Perturbation solutions for the influence of forward flight on helicopter rotor flapping stability
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
The stability of the flapping motion of a helicopter rotor blade in forward flight is investigated, using a perturbation technique which gives analytic expressions for the eigenvalues, including the influence of the periodic aerodynamic forces in forward flight. The perturbation solutions are based on small advance ratio (the ratio of the helicopter forward speed to the rotor tip speed). The rotor configurations considered are a single, independent blade; a teetering rotor; a gimballed rotor with three, four, and five or more blades; and a rotor with N independent blades. The constant coefficient approximation with the equations and degrees of freedom in the nonrotating frame represents the flap dynamic reasonably well for the lower frequency modes, although it cannot, of course, be completely correct. The transfer function of the rotor flap response to sinusoidal pitch input is examined, as an alternative to the eigenvalues as a representation of the dynamic characteristics of the flap motion.
NASA Astrophysics Data System (ADS)
Saxena, Anand
The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor driven trailing edge flap concept. In conclusion, the concept of using brushless DC motors as on-blade actuators, actuating trailing edge flaps has the potential to replace the current mechanically complex swashplate with a hydraulic-free swashplateless system and thereby reduce overall weight and hub drag.
Blade-mounted trailing edge flap control for BVI noise reduction
NASA Technical Reports Server (NTRS)
Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.
1992-01-01
Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.
The investigation of a variable camber blade lift control for helicopter rotor systems
NASA Technical Reports Server (NTRS)
Awani, A. O.
1982-01-01
A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.
Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction
2012-05-01
rotating -frame cyclic variations, of two- per-rev or greater, to augment blade motions and blade airloads. Recent studies (Refs. 5, 6) have...Advancing tip Mach number MH Rotational (Hover) tip Mach number NM Noise metric, peak-to-peak value R Blade radius α...from a full-scale, 2,900 lb. gross weight, four-bladed S-434TM helicopter. The rotor head, blade cuffs , and swash-plate were production S
NASA Technical Reports Server (NTRS)
Crespodasilva, M. R. M.
1981-01-01
The differential equations of motion, and boundary conditions, describing the flap-lead/lag-torsional motion of a flexible rotor blade with a precone angle and a variable pitch angle, which incorporates a pretwist, are derived via Hamilton's principle. The meaning of inextensionality is discussed. The equations are reduced to a set of three integro partial differential equations by elimination of the extension variable. The generalized aerodynamic forces are modelled using Greenberg's extension of Theodorsen's strip theory. The equations of motion are systematically expanded into polynomial nonlinearities with the objective of retaining all terms up to third degree. The blade is modeled as a long, slender, of isotropic Hookean materials. Offsets from the blade's elastic axis through its shear center and the axes for the mass, area and aerodynamic centers, radial nonuniformaties of the blade's stiffnesses and cross section properties are considered and the effect of warp of the cross section is included in the formulation.
Flap-lag-torsional dynamics of helicopter rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Crespodasilva, M. R. M.
1986-01-01
A perturbation/numerical methodology to analyze the flap-lead/lag motion of a centrally hinged spring restrained rotor blade that is valid for both hover and for forward flight was developed. The derivation of the nonlinear differential equations of motion and the analysis of the stability of the steady state response of the blade were conducted entirely in a Symbolics 3670 Machine using MACSYMA to perform all the lengthy symbolic manipulations. It also includes generation of the fortran codes and plots of the results. The Floquet theory was also applied to the differential equations of motion in order to compare results with those obtained from the perturbation analysis. The results obtained from the perturbation methodology and from Floquet theory were found to be very close to each other, which demonstrates the usefullness of the perturbation methodology. Another problem under study consisted in the analysis of the influence of higher order terms in the response and stability of a flexible rotor blade in forward flight using Computerized Symbolic Manipulation and a perturbation technique to bypass the Floquet theory. The derivation of the partial differential equations of motion is presented.
NASA Technical Reports Server (NTRS)
Hodges, D. H., Roberta.
1976-01-01
The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.
NASA Astrophysics Data System (ADS)
Viswamurthy, S. R.; Ganguli, Ranjan
2007-03-01
This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.
NASA Technical Reports Server (NTRS)
Piziali, R. A.; Trenka, A. R.
1974-01-01
The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control.
An approximate closed-form solution for lead lag damping of rotor blades in hover
NASA Technical Reports Server (NTRS)
Peters, D. A.
1975-01-01
Simple stability methods are used to derive an approximate, closed-form expression for the lead-lag damping of rotor blades in hover. Destabilizing terms are shown to be a result of two dynamic mechanisms. First, the destabilizing aerodynamic forces that can occur when blade lift is higher than a critical value are maximized when the blade motion is in a straight line equidistant from the blade chord and the average direction of the air flow velocity. This condition occurs when the Coriolis terms vanish and when the elastic coupling terms align the blade motion with this least stable direction. Second, the nonconservative stiffness terms that result from pitch-flap or pitch-lag coupling can add or subtract energy from the system depending upon whether the motion of the blade tip is clockwise or counterclockwise.
Effect of helicopter blade dynamics on blade aerodynamic and structural loads
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.
1987-01-01
The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.
NASA Technical Reports Server (NTRS)
McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.
1959-01-01
A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.
Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover
NASA Technical Reports Server (NTRS)
Crespodasilva, Marcelo R. M.; Hodges, Dewey H.
1988-01-01
The equilibrium and stability of the coupled elastic lead/lag, flap, and torsion motion of a cantilever rotor blade in hover are addressed, and the influence of several higher-order terms in the equations of motion of the blade is determined for a range of values of collective pitch. The blade is assumed to be untwisted and to have uniform properties along its span. In addition, chordwise offsets between its elastic, tension, mass, and aerodynamic centers are assumed to be negligible for simplicity. The aerodynamic forces acting on the blade are modeled using a quasi-steady, strip-theory approximation.
A structural dynamics study of a wing-pylon-tiltrotor system
NASA Astrophysics Data System (ADS)
Khader, N.; Abu-Mallouh, R.
1992-12-01
A simple structural model for a three-bladed tiltrotor-pylon-wing assembly is presented, which accounts for chordwise, transverse, and torsional wing deformations, rigid pylon pitching motion with respect to the wing tip cross-section in its deformed position, lead-lag, flap, and torsional deformations of rotor blades. The model considers equivalent viscous damping associated with blade and wing elastic deformations and with rigid pylon pitching motion. It is established that blade-to wing bending rigidity ratio, pylon pitching frequency, equivalent viscous damping associated with blade elastic deformations, and rotational speed, are the most important design parameters, whose effect on system frequencies and stability boundaries is evaluated.
Automated Design and Evaluation of Airfoils for Rotorcraft Applications
2017-12-01
Momentum theory . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Blade -Element and Momentum Theory . . . . . . . . . . . . 10 2.1.2.1 Local Flow...34 3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Run Process...8 2.2 Blade -element diagram . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Rotor flapping motion (Ref. [2
Water channel experiments of a novel fully-passive flapping-foil turbine
NASA Astrophysics Data System (ADS)
Boudreau, Matthieu; Dumas, Guy; Rahimpour, Mostafa; Oshkai, Peter
2016-11-01
Experiments have been conducted to assess the performances of a fully-passive flapping-foil hydrokinetic turbine for which the blade's motions are stemming from the interaction between the blade's elastic supports (springs and dampers) and the flow field. Previous numerical studies conducted by Peng & Zhu (2009) and Zhu (2012) have proved that a simplified version of such a turbine can extract a substantial amount of energy from the flow while offering the potential to greatly simplify the complex mechanical apparatus needed to constrain and link the blade's pitching and heaving motions in the case of the more classical flapping-foil turbine (e.g., Kinsey et al., 2011). Based on the promising numerical investigations of Veilleux (2014) and Veilleux & Dumas (2016), who proposed a more general version of this novel concept, a prototype has been built and tested in a water channel at a chord Reynolds number of 17,000. Periodic motions of large amplitudes have been observed leading to interesting energy harvesting efficiencies reaching 25% for some specific sets of structural parameters. The sensitivity of the turbine's dynamics to each of the seven structural parameters appearing in the equations of motion has been experimentally evaluated around a case close to the optimal one. Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged by the authors.
Study to eliminate ground resonance using active controls
NASA Technical Reports Server (NTRS)
Straub, F. K.
1984-01-01
The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.
Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ormiston, R. A.
1975-01-01
Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.
A new aeroelastic model for composite rotor blades with straight and swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
Vibration analysis of rotor blades with pendulum absorbers
NASA Technical Reports Server (NTRS)
Murthy, V. R.; Hammond, C. E.
1979-01-01
A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
NASA Astrophysics Data System (ADS)
Chaviaropoulos, P. K.; Soerensen, N. N.; Hansen, M. O. L.; Nikolaou, I. G.; Aggelis, K. A.; Johansen, J.; Gaunaa, Mac; Hambraus, T.; Frhr. von Geyr, Heiko; Hirsch, Ch.; Shun, Kang; Voutsinas, S. G.; Tzabiras, G.; Perivolaris, Y.; Dyrmose, S. Z.
2003-10-01
The recent introduction of ever larger wind turbines poses new challenges with regard to understanding the mechanisms of unsteady flow-structure interaction. An important aspect of the problem is the aeroelastic stability of the wind turbine blades, especially in the case of combined flap/lead-lag vibrations in the stall regime. Given the limited experimental information available in this field, the use of CFD techniques and state-of-the-art viscous flow solvers provides an invaluable alternative towards the identification of the underlying physics and the development and validation of sound engineering-type aeroelastic models. Navier-Stokes-based aeroelastic stability analysis of individual blade sections subjected to combined pitch/flap or flap/lead-lag motion has been attempted by the present consortium in the framework of the concluded VISCEL JOR3-CT98-0208 Joule III project.
Design and development of a biomimetic device for micro air vehicles
NASA Astrophysics Data System (ADS)
Bohorquez, Felipe; Pines, Darryll J.
2002-07-01
This paper presents the design and development of a pitching and plunging (flapping) mechanism for small-scale flight. In order to harness the unsteady lift mechanisms, used by most insects, a biologically inspired flapping/pitching device in conjunction with a rotary wing concept was developed and built. This mechanism attempts to replicate some of the aerodynamic phenomena that enhance the performance of small fliers, replacing the periodic translational motion with a unidirectional circular motion while actively flapping and pitching the rotor blades. In order to find the appropriate combination of phase, amplitude, frequency and rotational speed that leads to enhancement in lift, the device requires uncoupled independent pitch and flap actuation systems to permit the complete mapping of the parameter space. In the device under consideration the phase shift between the flapping and the pitching oscillations can be adjusted from 0 to 360 degrees over a wide range of rotational speeds. Maximum flapping and pitching amplitudes of +/- 23 degree(s) and +/- 20 degree(s) respectively can be attained. Linear displacements of two coaxial shafts are translated into the flapping and pitching motion of the rotor blades. The mechanism was designed to minimize the actuation stroke so that smart materials and conventional actuators such as motors and cams could be used. Kinematic analysis as well as experimental tests were performed. Using a customized test stand thrust and torque produced by the rotor were measured at different angles of attack, in steady-state and under periodical pitching actuation. The results showed that hover efficiency was considerably increased for a range of thrust coefficients. The device was developed based on the University of Maryland's rotary wing Micro Air vehicle (MAV) the MICOR (MIcro COaxial Rotorcraft), an electrically driven 100 g coaxial helicopter. It is anticipated that active flapping and/or pitching could be implemented in the prototype to improve its aerodynamic performance. The present paper will discuss the design and development process of a rotating/pitching/flapping mechanism for MAVs. Test results indicate that unsteady pitching motion can be used to include the aerodynamic effect of delayed stall. Performance measurements confirm that unsteady pitching motion improves efficiency in hover.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem
2016-09-01
Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.
Blade motion and nutrient flux to the kelp, Eisenia arborea.
Denny, Mark; Roberson, Loretta
2002-08-01
Marine algae rely on currents and waves to replenish the nutrients required for photosynthesis. The interaction of algal blades with flow often involves dynamic reorientations of the blade surface (pitching and flapping) that may in turn affect nutrient flux. As a first step toward understanding the consequences of blade motion, we explore the effect of oscillatory pitching on the flux to a flat plate and to two morphologies of the kelp Eisenia arborea. In slow flow (equivalent to a water velocity of 2.7 cm s(-1)), pitching increases the time-averaged flux to both kelp morphologies, but not to the plate. In fast flow (equivalent to 20 cm s(-1) in water), pitching has negligible effect on flux regardless of shape. For many aspects of flux, the flat plate is a reliable model for the flow-protected algal blade, but predictions made from the plate would substantially underestimate the flux to the flow-exposed blade. These measurements highlight the complexities of flow-related nutrient transport and the need to understand better the dynamic interactions among nutrient flux, blade motion, blade morphology, and water flow.
Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads
NASA Technical Reports Server (NTRS)
Heffernan, Ruth M.
1987-01-01
The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Hamouda, M.-N. H.; Pierce, G. A.
1981-01-01
A design procedure is presented for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions. The procedure consists of a frequency response analysis for a hingeless rotor blade excited by a harmonic variation of spanwise airload distributions during forward flight, as well as a concentrated load at the tip. The structural modeling of the blade provides for elastic degrees of freedom in flap and lead-lag bending plus torsion. Simple flap and lead-lag pendulums are considered individually. Using a rational order scheme, the general nonlinear equations of motion are linearized. A quasi-steady aerodynamic representation is used in the formation of the airloads. The solution of the system equations derives from their representation as a transfer matrix. The results include the effect of pendulum tuning on the minimization of the hub reactions.
Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties
NASA Technical Reports Server (NTRS)
Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.
2012-01-01
The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.
Influence of dynamic inflow on the helicopter vertical response
NASA Technical Reports Server (NTRS)
Chen, Robert T. N.; Hindson, William S.
1986-01-01
A study was conducted to investigate the effects of dynamic inflow on rotor-blade flapping and vertical motion of the helicopter in hover. Linearized versions of two dynamic inflow models, one developed by Carpenter and Fridovich and the other by Pitt and Peters, were incorporated in simplified rotor-body models and were compared for variations in thrust coefficient and the blade Lock number. In addition, a comparison was made between the results of the linear analysis, and the transient and frequency responses measured in flight on the CH-47B variable-stability helicopter. Results indicate that the correlations are good, considering the simplified model used. The linear analysis also shows that dynamic inflow plays a key role in destabilizing the flapping mode. The destabilized flapping mode, along with the inflow mode that the dynamic inflow introduces, results in a large initial overshoot in the vertical acceleration response to an abrupt input in the collective pitch. This overshoot becomes more pronounced as either the thrust coefficient or the blade Lock number is reduced. Compared with Carpenter's inflow model, Pitt's model tends to produce more oscillatory responses because of the less stable flapping mode predicted by it.
Dynamic Nonlinear Elastic Stability of Helicopter Rotor Blades in Hover and in Forward Flight
NASA Technical Reports Server (NTRS)
Friedmann, P.; Tong, P.
1972-01-01
Equations for large coupled flap-lag motion of hingeless elastic helicopter blades are consistently derived. Only torsionally-rigid blades excited by quasi-steady aerodynamic loads are considered. The nonlinear equations of motion in the time and space variables are reduced to a system of coupled nonlinear ordinary differential equations with periodic coefficients, using Galerkin's method for the space variables. The nonlinearities present in the equations are those arising from the inclusion of moderately large deflections in the inertia and aerodynamic loading terms. The resulting system of nonlinear equations has been solved, using an asymptotic expansion procedure in multiple time scales. The stability boundaries, amplitudes of nonlinear response, and conditions for existence of limit cycles are obtained analytically. Thus, the different roles played by the forcing function, parametric excitation, and nonlinear coupling in affecting the solution can be easily identified, and the basic physical mechanism of coupled flap-lag response becomes clear. The effect of forward flight is obtained with the requirement of trimmed flight at fixed values of the thrust coefficient.
NASA Astrophysics Data System (ADS)
Allred, C. Jeff; Churchill, David; Buckner, Gregory D.
2017-07-01
This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.
Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch
NASA Astrophysics Data System (ADS)
Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team
2017-11-01
Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.
Method and apparatus for controlling pitch and flap angles of a wind turbine
Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA
2009-05-12
A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.
1986-01-01
The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.
Translational damping on high-frequency flapping wings
NASA Astrophysics Data System (ADS)
Parks, Perry A.
Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Floros, Matthew W.
2004-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Jet Flap Stator Blade Test in the High Reaction Turbine Blade Cascade Tunnel
1970-03-21
A researcher examines the setup of a jet flap blade in the High Reaction Turbine Blade Cascade Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers were seeking ways to increase turbine blade loading on aircraft engines in an effort to reduce the overall size and weight of engines. The ability of each blade to handle higher loads meant that fewer stages and fewer blades were required. This study analyzed the performance of a turbine blade using a jet flap and high loading. A jet of air was injected into the main stream from the pressure surface near the trailing edge. The jet formed an aerodynamic flap which deflected the flow and changed the circulation around the blade and thus increased the blade loading. The air jet also reduced boundary layer thickness. The jet-flap blade design was appealing because the cooling air may also be used for the jet. The performance was studied in a two-dimensional cascade including six blades. The researcher is checking the jet flat cascade with an exit survey probe. The probe measured the differential pressure that was proportional to the flow angle. The blades were tested over a range of velocity ratios and three jet flow conditions. Increased jet flow improved the turning and decreased both the weight flow and the blade loading. However, high blade loadings were obtained at all jet flow conditions.
NASA Technical Reports Server (NTRS)
Wheatley, John B
1935-01-01
This report presents an extension of the autogiro theory of Glauert and Lock in which the influence of a pitch varying with the blade radius is evaluated and methods of approximating the effect of blade tip losses and the influence of reversed velocities on the retreating blades are developed. A comparison of calculated and experimental results showed that most of the rotor characteristics could be calculated with reasonable accuracy, and that the type of induced flow assumed has a secondary effect upon the net rotor forces, although the flapping motion is influenced appreciably. An approximate evaluation of the effect of parasite drag on the rotor blades established the importance of including this factor in the analysis.
Observations in Flight of the Region of Stalled Flow over the Blades of an Autogiro Rotor
NASA Technical Reports Server (NTRS)
Bailey, F J , Jr; Gustafon, F B
1939-01-01
The flow over the inner halves of the rotor blades on a Kellet YG-1B autogiro was investigated in flight by making camera records of the motion of silk streamers attached to the upper surfaces of the blades. These records were analyzed to determine the boundaries of the region within which the flow over the blade sections was stalled for various tip-speed ratios. For the sake of comparison, corresponding theoretical boundaries were obtained. Both the size of the stalled area and its rate of growth with increasing tip-speed ratio were found to be larger than the theory predicted, although experiment agreed with theory with regard to shape and general location of the stalled area. The stalled region may be an important factor in both the rotor lift-drag ratio and the blade flapping motion at the higher tip-speed ratios. The method of study used in this paper should be useful in further studies of the problem, including the reduction of the size of the region.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Floros, Matthew W.; Johnson, Wayne
2007-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Aeroelastic behavior of composite rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.
Flapping inertia for selected rotor blades
NASA Technical Reports Server (NTRS)
Berry, John D.; May, Matthew J.
1991-01-01
Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.
Flap-Lag-Torsion Stability in Forward Flight
NASA Technical Reports Server (NTRS)
Panda, B.; Chopra, I.
1985-01-01
An aeroelastic stability of three-degree flap-lag-torsion blade in forward flight is examined. Quasisteady aerodynamics with a dynamic inflow model is used. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory as well as constant coefficient approximation in the fixed reference frame. Results are presented for both stiff-inplane and soft-inplane blade configurations. The effects of several parameters on blade stability are examined, including structural coupling, pitch-flap and pitch-lag coupling, torsion stiffness, steady inflow distribution, dynamic inflow, blade response solution and constant coefficient approximation.
Truong, Q T; Nguyen, Q V; Truong, V T; Park, H C; Byun, D Y; Goo, N S
2011-09-01
We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.
Accommodation of end-state comfort reveals subphonemic planning in speech
Gick, Bryan
2015-01-01
Applying Rosenbaum’s “end-state comfort” hypothesis (Rosenbaum et al., 1992, 1996) to tongue motion provides evidence of long-distance subphonemic planning in speech. Speakers’ tongue postures may anticipate upcoming speech up to three segments, two syllables, and a morpheme or word boundary later. We used m-mode ultrasound imaging to measure the direction of tongue tip/blade movements for known variants of flap/tap allophones of North American English /t/ and /d/. Results show that speakers produce different flap variants early in words or word sequences so as to facilitate the kinematic needs of flap/tap or other /r/ variants that appear later in the word or word sequence. Similar results were also observed across word boundaries, indicating that this is not a lexical effect. PMID:25790787
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)
1996-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Blade vortex interaction noise reduction techniques for a rotorcraft
NASA Technical Reports Server (NTRS)
Charles, Bruce D. (Inventor); JanakiRam, Ram D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); Sankar, Lakshmi N. (Inventor)
1998-01-01
An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions.
Xu, B F; Wang, T G; Yuan, Y; Cao, J F
2015-02-28
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Unsteady aerodynamic analysis for offshore floating wind turbines under different wind conditions
Xu, B. F.; Wang, T. G.; Yuan, Y.; Cao, J. F.
2015-01-01
A free-vortex wake (FVW) model is developed in this paper to analyse the unsteady aerodynamic performance of offshore floating wind turbines. A time-marching algorithm of third-order accuracy is applied in the FVW model. Owing to the complex floating platform motions, the blade inflow conditions and the positions of initial points of vortex filaments, which are different from the fixed wind turbine, are modified in the implemented model. A three-dimensional rotational effect model and a dynamic stall model are coupled into the FVW model to improve the aerodynamic performance prediction in the unsteady conditions. The effects of floating platform motions in the simulation model are validated by comparison between calculation and experiment for a small-scale rigid test wind turbine coupled with a floating tension leg platform (TLP). The dynamic inflow effect carried by the FVW method itself is confirmed and the results agree well with the experimental data of a pitching transient on another test turbine. Also, the flapping moment at the blade root in yaw on the same test turbine is calculated and compares well with the experimental data. Then, the aerodynamic performance is simulated in a yawed condition of steady wind and in an unyawed condition of turbulent wind, respectively, for a large-scale wind turbine coupled with the floating TLP motions, demonstrating obvious differences in rotor performance and blade loading from the fixed wind turbine. The non-dimensional magnitudes of loading changes due to the floating platform motions decrease from the blade root to the blade tip. PMID:25583859
Biomimetic mechanism for micro aircraft
NASA Technical Reports Server (NTRS)
Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)
2005-01-01
A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.
... thin flap in the cornea using either a blade or a laser. The surgeon folds back the ... an automated microsurgical device, either a laser or blade. This corneal flap is lifted and folded back. ...
Modeling methods for high-fidelity rotorcraft flight mechanics simulation
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Tischler, Mark B.; Chaimovich, Menahem; Rosen, Aviv; Rand, Omri
1992-01-01
The cooperative effort being carried out under the agreements of the United States-Israel Memorandum of Understanding is discussed. Two different models of the AH-64 Apache Helicopter, which may differ in their approach to modeling the main rotor, are presented. The first model, the Blade Element Model for the Apache (BEMAP), was developed at Ames Research Center, and is the only model of the Apache to employ a direct blade element approach to calculating the coupled flap-lag motion of the blades and the rotor force and moment. The second model was developed at the Technion-Israel Institute of Technology and uses an harmonic approach to analyze the rotor. The approach allows two different levels of approximation, ranging from the 'first harmonic' (similar to a tip-path-plane model) to 'complete high harmonics' (comparable to a blade element approach). The development of the two models is outlined and the two are compared using available flight test data.
Aeroelastic modeling of composite rotor blades with straight and swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the FEM are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction. These results illustrate the inherent potential for aeroelastic tailoring present in composite rotor blades with swept tips, which still remains to be exploited in the design process.
A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1990-01-01
A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.
Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snowberg, D.; Dana, S.; Hughes, S.
2014-09-01
A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axismore » testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.« less
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
Flight investigation of rotor/vehicle state feedback
NASA Technical Reports Server (NTRS)
Briczinski, S. J.; Cooper, D. E.
1975-01-01
The feasibility of using control feedback or rotor tip-path-plane motion or body state as a means of altering rotor and fuselage response in a prescribed manner was investigated to determine the practical limitations of in-flight utilization of a digital computer which conditions and shapes rotor flapping and fuselage state information as feedback signals, before routing these signals to the differential servo actuators. The analysis and test of various feedback schemes are discussed. Test results show that a Kalman estimator routine which is based on only the first harmonic contributions of blade flapping yields tip-path-plane coefficients which are adequate for use in feedback systems, at speeds up to 150 kts.
NASA Technical Reports Server (NTRS)
Millott, T. A.; Friedmann, P. P.
1994-01-01
This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.
NASA Technical Reports Server (NTRS)
Shen, Jin-Wei; Chopra, Inderjit
2003-01-01
The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.
The nonlinear instability in flap-lag of rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Tong, P.
1971-01-01
The nonlinear flap-lag coupled oscillation of torsionally rigid rotor blades in forward flight is examined using a set of consistently derived equations by the asymptotic expansion procedure of multiple time scales. The regions of stability and limit cycle oscillation are presented. The roles of parametric excitation, nonlinear oscillation, and forced excitation played in the response of the blade are determined.
NASA Technical Reports Server (NTRS)
Stabe, R. G.
1971-01-01
A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.
Active Flap Control of the SMART Rotor for Vibration Reduction
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.
2009-01-01
Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.
