bladder tissue produces a reproducible release of ATP. Such release was demonstrated to occur largely from urothelial cells and is apparently non-vesicular as it increases in the absence of calcium and is not abolished by tetrodotoxin. 5. It is proposed that ATP is released from the urothelium as a sensory mediator for the degree of distension of the rabbit urinary bladder and other sensory modalities. PMID:9423189

  1. Roles of polyuria and hyperglycemia in bladder dysfunction in diabetes.

    PubMed

    Xiao, Nan; Wang, Zhiping; Huang, Yexiang; Daneshgari, Firouz; Liu, Guiming

    2013-03-01

    Diabetes mellitus causes diabetic bladder dysfunction. We identified the pathogenic roles of polyuria and hyperglycemia in diabetic bladder dysfunction in rats. A total of 72 female Sprague-Dawley® rats were divided into 6 groups, including age matched controls, and rats with sham urinary diversion, urinary diversion, streptozotocin induced diabetes mellitus after sham urinary diversion, streptozotocin induced diabetes mellitus after urinary diversion and 5% sucrose induced diuresis after sham urinary diversion. Urinary diversion was performed by ureterovaginostomy 10 days before diabetes mellitus induction. Animals were evaluated 20 weeks after diabetes mellitus or diuresis induction. We measured 24-hour drinking and voiding volumes, and cystometry. Bladders were harvested to quantify smooth muscle, urothelium and collagen. We measured nitrotyrosine and Mn superoxide dismutase in the bladder. Diabetes and diuresis caused increases in drinking and voiding volume, and bladder weight. Bladder weight decreased in the urinary diversion group and the urinary diversion plus diabetes group. The intercontractile interval, voided volume and compliance increased in the diuresis and diabetes groups, decreased in the urinary diversion group and further decreased in the urinary diversion plus diabetes group. Total cross-sectional tissue, smooth muscle and urothelium areas increased in the diuresis and diabetes groups, and decreased in the urinary diversion and urinary diversion plus diabetes groups. As a percent of total tissue area, collagen decreased in the diuresis and diabetes groups, and increased in the urinary diversion and urinary diversion plus diabetes groups. Smooth muscle and urothelium decreased in the urinary diversion and urinary diversion plus diabetes groups. Nitrotyrosine and Mn superoxide dismutase increased in rats with diabetes and urinary diversion plus diabetes. Polyuria induced bladder hypertrophy, while hyperglycemia induced substantial oxidative stress in the bladder, which may have a pathogenic role in late stage diabetic bladder dysfunction. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Masked urinary bladder injury with a bullet expulsed spontaneously during voiding.

    PubMed

    Calışkan, Müjgan; Evren, Ismail; Kabak, Ismail; Atak, Ibrahim; Gökcan, Recai

    2011-09-01

    We report a case with gunshot to the pelvis. The injury site was the soft tissue between the rectum and urinary bladder. Several days later, the bullet was expulsed spontaneously during voiding. In the literature, only a few case reports have described spontaneous expulsion of an intravesical bullet. A 19-year-old male was wounded on the left hip by gunshot. Radiographic examinations showed a bullet in the pelvis, which was localized in the soft tissue between the rectum and urinary bladder, with no accompanying visceral injury on abdominopelvic computerized tomography. Macroscopic hematuria was noticed after urethral catheterization. Rectosigmoidoscopy and retrograde cystoscopic examinations were both negative. The patient was monitored closely and treated conservatively with no surgical intervention. The urinary catheter was removed on the fifth postoperative day, and the bullet was expulsed spontaneously via the urethra during normal voiding three hours after catheter removal. Thereafter, a retrograde urethrography was performed, which showed no evidence of urinary tract or bladder injury.

  3. Causes and risk factors of urinary incontinence: Avicenna's point of view vs. contemporary findings.

    PubMed

    Nojavan, Fatemeh; Sharifi, Hossein; Ghanbari, Zinat; Kamalinejad, Mohammad; Mokaberinejad, Roshanak; Emami, Maryam

    2015-02-22

    To extract the causes and risk factors of urinary incontinence from an old medical text by Avicenna entitled "Canon of Medicine" and comparing it with contemporary studies. In this study, etiology and risk factors of urinary incontinence were extracted from Avicenna's "Canon of Medicine". Commentaries written on this book and other old reliable medical texts about bladder and its diseases were also studied. Then the achieved information was compared with contemporary findings of published articles. Urinary incontinence results from bladder dysfunction in reservoir phase. Bladder's involuntary muscles and voluntary external sphincter are two main components which are involved in this process. Urinary incontinence can exist without obvious structural and neuronal etiologies. According to Avicenna, distemperment of muscular tissue of bladder and external sphincter is the cause for urinary incontinence in such cases. Distemperment is the result of bothering qualities in tissue, i.e.: "wet" and "cold". They are the two bothering qualities which are caused by extracorporeal and intracorporeal factors. Interestingly, the positive associations of some of these factors with urinary incontinence have been shown in recent researches. "Cold" and "wet" distemperment of bladder and external sphincter can be independent etiologies of urinary incontinence which should be investigated. 

  4. Viruses and interstitial cystitis: adenovirus genomes cannot be demonstrated in urinary bladder biopsies.

    PubMed

    Hukkanen, V; Haarala, M; Nurmi, M; Klemi, P; Kiilholma, P

    1996-01-01

    Microbes may be involved in the pathogenesis of interstitial cystitis (IC). Adenoviruses and BK virus (BKV) can infect epithelial cells in urinary bladder and they are causative agents for hemorrhagic cystitis. We therefore studied the presence of adenovirus and BKV genomes in urinary bladder tissue specimens of patients with IC using polymerase chain reaction (PCR) and in situ hybridization (ISH). Controls were specimens from cases with transitional cell carcinoma of the bladder. Nucleic acids were extracted from paraffin sections of the bladder tissue for PCR. Primers detecting all adenovirus types were used. In situ hybridization was carried out for the paraffin sections using digoxigenin-labeled DNA probes for adenovirus and BKV. The adenovirus DNA PCR was able to detect one to two infected cells/specimen. All the seven IC cases studied and six controls were negative for adenovirus DNA by PCR and ISH. The ISH test for BKV genomes was also considered negative in IC cases and controls. The specimens which were negative in PCR tests yielded a signal with beta-globin primers, thus being amplifiable. We conclude that adenovirus and BKV do not play a major pathogenetic role in interstitial cystitis.

  5. The effect of bladder outlet obstruction on tissue oxygen tension and blood flow in the pig bladder.

    PubMed

    Greenland, J E; Hvistendahl, J J; Andersen, H; Jörgensen, T M; McMurray, G; Cortina-Borja, M; Brading, A F; Frøkiaer, J

    2000-06-01

    To investigate the effect of partial bladder outlet obstruction on detrusor blood flow and oxygen tension (PdetO2) in female pigs. Detrusor-layer oxygen tension and blood flow were measured using oxygen-sensitive electrode and radiolabelled microsphere techniques in five female Large White pigs with a partial urethral obstruction and in five sham-operated controls. The effects of chronic outlet obstruction on bladder weight, and cholinergic nerve density and distribution, are also described. In the obstructed bladders, blood flow and oxygen tension were, respectively, 54.9% and 74.3% of control values at low bladder volume, and 47.5% and 42.5% at cystometric capacity. Detrusor blood flow declined by 27.8% and 37.5% in the control and obstructed bladders, respectively, as a result of bladder filling, whilst PdetO2 did not decrease in the controls, but fell by 42.7% in the obstructed bladders. Bladder weight increased whilst cholinergic nerve density decreased in the obstructed animals. In pigs with chronic bladder outlet obstruction, blood flow and oxygen tension in the detrusor layer were lower than in control animals. In addition, increasing detrusor pressure during filling caused significantly greater decreases in blood flow and oxygen tension in the obstructed than in the control bladders.

  6. Age-Related Alterations in Regeneration of the Urinary Bladder after Subtotal Cystectomy

    DTIC Science & Technology

    2013-11-01

    buffer. The bladders were cut into approximately equally sized strips along the longitudinal axis. The strips were denuded of the urothelium and sub... urothelium and then were attached to tissue holds at one end and to force transducers at the other end in an organ bath system (Danish Myo Technology...of the urothelium and the bladder wall to reseal immediately after STC in old animals. This suppo- sition is consistent with the decreased PCNA

  7. The Ethanol Extract of the Inner Bark of Caesalpinia pyramidalis (Tul.) Reduces Urinary Bladder Damage during Cyclophosphamide-Induced Cystitis in Rats

    PubMed Central

    Moraes, Janaína P.; Pereira, Denyson S.; Matos, Alexandre S.; Santana, Danielle G.; Santos, Cliomar A.; Estevam, Charles S.; Fakhouri, Ricardo; de Lucca Junior, Waldecy; Camargo, Enilton A.

    2013-01-01

    Hemorrhagic cystitis (HC) is a common side effect of cyclophosphamide therapy, which deserves new therapeutic strategies, such as those based on natural products. The ethanol extract of the inner bark of Caesalpinia pyramidalis (Tul.) (EECp) possesses anti-inflammatory, antinociceptive, and antioxidant activities as previously showed by our group. We have investigated the effect of EECp on the cyclophosphamide-induced HC. Cystitis was induced in male Wistar rats by the injection of cyclophosphamide. These animals were pretreated with EECp (100–400 mg/kg), vehicle, or mesna. Myeloperoxidase activity and malondialdehyde formation were measured in urinary bladder and other tissues. Bladder edema and histopathological alterations and serum nitric oxide metabolites concentration NOx − were also evaluated. Treatment with EECp (100–400 mg/kg) or mesna impaired the increase of myeloperoxidase activity in urinary bladder and the serum NOx − induced by cyclophosphamide but did not reduce edema in this tissue, as did mesna. Total histological score was reduced by EECp (100 mg/kg). Lung myeloperoxidase activity, which was increased by cyclophosphamide, was decreased significantly by EECp (400 mg/kg). EECp also diminished the malondialdehyde formation in bladder, lung, and spleen, although these parameters were not affected by cyclophosphamide. These results indicate that EECp reduced urinary bladder damage during cyclophosphamide-induced HC in rats. PMID:24348180

  8. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells

    PubMed Central

    Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A.; Tang, Moon-shong

    2014-01-01

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS. PMID:24939871

  9. Roles of Polyuria and Hyperglycemia on Bladder Dysfunction in Diabetes

    PubMed Central

    Xiao, Nan; Wang, Zhiping; Huang, Yexiang; Daneshgari, Firouz; Liu, Guiming

    2014-01-01

    Purpose Diabetes mellitus (DM) causes diabetic bladder dysfunction (DBD). We aimed to identify the pathogenic roles of polyuria and hyperglycemia on DBD in rats. Materials and Methods Seventy-two female Sprague-Dawley rats were divided: age-matched controls (control), sham urinary diversion (sham), urinary diversion (UD), streptozotocin-induced diabetes after sham UD (DM), streptozotocin-induced diabetes after UD (UD+DM), and 5% sucrose-induced diuresis after sham UD (DIU). UD was performed by ureterovaginostomy 10d before DM induction. Animals were evaluated 20 wks after DM or diuresis induction. We measured 24-hr drinking and voiding volumes and cystometry (CMG). Bladders were harvested for quantification of smooth muscle, urothelium, and collagen. We measured nitrotyrosine and manganese superoxide dismutase (MnSOD) in bladder. Results Diabetes and diuresis caused increases in drinking volume, voiding volume and bladder weight. Bladder weights decreased in the UD and UD+DM groups. Intercontractile intervals, voided volume, and compliance increased in the DIU and DM groups, decreased in the UD, and further decreased in the UD+DM group. The total cross-sectional tissue, smooth muscle and urothelium areas increased in the DIU and DM groups, and decreased in the UD and UD+DM groups. As percentages of total tissue area, collagen decreased in the DIU and DM groups, and increased in the UD and UD+DM groups, and smooth muscle and urothelium decreased in the UD and UD+DM groups. Nitrotyrosine and MnSOD increased in DM and UD+DM rats. Conclusions Polyuria induced bladder hypertrophy, while hyperglycemia induced substantial oxidative stress in the bladder, which may play a pathogenic role in late stage DBD. PMID:22999997

  10. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention

    PubMed Central

    Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-01-01

    Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034

  11. In vivo electric conductivity of cervical cancer patients based on B₁⁺ maps at 3T MRI.

    PubMed

    Balidemaj, E; de Boer, P; van Lier, A L H M W; Remis, R F; Stalpers, L J A; Westerveld, G H; Nederveen, A J; van den Berg, C A T; Crezee, J

    2016-02-21

    The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.

  12. Dynamic Real-time Microscopy of the Urinary Tract Using Confocal Laser Endomicroscopy

    PubMed Central

    Wu, Katherine; Liu, Jen-Jane; Adams, Winifred; Sonn, Geoffrey A.; Mach, Kathleen E.; Pan, Ying; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2014-01-01

    OBJECTIVES To develop the diagnostic criteria for benign and neoplastic conditions of the urinary tract using probe-based confocal laser endomicroscopy (pCLE), a new technology for dynamic, in vivo imaging with micron-scale resolution. The suggested diagnostic criteria will formulate a guide for pCLE image interpretation in urology. METHODS Patients scheduled for transurethral resection of bladder tumor (TURBT) or nephrectomy were recruited. After white-light cystoscopy (WLC), fluorescein was administered as contrast. Different areas of the urinary tract were imaged with pCLE via direct contact between the confocal probe and the area of interest. Confocal images were subsequently compared with standard hematoxylin and eosin analysis. RESULTS pCLE images were collected from 66 participants, including 2 patients who underwent nephrectomy. We identified key features associated with different anatomic landmarks of the urinary tract, including the kidney, ureter, bladder, prostate, and urethra. In vivo pCLE of the bladder demonstrated distinct differences between normal mucosa and neoplastic tissue. Using mosaicing, a post hoc image-processing algorithm, individual image frames were juxtaposed to form wideangle views to better evaluate tissue microarchitecture. CONCLUSIONS In contrast to standard pathologic analysis of fixed tissue with hematoxylin and eosin, pCLE provides real time microscopy of the urinary tract to enable dynamic interrogation of benign and neoplastic tissues in vivo. The diagnostic criteria developed in this study will facilitate adaptation of pCLE for use in conjunction with WLC to expedite diagnosis of urinary tract pathology, particularly bladder cancer. PMID:21601243

  13. Cigarette side-stream smoke lung and bladder carcinogenesis: inducing mutagenic acrolein-DNA adducts, inhibiting DNA repair and enhancing anchorage-independent-growth cell transformation

    PubMed Central

    Chin, Chiu; Huang, William; Lepor, Herbert; Wu, Xue-Ru; Rom, William N.; Chen, Lung-Chi; Tang, Moon-shong

    2015-01-01

    Second-hand smoke (SHS) is associated with 20–30% of cigarette-smoke related diseases, including cancer. Majority of SHS (>80%) originates from side-stream smoke (SSS). Compared to mainstream smoke, SSS contains more tumorigenic polycyclic aromatic hydrocarbons and acrolein (Acr). We assessed SSS-induced benzo(a)pyrene diol epoxide (BPDE)- and cyclic propano-deoxyguanosine (PdG) adducts in bronchoalveolar lavage (BAL), lung, heart, liver, and bladder-mucosa from mice exposed to SSS for 16 weeks. In SSS exposed mice, Acr-dG adducts were the major type of PdG adducts formed in BAL (p < 0.001), lung (p < 0.05), and bladder mucosa (p < 0.001), with no significant accumulation of Acr-dG adducts in heart or liver. SSS exposure did not enhance BPDE-DNA adduct formation in any of these tissues. SSS exposure reduced nucleotide excision repair (p < 0.01) and base excision repair (p < 0.001) in lung tissue. The levels of DNA repair proteins, XPC and hOGG1, in lung tissues of exposed mice were significantly (p < 0.001 and p < 0.05) lower than the levels in lung tissues of control mice. We found that Acr can transform human bronchial epithelial and urothelial cells in vitro. We propose that induction of mutagenic Acr-DNA adducts, inhibition of DNA repair, and induction of cell transformation are three mechanisms by which SHS induces lung and bladder cancers. PMID:26431382

  14. Bladder leiomyoma presenting as dyspareunia: Case report and literature review.

    PubMed

    Xin, Jun; Lai, Hai-Ping; Lin, Shao-Kun; Zhang, Qing-Quan; Shao, Chu-Xiao; Jin, Lie; Lei, Wen-Hui

    2016-07-01

    Leiomyoma of the bladder is a rare tumor arising from the submucosa. Most patients with bladder leiomyoma may present with urinary frequency or obstructive urinary symptoms. However, there are a few cases of bladder leiomyoma coexisting with uterine leiomyoma presenting as dyspareunia. We herein report an unusual case of coexisting bladder leiomyoma and uterine leiomyoma presenting as dyspareunia. A 44-year-old Asian female presented to urologist and complained that she had experienced dyspareunia over the preceding several months. A pelvic ultrasonography revealed a mass lesion located in the trigone of urinary bladder. The mass lesion was confirmed on contrast-enhanced computed tomography (CT). The CT scan also revealed a lobulated and enlarged uterus consistent with uterine leiomyoma. Then, the biopsies were then taken with a transurethral resection (TUR) loop and these biopsies showed a benign proliferation of smooth muscle in a connective tissue stroma suggestive of bladder leiomyoma. An open local excision of bladder leiomyoma and hysteromyomectomy were performed successfully. Histological examination confirmed bladder leiomyoma coexisting with uterine leiomyoma. This case highlights a rare presentation of bladder leiomyoma, dyspareunia, as the chief symptom in a patient who had coexisting uterine leiomyoma. Bladder leiomyomas coexisting with uterine leiomyomas are rare and can present with a wide spectrum of complaints including without symptoms, irritative symptoms, obstructive symptoms, or even dyspareunia.

  15. Is whole-body fluorine-18 fluorodeoxyglucose PET/CT plus additional pelvic images (oral hydration-voiding-refilling) useful for detecting recurrent bladder cancer?

    PubMed

    Yang, Zhongyi; Cheng, Jingyi; Pan, Lingling; Hu, Silong; Xu, Junyan; Zhang, Yongping; Wang, Mingwei; Zhang, Jianping; Ye, Dingwei; Zhang, Yingjian

    2012-08-01

    Because of the urinary excretion of fluorine-18 fluorodeoxyglucose ((18)F-FDG), FDG-PET or PET/CT is thought of little value in patients with bladder cancer. The purpose of our study was to investigate the value of (18)F-FDG PET/CT with additional pelvic images in detection of recurrent bladder cancers. From December 2006 to August 2010, 35 bladder cancer patients (median age 56 years old, ranging from 35 to 96) underwent routine (18)F-FDG PET/CT. To better detect bladder lesions, a new method called as oral hydration-voiding-refilling was introduced, which included that all the patients firstly received oral hydration, then were required to void frequently and finally were demanded to hold back urine when the additional pelvic images were scanned. Lesions were confirmed by either histopathology or clinical follow-up for at least 6 months. Finally, 12 recurrent cases of 35 patients were confirmed by cystoscope. PET/CT correctly detected 11 of them. Among these 11 true positive patients, 5 patients (45.5 %) were detected only after additional pelvic images. Lichenoid lesions on the bladder wall were missed, which caused 1 false negative result. All three false positive cases were testified to be inflammatory tissues by cystoscope. Therefore, the sensitivity, specificity and accuracy of PET/CT were 91.7 % (11/12), 87.0 % (20/23) and 88.6 % (31/35), respectively. PET/CT with additional pelvic images can highly detect recurrent lesions in residual bladder tissues. Our method with high accuracy and better endurance could be potentially applied.

  16. Monitoring of lower urinary tract function in patients with spinal cord injury using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Macnab, Andrew; Nigro, Mark; Stothers, Lynn

    2012-02-01

    Background: One of the most important conditions where there is loss of normal bladder function is spinal cord injury (SCI). Currently, evaluation of bladder function is limited to periodic invasive urodynamic testing (UDS). The purpose of this study was to assess the feasibility and usefulness of near-infrared spectroscopy (NIRS) in monitoring bladder function in patients with SCI during bladder filling and emptying and to investigate the correlations of NIRS measures with simultaneous UDS parameters. NIRS is a non-invasive optical method to study tissue oxygenation, hemodynamics and function by monitoring changes in the chromophore concentrations of oxygenated (O2Hb), deoxygenated (HHb) and total hemoglobin (tHb). Methods: 10 adult paraplegic patients with neurogenic bladder dysfunction who were referred for regular urodynamic evaluation were recruited. Changes in O2Hb, HHb and tHb, and tissue saturation index (TSI%) in the detrusor were monitored and recorded by a wireless NIRS system during the urodynamic evaluation. Time points of urgency and urinary leakage were marked and patterns of change in NIRS parameters were compared to standard urodynamic pressure tracings. Results: Strong consistency between changes in NIRS-derived tHb and changes in intravesical pressure were observed during filling across the subjects. During bladder filling a gradual increase in O2Hb and tHb with minimal changes in HHb was observed. Interestingly, a drop in TSI% was detected seconds before strong urgency and urinary leakage. Conclusions: Our preliminary data suggest a relationship between noninvasive NIRS measures and UDS parameters during bladder filling in SCI patients.

  17. [Correlation of infection with the physical and chemical characteristics of gall bladder contents].

    PubMed

    Sulaberidze, G T; Rachvelishvili, B Kh; Gelbakhiani, G P; Barbakadze, G G; Kapanadze, A G

    2005-06-01

    The aim of the study was to investigate pH and viscosity (h) of gall bladder contents during cholelithiasis and establishment of their correlation with bacterial and HBV infections. Seventy-eight patients undergone the planned cholecystectomy were investigated. 5 healthy persons (control group) were also involved into the study. In all cases the markers of HBV (Anti-HB core IgG, Anti-HB core IgM, HBsAg) in blood were detected, also bacteriological analysis of gall bladder tissue was performed. In 78 cases (I group) pH of gall bladder contents was measured, in 29 cases (II group), also viscosity of gall was studied. In the control group pH and viscosity were detected. Statistical analysis was performed using ANOVA method. Bacteriological study revealed presence of bacterial infection in gall bladder tissue in 34 cases (43,6%), in 30 patients Anti-HB core antibodies were found in the blood, in 13 cases (16,7%) coincidence of bacterial and HBV infection was documented. Mean indexes of pH and viscosity appeared to be significantly higher in the operated group (pH--7,30, h 2,1 mm(2)/sec), then in the control group (pH--6,74, h--1,34 mm(2)/sec); this indexes were highest in the infected patients. Thus, according to results of the study, changes of pH and viscosity of gall bladder contents could be considered as the useful indexes of initial stage of cholelithiasis and their values depend on the presence of bacterial or HBV infection of gall bladder.

  18. Layer-dependent role of collagen recruitment during loading of the rat bladder wall.

    PubMed

    Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M

    2018-04-01

    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.

  19. The Activity of Class I-IV Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase in Bladder Cancer Cells.

    PubMed

    Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej

    2018-01-02

    The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.

  20. Effect of coffee drinking on cell proliferation in rat urinary bladder epithelium.

    PubMed

    Lina, B A; Rutten, A A; Woutersen, R A

    1993-12-01

    A possible effect of freshly brewed drip coffee on urinary bladder carcinogenesis was investigated in male Wistar rats using cell proliferation in urinary bladder epithelium as the indicator of tumour promotion. Male rats were given either undiluted coffee brew (100% coffee), coffee diluted 10 times (10% coffee) or tap water (controls), as their only source of drinking fluid for 2 or 6 wk. Uracil, known to induce cell proliferation in urinary bladder epithelium, was included in the study as a positive control. In rats receiving 100% coffee, body weights, liquid intake and urinary volume were decreased. Neither histopathological examination of urinary bladder tissue nor the bromodeoxyuridine labelling index revealed biologically significant differences between rats receiving coffee and the tap water controls. Uracil increased the labelling index and induced hyperplasia of the urinary bladder epithelium, as expected. It was concluded that these results produced no evidence that drinking coffee predisposes to tumour development in the urinary bladder.

  1. [Concomitant oncopathological changes in the prostate of urinary bladder cancer patients undergoing radical cystoprostateectomy].

    PubMed

    Komyakov, B K; Sergeev, A V; Fadeev, V A; Ismailov, K I; Ulyanov, A Yu; Shmelev, A Yu; Onoshko, M V

    2017-09-01

    To determine the incidence of spreading bladder transitional cell carcinoma and primary adenocarcinoma to the prostate in patients with bladder cancer undergoing radical cystectomy. From 1995 to 2016, 283 men underwent radical cystectomy with removal of the bladder, perivesical tissue, prostate, seminal vesicles and pelvic lymph nodes. Prostate sparing cystectomy was performed in 45 (13.7%) patients. The whole prostate and the apex of the prostate were preserved in 21 (6.4%) and 24 (7.3%) patients, respectively. The spread of transitional cell cancer of the bladder to the prostate occurred in 50 (15.2%) patients. Twelve (3.6%) patients were found to have primary prostate adenocarcinoma. Clinically significant prostate cancer was diagnosed in 4 (33.3%) patients. We believe that the high oncological risk of prostate sparing cystectomy, despite some functional advantages, dictates the need for complete removal of the prostate in the surgical treatment of bladder cancer.

  2. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jun; Dai, Wenbin, E-mail: daiwenbin271@163.com; Song, Jianming

    2016-02-05

    microRNAs (miRNAs) have been demonstrated to contribute to tumor progression and metastasis and proposed to be key regulators of diverse biological processes. In this study, we report that miR-1182 is deregulated in bladder cancer tissues and cell lines. To characterize the role of miR-1182 in bladder cancer cells, we performed functional assays. The overexpression of miR-1182 significantly inhibits bladder cancer cell proliferation, colony formation, and invasion. Moreover, its up-regulation induced cell cycle arrest and apoptosis and mediated chemosensitivity to cisplatin in bladder cancer. Furthermore, a luciferase reporter assay and a rescue experiment indicated that miR-1182 directly targets hTERT by bindingmore » its 3′UTR. In conclusion, these results demonstrate that miR-1182 acts as a tumor suppressor and may be a potential biomarker for bladder cancer diagnosis and treatment.« less

  3. Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis.

    PubMed

    Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G; Horn, Adam J; Lele, Subodh M; Theodorescu, Dan; Batra, Surinder K

    2014-01-01

    Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.

  4. Effects of fasudil, a Rho-kinase inhibitor, on contraction of pig bladder tissues with or without urothelium.

    PubMed

    Tatsumiya, Katsuhisa; Yamanishi, Tomonori; Watanabe, Miho; Masuda, Akinori; Mizuno, Tomoya; Kamai, Takao; Yoshida, Ken-Ichiro

    2009-12-01

    To investigate the effects of fasudil, a Rho-associated serine-threonine protein kinase inhibitor, on contraction of the pig urinary bladder tissues with or without urothelium. Cumulative concentration-response curves (CRCs) to carbachol were obtained with and without 3-10 microM fasudil. Drug effects were evaluated in detrusor with and without urothelium. Inhibitory responses to fasudil were also examined in tissues precontracted with KCl and carbachol, and in response to electrical field stimulation, in pig bladder with and without urothelium. In detrusor without urothelium, maximum contraction (E(max)) decreased after administration of fasudil at 3 or 10 micromol/L (both P < 0.01), or 30 micromol/L (72.5 + or - 7.43%, 58.4 + or - 8.04% and 68.4 + or - 9.6%, respectively, of the first curve). In detrusor with urothelium, E(max) decreased significantly (all P < 0.05) after the addition of 3, 10 or 30 micromol/L of fasudil (84.9 + or - 6.7%, 67.9 + or - 5.2% and 35.2 + or - 4.1%, respectively). In tissues precontracted with 80 mmol/L KCl or 100 micromol/L carbachol, tension after administration of fasudil (1 nmol/L to 100 micromol/L) decreased (by approximately 40%), only after administration of fasudil at high concentration (>1 micromol/L), in detrusor both with and without urothelium. In tissues with and without urothelium, responses to electrical field stimulation at 1-50 Hz decreased significantly in a concentration-dependent manner after addition of fasudil (3 to 30 micromol/L). Fasudil seems to provoke relaxation of the bladder detrusor via both urothelium-dependent and independent pathways.

  5. Low amplitude rhythmic contraction frequency in human detrusor strips correlates with phasic intravesical pressure waves.

    PubMed

    Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P

    2017-08-01

    Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (<2 g) and analyzed by fast Fourier transform (FFT) to identify LARC signal frequencies. Blinded UD tracings were retrospectively reviewed for signs of LARC on the p ves tracing during filling and were analyzed via FFT. Distinct LARC frequencies were identified in 100% of tissue strips (n = 9) obtained with a mean frequency of 1.97 ± 0.47 cycles/min (33 ± 8 mHz). Out of 100 consecutive UD studies reviewed, 35 visually displayed phasic p ves waves. In 12/35 (34%), real p ves signals were present that were independent of abdominal activity. Average UD LARC frequency was 2.34 ± 0.36 cycles/min (39 ± 6 mHz) which was similar to tissue LARC frequencies (p = 0.50). A majority (83%) of the UD cohort with LARC signals also demonstrated detrusor overactivity. During UD, a subset of patients displayed phasic p ves waves with a distinct rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.

  6. Soft-tissue applications of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    The ideal surgical laser for the treatment of soft tissue pathology should possess both ablative and hemostatic abilities. As well, for use in urologic conditions the laser must also be suitable for endoscopic use. The Holmium:YAG laser possesses these qualities and in preliminary clinical use has demonstrated a variety of potential urologic applications. In this study we review our initial experience with the Holmium:YAG laser over a 18 month period. A total of 51 patients underwent 53 procedures for a variety of soft tissue conditions including: bladder tumor ablation (25), incision of ureteral stricture (15), incision of urethral stricture (6), treatment of ureteropelvic junction obstruction (3), incision of bladder neck contracture (2), and ablation of a ureteral tumor (2). Satisfactory hemostasis was achieved in all cases. Procedures were considered successful (no further intervention being required to treat the condition) in 81% of the cases. Two patients with dense bladder neck contractures required electroincision under the same anesthetic for completion of the procedure. A single complication, that of urinary extravasation following incision of a urethral stricture resolved with conservative management. In summary, the Holmium:YAG laser has demonstrated safety and proficiency in the treatment of a variety of urologic soft tissue conditions.

  7. Brenner tumor of the ovary: a correlative histologic, histochemical, immunohistochemical, and ultrastructural investigation.

    PubMed

    Santini, D; Gelli, M C; Mazzoleni, G; Ricci, M; Severi, B; Pasquinelli, G; Pelusi, G; Martinelli, G

    1989-08-01

    The histologic, histochemical, immunohistochemical, and ultrastructural features of Brenner tumor (BT) were studied. BT was compared with transitional bladder cells, and close similarities between the two tissues were identified. Abundant glycogen in all cellular layers, an alcianophilic/sialomucinic surface mucous coat, and argyrophilic cells characterized both BT and bladder epithelium. Immunohistochemically, chromogranin and neuron-specific enolase reactivity was observed in all cases examined. An additional relevant finding was the presence of serotonin-storing cells in both BT and urothelium. Moreover, carcinoembryonic antigen, epithelial membrane antigen, and keratin reaction were found in BT and urothelium, indicating an additional antigenic similarity. Additionally, malignant Brenner tumor was ultrastructurally found to share many common features with the bladder tissue. The distinct histochemical, ultrastructural, and antigenic pattern of BT, primarily of the transitional type, is emphasized.

  8. A novel single compartment in vitro model for electrophysiological research using the perfluorocarbon FC-770.

    PubMed

    Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E

    2016-06-20

    Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.

  9. Characterization of the Olfactory Receptor OR10H1 in Human Urinary Bladder Cancer.

    PubMed

    Weber, Lea; Schulz, Wolfgang A; Philippou, Stathis; Eckardt, Josephine; Ubrig, Burkhard; Hoffmann, Michéle J; Tannapfel, Andrea; Kalbe, Benjamin; Gisselmann, Günter; Hatt, Hanns

    2018-01-01

    Olfactory receptors (ORs) are a large group of G-protein coupled receptors predominantly found in the olfactory epithelium. Many ORs are, however, ectopically expressed in other tissues and involved in several diseases including cancer. In this study, we describe that one OR, OR10H1, is predominantly expressed in the human urinary bladder with a notably higher expression at mRNA and protein level in bladder cancer tissues. Interestingly, also significantly higher amounts of OR10H1 transcripts were detectable in the urine of bladder cancer patients than in the urine of control persons. We identified the sandalwood-related compound Sandranol as a specific agonist of OR10H1. This deorphanization allowed the functional characterization of OR10H1 in BFTC905 bladder cancer cells. The effect of receptor activation was morphologically apparent in cell rounding, accompanied by changes in the cytoskeleton detected by β-actin, T-cadherin and β-Catenin staining. In addition, Sandranol treatment significantly diminished cell viability, cell proliferation and migration and induced a limited degree of apoptosis. Cell cycle analysis revealed an increased G1 fraction. In a concentration-dependent manner, Sandranol application elevated cAMP levels, which was reduced by inhibition of adenylyl cyclase, and elicited intracellular Ca 2+ concentration increase. Furthermore, activation of OR10H1 enhanced secretion of ATP and serotonin. Our results suggest OR10H1 as a potential biomarker and therapeutic target for bladder cancer.

  10. Prostaglandins as mediators of acidification in the urinary bladder of Bufo marinus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, L.W.; Yorio, T.

    1990-05-01

    Experiments were performed to determine whether prostaglandins (PG) play a role in H+ and NH4+ excretion in the urinary bladder of Bufo marinus. Ten paired hemibladders from normal toads were mounted in chambers. One was control and the other hemibladder received PGE2 in the serosal medium (10(-5) M). H+ excretion was measured by change in pH in the mucosal fluid and reported in units of nmol (100 mg tissue)-1 (min)-1. NH4+ excretion was measured colorimetrically and reported in the same units. The control group H+ excretion was 8.4 +/- 1.67, while the experimental group was 16.3 +/- 2.64 (P lessmore » than 0.01). The NH4+ excretion in the experimental and control group was not significantly different. Bladders from toads in a 48-hr NH4+Cl acidosis (metabolic) did not demonstrate this response to PGE2 (P greater than 0.30). Toads were put in metabolic acidosis by gavaging with 10 ml of 120 mM NH4+Cl 3 x day for 2 days. In another experiment, we measured levels of PG in bladders from control (N) and animals placed in metabolic acidosis (MA). Bladders were removed from the respective toad, homogenized, extracted, and PG separated using high-pressure liquid chromatography and quantified against PG standards. The results are reported in ng (mg tissue)-1. PGE2 fraction in N was 1.09 +/- 0.14 and in MA was 3.21 +/- 0.63 (P less than 0.01). PGF1 alpha, F2 alpha and I2 were not significantly different in N and MA toads. Bladders were also removed from N and MA toads, and incubated in Ringer's solution containing (3H)arachidonic acid (0.2 microCi/ml) at 25 degrees C for 2 hr. Bladders were then extracted for PG and the extracts separated by thin layer chromatography. PG were identified using standards and autoradiography, scraped from plates, and counted in a scintillation detector. The results are reported in cpm/mg tissue x hr +/- SEM.« less

  11. Uterine Prolapse

    MedlinePlus

    ... during bowel movements Family history of weakness in connective tissue Being Hispanic or white Complications Uterine prolapse is ... You might experience: Anterior prolapse (cystocele). Weakness of connective tissue separating the bladder and vagina may cause the ...

  12. [Cytocompatibility of collagen membranes with bladder transitional cells of rabbit in vitro].

    PubMed

    Sun, Daodong; Song, Bo; Sun, Danning

    2004-05-01

    To evaluate the cytocompatibility of collagen membranes with transitional cells of rabbit in vitro and to discuss the possibility of the collagen membranes as urologic tissue engineering scaffolds. Primary cultured transitional cells isolated from New Zealand rabbits were implanted on collagen membranes at 1 x 10(5) cells/cm2. The changes of cell adhering were observed by inverted microscope and scanning electron microscope 2, 12 and 24 hours later. The experiment was divided into 4 groups: non-cell group (black control) culture medium group (negative control), extract medium from Polyvinyl chloride group(positive control) and extract medium from collagen membranes group(experimental group). The cells of generations 2 to 4 were implanted in 96-hole-plank at 1 x 10(4) cells every hole. And every group had 5 holes. Then absorption coefficient were detected at the wave length of 490 nm by MTT assay. Then the cytotoxicity and cytocompatibility were evaluated by comparison of the numbers of absorption coefficient. The bladder transitional cells began to adhere to the collagen membrane 2 hours after implanting, and the number of the adhered cells increased with time. The actual absorption coefficient of experimental groups was 0.590 +/- 0.024, 1.065 +/- 0.40 and 1.129 +/- 0.074 after 24, 72 and 120 hours. The actual absorption coefficient of negative control group was 0.639 +/- 0.068, 1.022 +/- 0.044 and 1.087 +/- 0.111. The actual absorption coefficient of positive control group was 0.302 +/- 0.029, 0.653 +/- 0.083 and 0.694 +/- 0.031. There was significant difference between the experimental group and positive control (P < 0.01), and no significant difference between the experimental group and negative control(P > 0.05). Collagen membrane has good cytocompatibility with transitional cells and no cytotoxicity. It can be used as scaffolds of urologic tissue engineering.

  13. Deformable structure registration of bladder through surface mapping.

    PubMed

    Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A

    2006-06-01

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.

  14. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  15. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

    PubMed

    Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.

  16. Application of 1,2-diethyl-3-hydroxypyridin-4-one to enhance tissue selectivity for photodynamic therapy of the bladder

    NASA Astrophysics Data System (ADS)

    Chang, Shi-Chung; MacRobert, Alexander J.; Porter, John B.; Bown, Stephen G.

    1995-03-01

    Five-aminolaevulinic acid (ALA) induced protoporphyrin IX (PpIX) has proven to be a useful photosensitizer for photodynamic therapy (PDT). In living cells, the conversion of PpIX to photoinactive haem is catalyzed by ferrochelatase in the presence of tissue iron and inhibition of this final committed step results in increased accumulation of PpIX. The in vivo effect of a new iron chelator, 1,2-diethyl-3-hydroxypyridin-4-one (CP94), on the buildup of PpIX in different bladder layers was evaluated. In CP94 treated rats, 5 - 7 hours after intravesical instillation of ALA solution, the fluorescence intensity of PpIX in the urothelium was doubled whilst in the muscle layer it remained low at a similar level to those seen without the iron chelator. With CP94, further reduction of skin photosensitization is possible as a similar photodynamic effect on the bladder could be achieved at lower ALA concentration. The addition of CP94 seems an effective and convenient way to potentiate ALA induced PpIX tissue selectivity.

  17. Flexible cystoscopic bladder biopsies: a technique for outpatient evaluation of the lower urinary tract urothelium.

    PubMed

    Beaghler, M; Grasso, M

    1994-11-01

    Routine urothelial biopsies of the lower urinary tract are obtained using the cold cup biopsy technique. This procedure is most often performed in the surgical suite and requires rigid endoscopic access and the use of biopsy forceps and Bugbee electrodes to obtain tissue for histologic examination. A new single-step biopsy forceps has been used through the flexible cystoscope. Using a 16 F actively deflectable, flexible cystoscope and the 5.4 F Therma Jaw Hot Urologic Forceps, bladder biopsies were obtained in 27 patients for a variety of indications. This biopsy forceps allows simultaneous tissue sampling and electrocoagulation of the biopsy site, thus eliminating the need for exchange of instruments through the flexible cystoscope. Tissue samples are somewhat protected from thermal changes during coagulation through the use of a Faraday cage. Biopsies were frequently obtained in an outpatient setting, requiring only local topical anesthesia (2% lidocaine jelly). Carcinoma in situ, transitional cell carcinoma, acute and chronic inflammation, and normal bladder mucosa were differentiated histologically. Using this technique, lower urinary tract urothelial mapping can be performed safely in the office with minimal patient discomfort.

  18. Tissue reactions under piezoelectric shockwave application for the fragmentation of biliary calculi.

    PubMed Central

    Ell, C; Kerzel, W; Heyder, N; Rödl, W; Langer, H; Mischke, U; Giedl, J; Domschke, W

    1989-01-01

    The tissue reactions that occurred during piezoelectric shockwaves for the fragmentation of biliary calculi were investigated in 10 surgically removed stone containing human gall bladders and in acute (six dogs) and chronic (six dogs) animal experiments. Before and after shockwave (500, 1500 or 3000) in the anaesthetised dogs, computed tomography (CT), magnetic imaging (MRI) and laboratory tests were done; treatment was carried out under continuous ultrasonographic control. Shockwave applications to the human gall bladders resulted in disintegration of the stones with no macroscopically or microscopically detectable tissue changes. In acute animal experiments, small haematomas were observed in all six animals at surfaces, but also inside the liver and gall bladder (max diameter 25 mm). Perforation or intra-abdominal or pleural bleeding did not occur. In chronic experiments, no macroscopic, and only slight microscopic residual lesions (haemosiderin deposits) were seen three weeks after shockwave. In almost all instances, the lesions were detected by CT, MRI, and ultrasonography, while laboratory tests were negative. Images Fig 1 Figs. 2-4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2731762

  19. Use of pneumocystoplasty for overinflation of the swim bladder in a goldfish.

    PubMed

    Britt, Tara; Weisse, Chick; Weber, E Scott; Matzkin, Zach; Klide, Alan

    2002-09-01

    A Ryukin goldfish was evaluated because of a 6-month history of progressive abdominal distention and positive buoyancy. Overinflation of the swim bladder was diagnosed, and the fish was anesthetized with tricaine methanesulfonate. Archimedes' principle was used to determine the volume of swim bladder that was removed surgically. The caudal swim bladder was exteriorized through an abdominal incision and 2 surgical clips were placed across it to limit its size. After surgery, the fish remained in a state of negative buoyancy in sternal and lateral recumbency on the bottom of the tank. Sutures were removed 15 days after surgery, but the fish died 24 days after surgery. A full necropsy could not be performed because of autolysis of the tissues, but the surgical clips and the swim bladder appeared unremarkable. Pneumocystoplasty may be a viable treatment for this condition.

  20. Preventive Effect of Hydrogen Water on the Development of Detrusor Overactivity in a Rat Model of Bladder Outlet Obstruction.

    PubMed

    Miyazaki, Nozomu; Yamaguchi, Osamu; Nomiya, Masanori; Aikawa, Ken; Kimura, Junko

    2016-03-01

    Bladder ischemia and oxidative stress contribute to the pathogenesis of bladder dysfunction caused by bladder outlet obstruction. H2 reportedly acts as an effective antioxidant. We investigated whether oral ingestion of H2 water would have a beneficial effect on bladder function in a rat model of bladder outlet obstruction. H2 water was made by dissolving H2 gas in ordinary drinking water using a hydrogen water producing apparatus. The bladder outlet obstruction model was surgically induced in male rats. Rats with obstruction were fed H2 water or ordinary drinking water. On week 4 postoperatively cystometry was performed. Oxidative stress markers and the bladder nerve growth factor level were determined. Bladder tissues were processed for pharmacological studies and histological analysis. The micturition interval and micturition volume significantly decreased in obstructed rats given ordinary drinking water. These decreases were significantly suppressed by oral ingestion of H2 water. Increased post-void residual volume in obstructed rats was significantly reduced by H2 water. Obstruction led to a significant increase in bladder weight, oxidative stress markers and nerve growth factor. H2 water significantly suppressed these increases without affecting bladder weight. There was no significant difference in histological findings between rats with bladder obstruction given H2 water and ordinary drinking water. Decreased responses of detrusor muscle strips from obstructed bladders to KCl, carbachol and electrical field stimulation were reversed by H2 water ingestion. Results suggest that H2 water could ameliorate bladder dysfunction secondary to bladder outlet obstruction by attenuating oxidative stress. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Automatic T1 bladder tumor detection by using wavelet analysis in cystoscopy images

    NASA Astrophysics Data System (ADS)

    Freitas, Nuno R.; Vieira, Pedro M.; Lima, Estevão; Lima, Carlos S.

    2018-02-01

    Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.

  2. Contouring and Constraining Bowel on a Full-Bladder Computed Tomography Scan May Not Reflect Treatment Bowel Position and Dose Certainty in Gynecologic External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaparpalvi, Ravindra, E-mail: ryaparpa@montefiore.org; Mehta, Keyur J.; Bernstein, Michael B.

    Purpose: To evaluate, in a gynecologic cancer setting, changes in bowel position, dose-volume parameters, and biological indices that arise between full-bladder (FB) and empty-bladder (EB) treatment situations; and to evaluate, using cone beam computed tomography (CT), the validity of FB treatment presumption. Methods and Materials: Seventeen gynecologic cancer patients were retrospectively analyzed. Empty-bladder and FB CTs were obtained. Full-bladder CTs were used for planning and dose optimization. Patients were given FB instructions for treatment. For the study purpose, bowel was contoured on the EB CTs for all patients. Bowel position and volume changes between FB and EB states were determined.more » Full-bladder plans were applied on EB CTs for determining bowel dose-volume changes in EB state. Biological indices (generalized equivalent uniform dose and normal tissue complication probability) were calculated and compared between FB and EB. Weekly cone beam CT data were available in 6 patients to assess bladder volume at treatment. Results: Average (±SD) planned bladder volume was 299.7 ± 68.5 cm{sup 3}. Median bowel shift in the craniocaudal direction between FB and EB was 12.5 mm (range, 3-30 mm), and corresponding increase in exposed bowel volume was 151.3 cm{sup 3} (range, 74.3-251.4 cm{sup 3}). Absolute bowel volumes receiving 45 Gy were higher for EB compared with FB (mean 328.0 ± 174.8 vs 176.0 ± 87.5 cm{sup 3}; P=.0038). Bowel normal tissue complication probability increased 1.5× to 23.5× when FB planned treatments were applied in the EB state. For the study, the mean percentage value of relative bladder volume at treatment was 32%. Conclusions: Full-bladder planning does not necessarily translate into FB treatments, with a patient tendency toward EB. Given the uncertainty in daily control over bladder volume for treatment, we strongly recommend a “planning-at-risk volume bowel” (PRV{sub B}owel) concept to account for bowel motion between FB and EB that can be tailored for the individual patient.« less

  3. Muscarinic Receptor Binding in Rat Bladder Urothelium and Detrusor Muscle by Intravesical Solifenacin.

    PubMed

    Ito, Yoshihiko; Kashiwabara, Michishi; Yoshida, Akira; Hikiyama, Eriko; Onoue, Satomi; Yamada, Shizuo

    2016-01-01

    Solifenacin is an antimuscarinic agent used to treat symptoms of overactive bladder. Pharmacologically significant amounts of solifenacin were excreted in the urine of humans taking a clinical dose of this drug. The aim of this study is to measure muscarinic receptor binding in the bladder urothelium and detrusor muscles of rats following the intravesical instillation of solifenacin. Muscarinic receptors were measured by radioreceptor assay using [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS), a selective radioligand of muscarinic receptors. Solifenacin showed concentration-dependent inhibition of specific [(3)H]NMS binding in the bladder urothelium and detrusor muscle of rats, with no significant difference in Ki values or Hill coefficients between these tissues. Following the intravesical instillation of solifenacin, there was significant muscarinic receptor binding (increase in Kd for specific [(3)H]NMS binding) in the bladder urothelium and detrusor muscle of rats. Similar bladder muscarinic receptor binding was observed by the intravesical instillation of oxybutynin, but not with trospium. In conclusion, the present study has demonstrated that solifenacin binds muscarinic receptors not only in the detrusor muscle but also in the bladder urothelium with high affinity. These bladder muscarinic receptors may be significantly affected by solifenacin excreted in the urine.

  4. FGF2-mediated reciprocal tumor cell-endothelial cell interplay contributes to the growth of chemoresistant cells: a potential mechanism for superficial bladder cancer recurrence.

    PubMed

    Chen, Yule; Zhu, Guodong; Wu, Kaijie; Gao, Yang; Zeng, Jin; Shi, Qi; Guo, Peng; Wang, Xinyang; Chang, Luke S; Li, Lei; He, Dalin

    2016-04-01

    Patients with superficial bladder cancer can be definitively cured by one single transurethral resection (TUR) with additional intravesical chemotherapy; however, up to 75 % of cases display frequent and multiple recurrences. One of the major causes of recurrence is that chemotherapeutic drugs used in intravesical regimens may induce chemoresistance. However, the mechanisms by which these chemoresistant cells develop into recurrent tumors remain unclear. Recent clinical evidence revealed that the expression of pro-angiogenic factor FGF2 was associated with early local relapse in patients with superficial bladder cancer. In this study, we conducted a preliminary investigation of the mechanisms of chemoresistant cells mediated bladder cancer recurrence, focusing on FGF2-initiated tumor cell-endothelial cell interaction on chemoresistant cancer cell growth. We found that the expression of FGF2 was increased in chemoresistant bladder cell lines and in bladder tissues after intravesical chemotherapy. Although chemoresistant bladder cells grow slower than parental cells, chemoresistant bladder cancer cells had stronger ability than parental cells to stimulate endothelial cell migration, growth, and tube formation by producing FGF2. Inversely, endothelial cells significantly promoted chemoresistant bladder cancer growth in vitro and in vivo. Thus, targeting chemotherapy-induced FGF2 upregulation may provide a promising approach to manage the recurrence of superficial bladder cancer.

  5. Expression of pigment epithelium-derived factor and tumor necrosis factor-α is correlated in bladder tumor and is related to tumor angiogenesis.

    PubMed

    Feng, Chen-Chen; Wang, Pao-Hsun; Ding, Qiang; Guan, Ming; Zhang, Yuan-Fang; Jiang, Hao-Wen; Wen, Hui; Wu, Zhong

    2013-02-01

    Angiogenesis is a pivotal process on which solid tumor growth is substantially dependent. Pigment epithelium-derived factor (PEDF) is the most potent natural anti-angiogenic factor, which has seldom been studied in bladder tumor, and whose functioning pathway remains unclear. We have thus investigated PEDF expression in relation to tumor necrosis factor-α (TNF-α) and microvessel density (MVD) with immunohistochemistry. Antibodies of PEDF and TNF-α were examined by Western blotting before immunohistochemistry. Sixty-four urothelial tumor sections and 23 normal controls were stained and expression of PEDF, TNF-α, and MVD were studied. Decreased PEDF expression and increased TNF-α expression was noticed in tumorous tissue compared with healthy urothelium. Lower PEDF expression was related to higher tumor grade but stage. Increased TNF-α expression was noticed in recurrent, larger tumors as well as in tumors with progression in grade and stage. Expression of PEDF and TNF-α was correlated in bladder tumor. PEDF or TNF-α was correlated with MVD negatively or positively, respectively, in cancerous tissue and tumorous grouping without correlation in papillary urothelial neoplasm of low malignant potential. Expressional change of PEDF and TNF-α is in relation to angiogenesis of bladder tumor, especially in bladder cancer development. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cytoplasmatic and Nuclear YAP1 and pYAP1 Staining in Urothelial Bladder Cancer.

    PubMed

    Latz, Stefan; Umbach, Tine; Goltz, Diane; Kristiansen, Glen; Müller, Stephan C; Ellinger, Jörg

    2016-01-01

    Yes-associated protein 1 (YAP1), the nuclear effector of the Hippo pathway, plays an important role in many tumor entities. We evaluated staining and clinical significance of YAP1 and phosphorylated YAP1 (pYAP1) in urothelial bladder cancer (BCA). We used a tissue micorarray with samples of patients with muscle-invasive bladder cancer (MIBC, n = 192), non-muscle-invasive bladder cancer (NMIBC, n = 192) and normal urothelial bladder tissue (CTRL, n = 38) to determine the immunhistochemical staining of YAP1 and pYAP1. Cytoplasmatic and nuclear levels were evaluated. The t test was used for comparative analysis. Overall survival and progression-free survival were evaluated by Kaplan-Meier estimates and the Cox proportional hazard regression model. Nuclear YAP1 as well as cytoplasmatic pYAP1 levels were higher in CTRL than in BCA, whereby both--NMIBC and MIBC--had lower levels than CTRL. Among patients with MIBC, cytoplasmatic YAP1 and pYAP1 staining decreased with advanced stage. YAP1 and pYAP1 staining did not correlate with the recurrence rate, progression-free, cancer-specific or overall survival. Immunhistochemical staining and subcellular localization of YAP1 and pYAP1 are different for BCA, NMIBC, MIBC and CTRL, indicating that the Hippo pathway is involved in urothelial carcinogenesis. © 2015 S. Karger AG, Basel.

  7. Lipid Profiles of Canine Invasive Transitional Cell Carcinoma of the Urinary Bladder and Adjacent Normal Tissue by Desorption Electrospray Ionization Imaging Mass Spectrometry

    PubMed Central

    Dill, Allison L.; Ifa, Demian R.; Manicke, Nicholas E.; Costa, Anthony B.; Ramos-Vara, José A.; Knapp, Deborah W.; Cooks, R. Graham

    2009-01-01

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of canine spontaneous invasive transitional cell carcinoma (TCC) of the urinary bladder (a model of human invasive bladder cancer) as well as adjacent normal tissue from four different dogs. The glycerophospholipids and sphingolipids that appear as intense signals in both the negative ion and positive ion modes were identified by tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation. Differences in the relative distributions of the lipid species were present between the tumor and adjacent normal tissue in both the negative and positive ion modes. DESI-MS images showing the spatial distributions of particular glycerophospholipids, sphinoglipids and free fatty acids in both the negative and positive ion modes were compared to serial tissue sections that were stained with hematoxylin and eosin (H&E). Increased absolute and relative intensities for at least five different glycerophospholipids and three free fatty acids in the negative ion mode and at least four different lipid species in the positive ion mode were seen in the tumor region of the samples in all four dogs. In addition, one sphingolipid species exhibited increased signal intensity in the positive ion mode in normal tissue relative to the diseased tissue. Principal component analysis (PCA) was also used to generate unsupervised statistical images from the negative ion mode data and these images are in excellent agreement with the DESI images obtained from the selected ions and also the H&E stained tissue PMID:19810710

  8. SESN2/sestrin 2 induction-mediated autophagy and inhibitory effect of isorhapontigenin (ISO) on human bladder cancers.

    PubMed

    Liang, Yuguang; Zhu, Junlan; Huang, Haishan; Xiang, Daimin; Li, Yang; Zhang, Dongyun; Li, Jingxia; Wang, Yulei; Jin, Honglei; Jiang, Guosong; Liu, Zeyuan; Huang, Chuanshu

    2016-08-02

    Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, thereby led to a significant transcriptional induction of SESN2. Importantly, we found that SESN2 expression was dramatically downregulated or even lost in human bladder cancer tissues as compared to their paired adjacent normal tissues. Collectively, our results demonstrate that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers and suggests that ISO might act as a promising preventive and/or therapeutic drug against human bladder cancer.

  9. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  10. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras.

    PubMed

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly 'layered' with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.

  11. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras

    PubMed Central

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C.; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W.

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras -/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras -/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras -/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras -/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras -/- males were increased, and Mras -/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras -/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  12. Altered Expression of Transmembrane Mucins, MUC1 and MUC4, in Bladder Cancer: Pathological Implications in Diagnosis

    PubMed Central

    Kaur, Sukhwinder; Momi, Navneet; Chakraborty, Subhankar; Wagner, David G.; Horn, Adam J.; Lele, Subodh M.; Theodorescu, Dan; Batra, Surinder K.

    2014-01-01

    Purpose Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. Material and Methods Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. Results MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). Conclusion The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma. PMID:24671186

  13. Microcirculation and structural reorganization of the bladder mucosa in chronic cystitis under conditions of ozone therapy.

    PubMed

    Neimark, A I; Nepomnyashchikh, L M; Lushnikova, E L; Bakarev, M A; Abdullaev, N A; Sizov, K A

    2014-01-01

    Structural reorganization of the bladder mucosa in chronic cystitis and its correction by ozone therapy were studied. A relationship between the epithelial layer restructuring of different kinds (dystrophy, metaplasia, and degeneration), level of cell proliferation, and ultrastructural organization of urotheliocytes was detected. This complex of structural reactions was combined with dysregulation of tissue bloodflow in the bladder mucosa, shown by laser Doppler flowmetry. Positive structural changes were most marked in intravesical and less so in parenteral ozone therapy added to the therapeutic complex and manifested in reduction of inflammation and alteration in parallel with more intense reparative reactions. A special feature of parenteral ozone therapy was a significant improvement of microcirculation in the bladder mucosa.

  14. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    PubMed

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. [Myofibroblasts and afferent signalling in the urinary bladder. A concept].

    PubMed

    Neuhaus, J; Scholler, U; Freick, K; Schwalenberg, T; Heinrich, M; Horn, L C; Stolzenburg, J U

    2008-09-01

    Afferent signal transduction in the urinary bladder is still not clearly understood. An increasing body of evidence supports the view of complex interactions between urothelium, suburothelial myofibroblasts, and sensory nerves. Bladder tissue from tumour patients was used in this study. Methods included confocal immunofluorescence, polymerase chain reaction, calcium imaging, and fluorescence recovery after photobleaching (FRAP).Myofibroblasts express muscarinic and purinergic receptors. They show constitutive spontaneous activity in calcium imaging, which completely depends on extracellular calcium. Stimulation with carbachol and ATP-evoked intracellular calcium transients also depend on extracellular calcium. The intensive coupling between the cells is significantly diminished by incubation with TGF-beta 1. Myofibroblasts form an important cellular element within the afferent signalling of the urinary bladder. They possess all features required to take part in the complex interactions with urothelial cells and sensory nerves. Modulation of their function by cytokines may provide a pathomechanism for bladder dysfunction.

  16. Altered RECQL5 expression in urothelial bladder carcinoma increases cellular proliferation and makes RECQL5 helicase activity a novel target for chemotherapy

    PubMed Central

    Patterson, Karl; Arya, Lovleen; Bottomley, Sarah; Morgan, Susan; Cox, Angela; Catto, James; Bryant, Helen E.

    2016-01-01

    RECQ helicases are a family of enzymes with both over lapping and unique functions. Functional autosomal recessive loss of three members of the family BLM, WRN and RECQL4, results in hereditary human syndromes characterized by cancer predisposition and premature aging, but despite the finding that RECQL5 deficient mice are cancer prone, no such link has been made to human RECQL5. Here we demonstrate that human urothelial carcinoma of the bladder (UCC) has increased expression of RECQL5 compared to normal bladder tissue and that increasing RECQL5 expression can drive proliferation of normal bladder cells and is associated with poor prognosis. Further, by expressing a helicase dead RECQL5 and by depleting bladder cancer cells of RECQL5 we show that inhibition of RECQL5 activity has potential as a new target for treatment of UCC. PMID:27764811

  17. DNA BINDING AND ADDUCT FORMATION OF AFLATOXIN B1 IN CULTURED HUMAN AND ANIMAL TRACHEOBRONCHIAL AND BLADDER TISSUES

    EPA Science Inventory

    DNA binding and adduct formation of aflatoxin B1 (AFB1) was studied in cultured bladder and tracheobronchial explants from human, monkey, dog, hamster and rat. Explants were exposed to (3H)AFB1 (1 micrometer final concentration) in PFHR-4 medium (pH 7.4) without serum for 24 h, a...

  18. INTERSPECIES COMPARISONS OF BENZO(A)PYRENE METABOLISM AND DNA-ADDUCT FORMATION IN CULTURED HUMAN AND ANIMAL BLADDER AND TRACHEOBRONCHIAL TISSUES

    EPA Science Inventory

    Cultured bladder and tracheobronchial explants from human, monkey, dog, hamster, and rat were used to study the metabolism, covalent binding to DNA, and DNA:adduct formation of (3H0benzo(a)pyrene (BP). Both organs from all species formed large amounts (40 to 70% of total 3H in th...

  19. MBCP - Approach - Advanced Surgery | Center for Cancer Research

    Cancer.gov

    Advanced Surgery We have the expertise to do complex reconstructive procedures with robotic assistance. This results in: smaller incisions, less blood loss, and shorter stays in the hospital In the most challenging of cases of radical cystectomy, we remove the bladder and replace it with a bladder that we construct from bowel tissue. This is standard-of-care for advanced cases.

  20. How does the urothelium affect bladder function in health and disease?

    PubMed Central

    Birder, L.A.; Ruggieri, M.; Takeda, M.; van Koeveringe, G.; Veltkamp, S.A.; Korstanje, C.; Parsons, B.A.; Fry, C.H.

    2011-01-01

    The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. PMID:22275289

  1. Effect of furosemide on ion transport in the turtle bladder: evidence for direct inhibition of active acid-base transport.

    PubMed

    Ehrenspeck, G; Voner, C

    1985-07-25

    The diuretic furosemide inhibits acid-base transport in the short-circuited turtle bladder. It inhibits luminal acidification when present in either mucosal or serosal bathing fluids, but decreases alkalinization only from the serosal side of the tissue. The inhibition of both acid-base transport processes is independent of ambient Cl-; and the disulfonic stilbene, SITS, an inhibitor of Cl--HCO3- exchange, fails to prevent the furosemide-elicited inhibition of alkalinization. These results preclude an absolute requirement of a furosemide-sensitive Cl--HCO3- exchange by these transport processes. The drug also interferes with the CO2-induced stimulation of acidification and alkalinization. The inhibition of the residual acidification in acetazolamide-treated, acidotic bladders, however, suggests an action at sites other than cytosolic carbonic anhydrase. Although active Na+ and Cl- reabsorption and tissue oxygen uptake are also decreased by furosemide, the rate of oxygen consumption uncoupled by 2,4-dinitrophenol is not diminished, indicating a primary inhibition of the various ion transport processes, not of metabolism. It is proposed that inhibition of transepithelial acid-base transport by furosemide in the turtle bladder includes inhibition of the acid-base pumps.

  2. Bladder Mucosal Graft Vaginoplasty: A Case Report.

    PubMed

    Chiaramonte, Cinzia; Vestri, Elettra; Tripi, Flavia; Giannone, Antonino Giulio; Cimador, Marcello; Cataliotti, Ferdinando

    2018-06-18

    Female vaginoplasty reconstruction, by choice, is usually performed with adjacent tissue. However in some clinical conditions such as high urogenital confluence sinus, cloacal malformation with extreme vaginal hypoplasia, local tissue may not be available. When vaginal replacement is performed in pediatric patients intestinal segments is preferred to non-operative procedures that require continuative dilations. However mucus production, malignant transformation risk and diversion colitis are important side effects. We present a nouvel technique for vaginoplasty in a female child presenting with an isolated urogenital sinus malformation without virilization. The patient at 20 months underwent vaginoplasty using tubularized bladder mucosal graft. Surgical procedure was devoid of complications. Pubertal development occurred at age of 15. She underwent regular follow up until 18 years of age. At this age we performed clinical evaluation: absence of vaginal introitus stenosis and good cosmetic results were observed. Then she underwent vaginoscopy with multiple biopsies. Pathology examination of the bladder mucosal graft evidenced a normal structure of the mucosa, with a stratified squamous epithelium. Different techniques are taken into account for vaginal reconstruction according to the severity and to the type of malformation. We describe the use of bladder mucosal graft with favorable results after long term follow-up. Copyright © 2018. Published by Elsevier Inc.

  3. Noninvasive identification of bladder cancer with subsurface backscattered light

    NASA Astrophysics Data System (ADS)

    Bigio, Irving J.; Mourant, Judith R.; Boyer, James D.; Johnson, Tamara M.; Shimada, Tsutomu; Conn, Richard L.

    1994-05-01

    We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. Absorption bands in the tissue also add useful complexity to the spectral data collected. The data acquisition and storage/display time with the OBS instrument is approximately 1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of- the-art methods, the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amendable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g., as in skin cancer or cervical cancer). We report here specifically on its potential application in the detection of bladder cancer.

  4. [Transurethral resection of bladder tumors and prostate enlargement in physiological saline solution (TURIS). A prospective study].

    PubMed

    Rose, A; Suttor, S; Goebell, P J; Rossi, R; Rübben, H

    2007-09-01

    Transurethral resection in a conductive irrigant medium is a new procedure in the surgical therapy of bladder tumors and prostate enlargement. In this prospective randomized trial we compared conventional TUR with TUR in saline regarding safety and efficiency. Between November 2004 and February 2005 a total number of 128 patients were included in this study. After randomization 58 patients were treated by conventional TUR and 70 patients by TURIS (Olympus, SurgMasterSystem). We evaluated resection time, weight of resected tissue, complications, blood loss, changes in serum sodium, and duration of catheterization. Among the tested procedures no statistically significant difference could be observed concerning blood loss, change of serum sodium, and complications. The mean weight of resected tissue of the prostate per time was 0.9 g/min with the TUR procedure and 0.8 g/min with the TURIS procedure. Severe complications like TUR syndrome or perforation of the bladder were not observed at all. In the TURIS group time until catheter removal was longer but also the mean weight of resected tissue of the prostate was higher in the TURIS group (42 g) than in the conventional TUR group (31 g). Transurethral resection in a conductive irrigant medium (TURIS) can be considered as a safe and effective surgical procedure in the treatment of BPH and superficial urothelial carcinoma. Moreover the risk of TUR syndrome and perforation of the bladder due to nerve stimulation is reduced.

  5. Advances in stem cell therapy for the lower urinary tract.

    PubMed

    Lin, Ching-Shwun

    2010-02-26

    Lower urinary tract diseases are emotionally and financially burdensome to the individual and society. Current treatments are ineffective or symptomatic. Conversely, stem cells (SCs) are regenerative and may offer long-term solutions. Among the different types of SCs, bone marrow SCs (BMSCs) and skeletal muscle-derived SCs (SkMSCs) have received the most attention in pre-clinical and clinical trial studies concerning the lower urinary tract. In particular, clinical trials with SkMSCs for stress urinary incontinence have demonstrated impressive efficacy. However, both SkMSCs and BMSCs are difficult to obtain in quantity and therefore neither is optimal for the eventual implementation of SC therapy. On the other hand, adipose tissue-derived SCs (ADSCs) can be easily and abundantly obtained from "discarded" adipose tissue. Moreover, in several head-on comparison studies, ADSCs have demonstrated equal or superior therapeutic potential compared to BMSCs. Therefore, across several different medical disciplines, including urology, ADSC research is gaining wide attention. For the regeneration of bladder tissues, possible differentiation of ADSCs into bladder smooth muscle and epithelial cells has been demonstrated. For the treatment of bladder diseases, specifically hyperlipidemia and associated overactive bladder, ADSCs have also demonstrated efficacy. For the treatment of urethral sphincter dysfunction associated with birth trauma and hormonal deficiency, ADSC therapy was also beneficial. Finally, ADSCs were able to restore erectile function in various types of erectile dysfunction (ED), including those associated with diabetes, hyperlipidemia, and nerve injuries. Thus, ADSCs have demonstrated remarkable therapeutic potentials for the lower urinary tract.

  6. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology.

    PubMed

    Bharadwaj, Shantaram; Liu, Guihua; Shi, Yingai; Wu, Rongpei; Yang, Bin; He, Tongchuan; Fan, Yuxin; Lu, Xinyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Rohozinski, Jan; Zhang, Yuanyuan

    2013-09-01

    We sought to biologically characterize and identify a subpopulation of urine-derived stem cells (USCs) with the capacity for multipotent differentiation. We demonstrated that single USCs can expand to a large population with 60-70 population doublings. Nine of 15 individual USC clones expressed detectable levels of telomerase and have long telomeres. These cells expressed pericyte and mesenchymal stem cell markers. Upon induction with appropriate media in vitro, USCs differentiated into bladder-associated cell types, including functional urothelial and smooth muscle cell lineages. When the differentiated USCs were seeded onto a scaffold and subcutaneously implanted into nude mice, multilayered tissue-like structures formed consisting of urothelium and smooth muscle. Additionally, USCs were able to differentiate into endothelial, osteogenic, chondrogenic, adipogenic, skeletal myogenic, and neurogenic lineages but did not form teratomas during the 1-month study despite telomerase activity. USCs may be useful in cell-based therapies and tissue engineering applications, including urogenital reconstruction. © AlphaMed Press.

  7. Assessment of normal tissue complications following prostate cancer irradiation: Comparison of radiation treatment modalities using NTCP models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.

    2010-09-15

    Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less

  8. Effects of ageing and streptozotocin-induced diabetes on connexin43 and P2 purinoceptor expression in the rat corpora cavernosa and urinary bladder.

    PubMed

    Suadicani, Sylvia O; Urban-Maldonado, Marcia; Tar, Moses T; Melman, Arnold; Spray, David C

    2009-06-01

    To investigate whether ageing and diabetes alter the expression of the gap junction protein connexin43 (Cx43) and of particular purinoceptor (P2R) subtypes in the corpus cavernosum and urinary bladder, and determine whether changes in expression of these proteins correlate with development of erectile and bladder dysfunction in diabetic and ageing rats. Erectile and bladder function of streptozotocin (STZ)-induced diabetic, insulin-treated and age-matched control Fischer-344 rats were evaluated 2, 4 and 8 months after diabetes induction by in vivo cystometry and cavernosometry. Corporal and bladder tissue were then isolated at each of these sample times and protein expression levels of Cx43 and of various P2R subtypes were determined by Western blotting. In the corpora of control rats ageing was accompanied by a significant decrease in Cx43 and P2X(1)R, and increase in P2X(7)R expression. There was decreased Cx43 and increased P2Y(4)R expression in the ageing control rat bladder. There was a significant negative correlation between erectile capacity and P2X(1)R expression levels, and a positive correlation between bladder spontaneous activity and P2Y(4)R expression levels. There was already development of erectile dysfunction and bladder overactivity at 2 months after inducing diabetes, the earliest sample measured in the study. The development of these urogenital complications was accompanied by significant decreases in Cx43, P2Y(2)R, P2X(4)R and increase in P2X(1)R expression in the corpora, and by a doubling in Cx43 and P2Y(2)R, and significant increase in P2Y(4)R expression in the bladder. Changes in Cx43 and P2R expression were largely prevented by insulin therapy. Ageing and diabetes mellitus markedly altered the expression of the gap junction protein Cx43 and of particular P2R subtypes in the rat penile corpora and urinary bladder. These changes in Cx43 and P2R expression provide the molecular substrate for altered gap junction and purinergic signalling in these tissues, and thus probably contribute to the early development of erectile dysfunction and higher detrusor activity in ageing and in diabetic rats.

  9. Receptors, channels, and signalling in the urothelial sensory system in the bladder

    PubMed Central

    Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.

    2017-01-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  10. Kindlin-2 Expression in Arsenite and Cadmium Transformed Bladder Cancer Cell Lines and in Archival Specimens of Human Bladder Cancer

    PubMed Central

    Talaat, Sherine; Somji, Seema; Toni, Conrad; Garrett, Scott H.; Zhou, Xu Dong; Sens, Mary Ann; Sens, Donald A.

    2011-01-01

    Objective The goal of this study was to confirm a microarray study that suggested that Kindlin-2 might play a role in the development and progression of bladder cancer. There has been no previous examination of Kindlin-2 expression in human bladder cancer. Methods A combination of real time PCR, western analysis and immunohistochemistry was used to characterize Kindlin-2 expression in arsenite (As+3) and cadmium (Cd+2) transformed human cell lines, their tumor transplants in immune-compromised mice, and in archival specimens of human bladder and bladder cancer. Results The results show that the Kindlin-2 expression patterns in the cell lines were not duplicated in the tumor tissues. However, it was shown that Kindlin-2 was expressed in the stromal element of all the transplanted tumors and archival specimens of human bladder cancer. It was also shown that a small number of high grade invasive urothelial cancers have focal expression of Kindlin-2 in the tumor cells. Conclusion Kindlin-2 is expressed in the stromal component of most, if not all, human bladder cancers. Kindlin-2 is not expressed in normal urothelium. Kindlin-2 is expressed in a small subset of high grade invasive bladder cancers and may have potential as a prognostic marker for tumor progression. PMID:21624607

  11. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin.

    PubMed

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C; Gomella, Leonard G; Belfiore, Antonino; Black, Peter C; Iozzo, Renato V; Morrione, Andrea

    2016-06-28

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.

  12. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin

    PubMed Central

    Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C.; Gomella, Leonard G.; Belfiore, Antonino; Black, Peter C.; Iozzo, Renato V.; Morrione, Andrea

    2016-01-01

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer. PMID:27220888

  13. Polymeric film of 6-arm-poly(ethylene glycol) amine graphene oxide with poly (ε-caprolactone): Adherence and growth of adipose derived mesenchymal stromal cells culture on rat bladder

    NASA Astrophysics Data System (ADS)

    Durán, Marcela; Durán, Nelson; Luzo, Angela C. M.; Duarte, Adriana S. S.; Volpe, Bruno B.; Ceragioli, Helder J.; Andrade, Patricia F.; De Souza, Joel G.; Fávaro, Wagner J.

    2017-06-01

    Nanotechnology has been more present in different fields related to health. The need to find a durable material, of easy use, and which does not interfere significantly in the growth and differentiation of stem cells for the construction of a scaffold for use in urologic surgery, with the purpose of reducing infections, regeneration times and even graft rejection during reconstitution in patients with urethral stricture was conducted a broad survey of information about this and came to the consensus of this project: using graphene oxide, a widely studied nanomaterials which has been presenting numerous beneficial results when in contact with the adipose-derived stem cells. Advanced techniques for the growth, differentiation and proliferation of adipose-derived stem cells were used, as well as the characterization of graphene oxide sheets. For this study, it was prepared the graphene oxide/6 ARM-Poly (ethylene glycol) amine films with poly (ε-caprolactone). The graphene suspension in organic solvent was prepared by using an ultrasonicator bath and subsequently, the film was formed by solvent evaporation. Total characterization of graphene oxide/6 ARM-PEG-amine/ poly (ε-caprolactone) film was carried out. It was tested growth and adhesion of adipose-derived stem cells on the film, as well as, were verified the histopathological effects of this scaffold when implanted in the urinary bladder to repair the lesion. Our results demonstrated that this scaffold with adipose-derived stem cells enhanced the repair in rat urinary bladder defect model, resulting in a regular bladder. Improved organized muscle bundles and urothelial layer were observed in animals treated with this scaffold with adipose-derived stem cells compared with those treated only suture thread or scaffold. Thus, our biomaterial could be suitable for tissue engineered urinary tract reconstruction.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schooneveldt, G.; Kok, H.P.; Bakker, A.

    Purpose: Hyperthermia combined with Mitomycin C is used for the treatment of non-muscle invasive bladder cancer (NMIBC), using a phased array system of microwave antennas for bladder heating. Often some air is present in the bladder, which effectively blocks the microwave radiation, potentially preventing proper treatment of that part of the bladder. Air can be a relevant fraction of the bladder content and large air pockets are expected to have a noticeable influence on achieved temperatures. Methods: We analysed 14 NMIBC patients treated at our institute with our AMC-4 hyperthermia device with four 70MHz antennas around the pelvis. A CTmore » scan was made after treatment and a physician delineated the bladder on the CT scan. On the same scan, the amount of air present in the bladder was delineated. Using our in-house developed hyperthermia treatment planning system, we simulated the treatment using the clinically applied device settings. We did this once with the air pocket delineated on the CT scan, and once with the same volume filled with bladder tissue. Results: The patients had on average 4.2ml (range 0.8–10.1ml) air in the bladder. The bladder volume was delineated by the physician, that is including air pocket and bladder wall, was on average 253ml (range 93–452ml). The average volume in which changes exceeded 0.25°C was 22ml (range 0–108 ml), with the bladder being up to 2°C cooler when an air pocket was present. Except for extreme cases, there was no evident relation between the quantity of air and the difference in temperature. Conclusion: The effect of an air pocket in the bladder during bladder hyperthermia treatment varies strongly between patients. Generally, this leads to lower temperatures in the bladder, potentially affecting treatment quality, and suggesting that care need be taken to minimise the size of air pockets during hyperthermia treatments. The KWF Dutch Cancer Society financially supported this work, grant UVA 2012-5539.« less

  15. A pilot study on bladder wall thickness at different filling stages

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Yang; Li, Baojuan; Zhang, Guopeng; Liang, Zhengrong; Lu, Hongbing

    2015-03-01

    The ever-growing death rate and the high recurrence of bladder cancer make the early detection and appropriate followup procedure of bladder cancer attract more attention. Compare to optical cystoscopy, image-based studies have revealed its potentials in non-invasive observations of the abnormities of bladder recently, in which MR imaging turns out to be a better choice for bladder evaluation due to its non-ionizing and high contrast between urine and wall tissue. Recent studies indicate that bladder wall thickness tends to be a good indicator for detecting bladder wall abnormalities. However, it is difficult to quantitatively compare wall thickness of the same subject at different filling stages or among different subjects. In order to explore thickness variations at different bladder filling stages, in this study, we preliminarily investigate the relationship between bladder wall thickness and bladder volume based on a MRI database composed of 40 datasets acquired from 10 subjects at different filling stages, using a pipeline for thickness measurement and analysis proposed in our previous work. The Student's t-test indicated that there was no significant different on wall thickness between the male group and the female group. The Pearson correlation analysis result indicated that negative correlation with a correlation coefficient of -0.8517 existed between the wall thickness and bladder volume, and the correlation was significant(p <0.01). The corresponding linear regression equation was then estimated by the unary linear regression. Compared to the absolute value of wall thickness, the z-score of wall thickness would be more appropriate to reflect the thickness variations. For possible abnormality detection of a bladder based on wall thickness, the intra-subject and inter-subject thickness variation should be considered.

  16. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    PubMed

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  17. Opposite effects of tamoxifen on metabolic syndrome-induced bladder and prostate alterations: a role for GPR30/GPER?

    PubMed

    Comeglio, P; Morelli, A; Cellai, I; Vignozzi, L; Sarchielli, E; Filippi, S; Maneschi, E; Corcetto, F; Corno, C; Gacci, M; Vannelli, G B; Maggi, M

    2014-01-01

    BPH and LUTS have been associated to obesity, hypogonadism, and metabolic syndrome (MetS). MetS-induced prostate and bladder alterations, including inflammation and tissue remodeling, have been related to a low-testosterone and high-estrogen milieu. In addition to ERs, GPR30/GPER is able to mediate several estrogenic non-genomic actions. Supplementing a subgroup of MetS rabbits with tamoxifen, we analyzed the in vivo effects on MetS-induced prostate and bladder alterations. The effects of selective ER/GPER ligands and GPER silencing on prostate inflammation were also studied in vitro using hBPH cells. ERα, ERβ, and PR expression was upregulated in MetS bladder, where tamoxifen decreased ERα and PR expression, further stimulating ERβ. In addition, tamoxifen-dosing decreased MetS-induced overexpression of inflammatory and tissue remodeling genes. In prostate, sex steroid receptors, pro-inflammatory and pro-fibrotic genes were upregulated in MetS. However, tamoxifen did not affect them and even increased COX-2. In hBPH cells, 17β-estradiol increased IL-8 secretion, an effect blunted by co-treatment with GPER antagonist G15 but not by ER antagonist ICI 182,780, which further increased it. GPER agonist G1 dose-dependently (IC50  = 1.6 nM) induced IL-8 secretion. In vitro analysis demonstrated that GPER silencing reverted these stimulatory effects. GPER can be considered the main mediator of estrogen action in prostate, whereas in bladder the mechanism appears to rely on ERα, as indicated by in vivo experiments with tamoxifen dosing. Limiting the effects of the MetS-induced estrogen action via GPER could offer new perspectives in the management of BPH/LUTS, whereas tamoxifen dosing showed potential benefits in bladder. © 2013 Wiley Periodicals, Inc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.

    Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less

  19. Acute radiation impacts contractility of guinea-pig bladder strips affecting mucosal-detrusor interactions.

    PubMed

    McDonnell, Bronagh M; Buchanan, Paul J; Prise, Kevin M; McCloskey, Karen D

    2018-01-01

    Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.

  20. Tissue characterization by time-resolved fluorescence spectroscopy of endogenous and exogenous fluorochromes: apparatus design and preliminary results

    NASA Astrophysics Data System (ADS)

    Glanzmann, Thomas M.; Ballini, Jean-Pierre; Jichlinski, Patrice; van den Bergh, Hubert; Wagnieres, Georges A.

    1996-12-01

    The biomedical use of an optical fiber-based spectro- temporal fluorometer that can endoscopically record the fluorescence decay of an entire spectrum without scanning is presented. The detector consists of a streak camera coupled to a spectrograph. A mode-locked argon ion pumped dye laser or a nitrogen laser-pumped dye laser are used as pulsed excitation light sources. We measured the fluorescence decays of endogenous fluorophores and of ALA-induced- protoporphyrin IX(PPIX) in an excised human bladder with a carcinoma in situ (CIS). Each autofluorescence decay can be decomposed in at least three exponential components for all tissue samples investigated if the excitation is at 425 nm. The decays of the autofluorescence of all normal sites of the human bladder are similar and they differ significantly from the decays measured on the CIS and the necrotic tissue. The fluorescence of the ALA-induced PPIX in the bladder is monoexponential with a lifetime of 15 (plus or minus 1) ns and this fluorescence lifetime does not change significantly between the normal urothelium and the CIS. A photoproduct of ALA-PPIX with a fluorescence maximum at 670 nm and a lifetime of 8 (plus or minus 1) ns was observed. The measurement of the decay of the autofluorescence allowed to correctly identify a normal tissue site that was classified as abnormal by the measurement of the ALA-PPIX fluorescence intensity.

  1. Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth.

    PubMed

    Cha, Tai-Lung; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Sun, Kuang-Hui; Chen, Tzu-Ting; Sun, Guang-Huan; Chang, Sun-Yran; Yu, Cheng-Ping; Ho, Jar-Yi; Liu, Shu-Yu; Huang, Shih-Ming; Yu, Dah-Shyong

    2015-03-01

    The deregulation of epigenetics was involved in early and subsequent carcinogenic events. Reversing cancer epigenetics to restore a normal epigenetic condition could be a rational approach for cancer treatment and specialized prevention. In the present study, we found that the expression levels of two epigenetic markers, histone H3K27 trimethylation (H3K27me3), was low but histone H3S10 phosphorylation (pH3Ser10) was high in human bladder cancer tissues, which showed opposite expression patterns in their normal counterparts. Thus, we investigated whether a natural product, emodin, has the ability to reverse these two epigenetic modifications and inhibit bladder cancer cell growth. Emodin significantly inhibited the cell growth of four bladder cancer cell lines in a dose- and time-dependent manner. Emodin treatment did not induce specific cell cycle arrest, but it altered epigenetic modifications. Emodin treatment resulted in the suppression of pH3Ser10 and increased H3K27me3, contributing to gene silencing in bladder cancer cells. Microarray analysis demonstrated that oncogenic genes including fatty acid binding protein 4 (FABP4) and fibroblast growth factor binding protein 1 (HBP17), RGS4, tissue inhibitor of metalloproteinase 3 (TIMP3), WNT5b, URB, and collagen, type VIII, alpha 1 (COL8A1) responsible for proliferation, survival, inflammation, and carcinogenesis were significantly repressed by emodin. The ChIP assays also showed that emodin increased H3K27me3 but decreased pH3Ser10 modifications on the promoters of repressed genes, which indicate that emodin reverses the cancer epigenetics towards normal epigenetic situations. In conclusion, our work demonstrates the significant anti-neoplastic activity of emodin on bladder cancer cells and elucidates the novel mechanisms of emodin-mediated epigenetic modulation of target genes. Our study warrants further investigation of emodin as an effective therapeutic or preventive agent for bladder cancer. © 2013 Wiley Periodicals, Inc.