A Flight-Dynamic Helicopter Mathematical Model with a Single Flap-Lag- Torsion Main Rotor
1990-02-01
allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces...steady Greenberg model is used (ref. 3), Unsteady inflow effects are included using the three-state nonlinear Pitt/Peters dynamic inflow model (ref. 4...sectional aerodynamic model is based on quasi-steady Greenberg theory, which is a Theodorsen theory modified to account for lead-lag motions (refs. 3,14). The
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
Vibration and loads in hingeless rotors. Volume 1: Theoretical analyses
NASA Technical Reports Server (NTRS)
Watts, G. A.; London, R. J.
1972-01-01
Analytic methods are developed for calculating blade loads and shaft-transmitted vibratory forces in stiff bladed hingeless rotors operating at advance ratios from mu = .3 to mu = 2.0. Calculated shaft harmonic moments compared well with experimental values when the blade first flap frequency was in the region of two-per-revolution harmonic excitation. Calculated blade bending moment azimuthal distributions due to changes in cyclic pitch agreed well with experiment at radial stations near the blade root at values of the ratio of first flap frequency to rotor rotation rate from 1.5 to 5.0. At stations near the blade tip good agreement was only obtained at the higher values of frequency ratio.
Lead-Lag Control for Helicopter Vibration and Noise Reduction
NASA Technical Reports Server (NTRS)
Gandhi, Farhan
1995-01-01
As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators. Both schemes cause an increase in pitch link loads. Trailing Edge Flap (TEF) deployment can also used to generate unsteady aerodynamic forces and moments that counter the original vibratory loads, and thereby reduce rotor vibrations. While the vibrations absorbers, HHC, IBC, and TEF concepts discussed above attempt to reduce the vibratory loads, they do not specifically address the phenomena causing the vibrations at high advance ratios. One passive method that attempts to directly alleviate compressibility and stall, instead of reducing the ensuing vibrations, is the use of advanced tip designs. Taper, sweep, anhedral, and the manipulation of other geometric properties of the blade tips can reduce the severity of stall and compressibility effects , as well as reduce rotor power. A completely different approach to solve these problems is the tiltrotor configuration. As the forward velocity of the aircraft increases, the rotors, in this case, are tilted forward until they are perpendicular to the flow and act as propellers. This eliminates the edgewise flow encountered by conventional rotors and circumvents all the problems associated with flow asymmetry. However, the success involves a tremendous increase in cost and complexity of the aircraft. Another possible approach that has been proposed for the alleviation of vibratory loads at high forward flight speeds involves the use of controlled lead-lag motions to reduce the asymmetry in flow. A correctly phased 1/rev controlled lag motion could be introduced such that it produces a backward velocity on the advancing side and a forward velocity on the retreating side, to delay compressibility effects and stall to a higher advance ratio. Using a large enough lead-lag amplitude, the tip velocities could be reduced to levels encountered in hover. This concept was examined by two groups in the 1950's and early 1960's. In the United States, the Research Labs Division of United Aircraft developed a large lead-lag motion rotor, meant to achieve lag motion amplitudes up to 45 degrees. In order to reduce the required actuation force, the blade hinges were moved to 40% of the blade radius to increase the rotating lag frequency to approximately 1/rev. The blade hinges were redesigned to produce a flap-lag coupling so the large flapwise aerodynamic loads could be exploited to actuate the blades in the lag direction. A wind tunnel test of this rotor concept revealed actuation and blade motion scheduling problems. The project was eventually discontinued due to these problems and high blade stresses. Around the same time, at Boelkow in Germany, a similar lead-lag rotor program was conducted under the leadership of Hans Derschmidt. Here, too, the blade hinges were moved outboard to 34% radius to reduce the actuation loads. The main difference between this and the United Aircraft program was the use of a mechanical actuation scheme with maximum lead-lag motions of 400. This program was also discontinued for unclear reasons. The present study is directed toward conducting a comprehensive analytical examination to evaluate the effectiveness of controlled lead-lag motions in reducing vibratory hub loads and increasing maximum flight speed. Since both previous studies on this subject were purely experimental, only a limited data set and physical understanding of the problem was obtained. With the currently available analytical models and computational resources, the present effort is geared toward developing an in-depth physical understanding of the precise underlying mechanisms by which vibration reduction may be achieved. Additionally, in recognition of the fact that large amplitude lead-lag motions would - (i) be difficult to implement, and (ii) produce very large blade stresses; the present study examines the potential of only moderate-to-small lead-lag motions for reduction of vibratory hub loads. Using such an approach, the emphasis is not on eliminating the periodic variations in tangential velocity at the blade tip, but at best reducing these variations slightly so that compressibility and stall are delayed to slightly higher advance ratios. This study was conducted in two steps. In the first step, a hingeless helicopter rotor was modeled using rigid blades undergoing flap-lag-torsion rotations about spring restrained hinges and bearings. This model was then modified by separating the lead-lag degree of freedom into two components, a free and a prescribed motion. Using this model, a parametric study of the effect of phase and amplitude of a prescribed lead-lag motion on hub vibration was conducted. The data gathered was analyzed to obtain an understanding of the basic physics of the problem and show the capability of this method to reduce vibration and expand the flight envelope. In the second half of the study, the similar analysis was conducted using an elastic blade model to confirm the effects predicted by the simpler model.
Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1984-01-01
Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
The First Dorsal Metatarsal Artery Perforator Propeller Flap.
Hallock, Geoffrey G
2016-06-01
Distal foot and toe defects requiring a vascularized flap for coverage have very limited options, oftentimes justifying even a free flap. Perforator flaps in general and propeller flaps in particular have opened up an entirely new subset of local tissue transfer alternatives that can potentially avoid the difficulties that accompany microvascular tissue transfers. The first dorsal metatarsal artery (FDMA) perforator propeller flap represents another variation of this theme. A standard FDMA flap from the dorsum of the foot was raised in reversed fashion based on the distal communicating branch or "perforator" from the plantar foot circulation in 2 patients with great toe defects. All distal skin tissue between this perforator and the defect was kept with the FDMA flap as an attached minor blade, to thereby create an FDMA propeller flap. Salvage of the great toe in both patients was achieved. The benefit of the minor blade of the propeller was to fill a portion of the donor site defect of the traditional FDMA major blade, to permit tension-free donor site closure of the dorsal foot without sequela. The distal-based FDMA flap can be useful as a local flap for coverage of distal foot and toe wounds, but direct donor site closure can be problematic as mirrored by its relative the dorsalis pedis flap. The FDMA perforator propeller flap variation can achieve the same reconstructive goals while simultaneously transferring vascularized tissue into the dorsal foot donor site to thereby minimize the tension if direct closure is possible or minimize the need for a skin graft in this notoriously difficult region.
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1973-01-01
The experiments with progressing/regressing forced rotor flapping modes have been extended in several directions and the data processing method has been considerably refined. The 16 inch hingeless 2-bladed rotor model was equipped with a new set of high precision blades which removed previously encountered tracking difficulties at high advance ratio, so that tests up to .8 rotor advance ratio could be conducted. In addition to data with 1.20 blade natural flapping frequency data at 1.10 flapping frequency were obtained. Outside the wind tunnel, tests with a ground plate located at different distances below the rotor were conducted while recording the dynamic downflow at a station .2R below the rotor plane with a hot wire anemometer.
NASA Technical Reports Server (NTRS)
Carpenter, Paul J.; Paulnock, Russell S.
1949-01-01
An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.
Application of two-dimensional unsteady aerodynamic to a free-tip rotor response analysis
NASA Technical Reports Server (NTRS)
Yates, L.; Kumagai, H.
1985-01-01
The free-tip rotor utilizes a rotor blade tip which is structurally decoupled from the blade inboard section. The tip is free to pitch about its own pitch axis to respond to the local flow angularity changes. The tip also experiences the heaving motion due to the flapping of the rotor blade. For an airfoil in any pitching and heaving motion which can be expanded into a Fourier series, the lift and moment calculated by Theodoren's theory is simply the linear combination of the lift and moment calculated for each harmonic. These lift and moment are then used to determine the response of the free-tip rotor. A parametric study is performed to determine the effect of mechanical damping, mechanical spring, sweep, friction, and a constant control moment on the free-tip rotor response characteristics and the resulting azimuthal lift distributions. The results showed that the free-tip has the capability to suppress the oscillatory lift distribution around the azimuth and to eliminate a significant negative life peak on the advancing tip. This result agrees with the result of the previous analysis based on the steady aerodynamics.
Assessment of fatigue load alleviation potential through blade trailing edge morphing
NASA Astrophysics Data System (ADS)
Tsiantas, Theofanis; Manolas, Dimitris I.; Machairas, Theodore; Karakalas, Anargyros; Riziotis, Vasilis A.; Saravanos, Dimitrios; Voutsinas, Spyros G.
2016-09-01
The possibility of alleviating wind turbine loads through blade trailing edge shape morphing is investigated in the present paper. Emphasis is put on analyzing the effect of the trailing edge flap geometry on load reduction levels. The choice of the shape deformation of the camber line as well as the chordwise and spanwise dimensions of the trailing edge flap are addressed. The analysis concerns the conceptual DTU 10 MW RWT. Aeroelastic control of loads is materialized through a standard individual flap controller. Furthermore, a comb ined individual pitch-flap controller is evaluated and found to present advantages compared to the flap only controller. Flapwise fatigue load reduction ranging from 10% to 20%, depending on wind velocity and configuration considered, is obtained. Better performance is achieved by the combined pitch-flap controller.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
Phan, Hoang Vu; Truong, Quang Tri; Au, Thi Kim Loan; Park, Hoon Cheol
2016-07-08
This work presents a parametric study, using the unsteady blade element theory, to investigate the role of twist in a hovering flapping wing. For the investigation, a flapping-wing system was developed to create a wing motion of large flapping amplitude. Three-dimensional kinematics of a passively twisted wing, which is capable of creating a linearly variable geometric angle of attack (AoA) along the wingspan, was measured during the flapping motion and used for the analysis. Several negative twist or wash-out configurations with different values of twist angle, which is defined as the difference in the average geometric AoAs at the wing root and the wing tip, were obtained from the measured wing kinematics through linear interpolation and extrapolation. The aerodynamic force generation and aerodynamic power consumption of these twisted wings were obtained and compared with those of flat wings. For the same aerodynamic power consumption, the vertical aerodynamic forces produced by the negatively twisted wings are approximately 10%-20% less than those produced by the flat wings. However, these twisted wings require approximately 1%-6% more power than flat wings to produce the same vertical force. In addition, the maximum-force-producing twisted wing, which was found to be the positive twist or wash-in configuration, was used for comparison with the maximum-force-producing flat wing. The results revealed that the vertical aerodynamic force and aerodynamic power consumption of the two types of wings are almost identical for the hovering condition. The power loading of the positively twisted wing is only approximately 2% higher than that of the maximum-force-producing flat wing. Thus, the flat wing with proper wing kinematics (or wing rotation) can be regarded as a simple and efficient candidate for the development of hovering flapping-wing micro air vehicle.
Analysis of a Multi-Flap Control System for a Swashplateless Rotor
NASA Technical Reports Server (NTRS)
Sekula, Martin K.; Wilbur, Matthew L.
2011-01-01
An analytical study was conducted examining the feasibility of a swashplateless rotor controlled through two trailing edge flaps (TEF), where the cyclic and collective controls were provided by separate TEFs. This analysis included a parametric study examining the impact of various design parameters on TEF deflections. Blade pitch bearing stiffness; blade pitch index; and flap chord, span, location, and control function of the inboard and outboard flaps were systematically varied on a utility-class rotorcraft trimmed in steady level flight. Gradient-based optimizations minimizing flap deflections were performed to identify single- and two-TEF swashplateless rotor designs. Steady, forward and turning flight analyses suggest that a two-TEF swashplateless rotor where the outboard flap provides cyclic control and inboard flap provides collective control can reduce TEF deflection requirements without a significant impact on power, compared to a single-TEF swashplateless rotor design.
Estimation of blade airloads from rotor blade bending moments
NASA Technical Reports Server (NTRS)
Bousman, William G.
1987-01-01
A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.
Active control system for a rotor blade trailing-edge flap
NASA Astrophysics Data System (ADS)
Duvernier, Marc; Reithler, Livier; Guerrero, Jean Y.; Rossi, Rinaldo A.
2000-06-01
Reducing the external noise is becoming a major issue for helicopter manufacturers. The idea beyond this goal is to reduce or even avoid the blade vortex interaction (BVI), especially during descent and flights over inhabited areas. This can be achieved by changing locally the lift of the blade. Several strategies to reach this goal are under investigation at EUROCOPTER such as the control of the local incidence of the blade by a direct lift flap. AEROSPATIALE MATRA Corporate Research Centre and AEROSPATIALE MATRA MISSILES proposed an actuator system able to answer EUROCOPTER's needs for moving a direct lift flap. The present paper describes the definition, manufacturing and testing of this new actuator system. This actuator is based on an electromagnetic patented actuation system developed by AEROSPATIALE MATRA MISSILES for missile and aeronautic applications. The particularity of this actuator is its ability to produce the desired force on its whole range of stroke. The flap is designed to be fitted on a DAUPHIN type blade produced by EUROCOPTER and the actuator system was designed to fit the room available within the blade and to produce the right amount of stroke and force within the required frequency range. Other constraints such as centrifugal loading were also taken into account. This paper describes briefly the specifications and the major characteristics of the actuating system and presents some results of its behavior on a representative composite test-bed manufactured by EUROCOPTER when subjected to realistic mechanical loads.
Coupled rotor-body vibrations with inplane degrees of freedom
NASA Technical Reports Server (NTRS)
Ming-Sheng, H.; Peters, D. A.
1985-01-01
In an effort to understand the vibration mechanisms of helicopters, the following basic studies are considered. A coupled rotor-fuselage vibration analysis including inplane degrees of freedom of both rotor and airframe is performed by matching of rotor and fuselage impedances at the hub. A rigid blade model including hub motion is used to set up the rotor flaplag equations. For the airframe, 9 degrees of freedom and hub offsets are used. The equations are solved by harmonic balance. For a 4-bladed rotor, the coupled responses and hub loads are calculated for various parameters in forward flight. The results show that the addition of inplane degrees of freedom does not significantly affect the vertical vibrations for the cases considered, and that inplane vibrations have similar resonance trends as do flapping vibrations.
SMART Rotor Development and Wind-Tunnel Test
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry
2009-01-01
Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.
A performance application study of a jet-flap helicopter rotor
NASA Technical Reports Server (NTRS)
Sullivan, R. J.; Laforge, S.; Holchin, B. W.
1972-01-01
A performance study was made of the application of a jet-flap to a reaction-drive rotor for a heavy-lift helicopter mission and for a high-speed-helicopter maneuverability (200 knots, 2g) mission. The results of the study are as follows: As a result of the increase in maximum airfoil lift coefficient achieved by the jet-flap, rotor solidity is reduced with the jet-flap to approximately 59% of a nonjet-flap rotor. As a result of the saving in rotor solidity, and hence in rotor weight, the jet-flap configuration had a 21% higher productivity than a nonjet-flap configuration. Of the three propulsion systems studied utilizing a jet-flap (hot cycle, warm cycle, cold cycle) the hot cycle gave the largest increase in productivity. The 200 knot 2g mission is performed best with a warm cycle propulsion system. The jet-flap permits designing for a rotor blade loading coefficient C sub T/sigma = .170 at 2g without encountering blade stall. The jet-flap rotor permits a 200 knot 2g maneuver without suffering the penalty of an unreasonable rotor solidity that would be required by a nonjet-flap rotor.
A review of dynamic inflow and its effect on experimental correlations
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Peters, D. A.
1985-01-01
A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.
Evaluation of the New B-REX Fatigue Testing System for Multi-Megawatt Wind Turbine Blades: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D.; Musial, W.; Engberg, S.
2004-12-01
The National Renewable Energy Laboratory (NREL) recently developed a new hybrid fatigue testing system called the Blade Resonance Excitation (B-REX) test system. The new system uses 65% less energy to test large wind turbine blades in half the time of NREL's dual-axis forced-displacement test method with lower equipment and operating costs. The B-REX is a dual-axis test system that combines resonance excitation with forced hydraulic loading to reduce the total test time required while representing the operating strains on the critical inboard blade stations more accurately than a single-axis test system. The analysis and testing required to fully implement themore » B-REX was significant. To control unanticipated blade motion and vibrations caused by dynamic coupling between the flap, lead-lag, and torsional directions, we needed to incorporate additional test hardware and control software. We evaluated the B-REX test system under stable operating conditions using a combination of various sensors. We then compared our results with results from the same blade, tested previously using NREL's dual-axis forced-displacement test method. Experimental results indicate that strain levels produced by the B-REX system accurately replicated the forced-displacement method. This paper describes the challenges we encountered while developing the new blade fatigue test system and the experimental results that validate its accuracy.« less
NASA Technical Reports Server (NTRS)
Fletcher, Jay W.; Chen, Robert T. N.; Strasilla, Eric; Aiken, Edwin W. (Technical Monitor)
1995-01-01
Modern rotorcraft flight control system designs which promise to yield high vehicle response bandwidth and good gust rejection can benefit from the use of rotor-state feedbacks. The measurement of main rotor blade motions is also desirable to validate and improve rotorcraft simulation models, to identify high-order linear flight dynamics models, to provide rotor system health monitoring; during flight test, and to provide for correlation with acoustic measurements from wind tunnel and flight tests. However, few attempts have been made to instrument a flight vehicle in this manner, and no previous system has had the robustness and accuracy required for these diverse applications. A rotor blade motion measurement and estimation system has been developed by NASA and the U.S. Army for use on the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) helicopter. RASCAL is a UH-60 Blackhawk which is being modified at Ames Research Center in a phased development program for use in flight dynamics and controls, navigation, airspace management, and rotorcraft human factors research. The aircraft will feature a full-authority, digital, fly-by-wire research flight control system; a coupled ring laser gyro, differential GPS based navigation system; a stereoscopic color wide field of view helmet, mounted display; programmable panel mounted displays; and advanced navigation sensors. The rotor blade motion system is currently installed for data acquisition only, but will be integrated with the research flight control system when it is installed later this year.
The role of computerized symbolic manipulation in rotorcraft dynamics analysis
NASA Technical Reports Server (NTRS)
Crespo Da Silva, Marcelo R. M.; Hodges, Dewey H.
1986-01-01
The potential role of symbolic manipulation programs in development and solution of the governing equations for rotorcraft dynamics problems is discussed and illustrated. Nonlinear equations of motion for a helicopter rotor blade represented by a rotating beam are developed making use of the computerized symbolic manipulation program MACSYMA. The use of computerized symbolic manipulation allows the analyst to concentrate on more meaningful tasks, such as establishment of physical assumptions, without being sidetracked by the tedious and trivial details of the algebraic manipulations. Furthermore, the resulting equations can be produced, if necessary, in a format suitable for numerical solution. A perturbation-type solution for the resulting dynamical equations is shown to be possible with a combination of symbolic manipulation and standard numerical techniques. This should ultimately lead to a greater physical understanding of the behavior of the solution than is possible with purely numerical techniques. The perturbation analysis of the flapping motion of a rigid rotor blade in forward flight is presented, for illustrative purposes, via computerized symbolic manipulation with a method that bypasses Floquet theory.
Power performance optimization and loads alleviation with active flaps using individual flap control
NASA Astrophysics Data System (ADS)
Pettas, Vasilis; Barlas, Thanasis; Gertz, Drew; Madsen, Helge A.
2016-09-01
The present article investigates the potential of Active Trailing Edge Flaps (ATEF) in terms of increase in annual energy production (AEP) as well as reduction of fatigue loads. The basis for this study is the DTU 10 MW Reference Wind Turbine (RWT) simulated using the aeroelastic code HAWC2. In an industrial-oriented manner the baseline rotor is upscaled by 5% and the ATEFs are implemented in the outer 30% of the blades. The flap system is kept simple and robust with a single flap section and control with wind speed, rotor azimuth, root bending moments and angle of attack in flap's mid-section being the sensor inputs. The AEP is increased due to the upscaling but also further due to the flap system while the fatigue loads in components of interest (blade, tower, nacelle and main bearing) are reduced close to the level of the original turbine. The aim of this study is to demonstrate a simple and applicable method that can be a technology enabler for rotor upscaling and lowering cost of energy.
Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.
2016-01-01
Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.
HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
Determination of HART I Blade Structural Properties by Laboratory Testing
NASA Technical Reports Server (NTRS)
Jung, Sung N.; Lau, Benton H.
2012-01-01
The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.
An investigation of unsteady 3D effects on trailing edge flaps
NASA Astrophysics Data System (ADS)
Jost, E.; Fischer, A.; Lutz, T.; Krämer, E.
2016-09-01
The present study investigates the impact of unsteady and viscous three-dimensional aerodynamic effects on a wind turbine blade with trailing edge flap by means of CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a flap of 10% chord extent ranging from 70% to 80% blade radius. The deflection frequency is varied in the range between 1p and 6p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations. A significant influence of trailing and shed vortex structures has been found which leads to a reduction of the lift amplitude and hysteresis effects in the lift response with regard to the flap deflection. In the 3D rotor results greater amplitude reductions and less hystereses have been found compared to the 2D airfoil simulations.
Performance Analysis of a Self-Propelling Flat Plate Fin with Joint Compliance
NASA Astrophysics Data System (ADS)
Reddy, N. Srinivasa; Sen, Soumen; Pal, Sumit; Shome, Sankar Nath
2017-12-01
Fish fin muscles are compliant and they regulate the stiffness to suit different swimming conditions. This article attempts to understand the significance of presence of compliance in fin muscle with help of a flexible joint flat plate fin model. Blade element method is employed to model hydrodynamics and to compute the forces of interaction during motion of the plate within fluid. The dynamic model of self-propelling fin is developed through multi-body dynamics approach considering the hydrodynamic forces as external forces acting on the fin. The derived hydrodynamic model is validated with experiments on rigid flat plate fin. The effect of the joint stiffness and flapping frequency on the propulsion speed and efficiency is investigated through simulations using the derived and validated model. The propulsion efficiency is found to be highly influenced by the joint stiffness at a given flapping frequency. The fin attained maximum propulsion efficiency when the joint stiffness is tuned to a value at which flapping frequency matches near natural frequency of the fin. At this tuned joint stiffness and flapping frequency, the resulted Strouhal numbers are observed to fall within the optimum range (0.2 to 0.4) for maximized propulsion efficiency of flying birds and swimming aquatic animals reported in literature.
Aeroelastic Analysis for Rotorcraft in Flight or in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Johnson, W.
1977-01-01
An analytical model is developed for the aeroelastic behavior of a rotorcraft in flight or in a wind tunnel. A unified development is presented for a wide class of rotors, helicopters, and operating conditions. The equations of motion for the rotor are derived using an integral Newtonian method, which gives considerable physical insight into the blade inertial and aerodynamic forces. The rotor model includes coupled flap-lag bending and blade torsion degrees of freedom, and is applicable to articulated, hingeless, gimballed, and teetering rotors with an arbitrary number of blades. The aerodynamic model is valid for both high and low inflow, and for axial and nonaxial flight. The rotor rotational speed dynamics, including engine inertia and damping, and the perturbation inflow dynamics are included. For a rotor on a wind-tunnel support, a normal mode representation of the test module, strut, and balance system is used. The aeroelastic analysis for the rotorcraft in flight is applicable to a general two-rotor aircraft, including single main-rotor and tandem helicopter configurations, and side-by-side or tilting proprotor aircraft configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
NASA Technical Reports Server (NTRS)
Nagabhushanam, J.; Gaonkar, Gopal H.; Mcnulty, Michael J.
1987-01-01
Experiments have been performed with a 1.62 m diameter hingeless rotor in a wind tunnel to investigate flap-lag stability of isolated rotors in forward flight. The three-bladed rotor model closely approaches the simple theoretical concept of a hingeless rotor as a set of rigid, articulated flap-lag blades with offset and spring restrained flap and lag hinges. Lag regressing mode stability data was obtained for advance ratios as high as 0.55 for various combinations of collective pitch and shaft angle. The prediction includes quasi-steady stall effects on rotor trim and Floquet stability analyses. Correlation between data and prediction is presented and is compared with that of an earlier study based on a linear theory without stall effects. While the results with stall effects show marked differences from the linear theory results, the stall theory still falls short of adequate agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan
1997-08-01
One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.
Flapping wing flight can save aerodynamic power compared to steady flight.
Pesavento, Umberto; Wang, Z Jane
2009-09-11
Flapping flight is more maneuverable than steady flight. It is debated whether this advantage is necessarily accompanied by a trade-off in the flight efficiency. Here we ask if any flapping motion exists that is aerodynamically more efficient than the optimal steady motion. We solve the Navier-Stokes equation governing the fluid dynamics around a 2D flapping wing, and determine the minimal aerodynamic power needed to support a specified weight. While most flapping wing motions are more costly than the optimal steady wing motion, we find that optimized flapping wing motions can save up to 27% of the aerodynamic power required by the optimal steady flight. We explain the cause of this energetic advantage.
Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads
NASA Technical Reports Server (NTRS)
Tarzanin, F. J., Jr.; Vlaminck, R. R.
1983-01-01
The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1972-01-01
A two bladed 16-inch hingeless rotor model was built and tested outside and inside a 24 by 24 inch wind tunnel test section at collective pitch settings up to 5 deg and rotor advance ratios up to .4. The rotor model has a simple eccentric mechanism to provide progressing or regressing cyclic pitch excitation. The flapping responses were compared to analytically determined responses which included flap-bending elasticity but excluded rotor wake effects. Substantial systematic deviations of the measured responses from the computed responses were found, which were interpreted as the effects of interaction of the blades with a rotating asymmetrical wake.
Optimal propulsive flapping in Stokes flows.