  2. Dosimetric and radiobiologic comparison of 3D conformal versus intensity modulated planning techniques for prostate bed radiotherapy.

    PubMed

    Koontz, Bridget F; Das, Shiva; Temple, Kathy; Bynum, Sigrun; Catalano, Suzanne; Koontz, Jason I; Montana, Gustavo S; Oleson, James R

    2009-01-01

    Adjuvant radiotherapy for locally advanced prostate cancer improves biochemical and clinical disease-free survival. While comparisons in intact prostate cancer show a benefit for intensity modulated radiation therapy (IMRT) over 3D conformal planning, this has not been studied for post-prostatectomy radiotherapy (RT). This study compares normal tissue and target dosimetry and radiobiological modeling of IMRT vs. 3D conformal planning in the postoperative setting. 3D conformal plans were designed for 15 patients who had been treated with IMRT planning for salvage post-prostatectomy RT. The same computed tomography (CT) and target/normal structure contours, as well as prescription dose, was used for both IMRT and 3D plans. Normal tissue complication probabilities (NTCPs) were calculated based on the dose given to the bladder and rectum by both plans. Dose-volume histogram and NTCP data were compared by paired t-test. Bladder and rectal sparing were improved with IMRT planning compared to 3D conformal planning. The volume of the bladder receiving at least 75% (V75) and 50% (V50) of the dose was significantly reduced by 28% and 17%, respectively (p = 0.002 and 0.037). Rectal dose was similarly reduced, V75 by 33% and V50 by 17% (p = 0.001 and 0.004). While there was no difference in the volume of rectum receiving at least 65 Gy (V65), IMRT planning significant reduced the volume receiving 40 Gy or more (V40, p = 0.009). Bladder V40 and V65 were not significantly different between planning modalities. Despite these dosimetric differences, there was no significant difference in the NTCP for either bladder or rectal injury. IMRT planning reduces the volume of bladder and rectum receiving high doses during post-prostatectomy RT. Because of relatively low doses given to the bladder and rectum, there was no statistically significant improvement in NTCP between the 3D conformal and IMRT plans.

  3. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS).

    PubMed

    Li, Yan; Lu, Ming; Alvarez-Lugo, Lery; Chen, Gang; Chai, Toby C

    2017-04-01

    We studied in vitro and in vivo response of primary mouse bladder urothelial cells (mBUC) and bladder urothelium to lipopolysaccharides (LPS), focusing on granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. Female C57BL/6 mBUC were exposed for 12 hr to differing concentrations of LPS (100 ng/ml to 10 µg/ml). mBUC were also exposed to a single dose of LPS (1 µg/ml) for 3, 6, 12 hr. Neutralizing GM-CSF antibody (0.1 μg/ml) was used block GM-CSF activity in vitro. In vivo experiments were performed, whereby, LPS (1 mg/ml) was instilled intravesically and left to dwell for 30 min followed by harvest of bladder urothelium 3 to 18 hr later. ELISA measured GM-CSF. qPCR quantitated mRNA for GM-CSF, vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α). RT-PCR was used to detect mRNA for GM-CSF, GM-CSFRα, and β in bladder tissues. Immunohistofluorescence and Western blots for GM-CSFRα were performed on bladder tissues. LPS induced a dose-dependent release of GM-CSF by mBUC. Mouse bladder urothelium did not express GM-CSF mRNA at baseline, but expressed GM-CSF mRNA 3 hr after in vivo LPS exposure, with GM-CSF mRNA expression disappearing 18 hr later. GM-CSFRα expression was confirmed in bladder urothelium. GM-CSF neutralizing antibody significantly diminished LPS-induced increases of VEGF and COX-2 mRNA expression. Urothelium and mBUC secreted GM-CSF as an early response to LPS. GM-CSF mediated downstream expression of VEGF and COX-2. Urothelial GM-CSF may function as a signaling mediator for both inflammation and pain transduction. Neurourol. Urodynam. 36:1020-1025, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. The morphological regeneration and functional restoration of bladder defects by a novel scaffold and adipose-derived stem cells in a rat augmentation model.

    PubMed

    Wang, Qiong; Xiao, Dong-Dong; Yan, Hao; Zhao, Yang; Fu, Shi; Zhou, Juan; Wang, Zhong; Zhou, Zhe; Zhang, Ming; Lu, Mu-Jun

    2017-06-24

    Due to the multilineage differentiation ability and paracrine role of adipose-derived stem cells (ASCs) for bladder defect repair, various scaffolds have been applied in combination with ASCs to promote bladder regeneration and restore bladder function. However, the low survival rate of ASCs and the difficulty of promoting bladder functional recovery are still unsolved. To explore these problems, we investigated the feasibility of a novel scaffold seeded with ASCs in a rat model of bladder augmentation. A novel autologous myofibroblast (AM)-silk fibroin (SF) scaffold was harvested after subcutaneously prefabricating the bladder acellular matrix grafts (BAMG) and SF by removing the BAMG. The AM-SF scaffolds were then seeded with ASCs (AM-SF-ASCs). Fifty percent supratrigonal cystectomies were performed followed by augmenting the cystectomized defects with AM-SF scaffolds or AM-SF-ASCs. The histological and functional assessments of bladders were performed 2, 4, and 12 weeks after surgery while the ASCs were tracked in vivo. For bladder tissue regeneration, immunofluorescence analysis revealed that AM-SF-ASCs (the experimental group) promoted better morphological regeneration of the urothelium, vessels, bladder smooth muscle, and nerve than AM-SF scaffolds (the control group). Regarding functional restoration, the AM-SF-ASC group exhibited higher bladder compliance and relatively normal micturition pattern compared to the AM-SF group. In addition, a certain number of surviving ASCs could be found in vivo 12 weeks after implantation, and some of them had differentiated into smooth muscle cells. The AM-SF scaffolds with ASCs could rapidly promote bladder morphological regeneration and improved bladder urinary function. In addition, the bag-shaped structure of the AM-SF scaffold can improve the survival of ASCs for at least 12 weeks. This strategy of AM-SF-ASCs has a potential to repair large-scale bladder defects in the clinic in the future.

  5. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease.

    PubMed

    Joshi, Bharat H; Leland, Pamela; Lababidi, Samir; Varrichio, Frederick; Puri, Raj K

    2014-12-01

    Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study

    PubMed Central

    Liu, Mitchell; Kristensen, Sarah; Gelowitz, Gerald; Berthelet, Eric

    2007-01-01

    In the present study, we aimed to evaluate effects of bladder filling on dose–volume distributions for bladder, rectum, planning target volume (PTV), and prostate in radiation therapy of prostate cancer. Patients (n=21) were scanned with a full bladder, and after 1 hour, having been allowed to void, with an empty bladder. Radiotherapy plans were generated using a four‐field box technique and dose of 70 Gy in 35 fractions. First, plans obtained for full‐ and empty‐bladder scans were compared. Second, situations in which a patient was planned on full bladder but was treated on empty bladder, and vice versa, were simulated, assuming that patients were aligned to external tattoos. Doses to the prostate [equivalent uniform dose (EUD)], bladder and rectum [effective dose (Deff)], and normal tissue complication probability (NTCP) were compared. Dose to the small bowel was examined. Mean bladder volume was 354.3 cm3 when full and 118.2 cm3 when empty. Median prostate EUD was 70 Gy for plans based on full‐ and empty‐bladder scans alike. The median rectal Deff was 55.6 Gy for full‐bladder anatomy and 56.8 Gy for empty‐bladder anatomy, and the corresponding bladder Deff was 29.0 Gy and 49.3 Gy respectively. In 1 patient, part of the small bowel (7.5 cm3) received more than 50 Gy with full‐bladder anatomy, and in 6 patients, part (2.5 cm3−30 cm3) received more than 50 Gy with empty‐bladder anatomy. Bladder filling had no significant impact on prostate EUD or rectal Deff. A minimal volume of the small bowel received more than 50 Gy in both groups, which is below dose tolerance. The bladder Deff was higher with empty‐bladder anatomy; however, the predicted complication rates were clinically insignificant. When the multileaf collimator pattern was applied in reverse, substantial underdosing of the planning target volume (PTV) was observed, particularly for patients with prostate shifts in excess of 0.5 cm in any one direction. However, the prostate shifts showed no correlation with bladder filling, and therefore the PTV underdosing also cannot be related to bladder filling. For some patients, bladder dose–volume constraints were not fulfilled in the worst‐case scenario—that is, when a patient planned with full bladder consistently arrived for treatment with an empty bladder. PACS numbers: 87.53.‐j, 87.53.Kn, 87.53.Tf PMID:17592448

  7. Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium.

    PubMed

    Girard, Beatrice M; Merrill, Liana; Malley, Susan; Vizzard, Margaret A

    2013-10-01

    Transient receptor potential vanilloid (TRPV) family member 4 (TRPV4) expression has been demonstrated in urothelial cells and dorsal root ganglion (DRG) neurons, and roles in normal micturition reflexes as well as micturition dysfunction have been suggested. TRP channel expression and function is dependent upon target tissue expression of growth factors. These studies expand upon the target tissue dependence of TRPV4 expression in the urinary bladder and lumbosacral DRG using a recently characterized transgenic mouse model with chronic overexpression of nerve growth factor (NGF-OE) in the urothelium. Immunohistochemistry with image analyses, real-time quantitative polymerase chain reaction, and Western blotting were used to determine TRPV4 protein and transcript expression in the urinary bladder (urothelium + suburothelium, detrusor) and lumbosacral DRG from littermate wild-type (WT) and NGF-OE mice. Antibody specificity controls were performed in TRPV4(-/-) mice. TRPV4 transcript and protein expression was significantly (p ≤ 0.001) increased in the urothelium + suburothelium and suburothelial nerve plexus of the urinary bladder and in small- and medium-sized lumbosacral (L1, L2, L6-S1) DRG cells from NGF-OE mice compared to littermate WT mice. NGF-OE mice exhibit significant (p ≤ 0.001) increases in NGF transcript and protein in the urothelium + suburothelium and lumbosacral DRG. These studies demonstrate regulation of TRPV4 expression by NGF in lower urinary tract tissues. Ongoing studies are characterizing the functional roles of TRPV4 expression in the sensory limb (DRG, urothelium) of the micturition reflex.

  8. INCREASED TRPV4 EXPRESSION IN URINARY BLADDER AND LUMBOSACRAL DORSAL ROOT GANGLIA IN MICE WITH CHRONIC OVEREXPRESSION OF NGF IN UROTHELIUM

    PubMed Central

    Girard, Beatrice M.; Merrill, Liana; Malley, Susan; Vizzard, Margaret A.

    2013-01-01

    Transient receptor potential vanilloid (TRPV) family member 4 (TRPV4) expression has been demonstrated in urothelial cells and dorsal root ganglion (DRG) neurons and roles in normal micturition reflexes as well as micturition dysfunction have been suggested. TRP channel expression and function is dependent upon target tissue expression of growth factors. These studies expand upon the target tissue dependence of TRPV4 expression in the urinary bladder and lumbosacral DRG using a recently characterized transgenic mouse model with chronic overexpression of nerve growth factor (NGF-OE) in the urothelium. Immunohistochemistry with image analyses, real-time quantitative polymerase chain reaction (Q-PCR) and western blotting were used to determine TRPV4 protein and transcript expression in the urinary bladder (urothelium + suburothelium, detrusor) and lumbosacral DRG from littermate wildtype (WT) and NGF-OE mice. Antibody specificity controls were performed in TRPV4-/- mice. TRPV4 transcript and protein expression was significantly (p ≤ 0.001) increased in the urothelium + suburothelium and suburothelial nerve plexus of the urinary bladder and in small- and medium-sized lumbosacral (L1, L2, L6-S1) DRG cells from NGF-OE mice compared to littermate WT mice. NGF-OE mice exhibit significant (p ≤ 0.001) increases in NGF transcript and protein in the urothelium + suburothelium and lumbosacral DRG. These studies demonstrate regulation of TRPV4 expression by NGF in lower urinary tract tissues. Ongoing studies are characterizing the functional roles of TRPV4 expression in the sensory limb (DRG, urothelium) of the micturition reflex. PMID:23690258

  9. How does the urothelium affect bladder function in health and disease? ICI-RS 2011.

    PubMed

    Birder, L A; Ruggieri, M; Takeda, M; van Koeveringe, G; Veltkamp, S; Korstanje, C; Parsons, B; Fry, C H

    2012-03-01

    The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally, consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery. Copyright © 2012 Wiley Periodicals, Inc.

  10. Do neural tube defects lead to structural alterations in the human bladder?

    PubMed

    Pazos, Helena M F; Lobo, Márcio Luiz de P; Costa, Waldemar S; Sampaio, Francisco J B; Cardoso, Luis Eduardo M; Favorito, Luciano Alves

    2011-05-01

    Anencephaly is the most severe neural tube defect in human fetuses. The objective of this paper is to analyze the structure of the bladder in anencephalic human fetuses. We studied 40 bladders of normal human fetuses (20 male and 20 female, aged 14 to 23 WPC) and 12 bladders of anencephalic fetuses (5 male and 7 female, aged 18 to 22 WPC). The bladders were removed and processed by routine histological techniques. Stereological analysis of collagen, elastic system fibers and smooth muscle was performed in sections. Data were expressed as volumetric density (Vv-%). The images were captured with Olympus BX51 microscopy and Olympus DP70 camera. The stereological analysis was done using the software Image Pro and Image J. For biochemical analysis, samples were fixed in acetone, and collagen concentrations were expressed as micrograms of hydroxyproline per mg of dry tissue. Means were statistically compared using the unpaired t-test (p<0.05). We observed a significant increase (p<0.0001) in the Vv of collagen in the bladders of anencephalic fetuses (69.71%) when compared to normal fetuses (52.74%), and a significant decrease (p<0.0001) in the Vv of smooth muscle cells in the bladders of anencephalic fetuses (23.96%) when compared to normal fetuses (38.35%). The biochemical analyses showed a higher concentration of total collagen in the bladders of anencephalic fetuses (37354 µg/mg) when compared to normal fetuses (48117 µg/mg, p<0.02). The structural alterations of the bladder found in this study may suggest the existence of functional alterations in the bladder of anencephalic human fetuses.

  11. Effect of glycine on recovery of bladder smooth muscle contractility after acute urinary retention in rats.

    PubMed

    Hong, Sung K; Son, Hwancheol; Kim, Soo W; Oh, Seung-June; Choi, Hwang

    2005-12-01

    To investigate the effects of glycine on the recovery of bladder smooth muscle contractility after acute urinary retention. Bladder overdistension was induced in Sprague-Dawley rats by an infusion of saline (twice the threshold volume), maintained for 2 h. From 15 min before emptying of the bladder until 2 h after, saline or glycine solution was infused i.v. At 30 min, 2 h and 1 week after bladder emptying, samples of bladder tissue were taken for muscle strip study, malondialdehyde (MDA) assay, ATP assay, Western blotting for apoptosis-related molecules (Bcl-2, Bax, Caspase-3), and histological analysis including terminal deoxynucleotidyl transferase-mediated nick-end labelling staining. The results were compared among normal control, saline-treated and glycine-treated rats. In the glycine-treated group, muscle strip contractile responses induced by electrical-field stimulation and carbachol were both significantly greater at 1 week after bladder emptying than in the saline-treated group. The results of the ATP assay appeared to correspond with those of the muscle strip study. The saline-treated group had significantly higher MDA levels at 30 min after bladder emptying than the glycine-treated group. At 2 h after bladder emptying, there was significantly more apoptosis and greater leukocyte infiltration in the saline-treated group than in the glycine-treated group. While pro-apoptotic Bax and caspase-3 were down-regulated, Bcl-2 was up-regulated in the glycine-treated group. Glycine infusions might improve the contractile responses of bladder smooth muscle after acute urinary retention by reducing oxidative damage and apoptosis.

  12. Increased expression of GGN promotes tumorigenesis in bladder cancer and is correlated with poor prognosis.

    PubMed

    Wang, Wentao; Li, Changfu; Chen, Yongsheng; Teng, Lichen; Cao, Yan; Xu, Yongpeng; Pan, Hongxin; An, Ruihua

    2018-04-30

    Bladder cancer has shown great challenge for people's life. Traditional therapeutics against bladder cancer including surgery could not bring much benefit for patients, particularly for the late stage patients. So it is necessary to keep in mind why and how bladder cancer cells survive in our body. In this study, we explored the function and the molecular mechanism of GGN gene in bladder cancer. GGN was shown to be expressed at a high level in bladder cancer tissues compared to the control and was associated with the unsatisfactory survival rate of patients. GGN was also expressed abundantly in bladder cancer cell lines such as T24, 5637 and BIU87. Then GGN was knocked down in 5637 cells and T24 cells at both RNA and protein level. In accordance, aberrant growth and proliferation were demonstrated in bladder cancer cells. The ability of migration and invasion of bladder cancer cells was also inhibited. The in vivo data further proved that the xenograft tumor growth was dramatically suppressed by GGN knockdown. Then we demonstrated that the level of IκB, bax and truncated caspase3 was upregulated after GGN was knocked down in 5637 cells. In contrast, expression level of NFκB, IKK, c-Myc, cyclin D1 and Bcl-2 was reduced. Further, the phosphorylation level of IκB was also downregulated. These data suggest that NFκB/caspase3-mediated apoptosis signaling was regulated by GGN. Conclusively, GGN played a tumor-promoting role in bladder cancer through regulation of NFκB/caspase3-mediated apoptosis signaling. This study provides a new clue for the treatment of patients with bladder cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Transcriptional and Translational Plasticity in Rodent Urinary Bladder TRP Channels with Urinary Bladder Inflammation, Bladder Dysfunction or Postnatal Maturation

    PubMed Central

    Merrill, Liana; Girard, Beatrice M.; May, Victor; Vizzard, Margaret A.

    2013-01-01

    These studies examined transcriptional and translational plasticity of three transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) with established neuronal and non-neuronal expression and functional roles in the lower urinary tract. Mechanosensor and nociceptor roles in either physiological or pathological lower urinary tract states have been suggested for TRPA1, TRPV1 and TRPV4. We have previously demonstrated neurochemical, organizational and functional plasticity in micturition reflex pathways following induction of urinary bladder inflammation using the antineoplastic agent, cyclophosphamide (CYP). More recently, we have characterized similar plasticity in micturition reflex pathways in a transgenic mouse model with chronic urothelial overexpression (OE) of nerve growth factor (NGF) and in a transgenic mouse model with deletion of vasoactive intestinal polypeptide (VIP). In addition, the micturition reflex undergoes postnatal maturation that may also reflect plasticity in urinary bladder TRP channel expression. Thus, we examined plasticity in urinary bladder TRP channel expression in diverse contexts using a combination of quantitative, real-time PCR and western blotting approaches. We demonstrate transcriptional and translational plasticity of urinary bladder TRPA1, TRPV1 and TRVP4 expression. Although the functional significance of urinary bladder TRP channel plasticity awaits further investigation, these studies demonstrate context-(inflammation, postnatal development, NGF-OE, VIP deletion) and tissue-dependent (urothelium + suburothelium, detrusor) plasticity. PMID:22865090

  14. MicroRNA-137 Upregulation Increases Bladder Cancer Cell Proliferation and Invasion by Targeting PAQR3

    PubMed Central

    Xia, Shunyao; Jin, Chengjun; Yin, Huaifu; Zhao, Weiming; Wu, Qiong

    2014-01-01

    There is increasing evidence suggesting that dysregulation of some microRNAs (miRNAs) may contribute to tumor progression and metastasis and have been proposed to be key regulators of diverse biological processes such as transcriptional regulation, cell growth and tumorigenesis. Previous studies have shown that miR-137 is dysregulated in some malignancies, but its role in bladder cancer is still unknown. In our study, we find that miR-137 is up-regulated in human bladder cancer tissues and cell lines. Moreover, the higher level of miR-137 was associated with pM or pTNM stage in clinical bladder cancer patients. Enforced expression of miR-137 in bladder cancer cells significantly enhanced their proliferation, migration and invasion. Bioinformatics analysis identified the tumor suppressor gene PAQR3 as a potential miR-137 target gene. Further studies indicated that miR-137 suppressed the expression of PAQR3 by binding to its 3′-untranslated region. Silencing of PAQR3 by small interfering RNAs phenocopied the effects of miR-137 overexpression, whereas restoration of PAQR3 in bladder cancer cells bladder cancer cells overexpressing miR-137, partially reversed the suppressive effects of miR-137. These findings indicate that miR-137 could be a potential oncogene in bladder cancer. PMID:25330156

  15. Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study.

    PubMed

    Zhdanov, A V; Golubeva, A V; Okkelman, I A; Cryan, J F; Papkovsky, D B

    2015-10-01

    O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5-15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues. Copyright © 2015 the American Physiological Society.

  16. Myeloid sarcoma of the urinary bladder with cutaneous tumour seeding after percutaneous suprapubic catheterization.

    PubMed

    Geok Chin, Tan; Masir, Noraidah; Noor Hussin, Hamidah; Mohd Sidik, Shiran; Boon Cheok, Lee; Yean, Thean

    2011-06-01

    Myeloid sarcoma (MS) is a rare extramedullary myeloid tumour. It has been reported in various sites, including lymph node, bone, skin, soft tissue, various organs and the CNS. It may precede or occur concurrently with acute myeloid leukemia. Urinary bladder involvement is extremely uncommon. We report a 70-year-old female who had MS of the urinary bladder, presented with frank and persistent hematuria associated with lower abdominal pain. She subsequently had tumour seeding in the abdominal skin via percutaneous suprapubic catheter. Tumours from both the urinary bladder and skin showed immature cells that were immunoreactive toward LCA (focal), MPO (strong), CD99 (weak) and CD117 (weak). Summary of cases in the literature is presented. The potential of its misdiagnosis and the useful markers for the diagnosis of MS are discussed.

  17. Autofluorescence detection and imaging of bladder cancer realized through a cystoscope

    DOEpatents

    Demos, Stavros G [Livermore, CA; deVere White, Ralph W [Sacramento, CA

    2007-08-14

    Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  18. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats

    PubMed Central

    Merrill, Liana

    2014-01-01

    Individuals with functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) often report symptom (e.g., urinary frequency) worsening due to stress. One member of the transient receptor potential ion channel vanilloid family, TRPV4, has recently been implicated in urinary bladder dysfunction disorders including OAB and IC/BPS. These studies address the role of TRPV4 in stress-induced bladder dysfunction using an animal model of stress in male rats. To induce stress, rats were exposed to 7 days of repeated variate stress (RVS). Quantitative PCR data demonstrated significant (P ≤ 0.01) increases in TRPV4 transcript levels in urothelium but not detrusor smooth muscle. Western blot analyses of split urinary bladders (i.e., urothelium and detrusor) showed significant (P ≤ 0.01) increases in TRPV4 protein expression levels in urothelial tissues but not detrusor smooth muscle. We previously showed that RVS produces bladder dysfunction characterized by decreased bladder capacity and increased voiding frequency. The functional role of TRPV4 in RVS-induced bladder dysfunction was evaluated using continuous, open outlet intravesical infusion of saline in conjunction with administration of a TRPV4 agonist, GSK1016790A (3 μM), a TRPV4 antagonist, HC067047 (1 μM), or vehicle (0.1% DMSO in saline) in control and RVS-treated rats. Bladder capacity, void volume, and intercontraction interval significantly decreased following intravesical instillation of GSK1016790A in control rats and significantly (P ≤ 0.01) increased following administration of HC067047 in RVS-treated rats. These results demonstrate increased TRPV4 expression in the urothelium following RVS and that TRPV4 blockade ameliorates RVS-induced bladder dysfunction consistent with the role of TRPV4 as a promising target for bladder function disorders. PMID:24965792

  19. Involvement of the cystathionine-γ-lyase/Cav3.2 pathway in substance P-induced bladder pain in the mouse, a model for nonulcerative bladder pain syndrome.

    PubMed

    Tsubota, Maho; Okawa, Yasumasa; Irie, Yuhei; Maeda, Mariko; Ozaki, Tomoka; Sekiguchi, Fumiko; Ishikura, Hiroyasu; Kawabata, Atsufumi

    2018-05-01

    Hydrogen sulfide (H 2 S) formed by cystathionine-γ-lyase (CSE) enhances the activity of Ca v 3.2 T-type Ca 2+ channels, contributing to the bladder pain accompanying hemorrhagic cystitis caused by systemic administration of cyclophosphamide (CPA) in mice. Given clinical and fundamental evidence for the involvement of the substance P/NK 1 receptor systems in bladder pain syndrome (BPS)/interstitial cystitis (IC), we created an intravesical substance P-induced bladder pain model in mice and analyzed the possible involvement of the CSE/Ca v 3.2 pathway. Bladder pain/cystitis was induced by i.p. CPA or intravesical substance P in female mice. Bladder pain was evaluated by counting nociceptive behavior and by detecting referred hyperalgesia in the lower abdomen and hindpaw. The isolated bladder tissue was weighed to estimate bladder swelling and subjected to histological observation and Western blotting. Intravesical substance P caused profound referred hyperalgesia accompanied by little bladder swelling or edema 6-24 h after the administration, in contrast to i.p. CPA-induced nociceptive behavior/referred hyperalgesia with remarkable bladder swelling/edema and urothelial damage. The bladder pain and/or cystitis symptoms caused by substance P or CPA were prevented by the NK 1 receptor antagonist. CSE in the bladder was upregulated by substance P or CPA, and the NK 1 antagonist prevented the CPA-induced CSE upregulation. A CSE inhibitor, a T-type Ca 2+ channel blocker and gene silencing of Ca v 3.2 abolished the intravesical substance P-induced referred hyperalgesia. The intravesical substance P-induced pain in mice is useful as a model for nonulcerative BPS, and involves the activation of the NK 1 receptor/CSE/H 2 S/Ca v 3.2 cascade. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers.

    PubMed

    Terracciano, Daniela; Ferro, Matteo; Terreri, Sara; Lucarelli, Giuseppe; D'Elia, Carolina; Musi, Gennaro; de Cobelli, Ottavio; Mirone, Vincenzo; Cimmino, Amelia

    2017-06-01

    Several reports over the last 10 years provided evidence that long noncoding RNAs (lncRNAs) are often altered in bladder cancers. lncRNAs are longer than 200 nucleotides and function as important regulators of gene expression, interacting with the major pathways of cell growth, proliferation, differentiation, and survival. A large number of lncRNAs has oncogenic function and is more expressed in tumor compared with normal tissues. Their overexpression may be associated with tumor formation, progression, and metastasis in a variety of tumors including bladder cancer. Although lncRNAs have been shown to have critical regulatory roles in cancer biology, the biological functions and prognostic values in nonmuscle-invasive bladder cancer remain largely unknown. Nevertheless, a growing body of evidence suggests that several lncRNAs expression profiles in bladder malignancies are associated with poor prognosis, and they can be detected in biological fluids, such as urines. Here, we review current progress in the biology and the implication of lncRNAs associated with bladder cancer, and we discuss their potential use as diagnosis and prognosis biomarkers in bladder malignancies with a focus on their role in high-risk nonmuscle-invasive tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. [Continuous bladder irrigation following transurethral resection of the prostate (TURP)].

    PubMed

    Nojiri, Yoshikatsu; Okamura, Kikuo; Kinukawa, Tsuneo; Ozawa, Hideo; Saito, Shiro; Okumura, Kazuhiro; Terai, Akito; Takei, Mineo

    2007-09-01

    We investigated whether continuous bladder irrigation after Transurethral Resection of the Prostate (TURP) would prevent catheter obstruction by the clot. We analyzed data from 761 patients registered in "a multi-institutional study of TURP clinical pathway" sponsored by the Ministry of Health, Labor and Welfare between 2001 and 2003. The difference of clinical backgrounds of the cases, resected weight, operating time, risk of being feverish, risk of catheter obstruction and chance of postoperative Transurethral Fulguration (TUF) between each institution were investigated. The risk factor of catheter obstruction is characterized and the significance of continuous bladder irrigation is discussed. The incidence of catheter obstruction in the four institutions, in which 90% or more of patients underwent continuous bladder irrigation, was significantly lower than that in the three institutions, in which continuous bladder irrigation was performed in selected patients whose hematuria was severe (4.4% VS 12.9%, p<0.001). There was no difference in the frequency of either pyrexia or postoperative TUF. Logistic regression analysis showed that significant factors for catheter obstruction are continuous bladder irrigation, resected tissue weight and preoperative urinary infection. Routine continuous bladder irrigation achieved a lower incidence of catheter obstruction. However, we recommend that urologists should decide whether to perform routine continuous irrigation, considering the frequency of catheter obstruction, safety, labor and cost.

  2. Effects of ageing and streptozotocin–induced diabetes on connexin43 and P2 purinoceptor expression in the rat corpora cavernosa and urinary bladder

    PubMed Central

    Suadicani, Sylvia O.; Urban–Maldonado, Marcia; Tar, Moses T.; Melman, Arnold; Spray, David C.

    2012-01-01

    OBJECTIVE To investigate whether ageing and diabetes alter the expression of the gap junction protein connexin43 (Cx43) and of particular purinoceptor (P2R) subtypes in the corpus cavernosum and urinary bladder, and determine whether changes in expression of these proteins correlate with development of erectile and bladder dysfunction in diabetic and ageing rats. MATERIALS AND METHODS Erectile and bladder function of streptozotocin (STZ)-induced diabetic, insulin-treated and age-matched control Fischer-344 rats were evaluated 2, 4 and 8 months after diabetes induction by in vivo cystometry and cavernosometry. Corporal and bladder tissue were then isolated at each of these sample times and protein expression levels of Cx43 and of various P2R subtypes were determined by Western blotting. RESULTS In the corpora of control rats ageing was accompanied by a significant decrease in Cx43 and P2X1R, and increase in P2X7R expression. There was decreased Cx43 and increased P2Y4R expression in the ageing control rat bladder. There was a significant negative correlation between erectile capacity and P2X1R expression levels, and a positive correlation between bladder spontaneous activity and P2Y4R expression levels. There was already development of erectile dysfunction and bladder overactivity at 2 months after inducing diabetes, the earliest sample measured in the study. The development of these urogenital complications was accompanied by significant decreases in Cx43, P2Y2R, P2X4R and increase in P2X1R expression in the corpora, and by a doubling in Cx43 and P2Y2R, and significant increase in P2Y4R expression in the bladder. Changes in Cx43 and P2R expression were largely prevented by insulin therapy. CONCLUSION Ageing and diabetes mellitus markedly altered the expression of the gap junction protein Cx43 and of particular P2R subtypes in the rat penile corpora and urinary bladder. These changes in Cx43 and P2R expression provide the molecular substrate for altered gap junction and purinergic signalling in these tissues, and thus probably contribute to the early development of erectile dysfunction and higher detrusor activity in ageing and in diabetic rats. PMID:19154470

  3. Larger core size has superior technical and analytical accuracy in bladder tissue microarray.

    PubMed

    Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries

    2017-03-01

    The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.

  4. Wound repair in rat urinary bladder following electrocautery or holmium laser incision

    NASA Astrophysics Data System (ADS)

    Venzi, Giordano; Schmidlin, Franz R.; Gabbiani, Giulio; Delacretaz, Guy P.; Pittet, Brigitte; Leisinger, Hans-Juerg; Iselin, Christoph E.

    1999-06-01

    Woundhealing is a complex phenomenon which varies according the type of tissue but is also depending from the type of tissue injury. Electrocautery mainly induces coagulation necrosis while thermal damages induced by the Holmium laser primarily lead to tissue vaporization which may induce less tissue injury. The aim of this study was to evaluate the healing process of the Holmium laser induced lesions compared to electrocautery induced lesions in urothelial tissue by assessing the inflammatory response and myofibroblast behavior in sequential healing phases. A surgical wound was created in the urinary rat bladder of 32 rats either by electrocautery or by laser (N=16). The inflammatory response, the total lesion depth and the myofibroblast activity during woundhealing was then analyzed on a qualitative basis on days 0/2/4/8. The overall inflammatory response was comparable in both groups up to days two and four. However, at day eight less cellular inflammatory reaction and less myofibroblast activity was found in the specimen of lesions created by the Holmium laser. These results suggest that wound repair may be a less invasive process after Holmium laser than electrocautery.

  5. Hydrogels Derived from Central Nervous System Extracellular Matrix

    PubMed Central

    Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel

    2012-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935

  6. Inflammatory myofibroblastic bladder tumor in a patient with wolf-hirschhorn syndrome.

    PubMed

    Marte, Antonio; Indolfi, Paolo; Ficociello, Carmine; Russo, Daniela; Oreste, Matilde; Bottigliero, Gaetano; Gualdiero, Giovanna; Barone, Ciro; Vigliar, Elena; Indolfi, Cristiana; Casale, Fiorina

    2013-01-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm described in several tissues and organs including genitourinary system, lung, head, and neck. The etiology of IMT is contentious, and whether it is a postinflammatory process or a true neoplasm remains controversial. To our knowledge, we report the first reported case of IMT of urinary bladder in a pediatric patient with Wolf-Hirschhorn (WHS). We also review the literature about patients with associated neoplasia.

  7. [Traumatically caused prolapse of the vaginal mucosa and retroflexion of the bladder in the bitch].

    PubMed

    Arbeiter, K; Bucher, A

    1994-02-01

    Four years after having been heavily injured in the perineal region by a firearm the presented bitch showed dysuria and signs of intense irritation. Clinical and radiological examinations revealed the fact of a partial loss of the vaginal channel and supporting tissues, consequently leading to a retroflexion of the bladder into the extroverted part of the vagina. The bitch recovered completely after a plastic operation.

  8. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype.

    PubMed

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G

    2013-05-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.

  9. The expression of pigment epithelium-derived factor in bladder transitional cell carcinoma.

    PubMed

    Jang, Tae Jung; Kim, Sung Woo; Lee, Kyung Seop

    2012-06-01

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression.

  10. The Expression of Pigment Epithelium-Derived Factor in Bladder Transitional Cell Carcinoma

    PubMed Central

    Kim, Sung Woo; Lee, Kyung Seop

    2012-01-01

    Background Pigment epithelium-derived factor (PEDF) is an anti-angiogenic factor. The purpose of this study is to examine the involvement of PEDF in the angiogenesis and biological behavior of bladder transitional cell carcinoma (TCC). Methods We examined the expression of PEDF in 99 bladder TCCs and ten non-neoplastic tissues, and evaluated microvessel density (MVD). Results The positive immunoreactivity for PEDF was seen in normal urothelium in 60% (6/10) and TCC in 13% (13/99). The PEDF expression had a significant correlation with MVD, i.e., a low MVD in 42% (5/12), a middle MVD in 11% (8/76) and a high MVD 0% (0/11) of tumors. The PEDF expression was not significantly correlated with the differentiation and invasion of TCC, but the degree of MVD was significantly higher in both high grade TCC and the pT2 tumors. Conclusions The degree of PEDF expression is significantly higher in normal bladder urothelium than bladder TCC; it is inversely correlated with the angiogenesis; and it is not related to the differentiation and progression of TCC. It can therefore be concluded that bladder TCC would initially occur if there is a lack of the PEDF expression. PMID:23110012

  11. Effect of quercetin on tachykinin-induced plasma extravasation in rat urinary bladder.

    PubMed

    Wille, P R; Ribeiro-do-Valle, R M; Simões, C M; Gabilan, N H; Nicolau, M

    2001-08-01

    The effect of quercetin on substance P-induced plasma extravasation in rat urinary bladder and its modulation by endogenous peptidases in conscious rats was studied. Plasma protein extravasation (PE) was assayed by measurement of extravasated Evans blue dye (microg/g dry tissue). Intravenous injection of substance P (SP, 10 nmol/kg) significantly increased PE in the urinary bladder. PE evoked by SP was increased significantly by quercetin (20 mg/kg, p.o.) pretreatment in the urinary bladder (73.5 +/- 4.9 to 152.2 +/- 9.9). Pretreatment with captopril, an angiotensin-converting enzyme (ACE) inhibitor (10 nmol/kg, i.v.), or with phosphoramidon, a neutral endopeptidase (NEP) inhibitor (2.5 micromol/kg, i.v.) also potentiated the SP-induced PE in urinary bladder, 286.2 +/- 20.4 and 323.3 +/- 34.0, respectively. Quercetin did not show any effect on neurokinin-A (NKA, 10 nmol/kg, i.v.) -induced plasma extravasation. The present study demonstrates that quercetin potentiates the PE induced by substance P in the urinary bladder. These effects suggest that this flavonoid might cause inhibition of NEP and/or ACE. Copyright 2001 John Wiley & Sons, Ltd.

  12. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  13. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  14. Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold

    NASA Astrophysics Data System (ADS)

    Rickey, Frank A.; Elmore, David; Hillegonds, Darren; Badylak, Stephen; Record, Rae; Simmons-Byrd, Abby

    2000-10-01

    Small intestinal submucosa (SIS) is an unusual tissue, which shows great promise for the repair of damaged tissues in humans. When the SIS is used as a surgical implant, the porcine-derived material is not rejected by the host immune system, and in fact stimulates the constructive re-modeling of damaged tissue. In dogs, these SIS scaffolds have been used to grow new arteries, tendons, and urinary bladders. Moreover, the SIS scaffold tissue seems to disappear from the implant region after a few months. The fate of this SIS tissue is of considerable importance if it is to be used in human tissue repair. SIS is obtained from pigs. We have labeled the SIS in several pigs by intraveneous administration of 14C enriched proline from the age of three weeks until they reach market weight. The prepared SIS was then implanted in dogs as scaffolds for urinary bladder patches. During the remaining life of each dog, blood, urine and feces samples were collected on a regular schedule. AMS analyses of these specimens were performed to measure the elimination rate of the SIS. At different intervals, the dogs were sacrificed. Tissue samples were analyzed by AMS to determine the whole-body distribution of the labeled SIS.

  15. A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix.

    PubMed

    Consolo, F; Brizzola, S; Tremolada, G; Grieco, V; Riva, F; Acocella, F; Fiore, G B; Soncini, M

    2016-02-01

    A combined physical-chemical protocol for whole full-thickness bladder decellularization is proposed, based on organ cyclic distention through repeated infusion/withdrawal of the decellularization agents through the urethra. The dynamic decellularization was intended to enhance cell removal efficiency, facilitating the delivery of detergents within the inner layers of the tissue and the removal of cell debris. The use of mild chemical detergents (hypotonic solution and non-ionic detergent) was employed to limit adverse effects upon matrix 3D ultrastructure. Inspection of the presence of residual DNA and RNA was carried out on decellularized matrices to verify effective cell removal. Histological investigation was focused on assessing the retention of adequate structural and functional components that regulate the biomechanical behaviour of the acellular tissue. Biomechanical properties were evaluated through uniaxial tensile loading tests of tissue strips and through ex vivo filling cystometry to evaluate the whole-organ mechanical response to a physiological-like loading state. According to our results, a dynamic decellularization protocol of 17 h duration with a 5 ml/min detergent infusion flow rate revealed higher DNA removal efficiency than standard static decellularization, resulting in residual DNA content < 50 ng/mg dry tissue weight. Furthermore, the collagen network and elastic fibres distribution were preserved in the acellular ECM, which exhibited suitable biomechanical properties in the perspective of its future use as an implant for bladder augmentation. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Effects of low energy shock wave therapy on inflammatory moleculars, bladder pain, and bladder function in a rat cystitis model.

    PubMed

    Wang, Hung-Jen; Lee, Wei-Chia; Tyagi, Pradeep; Huang, Chao-Cheng; Chuang, Yao-Chi

    2017-08-01

    Low energy shock wave (LESW) is known to facilitate tissue regeneration with analgesic and anti-inflammatory effects. We examined the effects of LESW on the expression of inflammatory molecules, pain behavior, and bladder function in a rat cystitis model. Control and experimental animals were injected with saline or cyclophosphamide (CYP; 75 mg/kg intraperitoneally) on day 1 and 4. After lower midline incision, the bladders were exposed to LESW (300 pulses, 0.12 mJ/mm 2 ) or sham operation on day 2. In study 1 (N = 12, 4 for each group), the nociceptive effects of CYP were evaluated for 30 min by behavioral assessment on day 4 one hour after CYP injection. In study 2 (N = 21, 7 for each group), continuous cystometry (CMG) was performed on day 8. The bladder was harvested after behavioral assessment or CMG for histology and Western blotting. CYP-induced upregulation of COX2 and IL6 expression, caused pain behavior (eye closing and hypolocomotion), and bladder inflammation was noted on days 4 and 8 along with bladder hyperactivity. LESW treatment reduced pain behavior and downregulated the NGF expression (33.3%, P < 0.05) on day 4 and IL6 (40.9%, P < 0.05). LESW treatment suppressed bladder overactivity (intercontraction interval 77.8% increase, P < 0.05) by decreasing inflammation and COX2 (38.6%, P < 0.05) expression and NGF expression (25.2%, P = 0.0812). CYP-induced bladder pain, inflammation, and overactivity involves activation of IL6, NGF, and COX2 expression. These changes are suppressed by LESW, indicating it as a potential candidate for relieving bladder inflammatory conditions and overactivity. © 2016 Wiley Periodicals, Inc.

  17. Dose evaluation of organs at risk (OAR) cervical cancer using dose volume histogram (DVH) on brachytherapy

    NASA Astrophysics Data System (ADS)

    Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan

    2017-05-01

    Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.

  18. Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CT-assisted techniques.

    PubMed

    Kapp, K S; Stuecklschweiger, G F; Kapp, D S; Hackl, A G

    1992-07-01

    A total of 720 192Ir high-dose-rate (HDR) applications in 331 patients with gynecological tumors were analyzed to evaluate the dose to normal tissues from brachytherapy. Based on the calculations of bladder base, bladder neck, and rectal doses derived from orthogonal films the planned tumor dose or fractionation was altered in 20.4% of intracavitary placements (ICP) for cervix carcinoma and 9.2% of ICP for treatment of the vaginal vault. In 13.8% of intracervical and 8.1% of intravaginal treatments calculated doses to both the bladder and rectum were greater than or equal to 140% of the initially planned dose fraction. Doses at the bladder base were significantly higher than at the bladder neck (p less than 0.001). In 17.5% of ICP the dose to the bladder base was at least twice as high as to the bladder neck. The ratio of bladder base dose to the bladder neck was 1.5 (+/- 1.19 SD) for intracervical and 1.46 (+/- 1.14 SD) for intravaginal applications. The comparison of calculated doses from orthogonal films with in-vivo readings showed a good correlation of rectal doses with a correlation coefficient factor of 0.9556. CT-assisted dosimetry, however, revealed that the maximum doses to bladder and rectum were generally higher than those obtained from films with ratios of 1-1.7 (average: 1.44) for the bladder neck, 1-5.4 (average: 2.42) for the bladder base, and 1.1-2.7 (average: 1.37) for the rectum. When doses to the specified reference points of bladder neck and rectum from orthogonal film dosimetry were compared with the corresponding points on CT scans, similar values were obtained for both methods with a maximum deviation of +/- 10%. Despite the determination of multiple reference points our study revealed that this information was inadequate to predict doses to the entire rectum and bladder. If conventional methods are used for dosimetry it is recommended that doses to the bladder base should be routinely calculated, since single point measurements at the bladder neck seriously underestimate the dose to the bladder. Also the rectal dose should be determined at several points over the length of the implant due to the wide range of anatomic variations possible.

  19. Intravesical dosimetry applied to laser positioning in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Beslon, Guillaume; Ambroise, Philippe; Heit, Bernard; Bremont, Jacques; Guillemin, Francois H.

    1996-12-01

    Superficial bladder tumor is a challenging indication for photodynamic therapy. Due to lack of specificity of the sensitizers, the light has to be precisely monitored over the bladder surface, illuminated by an isotropic source, to restrict the cytotoxic effect to the tumor without affecting the normal epithelium. In order to assist the surgeon while processing the therapy, an urothelium illumination model is proposed. It is computed through a spline interpolation, on the basis of 12 intravesical sensors. This paper presents the overall system architecture and details the modelization and visualization processes. With this model, the surgeon is able to master the source displacement inside the bladder and to homogenize the tissue exposure.

  20. Comparison of NaCl-induced response across the tongue epithelium to that across other epithelia in the frog.

    PubMed

    Soeda, H; Sakudo, F

    1990-01-01

    Electrical properties of the frog tongue epithelium were compared to those of skin and bladder, which have active sodium transport. During perfusion with Ringer solution, the potential difference across the tongue epithelium was negligible, unlike those of the skin and bladder. NaCl stimulation of the tongue epithelium produced a response with a polarity opposite to that of the skin and bladder. The response profile of the tongue epithelium except for the polarity resembled that of other tissues. In conclusion, the NaCl response of the tongue epithelium is independent of active sodium transport and instead occurs by passive transport, which may influence taste reception.

  1. Rapamycin attenuates bladder hypertrophy during long-term outlet obstruction in vivo: tissue, matrix and mechanistic insights.

    PubMed

    Schröder, Annette; Kirwan, Tyler P; Jiang, Jia-Xin; Aitken, Karen J; Bägli, Darius J

    2013-06-01

    Previous molecular studies showed that the mTOR inhibitor rapamycin prevents bladder smooth muscle hypertrophy in vitro. We investigated the effect of rapamycin treatment in vivo on bladder smooth muscle hypertrophy in a rat model of partial bladder outlet obstruction. A total of 48 female Sprague-Dawley® rats underwent partial bladder outlet obstruction and received daily subcutaneous injections of rapamycin (1 mg/kg) or vehicle commencing 2 weeks postoperatively. A total of 36 rats underwent sham surgery and received rapamycin or vehicle. Rats were sacrificed 3, 6 and 12 weeks after surgery. Before sacrifice, voiding was observed in a metabolic cage for 24 hours. Bladder-to-body weight in gm bladder weight per kg body weight and post-void residual urine were assessed. We evaluated Col1a1, Col3a1, Eln and Mmp7 mRNA expression and histology. Two-factor ANOVA and the post hoc t test were applied. Bladder outlet obstruction caused a significant increase in bladder weight in all obstructed groups. Three weeks postoperatively (1 week of treatment) there was no difference in the bladder-to-body weight ratio in the obstructed group. However, at 6 and 12 weeks (4 and 10 weeks of treatment, respectively) the bladder-to-body weight ratio of rats with obstruction plus rapamycin was significantly lower than that of rats with obstruction plus vehicle. Post-void residual urine volume after 6 and 12 weeks of obstruction was lower in obstructed rats with rapamycin compared to that in obstructed rats with vehicle. Rapamycin decreased the obstruction induced expression of Col1a1, Col3a1, Eln and Mmp7. Rapamycin prevents mechanically induced hypertrophy in cardiovascular smooth muscle. In vivo mTOR inhibition may attenuate obstruction induced detrusor hypertrophy and help preserve bladder function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. A Human Tissue Culture Cell Line from a Transitional Cell Tumour of the Urinary Bladder: Growth, Chromosome Pattern and Ultrastructure

    PubMed Central

    Rigby, Carolyn C.; Franks, L. M.

    1970-01-01

    Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601

  3. Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer

    PubMed Central

    Veeranki, Omkara L.; Bhattacharya, Arup; Tang, Li; Marshall, James R.; Zhang, Yuesheng

    2015-01-01

    Approximately 80% of human bladder cancers (BC) are non-muscle invasive when first diagnosed and are usually treated by transurethral tumor resection. But 50–80% of patients experience cancer recurrence. Agents for prevention of primary BC have yet to be identified. Existing prophylactics against BC recurrence, e.g., Bacillus Calmette-Guerin (BCG), have limited efficacy and utility; they engender significant side effects and require urethral catheterization. Many cruciferous vegetables, rich sources of isothiocyanates (ITCs), are commonly consumed by humans. Many ITCs possess promising chemopreventive activities against BC and its recurrence. Moreover, orally ingested ITCs are selectively delivered to bladder via urinary excretion. This review is focused on urinary delivery of ITCs to the bladder, their cellular uptake, their chemopreventive activities in preclinical and epidemiological studies that are particularly relevant to prevention of BC recurrence and progression, and their chemopreventive mechanisms in BC cells and tissues. PMID:26273545

  4. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Tadalafil attenuates hypotonicity-induced Ca2+ influx via TRPV2 and TRPV4 in primary rat bladder urothelial cell cultures.

    PubMed

    Dong, Xiao; Nakagomi, Hiroshi; Miyamoto, Tatsuya; Ihara, Tatsuya; Kira, Satoru; Sawada, Norifumi; Mitsui, Takahiko; Takeda, Masayuki

    2018-03-22

    To investigate the localization of phosphodiesterase 5 (PDE5) and the molecular mechanism underlying the effect of the PDE5 inhibitor tadalafil in signal transduction in the bladder urothelium. PDE5 expression in rat bladder tissues and cultured primary rat bladder urothelial cells was evaluated using immunochemistry and western blot assays. Ca 2+ influx in cells exposed to isotonic solution, hypotonic solution, a selective transient receptor potential vanilloid 2 (TRPV2) channel agonist (cannabidiol), a selective TRPV4 channel agonist (GSK1016790A), a TRP cation channel melastatin 7 (TRPM7) channel agonist (PIP2), or a purinergic receptor agonist (ATP) in the presence or absence of 10 µM tadalafil was evaluated using calcium imaging techniques. We also evaluated stretch-induced changes in ATP concentration in the mouse bladder in the presence or absence of 100 µM tadalafil. Immunochemistry and western blot analyses demonstrated that PDE5 is abundantly expressed in the bladder urothelium and in primary rat urothelial cells. Ca 2+ influx induced by hypotonic stimulation, GSK1016790A, or cannabidiol was significantly inhibited by tadalafil, whereas ATP-induced Ca 2+ influx was unaffected by tadalafil. PIP2 did not induce Ca2+ influx. ATP release in tadalafil-pretreated bladders significantly decreased compared to control bladders. Tadalafil attenuates Ca 2+ influx via TRPV4 and TRPV2, and inhibits ATP release in the bladder urothelium. These findings indicate that tadalafil functions as an inhibitor of urothelial signal transduction. © 2018 Wiley Periodicals, Inc.

  6. Physiological relevance of LL-37 induced bladder inflammation and mast cells.

    PubMed

    Oottamasathien, Siam; Jia, Wanjian; Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D

    2013-10-01

    We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm(2). Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Physiological Relevance of LL-37 Induced Bladder Inflammation and Mast Cells

    PubMed Central

    Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A. Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D.

    2014-01-01

    Purpose We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. Materials and Methods To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm2. Results Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Conclusions Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. PMID:23313203

  8. RUNX3 methylation in normal surrounding urothelium of patients with non-muscle-invasive bladder cancer: potential role in the prediction of tumor progression.

    PubMed

    Jeong, P; Min, B D; Ha, Y S; Song, P H; Kim, I Y; Ryu, K H; Kim, J H; Yun, S J; Kim, W J

    2012-11-01

    Previously, we reported a causal relationship between RUNX3 methylation and bladder tumor development. Thus, in order to clarify its role in tumorigenesis, this study aims to identify the function of RUNX3 methylation in normal adjacent urothelium of patients with non-muscle invasive bladder cancer (NMIBC). Tumor tissue and donor-matched normal adjacent tissue from 55 patients who underwent transurethral resection (TUR) were selected for the study, and RUNX3 promoter methylation was assessed using methylation-specific polymerase chain reaction (MS-PCR). RUNX3 promoter methylation occurred more frequently in tumor samples than in histologically normal urothelium in patients with NMIBC (P = 0.02). The methylation rates for the RUNX3 promoter in normal adjacent urothelium and tumor tissue were 47% and 69%, respectively. Interestingly, RUNX3 methylation in normal adjacent urothelium was associated with tumor number (P = 0.022) and progression (P = 0.035). Kaplan-Meier estimates revealed that RUNX3 methylation in normal urothelium showed a significant association with time to progression (P = 0.017) in NMIBC patients. Stratifying the patients into 'both methylation', 'one methylation' and 'no methylation' groups for tumors and normal urothelium revealed that no progression occurred in the 'no methylation' group during follow-up. Multivariate Cox regression analysis demonstrated that RUNX3 methylation in normal urothelium [hazards ratio (HR): 5.692, P = 0.042] was an independent predictor of progression. RUNX3 methylation was associated with transition from normal urothelium to bladder tumor. More importantly, RUNX3 methylation in normal adjacent urothelium may predict progression in NMIBC patients who have undergone TUR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  10. Prostate stem cell antigen is overexpressed in human transitional cell carcinoma.

    PubMed

    Amara, N; Palapattu, G S; Schrage, M; Gu, Z; Thomas, G V; Dorey, F; Said, J; Reiter, R E

    2001-06-15

    Prostate stem cell antigen (PSCA), a homologue of the Ly-6/Thy-1 family of cell surface antigens, is expressed by a majority of human prostate cancers and is a promising target for prostate cancer immunotherapy. In addition to its expression in normal and malignant prostate, we recently reported that PSCA is expressed at low levels in the transitional epithelium of normal bladder. In the present study, we compared the expression of PSCA in normal and malignant urothelial tissues to assess its potential as an immunotherapeutic target in transitional cell carcinoma (TCC). Immunohistochemical analysis of PSCA protein expression was performed on tissue sections from 32 normal bladder specimens, as well as 11 cases of low-grade transitional cell dysplasia, 21 cases of carcinoma in situ (CIS), 38 superficial transitional cell tumors (STCC, stages T(a)-T(1)), 65 muscle-invasive TCCs (ITCCs, stages T(2)-T(4)), and 7 bladder cancer metastases. The level of PSCA protein expression was scored semiquantitatively by assessing both the intensity and frequency (i.e., percentage of positive tumor cells) of staining. We also examined PSCA mRNA expression in a representative sample of normal and malignant human transitional cell tissues. In normal bladder, PSCA immunostaining was weak and confined almost exclusively to the superficial umbrella cell layer. Staining in CIS and STCC was more intense and uniform than that seen in normal bladder epithelium (P < 0.001), with staining detected in 21 (100%) of 21 cases of CIS and 37 (97%) of 38 superficial tumors. PSCA protein was also detected in 42 (65%) of 65 of muscle-invasive and 4 (57%) of 7 metastatic cancers, with the highest levels of PSCA expression (i.e., moderate-strong staining in >50% of tumor cells) seen in 32% of invasive and 43% of metastatic samples. Higher levels of PSCA expression correlated with increasing tumor grade for both STCCs and ITCCs (P < 0.001). Northern blot analysis confirmed the immunohistochemical data, showing a dramatic increase in PSCA mRNA expression in two of five muscle-invasive transitional cell tumors when compared with normal samples. Confocal microscopy demonstrated that PSCA expression in TCC is confined to the cell surface. These data demonstrate that PSCA is overexpressed in a majority of human TCCs, particularly CIS and superficial tumors, and may be a useful target for bladder cancer diagnosis and therapy.

  11. Fluorescein angiography of the bladder: technique and relevance to bladder cancer and interstitial cystitis patients.

    PubMed

    Zimmern, P E; Laub, D; Leach, G E

    1995-07-01

    Fluorescein angiography has been used in the study of bleeding vessels, neovascularity, tumors and ischemic tissues in a variety of disorders. This pilot study was designed to evaluate the feasibility, safety and relevance of this interesting technology for the evaluation of bladder wall vessels in patients with interstitial cystitis and bladder cancer. Five patients with National Institutes of Health defined interstitial cystitis symptoms and 10 with bladder cancer were studied during cytoscopy while they were under general anesthesia. A yellow-green barrier filter (520 nm.) was placed over the cystoscope eyepiece and a blue exciter filter (465 nm.) was attached to the light source. Patients received a 5 ml. bolus of 10% fluorescein intravenously. After hydrodistension, glomerulations in interstitial cystitis patients were more prominent with fluorescein angiography and occurred in the venule phase. Areas of papillary transitional cell tumor and carcinoma in situ developed a brilliant yellow-green fluorescence. Adjacent normal urothelium was nonfluorescent and provided a contrasting dark background facilitating the detection of all lesions. No allergic reaction or other adverse effect related to the fluorescein injection was observed. These unique observations in a limited number of patients suggest that fluorescein angiography of the bladder is a safe and simple procedure. This preliminary report underscores the relevance of fluorescein angiography in the detection of bladder tumor and offers a new approach to the evaluation of bladder wall vessels in interstitial cystitis patients.

  12. Comparative study of the organisation and phenotypes of bladder interstitial cells in human, mouse and rat.

    PubMed

    Gevaert, Thomas; Neuhaus, Jochen; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Der Aa, Frank Van; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Pintelon, Isabel; De Ridder, Dirk

    2017-12-01

    With most research on interstitial cells (IC) in the bladder being conducted on animal models, it remains unclear whether all structural and functional data on IC from animal models can be translated to the human context. This prompted us to compare the structural and immunohistochemical properties of IC in bladders from mouse, rat and human. Tissue samples were obtained from the bladder dome and subsequently processed for immunohistochemistry and electron microscopy. The ultrastructural properties of IC were compared by means of electron microscopy and IC were additionally characterized with single/double immunohistochemistry/immunofluorescence. Our results reveal a similar organization of the IC network in the upper lamina propria (ULP), the deep lamina propria (DLP) and the detrusor muscle in human, rat and mouse bladders. Furthermore, despite several similarities in IC phenotypes, we also found several obvious inter-species differences in IC, especially in the ULP. Most remarkably in this respect, ULP IC in human bladder predominantly displayed a myoid phenotype with abundant presence of contractile micro-filaments, while those in rat and mouse bladders showed a fibroblast phenotype. In conclusion, the organization of ULP IC, DLP IC and detrusor IC is comparable in human, rat and mouse bladders, although several obvious inter-species differences in IC phenotypes were found. The present data show that translating research data on IC in laboratory animals to the human setting should be carried out with caution.

  13. Toll-like receptor 6 and connective tissue growth factor are significantly upregulated in mitomycin-C-treated urothelial carcinoma cells under hydrostatic pressure stimulation.

    PubMed

    Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Chen, Wen-Yih; Ruaan, Ruoh-Chyu; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng

    2014-06-01

    Urothelial carcinoma (UC) is the most common histologic subtype of bladder cancer. The administration of mitomycin C (MMC) into the bladder after transurethral resection of the bladder tumor (TURBT) is a common treatment strategy for preventing recurrence after surgery. We previously applied hydrostatic pressure combined with MMC in UC cells and found that hydrostatic pressure synergistically enhanced MMC-induced UC cell apoptosis through the Fas/FasL pathways. To understand the alteration of gene expressions in UC cells caused by hydrostatic pressure and MMC, oligonucleotide microarray was used to explore all the differentially expressed genes. After bioinformatics analysis and gene annotation, Toll-like receptor 6 (TLR6) and connective tissue growth factor (CTGF) showed significant upregulation among altered genes, and their gene and protein expressions with each treatment of UC cells were validated by quantitative real-time PCR and immunoblotting. Under treatment with MMC and hydrostatic pressure, UC cells showed increasing apoptosis using extrinsic pathways through upregulation of TLR6 and CTGF.

  14. Inflammatory Myofibroblastic Bladder Tumor in a Patient with Wolf-Hirschhorn Syndrome

    PubMed Central

    Marte, Antonio; Indolfi, Paolo; Ficociello, Carmine; Oreste, Matilde; Bottigliero, Gaetano; Gualdiero, Giovanna; Barone, Ciro; Vigliar, Elena; Indolfi, Cristiana; Casale, Fiorina

    2013-01-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm described in several tissues and organs including genitourinary system, lung, head, and neck. The etiology of IMT is contentious, and whether it is a postinflammatory process or a true neoplasm remains controversial. To our knowledge, we report the first reported case of IMT of urinary bladder in a pediatric patient with Wolf-Hirschhorn (WHS). We also review the literature about patients with associated neoplasia. PMID:24024066

  15. Quantitative diagnosis of bladder cancer by morphometric analysis of HE images

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Nebylitsa, Samantha V.; Mukherjee, Sushmita; Jain, Manu

    2015-02-01

    In clinical practice, histopathological analysis of biopsied tissue is the main method for bladder cancer diagnosis and prognosis. The diagnosis is performed by a pathologist based on the morphological features in the image of a hematoxylin and eosin (HE) stained tissue sample. This manuscript proposes algorithms to perform morphometric analysis on the HE images, quantify the features in the images, and discriminate bladder cancers with different grades, i.e. high grade and low grade. The nuclei are separated from the background and other types of cells such as red blood cells (RBCs) and immune cells using manual outlining, color deconvolution and image segmentation. A mask of nuclei is generated for each image for quantitative morphometric analysis. The features of the nuclei in the mask image including size, shape, orientation, and their spatial distributions are measured. To quantify local clustering and alignment of nuclei, we propose a 1-nearest-neighbor (1-NN) algorithm which measures nearest neighbor distance and nearest neighbor parallelism. The global distributions of the features are measured using statistics of the proposed parameters. A linear support vector machine (SVM) algorithm is used to classify the high grade and low grade bladder cancers. The results show using a particular group of nuclei such as large ones, and combining multiple parameters can achieve better discrimination. This study shows the proposed approach can potentially help expedite pathological diagnosis by triaging potentially suspicious biopsies.

  16. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    PubMed

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Mossberg, Ann-Kristin; Wullt, Björn; Gustafsson, Lotta; Månsson, Wiking; Ljunggren, Eva; Svanborg, Catharina

    2007-09-15

    We studied if bladder cancers respond to HAMLET (human alpha-lactalbumin made lethal to tumor cells) to establish if intravesical HAMLET application might be used to selectively remove cancer cells in vivo. Patients with nonmuscle invasive transitional cell carcinomas were included. Nine patients received 5 daily intravesical instillations of HAMLET (25 mg/ml) during the week before scheduled surgery. HAMLET stimulated a rapid increase in the shedding of tumor cells into the urine, daily, during the 5 days of instillation. The effect was specific for HAMLET, as intravesical instillation of NaCl, PBS or native alpha-lactalbumin did not increase cell shedding. Most of the shed cells were dead and an apoptotic response was detected in 6 of 9 patients, using the TUNEL assay. At surgery, morphological changes in the exophytic tumors were documented by endoscopic photography and a reduction in tumor size or change in tumor character was detected in 8 of 9 patients. TUNEL staining was positive in biopsies from the remaining tumor in 4 patients but adjacent healthy tissue showed no evidence of apoptosis and no toxic response. The results suggest that HAMLET exerts a direct and selective effect on bladder cancer tissue in vivo and that local HAMLET administration might be of value in the future treatment of bladder cancers. (c) 2007 Wiley-Liss, Inc.

  18. Quality of information on the internet related to bladder pain syndrome: a systematic review of the evidence.

    PubMed

    Tirlapur, S A; Leiu, C; Khan, K S

    2013-08-01

    Bladder pain syndrome (BPS) has an impact on quality of life and available treatments often only provide temporary symptomatic relief. The information provided by websites can be valuable for patient education and management. The hypothesis was to assess medical information available on the internet related to bladder pain syndrome in terms of accuracy, credibility, readability and quality. A search was performed in the meta-search engine Copernic Agent, using the search terms "bladder pain syndrome, interstitial cystitis, painful bladder syndrome and pelvic pain", which simultaneously captured websites from a range of engines. Websites in the English language that were open-access were included. The four quality assessments used were: credibility using a ten-point scale, accuracy based on the American Urological Association guidelines, quality using the DISCERN questionnaire and readability using the Flesch Reading Ease Score. Inter-rater agreement was tested by intra-class coefficient (ICC). Eighteen suitable websites were identified; 7 (39%) were specialist or specific to BPS. The combined mean scores for accuracy, quality, credibility and readability ranged from 83 to 144 for specialist websites and 76 to 137 for non-specialist ones, with a maximum possible score of 208. There was good inter-observer agreement for the assessments performed with an ICC ranging from 0.80 for DISCERN to 0.53 for readability. Specialist websites had higher quality scores (median difference 10, p = 0.07) and readability scores (median difference 5.4, p = 0.05) compared with non-specialist websites whereas credibility and accuracy scores were no different. We found four websites that fulfilled our criteria for good quality information.

  19. Temperature controlled CO(2) laser welding of soft tissues: urinary bladder welding in different animal models (rats, rabbits, and cats).

    PubMed

    Lobel, B; Eyal, O; Kariv, N; Katzir, A

    2000-01-01

    Laser welding of tissues is a method of closure of surgical incisions that, in principle, may have advantages over conventional closure methods. It is a noncontact technique that introduces no foreign body, the closure is continuous and watertight, and the procedure is faster and requires less skill to master. However, in practice, there have been difficulties in obtaining strong and reliable welding. We assumed that the quality of the weld depends on the ability to monitor and control the surface temperature of the welded zone during the procedure. Our objective was to develop a "smart" fiberoptic laser system for controlled temperature welding. We have developed a welding system based on a CO(2) laser and on infrared transmitting AgClBr fibers. This fiberoptic system plays a double role: transmitting laser power for tissue heating and noncontact (radiometric) temperature monitoring and control. The "true" temperature of the heated tissue was determined by using an improved calibration method. We carried out long-studies of CO(2) laser welding of urinary bladders in various animal models. Cystotomies were performed on the animals, and complete closure of the bladder was obtained with a surface temperature of 55 +/- 5 degrees C at the welding site. In early experiments on 31 rats, the success rate was 73%. In later experiments with 10 rabbits and 3 cats, there was an 80% and a 100% success rate, respectively. The success rate in these preliminary experiments and the quality of the weld, as determined histologically, demonstrate that temperature controlled CO(2) laser welding can produce effective welding of tissues. The fiberoptic system can be adapted for endoscopic laser welding. Copyright 2000 Wiley-Liss, Inc.

  20. DNA sequences and proteic antigens of H. pylori in cholecystic bile and tissue of patients with gallstones.

    PubMed

    Neri, V; Margiotta, M; de Francesco, V; Ambrosi, A; Valle, N Della; Fersini, A; Tartaglia, N; Minenna, M F; Ricciardelli, C; Giorgio, F; Panella, C; Ierardi, E

    2005-10-15

    Although Helicobacter pylori DNA sequences have been detected in cholecystic bile and tissue of patients with gallstones, controversial results are reported from different geographic areas. To detect H. pylori in cholecystic bile and tissue of patients with gallstones from a previously uninvestigated geographic area, southern Italy. Detection included both the bacterial DNA and the specific antigen (H. pylori stool antigen) identified in the stools of infected patients for diagnostic purposes. The study enclosed 33 consecutive patients undergoing laparoscopic cholecystectomy for gallstones. DNA sequences of H. pylori were detected by polymerase chain reaction in both cholecystic bile and tissue homogenate. Moreover, we assayed H.pylori stool antigen on gall-bladder cytosolic and biliary proteins after their extraction. Bacterial presence in the stomach was assessed by urea breath test in all patients and Deltadelta13CPDB value assumed as marker of intragastric load. Fisher's exact probability and Student's t-tests were used for statistical analysis. DNA sequences of H. pylori in bile were found in 51.5% and significantly correlated with its presence in cholecystic tissue homogenate (P<0.005), H. pylori stool antigen in gall-bladder (P=0.0013) and bile (P=0.04) proteins, gastric infection (P<0.01) and intragastric bacterial load (P<0.001). No correlation was found, however, with sex and age of the patients. Our prevalence value of bacterial DNA in bile and gall-bladder of patients with gallstones agreed with that of the only other Italian study. The simultaneous presence of both bacterial DNA and proteic antigen suggests that the same prototype of bacterium could be located at both intestinal and cholecystic level and, therefore, the intestine represents the source of biliary contagion.

  1. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer

    PubMed Central

    Lazzarini, Raffaella; Gesuita, Rosaria; Guerra, Emanuela; Tossetta, Giovanni; Castellucci, Clara; Giannubilo, Stefano Raffaele; Procopio, Antonio; Alberti, Saverio; Mazzucchelli, Roberta

    2017-01-01

    Human trophoblast cell surface antigen 2 (Trop-2) is a 40-kDa transmembrane glycoprotein that was first identified as a marker of human trophoblast cells. Trop-2 acts on cell proliferation, adhesion, and migration by activating a number of intracellular signalling pathways. Elevated Trop-2 expression has been demonstrated in several types of cancer and correlated with aggressiveness and poor prognosis. Since no data are available on Trop-2 in bladder cancer (BC), the purpose of the study was to determine its levels in tissue specimens from normal individuals and patients with BC at different stages. Moreover, since according to recent evidence Trop-2 is a miR-125b target, miR-125b expression was also assessed in tissue specimens. Finally, the effect of the Trop-2/miR-125b axis on the proliferation and migration of BC cells was evaluated in vitro. The Trop-2/miR-125b axis was seen to be differentially expressed in normal urothelium, non-invasive BC and invasive BC tissue. Significant miR-125b down-regulation was associated with a significant increase in Trop-2 protein levels in BC tissue and correlated with disease severity. In vitro analysis confirmed the role of miR-125b in down-modulation of Trop-2 protein levels and showed that Trop-2/miR-125b axis affects cellular proliferation in bladder tissue. In conclusion, our findings highlight a role for the Trop-2/miR-125b axis in BC progression and suggest Trop-2 and miR-125b as diagnostic/prognostic marker candidates as well as druggable targets for innovative therapeutic approaches. PMID:28938585

  2. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions

    PubMed Central

    Sui, Guiping; Fry, Chris H.; Montgomery, Bruce; Roberts, Max; Wu, Rui

    2013-01-01

    The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca2+ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M2-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M2-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca2+ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies. PMID:24285497

  3. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions.

    PubMed

    Sui, Guiping; Fry, Chris H; Montgomery, Bruce; Roberts, Max; Wu, Rui; Wu, Changhao

    2014-02-01

    The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca²⁺ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M₂-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M₂-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca²⁺ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies.

  4. Mixed metazoan and bacterial infection of the gas bladder of the lined seahorse-a case report.

    PubMed

    Anderson, Paul A; Petty, Barbara D

    2013-03-01

    Five wild-caught Lined Seahorses Hippocampus erectus from an aquarium system presented with altered buoyancy and distended upper trunks. Radiography of one specimen revealed a reduced air volume in the gas bladder. Pneumocystocentesis revealed a brown exudate of numerous leukocytes, parasite ova, and Gram- and acid-fast-positive bacilli under wet mounts and stains. Necropsies revealed enlarged, friable kidneys and distended gas bladders containing copious purulent exudate, necrotic tissue, and adult digeneans Dictysarca virens. Bacterial isolates from exudate cultures grown on Lowenstein-Jensen medium were identified as Gordonia sp. and Mycobacterium poriferae by high-performance liquid chromatography and 16S ribosomal DNA sequencing. Histopathology demonstrated a histiocytic response in kidney and gas bladder exudate, inflammation of the gas bladder wall, and infection of the gas bladder lumen with parasite ova and acid-fast-positive and Gomori's methenamine silver-positive bacilli. Praziquantel is prescribed for digenean infections but dissolves incompletely in seawater and is toxic to this host. Eradication of intermediate host vectors is a management option. Treatment of Gordonia infection has not been addressed in nonhuman animals, and there is no known effective treatment for Mycobacterium spp. infection in fishes. This is the first case report of digenean infection of the gas bladder in a syngnathid, Gordonia sp. infection in a nonhuman animal, and M. poriferae infection in a fish.

  5. Reduced glucocorticoid receptor expression predicts bladder tumor recurrence and progression.

    PubMed

    Ishiguro, Hitoshi; Kawahara, Takashi; Zheng, Yichun; Netto, George J; Miyamoto, Hiroshi

    2014-08-01

    To assess the levels of glucocorticoid receptor (GR) expression in bladder tumors because the status and its prognostic value remain largely unknown. We immunohistochemically stained for GR in bladder tumor and matched non-neoplastic bladder tissue specimens. Overall, GR was positive in 129 (87%) of 149 urothelial tumors, which was significantly (P=.026) lower than in non-neoplastic urothelium (90 [96%] of 94). Forty-two (79%) of 53 low-grade tumors vs 45 (47%) of 96 high-grade carcinomas (P<.001) and 61 (73%) of 84 non-muscle-invasive (NMI) tumors vs 26 (40%) of 65 muscle-invasive (MI) carcinomas (P<.001) were moderately to strongly immunoreactive for GR. Kaplan-Meier and log-rank tests revealed that loss or weak positivity of GR significantly or marginally correlated with recurrence of NMI tumors (P=.025), progression of MI tumors (P=.082), and cancer-specific survival of MI tumors (P=.067). Multivariate analysis identified low GR expression as a strong predictor for recurrence of NMI tumors (P=.034). GR expression was downregulated in bladder tumors compared with nonneoplastic bladder tumors and in high-grade/MI tumors compared with low-grade/NMI tumors. Decreased expression of GR, as an independent prognosticator, predicted recurrence of NMI tumors. These results support experimental evidence suggesting an inhibitory role of GR signals in bladder cancer outgrowth. Copyright© by the American Society for Clinical Pathology.

  6. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype

    PubMed Central

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D.; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G.

    2013-01-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.—Kanasaki, K., Yu, W., von Bodungen, M., Larigakis, J. D., Kanasaki, M., Ayala de la Pena, F., Kalluri, R., Hill, W.G. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. PMID:23395910

  7. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity.

    PubMed

    Svalø, Julie; Nordling, Jørgen; Bouchelouche, Kirsten; Andersson, Karl-Erik; Korstanje, Cees; Bouchelouche, Pierre

    2013-01-15

    β(3)-Adrenoceptors are major players in detrusor relaxation and have been suggested as a new putative target for the treatment of overactive bladder syndrome. We determined the effects of mirabegron (YM178), a novel β(3)-adrenoceptor agonist, on carbachol-induced tone in isolated human detrusor preparations from patients with bladder outflow obstruction (BOO) with and without detrusor overactivity (DO), and from patients with normal bladder function. We compared the effects to those of isoprenaline, a non-selective β-adrenoceptor agonist. Detrusor specimens were obtained from patients with benign prostatic hyperplasia undergoing cystoscopy and from patients undergoing radical prostatectomy/cystectomy (in total 33 donors). Detrusor contractility was evaluated by organ bath studies and strips were incubated with carbachol (1μM) to induce and enhance tension. Both mirabegron and isoprenaline reduced carbachol-induced tone in tissues from all groups. Isoprenaline decreased tension with higher potency than mirabegron in normal, BOO and BOO+DO detrusor strips with pIC(50) values of 7.49 ± 0.16 vs. 6.23 ± 0.26 (P=0.0002), 6.89 ± 0.34 vs. 6.04 ± 0.31 (P=0.01), and 6.57 ± 0.20 vs. 5.41 ± 0.08 (P<0.0001, n=4), respectively. The maximal relaxant effect of isoprenaline and mirabegron in the normal, BOO and BOO+DO detrusor was 37.7 ± 14.4% and 36.1 ± 23.3%, 14.4 ± 12.2% vs. 33.4 ± 21.0% and 18.3 ± 10.0% vs. 28.3 ± 12.2% (n=4, P>0.05), respectively. Mirabegron and isoprenaline reduced carbachol-induced tone in both normal bladders and obstructed bladder with and without DO. Isoprenaline had higher potency than mirabegron, but the efficacy of mirabegron effect was the same as that of isoprenaline. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models

    PubMed Central

    Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622

  9. Loss of prostasin (PRSS8) in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT).

    PubMed

    Chen, Li-Mei; Verity, Nicole J; Chai, Karl X

    2009-10-22

    The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.

  10. Normalization of gene expression measurement of tissue samples obtained by transurethral resection of bladder tumors.

    PubMed

    Pop, Laura A; Pileczki, Valentina; Cojocneanu-Petric, Roxana M; Petrut, Bogdan; Braicu, Cornelia; Jurj, Ancuta M; Buiga, Rares; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2016-01-01

    Sample processing is a crucial step for all types of genomic studies. A major challenge for researchers is to understand and predict how RNA quality affects the identification of transcriptional differences (by introducing either false-positive or false-negative errors). Nanotechnologies help improve the quality and quantity control for gene expression studies. The study was performed on 14 tumor and matched normal pairs of tissue from patients with bladder urothelial carcinomas. We assessed the RNA quantity by using the NanoDrop spectrophotometer and the quality by nano-microfluidic capillary electrophoresis technology provided by Agilent 2100 Bioanalyzer. We evaluated the amplification status of three housekeeping genes and one small nuclear RNA gene using the ViiA 7 platform, with specific primers. Every step of the sample handling protocol, which begins with sample harvest and ends with the data analysis, is of utmost importance due to the fact that it is time consuming, labor intensive, and highly expensive. High temperature of the surgical procedure does not affect the small nucleic acid sequences in comparison with the mRNA. Gene expression is clearly affected by the RNA quality, but less affected in the case of small nuclear RNAs. We proved that the high-temperature, highly invasive transurethral resection of bladder tumor procedure damages the tissue and affects the integrity of the RNA from biological specimens.

  11. Normalization of gene expression measurement of tissue samples obtained by transurethral resection of bladder tumors

    PubMed Central

    Pop, Laura A; Pileczki, Valentina; Cojocneanu-Petric, Roxana M; Petrut, Bogdan; Braicu, Cornelia; Jurj, Ancuta M; Buiga, Rares; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2016-01-01

    Background Sample processing is a crucial step for all types of genomic studies. A major challenge for researchers is to understand and predict how RNA quality affects the identification of transcriptional differences (by introducing either false-positive or false-negative errors). Nanotechnologies help improve the quality and quantity control for gene expression studies. Patients and methods The study was performed on 14 tumor and matched normal pairs of tissue from patients with bladder urothelial carcinomas. We assessed the RNA quantity by using the NanoDrop spectrophotometer and the quality by nano-microfluidic capillary electrophoresis technology provided by Agilent 2100 Bioanalyzer. We evaluated the amplification status of three housekeeping genes and one small nuclear RNA gene using the ViiA 7 platform, with specific primers. Results Every step of the sample handling protocol, which begins with sample harvest and ends with the data analysis, is of utmost importance due to the fact that it is time consuming, labor intensive, and highly expensive. High temperature of the surgical procedure does not affect the small nucleic acid sequences in comparison with the mRNA. Conclusion Gene expression is clearly affected by the RNA quality, but less affected in the case of small nuclear RNAs. We proved that the high-temperature, highly invasive transurethral resection of bladder tumor procedure damages the tissue and affects the integrity of the RNA from biological specimens. PMID:27330317

  12. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression

    PubMed Central

    Merrill, Liana; Malley, Susan

    2013-01-01

    Stress exacerbates symptoms of functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) in humans, but mechanisms contributing to symptom worsening are unknown. These studies address stress-induced changes in the structure and function of the micturition reflex using an animal model of stress in male rats. Rats were exposed to 7 days of repeated variate stress (RVS). Target organ (urinary bladder, thymus, adrenal gland) tissues were collected and weighed following RVS. Evans blue (EB) concentration and histamine, myeloperoxidase (MPO), nerve growth factor (NGF), brain-derived neurotropic factor (BDNF), and CXCL12 protein content (ELISA) were measured in the urinary bladder, and somatic sensitivity of the hindpaw and pelvic regions was determined following RVS. Bladder function was evaluated using continuous, open outlet intravesical infusion of saline in conscious rats. Increases in body weight gain were significantly (P ≤ 0.01) attenuated by day 5 of RVS, and adrenal weight was significantly (P ≤ 0.05) increased. Histamine, MPO, NGF, and CXCL12 protein expression was significantly (P ≤ 0.01) increased in the urinary bladder after RVS. Somatic sensitivity of the hindpaw and pelvic regions was significantly (P ≤ 0.01) increased at all monofilament forces tested (0.1–4 g) after RVS. Intercontraction interval, infused volume, and void volume were significantly (P ≤ 0.01) decreased after RVS. These studies demonstrate increased voiding frequency, histamine, MPO, NGF, and CXCL12 bladder content and somatic sensitivity after RVS suggesting an inflammatory component to stress-induced changes in bladder function and somatic sensitivity. PMID:23657640

  13. Progressive vascular damage may lead to bladder underactivity in rats.

    PubMed

    Nomiya, Masanori; Yamaguchi, Osamu; Akaihata, Hidenori; Hata, Junya; Sawada, Norifumi; Kojima, Yoshiyuki; Andersson, Karl-Erik

    2014-05-01

    We assessed whether progressive vascular damage causes bladder underactivity in rats. Adult male Sprague Dawley® rats were divided into 4 groups. Controls received a regular diet and tap water. The L-NAME group received a 2% cholesterol diet and L-NAME (3 mg/ml) dissolved in drinking water. The arterial injury group underwent balloon endothelial injury of the common iliac arteries and received a 2% cholesterol diet and tap water after injury. The arterial injury/L-NAME group also received L-NAME dissolved in drinking water. At 8 weeks urodynamics were performed, bladder tissue was harvested for pharmacological studies, and the iliac arteries and bladders were histologically examined. Iliac arteries from the injury and injury/L-NAME groups showed neointimal formation and luminal occlusion but arteries from the L-NAME group did not. In the L-NAME and injury groups bladder capacity and voided volume were less than in controls. Conversely, in the injury/L-NAME group these cystometric parameters were significantly greater than in the other groups. Post-void residual volume in the injury/L-NAME group tended to increase compared with the other groups. Contractile responses of bladder strips to various stimuli in the L-NAME, injury and injury/L-NAME groups were significantly less than in controls and the lowest in the injury/L-NAME group. The injury and injury/L-NAME groups showed a significantly increased percent of collagen compared to controls. Pelvic arterial occlusive disease plus vascular endothelial dysfunction may cause progressive vascular damage resulting in bladder dysfunction that develops from bladder hyperactivity to bladder underactivity. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Use of mode of action data to inform a dose-response assessment for bladder cancer following exposure to inorganic arsenic.

    PubMed

    Gentry, P R; Yager, J W; Clewell, R A; Clewell, H J

    2014-10-01

    In the recent National Research Council report on conducting a dose-response assessment for inorganic arsenic, the committee remarked that mode of action data should be used, to the extent possible, to extrapolate below the observed range for epidemiological studies to inform the shape of the dose-response curve. Recent in vitro mode of action studies focused on understanding the development of bladder cancer following exposure to inorganic arsenic provide data to inform the dose-response curve. These in vitro data, combined with results of bladder cancer epidemiology studies, inform the dose-response curve in the low-dose region, and include values for both pharmacokinetic and pharmacodynamic variability. Integration of these data provides evidence of a range of concentrations of arsenic for which no effect on the bladder would be expected. Specifically, integration of these results suggest that arsenic exposures in the range of 7-43 ppb in drinking water are exceedingly unlikely to elicit changes leading to key events in the development of cancer or noncancer effects in bladder tissue. These findings are consistent with the lack of evidence for bladder cancer following chronic ingestion of arsenic water concentrations <100 ppb in epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Feasibility of controlled micturition through electric stimulation.