Was, Loïc; Lauga, Eric
2014-03-01
Swimming fish and flying insects use the flapping of fins and wings to generate thrust. In contrast, microscopic organisms typically deform their appendages in a wavelike fashion. Since a flapping motion with two degrees of freedom is able, in theory, to produce net forces from a time-periodic actuation at all Reynolds numbers, we compute in this paper the optimal flapping kinematics of a rigid spheroid in a Stokes flow. The hydrodynamics for the force generation and energetics of the flapping motion is solved exactly. We then compute analytically the gradient of a flapping efficiency in the space of all flapping gaits and employ it to derive numerically the optimal flapping kinematics as a function of the shape of the flapper and the amplitude of the motion. The kinematics of optimal flapping are observed to depend weakly on the flapper shape and are very similar to the figure-eight motion observed in the motion of insect wings. Our results suggest that flapping could be a exploited experimentally as a propulsion mechanism valid across the whole range of Reynolds numbers.
Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight.
Heerenbrink, M Klein; Johansson, L C; Hedenström, A
2015-05-08
Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models.
Power of the wingbeat: modelling the effects of flapping wings in vertebrate flight
Heerenbrink, M. Klein; Johansson, L. C.; Hedenström, A.
2015-01-01
Animal flight performance has been studied using models developed for man-made aircraft. For an aeroplane with fixed wings, the energetic cost as a function of flight speed can be expressed in terms of weight, wing span, wing area and body area, where more details are included in proportionality coefficients. Flying animals flap their wings to produce thrust. Adopting the fixed wing flight model implicitly incorporates the effects of wing flapping in the coefficients. However, in practice, these effects have been ignored. In this paper, the effects of reciprocating wing motion on the coefficients of the fixed wing aerodynamic power model for forward flight are explicitly formulated in terms of thrust requirement, wingbeat frequency and stroke-plane angle, for optimized wingbeat amplitudes. The expressions are obtained by simulating flights over a large parameter range using an optimal vortex wake method combined with a low-level blade element method. The results imply that previously assumed acceptable values for the induced power factor might be strongly underestimated. The results also show the dependence of profile power on wing kinematics. The expressions introduced in this paper can be used to significantly improve animal flight models. PMID:27547098
NASA Technical Reports Server (NTRS)
Dadone, L.; Cowan, J.; Mchugh, F. J.
1982-01-01
Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.
Analogy between a flapping wing and a wind turbine with a vertical axis of revolution
NASA Astrophysics Data System (ADS)
Gorelov, D. N.
2009-03-01
Based on an analysis of available experimental data, the hypothesis about an analogy between a flapping wing and a wind turbine of the Darrieus rotor type is justified. It is demonstrated that the torque on the shaft of the Darrieus rotor is generated by thrust forces acting on the blades in a pulsed flow. A conclusion is drawn that it is necessary to perform aerodynamic calculations of blades on the basis of the nonlinear theory of the wing in an unsteady flow with allowance for the airfoil thickness.
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph
2012-01-01
A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.
Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions
NASA Astrophysics Data System (ADS)
Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji
To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.
An experimental and analytical investigation of proprotor whirl flutter
NASA Technical Reports Server (NTRS)
Kvaternik, R. G.; Kohn, J. S.
1977-01-01
The results of an experimental parametric investigation of whirl flutter are presented for a model consisting of a windmilling propeller-rotor, or proprotor, having blades with offset flapping hinges mounted on a rigid pylon with flexibility in pitch and yaw. The investigation was motivated by the need to establish a large data base from which to assess the predictability of whirl flutter for a proprotor since some question has been raised as to whether flutter in the forward whirl mode could be predicted with confidence. To provide the necessary data base, the parametric study included variation in the pylon pitch and yaw stiffnesses, flapping hinge offset, and blade kinematic pitch-flap coupling over a large range of advance ratios. Cases of forward whirl flutter and of backward whirl flutter are documented. Measured whirl flutter characteristics were shown to be in good agreement with predictions from two different linear stability analyses which employed simple, two dimensional, quasi-steady aerodynamics for the blade loading. On the basis of these results, it appears that proprotor whirl flutter, both forward and backward, can be predicted.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
2010-05-01
the pitch link for each rotor blade with an actuator so that the blade root pitch angles could be changed independently. This design was previously...with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. Analytical studies on IBC [8...rotor with coincident flap and lag articulation provided at the blade root by elastomeric bearings. This bearing, through the rotor spindle , also
Pressure Available for Cooling with Cowling Flaps
NASA Technical Reports Server (NTRS)
Stickle, George W; Naiman, Irven; Crigler, John L
1941-01-01
Report presents the results of a full-scale investigation conducted in the NACA 20-foot tunnel to determine the pressure difference available for cooling with cowling flaps. The flaps were applied to an exit slot of smooth contour at 0 degree flap angle. Flap angles of 0 degree, 15 degrees, and 30 degrees were tested. Two propellers were used; propeller c which has conventional round blade shanks and propeller f which has airfoil sections extending closer to the hub. The pressure available for cooling is shown to be a direct function of the thrust disk-loading coefficient of the propeller.
Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise
2016-01-01
A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
14 CFR 25.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...
14 CFR 25.779 - Motion and effect of cockpit controls.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Rudder Right pedal forward for nose right. (2) Secondary. Controls Motion and effect Flaps (or auxiliary lift devices) Forward for flaps up; rearward for flaps down. Trim tabs (or equivalent) Rotate to... and auxiliary controls: (1) Powerplant. Controls Motion and effect Power or thrust Forward to increase...
NASA Astrophysics Data System (ADS)
Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team
2014-11-01
The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.
V/STOL model fan stage rig design report
NASA Technical Reports Server (NTRS)
Cheatham, J. G.; Creason, T. L.
1983-01-01
A model single-stage fan with variable inlet guide vanes (VIGV) was designed to demonstrate efficient point operation while providing flow and pressure ratio modulation capability required for a V/STOL propulsion system. The fan stage incorporates a split-flap VIGV with an independently actuated ID flap to permit independent modulation of fan and core engine airstreams, a flow splitter integrally designed into the blade and vanes to completely segregate fan and core airstreams in order to maximize core stream supercharging for V/STOL operation, and an EGV with a variable leading edge fan flap for rig performance optimization. The stage was designed for a maximum flow size of 37.4 kg/s (82.3 lb/s) for compatibility with LeRC test facility requirements. Design values at maximum flow for blade tip velocity and stage pressure ratio are 472 m/s (1550 ft/s) and 1.68, respectively.
Reduced In-Plane, Low Frequency Helicopter Noise of an Active Flap Rotor
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Janakiram, Ram D.; Barbely, Natasha L.; Solis, Eduardo
2009-01-01
Results from a recent joint DARPA/Boeing/NASA/Army wind tunnel test demonstrated the ability to reduce in-plane, low frequency noise of the full-scale Boeing-SMART rotor using active flaps. Test data reported in this paper illustrated that acoustic energy in the first six blade-passing harmonics could be reduced by up to 6 decibels at a moderate airspeed, level flight condition corresponding to advance ratio of 0.30. Reduced noise levels were attributed to selective active flap schedules that modified in-plane blade airloads on the advancing side of the rotor, in a manner, which generated counteracting acoustic pulses that partially offset the negative pressure peaks associated with in-plane, steady thickness noise. These favorable reduced-noise operating states are a strong function of the active flap actuation amplitude, frequency and phase. The associated noise reductions resulted in reduced aural detection distance by up to 18%, but incurred significant vibratory load penalties due to increased hub shear forces. Small reductions in rotor lift-to-drag ratios, of no more than 3%, were also measured
Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bir, G. S.; Lawson, M. J.; Li, Y.
2011-10-01
This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-basedmore » structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.« less
Optimization of blade motion of vertical axis turbine
NASA Astrophysics Data System (ADS)
Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng
2016-04-01
In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.
FY98 Aero Propulsion & Power Technology Area Plan.
1997-11-01
controlled area turbine nozzle (HPT & LPT) - second quarter FY98 a Fabrication/test of gamma titanium aluminide exhaust flap/liner - third quarter...both a commercial business jet and an unmanned air vehicle (Dark Star). - "Super-cooled" turbine blade designs permit 3000 F higher gas temperature for...increased thrust, or 30% reduction in blade cooling air for reduced fuel consumption, or two-to four- fold increase in turbine blade life - all at a
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
Selected topics on the active control of helicopter aeromechanical and vibration problems
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1994-01-01
This paper describes in a concise manner three selected topics on the active control of helicopter aeromechanical and vibration problems. The three topics are as follows: (1) the active control of helicopter air-resonance using an LQG/LTR approach; (2) simulation of higher harmonic control (HHC) applied to a four bladed hingeless helicopter rotor in forward flight; and (3) vibration suppression in forward flight on a hingeless helicopter rotor using an actively controlled, partial span, trailing edge flap, which is mounted on the blade. Only a few selected illustrative results are presented. The results obtained clearly indicate that the partial span, actively controlled flap has considerable potential for vibration reduction in helicopter rotors.
An advanced stochastic model for threshold crossing studies of rotor blade vibrations.
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Hohenemser, K. H.
1972-01-01
A stochastic model to analyze turbulence-excited rotor blade vibrations, previously described by Gaonkar et al. (1971), is generalized to include nonuniformity of the atmospheric turbulence velocity across the rotor disk in the longitudinal direction. The results of the presented analysis suggest that the nonuniformity of the vertical turbulence over the rotor disk is of little influence on the random blade flapping response, at least as far as longitudinal nonuniformity is concerned.
Multicyclic Controllable Twist Rotor Data Analysis
NASA Technical Reports Server (NTRS)
Wei, F. S.; Weisbrich, A. L.
1979-01-01
Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.
Comparison of individual pitch and smart rotor control strategies for load reduction
NASA Astrophysics Data System (ADS)
Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.
2014-06-01
Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.
Flow separation on flapping and rotating profiles with spanwise gradients.
Wong, J G; laBastide, B P; Rival, D E
2017-02-15
The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles has been investigated experimentally. Three time-varying cases were considered: a two-dimensional reference case with a spanwise-uniform angle-of-attack variation α; a case with increasing α towards the profile tip (similar to flapping flyers); and a case with increasing α towards the profile root (similar to rotor blades experiencing an axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient produces a vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the profile. Specifically, when replicating the angle-of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-vorticity gradient is aligned such that circulation increases within the measurement domain. This in turn increases the local LEV growth rate, which is suggestive of force augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity gradient and spanwise flow, thereby replicating that arrangement found in a flapping flyer, was found to reduce local circulation. From this, we can conclude that spanwise flow can be arranged to vary LEV growth to prolong lift augmentation and reduce the unsteadiness of cyclic loads.
Aeroelastic Considerations For Rotorcraft Primary Control with On-Blade Elevons
NASA Technical Reports Server (NTRS)
Ormiston, Robert A.; Rutkowski, Michael (Technical Monitor)
2001-01-01
Replacing the helicopter rotor swashplate and blade pitch control system with on-blade elevon control surfaces for primary flight control may significantly reduce weight and drag to improve mission performance. Simplified analyses are used to examine the basic aeroelastic characteristics of such rotor blades, including pitch and flap dynamic response, elevon reversal, and elevon control effectiveness. The profile power penalty associated with deflections of elevon control surfaces buried within the blade planform is also evaluated. Results suggest that with aeroelastic design for pitch frequencies in the neighborhood of 2/rev, reasonable elevon control effectiveness may be achieved and that, together with collective pitch indexing, the aerodynamic profile power penalty of on-blade control surface deflections may be minimized.
Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Nathan
Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.
Numerical analysis of a variable camber rotor blade as a lift control device
NASA Technical Reports Server (NTRS)
Awani, A. O.; Stroub, R. H.
1984-01-01
A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.
Non-invasive dynamic measurement of helicopter blades
NASA Astrophysics Data System (ADS)
Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.
2017-08-01
This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.
Design and development of an active Gurney flap for rotorcraft
NASA Astrophysics Data System (ADS)
Freire Gómez, Jon; Booker, Julian D.; Mellor, Phil H.
2013-03-01
The EU's Green Rotorcraft programme will develop an Active Gurney Flap (AGF) for a full-scale helicopter main rotor blade as part of its `smart adaptive rotor blade' technology demonstrators. AGFs can be utilized to provide a localized and variable lift enhancement on the rotor, enabling a redistribution of loading on the rotor blade around the rotor azimuth. Further advantages include the possibility of using AGFs to allow a rotor speed reduction, which subsequently provides acoustic benefits. Designed to be integrable into a commercial helicopter blade, and thereby capable of withstanding real in-flight centrifugal loading, blade vibrations and aerodynamic loads, the demonstrator is expected to achieve a high technology readiness level (TRL). The AGF will be validated initially by a constant blade section 2D wind tunnel test and latterly by full blade 3D whirl tower testing. This paper presents the methodology adopted for the AGF concept topology selection, based on a series of both qualitative and quantitative performance criteria. Two different AGF candidate mechanisms are compared, both powered by a small commercial electromagnetic actuator. In both topologies, the link between the actuator and the control surface consists of two rotating torque bars, pivoting on flexure bearings. This provides the required reliability and precision, while making the design virtually frictionless. The engineering analysis presented suggests that both candidates would perform satisfactorily in a 2D wind tunnel test, but that equally, both have design constraints which limit their potential to be further taken into a whirl tower test under full scale centrifugal and inertial loads.
Sun, Qian; Deng, Zheng-Zheng; Zhou, Yue-Hua; Zhang, Jing; Peng, Xiao-Yan
2016-01-01
AIM To compare the corneal biomechanical outcomes at one year after laser in situ keratomileusis (LASIK) with the flaps created by Ziemer and Moria M2 microkeratome with 110 head and -20 blade. METHODS Totally 100 eyes of 50 consecutive patients were enrolled in this prospective study and divided into two groups for corneal flaps created by ZiemerFemto LDV and Moria M2 microkeratome with 110 head and -20 blade. Corneal biomechanical properties including cornea resistance factor (CRF) and cornea hysteresis (CH) were measured before and 1, 3, 6, 12mo after surgery by ocular response analyzer. Central cornea thickness and corneal flap thickness were measured by optical coherence tomography. RESULTS The ablation depth (P=0.693), residual corneal thickness (P=0.453), and postoperative corneal curvature (P=0.264) were not significant different between Ziemer group and Moria 110-20 group after surgery. The residual stromal bed thickness, corneal flap thickness, CH and CRF at 12mo after surgery were significant different between Ziemer group and Moria 110-20 group (P<0.01);Ziemer group gained better corneal biomechanical results. The CRF and CH increased gradually from 1 to 12mo after surgery in Ziemer group, increased from 1 to 6mo but decreased from 6 to 12mo in Moria 110-20 group. Both CRF and CH at one year after surgery increased with the increasing of residual cornea thickness; pre-LASIK CRF, CRF also increased with residual stromal bed thickness, while CH decreased with the increasing of pre-LASIK intraocular pressure and cornea flap thickness (P<0.01). CONCLUSION In one year follow-up, femtosecond laser can provide better cornea flaps with stable cornea biomechanics than mechanical microkeratome. PMID:27803856
Forward flight of swallowtail butterfly with simple flapping motion.
Tanaka, Hiroto; Shimoyama, Isao
2010-06-01
Unlike other flying insects, the wing motion of swallowtail butterflies is basically limited to flapping because their fore wings partly overlap their hind wings, structurally restricting the feathering needed for active control of aerodynamic force. Hence, it can be hypothesized that the flight of swallowtail butterflies is realized with simple flapping, requiring little feedback control of the feathering angle. To verify this hypothesis, we fabricated an artificial butterfly mimicking the wing motion and wing shape of a swallowtail butterfly and analyzed its flights using images taken with a high-speed video camera. The results demonstrated that stable forward flight could be realized without active feathering or feedback control of the wing motion. During the flights, the artificial butterfly's body moved up and down passively in synchronization with the flapping, and the artificial butterfly followed an undulating flight trajectory like an actual swallowtail butterfly. Without feedback control of the wing motion, the body movement is directly affected by change of aerodynamic force due to the wing deformation; the degree of deformation was determined by the wing venation. Unlike a veinless wing, a mimic wing with veins generated a much higher lift coefficient during the flapping flight than in a steady flow due to the large body motion.
Efficient flapping flight of pterosaurs
NASA Astrophysics Data System (ADS)
Strang, Karl Axel
In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for the membrane subject to glide loads and pretension from the wing joint positions. The flapping gait is optimized in a two-stage procedure. First the design space is explored using a binary genetic algorithm. The best design points are then used as starting points in a sequential quadratic programming optimization algorithm. This algorithm is used to refine the solutions by precisely satisfying the constraints. The refined solutions are found in generally less than twenty major iterations and constraints are violated generally by less than 0.1%. We find that the optimal motions are in agreement with previous results for simple wing motions. By adding joint motions, the required flapping power is reduced by 7% to 17%. Because of the large uncertainties for some estimates, we investigate the sensitivity of the optimized flapping gait. We find that the optimal motions are sensitive mainly to flight speed, body accelerations, and to the material properties of the wing membrane. The optimal flight speed found correlates well with other studies of pterosaur flapping flight, and is 31% to 37% faster than previous estimates based on glide performance. Accounting for the body accelerations yields an increase of 10% to 16% in required flapping power. When including the aeroelastic effects, the optimal flapping gait is only slightly modified to accommodate for the deflections of stiff membranes. For a flexible membrane, the motion is significantly modified and the power increased by up to 57%. Finally, the flapping gait and required power compare well with published results for similar wing motions. Some published estimates of required power assumed a propulsive efficiency of 100%, whereas the propulsive efficiency computed for Coloborhynchus robustus ranges between 54% and 87%.
Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean
1997-01-01
Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.
Rivera, Angela R. V.; Rivera, Gabriel; Blob, Richard W.
2013-01-01
SUMMARY Animals that swim using appendages do so by way of rowing and/or flapping motions. Often considered discrete categories, rowing and flapping are more appropriately regarded as points along a continuum. The pig-nosed turtle, Carettochelys insculpta, is unusual in that it is the only freshwater turtle to have limbs modified into flippers and swim via synchronous forelimb motions that resemble dorsoventral flapping, traits that evolved independently from their presence in sea turtles. We used high-speed videography to quantify forelimb kinematics in C. insculpta and a closely related, highly aquatic rower (Apalone ferox). Comparisons of our new data with those previously collected for a generalized freshwater rower (Trachemys scripta) and a flapping sea turtle (Caretta caretta) allow us to: (1) more precisely quantify and characterize the range of limb motions used by flappers versus rowers, and (2) assess whether the synchronous forelimb motions of C. insculpta can be classified as flapping (i.e. whether they exhibit forelimb kinematics and angles of attack more similar to closely related rowing species or more distantly related flapping sea turtles). We found that the forelimb kinematics of previously recognized rowers (T. scripta and A. ferox) were most similar to each other, but that those of C. insculpta were more similar to rowers than to flapping C. caretta. Nevertheless, of the three freshwater species, C. insculpta was most similar to flapping C. caretta. ‘Flapping’ in C. insculpta is achieved through humeral kinematics very different from those in C. caretta, with C. insculpta exhibiting significantly more anteroposterior humeral motion and protraction, and significantly less dorsoventral humeral motion and depression. Based on several intermediate kinematic parameters and angle of attack data, C. insculpta may in fact represent a synchronous rower or hybrid rower-flapper, suggesting that traditional views of C. insculpta as a flapper should be revised. PMID:23125335
Manela, A; Huang, L
2013-04-01
Acoustic signature of a rigid wing, equipped with a movable downstream flap and interacting with a line vortex, is studied in a two-dimensional low-Mach number flow. The flap is attached to the airfoil via a torsion spring, and the coupled fluid-structure interaction problem is analyzed using thin-airfoil methodology and application of the emended Brown and Michael equation. It is found that incident vortex passage above the airfoil excites flap motion at the system natural frequency, amplified above all other frequencies contained in the forcing vortex. Far-field radiation is analyzed using Powell-Howe analogy, yielding the leading order dipole-type signature of the system. It is shown that direct flap motion has a negligible effect on total sound radiation. The characteristic acoustic signature of the system is dominated by vortex sound, consisting of relatively strong leading and trailing edge interactions of the airfoil with the incident vortex, together with late-time wake sound resulting from induced flap motion. In comparison with the counterpart rigid (non-flapped) configuration, it is found that the flap may act as sound amplifier or absorber, depending on the value of flap-fluid natural frequency. The study complements existing analyses examining sound radiation in static- and detached-flap configurations.
Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Johnson, Wayne
2013-01-01
Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.
Improved motion correction in PROPELLER by using grouped blades as reference.
Liu, Zhe; Zhang, Zhe; Ying, Kui; Yuan, Chun; Guo, Hua
2014-03-01
To develop a robust reference generation method for improving PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) reconstruction. A new reference generation method, grouped-blade reference (GBR), is proposed for calculating rotation angle and translation shift in PROPELLER. Instead of using a single-blade reference (SBR) or combined-blade reference (CBR), our method classifies blades by their relative correlations and groups similar blades together as the reference to prevent inconsistent data from interfering the correction process. Numerical simulations and in vivo experiments were used to evaluate the performance of GBR for PROPELLER, which was further compared with SBR and CBR in terms of error level and computation cost. Both simulation and in vivo experiments demonstrate that GBR-based PROPELLER provides better correction for random motion or bipolar motion comparing with SBR or CBR. It not only produces images with lower error level but also needs less iteration steps to converge. A grouped-blade for reference selection was investigated for PROPELLER MRI. It helps to improve the accuracy and robustness of motion correction for various motion patterns. Copyright © 2013 Wiley Periodicals, Inc.
Overview of the Novel Intelligent JAXA Active Rotor Program
NASA Technical Reports Server (NTRS)
Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.
2010-01-01
The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.
Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
Du, Gang; Sun, Mao
2012-05-07
We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.
A low-cost simulation platform for flapping wing MAVs
NASA Astrophysics Data System (ADS)
Kok, J. M.; Chahl, J. S.
2015-03-01
This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.
Break in microkeratome oscillating pin during LASIK flap creation.
Balachandran, Chandrashekar; Aslanides, Ioannis M
2010-06-01
We describe the case of a 40-year-old female myope who presented for bilateral LASIK. Intra-operatively, the microkeratome oscillating pin broke during flap creation resulting in the separation of the disposable blade from the motor. This resulted in an irregular flap with missing pieces. The procedure was abandoned and the macerated partial flap repositioned as best as possible. The patient recovered a BCVA of 6/7.5. The manufacturer has since reported taking corrective measures to prevent this problem in the future. This case is a reminder that despite care and maintenance by user and manufacturer, extreme and rare hardware malfunctions can occur. Furthermore, although potentially sight threatening if managed well these complications can be followed by good recovery of vision.
Smart helicopter rotor with active blade tips
NASA Astrophysics Data System (ADS)
Bernhard, Andreas Paul Friedrich
2000-10-01
The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.
On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings
NASA Astrophysics Data System (ADS)
Lua, K. B.; Lai, K. C.; Lim, T. T.; Yeo, K. S.
2010-12-01
Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient almost the same as a rigid wing when executing hawkmoth motion, but lower than the rigid wing when performing a simple harmonic motion. In all cases studied (7,800 ≤ Re ≤ 11,700), the Reynolds number does not alter the force generation significantly.
NASA Technical Reports Server (NTRS)
Renka, A. R.
1975-01-01
The theoretical potential of a jet flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears was investigated. It was determined that the dominant contributor to the rotor power requirements is the requirement to maintain moment trim as well as force trim. It was also found that the requirement to maintain moment trim does not entail a power penalty.
Estimation of blade airloads from rotor blade bending moments
NASA Technical Reports Server (NTRS)
Bousman, William G.
1987-01-01
This paper presents a method for the estimation of blade airloads, based on the measurements of flap bending moments. In this procedure, the blade rotation in vacuum modes is calculated, and the airloads are expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The method was validated by comparing the calculated airload distribution with the original wind tunnel measurements which were made using ten modes and twenty measurement stations. Good agreement between the predicted and the measured airloads was found up to 0.90 R, but the agreement degraded towards the blade tip. The method is shown to be quite robust to the type of experimental problems that could be expected to occur in the testing of full-scale and model-scale rotors.
Effect of limited amplitude and rate of flap motion on vane-controlled gust alleviation system
NASA Technical Reports Server (NTRS)
Barker, L. K.; Crawford, D. J.; Sparrow, G. W.
1972-01-01
An airplane (light transport type) is assumed to be in level flight (no pitching) through atmospheric turbulence which has a mean-square vertical gust intensity of 9.3 (m/sec)sq. The power spectral density of the vertical acceleration due to gusts is examined with and without a gust-alleviation system in operation. The gust-alleviation system consisted of wing flaps that were used in conjunction with a vane mounted ahead of the airplane to sense the vertical gust velocity. The primary purpose of this study was to examine the change in the effectiveness of the gust-alleviation system when the flap motion is limited in amplitude and rate. The alleviation system was very effective if no restrictions were placed on flap motion (rate and amplitude). Restricting the flap amplitude to 0.5 radian did not appreciably change the effectiveness. However, restricting the flap rate did reduce the gust alleviation, and restricting the flap rate to 0.25 rad/sec actually caused the alleviation system to increase the vertical acceleration above that for the no-alleviation situation. Based upon this analysis, rate limiting appears to be rather significant in gust-alleviation systems designed for passenger comfort.
Chen, Q Z; Sun, Y C; Chen, J; Kong, J; Gong, Y P; Mao, T
2015-11-01
This retrospective study was designed to compare functional and cosmetic outcomes of the reverse digital artery island flap and reverse dorsal homodigital island flap in fingertip repair. A total of 23 patients were followed for 24 to 30 months. The reverse digital artery island flap was used in 12 patients, and reverse dorsal homodigital island flap in another 11 patients. Flap sensibility was assessed using the Semmes-Weinstein monofilament test and static 2-point discrimination test. Patient satisfaction, active motion of the finger joints, complications and cold intolerance were evaluated. The static 2-point discrimination and Michigan Hand Outcomes Questionnaire (appearance) of the fingers treated with a reverse digital artery flap were significantly better than those with a reverse dorsal homodigital flap. The static 2-point discrimination of the skin-grafted donor sides after dorsal homodigital flap were poorer than that in the contralateral finger. No significant differences were found between the two flaps for pressure or touch sensibility, active ranges of digital motion, complications and cold intolerance. III. © The Author(s) 2015.
Bending mode flutter in a transonic linear cascade
NASA Astrophysics Data System (ADS)
Govardhan, Raghuraman; Jutur, Prahallada
2017-11-01
Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.
NASA Astrophysics Data System (ADS)
Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.
2016-09-01
The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.
A Study about the Taboo of Rotation Timing for the Flapping Wing Flight
NASA Astrophysics Data System (ADS)
Wang, An-Bang; Hsueh, Chia-Hsien; Chen, Shih-Shen
2004-11-01
Influence of rotation timing for flapping wing flight on the flying lift has been experimentally investigated in this study. Since the insects cannot extend and shrink their wings like birds, the rotation timing of wings becomes the major influential factor to affect the flying lift of the flapping wing flight. The results reveal that rotation timing has significant influence on the flying lift. The averaged flying lift increases for high rotation wing velocity. Based on the comparisons of flying lift, too late A-rotation (connecting from wing downward motion to upward one) is the most serious taboo for the motion design of the micro air vehicles with flapping wings. Too late B-rotation (connection from upward motion to downward one) should also be avoided.
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
de Oliveira, Riza Rute; do Nascimento, Simony Lira; Derchain, Sophie F M; Sarian, Luís Otávio
2013-05-01
Mastectomy negatively affects scapulothoracic and glenohumeral kinematics. Breast reconstructive methods such as the latissimus dorsi flap can result in anatomical modifications that may in theory further affect the shoulder apparatus. The purpose of this study was to examine the effects of latissimus dorsi flap reconstruction on the recovery of shoulder motion and other postsurgical problems during the first year after mastectomy. This was a prospective cohort study of 104 consecutive mastectomies (47 with immediate latissimus dorsi flaps). Shoulder range of motion was assessed before and at 1, 3, 6, and 12 months after surgery. Pain, tissue adhesion, scar enlargement, and web syndrome were assessed during follow-up. There was a 30 percent decrease of shoulder range of motion 1 month after surgery, with gradual recovery over time. However, mean abduction and flexion capacities did not reach baseline levels and were on average 5 to 10 percent lower than baseline, even after 1 year. Over time, the latissimus dorsi flap was not associated with restriction of flexion or abduction. Scar enlargement (at the first month, p = 0.009) and tissue adhesion (at month 12, p = 0.032) were significantly less common in the latissimus dorsi flap group. The authors' study clearly suggests that the additional anatomical manipulation required for the latissimus dorsi flap procedure does not further affect shoulder kinematics and is associated with a lower incidence of tissue adhesion. Therapeutic, II.
Smart structure for small wind turbine blade
NASA Astrophysics Data System (ADS)
Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.
2013-08-01
Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.
AHPCRC - Army High Performance Computing Research Center
2008-01-01
University) Birds and insects use complex flapping and twisting wing motions to maneuver, hover, avoid obstacles, and maintain or regain their...vehicles for use in sensing, surveillance, and wireless communications. HPC simulations examine plunging, pitching, and twisting motions of aeroelastic...wings, to optimize the amplitudes and frequencies of flapping and twisting motions for the maximum amount of thrust. Several methods of calculation
High-power piezo drive amplifier for large stack and PFC applications
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Gamble, Mike
2001-08-01
This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.
Myrent, Noah; Adams, Douglas E; Griffith, D Todd
2015-02-28
A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade
NASA Technical Reports Server (NTRS)
Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon
2000-01-01
Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Shishkin, V. M.
2016-01-01
A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.
Numerical and experimental studies of hydrodynamics of flapping foils
NASA Astrophysics Data System (ADS)
Zhou, Kai; Liu, Jun-kao; Chen, Wei-shan
2018-04-01
The flapping foil based on bionics is a sort of simplified models which imitate the motion of wings or fins of fish or birds. In this paper, a universal kinematic model with three degrees of freedom is adopted and the motion parallel to the flow direction is considered. The force coefficients, the torque coefficient, and the flow field characteristics are extracted and analyzed. Then the propulsive efficiency is calculated. The influence of the motion parameters on the hydrodynamic performance of the bionic foil is studied. The results show that the motion parameters play important roles in the hydrodynamic performance of the flapping foil. To validate the reliability of the numerical method used in this paper, an experiment platform is designed and verification experiments are carried out. Through the comparison, it is found that the numerical results compare well with the experimental results, to show that the adopted numerical method is reliable. The results of this paper provide a theoretical reference for the design of underwater vehicles based on the flapping propulsion.
Advanced Concept Architecture Design and Integrated Analysis (ACADIA)
2017-11-03
and the vertical drag due to the induced velocity download on the vehicle structure. The propeller blades are assumed to be rigid and therefore any...flapping of the blades is assumed to be negligible. Thus, the tip path plane angle of attack gives an indication of the multicopter attitude when used...The software required to run this printer is called Catalyst EX. Catalyst EX generates an estimated print time with a given STL file. Fixed wing
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.
Design and simulation on the morphing composite propeller (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong
2017-04-01
As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.
Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor
NASA Technical Reports Server (NTRS)
Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei
2014-01-01
The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.
Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2012-01-01
A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.
Flow field of flexible flapping wings
NASA Astrophysics Data System (ADS)
Sallstrom, Erik
The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded details of where along the wing the forces were generated. As expected, these results indicated that the spanwise location of where the forces were generated depended upon the wings membrane material and reinforcement pattern, but in general it was in the outer third of the wing. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavroidis, P; Lavdas, E; Kostopoulos, S
Purpose: To assess the efficacy of the BLADE technique to eliminate motion, truncation, flow and other artifacts in Cervical Spine MRI compared to the conventional technique. To study the ability of the examined sequences to reduce the indetention and wrap artifacts, which have been reported in BLADE sagittal sequences. Methods: Forty consecutive subjects, who had been routinely scanned for cervical spine examination using four different image acquisition techniques, were analyzed. More specifically, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs. T2 TIRM SAG BLADE. A quantitativemore » analysis was performed using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures. A qualitative analysis was also performed by two radiologists, who graded seven image characteristics on a 5-point scale (0:non-visualization; 1:poor; 2:average; 3:good; 4:excellent). The observers also evaluated the presence of image artifacts (motion, truncation, flow, indentation). Results: Based on the findings of the quantitative analysis, the ReCON values of the CSF (cerebrospinal fluid)/SC (spinal cord) between TIRM SAG and TIRM SAG BLADE were found to present statistical significant differences (p<0.001). Regarding motion and truncation artifacts, the T2 TSE SAG BLADE was superior compared to the T2 TSE SAG and the T2 TIRM SAG BLADE was superior compared to the T2 TIRM SAG. Regarding flow artifacts, T2 TIRM SAG BLADE eliminated more artifacts compared to the T2 TIRM SAG. Conclusion: The use of BLADE sequences in cervical spine MR examinations appears to be capable of potentially eliminating motion, pulsatile flow and trancation artifacts. Furthermore, BLADE sequences are proposed to be used in the standard examination protocols based on the fact that a significantly improved image quality could be achieved.« less
Helicopter Rotor Blade Computation in Unsteady Flows Using Moving Overset Grids
NASA Technical Reports Server (NTRS)
Ahmad, Jasim; Duque, Earl P. N.
1996-01-01
An overset grid thin-layer Navier-Stokes code has been extended to include dynamic motion of helicopter rotor blades through relative grid motion. The unsteady flowfield and airloads on an AH-IG rotor in forward flight were computed to verify the methodology and to demonstrate the method's potential usefulness towards comprehensive helicopter codes. In addition, the method uses the blade's first harmonics measured in the flight test to prescribe the blade motion. The solution was impulsively started and became periodic in less than three rotor revolutions. Detailed unsteady numerical flow visualization techniques were applied to the entire unsteady data set of five rotor revolutions and exhibited flowfield features such as blade vortex interaction and wake roll-up. The unsteady blade loads and surface pressures compare well against those from flight measurements. Details of the method, a discussion of the resulting predicted flowfield, and requirements for future work are presented. Overall, given the proper blade dynamics, this method can compute the unsteady flowfield of a general helicopter rotor in forward flight.
Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process.
Li, Beiwen; Zhang, Song
2017-10-30
Scientific research of a stabilized flapping flight process (e.g. hovering) has been of great interest to a variety of fields including biology, aerodynamics, and bio-inspired robotics. Different from the current passive photogrammetry based methods, the digital fringe projection (DFP) technique has the capability of performing dense superfast (e.g. kHz) 3D topological reconstructions with the projection of defocused binary patterns, yet it is still a challenge to measure a flapping flight process with the presence of rapid flapping wings. This paper presents a novel absolute 3D reconstruction method for a stabilized flapping flight process. Essentially, the slow motion parts (e.g. body) and the fast-motion parts (e.g. wings) are segmented and separately reconstructed with phase shifting techniques and the Fourier transform, respectively. The topological relations between the wings and the body are utilized to ensure absolute 3D reconstruction. Experiments demonstrate the success of our computational framework by testing a flapping wing robot at different flapping speeds.
DFVLR rotorcraft: Construction and engineering
NASA Technical Reports Server (NTRS)
Langer, H. J.
1984-01-01
A helicopter rotor test stand is described. Full scale helicopter components can be tested such as hingeless fiberglass rotors and two blade rotor with flapping hinge, or a hybrid system. The facility is used to test stability, rotor components and downwind components.
Bifurcation theory applied to aircraft motions
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1985-01-01
Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (subcritical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with experiments.
Bifurcation theory applied to aircraft motions
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1985-01-01
The bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (critical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with the experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, Jonathan W.
2014-08-05
The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as anmore » analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.« less
Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system
NASA Technical Reports Server (NTRS)
Spera, D. A.
1976-01-01
Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.
NASA Astrophysics Data System (ADS)
Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu
2012-06-01
This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.
A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI
Lyu, Mengye; Liu, Yilong; Xie, Victor B.; Feng, Yanqiu; Guo, Hua; Wu, Ed X.
2017-01-01
PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient. PMID:28205602
A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI.
Lyu, Mengye; Liu, Yilong; Xie, Victor B; Feng, Yanqiu; Guo, Hua; Wu, Ed X
2017-02-16
PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient.
Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desmond, M.; Hughes, S.; Paquette, J.
Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation ofmore » model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).« less
Blade-Mounted Flap Control for BVI Noise Reduction Proof-of-Concept Test
NASA Technical Reports Server (NTRS)
Dawson, Seth; Hassan, Ahmed; Straub, Friedrich; Tadghighi, Hormoz
1995-01-01
This report describes a wind tunnel test of the McDonnell Douglas Helicopter Systems (MDHS) Active Flap Model Rotor at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The test demonstrated that BVI noise reductions and vibration reductions were possible with the use of an active flap. Aerodynamic results supported the acoustic data trends, showing a reduction in the strength of the tip vortex with the deflection of the flap. Acoustic results showed that the flap deployment, depending on the peak deflection angle and azimuthal shift in its deployment schedule, can produce BVI noise reductions as much as 6 dB on the advancing and retreating sides. The noise reduction was accompanied by an increase in low frequency harmonic noise and high frequency broadband noise. A brief assessment of the effect of the flap on vibration showed that significant reductions were possible. The greatest vibration reductions (as much as 76%) were found in the four per rev pitching moment at the hub. Performance improvement cam results were inconclusive, as the improvements were predicted to be smaller than the resolution of the rotor balance.
Comparison of Three Exit-Area Control Devices on an N.A.C.A. Cowling, Special Report
NASA Technical Reports Server (NTRS)
McHugh, James G.
1940-01-01
Adjustable cowling flaps, an adjustable-length cowling skirt, and a bottom opening with adjustable flap were tested as means of controlling the rate of cooling-air flow through an air-cooled radial-engine cowling. The devices were tested in the NACA 20-foot tunnel on a model wing-nacelle-propeller combination, through an airspeed range of 20 to 80 miles per hour, and with the propeller blade angle set 23 degrees at 0.75 of the tip radius. The resistance of the engine to air flow through the cowling was simulated by a perforated plate. The results indicated that the adjustable cowling flap and the bottom opening with adjustable flap were about equally effective on the basis of pressure drop obtainable and that both were more effective means of increasing the pressure drop through the cowling than the adjustable-length skirt. At conditions of equal cooling-air flow, the net efficiency obtained with the adjustable cowling flaps and the adjustable-length cowling skirt was about 1% greater than the net efficiency obtained with the bottom opening with adjustable flap.
Propulsive performance of biologically inspired flapping foils at high Reynolds numbers.
Techet, Alexandra H
2008-01-01
Propulsion and maneuvering underwater by flapping foil motion, optimized through years of evolution, is ubiquitous in nature, yet marine propulsors inspired by examples of highly maneuverable marine life or aquatic birds are not widely implemented in engineering. Performance data from flapping foils, moving in a rolling and pitching motion, are presented at high Reynolds numbers, Re=Uc/nu, or O(10(4)), where U is the relative inflow velocity, c is the chord length of the foil, and nu is the kinematic viscosity of the fluid, from water tunnel experiments using a foil actuator module designed after an aquatic penguin or turtle fin. The average thrust coefficients and efficiency measurements are recorded over a range of kinematic flapping amplitudes and frequencies. Results reveal a maximum thrust coefficient of 2.09, and for low values of angle of attack the thrust generally increases with Strouhal number, without much penalty to efficiency. Strouhal number is defined as St=2h(0)f/U, where f is the frequency of flapping, and 2h(0) is the peak-to-peak amplitude of flapping. The thrust and efficiency contour plots also present a useful performance trend where, at low angles of attack, high thrust and efficiency can be gained at sufficiently high Strouhal numbers. Understanding the motion of aquatic penguins and turtle wings and emulating these motions mechanically can yield insight into the hydrodynamics of how these animals swim and also improve performance of biologically inspired propulsive devices.
Fundamental Understanding of Rotor Aeromechanics at High Advance Ratio Through Wind Tunnel Testing
NASA Astrophysics Data System (ADS)
Berry, Benjamin
The purpose of this research is to further the understanding of rotor aeromechanics at advance ratios (mu) beyond the maximum of 0.5 (ratio of forward airspeed to rotor tip speed) for conventional helicopters. High advance ratio rotors have applications in high speed compound helicopters. In addition to one or more conventional main rotors, these aircraft employ either thrust compounding (propellers), lift compounding (fixed-wings), or both. An articulated 4-bladed model rotor was constructed, instrumented, and tested up to a maximum advance ratio of mu=1.6 in the Glenn L. Martin Wind Tunnel at the University of Maryland. The data set includes steady and unsteady rotor hub forces and moments, blade structural loads, blade flapping angles, swashplate control angles, and unsteady blade pressures. A collective-thrust control reversal--where increasing collective pitch results in lower rotor thrust--was observed and is a unique phenomenon to the high advance ratio flight regime. The thrust reversal is explained in a physical manner as well as through an analytical formulation. The requirements for the occurrence of the thrust reversal are enumerated. The effects of rotor geometry design on the thrust reversal onset are explored through the formulation and compared to the measured data. Reverse-flow dynamic stall was observed to extend the the lifting capability of the edgewise rotor well beyond the expected static stall behavior of the airfoil sections. Through embedded unsteady blade surface pressure transducers, the normal force, pitching moment, and shed dynamic stall vortex time histories at a blade section in strong reverse flow were analyzed. Favorable comparisons with published 2-D pitching airfoil reverse flow dynamic stall data indicate that the 3-D stall environment can likely be predicted using models developed from such 2-D experiments. Vibratory hub loads were observed to increase with advance ratio. Maximum amplitude was observed near mu=1, with a reduction in vibratory loads at higher advance ratios. Blade load 4/rev harmonics dominated due to operation near a 4/rev fanplot crossing of the 2nd flap bending mode natural frequency. Oscillatory loads sharply increase in the presence of retreating blade reverse flow dynamic stall, and are evident in blade torsion, pitch link, and hub load measurements. The blades exhibited torsion moment vibrations at the frequency of the 1st torsion mode in response to the reverse flow pitching moment loading.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
NASA Astrophysics Data System (ADS)
Izraelevitz, Jacob; Triantafyllou, Michael
2016-11-01
Flapping wings in nature demonstrate a large force actuation envelope, with capabilities beyond the limits of static airfoil section coefficients. Puffins, guillemots, and other auks particularly showcase this mechanism, as they are able to both generate both enough thrust to swim and lift to fly, using the same wing, by changing the wing motion trajectory. The wing trajectory is therefore an additional design criterion to be optimized along with traditional aircraft parameters, and could possibly enable dual aerial/aquatic flight. We showcase finite aspect-ratio flapping wing experiments, dynamic similarity arguments, and reduced-order models for predicting the performance of flapping wings that carry out complex motion trajectories.
Minimum weight design of helicopter rotor blades with frequency constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.
1989-01-01
The minimum weight design of helicopter rotor blades subject to constraints on fundamental coupled flap-lag natural frequencies has been studied in this paper. A constraint has also been imposed on the minimum value of the blade autorotational inertia to ensure that the blade has sufficient inertia to autorotate in case of an engine failure. The program CAMRAD has been used for the blade modal analysis and the program CONMIN has been used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for blades in vacuum with both rectangular and tapered box beam structures. Design variables include taper ratio, nonstructural segment weights and box beam dimensions. The paper shows that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for blades with rectangular and tapered box beams.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Kostopoulos, Spiros; Glotsos, Dimitrios; Roka, Violeta; Koutsiaris, Aristotle G; Batsikas, Georgios; Sakkas, Georgios K; Tsagkalis, Antonios; Notaras, Ioannis; Stathakis, Sotirios; Papanikolaou, Nikos; Vassiou, Katerina
2013-07-01
The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases. Both quantitative and qualitative analyses were performed based on measurements in different normal anatomical structures and examination of seven characteristics, respectively. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion, pulsatile flow and cross-talk artifacts was evaluated. Based on the results of the qualitative analysis for the different sequences and anatomical structures, the BLADE sequences were found to be significantly superior to the conventional ones in all the cases. The BLADE sequences eliminated the motion artifacts in all the cases. In our results, it was found that in the examined sequences (sagittal and axial) the differences between the BLADE and conventional sequences regarding the elimination of motion, pulsatile flow and cross-talk artifacts were statistically significant. In all the comparisons, the T2 TSE BLADE sequences were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable of potentially eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MR images and producing high quality images in collaborative and non-collaborative patients. Copyright © 2013 Elsevier Inc. All rights reserved.
An IPMC-enabled bio-inspired bending/twisting fin for underwater applications
NASA Astrophysics Data System (ADS)
Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.
2013-01-01
This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These results suggest that such IPMC-enabled fin designs can be used for developing active propeller blades or control surfaces on underwater vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
Phan, Hoang Vu; Park, Hoon Cheol
2018-04-18
Studies on wing kinematics indicate that flapping insect wings operate at higher angles of attack (AoAs) than conventional rotary wings. Thus, effectively flying an insect-like flapping-wing micro air vehicle (FW-MAV) requires appropriate wing design for achieving low power consumption and high force generation. Even though theoretical studies can be performed to identify appropriate geometric AoAs for a wing for achieving efficient hovering flight, designing an actual wing by implementing these angles into a real flying robot is challenging. In this work, we investigated the wing morphology of an insect-like tailless FW-MAV, which was named KUBeetle, for obtaining high vertical force/power ratio or power loading. Several deformable wing configurations with various vein structures were designed, and their characteristics of vertical force generation and power requirement were theoretically and experimentally investigated. The results of the theoretical study based on the unsteady blade element theory (UBET) were validated with reference data to prove the accuracy of power estimation. A good agreement between estimated and measured results indicated that the proposed UBET model can be used to effectively estimate the power requirement and force generation of an FW-MAV. Among the investigated wing configurations operating at flapping frequencies of 23 Hz to 29 Hz, estimated results showed that the wing with a suitable vein placed outboard exhibited an increase of approximately 23.7% ± 0.5% in vertical force and approximately 10.2% ± 1.0% in force/power ratio. The estimation was supported by experimental results, which showed that the suggested wing enhanced vertical force by approximately 21.8% ± 3.6% and force/power ratio by 6.8% ± 1.6%. In addition, wing kinematics during flapping motion was analyzed to determine the reason for the observed improvement.
NASA Technical Reports Server (NTRS)
Seetharam, H. C.; Wentz, W. H., Jr.
1977-01-01
Measurements of flow fields with low speed turbulent boundary layers were made for the GA(W)-1 airfoil with a 0.30 c Fowler flap deflected 40 deg at angles of attack of 2.7 deg, 7.7 deg, and 12.8 deg, at a Reynolds number of 2.2 million, and a Mach number of 0.13. Details of velocity and pressure fields associated with the airfoil flap combination are presented for cases of narrow, optimum and wide slot gaps. Extensive flow field turbulence surveys were also conducted employing hot-film anemometry. For the optimum gap setting, the boundaries of the regions of flow reversal within the wake were determined by this technique for two angles of attack. Local skin friction distributions for the basic airfoil and the airfoil with flap (optimum gap) were obtained using the razor blade technique.
Motion Correction in PROPELLER and Turboprop-MRI
Tamhane, Ashish A.; Arfanakis, Konstantinos
2009-01-01
PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858
A simplified rotor system mathematical model for piloted flight dynamics simulation
NASA Technical Reports Server (NTRS)
Chen, R. T. N.
1979-01-01
The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs.
Stagger angle dependence of inertial and elastic coupling in bladed disks
NASA Technical Reports Server (NTRS)
Crawley, E. F.; Mokadam, D. R.
1984-01-01
Conditions which necessitate the inclusion of disk and shaft flexibility in the analysis of blade response in rotating blade-disk-shaft systems are derived in terms of nondimensional parameters. A simple semianalytical Rayleigh-Ritz model is derived in which the disk possesses all six rigid body degrees of freedom, which are elastically constrained by the shaft. Inertial coupling by the rigid body motion of the disk on a flexible shaft and out-of-plane elastic coupling due to disk flexure are included. Frequency ratios and mass ratios, which depend on the stagger angle, are determined for three typical rotors: a first stage high-pressure core compressor, a high bypass ratio fan, and an advanced turboprop. The stagger angle controls the degree of coupling in the blade-disk system. In the blade-disk-shaft system, the stagger angle determines whether blade-disk motion couples principally to the out-of-plane or in-plane motion of the disk on the shaft. The Ritz analysis shows excellent agreement with experimental results.
Multicyclic control for helicopters - Research in progress at Ames Research Center
NASA Technical Reports Server (NTRS)
Mccloud, J. L., III
1980-01-01
The term multicyclic control describes a blade pitch control technique used by helicopter designers to alleviate vibration in rotorcraft. Because rotor-induced vibrations are periodic, a multicyclic system, synchronized to the main rotor's azimuth position, is suitable. Many types of rotors - ranging from the jet-flap and circulation-control rotors to the conventional full-blade feathering rotors - have utilized multicyclic control. Multicyclic control systems may be designed to reduce blade-bending stresses, to reduce rotor-induced vibration, and to improve rotor performance. Rotor types are reviewed, primarily to highlight their differences. The increased use of composites in blade construction is seen to indicate that vibration alleviation will be the prime focus of multicyclic control. Adaptive feedback control systems, which also incorporate gust alleviation, are considered to be the ultimate application of multicyclic control.
McGillewie, Lara; Ramesh, Muthusamy; Soliman, Mahmoud E
2017-10-01
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Enhancing wind turbines efficiency with passive reconfiguration of flexible blades
NASA Astrophysics Data System (ADS)
Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team
2015-11-01
Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.
Elimination of motion and pulsation artifacts using BLADE sequences in knee MR imaging.
Lavdas, Eleftherios; Mavroidis, Panayiotis; Hatzigeorgiou, Vasiliki; Roka, Violeta; Arikidis, Nikos; Oikonomou, Georgia; Andrianopoulos, Konstantinos; Notaras, Ioannis
2012-10-01
The purpose of this study is to evaluate the ability of proton density (PD)-BLADE sequences in reducing or even eliminating motion and pulsatile flow artifacts in knee magnetic resonance imaging examinations. Eighty consecutive patients, who had been routinely scanned for knee examination, participated in the study. The following pairs of sequences with and without BLADE were compared: (a) PD turbo spin echo (TSE) sagittal (SAG) fat saturation (FS) in 35 patients, (b) PD TSE coronal (COR) FS in 19 patients, (c) T2 TSE axial in 13 patients and (d) PD TSE SAG in 13 patients. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of image motion and pulsation artifacts was evaluated. Based on the results of the SNR, CRN and ReCon for the different sequences and anatomical structures, the BLADE sequences were significantly superior in 19 cases, whereas the corresponding conventional sequences were significantly superior in only 6 cases. BLADE sequences eliminated motion artifacts in all the cases. However, motion artifacts were shown in (a) six PD TSE SAG FS, (b) three PD TSE COR FS, (c) three PD TSE SAG and (d) two T2 TSE axial conventional sequences. In our results, it was found that, in PD FS sequences (sagittal and coronal), the differences between the BLADE and conventional sequences regarding the elimination of motion and pulsatile flow artifacts were statistically significant. In all the comparisons, the PD FS BLADE sequences (coronal and sagittal) were significantly superior to the corresponding conventional sequences regarding the classification of their image quality. In conclusion, this technique appears to be capable to potentially eliminate motion and pulsatile flow artifacts in MR images. Copyright © 2012 Elsevier Inc. All rights reserved.
Analysis of stall flutter of a helicopter radar blade
NASA Technical Reports Server (NTRS)
Crimi, P.