    PubMed

    Schmidt, R A; Tanagho, E A

    1979-01-01

    Historically, man has been aware of bioelectric phenomena for some 4,000 years. Yet it has only been during the last 20 years that technology has advanced to the stage where controlled bladder emptying has become feasible. A great deal of interest followed the introduction of transistor and bladder stimulation via the principle of radio frequency induction. Spinal cord, sacral, and pelvic nerve and direct bladder stimulation have all been attempted. Only direct bladder stimulation in lower motor neuron situations has shown any promise. The many difficulties associated with bladder stimulation include simultaneous sphincter contraction, pain, electrode and insulation difficulties, and fibroplasia due to movement of electrodes placed in pliable tissues. In addition, the role of the prostate, increased urethral length, and erection responses in the male have received little investigation. These problems are outlined and experimental observations of attempts to achieve controlled micturition in canines areresented. These studies were carried out over a 3-year period, and emphasize responses to stimulation of the spinal cord and sacral roots. It was concluded that the most efficient manner by which to effect simulated micturition is via stimulation of the ventral sacral root dominant for bladder responsiveness, and combine this with selective division of somatic fibers of only the root being stimulated.

  16. [Chymotripsin-like activity and subunit composition of proteasomes in human cancers].

    PubMed

    Kondakova, I V; Spirina, L V; Koval, V D; Shashova, E E; Choinzonov, E L; Ivanova, E V; Kolomiets, L A; Chernyshova, A L; Slonimskaya, E M; Usynin, E A; Afanasyev, S G

    2014-01-01

    Activity of the proteasome, polyfunctional enzymatic complex, is known to undergo changes during cancer development. This phenomenon is, probably, caused by the changes in subunit composition of proteasomes. In present work, we studied chymotrypsin-like activity of proteasomes, subunit composition and their association in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer and colorectal cancer. The increase of proteasome activity was revealed in most cancer tissues compared with adjacent tissues except for the renal cell carcinoma. Changes in proteasome activity in cancer tissues compared with correspondent normal tissues were accompanied by modification of its subunit composition. High proteasome activity was observed in combination with an increased expression of immune subunits and/or proteasome activator PA28, associated with activity of 20S proteasome. In breast cancer, head and neck squamous cell carcinoma, bladder cancer, stomach cancer and colorectal cancer we additionally found higher expression of Rpt6 subunit of 26S proteasome. Correlations between chymotrypsin like proteasome activity and subunit expressions were found in human cancer tissues. In summary, we suggest that proteasome ac- tivation and changes in its subunit composition plays an important role in cancer pathogenesis.

  17. Cigarette smoke-induced DNA adducts in the respiratory and nonrespiratory tissues of rats.

    PubMed

    Gairola, C G; Gupta, R C

    1991-01-01

    Formation of DNA adducts is regarded as an essential initial step in the process of chemical carcinogenesis. To determine how chronic exposure to cigarette smoke affects the distribution of DNA adducts in selected respiratory and nonrespiratory tissues, we exposed male Sprague-Dawley rats daily to fresh mainstream smoke from the University of Kentucky reference cigarettes (2R1) in a nose-only exposure system for 32 weeks. Blood carboxyhemoglobin, total particulate matter (TPM) intake, and pulmonary aryl hydrocarbon hydroxylase values indicated effective exposure of animals to cigarette smoke. DNA was extracted from three respiratory (larynx, trachea, and lung) and three nonrespiratory (liver, heart, and bladder) tissues and analyzed for DNA adducts by the 32P-postlabeling assay under conditions capable of detecting low levels of diverse aromatic/hydrophobic adducts. Data showed that the total DNA adducts in the lung, heart, trachea, and larynx were increased by 10- to 20-fold in the smoke-exposed group. Five-fold increase was observed in the bladder tissue, but differences were not present in the liver DNA of control and smoke-exposed groups. These data suggest selective formation of DNA adducts in the tissues.

  18. Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2011-02-01

    Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.

  19. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose.

    PubMed

    Rodvold, Keith A; Gotfried, Mark H; Cwik, Michael; Korth-Bradley, Joan M; Dukart, Gary; Ellis-Grosse, Evelyn J

    2006-12-01

    The purpose of this study was to determine the tissue and corresponding serum concentration of tigecycline at selected time points in gall bladder, bile, colon, bone, synovial fluid (SF), lung and CSF in subjects undergoing surgical or medical procedures. One hundred and four adult subjects (aged 24-83 years; 64 women, 40 men) received a single intravenous (i.v.) dose of tigecycline (100 mg infused over 30 min). Subjects were randomly assigned to one of four collection times at 4, 8, 12 and 24 h after the start of the infusion. For CSF, samples were collected at approximately 1.5 and 24 h after the start of the infusion. All subjects had serum samples collected before the administration of tigecycline, at the end of the infusion and at the time corresponding to tissue or body fluid collection. Drug concentrations in serum, tissues and body fluids were determined by LC/MS/MS. The area under the mean concentration-time curve from 0 to 24 h (AUC(0-24)) was determined for the comparison of systemic exposure between tissue or body fluid to serum. The mean serum concentrations of tigecycline were similar to those previously published. Tissue penetration, expressed as the ratio of AUC(0-24) in tissue or body fluid to serum, was 537 for bile, 23 for gall bladder, 2.6 for colon, 2.0 for lung, 0.41 for bone, 0.31 for SF and 0.11 for CSF. A single 100 mg dose of intravenous tigecycline produced considerably higher tissue/fluid concentrations in bile, gall bladder, colon and lung compared with simultaneous serum concentrations. On average, the systemic exposure of tigecycline in bone, SF and CSF ranged from 11% to 41% of serum concentrations. The results in bone are inconsistent with previous radiolabelled studies in animals and it is unclear if tight binding to bone (versus low bone uptake) or poor extraction of tigecycline for LC/MS/MS detection or both may have contributed to the differences we observed in humans.

  20. Prospective comparison of molecular signatures in urothelial cancer of the bladder and the upper urinary tract--is there evidence for discordant biology?

    PubMed

    Krabbe, Laura-Maria; Lotan, Yair; Bagrodia, Aditya; Gayed, Bishoy A; Darwish, Oussama M; Youssef, Ramy F; Bolenz, Christian; Sagalowsky, Arthur I; Raj, Ganesh V; Shariat, Shahrokh F; Kapur, Payal; Margulis, Vitaly

    2014-04-01

    Upper tract urothelial carcinoma is rare and less well studied than bladder cancer. It remains questionable if findings in bladder cancer can safely be extrapolated to upper tract urothelial carcinoma. We prospectively evaluate molecular profiles of upper tract urothelial carcinoma and bladder cancer using a cell cycle biomarker panel. Immunohistochemical staining for p21, p27, p53, cyclin E and Ki-67 was prospectively performed for 96 patients with upper tract urothelial carcinoma and 159 patients with bladder cancer with nonmetastatic high grade urothelial carcinoma treated with extirpative surgery. Data were compared between the groups according to pathological stage. Primary outcome was assessment of differences in marker expression. Secondary outcome was difference in survival according to marker status. During a median followup of 22.0 months 31.2% of patients with upper tract urothelial carcinoma and 28.3% of patients with bladder cancer had disease recurrence, and 20.8% and 27.7% died of upper tract urothelial carcinoma and bladder cancer, respectively. The number of altered markers was not significantly different between the study groups. Overall 34 patients (35.4%) with upper tract urothelial carcinoma and 62 (39.0%) with bladder cancer had an unfavorable marker score (more than 2 markers altered). There were no significant differences between upper tract urothelial carcinoma and bladder cancer in the alteration status of markers, the number of altered markers and biomarker score when substratified by pathological stage. There were no significant differences in survival outcomes between patients with upper tract urothelial carcinoma and those with bladder cancer according to the number of altered markers and biomarker score. Our results demonstrate the molecular similarity of upper tract urothelial carcinoma and bladder cancer in terms of cell cycle and proliferative tissue markers. These findings have important implications and support the further extrapolation of treatment paradigms established in bladder cancer to upper tract urothelial carcinoma. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Gene expression profile of the fibrotic response in the peritoneal cavity.

    PubMed

    Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E

    2010-01-01

    The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.

  2. Optical diagnosis of interstitial cystitis / painful bladder syndrome

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Macnab, Andrew; Stothers, Lynn

    2013-03-01

    Background: Painful bladder syndrome/interstitial cystitis (PBS/IC) is defined as a syndrome of urgency, frequency, and suprapubic pain in the absence of positive urine culture or obvious bladder pathology. As no specific etiology has been identified yet, no specific methodology exists for diagnosis of this condition. One potential etiology of PBS/IC is inflammation of the bladder mucosa associated with abnormal angiogenesis and ulcerative lesions. The purpose of this study was to examine the feasibility of using transcutaneous near infrared spectroscopy (NIRS) of the bladder to monitor tissue oxygenation and hemodynamics as a means of differentiating subjects diagnosed with PBS/IC from those with other bladder conditions. Methods: Twenty-four adult patients with lower urinary tract dysfunction were divided into 2 groups, PBS/IC and non-PBS/IC after standard diagnostic investigations. Detrusor oxygen saturation percentage (TSI%) was measured in all subjects while they were at rest in a supine position, using a spatially resolved (SR) NIRS instrument. Mean values of detrusor TSI% were significantly different between the two groups (74.2%+/-4.9 in PBS/IC vs. 63.6%+/-5.5 in non-PBS/IC, P<0.0005). Results: Noninvasive NIRS interrogation of the bladder demonstrated that patients diagnosed as having PBS/IC had significantly higher detrusor oxygen saturation at rest. Conclusions: SR-NIRS as a feasible non-noninvasive entity for use in the evaluation of patients for the presence or absence of physiologic changes associated with PBS/IC.

  3. Ex vivo culture of tumor cells from N-methyl-N-nitrosourea-induced bladder cancer in rats: Development of organoids and an immortalized cell line.

    PubMed

    Yoshida, Takahiro; Kates, Max; Sopko, Nikolai A; Liu, Xiaopu; Singh, Alok K; Bishai, William R; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J

    2018-04-01

    We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Thermal dosimetry for bladder hyperthermia treatment. An overview.

    PubMed

    Schooneveldt, Gerben; Bakker, Akke; Balidemaj, Edmond; Chopra, Rajiv; Crezee, Johannes; Geijsen, Elisabeth D; Hartmann, Josefin; Hulshof, Maarten C C M; Kok, H Petra; Paulides, Margarethus M; Sousa-Escandon, Alejandro; Stauffer, Paul R; Maccarini, Paolo F

    2016-06-01

    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.

  5. Clinical and pathological implications of miRNA in bladder cancer.

    PubMed

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20-22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer.

  6. Perivascular epithelioid cell tumor (PEComa) of the urinary bladder: report of 3 cases and review of the literature.

    PubMed

    Sukov, William R; Cheville, John C; Amin, Mahul B; Gupta, Ruta; Folpe, Andrew L

    2009-02-01

    The perivascular epithelioid cell family of tumors (PEComas) includes familiar lesions such as angiomyolipoma, lymphangioleiomyoma, and clear-cell "sugar" tumors of the lung. Less frequently, PEComas arise in various other locations throughout the body including soft tissue, bone, and visceral organs. We report 3 cases of PEComa arising in the urinary bladder in 2 men in their fourth decade, and 1 woman in her third decade. All 3 tumors showed histologic features characteristic of PEComa including spindled and epithelioid cell morphology with variable clear cell change, and all coexpressed melanocytic and smooth muscle associated markers by immunohistochemistry. Follow-up demonstrated an indolent course for 2 patients with no evidence of disease at 10 and 21 months, respectively, and the third case was recently diagnosed. We also provide a review of the 4 previously reported PEComas occurring in the bladder. PEComas of the urinary bladder should be carefully distinguished from a variety of histologically similar, but clinically dissimilar entities.

  7. Screening biomarkers of bladder cancer using combined miRNA and mRNA microarray analysis.

    PubMed

    Jin, Ning; Jin, Xuefei; Gu, Xinquan; Na, Wanli; Zhang, Muchun; Zhao, Rui

    2015-08-01

    Biomarkers, such as microRNAs (miRNAs) may be useful for the diagnosis of bladder cancer. In order to understand the molecular mechanisms underlying bladder cancer, differentially expressed miRNAs (DE-miRNAs) and their target genes in bladder cancer were analyzed. In the present study, miRNA and mRNA expression profiles (GSE40355) were obtained from the Gene Expression Omnibus. These consisted of healthy bladder samples (n=8) and urothelial carcinoma samples (low-grade, n=8 and high-grade, n=8). DE-miRNAs and differentially expressed genes (DEGs) were identified using the limma package and the Benjamin and Hochberg method from the multtest package in R. Target genes of DE-miRNAs were screened. Associations between DEGs were investigated using STRING, and an interaction network was constructed using Cytoscape. Functional and pathway enrichment analyses were performed for DEGs from the interaction network. 87 DE-miRNAs and 2058 DEGs were screened from low-grade bladder cancer samples, and 40 DE-miRNAs and 2477 DEGs were screened from high-grade bladder cancer samples. DE-target genes were significantly associated with the regulation of cell apoptosis. Bladder cancer, non-small cell lung cancer and pancreatic cancer biological pathways were found to be enriched. The results of the present study demonstrated that E2F transcription factor 1, which is targeted by miR-106b, and cyclin-dependent kinase inhibitor 2A (CDKN2A) and V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog-2, which are targeted by miR-125b, participate in the bladder cancer pathway. In conclusion, DE-miRNAs in bladder cancer tissue samples and DE-targeted genes, such as miR-106b and CDKN2A, which were identified in the present study, may provide the basis for targeted therapy for breast cancer and enhance understanding of its pathogenesis.

  8. MMP-1 and Pro-MMP-10 as potential urinary pharmacodynamic biomarkers of FGFR3-targeted therapy in patients with bladder cancer.

    PubMed

    Du, Xiangnan; Lin, Benjamin C; Wang, Qian-Rena; Li, Hao; Ingalla, Ellen; Tien, Janet; Rooney, Isabelle; Ashkenazi, Avi; Penuel, Elicia; Qing, Jing

    2014-12-15

    The aim of this study was to identify noninvasive pharmacodynamic biomarkers of FGFR3-targeted therapies in bladder cancer to facilitate the clinical development of experimental agent targeting FGFR3. Potential soluble pharmacodynamic biomarkers of FGFR3 were identified using a combination of transcriptional profiling and biochemical analyses in preclinical models. Two matrix metalloproteinases (MMP), MMP-1 and MMP-10, were selected for further studies in human bladder cancer xenograft models treated with a specific anti-FGFR3 monoclonal antibody, R3Mab. Serum and urinary levels of MMP-1 and MMP-10 were determined in healthy donors and patients with bladder cancer. The modulation of MMP-1 and MMP-10 by R3Mab in patients with bladder cancer was further evaluated in a phase I dose-escalation study. MMP-1 and MMP-10 mRNA and protein were downmodulated by FGFR3 shRNA and R3Mab in bladder cancer cell lines. FGFR3 signaling promoted the expression and secretion of MMP-1 and pro-MMP-10 in a MEK-dependent fashion. In bladder cancer xenograft models, R3Mab substantially blocked tumor progression and reduced the protein levels of human MMP-1 and pro-MMP-10 in tumor tissues as well as in mouse serum. Furthermore, both MMP-1 and pro-MMP-10 were elevated in the urine of patients with advanced bladder cancer. In a phase I dose-escalation trial, R3Mab administration resulted in an acute reduction of urinary MMP-1 and pro-MMP-10 levels in patients with bladder cancer. These findings reveal a critical role of FGFR3 in regulating MMP-1 and pro-MMP-10 expression and secretion, and identify urinary MMP-1 and pro-MMP-10 as potential pharmacodynamic biomarkers for R3Mab in patients with bladder cancer. ©2014 American Association for Cancer Research.

  9. The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist.

    PubMed

    Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon

    2014-10-05

    Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Schistosoma haematobium Infection That Mimics Bladder Cancer in a 66-Year-Old Ethnic Egyptian Man.

    PubMed

    Zepeda, Celenne Morfin; Coffey, Kristen H

    2015-01-01

    66-year-old ethnic Egyptian man. Hematuria. The patient had a history of multiple episodes of gross hematuria for the past 5 years. Because the hematuria usually resolved on its own, he did not seek medical attention during that time. Bladder cancer was suspected. The patient had a history of coronary artery disease, hypertension, nephrolithiasis, congestive heart failure, lifelong smoking, and ischemic cardiomyopathy. He has been taking the anticoagulants clopidogrel (Plavix) and warfarin (Coumadin). The patient is originally from Egypt and has been living in the United States for the past 10 years. A complete blood count showed a hemoglobin of 13.0 g per dL (reference range, 14.0 to 18.0 g per dL), hematocrit 40% (40% to 54%), red blood cell count (RBC) 4.65 × 10(9) per L (4.60 to 6.00), and platelet count 179 × 10(9) per L (150 to 450). The urinalysis results showed 3+ protein, 4+ blood, and urine RBC of greater than 100 per high power field (hpf). The urinalysis results did not indicate the presence of parasitic ova or adult parasites. Based on these results, the physician ordered cystoscopic testing, suspecting bladder cancer. Analysis of the bladder tissue showed inflammation (Image 1) and several ova that were consistent with developing Schistosoma (Image 2). Many of the ova were calcified and surrounded by severely inflamed tissue (Image 3). Copyright© by the American Society for Clinical Pathology (ASCP).

  11. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    NASA Astrophysics Data System (ADS)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.

  12. Adhesion of thiolated silica nanoparticles to urinary bladder mucosa: Effects of PEGylation, thiol content and particle size.

    PubMed

    Mun, Ellina A; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-10-15

    Intravesical drug administration is used to deliver cytotoxic agents through a catheter to treat bladder cancer. One major limitation of this approach is poor retention of the drug in the bladder due to periodic urine voiding. Mucoadhesive dosage forms thus offer significant potential to improve drug retention in the bladder. Here, we investigate thiolated silica nanoparticles retention on porcine bladder mucosa in vitro, quantified through Wash Out50 (WO50) values, defined as the volume of liquid necessary to remove 50% of the adhered particles from a mucosal tissue. Following irrigation with artificial urine solution, the thiolated nanoparticles demonstrate significantly greater retention (WO50 up to 36mL) compared to non-mucoadhesive dextran (WO50 7mL), but have weaker mucoadhesive properties than chitosan (WO50 89mL). PEGylation of thiolated silica reduces their mucoadhesion with WO50 values of 29 and 8mL for particles decorated with 750 and 5000Da PEG, respectively. The retention of thiolated silica nanoparticles is dependent on their thiol group contents and physical dimensions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, R.E.; Butz, G.W.; Ansell, J.S.

    Wound strength in the rectus muscle of rabbits is greater at any measured time interval when sutured with polyglycolic acid than when sutured with chromic catgut. This is true for both irradiated and nonirradiated tissues. No significant advantage is seen for either suture in nonirradiated bladder, although the trend favors polyglycolic acid. In irradiated bladders, a significant advantage is seen for polyglycolic acid at 15 days. In measuring repaired ureteral orifice size, only chromic catgut suture in nonirradiated rabbits caused marked edema and ureteral obstruction. Postoperative ureteral dilation with both materials resolved over a 90 day period. In the irradiatedmore » ureter, however, resolution of this obstruction appears to occur earlier and more dependably when polyglycolic acid suture has been used. Polyglycolic acid showed a trend for superior strength in urothelial wounds tested. The healing of bladder epithelium is usually completed in ten to 14 days. The entire bladder wound gains strength rapidly until day 21 and gains little strength thereafter. A suture material that does not increase the inflammatory response but lasts long enough for complete bladder healing is advisable. Using the criterion of wound breaking strength in our experimental work, polyglycolic acid was shown to be superior to chromic catgut suture material.« less

  14. Tissue engineered tumor models.

    PubMed

    Ingram, M; Techy, G B; Ward, B R; Imam, S A; Atkinson, R; Ho, H; Taylor, C R

    2010-08-01

    Many research programs use well-characterized tumor cell lines as tumor models for in vitro studies. Because tumor cells grown as three-dimensional (3-D) structures have been shown to behave more like tumors in vivo than do cells growing in monolayer culture, a growing number of investigators now use tumor cell spheroids as models. Single cell type spheroids, however, do not model the stromal-epithelial interactions that have an important role in controlling tumor growth and development in vivo. We describe here a method for generating, reproducibly, more realistic 3-D tumor models that contain both stromal and malignant epithelial cells with an architecture that closely resembles that of tumor microlesions in vivo. Because they are so tissue-like we refer to them as tumor histoids. They can be generated reproducibly in substantial quantities. The bioreactor developed to generate histoid constructs is described and illustrated. It accommodates disposable culture chambers that have filled volumes of either 10 or 64 ml, each culture yielding on the order of 100 or 600 histoid particles, respectively. Each particle is a few tenths of a millimeter in diameter. Examples of histological sections of tumor histoids representing cancers of breast, prostate, colon, pancreas and urinary bladder are presented. Potential applications of tumor histoids include, but are not limited to, use as surrogate tumors for pre-screening anti-solid tumor pharmaceutical agents, as reference specimens for immunostaining in the surgical pathology laboratory and use in studies of invasive properties of cells or other aspects of tumor development and progression. Histoids containing nonmalignant cells also may have potential as "seeds" in tissue engineering. For drug testing, histoids probably will have to meet certain criteria of size and tumor cell content. Using a COPAS Plus flow cytometer, histoids containing fluorescent tumor cells were analyzed successfully and sorted using such criteria.

  15. Endogenous Stem Cells Were Recruited by Defocused Low-Energy Shock Wave in Treating Diabetic Bladder Dysfunction.

    PubMed

    Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang

    2017-04-01

    Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.

  16. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  17. Neuropeptides in Lower Urinary Tract (LUT) Function

    PubMed Central

    Arms, Lauren; Vizzard, Margaret A.

    2014-01-01

    Numerous neuropeptide/receptor systems including vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide, calcitonin gene-related peptide, substance P, neurokinin A, bradykinin, and endothelin-1 are expressed in the lower urinary tract (LUT) in both neural and non-neural (e.g., urothelium) components. LUT neuropeptide immunoreactivity is present in afferent and autonomic efferent neurons innervating the bladder and urethra and in the urothelium of the urinary bladder. Neuropeptides have tissue-specific distributions and functions in the LUT and exhibit neuroplastic changes in expression and function with LUT dysfunction following neural injury, inflammation and disease. LUT dysfunction with abnormal voiding including urinary urgency, increased voiding frequency, nocturia, urinary incontinence and pain may reflect a change in the balance of neuropeptides in bladder reflex pathways. LUT neuropeptide/receptor systems may represent potential targets for therapeutic intervention. PMID:21290237

  18. Minced Skin for Tissue Engineering of Epithelialized Subcutaneous Tunnels

    PubMed Central

    Fossum, Magdalena; Zuhaili, Baraa; Hirsch, Tobias; Spielmann, Malte; Reish, Richard G.; Mehta, Priyesh

    2009-01-01

    We used minced, autologous skin for neoepithelialization of surgically created subcutaneous tunnels in a large animal model. Partial-thickness skin grafts were harvested from the back region of five 50–60 kg Yorkshire pigs. The skin was minced to 0.8 × 0.8 × 0.3 mm particles. Silicone-latex tubes were covered with fibrin, rolled in minced skin, and placed in subcutaneous tunnels created in the abdominal area. For comparison, single cell suspensions of keratinocytes and fibroblasts in fibrin or fibrin only were transplanted on tubes. Tunnels were extracted after 14, 21, and 28 days for microscopic evaluation. All tubes transplanted with minced skin particles showed neoepithelialization. The epithelium was stratified and differentiated after 2 weeks in vivo, and the stratum corneum was directed toward the implanted tube. No epithelium formed from tubes transplanted with single cell suspensions, and only sparse keratinocytes could be detected by serial sectioning and immunostaining on day 14, but not later. No epithelial lining was found in tunnels with fibrin-only-coated tubes. Epithelial cysts could be found the first 2 weeks after transplantation in the minced skin group but not later. In conclusion, a minced skin technique could serve as a potential source for tissue engineering of tubular conduits for reconstructive purposes of the urethra and for cutaneous stomas for bladder catheterization, or intestinal irrigations. The method would have the advantage of being simple and expeditious and not requiring in vitro culturing. PMID:19292681

  19. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  20. Hexavalent chromium induces chromosome instability in human urothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Sandra S.; Holmes, Amie L.; Department of Radiation Oncology, Dana Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215

    Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. Chromium, in particular, is a metal of concern as incidences of bladder cancer have been found elevated in chromate workers, and there is an increasing concern for patients with metal hip implants. However, the impact of hexavalent chromium (Cr(VI)) on bladder cells has not been studied. We compared chromate toxicity in two bladder cell lines; primary human urothelial cells and hTERT-immortalized human urothelial cells. Cr(VI) induced a concentration- and time-dependent increase in chromosome damagemore » in both cell lines, with the hTERT-immortalized cells exhibiting more chromosome damage than the primary cells. Chronic exposure to Cr(VI) also induced a concentration-dependent increase in aneuploid metaphases in both cell lines which was not observed after a 24 h exposure. Aneuploidy induction was higher in the hTERT-immortalized cells. When we correct for uptake, Cr(VI) induces a similar amount of chromosome damage and aneuploidy suggesting that the differences in Cr(VI) sensitivity between the two cells lines were due to differences in uptake. The increase in chromosome instability after chronic chromate treatment suggests this may be a mechanism for chromate-induced bladder cancer, specifically, and may be a mechanism for metal-induced bladder cancer, in general. - Highlights: • Hexavalent chromium is genotoxic to human urothelial cells. • Hexavalent chromium induces aneuploidy in human urothelial cells. • hTERT-immortalized human urothelial cells model the effects seen in primary urothelial cells. • Hexavalent chromium has a strong likelihood of being carcinogenic for bladder tissue.« less

  1. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer.

    PubMed

    Kauffman, Eric C; Robinson, Brian D; Downes, Martin J; Powell, Leagh G; Lee, Ming Ming; Scherr, Douglas S; Gudas, Lorraine J; Mongan, Nigel P

    2011-12-01

    Bladder cancer is approximately three times more common in men as compared to women. We and others have previously investigated the contribution of androgens and the androgen receptor (AR) to bladder cancer. JMJD2A and LSD1 are recently discovered AR coregulator proteins that mediate AR-dependent transcription via recently described histone lysine-demethylation (KDM) mechanisms. We used immunohistochemistry to examine JMJD2A, LSD1, and AR expression in 72 radical cystectomy specimens, resulting in evaluation of 129 tissue samples (59 urothelial carcinoma, 70 benign). We tested levels of these proteins for statistical association with clinicopathologic variables and patient survival. Expression of these markers was also assessed in human bladder cancer cell lines. The effects of pharmacological inhibition of LSD1 on the proliferation of these bladder cancer cells was determined. JMJD2A and AR levels were significantly lower in malignant versus benign urothelium, while increased LSD1 levels were observed in malignant urothelium relative to benign. A significant reduction in all three proteins occurred with cancer stage progression, including muscle invasion (JMJD2A/LSD1/AR), extravesical extension (JMJD2A/LSD1), and lymph node metastasis (JMJD2A/AR). Lower JMJD2A intensity correlated with additional poor prognostic features, including lymphovascular invasion, concomitant carcinoma in situ and tobacco usage, and predicted significantly worse overall survival. Pharmacological inhibition of LSD1 suppressed bladder cancer cell proliferation and androgen-induced transcription. Our results support a novel role for the AR-KDM complex in bladder cancer initiation and progression, identify JMJD2A as a promising prognostic biomarker, and demonstrate targeting of the KDM activity as an effective potential approach for bladder cancer growth inhibition. Copyright © 2011 Wiley Periodicals, Inc.

  2. Autofluorescence imaging to optimize 5-ALA-induced fluorescence endoscopy of bladder carcinoma.

    PubMed

    Frimberger, D; Zaak, D; Stepp, H; Knüchel, R; Baumgartner, R; Schneede, P; Schmeller, N; Hofstetter, A

    2001-09-01

    To design an optical system for detecting autofluorescence (AF) of bladder tumors and to determine the success of reducing the false-positive rate of 5-aminolevulinic acid-induced fluorescence endoscopy (AFE). AFE provides significantly higher sensitivity in detecting and localizing bladder carcinoma compared with white light endoscopy. The specificity of AFE is equivalent to white light endoscopy, mostly because of the false-positive fluorescence of chronic cystitis lesions. Laser-induced spectral autofluorescence detection is also an efficient method in the diagnosis of bladder carcinoma. Bladder tissue was excited to AF using the D-Light (375 to 440 nm) after regular AFE with detection of fluorescence-positive areas. The optical image was produced using a special RGB camera. Biopsies were taken from AFE-positive areas, the peritumoral edges, and normal bladder mucosa. The AF images of the suspicious areas were compared with the AFE images and the histologic results. A total of 43 biopsies were histologically examined (24 benign and 19 neoplastic). AF imaging showed contrast differences between papillary tumors, flat lesions, and normal mucosa. The combination of AFE with AF raised the specificity of AFE alone from 67% to 88%. AF imaging is possible. The value of the method in reducing the false-positive rate of the highly sensitive AFE needs to be validated with higher numbers. The combination of AF with AFE had a 20% higher specificity than AFE alone in our study.

  3. Pentosanpolysulfate coating of silicone reduces encrustation.

    PubMed

    Zupkas, P; Parsons, C L; Percival, C; Monga, M

    2000-08-01

    A significant problem associated with catheterization in the urinary tract is the encrustation of the catheter materials. One approach to reducing encrustation is to alter the surface properties of the catheters. We evaluated the effectiveness of coating with pentosanpolysulfate (PPS), a semisynthetic polysaccharide similar to heparin, in reducing encrustation and the foreign-body inflammatory response to silicone stents in the bladders of male New Zealand White rabbits. Sixteen rabbits were divided into three groups to receive placement in their bladders of uncoated (N = 7), PPS-coated (N = 7), or sham matrix-processed silicone rings (N = 2) via open cystotomy. After 50 days of maintenance on normal food and water, all rabbits were sacrificed, and the air-dried, unfixed silicone ring surfaces were examined by scanning electron microscopy. Bladders and remaining silicone rings were removed and preserved separately. Silicone rings, cleaned of all encrustation, were stained with toluidene blue to determine the presence or absence of PPS coating on the surface. Histologic examination revealed normal tissue in bladder sections exposed to coated silicone rings and an inflammatory response in sections from bladders having uncoated silicone rings. Coating with PPS was associated with an eightfold reduction in the amount of encrustation of silicone and a marked reduction in the inflammatory response of the bladder wall to the foreign body. A PPS coating may be useful in reducing the encrustation of long-term indwelling silicone stents or catheters in the human urinary tract.

  4. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma.

    PubMed

    Hu, Xudong; Zhang, Zhiqiang; Liang, Zhaofeng; Xie, Dongdong; Zhang, Tao; Yu, Dexin; Zhong, Caiyun

    2017-02-01

    Feline sarcoma-related protein (Fer) is a nuclear and cytoplasmic non-receptor protein tyrosine kinase and Fer overexpression is associated with various biological processes. However, the clinicopathological characteristics and molecular mechanisms of Fer expression in bladder urothelial cell carcinoma (UCC) have yet to be elucidated. The present study demonstrated that Fer was significantly upregulated in bladder UCC tissues and cell lines. A clinicopathological analysis suggested that Fer expression was significantly associated with tumor stage, histological grade and lymph node status, and Fer expression was a prognostic factor for overall survival in a multivariate analysis. Furthermore, small interfering RNA (siRNA) was used to silence the expression of the Fer gene in human bladder UCC T24 cells, and was shown to significantly reduce the migration and invasion of the cells. It was also observed that Fer-siRNA caused the T24 cells to acquire an epithelial cobblestone phenotype, and was able to reverse the epithelial-mesenchymal transition of the cells. Subsequently, Fer-knockdown was shown to deactivate the extracellular signal-regulated kinase/activator protein-1 signaling pathway in T24 cells. These results indicated, for the first time, that Fer has a critical role in bladder UCC progression and may be a potential therapeutic target for bladder UCC metastasis.

  5. PACAP/Receptor System in Urinary Bladder Dysfunction and Pelvic Pain Following Urinary Bladder Inflammation or Stress

    PubMed Central

    Girard, Beatrice M.; Tooke, Katharine; Vizzard, Margaret A.

    2017-01-01

    Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction. PMID:29255407

  6. An adaptive radiotherapy planning strategy for bladder cancer using deformation vector fields.

    PubMed

    Vestergaard, Anne; Kallehauge, Jesper Folsted; Petersen, Jørgen Breede Baltzer; Høyer, Morten; Søndergaard, Jimmi; Muren, Ludvig Paul

    2014-09-01

    Adaptive radiotherapy (ART) has considerable potential in treatment of bladder cancer due to large inter-fractional changes in shape and size of the target. The aim of this study was to compare our clinically applied method for plan library creation that involves manual bladder delineations (Clin-ART) with a method using the deformation vector fields (DVFs) resulting from intensity-based deformable image registrations (DVF-based ART). The study included thirteen patients with urinary bladder cancer who had daily cone beam CTs (CBCTs) acquired for set-up. In both ART strategies investigated, three plan selection volumes were generated using the CBCTs from the first four fractions; in Clin-ART boolean combinations of delineated bladders were used, while the DVF-based strategy applied combinations of the mean and standard deviation of patient-specific DVFs. The volume ratios (VRs) of the course-averaged PTV for the two ART strategies relative the non-adaptive PTV were calculated. Both Clin-ART and DVF-based ART considerably reduced the course-averaged PTV, compared to non-adaptive RT. The VR for DVF-based ART was lower than for Clin-ART (0.65 vs. 0.73; p<0.01). DVF-based ART for bladder irradiation has a considerable normal tissue sparing potential surpassing our already highly conformal clinically applied ART strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Distigmine Bromide Produces Sustained Potentiation of Guinea-Pig Urinary Bladder Motility by Inhibiting Cholinesterase Activity.

    PubMed

    Obara, Keisuke; Chino, Daisuke; Tanaka, Yoshio

    2017-01-01

    Distigmine is a cholinesterase (ChE) inhibitor used for the treatment of detrusor underactivity in Japan. Distigmine's pharmacological effects are known to be long-lasting, but the duration of its effect on urinary bladder contractile function has not been fully elucidated. The present study aimed to determine these effects in relation to the plasma concentrations of distigmine and its inhibition of ChE activities in blood, plasma, and bladder tissue. Intravesical pressures were recorded in anesthetized guinea-pigs for 12 h after the intravenous administration of saline or distigmine (0.01-0.1 mg/kg). Plasma distigmine concentrations were measured by liquid chromatograph-tandem mass spectrometry (LC-MS/MS), while ChE activities were assayed using 5,5'-dithiobis(2-nitrobenzoic acid). Distigmine (0.1 mg/kg) significantly increased the maximum intravesical pressure at micturition reflex for 12 h post-administration. In contrast, plasma distigmine was only detectable for 6 h post-administration in these animals and a one-compartment model calculated an elimination half-life of 0.7 h. However, bladder and blood acetylcholinesterase activities were significantly inhibited for 12 h after distigmine administration, although plasma ChE activities were not affected. The pharmacodynamic effects of distigmine thus persisted after its elimination from the circulation, indicating that it may bind to bladder acetylcholinesterase, producing sustained enzyme inhibition and enhancement of bladder contractility.

  8. The effect of thermochemotherapy with mitomycin C on normal bladder urothelium, an experimental study.

    PubMed

    Uçar, Murat; Altok, Muammer; Umul, Mehmet; Bayram, Dilek; Armağan, İlkay; Güneş, Mustafa; Çapkin, Tahsin; Soyupek, Sedat

    2016-01-01

    To investigate the effects of thermochemotherapy with mitomycin C (MMC) on normal rabbit bladder urothelium and to compare it with standard intravesical MMC and hyperthermia with normal saline. Twenty-four male New Zealand rabbits, with a mean weight of 2.7 kg (in weight of 2.1–4.3 kg), were divided into three groups, each containing eight rabbits. Thermotherapy with only normal saline was performed in the first group, standard intravesical MMC was performed in the second group, and thermotherapy with MMC was performed in the last group. A week after the primary procedure, total cystectomy was performed and tissue samples were evaluated. The presence of epithelial vacuolar degeneration (p = 0.001), epithelial hyperplasia (p = 0.000), subepithelial fibrosis (p = 0.001) and hemorrhagic areas in the connective tissue (p = 0.002) was observed statistically significantly higher in the standard MMC group than in thermotherapy with normal saline group. There was almost a significant difference among standard MMC and normal saline group in terms of vascular congestion in the connective tissue (p = 0.08). Presence of epithelial vacuolar degeneration (p = 0.002), epithelial hyperplasia (p = 0.002), subepithelial fibrosis (p = 0.030), hemorrhagic areas (p = 0.011) and vascular congestion (p = 0.36) in the connective tissue was observed statistically significantly higher in the thermochemotherapy with MMC group than in standard intravesical MMC group. Polymorphonuclear cell infiltration was not considerable in any of the groups, and there was no significant difference between each groups (p = 0.140). Administration of intravesical MMC causes a toxic effect on the normal urothelium of the bladder rather than an inflammatory reaction. Heating MMC significantly increased this effect.

  9. Overexpression of caldesmon is associated with tumor progression in patients with primary non-muscle-invasive bladder cancer

    PubMed Central

    Lee, Myung-Shin; Lee, Jisu; Kim, Joo Heon; Kim, Won Tae; Kim, Wun-Jae; Ahn, Hanjong; Park, Jinsung

    2015-01-01

    The expression and function of caldesmon (CAD) in urothelial bladder carcinoma (BC) have not been reported. Here, we investigated the expression, prognostic value, and potential functional mechanism of CAD in primary non-muscle-invasive bladder cancer (NMIBC). Protein profiling of tissue samples using antibody microarrays showed significantly higher CAD expression in muscle-invasive BC tissues compared with NMIBC tissues. We then validated the CAD expression in BC cells by immunohistochemistry analysis using paraffin-embedded tissue blocks and western blots using BC cell lines. In addition, we examined the expression of CAD variants by reverse transcription-polymerase chain reaction, and confirmed the expression of low-molecular-weight isoforms (L-CAD), specifically encoded by WI-38 L-CAD II (transcript variant 2), in BC cells. Survival analysis in an independent primary NMIBC cohort comprising 132 patients showed that positive CAD expression was significantly associated with poorer prognosis than no CAD expression with regard to recurrence- and progression-free survival (p = 0.001 and 0.014, respectively). Multivariate analyses further indicated that positive CAD expression was an independent predictor of progression-free survival (p = 0.032; HR = 5.983). Data obtained from in vitro silencing and overexpression studies indicated that L-CAD promotes migration and invasiveness of BC cells. Immunofluorescence assays showed dramatic structural changes in the actin cytoskeleton of BC cells after L-CAD overexpression. Our findings collectively suggest that L-CAD overexpression in primary NMIBC is significantly associated with tumor progression and that a possible mechanism for L-CAD's activity is implicated in increased cell motility and invasive characteristics through morphological changes in BC cells. PMID:26430961

  10. B-Receptor Signaling in Cardiomyopathy

    ClinicalTrials.gov

    2015-11-16

    Carcinomas; Amyloidosis; Anal Cancer; Anemia; Cholangiocarcinoma of the Extrahepatic Bile Duct; Transitional Cell Carcinoma of Bladder; Bone Marrow Transplant Failure; Bone Cancer; Cancer of Brain and Nervous System; Breast Cancer; Carcinoma of the Large Intestine; Endocrine Cancer; Esophageal Cancer; Eye Cancer; Gall Bladder Cancer; Gastric (Stomach) Cancer; Gastrooesophageal Cancer; Gastrointestinal Stromal Tumor (GIST); Gynecologic Cancers; Head and Neck Cancers; Hepatobiliary Neoplasm; Kidney (Renal Cell) Cancer; Leukemia; Lung Cancer; Hodgkin Disease; Lymphoma, Non-Hodgkin; Mesothelioma; Multiple Myeloma; Myelodysplastic Syndromes (MDS); Neuroendocrine Tumors; Myeloproliferative Disorders; Pancreatic Cancer; Prostate Cancer; Skin Cancer; Soft Tissue Sarcoma; Testicular Cancer; Thymus Cancer; Thyroid Cancer

  11. Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.

    PubMed

    Kim, Won Tae; Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kim, Ye Hwan; Lee, Il Seok; Kang, Ho Won; Park, Sunghyouk; Moon, Sung Kwon; Choi, Yung Hyun; Choi, Young Deuk; Kim, Isaac Yi; Kim, Jayoung; Kim, Wun Jae

    2016-07-01

    Our previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome. A total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed. Significant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (p<0.05 all) of patients with non-muscle invasive BCA, whereas CPT1B, CPT1C, CRAT, and TPH1 were downregulated in those with muscle invasive BCA (p<0.05), with no changes in IDO1 expression. Alterations in the expression of genes associated with the carnitine-acylcarnitine and tryptophan metabolic pathways, which were the most perturbed pathways in BCA, were determined.