1973-01-01
A study of rotor blade aeroelastic stability was carried out, using an analytic model of a two-dimensional airfoil undergoing dynamic stall and an elastomechanical representation including flapping, flapwise bending and torsional degrees of freedom. Results for a hovering rotor demonstrated that the models used are capable of reproducing both classical and stall flutter. The minimum rotor speed for the occurrence of stall flutter in hover, was found to be determined from coupling between torsion and flapping. Instabilities analogous to both classical and stall flutter were found to occur in forward flight. However, the large stall-related torsional oscillations which commonly limit aircraft forward speed appear to be the response to rapid changes in aerodynamic moment which accompany stall and unstall, rather than the result of an aeroelastic instability. The severity of stall-related instabilities and response was found to depend to some extent on linear stability. Increasing linear stability lessens the susceptibility to stall flutter and reduced the magnitude of the torsional response to stall and unstall.
Aerodynamics power consumption for mechanical flapping wings undergoing flapping and pitching motion
NASA Astrophysics Data System (ADS)
Razak, N. A.; Dimitriadis, G.; Razaami, A. F.
2017-07-01
Lately, due to the growing interest in Micro Aerial Vehicles (MAV), interest in flapping flight has been rekindled. The reason lies in the improved performance of flapping wing flight at low Reynolds number regime. Many studies involving flapping wing flight focused on the generation of unsteady aerodynamic forces such as lift and thrust. There is one aspect of flapping wing flight that received less attention. The aspect is aerodynamic power consumption. Since most mechanical flapping wing aircraft ever designed are battery powered, power consumption is fundamental in improving flight endurance. This paper reports the results of experiments carried out on mechanical wings under going active root flapping and pitching in the wind tunnel. The objective of the work is to investigate the effect of the pitch angle oscillations and wing profile on the power consumption of flapping wings via generation of unsteady aerodynamic forces. The experiments were repeated for different airspeeds, flapping and pitching kinematics, geometric angle of attack and wing sections with symmetric and cambered airfoils. A specially designed mechanical flapper modelled on large migrating birds was used. It will be shown that, under pitch leading conditions, less power is required to overcome the unsteady aerodnamics forces. The study finds less power requirement for downstroke compared to upstroke motion. Overall results demonstrate power consumption depends directly on the unsteady lift force.
NASA Technical Reports Server (NTRS)
Hodges, D. H.
1976-01-01
Nonlinear equations of motion for a cantilever rotor blade are derived for the hovering flight condition. The blade is assumed to have twist, precone, droop, sweep, torque offset and blade root offset, and the elastic axis and the axes of center of mass, tension, and aerodynamic center coincident at the quarter chord. The blade is cantilevered in bending, but has a torsional root spring to simulate pitch link flexibility. Aerodynamic forces acting on the blade are derived from strip theory based on quasi-steady two-dimensional airfoil theory. The equations are hybrid, consisting of one integro-differential equation for root torsion and three integro-partial differential equations for flatwise and chordwise bending and elastic torsion. The equations are specialized for a uniform blade and reduced to nonlinear ordinary differential equations by Galerkin's method. They are linearized for small perturbation motions about the equilibrium operating condition. Modal analysis leads to formulation of a standard eigenvalue problem where the elements of the stability matrix depend on the solution of the equilibrium equations. Two different forms of the root torsion equation are derived that yield virtually identical numerical results. This provides a reasonable check for the accuracy of the equations.
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Banerjee, D.
1977-01-01
An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.
Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi B. R.
2010-01-01
Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.
Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.
1988-01-01
The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to autorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.
Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Walsh, Joanne L.
1988-01-01
The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to aurorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.
Periodic control of the individual-blade-control helicopter rotor
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1985-01-01
This paper describes the results of an investigation into methods of controller design for linear periodic systems utilizing an extension of modern control methods. Trends present in the selection of various cost functions are outlined, and closed-loop controller results are demonstrated for two cases: first, on an analog computer simulation of the rigid out of plane flapping dynamics of a single rotor blade, and second, on a 4 ft diameter single-bladed model helicopter rotor in the MIT 5 x 7 subsonic wind tunnel, both for various high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Axial propulsion with flapping and rotating wings, a comparison of potential efficiency.
Kroninger, Christopher M
2018-04-18
Interest in biological locomotion and what advantages the principles governing it might offer in the design of manmade vehicles prompts one to consider the power requirements of flapping relative to rotary propulsion. The amount of work performed on the fluid surrounding a thrusting surface (wing or blade) is reflected in the kinetic energy of the wake. Consideration of the energy in the wake is sufficient to define absolute minimum limitations on the power requirement to generate a particular thrust. This work applies wake solutions to compare the minimum inviscid propulsive power requirement of wings flapping and in rotation at wing loading conditions reflective of hover through a state of lightly-loaded cruise. It is demonstrated that hovering flapping flight is less efficient than rotary wing propulsion except for the most extreme flap amplitude strokes ([Formula: see text] > 160°) if operating at large wake wavelength. In cruise, a larger range of flap amplitude kinematics ([Formula: see text] > 140°) can be aerodynamically more energy efficient for wake wavelengths reflective of biological propulsion. These results imply, based on the observed wing kinematics of continuous steady flight, that flapping propulsion in animals is unlikely to be more efficient than rotary propulsion.
Tamhane, Ashish A; Arfanakis, Konstantinos
2009-07-01
Periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) and Turboprop MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo (FSE) and gradient and spin-echo (GRASE), respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction are discussed for PROPELLER and Turboprop MRI. (c) 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaslet, H.; Rosenfeld, R.; Giffin, M.
The crystal structures of wild-type HIV protease (HIV PR) in the absence of substrate or inhibitor in two related crystal forms at 1.4 and 2.15 {angstrom} resolution are reported. In one crystal form HIV PR adopts an 'open' conformation with a 7.7 {angstrom} separation between the tips of the flaps in the homodimer. In the other crystal form the tips of the flaps are 'curled' towards the 80s loop, forming contacts across the local twofold axis. The 2.3 {angstrom} resolution crystal structure of a sixfold mutant of HIV PR in the absence of substrate or inhibitor is also reported. Themore » mutant HIV PR, which evolved in response to treatment with the potent inhibitor TL-3, contains six point mutations relative to the wild-type enzyme (L24I, M46I, F53L, L63P, V77I, V82A). In this structure the flaps also adopt a 'curled' conformation, but are separated and not in contact. Comparison of the apo structures to those with TL-3 bound demonstrates the extent of conformational change induced by inhibitor binding, which includes reorganization of the packing between twofold-related flaps. Further comparison with six other apo HIV PR structures reveals that the 'open' and 'curled' conformations define two distinct families in HIV PR. These conformational states include hinge motion of residues at either end of the flaps, opening and closing the entire {beta}-loop, and translational motion of the flap normal to the dimer twofold axis and relative to the 80s loop. The alternate conformations also entail changes in the {beta}-turn at the tip of the flap. These observations provide insight into the plasticity of the flap domains, the nature of their motions and their critical role in binding substrates and inhibitors.« less
Mild Myopic Astigmatism Corrected by Accidental Flap Complication: A Case Report
Fahed, Daoud C; Fahed, Charbel D
2009-01-01
A 35-year-old female presented for laser in-situ keratomileusis (LASIK). Her preoperative eye exam was normal, with a preop refraction of OD −2.50 D Sph +1.25 D Cyl ×175 and OS −2.75 D Sph +1.50 D Cyl ×165 (cycloplegic and manifest), with 20/20 BCVA OU. The central pachymetry reading was 553 μm in the right eye. Preoperative topography was normal. At the start of the pendular microkeratome path, some resistance was felt, but the microkeratome continued along its path. Upon inspection of the flap, there was a central rectangle of intact epithelium with two mirror-image flaps on both sides. The flap was repositioned and LASIK was discontinued. The cornea healed with two faint thin linear vertical parallel scars at the edge of the pupil. Postoperative inspection of the blade revealed central blunting. One month postoperatively, the uncorrected visual acuity (UCVA) was 20/20. Manifest and cycloplegic refractions were plano. This is an interesting case of accidental flap complication resulting in the correction of mild myopic astigmatism. PMID:20404996
Kwon, Kye Yoon; Ji, Yong Woo; Lee, Jeihoon; Kim, Eung Kweon
2016-07-18
Surgical lifting and scraping is a well-known treatment for epithelial ingrowth, but treatment for epithelial ingrowth on the centrally perforated laser in situ keratomileusis (LASIK) flap has not been well studied. We present a patient who had epithelial ingrowth to the backside of the flap through a central LASIK flap laceration with a stellate shape. The patient had undergone uncomplicated bilateral LASIK surgery 3 years before the trauma. Because the epithelial ingrowth was suspected during the first visit 2 weeks after trauma, and definite epithelial ingrowth was noted during the additional 2 week observation period, the ingrown epithelial tissue was removed mechanically with a number 15 blade after lifting of the flap 4 weeks after the trauma. An amniotic membrane overlay was applied over the cornea and was sutured tightly to the episclera to firmly press down the flap to the remaining posterior stroma, to prevent growth of the epithelium again to the backside of the flap. At the last follow-up visit, 5 months after surgery, the patient's visual acuity remained stabilized with no sign of recurrent epithelial ingrowth. These results showed that an amniotic membrane patch can be a useful adjuvant in the treatment of epithelial ingrowth, even on the central stellate laceration of the LASIK flap over the visual axis.
A novel method of strain - bending moment calibration for blade testing
NASA Astrophysics Data System (ADS)
Greaves, P.; Prieto, R.; Gaffing, J.; van Beveren, C.; Dominy, R.; Ingram, G.
2016-09-01
A new method of interpreting strain data in full scale static and fatigue tests has been implemented as part of the Offshore Renewable Energy Catapult's ongoing development of biaxial fatigue testing of wind turbine blades. During bi-axial fatigue tests, it is necessary to be able to distinguish strains arising from the flapwise motion of the blade from strains arising from the edgewise motion. The method exploits the beam-like structure of blades and is derived using the equations of beam theory. It offers several advantages over the current state of the art method of calibrating strain gauges.
Swimming micro-robot powered by stimuli-sensitive gel
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Alexeev, Alexander
2012-11-01
Using three-dimensional computer simulations, we design a simple maneuverable micro-swimmer that can self-propel and navigate in highly viscous (low Reynolds-number) environments. Our simple swimmer consists of a cubic gel body which periodically changes volume in response to external stimuli, two rigid rectangular flaps attached to the opposite sides of the gel body, and a flexible steering flap at the front end of the swimmer. The stimuli-sensitive body undergoes periodic expansions (swelling) and contractions (deswelling) leading to a time-irreversible beating motion of the propulsive flaps that propel the micro-swimmer. Thus, the responsive gel body acts as an ``engine'' actuating the motion of the swimmer. We examine how the swimming speed depends on the gel and flap properties. We also probe how the swimmer trajectory can be changed using a responsive steering flap whose curvature is controlled by an external stimulus. We show that the turning occurs due to steering flap bending and periodic beating. Furthermore, our simulations reveal that the turning direction can be regulated by changing the intensity of external stimulus.
Kim, Tae-Hyung; Baek, Moon-Young; Park, Ji Eun; Ryu, Young Jin; Cheon, Jung-Eun; Kim, In-One; Choi, Young Hun
2018-06-01
The purpose of this study is to compare DWI for pediatric brain evaluation using single-shot echo-planar imaging (EPI), periodically rotated overlapping parallel lines with enhanced reconstruction (Blade), and readout-segmented EPI (Resolve). Blade, Resolve, and single-shot EPI were performed for 27 pediatric patients (median age, 9 years), and three datasets were independently reviewed by two radiologists. Qualitative analyses were performed for perceptive coarseness, image distortion, susceptibility-related changes, motion artifacts, and lesion conspicuity using a 5-point Likert scale. Quantitative analyses were conducted for spatial distortion and signal uniformity of each sequence. Mean scores were 2.13, 3.17, and 3.76 for perceptive coarseness; 4.85, 3.96, and 2.19 for image distortion; 4.76, 3.96, and 2.30 for susceptibility-related change; 4.96, 3.83, and 4.69 for motion artifacts; and 2.71, 3.75, and 1.92 for lesion conspicuity, for Blade, Resolve, and single-shot EPI, respectively. Blade and Resolve showed better quality than did single-shot EPI for image distortion, susceptibility-related changes, and lesion conspicuity. Blade showed less image distortion, fewer susceptibility-related changes, and fewer motion artifacts than did Resolve, whereas lesion conspicuity was better with Resolve. Blade showed increased signal variation compared with Resolve and single-shot EPI (coefficients of variation were 0.10, 0.08, and 0.05 for lateral ventricle; 0.13, 0.09, and 0.05 for centrum semiovale; and 0.16, 0.09, and 0.06 for pons in Blade, Resolve, and single-shot EPI, respectively). DWI with Resolve or Blade yields better quality regarding distortion, susceptibility-related changes, and lesion conspicuity, compared with single-shot EPI. Blade is less susceptible to motion artifacts than is Resolve, whereas Resolve yields less noise and better lesion conspicuity than does Blade.
Conformational flexibility in the flap domains of ligand-free HIV protease.
Heaslet, Holly; Rosenfeld, Robin; Giffin, Mike; Lin, Ying Chuan; Tam, Karen; Torbett, Bruce E; Elder, John H; McRee, Duncan E; Stout, C David
2007-08-01
The crystal structures of wild-type HIV protease (HIV PR) in the absence of substrate or inhibitor in two related crystal forms at 1.4 and 2.15 A resolution are reported. In one crystal form HIV PR adopts an 'open' conformation with a 7.7 A separation between the tips of the flaps in the homodimer. In the other crystal form the tips of the flaps are 'curled' towards the 80s loop, forming contacts across the local twofold axis. The 2.3 A resolution crystal structure of a sixfold mutant of HIV PR in the absence of substrate or inhibitor is also reported. The mutant HIV PR, which evolved in response to treatment with the potent inhibitor TL-3, contains six point mutations relative to the wild-type enzyme (L24I, M46I, F53L, L63P, V77I, V82A). In this structure the flaps also adopt a 'curled' conformation, but are separated and not in contact. Comparison of the apo structures to those with TL-3 bound demonstrates the extent of conformational change induced by inhibitor binding, which includes reorganization of the packing between twofold-related flaps. Further comparison with six other apo HIV PR structures reveals that the 'open' and 'curled' conformations define two distinct families in HIV PR. These conformational states include hinge motion of residues at either end of the flaps, opening and closing the entire beta-loop, and translational motion of the flap normal to the dimer twofold axis and relative to the 80s loop. The alternate conformations also entail changes in the beta-turn at the tip of the flap. These observations provide insight into the plasticity of the flap domains, the nature of their motions and their critical role in binding substrates and inhibitors.
BVI induced vibration and noise alleviation by active and passive approaches
NASA Astrophysics Data System (ADS)
Liu, Li
This dissertation describes the development of a comprehensive aeroelastic/aeroacoustic simulation capability for the modeling of vibration and noise in rotorcraft induced by blade-vortex interaction (BVI). Subsequently this capability is applied to study vibration and noise reduction, using active and passive control approaches. The active approach employed is the actively controlled partial span trailing edge flaps (ACF), implemented in single and dual, servo and plain flap configurations. The passive approach is based on varying the sweep and anhedral on the tip of the rotor. Two different modern helicopters are chosen as the baseline for the implementation of ACF approach, one resembling a four-bladed MBB BO-105 hingeless rotor and the other similar to a five-bladed MD-900 bearingless rotor. The structural model is based on a finite element approach capable of simulating composite helicopter blades with swept tips, and representing multiple load paths at the blade root which is a characteristic of bearingless rotors. An unsteady compressible aerodynamic model based on a rational function approximation (RFA) approach is combined with a free wake analysis which has been enhanced by improving the wake analysis resolution and modeling a dual vortex structure. These enhancements are important for capturing BVI effects. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades has been developed, which is required by the acoustic analysis. A modified version of helicopter noise code WOPWOP with provisions for blade flexibility has been combined with the aeroelastic analysis to predict the BVI noise. Several variants of the higher harmonic control (HHC) algorithm have been applied for the active noise control, as well as the simultaneous vibration and noise control. Active control of BVI noise is accomplished using feedback from an onboard microphone. The simulation has been extensively validated against experimental data and other comprehensive rotorcraft codes, and overall good correlation is obtained. Subsequently, the effectiveness of the ACF approach for vibration and BVI noise reduction has been explored, using the two different helicopter configurations. Vibration reductions of up to 86% and 60% are shown for the hingeless and bearingless rotor, respectively. Noise reductions of up to 6dB and 3dB are also demonstrated for these two configurations. (Abstract shortened by UMI.)
Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight
NASA Astrophysics Data System (ADS)
Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.
2017-12-01
Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.
Effects of Inertial Power and Inertial Force on Bat Wings.
Yin, Dongfu; Zhang, Zhisheng; Dai, Min
2016-06-01
The inertial power and inertial force of wings are important factors in evaluating the flight performance of native bats. Based on measurement data of wing size and motions of Eptesicus fuscus, we present a new computational bat wing model with divided fragments of skeletons and membrane. The motions of the model were verified by comparing the joint and tip trajectories with native bats. The influences of flap, sweep, elbow, wrist and digits motions, the effects of different bones and membrane of bat wing, the components on vertical, spanwise and fore-aft directions of the inertial power and force were analyzed. Our results indicate that the flap, sweep, and elbow motions contribute the main inertial power and force; the membrane occupies an important proportion of the inertial power and force; inertial power on flap direction was larger, while variations of inertial forces on different directions were not evident. These methods and results offer insights into flight dynamics in other flying animals and may contribute to the design of future robotic bats.
The role of passive avian head stabilization in flapping flight
Pete, Ashley E.; Kress, Daniel; Dimitrov, Marina A.; Lentink, David
2015-01-01
Birds improve vision by stabilizing head position relative to their surroundings, while their body is forced up and down during flapping flight. Stabilization is facilitated by compensatory motion of the sophisticated avian head–neck system. While relative head motion has been studied in stationary and walking birds, little is known about how birds accomplish head stabilization during flapping flight. To unravel this, we approximate the avian neck with a linear mass–spring–damper system for vertical displacements, analogous to proven head stabilization models for walking humans. We corroborate the model's dimensionless natural frequency and damping ratios from high-speed video recordings of whooper swans (Cygnus cygnus) flying over a lake. The data show that flap-induced body oscillations can be passively attenuated through the neck. We find that the passive model robustly attenuates large body oscillations, even in response to head mass and gust perturbations. Our proof of principle shows that bird-inspired drones with flapping wings could record better images with a swan-inspired passive camera suspension. PMID:26311316
To flap or not to flap: continued discussion with particle image velocimetry of the near wake
NASA Astrophysics Data System (ADS)
Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza
2017-11-01
We continue the discussion of which underwater propulsion mechanism is more effective: flapping used by fish or periodic contractions used by jellyfish. The two propulsion mechanisms are simplified into flapping and clapping plate motions, respectively, to allow for a direct comparison. A device is designed to operate in either mode of propulsion between Reynolds numbers 1,880 and 11,260, based on the average tip velocity and the span of the plate. The stroke angle, stroke time, flexibility, and duty cycle are varied to determine their impact on the generated thrust and the required torque. Overall, the clapping mode tends to require significantly more power to generate a similar thrust compared to that from the flapping mode. The performance of the clapping mode is increased by modifying the duty cycle such that the closing motion is faster than the opening motion causing a greater thrust and a similar efficiency to that from the flapping mode. Interestingly, when using rigid plates, the average thrust generated per cycle is similar between the two modes when the overall kinematics are equivalent. Investigation of the near wake of both modes through digital particle image velocimetry provides insight into the cause of this similar thrust. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.
1990-03-14
aeroelastic stability studies of composite rotor blades in hover, Panda and Chopra [481 also stu-died the aeroelastic stability and response of hingeless...31, No. 4, pp. 29-35. 1986.I48 Panda , B. and Chopra. I., "Dynamics of Composite Rotor Blades in Forward Flight," Vertica, Vol. 11, No. 1/2,pp. 187-209...conditions. References [1] Panda ,B., Chopra,I., "Flap-Lag-Torsion Stability in Forward Flight", Journal of the American Helicopter Society, 30, No. 4, Oct
NASA Technical Reports Server (NTRS)
Zirin, R. M.; Witmer, E. A.
1972-01-01
An approximate collision analysis, termed the collision-force method, was developed for studying impact-interaction of an engine rotor blade fragment with an initially circular containment ring. This collision analysis utilizes basic mass, material property, geometry, and pre-impact velocity information for the fragment, together with any one of three postulated patterns of blade deformation behavior: (1) the elastic straight blade model, (2) the elastic-plastic straight shortening blade model, and (3) the elastic-plastic curling blade model. The collision-induced forces are used to predict the resulting motions of both the blade fragment and the containment ring. Containment ring transient responses are predicted by a finite element computer code which accommodates the large deformation, elastic-plastic planar deformation behavior of simple structures such as beams and/or rings. The effects of varying the values of certain parameters in each blade-behavior model were studied. Comparisons of predictions with experimental data indicate that of the three postulated blade-behavior models, the elastic-plastic curling blade model appears to be the most plausible and satisfactory for predicting the impact-induced motions of a ductile engine rotor blade and a containment ring against which the blade impacts.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
NASA Astrophysics Data System (ADS)
Shankar Verma, Amrit; Petter Vedvik, Nils; Gao, Zhen
2017-12-01
The use of floating crane vessel for installation of offshore wind turbine blades presents a great challenge in terms of its random motions and is likely to increase the probability of the blade hitting the preassembled tower during lifting operation. To evaluate the consequences of such scenarios and to determine the allowable motions or sea states for such operations, it is very important to understand the damage development in the blade due to impact. The present paper employs the application of high fidelity finite element method to investigate the damage behavior in the blade when the leading edge of the blade hits the tower. A nonlinear time domain structural analysis using ABAQUS was conducted on the DTU 10 MW reference blade model which is based on shell elements. Damage assessment along with the nature of evolution of various energies is examined and presented for two different impact velocities with modified layup stacking sequence at the contact region.
Pitching motion control of a butterfly-like 3D flapping wing-body model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji
2014-11-01
Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.
Effect of wake structure on blade-vortex interaction phenomena: Acoustic prediction and validation
NASA Technical Reports Server (NTRS)
Gallman, Judith M.; Tung, Chee; Schultz, Klaus J.; Splettstoesser, Wolf; Buchholz, Heino
1995-01-01
During the Higher Harmonic Control Aeroacoustic Rotor Test, extensive measurements of the rotor aerodynamics, the far-field acoustics, the wake geometry, and the blade motion for powered, descent, flight conditions were made. These measurements have been used to validate and improve the prediction of blade-vortex interaction (BVI) noise. The improvements made to the BVI modeling after the evaluation of the test data are discussed. The effects of these improvements on the acoustic-pressure predictions are shown. These improvements include restructuring the wake, modifying the core size, incorporating the measured blade motion into the calculations, and attempting to improve the dynamic blade response. A comparison of four different implementations of the Ffowcs Williams and Hawkings equation is presented. A common set of aerodynamic input has been used for this comparison.
Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Peyran, R. J.; Johnson, Wayne
2004-01-01
Rotor design changes intended to improve tiltrotor whirl-flutter stability margins were analyzed. A baseline analytical model of the XV-15 was established, and then a thinner, composite wing was designed to be representative of a high-speed tiltrotor. The rotor blade design was modified to increase the stability speed margin for the thin-wing design. Small rearward offsets of the aerodynamic-center locus with respect to the blade elastic axis created large increases in the stability boundary. The effect was strongest for offsets at the outboard part of the blade, where an offset of the aerodynamic center by 10% of tip chord improved the stability margin by over 100 knots. Forward offsets of the blade center of gravity had similar but less pronounced effects. Equivalent results were seen for swept-tip blades. Appropriate combinations of sweep and pitch stiffness completely eliminated whirl flutter within the speed range examined; alternatively, they allowed large increases in pitch-flap coupling (delta-three) for a given stability margin. A limited investigation of the rotor loads in helicopter and airplane configuration showed only minor increases in loads.
Delikonstantinou, Iraklis P; Gravvanis, Andreas I; Dimitriou, Vasilios; Zogogiannis, Ioannis; Douma, Amalia; Tsoutsos, Dimosthenis A
2011-08-01
Our study aims to illustrate the advantages and disadvantages of Foucher's first dorsal metacarpal artery flap and Littler's heterodigital neurovascular flap in thumb pulp reconstruction, by assessing wound healing of donor and recipient sites, sensibility, and functional outcome of the reconstructed thumb. Fourteen male patients were reconstructed either with Foucher (n = 8) or Littler flap (n = 6). Dissection of Foucher's flap was faster than that of Littler's flap. All Littler flaps survived completely, but we experienced 1 partial Foucher flap necrosis. Thumb motility and stability was optimal in all patients. Wound healing of donor sites was achieved in both groups. Two patients reconstructed with Littler flap developed scar contractures and presented a reduced range of motion of donor finger and first webspace, respectively. Although Littler flap resulted in better sensibility and tactile gnosis of the reconstructed thumb-pulp, Foucher flap ensured negligible donor site morbidity, complete cortical reorientation, and better overall hand function.
Hovering of a jellyfish-like flying machine
NASA Astrophysics Data System (ADS)
Ristroph, Leif; Childress, Stephen
2013-11-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving maneuverability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct, and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Lift measurements and high-speed video of free-flight are used to inform an aerodynamic model that explains the stabilization mechanism. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.
Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.
2012-01-01
Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.
Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)
NASA Technical Reports Server (NTRS)
Weisbrich, R.; Perley, R.; Howes, H.
1977-01-01
The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.
1980-01-01
The second-degree nonlinear equations of motion for a flexible, twisted, nonuniform, horizontal axis wind turbine blade were developed using Hamilton's principle. A mathematical ordering scheme which was consistent with the assumption of a slender beam was used to discard some higher-order elastic and inertial terms in the second-degree nonlinear equations. The blade aerodynamic loading which was employed accounted for both wind shear and tower shadow and was obtained from strip theory based on a quasi-steady approximation of two-dimensional, incompressible, unsteady, airfoil theory. The resulting equations had periodic coefficients and were suitable for determining the aeroelastic stability and response of large horizontal-axis wind turbine blades.
Aeroelastic response and blade loads of a composite rotor in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
An autonomous sperm-like propulsor in a quiescent flow
NASA Astrophysics Data System (ADS)
Kim, Boyoung; Park, Sung Goon; Sung, Hyung Jin
2016-11-01
Flapping motions of flexible fins are widespread in nature. Birds, fish, and insects use their wings, fins, or bodies to stay afloat and to advance forward in the surrounding fluids. It is important to understand the physics of the flapping motions to utilize them for the biomimetic machines. In the present study, we introduce a sperm-like propulsor that consists of a rigid head containing genetic information and a flapping flexible tail for propulsion. The head gives a sinusoidal torque to the leading edge of the tail, and the flexible tail flaps along the leading edge. In other words, the sperm-like propulsor is moved by an oscillating relative angle between the head and the leading edge of the tail. Unlike self-propelled heaving and pitching fins, the 'autonomous' sperm-like propulsor has no prescribed motion or constraint referenced from outside coordinates. The penalty method and the immersed boundary method are used to solve the autonomous sperm-like propulsor in a quiescent flow. The cruising speed and the propulsive efficiency of the propulsor are explored as a function of the head size (D/ L) , the pitching angle (θ0) , the pitching frequency (f) , and the distance from the wall (G/ L) .
Rotorcraft In-Plane Noise Reduction Using Active/Passive Approaches with Induced Vibration Tracking
NASA Astrophysics Data System (ADS)
Chia, Miang Hwee
A comprehensive study of the use of active and passive approaches for in-plane noise reduction, including the vibrations induced during noise reduction, was conducted on a hingeless rotor configuration resembling the MBB BO-105 rotor. First, a parametric study was performed to examine the effects of rotor blade stiffness on the vibration and noise reduction performance of a 20%c plain trailing edge flap and a 1.5%c sliding microflap. This was accomplished using a comprehensive code AVINOR (for Active VIbration and NOise Reduction). A two-dimensional unsteady reduced order aerodynamic model (ROM), using the Rational Function Approximation approach and CFD-based oscillatory aerodynamic load data, was used in the comprehensive code. The study identified a hingeless blade configuration with torsional frequency of 3.17/rev as an optimum configuration for studying vibration and noise reduction using on-blade control devices such as flaps or microflaps. Subsequently, a new suite of computational tools capable of predicting in-plane low frequency sound pressure level (LFSPL) rotorcraft noise and its control was developed, replacing the acoustic module WOPWOP in AVINOR with a new acoustic module HELINOIR (for HELIcopter NOIse Reduction), which overcomes certain limitations associated with WOPWOP. The new suite, consisting of the AVINOR/HELINOIR combination, was used to study active flaps, as well as microflaps operating in closed-loop mode for in-plane noise reduction. An alternative passive in-plane noise reduction approach using modification to the blade tip in the 10%R outboard region was also studied. The new suite consisting of the AVINOR/HELINOIR combination based on a compact aeroacoustic model was validated by comparing with wind tunnel test results, and subsequently verified by comparing with computational results. For active control, the in-plane noise reduction obtained with a single 20%c plain trailing edge flap during level flight at a moderate advance ratio was examined. Different configurations of far-field and near-field feedback microphone locations were examined to develop a fundamental understanding of the feedback microphone locations on the noise reduction process A near-field microphone located on the tip of a nose boom was found to produce a LFSPL reduction of up to 6dB. However, this noise reduction was accompanied by an out-of-plane noise increase of 18dB and 60% increase in vertical hub shear. For passive control, three tip geometries having sweep, dihedral, and anhedral, were considered. The tip dihedral reduced LFSPL by up to 2dB without a vibratory load penalty. However, this was accompanied by an increase in the mid frequency sound pressure levels (MFSPL). The tip sweep and tip anhedral produced an increase in in-plane LFSPL below the horizon. A comparison of the active and passive approaches indicated that active approaches implemented by a plain flap with a feedback microphone located on the nose boom is superior to the passive control approaches. However, there is a general trade-off between LFSPL reduction, MFSPL generation and vibratory hub loads induced by noise control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J. Z. G., E-mail: zma@mymail.ciis.edu; Hirose, A.
By adopting Lembége & Pellat’s 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor–Goldstein equation of magnetic perturbations. Fourier spectral method and Runge–Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, themore » flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1–7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.« less
Mode extraction on wind turbine blades via phase-based video motion estimation
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
Huang, Chenyu; Ogawa, Rei
2014-05-01
Joint scar contractures are characterized by tight bands of soft tissue that bridge the 2 ends of the joint like a web. Classical treatment methods such as Z-plasties are mainly based on 2-dimensional designs. Our square flap method is an alternative surgical method that restores the span of the web in a stereometric fashion, thereby reconstructing joint function. In total, 20 Japanese patients with joint scar contractures on the axillary (n = 10) or first digital web (n = 10) underwent square flap surgery. The maximum range of motion and commissure length were measured before and after surgery. A theoretical stereometric geometrical model of the square flap was established to compare it to the classical single (60 degree), 4-flap (45 degree), and 5-flap (60 degree) Z-plasties in terms of theoretical web reconstruction efficacy. All cases achieved 100% contracture release. The maximum range of motion and web space improved after square flap surgery (P = 0.001). Stereometric geometrical modeling revealed that the standard square flap (α = 45 degree; β = 90 degree) yields a larger flap area, length/width ratio, and postsurgical commissure length than the Z-plasties. It can also be adapted by varying angles α and β, although certain angle thresholds must be met to obtain the stereometric advantages of this method. When used to treat joint scar contractures, the square flap method can fully span the web space in a stereometric manner, thus yielding a close-to-original shape and function. Compared with the classical Z-plasties, it also provides sufficient anatomical blood supply while imposing the least physiological tension on the adjacent skin.
Huang, Chenyu
2014-01-01
Background: Joint scar contractures are characterized by tight bands of soft tissue that bridge the 2 ends of the joint like a web. Classical treatment methods such as Z-plasties are mainly based on 2-dimensional designs. Our square flap method is an alternative surgical method that restores the span of the web in a stereometric fashion, thereby reconstructing joint function. Methods: In total, 20 Japanese patients with joint scar contractures on the axillary (n = 10) or first digital web (n = 10) underwent square flap surgery. The maximum range of motion and commissure length were measured before and after surgery. A theoretical stereometric geometrical model of the square flap was established to compare it to the classical single (60 degree), 4-flap (45 degree), and 5-flap (60 degree) Z-plasties in terms of theoretical web reconstruction efficacy. Results: All cases achieved 100% contracture release. The maximum range of motion and web space improved after square flap surgery (P = 0.001). Stereometric geometrical modeling revealed that the standard square flap (α = 45 degree; β = 90 degree) yields a larger flap area, length/width ratio, and postsurgical commissure length than the Z-plasties. It can also be adapted by varying angles α and β, although certain angle thresholds must be met to obtain the stereometric advantages of this method. Conclusions: When used to treat joint scar contractures, the square flap method can fully span the web space in a stereometric manner, thus yielding a close-to-original shape and function. Compared with the classical Z-plasties, it also provides sufficient anatomical blood supply while imposing the least physiological tension on the adjacent skin. PMID:25289342
To flap or not to flap: a discussion between a fish and a jellyfish
NASA Astrophysics Data System (ADS)
Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza
2016-11-01
Fish and jellyfish are known to swim by flapping and by periodically contracting respectively, but which is the more effective propulsion mechanism? In an attempt to answer this question, an experimental comparison is made between simplified versions of these motions to determine which generates the greatest thrust for the least power. The flapping motion is approximated by pitching plates while periodic contractions are approximated by clapping plates. A machine is constructed to operate in either a flapping or a clapping mode between Reynolds numbers 1,880 and 11,260 based on the average plate tip velocity and span. The effect of the total sweep angle, total sweep time, plate flexibility, and duty cycle are investigated. The average thrust generated and power required per cycle are compared between the two modes when their total sweep angle and total sweep time are identical. In general, operating in the clapping mode required significantly more power to generate a similar thrust compared to the flapping mode. However, modifying the duty cycle for clapping caused the effectiveness to approach that of flapping with an unmodified duty cycle. These results suggest that flapping is the more effective propulsion mechanism within the range of Reynolds numbers tested. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.
NASA Astrophysics Data System (ADS)
Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.
2012-11-01
This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.
Measurements of Aerodynamic Damping in the MIT Transonic Rotor
NASA Technical Reports Server (NTRS)
Crawley, E. F.
1981-01-01
A method was developed and demonstrated for the direct measurement of aerodynamic forcing and aerodynamic damping of a transonic compressor. The method is based on the inverse solution of the structural dynamic equations of motion of the blade disk system in order to determine the forces acting on the system. The disturbing and damping forces acting on a given blade are determined if the equations of motion are expressed in individual blade coordinates. If the structural dynamic equations are transformed to multiblade coordinates, the damping can be measured for blade disk modes, and related to a reduced frequency and interblade phase angle. In order to measure the aerodynamic damping in this way, the free response to a known excitation is studied.
Evaluation of MOSTAS computer code for predicting dynamic loads in two bladed wind turbines
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.
1979-01-01
Calculated dynamic blade loads were compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-O wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multi-blade coordinate transformation for two bladed rotors to solve the equations of motion by standard eigenanalysis. The second version accounts for periodic coefficients while solving the equations by a time history integration. A hypothetical three-degree of freedom dynamic model was investigated. The exact equations of motion of this model were solved using the Floquet-Lipunov method. The equations with time-averaged coefficients were solved by standard eigenanalysis.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Vibration and flutter of mistuned bladed-disk assemblies
NASA Technical Reports Server (NTRS)
Rao, K.; Kaza, V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbufans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Aerodynamic sound generation of flapping wing.
Bae, Youngmin; Moon, Young J
2008-07-01
The unsteady flow and acoustic characteristics of the flapping wing are numerically investigated for a two-dimensional model of Bombus terrestris bumblebee at hovering and forward flight conditions. The Reynolds number Re, based on the maximum translational velocity of the wing and the chord length, is 8800 and the Mach number M is 0.0485. The computational results show that the flapping wing sound is generated by two different sound generation mechanisms. A primary dipole tone is generated at wing beat frequency by the transverse motion of the wing, while other higher frequency dipole tones are produced via vortex edge scattering during a tangential motion. It is also found that the primary tone is directional because of the torsional angle in wing motion. These features are only distinct for hovering, while in forward flight condition, the wing-vortex interaction becomes more prominent due to the free stream effect. Thereby, the sound pressure level spectrum is more broadband at higher frequencies and the frequency compositions become similar in all directions.
Stable hovering of a jellyfish-like flying machine
Ristroph, Leif; Childress, Stephen
2014-01-01
Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals. PMID:24430122
Postburn Head and Neck Reconstruction: An Algorithmic Approach.
Heidekrueger, Paul Immanuel; Broer, Peter Niclas; Tanna, Neil; Ninkovic, Milomir
2016-01-01
Optimizing functional and aesthetic outcomes in postburn head and neck reconstruction remains a surgical challenge. Recurrent contractures, impaired range of motion, and disfigurement because of disruption of the aesthetic subunits of the face, can result in poor patient satisfaction and ultimately, contribute to social isolation of the patient. In an effort to improve the quality of life of these patients, this study evaluates different surgical approaches with an emphasis on tissue expansion of free and regional flaps. Regional and free-flap reconstruction was performed in 20 patients (26 flaps) with severe postburn head and neck contractures. To minimize donor site morbidity and obtain large amounts of thin and pliable tissue, pre-expansion was performed in all patients treated with locoregional flap reconstructions (12/12), and 62% (8/14) of patients with free-flap reconstructions. Algorithms regarding pre- and intraoperative decision-making are discussed, and complications between the techniques as well as long-term (mean follow-up 3 years) results are analyzed. Complications, including tissue expander infection with need for removal or exchange, partial or full flap loss, were evaluated and occurred in 25% (3/12) of patients with locoregional and 36% (5/14) of patients receiving free-flap reconstructions. Secondary revision surgery was performed in 33% (4/12) of locoregional flaps and 93% (13/14) of free flaps. Both locoregional as well as distant tissue transfers have their role in postburn head and neck reconstruction, whereas pre-expansion remains an invaluable tool. Paying attention to the presented principles and keeping the importance of aesthetic facial subunits in mind, range of motion, aesthetics, and patient satisfaction were improved long term in all our patients, while minimizing donor site morbidity.
Active range of motion outcomes after reconstruction of burned wrist and hand deformities.
Afifi, Ahmed M; Mahboub, Tarek A; Ibrahim Fouad, Amr; Azari, Kodi; Khalil, Haitham H; McCarthy, James E
2016-06-01
This works aim is to evaluate the efficacy of skin grafts and flaps in reconstruction of post-burn hand and wrist deformities. A prospective study of 57 burn contractures of the wrist and dorsum of the hand was performed. Flaps were used only if there was a non-vascularized structure after contracture release, otherwise a skin graft was used. Active range of motion (ROM) was used to assess hand function. The extension deformity cohort uniformly underwent skin graft following contracture release with a mean improvement of 71 degrees (p<0.0001). The flexion deformity cohort was treated with either skin grafts (8 patients) or flaps (9 patients) with a mean improvement of 44 degrees (p<0.0001). Skin grafts suffice for dorsal hand contractures to restore functional wrist ROM. For flexion contractures, flaps were more likely for contractures >6 months. Early release of burn contracture is advisable to avoid deep structure contracture. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
NASA Technical Reports Server (NTRS)
Bousman, William G.
1988-01-01
Three cases were selected for correlation from an experiment that examined the aeromechanical stability of a small-scale model of a hingeless rotor and fuselage in hover. The first case examined the stability of a configuration with 0 degree blade pitch so that coupling between dynamic modes was minimized. The second case was identical to the first except the blade pitch was set to 9 degrees which provides flap-lag coupling of the rotor modes. The third case had 9 degrees of blade pitch and also included negative pitch-lag coupling, and therefore was the most highly coupled configuration. Analytical calculations were made by Bell Helicopter Textron, Boeing Vertol, Hughes Helicopters, Sikorsky Aircraft, the U.S. Army Aeromechanics Laboratory, and NASA Ames Research Center and compared to some or all of the experimental cases. Overall, the correlation ranged from very poor-to-poor to good.
Dixon water-fat separation in PROPELLER MRI acquired with two interleaved echoes.
Schär, Michael; Eggers, Holger; Zwart, Nicholas R; Chang, Yuchou; Bakhru, Akshay; Pipe, James G
2016-02-01
To propose a novel combination of robust Dixon fat suppression and motion insensitive PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI. Two different echoes were acquired interleaved in each shot enabling water-fat separation on individual blades. Fat, which was blurred in standard PROPELLER because the water-fat shift (WFS) rotated with the blades, was shifted back in each blade. Additionally, field maps obtained from the water-fat separation were used to unwarp off-resonance-induced shifts in each blade. PROPELLER was then applied to the water, corrected fat, or recombined water-fat blades. This approach was compared quantitatively in volunteers with regard to motion estimation and signal-to-noise ratio (SNR) to a standard PROPELLER acquisition with minimal WFS and fat suppression. Shifting the fat back in each blade reduced errors in the translation correction. SNR in the proposed Dixon PROPELLER was 21% higher compared with standard PROPELLER with identical scan time. High image quality was achieved even when the volunteers were moving during data acquisition. Furthermore, sharp water-fat borders and image details were seen in areas where standard PROPELLER suffered from blurring when acquired with a low readout bandwidth. The proposed method enables motion-insensitive PROPELLER MRI with robust fat suppression and reduced blurring. Additionally, fat images are available if desired. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Kussner, H G
1937-01-01
The present report deals with a number of the main problems requiring solution in the development of helicopters and concerning the lift, flying performance, stability, and drive. A complete solution is given for the stability of the helicopter with rigid blades and control surfaces. With a view to making a direct-lift propeller sufficient without the addition of auxiliary propellers, the "flapping drive" is assessed and its efficiency calculated.
Helical vortices generated by flapping wings of bumblebees
NASA Astrophysics Data System (ADS)
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Farge, Marie; Lehmann, Fritz-Olaf; Sesterhenn, Jörn
2018-02-01
High resolution direct numerical simulations of rotating and flapping bumblebee wings are presented and their aerodynamics is studied focusing on the role of leading edge vortices and the associated helicity production. We first study the flow generated by only one rotating bumblebee wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed generic motion. The inflow condition of the wind varies from laminar to strongly turbulent regimes. Massively parallel simulations show that inflow turbulence does not significantly alter the wings’ leading edge vortex, which enhances lift production. Finally, we focus on studying the helicity of the generated vortices and analyze their contribution at different scales using orthogonal wavelets.
Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion
NASA Astrophysics Data System (ADS)
Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo
2007-04-01
In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.
Passive mechanism of pitch recoil in flapping insect wings.
Ishihara, D; Horie, T
2016-12-20
The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.
A role of abdomen in butterfly's flapping flight
NASA Astrophysics Data System (ADS)
Jayakumar, Jeeva; Senda, Kei; Yokoyama, Naoto
2017-11-01
Butterfly's forward flight with periodic flapping motion is longitudinally unstable, and control of the thoracic pitching angle is essential to stabilize the flight. This study aims to comprehend roles which the abdominal motion play in the pitching stability of butterfly's flapping flight by using a two-dimensional model. The control of the thoracic pitching angle by the abdominal motion is an underactuated problem because of the limit on the abdominal angle. The control input of the thorax-abdomen joint torque is obtained by the hierarchical sliding mode control in this study. Numerical simulations reveal that the control by the abdominal motion provides short-term pitching stabilization in the butterfly's flight. Moreover, the control input due to a large thorax-abdomen joint torque can counteract a quite large perturbation, and can return the pitching attitude to the periodic trajectory with a short recovery time. These observations are consistent with biologists' view that living butterflies use their abdomens as rudders. On the other hand, the abdominal control mostly fails in long-term pitching stabilization, because it cannot directly alter the aerodynamic forces. The control for the long-term pitching stabilization will also be discussed.
NASA Technical Reports Server (NTRS)
Bielawa, R. L.
1984-01-01
The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.
Adding In-Plane Flexibility to the Equations of Motion of a Single Rotor Helicopter
NASA Technical Reports Server (NTRS)
Curtiss, H. C., Jr.
2000-01-01
This report describes a way to add the effects of main rotor blade flexibility in the in- plane or lead-lag direction to a large set of non-linear equations of motion for a single rotor helicopter with rigid blades(l). Differences between the frequency of the regressing lag mode predicted by the equations of (1) and that measured in flight (2) for a UH-60 helicopter indicate that some element is missing from the analytical model of (1) which assumes rigid blades. A previous study (3) noted a similar discrepancy for the CH-53 helicopter. Using a relatively simple analytical model in (3), compared to (1), it was shown that a mechanical lag damper increases significantly the coupling between the rigid lag mode and the first flexible mode. This increased coupling due to a powerful lag damper produces an increase in the lowest lag frequency when viewed in a frame rotating with the blade. Flight test measurements normally indicate the frequency of this mode in a non-rotating or fixed frame. This report presents the additions necessary to the full equations of motion, to include main rotor blade lag flexibility. Since these additions are made to a very complex nonlinear dynamic model, in order to provide physical insight, a discussion of the results obtained from a simplified set of equations of motion is included. The reduced model illustrates the physics involved in the coupling and should indicate trends in the full model.
The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel; Richards, Phillip William
A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) wasmore » prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.« less
Vortex leading edge flap assembly for supersonic airplanes
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C. (Inventor)
1997-01-01
A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.
Aeroelasticity and structural optimization of composite helicopter rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, K. A.; Friedmann, P. P.
1995-01-01
This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.
NASA Technical Reports Server (NTRS)
Talbot, P. D.; Dugan, D. D.; Chen, R. T. N.; Gerdes, R. M.
1980-01-01
A coordinated analysis and ground simulator experiment was performed to investigate the effects on single rotor helicopter handling qualities of systematic variations in the main rotor hinge restraint, hub hinge offset, pitch-flap coupling, and blade lock number. Teetering rotor, articulated rotor, and hingeless rotor helicopters were evaluated by research pilots in special low level flying tasks involving obstacle avoidance at 60 to 100 knots airspeed. The results of the experiment are in the form of pilot ratings, pilot commentary, and some objective performance measures. Criteria for damping and sensitivity are reexamined when combined with the additional factors of cross coupling due to pitch and roll rates, pitch coupling with collective pitch, and longitudinal static stability. Ratings obtained with and without motion are compared. Acceptable flying qualities were obtained within each rotor type by suitable adjustment of the hub parameters, however, pure teetering rotors were found to lack control power for the tasks. A limit for the coupling parameter L sub q/L sub p of 0.35 is suggested.
An aeroelastic analysis of the Darrieus wind turbine
NASA Astrophysics Data System (ADS)
Meyer, E. E.; Smith, C. E.
1983-12-01
The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.
Calculation of the bending stresses in helicopter rotor blades
NASA Technical Reports Server (NTRS)
De Guillenchmidt, P
1951-01-01
A comparatively rapid method is presented for determining theoretically the bending stresses of helicopter rotor blades in forward flight. The method is based on the analysis of the properties of a vibrating beam, and its uniqueness lies in the simple solution of the differential equation which governs the motion of the bent blades.
Cascade flutter analysis with transient response aerodynamics
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mahajan, Aparajit J.; Keith, Theo G., Jr.; Stefko, George L.
1991-01-01
Two methods for calculating linear frequency domain aerodynamic coefficients from a time marching Full Potential cascade solver are developed and verified. In the first method, the Influence Coefficient, solutions to elemental problems are superposed to obtain the solutions for a cascade in which all blades are vibrating with a constant interblade phase angle. The elemental problem consists of a single blade in the cascade oscillating while the other blades remain stationary. In the second method, the Pulse Response, the response to the transient motion of a blade is used to calculate influence coefficients. This is done by calculating the Fourier Transforms of the blade motion and the response. Both methods are validated by comparison with the Harmonic Oscillation method and give accurate results. The aerodynamic coefficients obtained from these methods are used for frequency domain flutter calculations involving a typical section blade structural model. An eigenvalue problem is solved for each interblade phase angle mode and the eigenvalues are used to determine aeroelastic stability. Flutter calculations are performed for two examples over a range of subsonic Mach numbers.
YC-15 Interior Noise Measurements. Technical Discussion.
1981-03-01
almost equal chord segments of the flap. The spoilers ahead of the flap are drooped as a function of flap motion to main- tain an effective slot...fan and primary exhaust air with freestream air to produce rapid temperature and velocity reduction and to spread the exhaust wake over a large span of...PRESSURESMAme Model AR- 200 Kulie Doglas14 Channel Mode XTE19010 D gital ataTape Transducer Signal Condition- INLET ACOUSTICS AND ~ odI ing Amplfiers
Leys, Frederik; Reynaerts, Dominiek; Vandepitte, Dirk
2016-08-15
The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. © 2016. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuqian; Hellinga, Homme W.; Beese, Lorena S.
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'–3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed endsmore » at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.« less
Shi, Yuqian; Hellinga, Homme W; Beese, Lorena S
2017-06-06
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5'-nuclease superfamily. Its dominant, processive 5'-3' exonuclease and secondary 5'-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5'-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5' flaps. Their distinctive 5' ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5' flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity.
Reynaerts, Dominiek; Vandepitte, Dirk
2016-01-01
ABSTRACT The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. PMID:27444790
... good posture in general to keep your shoulder blade and joint in their right positions. Other tips ... joint Good range of motion of your shoulder blade and upper spine No pain during certain physical ...
Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds
Tobalske; Peacock; Dial
1999-07-01
It has been proposed elsewhere that flap-bounding, an intermittent flight style consisting of flapping phases interspersed with flexed-wing bounds, should offer no savings in average mechanical power relative to continuous flapping unless a bird flies 1.2 times faster than its maximum range speed (Vmr). Why do some species use intermittent bounds at speeds slower than 1.2Vmr? The 'fixed-gear hypothesis' suggests that flap-bounding is used to vary mean power output in small birds that are otherwise constrained by muscle physiology and wing anatomy to use a fixed muscle shortening velocity and pattern of wing motion at all flight speeds; the 'body-lift hypothesis' suggests that some weight support during bounds could make flap-bounding flight aerodynamically advantageous in comparison with continuous flapping over most forward flight speeds. To test these predictions, we studied high-speed film recordings (300 Hz) of wing and body motion in zebra finches (Taenopygia guttata, mean mass 13.2 g, N=4) taken as the birds flew in a variable-speed wind tunnel (0-14 m s-1). The zebra finches used flap-bounding flight at all speeds, so their flight style was unique compared with that of birds that facultatively shift from continuous flapping or flap-gliding at slow speeds to flap-bounding at fast speeds. There was a significant effect of flight speed on all measured aspects of wing motion except percentage of the wingbeat spent in downstroke. Changes in angular velocity of the wing indicated that contractile velocity in the pectoralis muscle changed with flight speed, which is not consistent with the fixed-gear hypothesis. Although variation in stroke-plane angle relative to the body, pronation angle of the wing and wing span at mid-upstroke showed that the zebra finch changed within-wingbeat geometries according to speed, a vortex-ring gait with a feathered upstroke appeared to be the only gait used during flapping. In contrast, two small species that use continuous flapping during slow flight (0-4 m s-1) either change wingbeat gait according to flight speed or exhibit more variation in stroke-plane and pronation angles relative to the body. Differences in kinematics among species appear to be related to wing design (aspect ratio, skeletal proportions) rather than to pectoralis muscle fiber composition, indicating that the fixed-gear hypothesis should perhaps be modified to exclude muscle physiology and to emphasize constraints due to wing anatomy. Body lift was produced during bounds at speeds from 4 to 14 m s-1. Maximum body lift was 0.0206 N (15.9 % of body weight) at 10 m s-1; body lift:drag ratio declined with increasing air speed. The aerodynamic function of bounds differed with increasing speed from an emphasis on lift production (4-10 m s-1) to an emphasis on drag reduction with a slight loss in lift (12 and 14 m s-1). From a mathematical model of aerodynamic costs, it appeared that flap-bounding offered the zebra finch an aerodynamic advantage relative to continuous flapping at moderate and fast flight speeds (6-14 m s-1), with body lift augmenting any savings offered solely by flap-bounding at speeds faster than 7.1 m s-1. The percentage of time spent flapping during an intermittent flight cycle decreased with increasing speed, so the mechanical cost of transport was likely to be lowest at faster flight speeds (10-14 m s-1).