  12. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Jing-Jing; Dai, Yuan-Chang; Lin, Yung-Lun

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries graduallymore » increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1 downregulation in the urothelia may be a biomarker of bladder carcinogenesis.« less

  13. Endoscopic spray cryotherapy for genitourinary malignancies: safety and efficacy in a porcine model

    PubMed Central

    Power, Nicholas E.; Silberstein, Jonathan L.; Tarin, Tatum; Au, Joyce; Thorner, Daniel; Ezell, Paula; Monette, Sébastien; Fong, Yuman; Rusch, Valerie; Finley, David

    2013-01-01

    Objective: To examine the effects and safety of using endoscopic spray cryotherapy (ESC) on bladder, ureteral, and renal pelvis urothelium in a live porcine model. Subjects and methods: ESC treatments were systematically applied to urothelial sites in the bladder, ureter, and renal pelvis of eight female Yorkshire swine in a prospective trial. Freeze–thaw cycles ranged from 5 to 60 s/cycle for one to six cycles using a 7 French cryotherapy catheter. Tissue was evaluated histologically for treatment-related effects. Acute physiologic effects were evaluated with pulse oximetry, Doppler sonography, and postmortem findings. Results: In bladder, treatment depth was inconsistent regardless of dose, demonstrating urothelial necrosis in one, muscularis propria depth necrosis in two, and full thickness necrosis in all remaining samples. In ureter, full thickness necrosis was seen in all samples, even with the shortest spray duration (5 s/cycle for six cycles or 30 s/cycle for one cycle). Treatment to the renal pelvis was complicated by adiabatic gas expansion of liquid nitrogen to its gaseous state, resulting in high intraluminal pressures requiring venting to avoid organ perforation, even at the lowest treatment settings. At a planned dose of 5 s/cycle for six cycles of the first renal pelvis animal, treatment was interrupted by sudden and unrecoverable cardiopulmonary failure after three cycles. Repeated studies replicated this event. Ultrasound and immediate necropsy confirmed the creation of a large gaseous embolism and reproducible cardiopulmonary effects. Conclusion: ESC in a porcine urothelial treatment model results in full-thickness tissue necrosis in bladder, ureter, and renal pelvis at a minimal treatment settings of 5 s/cycle for six cycles. Adiabatic gas expansion may result in fatal pyelovenous gas embolism and collateral organ injury, as seen in both animals receiving treatment to the renal pelvis in this study. These results raise safety concerns for use of ESC as a treatment modality in urothelial tissues with current device settings. PMID:23730328

  14. Ex vivo and in vivo topographic studies of bladder by optical coherence tomography (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri; Sachs, Markus D.; Lankenau, Eva; Koenig, Frank; Burkhardt, Mick; Huettmann, Gereon; Kristiansen, Glen; Schnorr, Dietmar; Al-Shukri, Salman; Loening, Stefan A.

    2005-06-01

    Conventional imaging modalities like CT or ultrasonography have a spatial resolution of 70-1000 rim. OCT is a new method by which light of a certain wavelength is introduced into a fiberglass optic to measure tissue structures of up to 2.5 mm depth with a spatial resolution of up to 10-15 μm. We utilized the Tomograph Sirius 713, developed at the Medical Laser Centre in cooperation with 4-Optics AG, Lubeck, Germany. This apparatus uses a special Super- Luminescence-Diode (SLD) that produces light within the near infrared wavelength, with a central wavelength of 1300 nm. The coherence length is reduced to 15 μm. The light is introduced into a fiberglass optic which is several meters long and is easy to handle. To measure the depth of invasion and position of urothelial bladder tumors, the fiberglass optic is attached to a regular endoscope (Wolf, Knittlingen, Germany) via an OCT adapter. That way, in parallel to the regular endoscopic view of the bladder mucosa with or without pathologic findings, an OCT picture of the superficial as well as the deeper muscle layers is visible online. OCT was used to obtain 945 images from the bladder in vivo und ex vivo of 65 patients. OCT of normal bladder mucosa allows to image a cross section of up to 2.5 mm. It is possible to distinguish transitional epithelium, lamina propria, smooth muscles and capillaries. In cystitis, the thickness of the mucosa is constant, but the distinction between the different layers is blurred. In squamous metaplasia there is thickening of the epithelial layer, with preservation of lamination of the lower layers. In transitional cell carcinoma there is a complete loss of the regular layered structure. It is easily possible to distinguish the border between tumour and normal bladder tissue. OCT is a new high-resolution imaging procedure. It has the potential to improve the diagnostics of the urothelium and its lesions. In conjunction with a highly sensitive orientating procedure like fluorescence-cystoscopy, intraoperative staging of these changes could be possible in the future.

  15. In vitro release of adenosine triphosphate from the urothelium of human bladders with detrusor overactivity, both neurogenic and idiopathic.

    PubMed

    Kumar, Vivek; Chapple, Christopher R; Rosario, Derek; Tophill, Paul R; Chess-Williams, Russell

    2010-06-01

    There is increased evidence to suggest a role for nonadrenergic-noncholinergic neurotransmission in the pathogenesis of bladder dysfunction. In this set of experiments, we have assessed the contribution of the urothelium to purinergic activity by quantifying the amount of adenosine triphosphate (ATP) released from the urothelium of patients with idiopathic detrusor overactivity (IDO) and with neurogenic detrusor overactivity (NDO) and comparing these releases to those of controls. Bladder tissue with urodynamically and clinically proven NDO (n=8) and IDO (n=8) were included in this study. The carefully dissected urothelium was stimulated by mechanically stretching as well as electrically stimulating and the ATP; thus, release was quantified. We used a Lucy Anthos 1 luminometre (Anthos Labtec Instruments GmBH, Wals, Austria) to perform the assay. The results were analysed using Stingray software (Dazdaq Ltd, Brighton, UK). Both mechanical stretch and electric field stimulation (EFS) led to increased ATP release in both sets of tissues with overactivity compared to the controls; this rise was even more significant for the IDO urothelium (2416.7±479.8 pmol/g [p<0.005]) than for the NDO urothelium (133.1±22.4 pmol/g [p<0.01]); values for the controls were 77.6±16.2 pmol/g. ATP release following mechanical stretch was more sensitive to tetrodotoxin in bladders with NDO compared to those with IDO as well as to the controls, with ATP levels falling from 233.5±20.7 pmol/g to 107.2±11.6 pmol/g, expressed as percentage of basal levels (p<0.002). The experiments were performed in vitro, and the female patients were a mix of peri- and postmenopausal states. These experiments suggested a significant rise in ATP release from the urothelium of bladders with NDO as well as those with IDO in comparison to controls. Most of the ATP released from bladders with NDO is primarily from neuronal sources. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  16. [Expression and clinical significance of 5hmC in bladder urothelial carcinoma].

    PubMed

    Li, Jie; Xu, Yuqiao; Zhang, Zhiwen; Zhang, Ming; Zhang, Zhekai; Zhang, Feng; Li, Qing

    2016-02-01

    To investigate the expression of 5-hydroxymethylcytosine (5hmC) in bladder urothelial carcinoma (UC) and its clinical significance. The expression of 5hmC in 21 cases of UC tissues and pericarcinous urinary tract epithelium was detected by immunohistochemical staining. Then the expression of 5hmC in the surgical resection of UC tissues in 92 cases was also surveyed. Non parametric U Mann-Whitney test was used to analyze the correlation between 5hmC expression and clinical data. Single factor survival analysis was performed by Kaplan-Meier test. The expression of 5hmC in normal urinary tract epithelium and UC tissues was significantly different, but there was no significant difference in the expression of 5hmC between low and high grades of UC tissues as well as between different TNM grades. Kaplan-Meier single factor survival analysis showed that there was no significant correlation between the 5hmC expression level and the survival rate or the recurrence-free survival of UC patients. The expression level of 5hmC in UC tissues is significantly lower than that in pericarcinous urinary tract epithelium. There is no correlation between the 5hmC expression and the progression, prognosis and recurrence of UC.

  17. Management of lower urinary tract symptoms in Parkinson's disease in the neurology clinic.

    PubMed

    Madan, Arina; Ray, Sudeshna; Burdick, Daniel; Agarwal, Pinky

    2017-12-01

    This clinical review aims to evaluate lower urinary tract symptoms (LUTS) in Parkinson's disease (PD) patients and the current treatment options available for these symptoms in a neurology setting. The review also addresses when referral to urology is appropriate. A literature search was conducted using the keywords 'LUTS', 'non-motor symptoms', 'overactive bladder', 'Parkinson's disease' and 'urinary symptoms' using the Medline/Pubmed search engine. Data collected ranged from 2000 to present with emphasis on recent publications. This review was conducted because LUTS in PD has a major impact on quality of life and is associated with early institutionalization. Emphasis is placed on treating overactive bladder with conservative strategies and medical management in the neurology setting. Quality of life can be improved and institutionalization can be delayed with a multimodal approach to bladder care.

  18. Gene Discovery in Bladder Cancer Progression using cDNA Microarrays

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos

    2003-01-01

    To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971

  19. Adjuvant photodynamic therapy (PDT) with photosensitizer photosens for superficial bladder cancer: experimental investigations to treat prostate cancer by PDT with photosens

    NASA Astrophysics Data System (ADS)

    Apolikhin, Oleg I.; Chernishov, Igor V.; Sivkov, Andrey V.; Altunin, Denis V.; Kuzmin, Sergey G.; Vorozhtsov, Georgy N.

    2007-07-01

    14 patients with transional-cell bladder cancer in stage T1N0M0G2 after transurethral bladder resection were offered adjuvant treatment with PDT. Adjuvant PDT was performed 1-1.5 months after transurethral bladder resection for superficial bladder cancer. Prior to PDT conventional and fluorescent cystoscopy were performed. In the absence of inflammation and after full epitalisation of postoperative wound a session of therapy was performed. 24 hours prior to PDT-session photosensitizer Photosens was injected intravenously in the dose of 0.8 mg per kg of body weight. Prior to PDT local anesthesia of urethra with lidocain-gel was performed. Cystoscopy was carried out. PDT was performed with diode laser "Biospec" (675 nm). During the session the place of standing diffuser and the volume of a bladder were controlled. After 7 months of observation no tumor recidivists were observed. Registered side effects were not life-threatened. 5 patients had pain or discomfort in suprapubic area, ceasing spontaneously or requiring administration of analgetics. No systemic side-effects or allergic reactions were observed. The method can be used in out-patient practice. Absence of early recidivists shows efficiency of PDT in the treatment of superficial bladder cancer. Further study is necessary to estimate optimal regimen of PDT. The further controlling of condition on the patients in this group is required. At the laboratory animals' experiment, we conducted the explorations devoted to the influence of the photodynamic effect at the prostate's tissues.

  20. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors

    PubMed Central

    Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.

    1999-01-01

    In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738

  1. Applications of molecular self-assembly in tissue engineering

    NASA Astrophysics Data System (ADS)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely an equilibrium state of micelles (5--10 nm) and vesicles (25--35 nm). A pyrene analogue was shown to lyse cells, which correlated with the molecule's reduced propensity to form strong aggregates in aqueous solution. Other amino acid segments were substituted for L-lysine, and only those amphiphiles with basic residues were efficiently taken in by cells. For all three self-assembling systems, their nanoscale organization and their interaction with biological systems were directly related to the chemical nature of their constituent building blocks.

  2. Effects of Overpressures in Group Shelters on Animals and Dummies. Part 1

    DTIC Science & Technology

    1953-09-01

    organ, the urinary bladder, showed gross disruption or tearing of tissue as a result of the blast. (a) Skeletal- Muscular System. Gross evidence of... muscular , skeletal, and soft-tissue 3 injury was noted in only three dogs. No bone fractures were found. Animal D-14 showed multiple moderate-size...artelact of separation from the surrounding tissue. This was not apparent around muscular bronchial walls. Considerable dust was noted in the lungs of

  3. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    PubMed

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  4. Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer

    NASA Astrophysics Data System (ADS)

    Virani, Needa A.; Davis, Carole; McKernan, Patrick; Hauser, Paul; Hurst, Robert E.; Slaton, Joel; Silvy, Ricardo P.; Resasco, Daniel E.; Harrison, Roger G.

    2018-01-01

    Bladder cancer has a 60%-70% recurrence rate most likely due to any residual tumour left behind after a transurethral resection (TUR). Failure to completely resect the cancer can lead to recurrence and progression into higher grade tumours with metastatic potential. We present here a novel therapy to treat superficial tumours with the potential to decrease recurrence. The therapy is a heat-based approach in which bladder tumour specific single-walled carbon nanotubes (SWCNTs) are delivered intravesically at a very low dose (0.1 mg SWCNT per kg body weight) followed 24 h later by a short 30 s treatment with a 360° near-infrared light that heats only the bound nanotubes. The energy density of the treatment was 50 J cm-2, and the power density that this treatment corresponds to is 1.7 W cm-2, which is relatively low. Nanotubes are specifically targeted to the tumour via the interaction of annexin V (AV) and phosphatidylserine, which is normally internalised on healthy tissue but externalised on tumours and the tumour vasculature. SWCNTs are conjugated to AV, which binds specifically to bladder cancer cells as confirmed in vitro and in vivo. Due to this specific localisation, NIR light can be used to heat the tumour while conserving the healthy bladder wall. In a short-term efficacy study in mice with orthotopic MB49 murine bladder tumours treated with the SWCNT-AV conjugate and NIR light, no tumours were visible on the bladder wall 24 h after NIR light treatment, and there was no damage to the bladder. In a separate survival study in mice with the same type of orthotopic tumours, there was a 50% cure rate at 116 days when the study was ended. At 116 days, no treatment toxicity was observed, and no nanotubes were detected in the clearance organs or bladder.

  5. A unified EM approach to bladder wall segmentation with coupled level-set constraints

    PubMed Central

    Han, Hao; Li, Lihong; Duan, Chaijie; Zhang, Hao; Zhao, Yang; Liang, Zhengrong

    2013-01-01

    Magnetic resonance (MR) imaging-based virtual cystoscopy (VCys), as a non-invasive, safe and cost-effective technique, has shown its promising virtue for early diagnosis and recurrence management of bladder carcinoma. One primary goal of VCys is to identify bladder lesions with abnormal bladder wall thickness, and consequently a precise segmentation of the inner and outer borders of the wall is required. In this paper, we propose a unified expectation-maximization (EM) approach to the maximum-a-posteriori (MAP) solution of bladder wall segmentation, by integrating a novel adaptive Markov random field (AMRF) model and the coupled level-set (CLS) information into the prior term. The proposed approach is applied to the segmentation of T1-weighted MR images, where the wall is enhanced while the urine and surrounding soft tissues are suppressed. By introducing scale-adaptive neighborhoods as well as adaptive weights into the conventional MRF model, the AMRF model takes into account the local information more accurately. In order to mitigate the influence of image artifacts adjacent to the bladder wall and to preserve the continuity of the wall surface, we apply geometrical constraints on the wall using our previously developed CLS method. This paper not only evaluates the robustness of the presented approach against the known ground truth of simulated digital phantoms, but further compares its performance with our previous CLS approach via both volunteer and patient studies. Statistical analysis on experts’ scores of the segmented borders from both approaches demonstrates that our new scheme is more effective in extracting the bladder wall. Based on the wall thickness calibrated from the segmented single-layer borders, a three-dimensional virtual bladder model can be constructed and the wall thickness can be mapped on to the model, where the bladder lesions will be eventually detected via experts’ visualization and/or computer-aided detection. PMID:24001932

  6. Expression of cyclooxygenase-2 in normal urothelium, and superficial and advanced transitional cell carcinoma of bladder.

    PubMed

    Margulis, Vitaly; Shariat, Shahrokh F; Ashfaq, Raheela; Thompson, Melissa; Sagalowsky, Arthur I; Hsieh, Jer-Tsong; Lotan, Yair

    2007-03-01

    We compared the differential expression of cyclooxygenase-2 in normal bladder tissue, primary bladder transitional cell carcinoma and transitional cell carcinoma metastases to lymph nodes, and determined whether cyclooxygenase-2 expression is associated with molecular alterations commonly found in bladder transitional cell carcinoma and clinical outcomes after radical cystectomy. Immunohistochemical staining for cyclooxygenase-2, survivin (Novus Biologicals, Littleton, Colorado), p21, p27, pRB, p53, MIB-1, Bax, Bcl-2, cyclin D(1) (Dakotrade mark), cyclin E (Oncogene, Cambridge, Massachusetts) and caspase-3 (Cell Signaling, Beverley, Massachusetts) was performed on archival bladder specimens from 9 subjects who underwent cystectomy for benign causes, 21 patients who underwent transurethral resection and 157 consecutive patients after radical cystectomy, and on 41 positive lymph nodes. Cyclooxygenase-2 was expressed in none of the 9 normal bladder specimens (0%), 52% of transurethral resection specimens, 62% of cystectomy specimens and 80% of lymph nodes involved with transitional cell carcinoma. Cyclooxygenase-2 expression was associated with higher pathological stage, lymphovascular invasion and metastases to lymph nodes (p=0.001, 0.045 and 0.002, respectively). Cyclooxygenase-2 expression was associated with altered expression of p53 (p=0.039), pRB (p=0.025), cyclin D1 (p=0.034) and caspase-3 (p=0.014). On univariate analysis cyclooxygenase-2 expression was associated with an increased risk of disease recurrence and bladder cancer specific mortality (p=0.0189 and 0.0472, respectively). However, on multivariate analysis only pathological stage and metastases to lymph nodes were associated with disease recurrence (p<0.001 and <0.001) and survival (p<0.001 and 0.015, respectively). Cyclooxygenase-2 is not expressed in normal bladder urothelium. Cyclooxygenase-2 over expression is associated with pathological and molecular features of biologically aggressive disease, suggesting a role for cyclooxygenase-2 in bladder cancer development and invasion.

  7. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  8. Nephrogenic Adenoma of the Urinary Bladder: A Review of the Literature

    PubMed Central

    Venyo, Anthony Kodzo-Grey

    2015-01-01

    Background. Nephrogenic adenoma of the urinary bladder (NAUB) is a rare lesion associated with nonspecific symptoms and could inadvertently be misdiagnosed. Aim. To review the literature. Methods. Various internet search engines were used. Results. NAUB is a benign tubular and papillary lesion of the bladder, is more common in men and adults, and has been associated with chronic inflammation/irritation, previous bladder surgery, diverticula, renal transplantation, and intravesical BCG; recurrences and malignant transformations have been reported. Differential diagnoses include clear cell adenocarcinoma, endocervicosis, papillary urothelial carcinoma, prostatic adenocarcinoma of bladder, and nested variant of urothelial carcinoma; most NAUBs have both surface papillary and submucosal tubular components; both the papillae and tubules tend to be lined by a single layer of mitotically inactive bland cells which have pale to clear cytoplasm. Diagnosis may be established by using immunohistochemistry (positive staining with racemase; PAX2; keratins stain positive with fibromyxoid variant), electron microscopy, DNA analysis, and cytological studies. Treatment. Endoscopic resection is the treatment but recurrences including sporadic malignant transformation have been reported. Conclusions. There is no consensus on best treatment. A multicentre study is required to identify the treatment that would reduce the recurrence rate, taking into consideration that intravesical BCG is associated with NAUB. PMID:27347540

  9. MicroRNA-320c inhibits tumorous behaviors of bladder cancer by targeting Cyclin-dependent kinase 6

    PubMed Central

    2014-01-01

    Background Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to human disease including cancer. Previous miRNA microarray analysis illustrated that miR-320c is down-regulated in various cancers. However, the roles of miR-320c in human bladder cancer have not been well elucidated. Therefore, this study was performed to investigate the biological functions and molecular mechanisms of miR-320c in human bladder cancer cell lines, discussing whether it could be a therapeutic biomarker of bladder cancer in the future. Methods Two human bladder cancer cell lines and samples from thirteen patients with bladder cancer were analyzed for the expression of miR-320c by quantitative RT-PCR. Over-expression of miR-320c was established by transfecting mimics into T24 and UM-UC-3. Cell proliferation and cell cycle were assessed by cell viability assay, flow cytometry and colony formation assay. Cell motility ability was evaluated by transwell assay. The target gene of miR-320c was determined by luciferase assay, quantitative RT-PCR and western blot. The regulation of cell cycle and mobility by miR-320c was analyzed by western blot. Results We observed that miR-320c was down-regulated in human bladder cancer tissues and bladder cancer cell lines T24 and UM-UC-3. Over-expression of miR-320c could induce G1 phase arrest in UM-UC-3 and T24 cells, and subsequently inhibited cell growth. We also indentified miR-320c could impair UM-UC-3 and T24 cell motility. In addition, we identified CDK6, a cell cycle regulator, as a novel target of miR-320c. Moreover, we demonstrated miR-320c could induce bladder cancer cell cycle arrest and mobility via regulating CDK6. We also observed that inhibition of miR-320c or restoration of CDK6 in miR-320c-over-expressed bladder cancer cells partly reversed the suppressive effects of miR-320c. Conclusions miR-320c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. Our study revealed that miR-320c could be a therapeutic biomarker of bladder cancer in the future. PMID:25178497

  10. Gynaecomastia: an unusual presenting symptom of bladder cancer.

    PubMed

    Ahmed, Mashrafi; Kanji, Aleem; Begum, Tahmina

    2015-06-25

    A 74-year-old man presented to the outpatient clinic with painful gynaecomastia. A detailed physical examination to sort out possible causes of the gynaecomastia, including intracranial tumour, liver cirrhosis, hyperthyroidism, and adrenal and testicular tumour, was negative. No offending agent was found in his medication list. A CT scan of the head and ultrasound of the scrotum did not show any mass lesion. His serum β-human chorionic gonadotropin (β-hCG) and oestradiol levels were elevated. A CT scan of the abdomen and pelvis revealed bladder wall thickening with soft tissue mass. A cystoscopic biopsy confirmed transitional cell carcinoma with muscle invasion. The patient was started on chemotherapy but responded poorly. This case report describes the β-hCG and oestradiol-secreting transitional cell carcinoma of the bladder presenting as gynaecomastia in an older man. 2015 BMJ Publishing Group Ltd.

  11. Uropathogenic E. coli Promote a Paracellular Urothelial Barrier Defect Characterized by Altered Tight Junction Integrity, Epithelial Cell Sloughing and Cytokine Release

    PubMed Central

    Wood, M. W.; Breitschwerdt, E. B.; Nordone, S. K.; Linder, K. E.; Gookin, J. L.

    2013-01-01

    Summary The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequels of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415

  12. Comparison of 5 Different Rat Models to Establish a Standard Animal Model for Research Into Interstitial Cystitis.

    PubMed

    Song, Phil Hyun; Chun, So Young; Chung, Jae-Wook; Kim, Yeon Yong; Lee, Hyo Jung; Lee, Jun Nyung; Ha, Yun-Sok; Yoo, Eun Sang; Kwon, Tae Gyun; Kim, Jeongshik; Kim, Dae Hwan; Kim, Bum Soo

    2017-09-01

    We evaluated 5 different rat models using different agents in order to establish a standard animal model for interstitial cystitis (IC) in terms of the functional and pathologic characteristics of the bladder. Five IC models were generated in 8-week-old female Sprague-Dawley rats via transurethral instillation of 0.1M hydrogen chloride (HCl) or 3% acetic acid (AA), intraperitoneal injection of cyclophosphamide (CYP) or lipopolysaccharide (LPS), or subcutaneous injection of uroplakin II (UPK2). After generating the IC models, conscious cystometry was performed on days 3, 7, and 14. All rats were euthanized on day 14 and their bladders were obtained for histological and pro-inflammatory-related gene expression analysis. In the cystometric analysis, all experimental groups showed significantly decreased intercontraction intervals compared with the control group on day 3, but only the LPS and UPK groups maintained significantly shorter intercontraction intervals than the control group on day 14. The histological analysis revealed that areas with severe urothelial erosion (HCl, AA, and UPK) and hyperplasia (CYP and LPS), particularly in the UPK-treated bladders, showed a markedly increased infiltration of toluidine blue-stained mast cells and increased tissue fibrosis. In addition, significantly elevated expression of interleukin-1b, interleukin-6, myeloperoxidase, monocyte chemotactic protein 1, and Toll-like receptors 2 and 4 was observed in the UPK group compared to the other groups. Among the 5 different agents, the injection of UPK generated the most effective IC animal model, showing consequent urothelial barrier loss, inflammatory reaction, tissue fibrosis stimulation, and persistent hyperactive bladder.

  13. Comparative analysis of the effect of prostatic invasion patterns on cancer-specific mortality after radical cystectomy in pT4a urothelial carcinoma of the bladder.

    PubMed

    Vallo, Stefan; Gilfrich, Christian; Burger, Maximilian; Volkmer, Björn; Boehm, Katharina; Rink, Michael; Chun, Felix K; Roghmann, Florian; Novotny, Vladimir; Mani, Jens; Brisuda, Antonin; Mayr, Roman; Stredele, Regina; Noldus, Joachim; Schnabel, Marco; May, Matthias; Fritsche, Hans-Martin; Pycha, Armin; Martini, Thomas; Wirth, Manfred; Roigas, Jan; Bastian, Patrick J; Nuhn, Philipp; Dahlem, Roland; Haferkamp, Axel; Fisch, Margit; Aziz, Atiqullah

    2016-10-01

    To evaluate the prognostic relevance of different prostatic invasion patterns in pT4a urothelial carcinoma of the bladder (UCB) after radical cystectomy. Our study comprised a total of 358 men with pT4a UCB. Patients were divided in 2 groups-group A with stromal infiltration of the prostate via the prostatic urethra with additional muscle-invasive UCB (n = 121, 33.8%) and group B with continuous infiltration of the prostate through the entire bladder wall (n = 237, 66.2%). The effect of age, tumor grade, carcinoma in situ, lymphovascular invasion, soft tissue surgical margin, lymph node metastases, administration of adjuvant chemotherapy, and prostatic invasion patterns on cancer-specific mortality (CSM) was evaluated using competing-risk regression analysis. Decision curve analysis was used to evaluate the net benefit of including the variable invasion pattern within our model. The estimated 5-year CSM-rates for group A and B were 50.1% and 66.0%, respectively. In multivariable competing-risk analysis, lymph node metastases (hazard ratio [HR] = 1.73, P<0.001), lymphovascular invasion (HR = 1.62, P = 0.0023), soft tissue surgical margin (HR = 1.49, P = 0.026), absence of adjuvant chemotherapy (HR = 2.11, P<0.001), and tumor infiltration of the prostate by continuous infiltration of the entire bladder wall (HR = 1.37, P = 0.044) were significantly associated with a higher risk for CSM. Decision curve analysis showed a net benefit of our model including the variable invasion pattern. Continuous infiltration of the prostate through the entire bladder wall showed an adverse effect on CSM. Besides including these patients into clinical trials for an adjuvant therapy, we recommend including prostatic invasion patterns in predictive models in pT4a UCB in men. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    PubMed Central

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  15. Solitary extramedullary plasmacytoma of the bladder: a case report and literature.

    PubMed

    Khaliq, Waseem; Uzoaru, Ikechukwu; Konchanin, Ronald P; Sapiente, Ronald A; Egner, James R

    2010-08-01

    Plasmacytoma is a rare B-lymphocyte neoplastic disorder that usually presents as the generalized disease multiple myeloma. Less than 5% of the cases present as a solitary mass of monoclonal plasma cells in the bone or soft tissue. Although solitary extramedullary plasmacytoma (SEP) may arise in any organ, it rarely involves the urinary bladder. A 67-year-old male without a history of multiple myeloma presented with urinary frequency and nocturia; he was later diagnosed with SEP of the bladder. The patient was initially treated with a course of radiation therapy without symptomatic improvement; therefore a chemotherapy regimen consisting of lenalidomide and dexamethasone was subsequently given for six cycles. SEP usually carries a better prognosis and higher cure rate than solitary plasmacytoma of bone, as SEP is radiation sensitive. The role of adjuvant chemotherapy in the treatment of SEP that is resistant to radiation therapy is not clear, since most of the recommendations have been derived from the experience of head and neck SEP. The literature also lacks recommendations for choice of a chemotherapy regimen and surveillance of isolated bladder plasmacytoma. Here we present the first case of a radiation-resistant solitary plasmacytoma of the bladder that was successfully treated with lenalidomide and dexamethasone with successful clinical remission.

  16. New insights into the influence of cigarette smoking on urothelial carcinogenesis: smoking-induced gene expression in tumor-free urothelium might discriminate muscle-invasive from nonmuscle-invasive urothelial bladder cancer.

    PubMed

    Gabriel, Ute; Li, Li; Bolenz, Christian; Steidler, Annette; Kränzlin, Bettina; Saile, Maria; Gretz, Norbert; Trojan, Lutz; Michel, Maurice Stephan

    2012-11-01

    Smoking is the main risk factor for urothelial bladder cancer. In former smokers the risk decreases but does not reach the low level of never smokers. This indicates reversible and permanent smoking-derived genetic alterations. Transcriptional changes may point to mechanisms, how smoking promotes urothelial bladder cancer. To identify smoking-derived transcriptional changes we performed gene expression profiling in current, former, and never smokers, using tumor and tumor-free urothelium from patients with nonmuscle-invasive urothelial bladder cancer (NMIBC) or muscle-invasive urothelial bladder cancer (MIBC). Smoking turned out to influence gene expression much less than tumor stage (NMIBC or MIBC) and tumor transformation (tumor-free or tumor). Smoking seemed to influence gene expression in patients with MIBC more strongly compared to those with NMIBC. The least irreversible changes after smoking cessation were proposed in tumor-free urothelium from patients with NMIBC. Growth factors and oncogenes were up-regulated in tumor-free urothelium from smokers with MIBC but not from smokers with NMIBC. A panel of genes up-regulated in smokers have potential for early detection and distinction of MIBC from NMIBC using tumor-free tissue. Copyright © 2011 Wiley Periodicals, Inc.

  17. Evaluation of the rat bladder-derived relaxant factor by coaxial bioassay system.

    PubMed

    Bozkurt, Turgut Emrah; Sahin-Erdemli, Inci

    2004-07-14

    The release of bladder-derived relaxant factor in a coaxial bioassay system and the effects of reactive oxygen species were studied. After precontraction with phenylephrine (10(-6)-3x10(-6)) or 50 mM K+, acetylcholine (10(-8)-10(-3) M) induced relaxation in rat anococcygeus muscle mounted within rat bladder in a tissue bath. This relaxation was not altered by the removal of the urothelium or incubation with tetrodotoxin (10(-6) M). However, bupivacaine (10(-4) M) and lidocaine (3 x 10(-4) M) inhibited this response after raising the pH of the nutrient solution to 7.8, and oxybuprocaine (10(-4) M) exerted inhibitory effect at both physiological pH (7.4) and at pH 7.8. Exposure to electrolysis-generated reactive oxygen species or incubation with hydrogen peroxide and pyrogallol did not alter the acetylcholine response. Present results indicate that the bladder-derived relaxant factor does not behave like endothelium-derived hyperpolarizing factor, but its release may be associated with tetrodotoxin-resistant Na+ channels, which are probably in the neurons of the bladder rather than in the urothelium or detrusor muscle. Furthermore, reactive oxygen species do not interact with this relaxing factor, the exact nature and the physiological importance of which, however, remains to be established.

  18. Prognostic value of sex-hormone receptor expression in non-muscle-invasive bladder cancer.

    PubMed

    Nam, Jong Kil; Park, Sung Woo; Lee, Sang Don; Chung, Moon Kee

    2014-09-01

    We investigated sex-hormone receptor expression as predicting factor of recurrence and progression in patients with non-muscle invasive bladder cancer. We retrospectively evaluated tumor specimens from patients treated for transitional cell carcinoma of the bladder at our institution between January 2006 and January 2011. Performing immunohistochemistry using a monoclonal androgen receptor antibody and monoclonal estrogen receptor-beta antibody on paraffin-embedded tissue sections, we assessed the relationship of immunohistochemistry results and prognostic factors such as recurrence and progression. A total of 169 patients with bladder cancer were evaluated in this study. Sixty-threepatients had expressed androgen receptors and 52 patients had estrogen receptor beta. On univariable analysis, androgen receptor expression was significant lower in recurrence rates (p=0.001), and estrogen receptor beta expression was significant higher in progression rates (p=0.004). On multivariable analysis, significant association was found between androgen receptor expression and lower recurrence rates (hazard ratio=0.500; 95% confidence interval, 0.294 to 0.852; p=0.011), but estrogen receptor beta expression was not significantly associated with progression rates. We concluded that the possibility of recurrence was low when the androgen receptor was expressed in the bladder cancer specimen and it could be the predicting factor of the stage, number of tumors, carcinoma in situ lesion and recurrence.

  19. Pure Lymphoepithelioma-Like Carcinoma Originating from the Urinary Bladder

    PubMed Central

    Nagai, Takashi; Naiki, Taku; Kawai, Noriyasu; Iida, Keitaro; Etani, Toshiki; Ando, Ryosuke; Hamamoto, Shuzo; Sugiyama, Yosuke; Okada, Atsushi; Mizuno, Kentaro; Umemoto, Yukihiro; Yasui, Takahiro

    2016-01-01

    Lymphoepithelioma-like carcinoma of the urinary bladder (LELCB) is a rare variant of infiltrating urothelial carcinoma. We report a case of LELCB in a 43-year-old man. Ultrasonography and cystoscopy revealed two bladder tumors, one on the left side of the trigone and the other on the right side of the trigone. Transurethral resection of the bladder tumors was performed and pathological analysis revealed undifferentiated carcinoma. We therefore performed radical cystectomy and urinary diversion. Immunohistochemically the tumor cells were positive for cytokeratin, but negative for Epstein-Barr virus-encoded small RNA in situ hybridization as found for previous cases of LELCB. The final pathological diagnosis was a lymphoepithelioma-like variant of urothelial carcinoma with perivesical soft tissue invasion. For adjuvant systemic chemotherapy, three courses of cisplatin were administered. The patient subsequently became free of cancer 72 months postoperatively. Based on the literature, pure or predominant LELCB types show favorable prognoses due to their sensitivity to chemotherapy or radiotherapy. An analysis of the apparent diffusion coefficient (ADC) values of bladder tumors examined in our institution revealed that the ADC value measured for this LELCB was relatively low compared to conventional urothelial carcinomas. This suggests that measuring the ADC value of a lymphoepithelioma-like carcinoma prior to operation may be helpful in predicting LELCB. PMID:27099604

  20. Clinical and pathological implications of miRNA in bladder cancer

    PubMed Central

    Braicu, Cornelia; Cojocneanu-Petric, Roxana; Chira, Sergiu; Truta, Anamaria; Floares, Alexandru; Petrut, Bogdan; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2015-01-01

    MicroRNAs (miRNAs) are small, noncoding RNA species with a length of 20–22 nucleotides that are recognized as essential regulators of relevant molecular mechanisms, including carcinogenesis. Current investigations show that miRNAs are detectable not only in different tissue types but also in a wide range of biological fluids, either free or trapped in circulating microvesicles. miRNAs were proven to be involved in cell communication, both in pathological and physiological processes. Evaluation of the global expression patterns of miRNAs provides key opportunities with important practical applications, taking into account that they modulate essential biological processes such as epithelial to mesenchymal transition, which is a mechanism relevant in bladder cancer. miRNAs collected from biological specimens can furnish valuable evidence with regard to bladder cancer oncogenesis, as they also have been linked to clinical outcomes in urothelial carcinoma. Therefore, a single miRNA or a signature of multiple miRNAs may improve risk stratification of patients and may supplement the histological diagnosis of urological tumors, particularly for bladder cancer. PMID:25653521

  1. Role of potassium ion channels in detrusor smooth muscle function and dysfunction

    PubMed Central

    Petkov, Georgi V.

    2013-01-01

    Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596

  2. Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: a meta-analysis.

    PubMed

    Chen, Feng; Huang, Tao; Ren, Yu; Wei, Junjun; Lou, Zhongguan; Wang, Xue; Fan, Xiaoxiao; Chen, Yirun; Weng, Guobin; Yao, Xuping

    2016-08-30

    Methylation of the tumor suppressor gene H-cadherin (CDH13) has been reported in many cancers. However, the clinical effect of the CDH13 methylation status of patients with bladder cancer remains to be clarified. A systematic literature search was performed to identify eligible studies in the PubMed, Embase, EBSCO, CKNI and Wanfang databases. The pooled odds ratio (OR) and the corresponding 95 % confidence interval (95 % CI) was calculated and summarized. Nine eligible studies were included in the present meta-analysis consisting of a total of 1017 bladder cancer patients and 265 non-tumor controls. A significant association was found between CDH13 methylation levels and bladder cancer (OR = 21.71, P < 0.001). The results of subgroup analyses based on sample type suggested that CDH13 methylation was significantly associated with bladder cancer risk in both the tissue and the urine (OR = 53.94, P < 0.001; OR = 7.71, P < 0.001; respectively). A subgroup analysis based on ethnic population showed that the OR value of methylated CDH13 was higher in Asians than in Caucasians (OR = 35.18, P < 0.001; OR = 8.86, P < 0.001; respectively). The relationships between CDH13 methylation and clinicopathological features were also analyzed. A significant association was not observed between CDH13 methylation status and gender (P = 0.053). Our results revealed that CDH13 methylation was significantly associated with high-grade bladder cancer, multiple bladder cancer and muscle invasive bladder cancer (OR = 2.22, P < 0.001; OR = 1.45, P = 0.032; OR = 3.42, P < 0.001; respectively). Our study indicates that CDH13 methylation may play an important role in the carcinogenesis, development and progression of bladder cancer. In addition, CDH13 methylation has the potential to be a useful biomarker for bladder cancer screening in urine samples and to be a prognostic biomarker in the clinic.

  3. Transurethral ultrasound-guided laser prostatectomy: initial Luebeck experince

    NASA Astrophysics Data System (ADS)

    Thomas, Stephen; Spitzenpfeil, Elisabeth; Knipper, Ansgar; Jocham, Dieter

    1994-02-01

    Transurethral ultrasound guided laser prostatectomy is one of the most promising alternative invasive treatment modalities for benign prostatic hyperplasia. The principle feature is an on- line 3-D controlling of Nd:YAG laser denaturation of the periurethral tissue. Necrotic tissue is not removed, but sloughs away with the urinary stream within weeks. The bleeding hazard during and after the operation is minimal. By leaving the bladder neck untouched, sexual function is not endangered. Thirty-one patients with symptomatic BPH were treated with the TULIP system and followed up for at least 12 weeks. Suprapubic bladder drainage had to be maintained for a mean time of 37 days. Conventional TURP was performed in four patients due to chronic infection, recurrent bleeding, and poor results. Our initial experience with the TULIP system shows it to be very efficient and safe. A longer follow up of a larger patient population is necessary to compare the therapeutic efficiency to conventional transurethral resection.

  4. What are the currently available and in development molecular markers for bladder cancer? Will they prove to be useful in the future?

    PubMed

    Abdulmajed, Mohamed Ismat; Sancak, Eyüp Burak; Reşorlu, Berkan; Al-Chalaby, Gydhia Zuhair

    2014-12-01

    Urothelial carcinoma is the 9(th) most common cancer worldwide. Most urothelial tumors are non-muscle invasive on presentation. However, two-thirds of non-invasive bladder cancers will eventually recur with a 25% risk of progression to muscle-invasive bladder cancer. Tumor stage, histological grade and pathological invasion of blood vessels and lymphatic tissue are the main indicators for urothelial cancer prognosis. The gold standard for diagnosing bladder cancer is conventional white-light cystoscopy and biopsy. Urine cytology is a highly specific, sensitive test for high-grade tumors or carcinoma in situ (CIS). Urinary NMP22 has an overall sensitivity and specificity for detecting bladder cancer of 49% and 87%, respectively. However, there are false-positive results in the presence of urinary tract infection or hematuria. The detection of specific gene mutations related to urothelial cancers has been studied and employed to reproduce markers helpful for diagnosis. According to current studies, molecular markers can be used to predict tumor recurrence. From a prognostic point of view, new molecular markers have yet to be established as reliable indicators of tumor aggressiveness. We aimed to review the molecular markers with possible prognostic significance that have been discussed in the literature. This review examined the literature for various molecular markers under development for bladder cancer in an attempt to optimize patient care and reduce the costs of treating these patients.

  5. A Murine Model for Escherichia coli Urinary Tract Infection.

    PubMed

    Hannan, Thomas J; Hunstad, David A

    2016-01-01

    Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.

  6. Elevated expression of matrix metalloproteinase-9 is associated with bladder cancer pathogenesis.

    PubMed

    Wu, Gong-Jin; Bao, Jun-Sheng; Yue, Zhong-Jin; Zeng, Fan-Chang; Cen, Song; Tang, Zheng-Yan; Kang, Xin-Li

    2018-01-01

    This study investigated the association between abnormal matrix metalloproteinase-9 (MMP-9) expression and bladder cancer (BC) development. In a retrospective analysis, this study used tissue samples derived from 92 patients pathologically diagnosed with BC (experimental group), who were hospitalized between September 2012 and June 2014 at the Urinary Surgery of Department of Urology, Lanzhou University Second Hospital. As controls (control group), 63 normal pericancerous bladder mucosal tissues (3 cm distant form edge of BC foci) with confirmed pathology were selected from the same time period. Immunohistochemistry was employed to detect MMP-9 protein expression in the tissues and enzyme-linked immunosorbent assay was performed to measure MMP-9 protein levels in tissue samples of patients and control subjects. Finally, a meta-analysis was conducted to understand the overall impact of MMP-9 on BC pathogenesis. STATA 12.0 software (Stata Corp, College Station, TX, USA) was used for all statistical analyses. The MMP-9 positive expression rate in tissue samples and MMP-9 levels were significantly greater in the experimental group compared to the control group (both P < 0.001). The frequency of MMP-9 positive status showed statistically significant differences between G1 (low-grade) and G3 (high-grade) (P < 0.001), between G2 and G3 (P < 0.05), and between G1/G2 and G3 (P = 0.001). Our meta-analysis findings provided further evidence that MMP-9 positive expression status and MMP-9 levels in the experimental group were significantly higher than the control group (positive expressions: Odds ratio [OR] = 18.59, 95% confidence interval [95% CI] = 11.63-29.71, P < 0.001; expression levels: Standard mean difference = 1.51, 95%CI = 0.63-2.39, P = 0.001). The positive expression status of MMP-9 was notably lower in G1/G2 compared to G3 (OR = 0.24, 95%CI = 0.15-0.36, P < 0.001). Our study demonstrated that both positive expression status in tumor tissue and expression levels of MMP-9 are significantly elevated in BC patients and correlate with disease progression. Thus, MMP-9 can serve as a biomarker to determine the degree of BC malignancy.