Optimization of cascade blade mistuning. I - Equations of motion and basic inherent properties
NASA Technical Reports Server (NTRS)
Nissim, E.
1985-01-01
Attention is given to the derivation of the equations of motion of mistuned compressor blades, interpolating aerodynamic coefficients by means of quadratic expressions in the reduced frequency. If the coefficients of the quadratic expressions are permitted to assume complex values, excellent accuracy is obtained and Pade rational expressions are obviated. On the basis of the resulting equations, it is shown analytically that the sum of all the real parts of the eigenvalues is independent of the mistuning introduced into the system. Blade mistuning is further treated through the aerodynamic energy approach, and the limiting vibration modes associated with alternative mistunings are identified.
Eldercare at Home: Mobility Problems
... your shoulders back. You should feel your shoulder blades pull together. Cervical Range of Motion Purpose: To ... ahead. Keep your chin tucked and your shoulder blades back. Tighten your stomach muscles. First, rise up ...
A bio-inspired study on tidal energy extraction with flexible flapping wings.
Liu, Wendi; Xiao, Qing; Cheng, Fai
2013-09-01
Previous research on the flexible structure of flapping wings has shown an improved propulsion performance in comparison to rigid wings. However, not much is known about this function in terms of power efficiency modification for flapping wing energy devices. In order to study the role of the flexible wing deformation in the hydrodynamics of flapping wing energy devices, we computationally model the two-dimensional flexible single and twin flapping wings in operation under the energy extraction conditions with a large Reynolds number of 106. The flexible motion for the present study is predetermined based on a priori structural result which is different from a passive flexibility solution. Four different models are investigated with additional potential local distortions near the leading and trailing edges. Our simulation results show that the flexible structure of a wing is beneficial to enhance power efficiency by increasing the peaks of lift force over a flapping cycle, and tuning the phase shift between force and velocity to a favourable trend. Moreover, the impact of wing flexibility on efficiency is more profound at a low nominal effective angle of attack (AoA). At a typical flapping frequency f * = 0.15 and nominal effective AoA of 10°, a flexible integrated wing generates 7.68% higher efficiency than a rigid wing. An even higher increase, around six times that of a rigid wing, is achievable if the nominal effective AoA is reduced to zero degrees at feathering condition. This is very attractive for a semi-actuated flapping energy system, where energy input is needed to activate the pitching motion. The results from our dual-wing study found that a parallel twin-wing device can produce more power compared to a single wing due to the strong flow interaction between the two wings.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
Nonlinear flap-lag axial equations of a rotating beam
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1977-01-01
It is possible to identify essentially four approaches by which analysts have established either the linear or nonlinear governing equations of motion for a particular problem related to the dynamics of rotating elastic bodies. The approaches include the effective applied load artifice in combination with a variational principle and the use of Newton's second law, written as D'Alembert's principle, applied to the deformed configuration. A third approach is a variational method in which nonlinear strain-displacement relations and a first-degree displacement field are used. The method introduced by Vigneron (1975) for deriving the linear flap-lag equations of a rotating beam constitutes the fourth approach. The reported investigation shows that all four approaches make use of the geometric nonlinear theory of elasticity. An alternative method for deriving the nonlinear coupled flap-lag-axial equations of motion is also discussed.
Wing attachment position of fruit fly minimizes flight cost
NASA Astrophysics Data System (ADS)
Noest, Robert; Wang, Jane
Flight is energetically costly which means insects need to find ways to reduce their energy expenditure during sustained flight. Previous work has shown that insect muscles can recover some of the energy used for producing flapping motion. Moreover the form of flapping motions are efficient for generating the required force to balance the weight. In this talk, we show that one of the morphological parameters, the wing attachment point on a fly, is suitably located to further reduce the cost for flight, while allowing the fly to be close to stable. We investigate why this is the case and attempt to find a general rule for the optimal location of the wing hinge. Our analysis is based on computations of flapping free flight together with the Floquet stability analysis of periodic flight for descending, hovering and ascending cases.
Sensor Fault Diagnosis in Quadrotors Using Nonlinear Adaptive Estimators
2014-10-02
Mahony, & Gre- sham, 2004; Bangura & Mahony, 2012) have aimed for higher modeling accuracy by including drag force, Coriolis effects , blade flapping... effectiveness of the pro- posed method. 1. INTRODUCTION Unmanned Aerial Vehicles (UAVs) have attracted significant attentions in recent years due to... effects etc. Accurate modeling plays an impor- tant role in quadrotor control, especially in the case of aggres- sive maneuvers, tight group formations
Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges
2016-08-15
aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model
The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.
Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R
2015-01-05
Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.
NASA Technical Reports Server (NTRS)
Malpica, Carlos
2017-01-01
This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.
Chordwise implementation of pneumatic artificial muscles to actuate a trailing edge flap
NASA Astrophysics Data System (ADS)
Vocke, R. D., III; Kothera, C. S.; Wereley, N. M.
2018-07-01
This work describes the theoretical design and experimental validation of a rotorcraft-specific trailing edge flap powered by pneumatic artificial muscle actuators. The actuators in this work are co-located outboard on the rotor blade with the flap and arranged with a chordwise orientation where diameter and length restrictions can severely limit the operating range of the system. Techniques for addressing this configuration, such as introducing a bias contraction and mechanism optimization, are discussed and a numerical optimization is performed for an actuation system sized for implementation on a medium utility helicopter rotor. The optimized design achieves ±10° of deflection at 1/rev, and maintains at least ±2° half peak-to-peak deflection out to 10/rev, indicating that the system has the actuation authority and bandwidth necessary for both primary control and vibration/noise reduction. Portions of this paper were presented at the AHS 70th Annual Forum, Montréal, Québec, Canada, May 20–22, 2014.
Implementation of a Trailing-Edge Flap Analysis Model in the NASA Langley CAMRAD.MOD1/Hires Program
NASA Technical Reports Server (NTRS)
Charles, Bruce
1999-01-01
Continual advances in rotorcraft performance, vibration and acoustic characteristics are being sought by rotary-wing vehicle manufacturers to improve efficiency, handling qualities and community noise acceptance of their products. The rotor system aerodynamic and dynamic behavior are among the key factors which must be addressed to meet the desired goals. Rotor aerodynamicists study how airload redistribution impacts performance and noise, and seek ways to achieve better airload distribution through changes in local aerodynamic response characteristics. One method currently receiving attention is the use of trailing-edge flaps mounted on the rotor blades to provide direct control of a portion of the spanwise lift characteristics. The following work describes the incorporation of a trailing-edge flap model in the CAMRAD.Mod1/FHUS comprehensive rotorcraft analysis code. The CAM-RAD.Mod1/HIRES analysis consists of three separate executable codes. These include the comprehensive trim analysis, CAMRAD.Mod1, the Indicial Post-Processor, IPP, for high resolution airloads, and AIRFOIL, which produces the rotor airfoil tables from input airfoil section characteristics. The modifications made to these components permitting analysis of flapped rotor configurations are documented herein along with user instructions detailing the new input variables and operational notes.
Wing flapping with minimum energy. [minimize the drag for a bending moment at the wing root
NASA Technical Reports Server (NTRS)
Jones, R. T.
1980-01-01
For slow flapping motions it is found that the minimum energy loss occurs when the vortex wake moves as a rigid surface that rotates about the wing root - a condition analogous to that determined for a slow-turning propeller. The optimum circulation distribution determined by this condition differs from the elliptic distribution, showing a greater concentration of lift toward the tips. It appears that very high propulsive efficiencies are obtained by flapping.
Improving Bending Moment Measurements on Wind Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Nathan L.
Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the fieldmore » to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.« less
Mechanisms and actuators for rotorcraft blade morphing
NASA Astrophysics Data System (ADS)
Vocke, Robert D., III
The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in this work is a conformal variable diameter rotor system suitable for implementation on a modern tilt-rotor aircraft, which can reduce power requirements in both cruise and hover configurations. An initial prototype variable span airfoil was constructed using a silicone elastomer matrix composite skin and a plastic rapid prototyped morphing substructure. Benchtop and wind tunnel tests verified the ability of this system to increase active wing area by 100%. The prototype technology was then matured for use in the harsh rotor blade environment, with a much stiffer polyurethane skin and a titanium substructure. Coupon testing verified the efficacy of this approach, and a final conceptual design was completed using the stiffness-tuning characteristics of the morphing substructure to create a self-actuating morphing blade tip.
The plane problem of the flapping wing
NASA Technical Reports Server (NTRS)
Birnbaum, Walter
1954-01-01
In connection with an earlier report on the lifting vortex sheet which forms the basis of the following investigations this will show how the methods developed there are also suitable for dealing with the air forces for a wing with a circulation variable with time. The theory of a propulsive wing flapping up and down periodically in the manner of a bird's wing is developed. This study shows how the lift and its moment result as a function of the flapping motion, what thrust is attainable, and how high is the degree of efficiency of this flapping propulsion unit if the air friction is disregarded.
Blade Displacement Predictions for the Full-Scale UH-60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Bledron, Robert T.; Lee-Rausch, Elizabeth M.
2014-01-01
An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids is loosely coupled to a rotorcraft comprehensive code and used to simulate two different test conditions from a wind-tunnel test of a full-scale UH-60A rotor. Performance data and sectional airloads from the simulation are compared with corresponding tunnel data to assess the level of fidelity of the aerodynamic aspects of the simulation. The focus then turns to a comparison of the blade displacements, both rigid (blade root) and elastic. Comparisons of computed root motions are made with data from three independent measurement systems. Finally, comparisons are made between computed elastic bending and elastic twist, and the corresponding measurements obtained from a photogrammetry system. Overall the correlation between computed and measured displacements was good, especially for the root pitch and lag motions and the elastic bending deformation. The correlation of root lead-lag motion and elastic twist deformation was less favorable.
Piloted simulation study of two tilt-wing flap control concepts, phase 2
NASA Technical Reports Server (NTRS)
Birckelbaw, Lourdes G.; Corliss, Lloyd D.; Hindson, William S.; Churchill, Gary B.
1994-01-01
A two phase piloted simulation study has been conducted in the Ames Vertical Motion Simulator to investigate alternative wing and flap controls for tilt-wing aircraft. This report documents the flying qualities results and findings of the second phase of the piloted simulation study and describes the simulated tilt-wing aircraft, the flap control concepts, the experiment design and the evaluation tasks. The initial phase of the study compared the flying qualities of both a conventional programmed flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap and two geared flap configurations. In general, the pilot ratings showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two control concepts were noticed and are discussed in this report. The geared flap configurations had very similar results. Although the geared flap concept has the potential to reduce or eliminate the pitch control power requirements from a tail rotor or a tail thruster at low speeds and in hover, the results did not show reduced tail thruster pitch control power usage with the geared flap configurations compared to the programmed flap configuration. The addition of pitch attitude stabilization in the second phase of simulation study greatly enhanced the aircraft flying qualities compared to the first phase.
NASA Astrophysics Data System (ADS)
Tongchitpakdee, Chanin
With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
Aerodynamics of a beetle in take-off flights
NASA Astrophysics Data System (ADS)
Lee, Boogeon; Park, Hyungmin; Kim, Sun-Tae
2015-11-01
In the present study, we investigate the aerodynamics of a beetle in its take-off flights based on the three-dimensional kinematics of inner (hindwing) and outer (elytron) wings, and body postures, which are measured with three high-speed cameras at 2000 fps. To track the highly deformable wing motions, we distribute 21 morphological markers and use the modified direct linear transform algorithm for the reconstruction of measured wing motions. To realize different take-off conditions, we consider two types of take-off flights; that is, one is the take-off from a flat ground and the other is from a vertical rod mimicking a branch of a tree. It is first found that the elytron which is flapped passively due to the motion of hindwing also has non-negligible wing-kinematic parameters. With the ground, the flapping amplitude of elytron is reduced and the hindwing changes its flapping angular velocity during up and downstrokes. On the other hand, the angle of attack on the elytron and hindwing increases and decreases, respectively, due to the ground. These changes in the wing motion are critically related to the aerodynamic force generation, which will be discussed in detail. Supported by the grant to Bio-Mimetic Robot Research Center funded by Defense Acquisition Program Administration (UD130070ID).
Numerical study on the aerodynamic characteristics of both static and flapping wing with attachments
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The purpose of this paper is to investigate the aerodynamic mechanism of airfoils under different icing situations which are different icing type, different icing time, and different icing position. Numerical simulation is carried out by using the finite volume method for both static and flapping airfoils, when Reynolds number is kept at 135000. The difference of aerodynamic performance between the airfoil with attachments and without attachments are be investigated by comparing the force coefficients, lift-to-drag ratios and flow field contour. The present simulations reveal that some influences of attachment are similar in the static airfoil and the flapping airfoil. Specifically, the airfoil with the attachment derived from glaze ice type causes the worse aerodynamic performance than that derived from rime ice type. The longer the icing time, the greater influence of aerodynamic performance the attachment causes. The attachments on the leading-edge have the greater influence of aerodynamic performance than other positions. Moreover, there are little differences between the static airfoil and the flapping airfoil. Compared with the static airfoil, the flapping airfoil which attachment located on the trailing edge causes a worse aerodynamic performance. Both attachments derived from rime ice type and glaze ice type all will deteriorate the aerodynamic performance of the asymmetrical airfoils. Present work provides the systematic and comprehensive study about icing blade which is conducive to the development of the wind power generation technology.
Insect-like flapping wing mechanism based on a double spherical Scotch yoke.
Galiński, Cezary; Zbikowski, Rafał
2005-06-22
We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a "figure-of-eight" or a "banana" and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50-100g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves.
Insect-like flapping wing mechanism based on a double spherical Scotch yoke
Galiński, Cezary; Żbikowski, Rafał
2005-01-01
We describe the rationale, concept, design and implementation of a fixed-motion (non-adjustable) mechanism for insect-like flapping wing micro air vehicles in hover, inspired by two-winged flies (Diptera). This spatial (as opposed to planar) mechanism is based on the novel idea of a double spherical Scotch yoke. The mechanism was constructed for two main purposes: (i) as a test bed for aeromechanical research on hover in flapping flight, and (ii) as a precursor design for a future flapping wing micro air vehicle. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forwards and backwards. During this motion the wing tip approximately traces a ‘figure-of-eight’ or a ‘banana’ and the wing changes the angle of attack (pitching) significantly. The kinematic and aerodynamic data from free-flying insects are sparse and uncertain, and it is not clear what aerodynamic consequences different wing motions have. Since acquiring the necessary kinematic and dynamic data from biological experiments remains a challenge, a synthetic, controlled study of insect-like flapping is not only of engineering value, but also of biological relevance. Micro air vehicles are defined as flying vehicles approximately 150 mm in size (hand-held), weighing 50–100 g, and are developed to reconnoitre in confined spaces (inside buildings, tunnels, etc.). For this application, insect-like flapping wings are an attractive solution and hence the need to realize the functionality of insect flight by engineering means. Since the semi-span of the insect wing is constant, the kinematics are spatial; in fact, an approximate figure-of-eight/banana is traced on a sphere. Hence a natural mechanism implementing such kinematics should be (i) spherical and (ii) generate mathematically convenient curves expressing the figure-of-eight/banana shape. The double spherical Scotch yoke design has property (i) by definition and achieves (ii) by tracing spherical Lissajous curves. PMID:16849181
Rong, Li; Lan, Shi-Jie; Zhang, Duo; Wang, Wang-Shu; Liu, Chao; Peng, Wei-Hai
2014-09-01
In the repair of extensive lower lip and chin defects, the reconstruction of vermilion at the same time is a great challenge to plastic surgeons. We describe a novel method for the reconstruction of lower vermilion with musculomucosal flap from the upper lip in the repair of extensive lower lip and chin defects. Two patients underwent extensive lower lip and chin reconstruction together with vermilion reconstruction. This technique used 3 basic components: musculomucosal flap from the upper lip, buccal mucosal advancement flap, and cutaneous rotational flap from the neck. All the flaps survived without significant complications. Labial function in the motions of expression and speaking was maintained. The patients could basically close their mouths completely, and there were no drooping or small-mouth deformities postoperatively. Functional and cosmetically acceptable lower-lip and chin reconstructions in both patients were achieved.
Shi, Yuqian; Hellinga, Homme W.; Beese, Lorena S.
2017-01-01
Human exonuclease 1 (hExo1) is a member of the RAD2/XPG structure-specific 5′-nuclease superfamily. Its dominant, processive 5′–3′ exonuclease and secondary 5′-flap endonuclease activities participate in various DNA repair, recombination, and replication processes. A single active site processes both recessed ends and 5′-flap substrates. By initiating enzyme reactions in crystals, we have trapped hExo1 reaction intermediates that reveal structures of these substrates before and after their exo- and endonucleolytic cleavage, as well as structures of uncleaved, unthreaded, and partially threaded 5′ flaps. Their distinctive 5′ ends are accommodated by a small, mobile arch in the active site that binds recessed ends at its base and threads 5′ flaps through a narrow aperture within its interior. A sequence of successive, interlocking conformational changes guides the two substrate types into a shared reaction mechanism that catalyzes their cleavage by an elaborated variant of the two-metal, in-line hydrolysis mechanism. Coupling of substrate-dependent arch motions to transition-state stabilization suppresses inappropriate or premature cleavage, enhancing processing fidelity. The striking reduction in flap conformational entropy is catalyzed, in part, by arch motions and transient binding interactions between the flap and unprocessed DNA strand. At the end of the observed reaction sequence, hExo1 resets without relinquishing DNA binding, suggesting a structural basis for its processivity. PMID:28533382
Motion visualization and estimation for flapping wing systems
NASA Astrophysics Data System (ADS)
Hsu, Tzu-Sheng Shane; Fitzgerald, Timothy; Nguyen, Vincent Phuc; Patel, Trisha; Balachandran, Balakumar
2017-04-01
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.
Flutter of Darrieus wind turbine blades
NASA Technical Reports Server (NTRS)
Ham, N. D.
1978-01-01
The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.
Ontogeny of aerial righting and wing flapping in juvenile birds.
Evangelista, Dennis; Cam, Sharlene; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert
2014-08-01
Mechanisms of aerial righting in juvenile chukar partridge (Alectoris chukar) were studied from hatching to 14 days-post-hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose-down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e. wing-assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development and are potentially relevant to understanding the origins of avian flight. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Revell, Alistair; O'Connor, Joseph; Sarkar, Abhishek; Li, Cuicui; Favier, Julien; Kamps, Laura; Brücker, Christoph
2017-01-01
The fluid-structure interaction mechanisms of a coating composed of flexible flaps immersed in a periodically oscillating channel flow is here studied by means of numerical simulation, employing the Euler-Bernoulli equations to account for the flexibility of the structures. A set of passively actuated flaps have previously been demonstrated to deliver favourable aerodynamic impact when attached to a bluff body undergoing periodic vortex shedding. As such, the present configuration is identified to provide a useful test-bed to better understand this mechanism, thought to be linked to experimentally observed travelling waves. Having previously validated and elucidated the flow mechanism in Paper 1 of this series, we hereby undertake a more detailed analysis of spectra obtained for different natural frequency of structures and different configurations, in order to better characterize the mechanisms involved in the organized motion of the structures. Herein, this wave-like behaviour, observed at the tips of flexible structures via interaction with the fluid flow, is characterized by examining the time history of the filaments motion and the corresponding effects on the fluid flow, in terms of dynamics and frequency of the fluid velocity. Results indicate that the wave motion behaviour is associated with the formation of vortices in the gaps between the flaps, which itself are a function of the structural resistance to the cross flow. In addition, formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type motion along the row that resembles the observation in the cylinder case.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-01-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency−frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency−MARSE, and average frequency−peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes. PMID:29104245
Tang, Jialin; Soua, Slim; Mares, Cristinel; Gan, Tat-Hean
2017-11-01
The identification of particular types of damage in wind turbine blades using acoustic emission (AE) techniques is a significant emerging field. In this work, a 45.7-m turbine blade was subjected to flap-wise fatigue loading for 21 days, during which AE was measured by internally mounted piezoelectric sensors. This paper focuses on using unsupervised pattern recognition methods to characterize different AE activities corresponding to different fracture mechanisms. A sequential feature selection method based on a k-means clustering algorithm is used to achieve a fine classification accuracy. The visualization of clusters in peak frequency-frequency centroid features is used to correlate the clustering results with failure modes. The positions of these clusters in time domain features, average frequency-MARSE, and average frequency-peak amplitude are also presented in this paper (where MARSE represents the Measured Area under Rectified Signal Envelope). The results show that these parameters are representative for the classification of the failure modes.
Blade mistuning coupled with shaft flexibility effects in rotor aeroelasticity
NASA Technical Reports Server (NTRS)
Khader, Naim; Loewy, Robert G.
1989-01-01
The effect of bladed-disk polar dissymmetry, resulting from variations in mass from one blade to another, on aeroelastic stability boundaries for a fan stage is presented. In addition to both in-plane and out-of-plane deformations of the bladed-disk, bending of the supporting shaft in two planes is considered, and the resulting Coriolis forces and gyroscopic moments are included in the analysis. A quasi-steady aerodynamics approach is combined with the Lagrangian method to develop the governing equations of motion for the flexible bladed-disk-shaft assembly. Calculations are performed for an actual fan stage.
Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography
NASA Technical Reports Server (NTRS)
Heineck, James T.; Schuelein, Erich; Raffel, Markus
2014-01-01
Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Jianghao; Zhou, Chao; Hsu, Shih-Jung; Cheng, Bo
2018-05-01
Due to adverse viscous effects, revolving wings suffer universally from low efficiency at low Reynolds number (Re). By reciprocating wing revolving motion, natural flyers flying at low Re successfully exploit unsteady effects to augment force production and efficiency. Here we investigate the aerodynamics of an alternative, i.e., a revolving wing with concomitant unsteady pitching and vertical flapping perturbations (a pitching-flapping-perturbed revolving wing). The current work builds upon a previous study on flapping-perturbed revolving wings (FP-RWs) and focuses on combined effects of pitching-flapping perturbation on force generation and vortex behaviors. The results show that, compared with a FR-RW, pitching motion further (1) reduces the external driving torque for rotating at 0° angle of attack (α0) and (2) enhances lift and leads to a self-rotating equilibrium at α0 = 20°. The power loading of a revolving wing at α0 = 20° can be improved using pitching-flapping perturbations with large pitching amplitude but small Strouhal number. Additionally, an advanced pitching improves the reduction of external driving torque, whereas a delayed pitching weakens both the lift enhancement and the reduction of external driving torque. Further analysis shows that pitching effects can be mainly decomposed into the Leading-Edge-Vortex (LEV)-mediated pressure component and geometric projection component, together they determine the force performance. LEV circulation is found to be determined by the instantaneous effective angle of attack but could be affected asymmetrically between upstroke and downstroke depending on the nominal angle of attack. Pitching-flapping perturbation thus can potentially inspire novel mechanisms to improve the aerodynamic performance of rotary wing micro air vehicles.
A CFD-informed quasi-steady model of flapping wing aerodynamics.
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J
2015-11-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.
A CFD-informed quasi-steady model of flapping wing aerodynamics
Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.
2016-01-01
Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems. PMID:27346891
NASA Technical Reports Server (NTRS)
Tang, M. H.; Pearson, G. P. E.
1973-01-01
Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed.
NASA Technical Reports Server (NTRS)
Smetana, F. O.; Montoya, R. J.; Carden, R. K.
1972-01-01
The philosophy and detail design of an electro-mechanical actuator for Fowler-type wing flaps which have a response time constant of 0.025 seconds are described. A conventional electrical servomotor with a power rating twice the maximum power delivered to the load is employed along with adaptive, gain-scheduled feedback and various logic circuits, including one to remove electrical excitation from the motor during extended periods when no motion of the flap is desired.
NASA Astrophysics Data System (ADS)
Vimmr, Jan; Bublík, Ondřej; Prausová, Helena; Hála, Jindřich; Pešek, Luděk
2018-06-01
This paper deals with a numerical simulation of compressible viscous fluid flow around three flat plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence model. The simulation was performed using the developed in-house CFD software based on discontinuous Galerkin method, which offers high order of accuracy.
Blade loss transient dynamics analysis with flexible bladed disk
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.
1983-01-01
The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.
1947-04-01
EXPERS5EHTAL RESULTS By G-arry C. Myers, Jr. STHMÄRY Hi order to provide " basic data on helicopter rotor-"blade motion, photographic .records of...ABOUT 2HE AXIS OF NO FEATHERING Reason for conversion.- At the time that the " basic theoretical treatments, such as that of reference 1, were made...of the machanical means used for achieving it. This fact may be confirmed by inspection but has also been demonstrated mathematically in reference
Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Kvaternik, R. G.