  7. Bladder augmentation without integration of intact bowel segments: critical review and future perspectives.

    PubMed

    Gurocak, Serhat; De Gier, Robert P E; Feitz, Wouter

    2007-03-01

    We evaluated the long-term results of autoaugmentation in the pediatric age group and summarized technical adaptations, experimental options and future perspectives for treating these patients. A directed MEDLINE literature review was performed to assess different techniques and alternative options in autoaugmentation procedures. Of 150 studies 49 in the subgroup with the longest duration of followup to show the long-term outcome of the autoaugmentation procedures were chosen for this review. Information gained from these data was reviewed and new perspectives were summarized. Enterocystoplasy is an effective mode of therapy with acceptable morbidity and satisfactory clinical results, although it is major intraperitoneal surgery with various complications and patients need prolonged convalescence to adapt to these surgical procedures. On the other hand, patient selection seems to be the most crucial step for the success of autoaugmentation procedures because the clinical outcome does not appear to be durable. Achievement of better compliance after autoaugmentation procedures seems to be less pronounced and of shorter duration than that of conventional enterocystoplasty. On the other hand, the low morbidity and lack of side effects of bowel integration into the urinary tract are the definite advantages of this technique. It is the responsibility of the physician to determine the balance between the limited efficacy of the procedures vs the definite advantages. Although functionally improved parameters are obtained in tissue engineered autologous bladders, there is an absolute need for additional studies before this challenging technique could be applied widely.

  8. Revitalization of biostatic tissue allografts: new perspectives in tissue transplantology.

    PubMed

    Olender, E; Uhrynowska-Tyszkiewicz, I; Kaminski, A

    2011-10-01

    Biostatic (nonvital) tissue allografts have been used for temporary replacement as well as to trigger, stimulate, and ensure space for the regeneration of a recipient's own tissues. Examples of biostatic allografts routinely used in clinic are bone, tendons, skin, and amniotic membrane. A characteristic feature of biostatic allografts is the lack of living cells. In the recipient's body, biostatic allografts function as scaffolds as well as sources of growth, differentiation, and chemotactic factors. After implantation, recipient cells migrate onto the graft, colonize it, and initiate synthesis of extracellular matrix, thereby regenerating the structure of the lost or damaged tissue. The allograft gradually degrades before being remodeled and substituted by the recipient's new tissue. However, this process is not always effective due to a lack of reaction by recipient cells. New concepts have proposed seeding recipient cells onto the allograft prior to implantation, that is, biostatic allografts that are revitalized ex vivo. The aim of this presentation was to review scientific publications to provide essential information on the revitalization of biostatic allografts, as a rising trend in tissue transplantology. Biostatic allografts show the following advantages: they are human-derived, nontoxic, biocompatible, and, in some cases, already display the desired shape. The process of introducing cells into the biostatic graft is described as "revitalization." The cells used in the process are recipient autologous elements that are either differentiated or progenitor elements. Cells are seeded onto the graft directly after retrieval or after propagation in culture. Revitalized biostatic allografts can be used orthotopically for the regeneration of the same tissue they have been retrieved from or heterotopically wherein the graft retrieved from a different tissue is used as a carrier for cells typical for the tissue to be regenerated. Examples of orthotopic use include revitalized trachea, tissue-engineered blood vessels, urinary bladder wall, and revitalized trabecular bone cubes. Examples of heterotopic use include: amniotic membrane as a carrier of limbal stem cells to treat corneal defects, or for chondrocytes to treat articular cartilage defects. Various requirements set by law must be met by tissue banks performing cell seeding of grafts. In Europe, the requirements are described in directives: 2004/23/EC, 2006/17/EC, 2006/86/EC), and in the regulation 2007/1394/EC. Revitalization of biostatic allografts gives new, promising tools for creation of functional parts of organs; brings the methodology used in tissue banks closer to tissue engineering; places the enterprise in the mainstream of advanced biotechnology; allows the full potential of tissue allografts; and opens a new, large area for clinical and laboratory research. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  10. Effects of Cyclooxygenase on the Urothelium of the Urinary Bladder of Mice Exposed to Pelvic Radiation.

    PubMed

    Ozbilgin, M Kemal; Onal, Tuna; Ozcan, Cemil; Temel, Merve; Aktas, Caner; Gareveran, Manuchehr Salehi; Uluer, Elgin Turkoz; Inan, Sevinc; Kurtman, Cengiz

    2016-04-01

    To determine the role of cyclooxygenase (COX) expression in the urothelium of the urinary bladder during radiation injury caused by pelvic radiotherapy for cancer therapy. Twenty-four male Swiss Albino mice were separated into 4 groups. The first group was the control group (Group 1) and the second, third, and fourth groups were euthanized after 24 hours (Group 2), 48 hours (Group 3), and 7 days (Group 4), respectively. A single-fractioned 10 Gy of ionizing radiation was applied to all mice's pelvic zone with Co-60. Bladders were removed completely from the pelvic region. Histochemical analysis using hematoxylin and eosin and immunohistochemical analysis using anti-COX-1 and COX-2 antibodies were performed on tissue samples. The immunoreactivities of the urinary bladder were quantified using H-score measurement, and statistical comparison was performed. In the immunohistochemical examination the COX-1 immunoreactivities were found to be higher in the urothelium of the bladder in the radiation exposed groups than in the normal control group (group 1) (p < 0.005). Additionally, high immunoreactivity of COX-2 molecule was established in groups 2, 3, and 4 of radiation groups as compared to group 1 (p < 0.005) in examination of the urothelium. COX-1 and COX-2 immunoreactivities in the submucosa were detected higher in group 4 than in the other groups (p < 0.005). COX-1 and COX-2 expressions in the urothelium and subepithelium of the urinary bladder were investigated in mice during the acute radiation response. The expression of COX-1 and COX-2 in the urothelium seems to prevent bladder damage from radiation, supplying differentiation and restoration of the urothelium.

  11. The stem cell growth factor receptor KIT is not expressed on interstitial cells in bladder.

    PubMed

    Gevaert, Thomas; Ridder, Dirk De; Vanstreels, Els; Daelemans, Dirk; Everaerts, Wouter; Aa, Frank Van Der; Pintelon, Isabel; Timmermans, Jean-Pierre; Roskams, Tania; Steiner, Clara; Neuhaus, Jochen

    2017-06-01

    The mast/stem cell growth factor receptor KIT has long been assumed to be a specific marker for interstitial cells of Cajal (ICC) in the bladder, with possible druggable perspectives. However, several authors have challenged the presence of KIT + ICC in recent years. The aim of this study was therefore to attempt to clarify the conflicting reports on KIT expression in the bladder of human beings, rat, mouse and guinea pig and to elucidate the possible role of antibody-related issues and interspecies differences in this matter. Fresh samples were obtained from human, rat, mouse and guinea pig cystectomies and processed for single/double immunohistochemistry/immunofluorescence. Specific antibodies against KIT, mast cell tryptase (MCT), anoctamin-1 (ANO1) and vimentin were used to characterize the cell types expressing KIT. Gut (jejunum) tissue was used as an external antibody control. Our results revealed KIT expression on mast cells but not on ICC in human, rat, mouse and guinea pig bladder. Parallel immunohistochemistry showed KIT expression on ICC in human, rat, mouse and guinea pig gut, which confirmed the selectivity of the KIT antibody clones. In conclusion, we have shown that KIT + cells in human, rat, mouse and guinea pig bladder are mast cells and not ICC. The present report is important as it opposes the idea that KIT + ICC are present in bladder. In this perspective, functional concepts of KIT + ICC being involved in sensory and/or motor aspects of bladder physiology should be revised. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. A cone beam CT-Based Study for Clinical Target Definition Using Pelvic Anatomy During Postprostatectomy Radiotherapy.

    PubMed

    Showalter, Timothy N; Nawaz, A Omer; Xiao, Ying; Galvin, James M; Valicenti, Richard K

    2008-02-01

    There are no accepted guidelines for target volume definition for online image-guided radiation therapy (IGRT) after radical prostatectomy (RP). This study used cone beam CT (CBCT) imaging to generate information for use in post-RP IGRT. The pelvic anatomy of 10 prostate cancer patients undergoing post-RP radiation therapy (RT) to 68.4 Gy was studied using CBCT images obtained immediately before treatment. Contoured bladder and rectal volumes on CBCT images were compared with planning CT (CT(ref)) volumes from seminal vesicle stump (SVS) to bladder-urethral junction. This region was chosen to approximate the prostatic fossa (PF) during a course of post-RP RT. Anterior and posterior planning target volume margins were calculated using ICRU report 71 guidelines, accounting for systematic and random error based on bladder and rectal motion, respectively. A total of 176 CBCT study sets obtained 2 to 5 times weekly were analyzed. The rectal and bladder borders were reliably identified in 166 of 176 (94%) of CBCT images. Relative to CT(ref), mean posterior bladder wall position was anterior by 0.1 to 1.5 mm, and mean anterior rectum wall position was posterior by 1.6 to 2.7 mm. Calculated anterior margin as derived from bladder motion ranged from 5.9 to 7.1 mm. Calculated posterior margin as derived from rectal motion ranged from 8.6 to 10.2 mm. Normal tissue anatomy was definable by CBCT imaging throughout the course of post-RP RT, and the interfraction anteroposterior motion of the bladder and rectum was studied. This information should be considered in devising post-RP RT techniques using image guidance.

  13. Health information quality on the internet for bladder cancer and urinary diversion: a multi-lingual analysis.

    PubMed

    Corfield, Julia M; Abouassaly, Robert; Lawrentschuk, Nathan

    2018-04-01

    Bladder cancer patients undergoing radical cystectomy and urinary diversion are faced with difficult decisions regarding mode of urinary diversion. Although these patients may use the Internet as a guide to diagnosis and treatment options, online resources remain largely unregulated leading to a great variation in quality of medical information. Further variation in quality is seen between languages. Fortunately, tools such as an automated toolbar developed by the World Health Organization Health on the Net (HON) Foundation exist to assist physicians in recommending quality online health information to patients. We set out to compare and assess the quality of bladder cancer, ileal conduit and orthotopic neobladder web sites in 2016 on the basis of the HON principles for English language. The Google search engine imbedded with the HON toolbar was used to assess 1350 Web sites using the keywords "bladder cancer", "ileal conduit" and "orthotopic neobladder" in English, Italian and Spanish. The first 150 results of each search were identified and screened. A further analysis was completed comparing results between 2009 and 2016. Less than 20% of English, Italian and Spanish "bladder cancer" and urinary diversion ("ileal conduit" and "orthotopic neobladder") web sites are HON-accredited. HON-accredited web sites featured preferentially in the first 50 search results for bladder cancer (P=0.0001) and ileal conduit (P=0.03) web sites. Comparing 2016 results to 2009, percentage of HON-accreditation has not shown statistically significant change (-13%, P=0.23), while overall number of search results has increased (+44%). A lack of validation of bladder cancer sites is present, which is consistent across modes of urinary diversion (orthotopic neobladder and ileal conduit) and languages. It is important that physicians involved in the care of bladder cancer patients undergoing radical cystectomy and urinary diversion participate in the development of informative, ethical, and reliable health Web sites and direct patients to them.

  14. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  15. Primary adenocarcinomas of the human urinary bladder: histochemical, immunological and ultrastructural studies.

    PubMed

    Alroy, J; Roganovic, D; Banner, B F; Jacobs, J B; Merk, F B; Ucci, A A; Kwan, P W; Coon, J S; Miller, A W

    1981-01-01

    Neoplastic and non-neoplastic tissue specimens from ten patients with primary adenocarcinoma of the urinary bladder were examined. Most of these tumors were associated with either foci of transitional cell carcinoma and/or with glandular metaplasia of the bladder epithelium. The mucin produced by the neoplastic cells was PAS, alcian blue, mucicarmine, PB/KOH/PAS, and RPB/KOH/PAS-positive. ABH isoantigens of these tumors were not always deleted. Ultrastructurally, the neoplastic cells resembled goblet cells. Their plasma membrane had numerous microvilli with prominent glycocalyx. Proliferation and attenuation of tight junctions were noted. The gap junctions were few and small. Two types of desmosomes were found. The ultrastructural features of the neoplastic cells were attributed in part to the malignant transformation and in part to the direction of their differentiation. We have not observed any distinctive morphologic, histochemical, immunologic or ultrastructural features that might be diagnostic for these adenocarcinomas.

  16. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau

    PubMed Central

    King, Terrence L.; Ali, Heba; Sidker, Nehan; Cameron, Timothy M.

    2016-01-01

    Despite rapid damping, fish swimbladders have been modelled as underwater resonant bubbles. Recent data suggest that swimbladders of sound-producing fishes use a forced rather than a resonant response to produce sound. The reason for this discrepancy has not been formally addressed, and we demonstrate, for the first time, that the structure of the swimbladder wall will affect vibratory behaviour. Using the oyster toadfish Opsanus tau, we find regional differences in bladder thickness, directionality of collagen layers (anisotropic bladder wall structure), material properties that differ between circular and longitudinal directions (stress, strain and Young's modulus), high water content (80%) of the bladder wall and a 300-fold increase in the modulus of dried tissue. Therefore, the swimbladder wall is a viscoelastic structure that serves to damp vibrations and impart directionality, preventing the expression of resonance. PMID:27798293

  17. Personalized medicine for targeted and platinum-based chemotherapy of lung and bladder cancer

    PubMed Central

    Cimino, George D; Pan, Chong-xian; Henderson, Paul T

    2013-01-01

    The personalized medicine revolution is occurring for cancer chemotherapy. Biomarkers are increasingly capable of distinguishing genotypic or phenotypic traits of individual tumors, and are being linked to the selection of treatment protocols. This review covers the molecular basis for biomarkers of response to targeted and cytotoxic lung and bladder cancer treatment with an emphasis on platinum-based chemotherapy. Platinum derivatives are a class of drugs commonly employed against solid tumors that kill cells by covalent attachment to DNA. Platinum–DNA adduct levels in patient tissues have been correlated to response and survival. The sensitivity and precision of adduct detection has increased to the point of enabling subtherapeutic dosing for diagnostics applications, termed diagnostic microdosing, prior to the initiation of full-dose therapy. The clinical status of this unique phenotypic marker for lung and bladder cancer applications is detailed along with discussion of future applications. PMID:23394702

  18. Use of the holmium:YAG laser in urology.

    PubMed

    Johnson, D E; Cromeens, D M; Price, R E

    1992-01-01

    The tissue effects of a holmium:YAG (Ho:YAG) laser operating at a wavelength of 2.1 mu with a maximum power of 15 watts (W) and 10 different energy-pulse settings was systematically evaluated on kidney, bladder, prostate, ureteral, and vasal tissue in the dog. In addition, various urologic surgical procedures (partial nephrectomy, transurethral laser incision of the prostate, and laser-assisted vasovasostomy) were performed in the dog, and a laparoscopic pelvic lymph node dissection was carried out in a pig. Although the Ho:YAG laser has a strong affinity for water, precise tissue ablation was achieved in both the contact and non-contact mode when used endoscopically in a fluid medium to ablate prostatic and vesical tissue. Using the usual parameters for tissue destruction (blanching without charring), the depth of thermal injury in the bladder and ureter was kept superficial. In performing partial nephrectomies, a 2-fold reduction in the zone of coagulative necrosis was demonstrated compared to the use of the continuous wave Neodymium:YAG laser (Nd:YAG). When used through the laparoscope, the Ho:YAG laser provided precise cutting and, combined with electrocautery, allowed the dissection to proceed quickly and smoothly. Hemostatic control was adequate in all surgical procedures. Although the results of these investigations are preliminary, our initial experience with the Ho:YAG laser has been favorable and warrants further investigations.

  19. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.

    PubMed

    Xu, Xuanang; Zhou, Fugen; Liu, Bo

    2018-03-19

    Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

  20. An ex vivo investigation into the transurothelial permeability and bladder wall distribution of the nonsteroidal anti-inflammatory ketorolac.

    PubMed

    Williams, Nicholas A; Bowen, Jenna L; Al-Jayyoussi, Ghaith; Gumbleton, Mark; Allender, Chris J; Li, Jamie; Harrah, Tim; Raja, Aditya; Joshi, Hrishi B

    2014-03-03

    Transurothelial drug delivery continues to be an attractive treatment option for a range of urological conditions; however, dosing regimens remain largely empirical. Recently, intravesical delivery of the nonsteroidal anti-inflammatory ketorolac has been shown to significantly reduce ureteral stent-related pain. While this latest development provides an opportunity for advancing the management of stent-related pain, clinical translation will undoubtedly require an understanding of the rate and extent of delivery of ketorolac into the bladder wall. Using an ex vivo porcine model, we evaluate the urothelial permeability and bladder wall distribution of ketorolac. The subsequent application of a pharmacokinetic (PK) model enables prediction of concentrations achieved in vivo. Ketorolac was applied to the urothelium and a transurothelial permeability coefficient (Kp) calculated. Relative drug distribution into the bladder wall after 90 min was determined. Ketorolac was able to permeate the urothelium (Kp = 2.63 × 10(-6) cm s(-1)), and after 90 min average concentrations of 400, 141 and 21 μg g(-1) were achieved in the urothelium, lamina propria and detrusor respectively. An average concentration of 87 μg g(-1) was achieved across the whole bladder wall. PK simulations (STELLA) were then carried out, using ex vivo values for Kp and muscle/saline partition coefficient (providing an estimation of vascular clearance), to predict 90 min in vivo ketorolac tissue concentrations. When dilution of the drug solution with urine and vascular clearance were taken into account, a reduced ketorolac concentration of 37 μg g(-1) across the whole bladder wall was predicted. These studies reveal crucial information about the urothelium's permeability to agents such as ketorolac and the concentrations achievable in the bladder wall. It would appear that levels of ketorolac delivered to the bladder wall intravesically would be sufficient to provide an anti-inflammatory effect. The combination of such ex vivo data and PK modeling provides an insight into the likelihood of achieving clinically relevant concentrations of drug following intravesical administration.

  1. Ex vivo applications of multiphoton microscopy in urology

    NASA Astrophysics Data System (ADS)

    Jain, Manu; Mukherjee, Sushmita

    2016-03-01

    Background: Routine urological surgery frequently requires rapid on-site histopathological tissue evaluation either during biopsy or intra-operative procedure. However, resected tissue needs to undergo processing, which is not only time consuming but may also create artifacts hindering real-time tissue assessment. Likewise, pathologist often relies on several ancillary methods, in addition to H&E to arrive at a definitive diagnosis. Although, helpful these techniques are tedious and time consuming and often show overlapping results. Therefore, there is a need for an imaging tool that can rapidly assess tissue in real-time at cellular level. Multiphoton microscopy (MPM) is one such technique that can generate histology-quality images from fresh and fixed tissue solely based on their intrinsic autofluorescence emission, without the need for tissue processing or staining. Design: Fresh tissue sections (neoplastic and non-neoplastic) from biopsy and surgical specimens of bladder and kidney were obtained. Unstained deparaffinized slides from biopsy of medical kidney disease and oncocytic renal neoplasms were also obtained. MPM images were acquired using with an Olympus FluoView FV1000MPE system. After imaging, fresh tissues were submitted for routine histopathology. Results: Based on the architectural and cellular details of the tissue, MPM could characterize normal components of bladder and kidney. Neoplastic tissue could be differentiated from non-neoplastic tissue and could be further classified as per histopathological convention. Some of the tumors had unique MPM signatures not otherwise seen on H&E sections. Various subtypes of glomerular lesions were identified as well as renal oncocytic neoplasms were differentiated on unstained deparaffinized slides. Conclusions: We envision MPM to become an integral part of regular diagnostic workflow for rapid assessment of tissue. MPM can be used to evaluate the adequacy of biopsies and triage tissues for ancillary studies. It can also be used as an adjunct to frozen section analysis for intra-operative margin assessment. Further, it can play an important role for pathologist for guiding specimen grossing, selecting tissue for tumor banking and as a rapid ancillary diagnostic tool.

  2. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model.

    PubMed

    Martin Jensen, M; Jia, Wanjian; Schults, Austin J; Ye, Xiangyang; Prestwich, Glenn D; Oottamasathien, Siam

    2018-05-18

    Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS. Copyright © 2018. Published by Elsevier Ltd.

  3. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty, the registration error is limited to within 1.3 mm. For a solid organ such as the prostate, the registration errors are much larger. Given 30% in material uncertainty, the registration error can reach 4.5 mm. However, the registration error distribution for prostates shows that most of the subvolumes have a much smaller registration error. A deformable organ registration technique that uses FEM is a good candidate in IGART if the mean material parameters are available.« less

  4. PBPK-MODEL ESTIMATES OF BROMODICHLOROMETHANE (BDCM) DISTRIBUTION IN URINE AND BLADDER TISSUE

    EPA Science Inventory

    Recent data indicate that noningestion exposure to trihalomethanes (THMs), including BDCM is highly correlated with urinary THM levels. Characterizing urinary levels of drinking water disinfection byproducts (DBPs) will likely be important for understanding DBP-associated bladde...

  5. Safety Study of MGD009 in B7-H3-expressing Tumors

    ClinicalTrials.gov

    2017-10-04

    Mesothelioma; Bladder Cancer; Melanoma; Squamous Cell Carcinoma of the Head and Neck; Non Small Cell Lung Cancer; Clear Cell Renal Cell Carcinoma; Ovarian Cancer; Thyroid Cancer; Breast Cancer; Pancreatic Cancer; Prostate Cancer; Colon Cancer; Soft Tissue Sarcoma

  6. Sex steroid receptors in male human bladder: expression and biological function.

    PubMed

    Chavalmane, Aravinda K; Comeglio, Paolo; Morelli, Annamaria; Filippi, Sandra; Fibbi, Benedetta; Vignozzi, Linda; Sarchielli, Erica; Marchetta, Matilde; Failli, Paola; Sandner, Peter; Saad, Farid; Gacci, Mauro; Vannelli, Gabriella B; Maggi, Mario

    2010-08-01

    In male, lower urinary tract symptoms (LUTS) have been associated, beside benign prostatic hyperplasia, to some unexpected comorbidities (hypogonadism, obesity, metabolic syndrome), which are essentially characterized by an unbalance between circulating androgens/estrogens. Within the bladder, LUTS are linked to RhoA/Rho-kinase (ROCK) pathway overactivity. To investigate the effects of changing sex steroids on bladder smooth muscle. ER α, ER β, GPR30/GPER1 and aromatase mRNA expression was analyzed in male genitourinary tract tissues, and cells isolated from bladder, prostate, and urethra. Estrogen and G1 effect on RhoA/ROCK signaling output like cell migration, gene expression, and cytoskeletal remodeling, and [Ca(2+) ](i) was also studied in hB cells. Contractile studies on bladder strips from castrated male rats supplemented with estradiol and testosterone was also performed. The effects of classical (ER α, ER β) and nonclassical (GPR30/GPER1) estrogen receptor ligands (17 β-estradiol and G1, respectively) and androgens on RhoA/ROCK-.mediated cell functions were studied in hB cells. Contractility studies were also performed in bladder strips from castrated male rats supplemented with testosterone or estradiol. Aromatase and sex steroid receptors, including GPR30, were expressed in human bladder and mediates several biological functions. Both 17 β-estradiol and G1 activated calcium transients and induced RhoA/ROCK signaling (cell migration, cytoskeleton remodeling and smooth muscle gene expression). RhoA/ROCK inhibitors blunted these effects. Estrogen-, but not androgen-supplementation to castrated rats increased sensitivity to the ROCK inhibitor, Y-27632 in isolated bladder strips. In hB cells, testosterone elicited effects similar to estrogen, which were abrogated by blocking its aromatization through letrozole. Our data indicate for the first time that estrogen-more than androgen-receptors up-regulate RhoA/ROCK signaling. Since an altered estrogen/androgen ratio characterizes conditions, such as aging, obesity and metabolic syndrome, often associated to LUTS, we speculate that a relative hyperestrogenism may induce bladder overactivity through the up-regulation of RhoA/ROCK pathway. © 2010 International Society for Sexual Medicine.

  7. Modulation of smooth muscle tonus in the lower urinary tract: interplay of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP).

    PubMed

    Lin, Guiting; Fandel, Thomas M; Shindel, Alan W; Wang, Guifang; Banie, Lia; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun

    2011-07-01

    To assess and compare the expression and activity of myosin light-chain kinase (MLCK) and MLC phosphatase (MLCP) in rat bladder and urethra. Bladder and urethral smooth muscles were obtained from 2-month-old female Sprague-Dawley rats. They were analysed by real-time polymerase chain reaction for the mRNA expression of MLCK and myosin phosphatase-targeting subunit of protein phosphatase type 1 (MYPT1, a subunit of MLCP). Levels of MLCK and MYPT1 mRNA expression were determined as a ratio to the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The tissues were also analysed by Western blotting for MLCK and MYPT1 protein expression as a ratio to the expression of β-actin. A two-step enzymatic activity assay using phosphorylated and dephosphorylated smooth muscle myosin was used to assess MLCK and MLCP activity. MLCK mRNA expression was higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 0.26 (0.17) vs 0.14 (0.12); P = 0.09]. MYPT1 mRNA expression was significantly higher in the bladder than in the urethra [mean (sd) ratio to GAPDH: 2.31 (1.04) vs 0.56 (0.36); P = 0.001]. Expression of both MLCK and MYPT1 protein was significantly higher in the bladder compared with the urethra [mean (sd) ratio to β-actin: 1.63 (0.25) vs 0.91 (0.29) and 0.97 (0.10) vs 0.37 (0.29), respectively; both P < 0.001]. Enzymatic assay identified significantly greater MLCK activity in the bladder than in the urethra. While, MLCP activity was lower in the bladder than in the urethra. In healthy young female rats, MLCK activity is higher and MLCP activity is lower in the bladder relative to the urethra. These differences probably play a role in modulating the functional differences between bladder and urethral smooth muscle tone. © 2010 THE AUTHORS. BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  8. The management of non-invasive bladder tumours with Doxorubicin intravesical instillation after transurethral resection.

    PubMed

    Al-Gallab, Musa I; Naddaf, Louai A; Kanan, Mohamad R

    2009-04-01

    Evaluation of the intravesical instillation of doxorubicin for its effect on disease recurrence for patients with non-invasive bladder tumour. The study was performed at Al Assad University Hospital in Lattakia, Syria and included patients with non-invasive bladder tumours who were managed with transurethral resection and induction and maintenance therapy with intravesical doxorubicin. They were followed up by cystoscopy every 3 months for 2 years and every 6 months thereafter with special emphasis on recurrence rates. The study included 85 patients with non-invasive bladder tumours: 23 with non-invasive papillary carcinoma (Stage Ta), 62 with tumour invading subepithelial connective tissue (Stage T1). Twelve patients had well differentiated tumours (Grade 1), 48 had moderately differentiated (Grade 2), 25 had poorly differentiated (Grade 3) tumours. The total recurrence rate was 23%. The rates of recurrence were 56% in Grade 3 and 0% in Grade 1. The recurrence rate was 41% in patients with large tumours versus 17% in those with small tumours; 44% in those with multiple tumours compared to 18% in those with solitary tumours; 30% of Stage Ta tumours recurred and 21% of Stage T1 tumours. In short term follow-up, our rate of recurrence was 23%. Adjuvant intravesical doxorubicin was shown to reduce the recurrence of superficial bladder cancer. Tumour grade, size and number were shown to be prognostic factors for recurrence.

  9. The molecular genetic basis of mitochondrial malfunction in bladder tissue following outlet obstruction.

    PubMed

    Levin, Robert M; Hudson, Alan P

    2004-08-01

    Bladder dysfunction following partial outlet obstruction is a frequent consequence of benign prostatic hyperplasia and an increasingly common problem given the aging of the general population. Recent studies from this and other groups have begun to elucidate the molecular bases for the well described physiological malfunctions that characterize this clinical entity. We summarized and synthesized that information. Using modern methods of molecular genetics, including real-time polymerase chain reaction, real-time reverse transcriptase-polymerase chain reaction and others, as well as traditional experimental techniques such as electron microscopy we and others examined the transcriptional profile, morphology, etc of bladder smooth muscle mitochondria in experimental models of outlet obstruction. Data from many studies have demonstrated that aberrant gene expression in the mitochondrial and mitochondria related nuclear genetic systems underlies the loss of compliance and other attributes of bladder dysfunction following outlet obstruction. Such aberrant transcriptional characteristics engender loss of function in the electron transport and oxidative phosphorylation systems. Morphological studies of mitochondria in the animal model systems support this conclusion. In large part the loss of function in bladder smooth muscle following outlet obstruction results from the attenuation of mitochondrial energy production. In this article we reviewed and synthesized all available experimental observations relevant to this problem and we suggest future lines of inquiry that should prove fruitful in developing new strategies to treat the condition.

  10. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  11. Localization of hypericin-induced fluorescence after Hypericum perforatum polar fraction instillation in normal rat urinary bladder

    NASA Astrophysics Data System (ADS)

    Stavropoulos, Nikos E.; Skalkos, Dimitris; Tsimaris, Ioannis; Kalogeras, D.; Nseyo, Unyime O.; Batistatou, A.; Agnantis, N. J.

    2005-04-01

    The photodynamic action of the Hypericum perforatum L. extract, mainly its polar methanolic fraction (PMF) has recently been substantiated by our group. The herb contains a number of naphthodianthrones - photosensitizers mainly hypericin and pseudohypericin. The concentration of hypericins in PMF was found to be 1.37 %. The distribution of hypericins fluorescence in sections of normal rat bladder tissues after the intravesical instillation of the polar methanolic fraction of hypericum (PMF) was studied by the use of fluorescence microscopy. PMF was dissolved in normal saline containing 0.5 μg/ml concentration of hypericins, and was then instilled in rat bladder for 15, 30, 60 and 120 minutes respectively. PMF solutions were withdrawn, bladders were rinsed through the catheter with normal saline and rats were sacrificed. Bladders were then removed, cut open and immediately mounted in medium, and immersed in liquid nitrogen. Two consecutive 3-μm frozen sections were cut with a cryostat. The first section was examined by fluorescence microscopy and the second section was stained with hematoxylin and eosin. For fluorescence imaging the filter set used included a 535/50 nm bandpass excitation filter and a 610/75 nm emission filter. Fluorescence images were acquired and documented using photography. Fluorescene could be detected in bladder samples after only 15 minutes of instillation with the above described solution. The urothelium / muscle fluorescence ratio ranged from 5/1 to 11/1 in various sites of the samples examined. No fluorescence originating from the muscle could be detected. PMF should be further studied towards the direction of its use in photodynamic therapy.

  12. Selective binding of lectins to normal and neoplastic urothelium in rat and mouse bladder carcinogenesis models.

    PubMed

    Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok

    2014-01-01

    Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.

  13. Oxidative stress status accompanying diabetic bladder cystopathy results in the activation of protein degradation pathways

    PubMed Central

    Kanika, Nirmala; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J.; Melman, Arnold; Davies, Kelvin

    2010-01-01

    Objectives To investigate the role that oxidative stress plays in the development of diabetic cystopathy. Materials and methods Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month-old diabetic rats was carried out using microarray analysis. Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. The activity of protein degradation pathways was assessed using western blot analysis. Results Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10−10). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. Conclusions Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. PMID:21518418

  14. Effects of age and hypertension on α1-adrenoceptors in the major source arteries of the rat bladder and penis.

    PubMed

    Yono, Makoto; Tanaka, Takanori; Tsuji, Shigeki; Irie, Shin; Sakata, Yukikuni; Otani, Masayuki; Yoshida, Masaki; Latifpour, Jamshid

    2011-11-16

    α(1)-Adrenoceptors regulate blood pressure, regional vascular resistance and tissue blood flow. As aging and hypertension may impact pelvic arterial blood flow resulting in bladder and penile dysfunction, we investigated effects of age and hypertension on α(1)-adrenoceptors in the major source arteries of the rat bladder and penis. Using radioligand receptor binding, real-time reverse transcription-polymerase chain reaction (RT-PCR) and fluorescent microsphere infusion techniques, we compared 3 and 22-month-old male Fischer rats, and male normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Twenty-two-month-old rats and SHRs had significantly higher total α(1)-adrenoceptor density in the internal iliac artery and lower blood flow to the bladder and penis than 3-month-old and WKY rats, respectively. RT-PCR data showed an age and hypertension related increase in the expression of α(1B)-adrenoceptor mRNA in the internal iliac, vesical and internal pudendal arteries and a switch from α(1A) predominance in 3-month-old and WKY rats to α(1B)>α(1A) in 22-month-old rats and SHRs. Our data indicate the presence of age and hypertension related alterations in vascular α(1)-adrenoceptor subtype distribution and in blood flow to the rat bladder and penis. These findings suggest that pharmacological blockade of the vascular α(1B)-adrenoceptor, which could increase pelvic blood flow, may contribute to the improvement of bladder and penile dysfunctions in animal models for aging and hypertension. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Uroprotective mechanism of quercetin against cyclophosphamide-induced urotoxicity: Effect on oxidative stress and inflammatory markers.

    PubMed

    Sherif, Iman O

    2018-05-18

    The urotoxicity is a common complication associated with patients receiving cyclophosphamide (CYP). This study was designed to investigate the uroprotective mechanism of quercetin (Quer) flavonoid against CYP induced urotoxicity via determination of oxidative stress markers as well as inflammatory mediators in bladder tissue. Forty male Wistar rats were divided into four groups; Normal group: received saline for 10 days. Quer control group: received quercetin 50 mg/kg/day for 10 days. CYP group: received saline for 10 days and injected with a single dose of 150 mg/kg CYP intraperitoneal (i.p) at day 8. The Quer + CYP group: received Quer 50 mg/kg/day for 10 days plus CYP 150 mg/kg i.p. injection at day 8. The CYP injection produced a significant elevation in bladder contents of malondialdehyde (MDA), and nitric oxide (NO), and bladder protein levels and expressions of tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in addition to the upregulation of cyclooxygenase-2 (COX-2) bladder gene expression. Also, CYP injection showed a marked reduction in bladder levels of catalase, superoxide dismutase (SOD), and IL-10 when compared with normal group. Moreover, histopathological examination of the bladder showed degenerative alterations, severe edema, and inflammation following CYP injection. Quer attenuated the biochemical markers and histopathological changes induced by CYP. The uroprotective effect of Quer was exerted by restoring the balance between oxidative/antioxidative status and pro-/anti-inflammatory cytokines via its antioxidant and anti-inflammatory activities. © 2018 Wiley Periodicals, Inc.

  16. The Photosynthesis, Na+/K+ Homeostasis and Osmotic Adjustment of Atriplex canescens in Response to Salinity

    PubMed Central

    Pan, Ya-Qing; Guo, Huan; Wang, Suo-Min; Zhao, Bingyu; Zhang, Jin-Lin; Ma, Qing; Yin, Hong-Ju; Bao, Ai-Ke

    2016-01-01

    Atriplex canescens (fourwing saltbush) is a C4 perennial fodder shrub with excellent resistance to salinity. However, the mechanisms underlying the salt tolerance in A. canescens are poorly understood. In this study, 5-weeks-old A. canescens seedlings were treated with various concentrations of external NaCl (0–400 mM). The results showed that the growth of A. canescens seedlings was significantly stimulated by moderate salinity (100 mM NaCl) and unaffected by high salinity (200 or 400 mM NaCl). Furthermore, A. canescens seedlings showed higher photosynthetic capacity under NaCl treatments (except for 100 mM NaCl treatment) with significant increases in net photosynthetic rate and water use efficiency. Under saline conditions, the A. canescens seedlings accumulated more Na+ in either plant tissues or salt bladders, and also retained relatively constant K+ in leaf tissues and bladders by enhancing the selective transport capacity for K+ over Na+ (ST value) from stem to leaf and from leaf to bladder. External NaCl treatments on A. canescens seedlings had no adverse impact on leaf relative water content, and this resulted from lower leaf osmotic potential under the salinity conditions. The contribution of Na+ to the leaf osmotic potential (Ψs) was sharply enhanced from 2% in control plants to 49% in plants subjected to 400 mM NaCl. However, the contribution of K+ to Ψs showed a significant decrease from 34% (control) to 9% under 400 mM NaCl. Interestingly, concentrations of betaine and free proline showed significant increase in the leaves of A. canescens seedlings, these compatible solutes presented up to 12% of contribution to Ψs under high salinity. These findings suggest that, under saline environments, A. canescens is able to enhance photosynthetic capacity, increase Na+ accumulation in tissues and salt bladders, maintain relative K+ homeostasis in leaves, and use inorganic ions and compatible solutes for osmotic adjustment which may contribute to the improvement of water status in plant. PMID:27379134

  17. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  18. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ruijie, E-mail: ruijyang@yahoo.com; Zhao, Nan; Liao, Anyan

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5 mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78 Gy in 39 fractions were prescribed for PTV. For HDR andmore » LDR plans, the dose prescription was D{sub 90} of 34 Gy in 8.5 Gy per fraction, and 145 Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2 Gy per fraction, EQD{sub 2}) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The D{sub mean} (EQD{sub 2}) of rectum decreased 22.36 Gy in HDR and 17.01 Gy in LDR from 30.24 Gy in VMAT, respectively. The D{sub mean} (EQD{sub 2}) of bladder decreased 6.91 Gy in HDR and 2.53 Gy in LDR from 13.46 Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD{sub 2}) was 80.26, 70.23, and 104.91 Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR.« less

  19. Office-based transurethral devascularisation of low grade non-invasive urothelial cancer using diode laser. A feasibility study.

    PubMed

    Hermann, Gregers G; Mogensen, Karin; Lindvold, Lars R; Haak, Christina S; Haedersdal, Merete

    2015-10-01

    Frequent recurrence of non-muscle invasive bladder tumours (NMIBC) requiring transurethral resection of bladder tumour (TUR-BT) and lifelong monitoring makes the lifetime cost per patient the highest of all cancers. A new method is proposed for the removal of low grade NMIBCs in an office-based setting, without the need for sedation and pain control and where the patient can leave immediately after treatment. An in vitro model was developed to examine the dose/response relationship between laser power, treatment time, and distance between laser fibre and target, using a 980 nm diode laser and chicken meat. The relationship between depth and extent of tissue destruction and the laser settings was measured using microscopy and non-parametric statistical analysis. A patient with low grade stage Ta tumour and multiple comorbidity, and therefore not fit for general anaesthesia, had a tumour devascularised using the laser at the tumour base, in the outpatient department. The tumour was left in the bladder. In the in vitro model, depth of tissue destruction increased with laser illumination up to 30 seconds, where median depth was 4.1 mm. With longer illumination the tissue destruction levelled off. The width of tissue destruction was 2-3 mm independent of laser illumination time. The in vivo laser treatments devascularised the tumour, which was later shed from the mucosa and passed out with the urine in the days following treatment. Pain score was 0 on a visual log scale (0-10). The tumour had completely disappeared two weeks after treatment. This diode laser technique may provide almost pain-free office-based treatment of low grade urothelial cancer using flexible cystoscopes in conscious patients. A prospective randomised study will be scheduled to compare the technique with standard TUR-BT in the operating theatre. © 2015 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demos, S G; Gandour-Edwards, R; Ramsamooj, R

    The feasibility of developing bladder cancer detection methods using intrinsic tissue optical properties is the focus of this investigation. In vitro experiments have been performed using polarized elastic light scattering in combination with tissue autofluorescence in the NIR spectral region under laser excitation in the green and red spectral regions. The experimental results obtained from a set of tissue specimens from 25 patients reveal the presence of optical fingerprint characteristics suitable for cancer detection with high contrast and accuracy. These photonic methods are compatible with existing endoscopic imaging modalities which make them suitable for in-vivo application.

  1. Extraintestinal Complications: Kidney Disorders

    MedlinePlus

    ... the ureters, bladder, and urethra for the passage, storage, and voiding of urine. Serious kidney complications associated with IBD are rare, ... Proteinuria, an elevated level of protein in the urine, is one sign of amyloidosis. A biopsy (tissue sample) of the kidney can confirm the diagnosis. Various ...

  2. A Toll-Like Receptor 9 Antagonist Improves Bladder Function and White Matter Sparing in Spinal Cord Injury

    PubMed Central

    David, Brian T.; Sampath, Sujitha; Dong, Wei; Heiman, Adee; Rella, Courtney E.; Elkabes, Stella

    2014-01-01

    Abstract Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. These changes were paralleled by a decrease in the pro-inflammatory response at the injury epicenter. Using the same SCI paradigm and treatment regimen, the current studies investigated the effects of the TLR9 antagonist on bladder function. We report that the TLR9 antagonist decreases SCI-elicited urinary retention and ameliorates bladder morphopathology without affecting kidney function. A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI. PMID:24936867

  3. A toll-like receptor 9 antagonist improves bladder function and white matter sparing in spinal cord injury.

    PubMed

    David, Brian T; Sampath, Sujitha; Dong, Wei; Heiman, Adee; Rella, Courtney E; Elkabes, Stella; Heary, Robert F

    2014-11-01

    Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. These changes were paralleled by a decrease in the pro-inflammatory response at the injury epicenter. Using the same SCI paradigm and treatment regimen, the current studies investigated the effects of the TLR9 antagonist on bladder function. We report that the TLR9 antagonist decreases SCI-elicited urinary retention and ameliorates bladder morphopathology without affecting kidney function. A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI.

  4. Resveratrol improves urinary dysfunction in rats with chronic prostatitis and suppresses the activity of the stem cell factor/c-Kit signaling pathway.

    PubMed

    Yu, Yang; Jiang, Jiang; He, Yi; Wang, Wei; Shen, Chen; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) is a common urological disorder, with bladder voiding dysfunction being the primary clinical manifestation. Resveratrol is polyphenolic compound isolated from numerous plants, with widely‑reported anti-inflammatory properties. The present study aimed to investigate whether resveratrol may improve overactive bladder in rats with CP and to investigate the underlying molecular mechanisms. Furthermore, the potential pharmacological synergy between resveratrol and solifenacin was also investigated as a potential treatment for CP. Following the successful establishment of a rat model of CP by subcutaneously injecting DPT vaccine, rats were treated with resveratrol or a combination of resveratrol + solifenacin. Bladder pressure and volume tests were performed to investigate the effect of resveratrol and solifenacin on urinary dysfunction in rats with chronic prostatitis. Western blot analysis and immunohistochemical staining were used to examine the expression of c‑Kit receptor, stem cell factor (SCF), AKT and phosphorylated‑AKT (p‑AKT) in the bladder tissue. The results of the bladder pressure and volume test indicated that the maximum capacity of the bladder, residual urine volume and maximum voiding pressure in the control group were 0.57 ml, 0.17 ml and 29.62 cm H2O, respectively. These values were increased by 71, 27 and 206% in rats in the CP group compared with the control group. Following treatment with resveratrol, the results in the resveratrol group were reduced by 25.77, 44.23 and 13.32% compared with the CP group. The results of western blot analysis, immunohistochemical staining and immunofluorescence labeling demonstrate that the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats in the CP group was 4.32, 6.13 and 6.31 times higher compared with the control group, respectively. Following treatment with resveratrol, protein expression was significantly reduced. However, no significant differences were observed between the protein expression of the SCF, c‑Kit and p‑AKT in the bladder between the resveratrol and combination groups. In conclusion, resveratrol may improve overactive bladder by downregulating the protein expression of SCF, c‑Kit and p‑AKT in the bladder of rats with CP. Furthermore, a combination of resveratrol and solifenacin may have potential pharmacological synergy as a treatment for patients with CP.

  5. MiR-133 modulates TGF-β1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction.

    PubMed

    Duan, Liu Jian; Qi, Jun; Kong, Xiang Jie; Huang, Tao; Qian, Xiao Qiang; Xu, Ding; Liang, Jun Hao; Kang, Jian

    2015-02-01

    Bladder outlet obstruction (BOO) evokes urinary bladder wall remodeling significantly, including the phenotype shift of bladder smooth muscle cells (BSMCs) where transforming growth factor-beta1 (TGF-β1) plays a pivotal role given the emerging function of modulating cellular phenotype. miR-133 plays a role in cardiac and muscle remodeling, however, little is known about its roles in TGF-β1-induced BSMC hypertrophic and fibrotic response. Here, we verified BOO induced bladder wall remodeling and TGF-β1 expression mainly located in bladder endothelium. Furthermore, we uncovered miR-133a/b expression profile in BOO rats, and then explored its regulated effects on BSMCs' phenotypic shift. Our study found that miR-133 became down-regulated during rat bladder remodeling. Next, we sought to examine whether the expression of miR-133 was down-regulated in primary BSMCs in response to TGF-β1 stimulation and whether forced overexpression of miR-133 could regulate profibrotic TGF-β signaling. We found that stimulation of BSMCs with exogenous TGF-β1 of increasing concentrations resulted in a dose-dependent decrease of miR-133a/b levels and transfection with miR-133 mimics attenuated TGF-β1-induced α-smooth muscle actin, extracellular matrix subtypes and fibrotic growth factor expression, whereas it upregulated high molecular weight caldesmon expression compared with the negative control. Also, downregulation of p-Smad3, not p-Smad2 by miR-133 was detected. Additionally, miR-133 overexpression suppressed TGF-β1-induced BSMC hypertrophy and proliferation through influencing cell cycle distribution. Bioinformatics analyses predicted that connective tissue growth factor (CTGF) was the potential target of miR-133, and then binding to the 3'-untranslated region of CTGF was validated by luciferase reporter assay. These results reveal a novel regulator for miR-133 to modulate TGF-β1-induced BSMC phenotypic changes by targeting CTGF through the TGF-β-Smad3 signaling pathway. A novel antifibrotic functional role for miR-133 is presented which may represent a potential target for diagnostic and therapeutic strategies in bladder fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Temperature-responsive grafted polymer brushes obtained from renewable sources with potential application as substrates for tissue engineering

    NASA Astrophysics Data System (ADS)

    Raczkowska, Joanna; Stetsyshyn, Yurij; Awsiuk, Kamil; Lekka, Małgorzata; Marzec, Monika; Harhay, Khrystyna; Ohar, Halyna; Ostapiv, Dmytro; Sharan, Mykola; Yaremchuk, Iryna; Bodnar, Yulia; Budkowski, Andrzej

    2017-06-01

    The novel temperature-responsive poly(cholesteryl methacylate) (PChMa) coatings derived from renewable sources were synthesized and characterized. Temperature induced changes in wettability were accompanied by surface roughness modifications, traced with AFM. Topographies recorded for temperatures increasing from 5 to 25 °C showed a slight but noticeable increase of calculated root mean square (RMS) roughness by a factor of 1.5, suggesting a horizontal rearrangement in the structure of PChMa coatings. Another structural reordering was observed in the 55-85 °C temperature range. The recorded topography changed noticeably from smooth at 55 °C to very structured and rough at 60 °C and returned eventually to relatively smooth at 85 °C. In addition, temperature transitions of PChMa molecules were revealed by DSC measurements. The biocompatibility of the PChMa-grafted coatings was shown for cultures of granulosa cells and a non malignant bladder cancer cell (HCV29 line) culture.

  7. Retinoid-signaling in progenitors controls specification and regeneration of the urothelium

    PubMed Central

    Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-01-01

    The urothelium is a stratified epithelium that prevents exchange of water and toxic substances between the urinary tract and blood. It is composed of Keratin-5-expressing-basal-cells (K5-BCs), intermediate cells and superficial cells specialized for synthesis and transport of uroplakins that assemble into the apical barrier. K5-BCs are considered to be a progenitor cell type in the urothelium and other stratified epithelia. Fate mapping studies however, reveal that P-cells, a transient population, are urothelial progenitors in the embryo, intermediate cells are superficial cell progenitors in the adult regenerating urothelium, and K5-BCs are a distinct lineage. Our studies indicate that retinoids, potent regulators of ES cells and other progenitors, are also required in P-cells and intermediate cells for their specification. These observations have important implications for tissue engineering and repair, and ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. PMID:23993789

  8. Retinoid signaling in progenitors controls specification and regeneration of the urothelium.

    PubMed

    Gandhi, Devangini; Molotkov, Andrei; Batourina, Ekatherina; Schneider, Kerry; Dan, Hanbin; Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-09-16

    The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek.

    PubMed

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-07

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ~ 0.93) with in situ temperatures obtained by fiberoptic probes.

  10. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek

    NASA Astrophysics Data System (ADS)

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-01

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ˜ 0.93) with in situ temperatures obtained by fiberoptic probes.

  11. High expression of long noncoding RNA NORAD indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer.

    PubMed

    Li, Qiaqia; Li, Chao; Chen, Jinbo; Liu, Peihua; Cui, Yu; Zhou, Xinyi; Li, Huihuang; Zu, Xiongbing

    2018-06-01

    To explore the function of NORAD in bladder cancer (BC), and to verify whether NORAD could be used as a biomarker to determine preoperative presence of progression and lymph node metastasis. To our knowledge, it is the first study investigating NORAD and its implications in BC. BC specimens of 90 patients underwent bladder cystectomy or transurethral resection between January 2012 to December 2016 were tested by fluorescence in situ hybridization. The association between NORAD expression and clinicopathological features and prognosis of the patients was analyzed using Kaplan-Meier survival analysis and Cox regression analysis. Quantitative real-time polymerase chain reaction was performed in 4 BC cell lines and 10 fresh tumor sample together with adjacent tissues. MTT, colony formation assay, and Annexin-V apoptosis detection were performed after knockdown of NORAD using shRNA in TSSCUP cells. Western blot was performed to related proteins extracted from these cells. Fluorescence in situ hybridization indicated that high NORAD expression was associated with more advanced histological grade and clinical stage for patients with BC. Higher NORAD expression resulted in lower overall survival, and was an independent prognostic indicator. Real-time polymerase chain reaction showed that the expression of NORAD in BC tissues was higher than those measured in adjacent normal tissues. MTT and colony formation assay demonstrated that knockdown of NORAD results in lower proliferation in TSSCUP cells, whereas PUM2 expression was upregulated and E2F3 downregulated. High NORAD expression could serve as an independent prognostic factor for overall survival of patients with transitional BC. NORAD could be considered as a promising candidate for novel biomarker and therapeutic target for human BC. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Protective Effect of Thymoquinone against Cyclophosphamide-Induced Hemorrhagic Cystitis through Inhibiting DNA Damage and Upregulation of Nrf2 Expression.

    PubMed

    Gore, Prashant R; Prajapati, Chaitali P; Mahajan, Umesh B; Goyal, Sameer N; Belemkar, Sateesh; Ojha, Shreesh; Patil, Chandragouda R

    2016-01-01

    Cyclophosphamide (CYP) induced hemorrhagic cystitis is a dose-limiting side effect involving increased oxidative stress, inflammatory cytokines and suppressed activity of nuclear factor related erythroid 2-related factor (Nrf2). Thymoquinone (TQ), an active constituent of Nigella sativa seeds, is reported to increase the expression of Nrf2, exert antioxidant action, and anti-inflammatory effects in the experimental animals. The present study was designed to explore the effects of TQ on CYP-induced hemorrhagic cystitis in Balb/c mice. Cystitis was induced by a single intraperitoneal injection of CYP (200 mg/kg). TQ was administered intraperitoneally at 5, 10 and 20 mg/kg doses twice a day, for three days before and three days after the CYP administration. The efficacy of TQ was determined in terms of the protection against the CYP-induced histological perturbations in the bladder tissue, reduction in the oxidative stress, and inhibition of the DNA fragmentation. Immunohistochemistry was performed to examine the expression of Nrf2. TQ protected against CYP-induced oxidative stress was evident from significant reduction in the lipid peroxidation, restoration of the levels of reduced glutathione, catalase and superoxide dismutase activities. TQ treatment significantly reduced the DNA damage evident as reduced DNA fragmentation. A significant decrease in the cellular infiltration, edema, epithelial denudation and hemorrhage were observed in the histological observations. There was restoration and rise in the Nrf2 expression in the bladder tissues of mice treated with TQ. These results confirm that, TQ ameliorates the CYP-induced hemorrhagic cystitis in mice through reduction in the oxidative stress, inhibition of the DNA damage and through increased expression of Nrf2 in the bladder tissues.

  13. Electrospun Fibers for Spinal Cord Injury Research and Regeneration

    PubMed Central

    Schaub, Nicholas J.; Johnson, Christopher D.; Cooper, Blair

    2016-01-01

    Abstract Electrospinning is the process by which a scaffold containing micrometer and nanometer diameter fibers are drawn from a polymer solution or melt using a large voltage gradient between a polymer emitting source and a grounded collector. Ramakrishna and colleagues first investigated electrospun fibers for neural applications in 2004. After this initial study, electrospun fibers are increasingly investigated for neural tissue engineering applications. Electrospun fibers robustly support axonal regeneration within in vivo rodent models of spinal cord injury. These findings suggest the possibility of their eventual use within patients. Indeed, both spinal cord and peripheral nervous system regeneration research over the last several years shows that physical guidance cues induce recovery of limb, respiration, or bladder control in rodent models. Electrospun fibers may be an alternative to the peripheral nerve graft (PNG), because PNG autografts injure the patient and are limited in supply, and allografts risk host rejection. In addition, electrospun fibers can be engineered easily to confront new therapeutic challenges. Fibers can be modified to release therapies locally or can be physically modified to direct neural stem cell differentiation. This review summarizes the major findings and trends in the last decade of research, with a particular focus on spinal cord injury. This review also demonstrates how electrospun fibers can be used to study the central nervous system in vitro. PMID:26650778

  14. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  15. Rhabdomyosarcoma of the urinary bladder in adults: predilection for alveolar morphology with anaplasia and significant morphologic overlap with small cell carcinoma.

    PubMed

    Paner, Gladell P; McKenney, Jesse K; Epstein, Jonathan I; Amin, Mahul B

    2008-07-01

    Rhabdomyosarcoma (RMS) represents the most common malignant soft tissue tumor in children and adolescents with the urinary bladder representing a frequent site. Most of these urinary bladder tumors are embryonal RMS, predominantly the botryoid subtype. RMSs of the urinary bladder in adults are distinctively rare and the subject of only case reports. We report the clinicopathologic features of 5 bladder neoplasms with rhabdomyosarcomatous differentiation in adults and emphasize the differential diagnosis in the adult setting. The patients, 4 men and 1 woman, ranged in age from 23 to 85 years (mean 65.4 y). Gross hematuria was the most common initial symptom, although 2 patients had metastatic disease at presentation. Four cases were pure primary RMSs of the bladder and 1 case was a sarcomatoid urothelial carcinoma with RMS representing the extensive heterologous component. All 5 cases demonstrated a diffuse growth pattern (ie, non-nested), of which 4 cases had nuclear anaplasia (Wilms criteria without the atypical mitotic figure requirement); only 1 case (the sarcomatoid carcinoma) showed obvious rhabdomyoblastic differentiation (ie, strap cells). Three cases were of the alveolar subtype (1 admixed with embryonal histology) and 2 were RMS, not further classified. Microscopically, all tumors had a primitive undifferentiated morphology with cells containing scant cytoplasm, varying round to fusiform nuclei with even chromatin distribution, and frequent mitoses. The degree of morphologic overlap with small cell carcinoma of the bladder, a relatively more common round cell tumor in adults, was striking. The epithelial component of the sarcomatoid carcinoma was high-grade invasive urothelial carcinoma with glandular differentiation. No other case had previous history of bladder cancer or concurrent carcinoma in situ or invasive urothelial carcinoma. All tumors showed immunohistochemical expression for desmin, myogenin, and/or MyoD1. Synaptophysin was performed in 4 cases, and 3 showed weak cytoplasmic immunoreactivity. Two patients received chemotherapy, 2 underwent cystectomy, and 1 had transurethral resection alone. Outcome data were available in 4 cases, and all 4 died of disease (1, 4, 8, and 8 mo). In conclusion, (1) RMS of the urinary bladder in adults more commonly presents as a primitive round blue cell neoplasm that has significant morphologic and immunohistochemical overlap with small cell carcinoma of the bladder. (2) Although RMS in children generally have a botryoid embryonal histology with favorable outcome, bladder RMS in adults frequently demonstrates alveolar or unclassified histology, commonly with anaplasia, and have a uniformly aggressive clinical course.

  16. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan wasmore » optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies incorporating extended follow-up, objective outcome measures, and quality-of-life analyses.« less

  17. Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice

    PubMed Central

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-01-01

    Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health and behavior. PMID:22384806

  18. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice.

    PubMed

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-04-01

    The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.

  19. Deformable anatomical templates for brachytherapy treatment planning in radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Christensen, Gary E.; Williamson, Jeffrey F.; Chao, K. S. C.; Miller, Michael I.; So, F. B.; Vannier, Michael W.

    1997-10-01

    This paper describes a new method to register serial, volumetric x-ray computed tomography (CT) data sets for tracking soft-tissue deformation caused by insertion of intracavity brachytherapy applicators to treat cervical cancer. 3D CT scans collected from the same patient with and without a brachytherapy applicator are registered to aid in computation of the radiation dose to tumor and normal tissue. The 3D CT image volume of pelvic anatomy with the applicator. Initial registration is accomplished by rigid alignment of the pelvic bones and non-rigid alignment of gray scale CT data and hand segmentations of the vagina, cervix, bladder, and rectum. A viscous fluid transformation model is used for non-rigid registration to allow for local, non-linear registration of the vagina, cervix, bladder, and rectum without disturbing the rigid registration of the bony pelvis and adjacent structures. Results are presented in which two 3D CT data sets of the same patient - imaged with and without a brachytherapy applicator - are registered.

  20. Tookad-mediated photodynamic effects on the prostate and its adjacent tissues: in vivo study in canine models

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Chen, Qun; Luck, David; Beckers, Jill; Blanc, Dominique; Hetzel, Fred W.

    2005-04-01

    Photodynamic therapy (PDT) mediated with a vascular acting photosensitizer Tookad (pd-bacteriopheophorbide), was investigated as an alternative treatment modality for prostate cancer. Tookad photodynamic effects on the prostate and its adjacent tissues were evaluated in canine models. Interstitial prostate PDT was performed by irradiating individual lobes with a diode laser (763 nm) and 1-cm cylindrical diffuser fibers at various light doses to activate the IV administered photosensitizer Tookad (1 - 2 mg/kg). The sensitivity of the adjacent tissues to Tookad-PDT was determined by superficially irradiating the surfaces of the bladder, colon, abdominal muscle and pelvic plexus with a microlens fiber at various drug/light doses. PDT effect on the prostatic urethra was evaluated by transurethral irradiation. The prostate and adjacent tissues were harvested one-week after the treatment and subjected to histopathologic examination. At one-week post interstitial prostate PDT, the animals recovered well with little or no urethral complications. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis. The bladder, colon, abdominal muscle and pelvic plexus, appeared to also be sensitive to Tookad-PDT at light dose levels greater than 40 Jcm2. Urethral mucosa appeared less sensitive to Tookad-PDT. In conclusion, Tookad-mediated PDT demonstrates very strong vascular effects and can provide an effective alternative for the treatment of localized prostate cancer. Protection of the adjacent tissues should be taken into consideration in the total prostate ablation process due to their sensitivity to the Tookad-mediated PDT.

  1. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    PubMed Central

    Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.

    2012-01-01

    Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697

  2. Long-term outcomes of urinary tract reconstruction in patients with neurogenic urinary tract dysfunction

    PubMed Central

    Johnson, E. U.; Singh, Gurpreet

    2013-01-01

    The advent of specialized spinal units and better understanding of the pathophysiology of neurogenic urinary tract dysfunction has made long-term survival of these patients a reality. This has, in turn, led to an increase in quality and choice of management modalities offered to these patients including complex anatomic urinary tract reconstructive procedures tailored to the unique needs of each individual with variable outcomes. We performed a literature review evaluating the long-term outcomes of these reconstructive procedures. To achieve this, we conducted a world-wide electronic literature search of long-term outcomes published in English. As the premise of this review is long-term outcomes, we have focused on pathologies where evidence of long-term outcome is available such as patients with spinal injuries and spina bifida. Therapeutic success following urinary tract reconstruction is usually measured by preservation of renal function, improvement in quality-of-life, the satisfactory achievement of agreed outcomes and the prevention of serious complications. Prognostic factors include neuropathic detrusor overactivity; sphincter dyssynergia; bladder over distension; high pressure storage and high leak point pressures; vesicoureteric reflex, stone formation and urinary tract infections. Although, the past decade has witnessed a reduction in the total number of bladder reconstructive surgeries in the UK, these procedures are essentially safe and effective; but require long-term clinical and functional follow-up/monitoring. Until tissue engineering and gene therapy becomes more mainstream, we feel there is still a place for urinary tract reconstruction in patients with neurogenic lower urinary tract dysfunction. PMID:24235796

  3. Expression of ERβ and its co-regulators p300 and NCoR in human transitional cell bladder cancer.

    PubMed

    Kontos, Stylianos; Papatsoris, Athanasios; Kominea, Athina; Melachrinou, Maria; Tanoglidi, Anna; Kachrilas, Stefanos; Karavitakis, Markos; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2011-01-01

    Several data support a possible role of estrogens in bladder carcinogenesis, mediated mainly through estrogen receptor-β (ERβ). We study the expression of ERβ and its co-regulators p300 and nuclear co-repressor (NCoR) in patients with bladder cancer. One hundred and eleven consecutive patients (74 males and 37 females), aged 23-90 years (mean 70 ± 10) diagnosed with transitional cell bladder cancer were included in this study. The control group consisted of 29 patients that underwent transurethral prostatectomy and consented to simultaneous bladder biopsies. Immunohistochemical studies took place on formalin-fixed, paraffin-embedded sections from the TUR (transurethral resection) specimens. We studied the expression of ERβ, p300 and NCoR.χ(2) test was used to evaluate the relationship between the histological grade and ERβ expression, grade and co-regulators expression and grade and gender. Spearman rank correlation coefficient (r) was used in order to estimate the direction and strength of correlations between histological grade and ERβ-p300-NCoR expressions. The Cochran-Armitage test for trend was applied in order to examine possible trends across the ordered levels of histological grade. ERβ was more frequently expressed in the nucleus of normal bladder epithelium compared to malignant bladder epithelium with statistical significant association (r = -0.25, p = 0.003). The p300 was expressed only in the nucleus of bladder cancer cells and a positive correlation between molecular expression and cancer progression was demonstrated (r = 0.55, p < 0.001). NCoR immunostaining was demonstrated in the nuclei of bladder cells. Nuclear staining was significantly higher in normal tissue than in cancer cells (r = -0.33, p < 0.001), with negative correlation. Furthermore, its expression in grade I tumors was significantly higher than in grade II (r = -0.46, p < 0.001) and grade III tumors (r = -0.51, p < 0.001). Thus, like ERβ, NCoR expression in bladder epithelium decreased during cancer progression and loss of cell differentiation. There was no correlation between the levels of expression of the three proteins in normal bladder epithelium, but there was an inverse correlation between the nuclear expression of ERβ and p300 in carcinomas (r = -3.88, p = 0.042). Statistical significant association was established when correlating ERβ expression with NCoR expression (r = 0.273, p = 0.005), while co-regulators' nuclear expression did not correlate with each other (p > 0.05). In bladder carcinogenesis, we demonstrated inhibition in the expression of ERβ and its co-repressor NCoR as well as increased expression of the co-activator p300. Copyright © 2011 S. Karger AG, Basel.

  4. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    PubMed

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation.

    PubMed

    Kuball, Jürgen; Wen, Shu Fen; Leissner, Joachim; Atkins, Derek; Meinhardt, Patricia; Quijano, Erlinda; Engler, Heidrun; Hutchins, Beth; Maneval, Daniel C; Grace, Michael J; Fritz, Mary Ann; Störkel, Stefan; Thüroff, Joachim W; Huber, Christoph; Schuler, Martin

    2002-02-15

    To study safety, feasibility, and biologic activity of adenovirus-mediated p53 gene transfer in patients with bladder cancer. Twelve patients with histologically confirmed bladder cancer scheduled for cystectomy were treated on day 1 with a single intratumoral injection of SCH 58500 (rAd/p53) at cystoscopy at one dose level (7.5 x 10(11) particles) or a single intravesical instillation of SCH 58500 with a transduction-enhancing agent (Big CHAP) at three dose levels (7.5 x 10(11) to 7.5 x 10(13) particles). Cystectomies were performed in 11 patients on day 3, and transgene expression, vector distribution, and biologic markers of transgene activity were assessed by molecular and immunohistochemical methods in tumors and normal bladder samples. Specific transgene expression was detected in tissues from seven of eight assessable patients treated with intravesical instillation of SCH 58500 but in none of three assessable patients treated with intratumoral injection of SCH 58500. Induction of RNA and protein expression of the p53 target gene p21/WAF1 was demonstrated in samples from patients treated with SCH 58500 instillation at higher dose levels. Distribution studies after intravesical instillation of SCH 58500 revealed both high transduction efficacy and vector penetration throughout the whole urothelium and into submucosal tumor cells. No dose-limiting toxicity was observed, and side effects were local and of transient nature. Intravesical instillation of SCH 58500 combined with a transduction-enhancing agent is safe, feasible, and biologically active in patients with bladder cancer. Studies to evaluate the clinical efficacy of this treatment in patients with localized high-risk bladder cancer are warranted.

  6. In situ characterization of glycans in the urothelium of donkey bladder: evidence of secretion of sialomucins.

    PubMed

    Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana

    2013-09-01

    The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. In vivo optical coherence tomography in endoscopic diagnostics of bladder disease

    NASA Astrophysics Data System (ADS)

    Daniltchenko, Dmitri; Lankenau, Eva; Konig, Frank; Shay, Brian; Huettmann, Gereon; Sachs, Markus D.; Schnorr, Dietmar; Loening, Stefan A.

    2004-07-01

    Purpose: OCT is a new imaging method which produces a 3 mm wide x 2.5 mm deep 2D picture with a resolution of 15 μm. Materials and Methods: We utilised the Tomograph Sirius 713, developed at the Medical Laser Centre in cooperation with 4-Optics AG, Lubeck, Germany. This apparatus uses a special Super-Luminescence-Diode (SLD) that produces light within the near infrared wavelength, with a central wavelength of 1300 nm and spectral width of 45 nm. The coherence length is reduced to 15 μm. The light is introduced into a fibreglass optic which is a couple of meters long and is easy to handle. To measure the depth of invasion and position of urothelial bladder tumours, the fibreglass optic is attached to a regular endoscope (Wolf, Knittlingen, Germany) via a OCT adapter. That way, in parallel to the regular endoscopic view of the bladder mucosa with or without pathologic findings, an OCT picture of the superficial as well as the deeper muscle layers is visible online. OCT was used to obtaine 275 images from the bladder of 30 patients. Results: OCT of normal bladder mucosa produces an image with a cross section of up to 2.5 mm. It is possible to distinguish transitional epithelium, lamina propria, smooth muscles and capillaries. In cystitis the thickness of the mucosa is constant, but the distinction between the different layers is blurred. In squamous metaplasia there is thickening of the epithelial layer, with preservation of lamination of the lower layers. In transitional cell carcinoma there is a complete loss of the regular layered structure. Thus, the border between tumour and normal bladder tissue can be easily distinguished. Conclusions: This method can provide valuable information on tumour invasion and extension in real time and therefore influence therapeutic strategies

  8. Oxidative stress status accompanying diabetic bladder cystopathy results in the activation of protein degradation pathways.

    PubMed

    Kanika, Nirmala D; Chang, Jinsook; Tong, Yuehong; Tiplitsky, Scott; Lin, Juan; Yohannes, Elizabeth; Tar, Moses; Chance, Mark; Christ, George J; Melman, Arnold; Davies, Kelvin D

    2011-05-01

    • To investigate the role that oxidative stress plays in the development of diabetic cystopathy. • Comparative gene expression in the bladder of non-diabetic and streptozotocin (STZ)-induced 2-month- old diabetic rats was carried out using microarray analysis. • Evidence of oxidative stress was investigated in the bladder by analyzing glutathione S-transferase activity, lipid peroxidation, and carbonylation and nitrosylation of proteins. • The activity of protein degradation pathways was assessed using Western blot analysis. • Analysis of global gene expression showed that detrusor smooth muscle tissue of STZ-induced diabetes undergoes significant enrichment in targets involved in the production or regulation of reactive oxygen species (P = 1.27 × 10(-10)). The microarray analysis was confirmed by showing that markers of oxidative stress were all significantly increased in the diabetic bladder. • It was hypothesized that the sequelae to oxidative stress would be increased protein damage and apoptosis. • This was confirmed by showing that two key proteins involved in protein degradation (Nedd4 and LC3B) were greatly up-regulated in diabetic bladders compared to controls by 12.2 ± 0.76 and 4.4 ± 1.0-fold, respectively, and the apoptosis inducing protein, BAX, was up-regulated by 6.76 ± 0.76-fold. • Overall, the findings obtained in the present study add to the growing body of evidence showing that diabetic cystopathy is associated with oxidative damage of smooth muscle cells, and results in protein damage and activation of apoptotic pathways that may contribute to a deterioration in bladder function. © 2010 THE AUTHORS; BJU INTERNATIONAL © 2010 BJU INTERNATIONAL.

  9. Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence

    NASA Astrophysics Data System (ADS)

    Krewer, F.; Morgan, F.; Jones, E.; Glavin, M.; O'Halloran, M.

    2014-05-01

    Urinary incontinence is defined as the inability to stop the flow of urine from the bladder. In the US alone, the annual societal cost of incontinence-related care is estimated at 12.6 billion dollars. Clinicians agree that those suffering from urinary incontinence would greatly benefit from a wearable system that could continually monitor the bladder, providing continuous feedback to the patient. While existing ultrasound-based solutions are highly accurate, they are severely limited by form-factor, battery size, cost and ease of use. In this study the authors propose an alternative bladder-state sensing system, based on Ultra Wideband (UWB) Radar. As part of an initial proof-of-concept, the authors developed one of the first dielectrically and anatomically-representative Finite Difference Time Domain models of the pelvis. These models (one male and one female) are derived from Magnetic Resonance images provided by the IT'IS Foundation. These IT'IS models provide the foundation upon which an anatomically-plausible bladder growth model was constructed. The authors employed accurate multi-pole Debye models to simulate the dielectric properties of each of the pelvic tissues. Two-dimensional Finite Difference Time Domain (FDTD) simulations were completed for a range of bladder volumes. Relevant features were extracted from the FDTD-derived signals using Principle Component Analysis (PCA) and then classified using a k-Nearest-Neighbour and Support Vector Machine algorithms (incorporating the Leave-one-out cross-validation approach). Additionally the authors investigated the effects of signal fidelity, noise and antenna movement relative to the target as potential sources of error. The results of this initial study provide strong motivation for further research into this timely application, particularly in the context of an ageing population.

  10. GATA-3 immunohistochemistry in the differential diagnosis of adenocarcinoma of the urinary bladder.

    PubMed

    Ellis, Carla L; Chang, Alex G; Cimino-Mathews, Ashley; Argani, Pedram; Youssef, Ramy F; Kapur, Payal; Montgomery, Elizabeth A; Epstein, Jonathan I

    2013-11-01

    GATA-3 is a newly described marker that labels urothelial and breast carcinoma. However, no prior study has evaluated the expression of GATA-3 in primary bladder adenocarcinoma. Tissue microarrays (TMAs) containing 46 primary bladder adenocarcinomas were constructed. They contained 19 signet ring cell (SRC) and 27 conventional adenocarcinomas. Three additional cases of SRC using routine sections were included resulting in a total of 22 SRCs. In addition, TMAs containing 32 primary gastric signet ring adenocarcinomas and 36 primary lobular breast carcinomas were evaluated. The TMAs were subjected to immunohistochemical analysis for GATA-3, with nuclear labeling scored by intensity and percentage labeling. Breast and urothelial TMAs were also labeled for estrogen receptor, progesterone receptor, and gross cystic duct fluid protein. Diffuse nuclear GATA-3 labeling was seen in 9/22 (41.0%) SRCs and in 2/27 (7.0%) conventional adenocarcinomas (P=0.01). Extracellular mucin production was seen in 12 SRCs. One of 12 (8.0%) SRCs with extracellular mucin was GATA-3 positive, and 8/10 SRCs without extracellular mucin was GATA-3 positive (P=0.005). No nuclear GATA-3 labeling was seen in any gastric signet ring carcinoma. Diffuse, moderate to strong nuclear GATA-3 labeling was seen in 36/36 (100%) primary lobular breast carcinomas. Nuclear GATA-3 labeling is a useful marker for primary adenocarcinomas of the urinary bladder with signet ring features and can be helpful in distinguishing primary signet ring carcinomas of the urinary bladder from gastric signet ring carcinomas. GATA-3 is rarely positive in bladder adenocarcinomas that lack signet ring features and in SRCs displaying extracellular mucin production.

  11. Differentiation‐associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic‐metabolizing activity of “luminal” muscle‐invasive bladder cancers

    PubMed Central

    Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer

    2018-01-01

    Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757

  12. Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention.

    PubMed

    Xiong, Zhiyong; Wang, Yongquan; Gong, Wei; Zhou, Zhansong; Lu, Gensheng

    2013-09-01

    Heat shock protein 27 (Hsp27) can regulate actin cytoskeleton dynamics and contractile protein activation. This study investigates whether Hsp27 expression is related to bladder contractile dysfunction after acute urinary retention (AUR). Female rats were randomized either to AUR by urethral ligation or to normal control group. Bladder and smooth muscle strip contraction at time points from 0 h to 7 days after AUR were estimated by cystometric and organ bath studies. Hsp27 expression in bladder tissue at each time point was detected with immunofluorescence, Western blots, and real-time PCR. Expression of the three phosphorylated forms of Hsp27 was detected by Western blots. Smooth muscle ultrastructure was observed by transmission electron microscopy. Data suggest that maximum detrusor pressure and both carbachol-induced and spontaneous detrusor strip contraction amplitude decreased gradually for the duration from 0 to 6 h, and then increased gradually to near-normal values at 24 h. Treatment of muscle strips with the p38MAK inhibitor, SB203580, inhibited carbachol-induced contractions. Smooth muscle ultrastructure damage was the highest at 6 h after AUR, and then lessened gradually during next 7 days, and ultrastructure was close to normal. Expressions of Hsp27 mRNA and protein and the proteins of the three phosphorylated forms were higher at 0 h, decreased to lower levels up to 6 h, and then gradually increased. Therefore, we conclude that rat bladder contractile function after AUR worsens during 0-6 h, and then gradually recovers. The findings of the current study suggest that Hsp27 modulates bladder smooth muscle contraction after AUR, and that phosphorylation of Hsp27 may be an important pathway modulating actin cytoskeleton dynamics in bladder smooth muscle contraction and reconstruction after injury.

  13. Occupation and bladder cancer: a death-certificate study.

    PubMed Central

    Dolin, P. J.; Cook-Mozaffari, P.

    1992-01-01

    Occupational statements on death certificates of 2,457 males aged 25-64 who died from bladder cancer in selected coastal and estaurine regions of England and Wales during 1965-1980 were studied. Excess mortality was found for deck and engine room crew of ships, railway workers, electrical and electronic workers, shoemakers and repairers, and tobacco workers. An excess of cases also occurred among food workers, particularly those employed in the bread and flour confectionary industry or involved in the extraction of animal and vegetable oils and fats. Use of a job-exposure matrix revealed elevated risk for occupations in which most workers were exposed to paints and pigments, benzene and cutting oils. PMID:1520596

  14. Orthotopic AY-27 rat bladder urothelial cell carcinoma model presented an elevated methemoglobin proportion in the increased total hemoglobin content when evaluated in vivo by single-fiber reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Tengfei; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.; Piao, Daqing

    2017-02-01

    In vivo single-fiber reflectance spectroscopy (SfRS) was performed on an orthotopic AY-27 rat bladder urothelial cell carcinoma model to explore potential spectroscopic features revealing neoplastic changes. AY-27 bladder tumor cells were intravesically instilled in four rats and allowed to implant and grow for one week, with two additional rats as the control. A total of 107 SfRS measurements were taken from 27 sites on two control bladders and 80 from four AY-27 treated bladders. The spectral profiles obtained from AY-27 treated bladders revealed various levels of a methemoglobin (MetHb) characteristic spectral feature around 635nm. A multisegment spectral analysis method estimated concentrations of five chromophore compositions including oxyhemoglobin, deoxyhemoglobin, MetHb, lipid and water. The total hemoglobin concentration ([HbT]), the MetHb proportion in the total hemoglobin and the lipid volume content showed possible correlations. The 80 measurements from the AY-27 treated bladders could separate to three sub-sets according to the MetHb proportion. Specifically, 72 were in subset 1 with low proportion (5.3%<[MetHb]<7%), 6 in subset 2 with moderate proportion (7%<[MetHb]<30%), and 2 in subset 3 with significant proportion (>30%). When grouped according to [MetHB], the [HbT] increased from 368 μM of subset 1 to 488 μM of subset 2 to 541 μM of subset 3, in comparison to the 285 μM of the control. The increased total hemoglobin and the elevation of MetHb proportion may signify angiogenesis and degradation in hemoglobin oxygen-transport. Additionally, the lipid volume content decreased from 2.58% in the control to <0.2% in the tumor groups, indicating disruption of subepithelium tissue architecture.

  15. Tissue, Dosimetry, Metabolism and Excretion of Pentavalent and Trivalent Dimethylated Arsenic in Mice after Oral Administration

    EPA Science Inventory

    Dimethylarsinic acid (DMA(V)) is a rat bladder carcinogen and the major urinary metabolite of administered inorganic arsenic in most mammals. This study examined the disposition of pentavalent and trivalent dimethylated arsenic inmice after acute oral administration. Adult fema...

  16. A novel fusion of HNRNPA1-ALK in inflammatory myofibroblastic tumor of urinary bladder.

    PubMed

    Inamura, Kentaro; Kobayashi, Maki; Nagano, Hiroko; Sugiura, Yoshiya; Ogawa, Masahiro; Masuda, Hitoshi; Yonese, Junji; Ishikawa, Yuichi

    2017-11-01

    Here, we report an inflammatory myofibroblastic tumor (IMT) of the urinary bladder with a novel HNRNPA1-ALK fusion. To the best of our knowledge, this is the first case of a tumor with HNRNPA1-ALK fusion. A 42-year-old Japanese man underwent total cystectomy because of an invasive urinary bladder tumor. Grossly, the tumor had invaded the peribladder fat tissue. Histologically, it comprised spindle neoplastic cells with intermingled inflammatory cells. Immunohistochemically, it was positive for ALK, SMA, desmin, cytokeratin, and vimentin, consistent with the immunohistochemical characteristics of IMTs. Fluorescence in situ hybridization demonstrated an ALK split, and the presence of HNRNPA1-ALK was revealed by RNA sequencing. We identified a novel transcript fusion of exon 2 of HNRNPA1 and exon 18 of ALK, resulting in ALK protein overexpression. These findings provide useful information on the biology and tumorigenesis of IMTs, thus facilitating the development of molecular-targeted therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Energetics of sodium transport in toad urinary bladder.

    PubMed Central

    Canessa, M; Labarca, P; DiBona, D R; Leaf, A

    1978-01-01

    The ratio of the rate of transepithelial sodium transport, JNa, across the isolated toad urinary bladder to the simultaneously measured rate of transport-dependent metabolism, JsbCO2, has been measured as a function of the transepithelial electrical voltage, deltapsi. The ratio remains constant with a mean value of 18 to 20 over the range of imposed voltages of 0 to +70 mV. With increasing hyperpolarization of the bladder, JNa decreases and the calculated electromotive force or apparent "ENa" of the sodium pump increases. From thermodynamic and kinetic arguments it is shown that the apparent "ENa" approaches the maximal electrochemical potential gradient, ENa, against which sodium can be transported by this tissue only when JNa approximately 0. At this unique condition F ENa (in which F is the Faraday constant) is the maximal free energy of the chemical reaction driving sodium transport and thus equal to the maximal extramitochondrial phosphorylation potential and the maximal free energy of the mitochondrial respiratory chain within the transporting cells. PMID:100789

  18. Ion channels of the mammalian urethra

    PubMed Central

    Kyle, Barry D

    2014-01-01

    The mammalian urethra is a muscular tube responsible for ensuring that urine remains in the urinary bladder until urination. In order to prevent involuntary urine leakage, the urethral musculature must be capable of constricting the urethral lumen to an extent that exceeds bladder intravesicular pressure during the urine-filling phase. The main challenge in anti-incontinence treatments involves selectively-controlling the excitability of the smooth muscles in the lower urinary tract. Almost all strategies to battle urinary incontinence involve targeting the bladder and as a result, this tissue has been the focus for the majority of research and development efforts. There is now increasing recognition of the value of targeting the urethral musculature in the treatment and management of urinary incontinence. Newly-identified and characterized ion channels and pathways in the smooth muscle of the urethra provides a range of potential therapeutic targets for the treatment of urinary incontinence. This review provides a summary of the current state of knowledge of the ion channels discovered in urethral smooth muscle cells that regulate their excitability. PMID:25483582

  19. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  20. [Effects of gap junction blocking on the oxygen partial pressure in acupoints of the bladder meridian].

    PubMed

    Wang, Qi; Yu, Wei-Chang; Jiang, Hong-Zhi; Chen, Sheng-Li; Zhang, Ming-Min; Kong, E-Sheng; Huang, Guang-Ying

    2010-12-01

    To explore the relation between gap junction and meridian phenomenon. The oxygen partial pressure in acupoints [see text for formula] and in their corresponding non-acupoints of the Bladder Meridian was observed with the needle-type tissue oxygen tension sensor in the gap junction blocking goats by 1-Heptanol injection and the Connexin 43 (Cx43) gene knockout mice. (1) The oxygen partial pressure in acupoints of Bladder Meridian on goats was higher than that in non-acupoints after 1-Heptanol injection with significant differences between them (both P < 0.01). (2) The oxygen partial pressure in acupoints of Bladder Meridian on goats increased significantly after injecting 1-Heptanol as compare with that either injecting normal saline or injecting nothing with significant differences between them (all P < 0.01). (3) The oxygen partial pressure in acupoints of the Bladder Meridian was significantly higher than that in the non-acupoint controls in Cx43 wild type (WT) mice (all P < 0.01). In Cx43 heterozygote (HT) mice, the oxygen partial pressure between acupoints and non-acupoint controls showed no significant differences (all P > 0.05). (4) In acupoints, the oxygen partial pressure in Cx43 WT mice was significantly higher than that in Cx43 HT mice (all P < 0.05), while in the corresponding non-acupoints, this difference had no statistically significant (all P > 0.05). Gap junction maybe the essential factor in signal transduction of acupuncture.

Top