1979-01-01
The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.
Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons with Tram Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment, an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
Tiltrotor Aeroacoustic Code (TRAC) Prediction Assessment and Initial Comparisons With TRAM Test Data
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Brooks, Thomas F.; Charles, Bruce D.; McCluer, Megan
1999-01-01
A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod 1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment. an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
NASA Astrophysics Data System (ADS)
Murray, Gabriel Jon
This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept consisted of a bimorph configuration with a single layer of macro fiber composite the entire length of the 20% chord tab. The final design has three, tapered actuator layers on either side of a shim. Also, the length of the tab was reduced to 15% of the chord. A multitude of designs were compared via their performance objectives as well as how the design variables changed performances relative to the objectives. The result of this detailed analysis was the selection of several configurations that were investigated in detail. With several designs selected, they formed the basis to build a prototype tab. This prototype was based on a 15% chord tab. Due to the available commercial actuator lengths, a two layer system was ultimately built. The tab tip displacement was measured with both static and harmonic inputs. Various input voltages, both with and without a DC offset, were tested, up to -500 V to 1500 V. The input frequency was varied between 0 Hz to 17.2 Hz. Also, a frequency response of the tab was generated. High voltage static tip displacement compares well with the expected result. The first bending natural frequency was measured at 138 Hz and compares well with the computed range of 135 Hz to 142 Hz, depending on bond layer thickness. The results of dynamic inputs uncovered an unexpected reduction in tip displacement of 60% to 65% of the static result, for high voltages. It is suspected that the actuator suffers from a time-dependent response, with quick initial displacement followed by a slow creeping to the final displacement value. This phenomena has also been observed in the literature, although it is not prevalent. Using the experiment as a guide to quantify the time-dependent behavior, the overall viability of the system is discussed. The maximum dynamic tip deflection (accounting for time-dependent behavior) of a 15% chord tab is 4°. The tab is able to generate lift coefficient increments up to 0.413 and moment increments of -0.068 for positive tab deflections. Deflections due to aerodynamic loads range from 0.3° to 2°. Deflections due to blade motions are less than 0.5° and due to the centrifugal force, 0.78°. This system can be stiffened, reducing the dynamic tip deflection to 3.25° and limiting the aerodynamic response to 1°. Overall, by designing the tab to modest deflections, moderate reductions in vibration are possible, but are limited by actuator authority. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Sharpe, David L.
1986-01-01
A small scale, 1.92 m diam, torsionally soft, hingeless helicopter rotor was investigated in hover to determine isolated rotor stability characteristics. The two-bladed, untwisted rotor was tested on a rigid test stand at tip speeds up to 101 m/sec. The rotor mode of interest is the lightly damped lead-lag mode. The dimensionless lead-lag frequency of the mode is approximately 1.5 at the highest tip speed. The hub was designed to allow variation in precone, blade droop, pitch control stiffness, and blade pitch angle. Measurements of modal frequency and damping were obtained for several combinations of these hub parameters at several values of rotor speed. Steady blade bending moments were also measured. The lead-lag damping measurements were found to agree well with theoretical predictions for low values of blade pitch angle. The test data confirmed the predicted effects of precone, droop, and pitch control stiffness parameters on lead-lag damping. The correlation between theory and experiment was found to be poor for the mid-to-high range of pitch angles where the theory substantially overpredicted the experimental lead-lag damping. The poor correlation in the mid-to-high blade pitch angle range is attributed to low Reynolds number nonlinear aerodynamics effects not included in the theory. The experimental results also revealed an asymmetry in lead-lag damping between positive and negative thrust conditions.
A combined piezoelectric composite actuator and its application to wing/blade tips
NASA Astrophysics Data System (ADS)
Ha, Kwangtae
A novel combined piezoelectric-composite actuator configuration is proposed and analytically modeled in this work. The actuator is a low complexity, active compliant mechanism obtained by coupling a modified star cross sectional configuration composite beam with a helicoidal bimorph piezoelectric actuator coiled around it. This novel actuator is a good candidate as a hinge tension-torsion bar actuator for a helicopter rotor blade flap or blade tip and mirror rotational positioning. In the wing tip case, the tip deflection angle is different only according to the aerodynamic moment depending on the hinge position of the actuator along the chord and applied voltage because there is no centrifugal force. For an active blade tip subject to incompressible flow and 2D quasi steady airloads, its twist angle is related not only to aerodynamic moment and applied voltage but also to coupling terms, such as the trapeze effect and the tennis racquet effect. Results show the benefit of hinge position aft of the aerodynamic center, such that the blade tip response is amplified by airloads. Contrary to this effect, results also show that the centrifugal effects and inertial effect cause an amplitude reduction in the response. Summation of these effects determines the overall blade tip response. The results for a certain hinge position of Xh=1.5% chord aft of the quarter chord point proves that the tip deflection target design range of beta ∈ [-2,+2] can be achieved for all pitch angle configurations chosen.
Role of Square Flap in Post Burn Axillary Contractures.
Karki, Durga; Narayan, Ravi Prakash
2017-09-01
Post-burn contractures are a commonly encountered problem and many techniques have been described in their treatment. Z-plasties are the commonest local flap procedure done for linear bands with adjacent healthy tissue. Our aim was to assess the use of square flap technique in axillary contractures. Ten patients with type I and II axillary contractures underwent release by the square flap technique. All cases were followed up for at least one year and analysed for range of motion and aesthetic outcome. All cases achieved full range of movement postoperatively with no recurrence during follow up period and a good cosmetic outcome. Square flap was shown to be a reliable technique for mild to moderate axillary contractures of the anterior or posterior axillary folds even when there is significant adjacent scarring of chest wall or back of types I and II.
The inertial power and inertial force of robotic and natural bat wing
NASA Astrophysics Data System (ADS)
Yin, Dongfu; Zhang, Zhisheng
2016-03-01
Based on the acquired length and angle data of bat skeletons, a four-degree freedom robotic bat wing and an identical computational model with flap, sweep, elbow and wrist motions were presented. By considering the digits motions, a biomimetic bat skeleton model with seven-degree freedom was established as well. The effects of frequency, amplitude and downstroke ratio, as well as the components of inertial power and force on different directions, were studied. The experimental and computational results indicated that the inertial power and force accounted for the largest part on flap direction, the wing fold during upstroke could reduce the inertial power and force.
Attenberger, Ulrike I; Runge, Val M; Williams, Kenneth D; Stemmer, Alto; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J
2009-03-01
Motion artifacts often markedly degrade image quality in clinical scans. The BLADE technique offers an alternative k-space sampling scheme reducing the effect of patient related motion on image quality. The purpose of this study is the comparison of imaging artifacts, signal-to-noise (SNR), and contrast-to-noise ratio (CNR) of a new turboFLASH BLADE k-space trajectory with the standard Cartesian k-space sampling for brain imaging, using a 32-channel coil at 3T. The results from 32 patients included after informed consent are reported. This study was performed with a 32-channel head coil on a 3T scanner. Sagittal and axial T1-weighted FLASH sequences (TR/TE 250/2.46 milliseconds, flip angle 70-degree), acquired with Cartesian k-space sampling and T1-weighted turboFLASH sequences (TR/TE/TIsag/TIax 3200/2.77/1144/1056 milliseconds, flip angle 20-degree), using PROPELLER (BLADE) k-space trajectory, were compared. SNR and CNR were evaluated using a paired student t test. The frequency of motion artifacts was assessed in a blinded read. To analyze the differences between both techniques a McNemar test was performed. A P value <0.05 was considered statistically significant. From the blinded read, the overall preference in terms of diagnostic image quality was statistically significant in favor of the BLADE turboFLASH data sets, compared with standard FLASH for both sagittal (P < 0.0001) and axial (P < 0.0001) planes. The frequency of motion artifacts from the scalp was higher for standard FLASH sequences than for BLADE sequences on both axial (47%, P < 0.0003) and sagittal (69%, P < 0.0001) planes. BLADE was preferred in 100% (sagittal plane) and 80% (axial plane) of in-patient data sets and in 68% (sagittal plane) and 73% (axial plane) of out-patient data sets.The BLADE T1 scan did have lower SNRmean (BLADEax 179 +/- 98, Cartesianax 475 +/- 145, BLADEsag 171 +/- 51, and Cartesiansag 697 +/- 129) with P values indicating accordingly a statistically significant difference (Pax <0.0001, Psag < 0.0001), because of the fundamental difference in imaging approach (FLASH vs. turboFLASH). Differences for CNR were also statistically significant, independent of imaging plane (Pax = 0.001, Psag = 0.02). Results demonstrate that turboFLASH BLADE is applicable at 3T with a 32-channel head coil for T1-weighted imaging, with reduced ghost artifacts. This approach offers the first truly clinically applicable T1-weighted BLADE technique for brain imaging at 3T, with consistent excellent image quality.
Comparison of Rotor Structural Loads Calculated using Comprehensive Analysis
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Yeo, Hyeonsoo
2005-01-01
Blade flap and chord bending and torsion moments are investigated for six rotors operating at transition and high speed: H-34 in flight and wind tunnel, SA 330 (research Puma), SA 349/2, UH-60A full-scale, and BO- 105 model (HART-I). The measured data from flight and wind tunnel tests are compared with calculations obtained using the comprehensive analysis CAMRAD II. The calculations were made using two free wake models: rolled-up and multiple-trailer with consolidation models. At transition speed, there is fair to good agreement for the flap and chord bending moments between the test data and analysis for the H-34, research Puma, and SA 349/2. Torsion moment correlation, in general, is fair to good for all the rotors investigated. Better flap bending and torsion moment correlation is obtained for the UH-60A and BO-105 rotors by using the multiple-trailer with consolidation wake model. In the high speed condition, the analysis shows generally better correlation in magnitude than in phase for the flap bending and torsion moments. However, a significant underprediction of chord bending moment is observed for the research Puma and UH-60A. The poor chord bending moment correlation appears to be caused by the airloads model, not the structural dynamics.
The effects of SENSE on PROPELLER imaging.
Chang, Yuchou; Pipe, James G; Karis, John P; Gibbs, Wende N; Zwart, Nicholas R; Schär, Michael
2015-12-01
To study how sensitivity encoding (SENSE) impacts periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) image quality, including signal-to-noise ratio (SNR), robustness to motion, precision of motion estimation, and image quality. Five volunteers were imaged by three sets of scans. A rapid method for generating the g-factor map was proposed and validated via Monte Carlo simulations. Sensitivity maps were extrapolated to increase the area over which SENSE can be performed and therefore enhance the robustness to head motion. The precision of motion estimation of PROPELLER blades that are unfolded with these sensitivity maps was investigated. An interleaved R-factor PROPELLER sequence was used to acquire data with similar amounts of motion with and without SENSE acceleration. Two neuroradiologists independently and blindly compared 214 image pairs. The proposed method of g-factor calculation was similar to that provided by the Monte Carlo methods. Extrapolation and rotation of the sensitivity maps allowed for continued robustness of SENSE unfolding in the presence of motion. SENSE-widened blades improved the precision of rotation and translation estimation. PROPELLER images with a SENSE factor of 3 outperformed the traditional PROPELLER images when reconstructing the same number of blades. SENSE not only accelerates PROPELLER but can also improve robustness and precision of head motion correction, which improves overall image quality even when SNR is lost due to acceleration. The reduction of SNR, as a penalty of acceleration, is characterized by the proposed g-factor method. © 2014 Wiley Periodicals, Inc.
An analytical model and scaling of chordwise flexible flapping wings in forward flight.
Kodali, Deepa; Kang, Chang-Kwon
2016-12-13
Aerodynamic performance of biological flight characterized by the fluid structure interaction of a flapping wing and the surrounding fluid is affected by the wing flexibility. One of the main challenges to predict aerodynamic forces is that the wing shape and motion are a priori unknown. In this study, we derive an analytical fluid-structure interaction model for a chordwise flexible flapping two-dimensional airfoil in forward flight. A plunge motion is imposed on the rigid leading-edge (LE) of teardrop shape and the flexible tail dynamically deforms. The resulting unsteady aeroelasticity is modeled with the Euler-Bernoulli-Theodorsen equation under a small deformation assumption. The two-way coupling is realized by considering the trailing-edge deformation relative to the LE as passive pitch, affecting the unsteady aerodynamics. The resulting wing deformation and the aerodynamic performance including lift and thrust agree well with high-fidelity numerical results. Under the dynamic balance, the aeroelastic stiffness decreases, whereas the aeroelastic stiffness increases with the reduced frequency. A novel aeroelastic frequency ratio is derived, which scales with the wing deformation, lift, and thrust. Finally, the dynamic similarity between flapping in water and air is established.
Flight Test Evaluation of a Nonlinear Hub Spring on a UH-1H Helicopter.
1981-04-01
APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT This report documents the engineering analysis, development , arnd flight test of a non- linger hub...order to develop a design criteria to ensure that mast loads can be sustained during in-flight flapping stop contact. In addition, a comparison of the...LIST OF ILLUSTRATIONS Figure Page 1 Rotor blade-element aerodynamic coefficients used in ARHF01 .................................. 18 2 Rotor model on
A systematic review of functional donor-site morbidity after latissimus dorsi muscle transfer.
Lee, Kyeong-Tae; Mun, Goo-Hyun
2014-08-01
The authors performed a comprehensive literature review regarding functional impairment after latissimus dorsi muscle transfer, to investigate functional changes in the donor site and the potential impact on patients' daily lives. The PubMed database was searched for articles regarding functional donor-site morbidity following latissimus dorsi muscle flap harvest. Articles discussing the thoracodorsal artery perforator flap, which shares the same donor sites with the latissimus dorsi muscle flap, were also included. Functional morbidity was analyzed based on questionnaire of subjective symptoms, Disabilities of the Arm, Shoulder and Hand questionnaire, shoulder range of motion, and shoulder strength. Twenty-two articles representing 719 cases in 644 patients were reviewed, including seven prospective and 15 retrospective cohort studies. As a questionnaire summary from eight articles, 94 of 232 patients (41 percent) experienced any kind of discomfort at the donor site. In the Disabilities of the Arm, Shoulder and Hand questionnaire from seven articles, little difficulty in daily activities but significant difficulties in sports and art activities were observed. Nine of 13 articles reported some limitations of shoulder motion, particularly during the early postoperative period, and four other articles detected little limitation. Eight of 12 articles reported some shoulder strength weakness over time, and shoulder extension, adduction, and internal rotation were commonly involved. The muscle-sparing latissimus dorsi and thoracodorsal artery perforator flaps showed low functional morbidity. Functional impairment of the shoulder could develop after latissimus dorsi muscle flap transfer. Knowledge of the flap's functional morbidity will allow surgeons to inform patients regarding donor-site expectations and to accomplish better surgical outcomes.
NASA Astrophysics Data System (ADS)
Liu, Boshen; Hamed, Ali M.; Chamorro, Leonardo P.
2018-01-01
The signatures of the Kelvin-Helmoltz (K-H) and von Kármán (VK) vortices shed from a semicircular cylinder with flaps of length L/d = 0, 1/3, 1, 2, and 3 were investigated using hotwire anemometry. Here, L and d denote the flap length and diameter of the semi-circular cylinder, respectively. Experiments were performed at Reynolds numbers spanning one order of magnitude, Re ∈ [8.4 × 103, 6.7 × 104]. The results highlight the impact of the flow modulation through rigid flaps on the wake characteristics and dominant vortex shedding. The increase of flap length resulted in reduced mean shear in the near-wake, which influenced the onset and coherence of the K-H instability. Indeed, these motions are less likely to be present in the wake of the L/d = 3 case. The flaps also impacted the frequency of the VK shedding; the associated Strouhal number increased from 0.2 to 0.3 for flaps L/d ≳ 1. Only the cases without with the shortest flaps (L/d = 1/3) followed St = 0.2. There is a distinctive dependence of the fK - H/fVK on Reynolds number and flap length. This ratio followed the well-known power-law relationship of circular cylinders in the case without flaps. However, the Reynolds number exponent decreased with increased flap length.
Feasibility study of an aerial manipulator interacting with a vertical wall
2017-06-01
each blade . Some tests are run with different levels of PWM input and the resultant angular acceleration in each case is measured with the motion...Helicopter Near a Vertical Surface ...................29 Figure 15. Near-Wall Moment for a Single Blade Helicopter. Source: [30]. .............30...with canted propellers is proposed, so that each blade applies thrust with components in the vertical and in the horizontal plane. In Figure 10
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
A comparative study of the hovering efficiency of flapping and revolving wings.
Zheng, L; Hedrick, T; Mittal, R
2013-09-01
Direct numerical simulations are used to explore the hovering performance and efficiency for hawkmoth-inspired flapping and revolving wings at Reynolds (Re) numbers varying from 50 to 4800. This range covers the gamut from small (fruit fly size) to large (hawkmoth size) flying insects and is also relevant to the design of micro- and nano-aerial vehicles. The flapping wing configuration chosen here corresponds to a hovering hawkmoth and the model is derived from high-speed videogrammetry of this insect. The revolving wing configuration also employs the wings of the hawkmoth but these are arranged in a dual-blade configuration typical of helicopters. Flow for both of these configurations is simulated over the range of Reynolds numbers of interest and the aerodynamic performance of the two compared. The comparison of these two seemingly different configurations raises issues regarding the appropriateness of various performance metrics and even characteristic scales; these are also addressed in the current study. Finally, the difference in the performance between the two is correlated with the flow physics of the two configurations. The study indicates that viscous forces dominate the aerodynamic power expenditure of the revolving wing to a degree not observed for the flapping wing. Consequently, the lift-to-power metric of the revolving wing declines rapidly with decreasing Reynolds numbers resulting in a hovering performance that is at least a factor of 2 lower than the flapping wing at Reynolds numbers less than about 100.
Containment of composite fan blades
NASA Technical Reports Server (NTRS)
Stotler, C. L.; Coppa, A. P.
1979-01-01
A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.
Optical Detection of Blade Flutter
NASA Technical Reports Server (NTRS)
Nieberding, W. C.; Pollack, J. L.
1977-01-01
Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.
NASA Technical Reports Server (NTRS)
Clark, William S.; Hall, Kenneth C.
1994-01-01
A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.
NASA Astrophysics Data System (ADS)
Kamaruzaman, N. F.; Abdullah, E. J.
2017-12-01
Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.
Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
Hedrick, Tyson L
2011-12-15
Flying animals exhibit remarkable degrees of both stability and manoeuvrability. Our understanding of these capabilities has recently been improved by the identification of a source of passive damping specific to flapping flight. Examining how this damping effect scales among different species and how it affects active manoeuvres as well as recovery from perturbations provides general insights into the flight of insects, birds and bats. These new damping models offer a means to predict manoeuvrability and stability for a wide variety of flying animals using prior reports of the morphology and flapping motions of these species. Furthermore, the presence of passive damping is likely to have facilitated the evolution of powered flight in animals by providing a stability benefit associated with flapping.
SU-E-I-67: Arachnoid Cysts: The Role of the BLADE Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavroidis, P; Vlachopoulou, A; Kostopoulos, S
2015-06-15
Purpose: The purpose of this study is first to show the extent by which BLADE sequences can reduce all the image artifacts and second to verify that the usefulness of this technique in certain pathological conditions is significant. Methods: In this study, fourteen consecutive patients (5 females, 9 males), who routinely underwent MRI brain examination, between 2010–2014, were selected. The applied routine protocols for brain MR examination included the following sequences: 1) T2-W FLAIR axial; 2) T2-W TSE axial; 3) T2*-W axial, 4) T1-W TSE sagittal; 5) DWI-W axial; 6) T1-W TSE axial; 7) T1-W TSE axial+contrast. In cases ofmore » cystic tumors, the T2-W FLAIR BLADE sequence was added to the protocol. All the images were evaluated independently at two separate settings with 3 weeks interval by two radiologists. The radiologists also evaluated the presence of image artifacts (motion, flow, chemical shift, Gibbs ringing). To evaluate the size of the cyst, the two radiologists compared the two techniques (conventional and BLADE) by assessing the extent of the divergence in the measurements of the cysts. Results: Regarding the extent of the cyst size, BLADE measurements were found to be more reliable than the conventional ones with the differences being statistically significant (p<0.01). The qualitative measurements indicated that the T2 FLAIR BLADE sequences were superior to the conventional T2 FLAIR with statistically significant differences (p<0.001) in the following characteristics: 1) overall image quality, 2) CSF nulling; 3) contrast at the pathology and its surrounding; 4) limits of the pathology; 5) motion artifacts; 6) flow artifacts; 7) chemical shift artifacts and 8) Gibbs ringing artifacts. Conclusion: BLADE sequence was found to decrease both flow artifacts in the temporal lobes and motion artifacts from the orbits and it is proposed for clinical use.« less
Multi-objective/loading optimization for rotating composite flexbeams
NASA Technical Reports Server (NTRS)
Hamilton, Brian K.; Peters, James R.
1989-01-01
With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.
Simultaneous multi-slice combined with PROPELLER.
Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan
2018-08-01
Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
Two modes resonant combined motion for insect wings kinematics reproduction and lift generation
NASA Astrophysics Data System (ADS)
Faux, D.; Thomas, O.; Cattan, E.; Grondel, S.
2018-03-01
This paper presents an original concept using a two resonant vibration modes combined motion to reproduce insect wings kinematics and generate lift. The key issue is to design the geometry and the elastic characteristics of artificial wings such that a combination of flapping and twisting motions in a quadrature phase shift could be obtained. This qualitatively implies to bring the frequencies of the two resonant modes closer. For this purpose, a polymeric prototype was micromachined with a wingspan of 3 cm, flexible wings and a single actuator. An optimal wings configuration was determined with a modeling and validated through experimental modal analyses to verify the proximity of the two modes frequencies. A dedicated lift force measurement bench was developed and used to demonstrate a lift force equivalent to the prototype weight. Finally, at the maximum lift frequency, high-speed camera measurements confirmed a kinematics of the flexible wings with flapping and twisting motions in phase quadrature as expected.
``Schooling'' of wing pairs in flapping flight
NASA Astrophysics Data System (ADS)
Ramananarivo, Sophie; Zhang, Jun; Ristroph, Leif; AML, Courant Collaboration; Physics NYU Collaboration
2015-11-01
The experimental setup implements two independent flapping wings swimming in tandem. Both are driven with the same prescribed vertical heaving motion, but the horizontal motion is free, which means that the swimmers can take up any relative position and forward speed. Experiments show however clearly coordinated motions, where the pair of wings `crystallize' into specific stable arrangements. The follower wing locks into the path of the leader, adopting its speed, and with a separation distance that takes on one of several discrete values. By systematically varying the kinematics and wing size, we show that the set of stable spacings is dictated by the wavelength of the periodic wake structure. The forces maintaining the pair cohesion are characterized by applying an external force to the follower to perturb it away from the `stable wells'. These results show that hydrodynamics alone is sufficient to induce cohesive and coordinated collective locomotion through a fluid, and we discuss the hypothesis that fish schools and bird flocks also represent stable modes of motion.
Feng, Shi-Ming; Sun, Qing-Qing; Cheng, Jian; Wang, Ai-Guo
2017-11-01
Providing soft tissue coverage for finger neurocutaneous defects presents aesthetic and sensory challenges. A common source for reconstruction of soft tissue defects of the fingers is the same finger. However, when the donor areas are damaged by concomitant injuries, this option is not available. The present study aims to reconstruct finger neurocutaneous defects using a sensory reverse dorsal digital artery flap from the neighboring digit and to evaluate the efficacy of this technique. The study included 16 patients, with an average age of 34.9 years (range, 20-53 years) at the time of surgery, from May 2010 to June 2013. The sensory reverse dorsal digital artery flap was used in all 16 patients, who had a combination of soft tissue and digital nerve defects. The mean size of the soft tissue defects was 3.1 cm × 2.0 cm, and the mean flap size was 3.3 cm × 2.2 cm. The length of the nerve defects ranged from 1.3 to 2.5 cm (mean, 2.0 cm), which were reconstructed with dorsal branches of the proper digital nerve transfer. The active motion of the fingers (injured and donor) and the flap sensibility (static two-point discrimination) were measured. The appearance and functional recovery of the injured finger and the donor site were assessed using the Michigan Hand Outcomes Questionnaire. All flaps survived completely. No complications were reported, and no further flap debulking procedure was required. At the mean follow-up period of 24 months (range, 18-30 months), the mean static two-point discrimination was 6.5 mm (range, 5-10 mm) of the reconstructed area; the mean ranges of motions of the injured finger and the opposite finger at the proximal interphalangeal and distal interphalangeal joints were 102.2° and 103.5°, and 70.3° and 76.5°, respectively. The average ranges of motions of the metacarpophalangeal and proximal interphalangeal joints of the donor fingers were 90° and 103.4°, respectively. Based on the Michigan Hand Outcomes Questionnaire, 10 patients were strongly satisfied and 6 were satisfied with the functional recovery of the injured finger; however, 13 patients were strongly satisfied and 3 were satisfied with the appearance of the injured finger. The sensory reverse dorsal digital artery flap from the neighboring digit, based on the dorsal branch of the digital artery, is an effective and additional option for finger neurocutaneous defect reconstruction when use of the local and regional flaps is not feasible. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Lift and Power Required for Flapping Wing Hovering Flight on Mars
NASA Astrophysics Data System (ADS)
Pohly, Jeremy; Sridhar, Madhu; Bluman, James; Kang, Chang-Kwon; Landrum, D. Brian; Fahimi, Farbod; Aono, Hikaru; Liu, Hao
2017-11-01
Achieving flight on Mars is challenging due to the ultra-low density atmosphere. Bio-inspired flapping motion can generate sufficient lift if bumblebee-inspired wings are scaled up between 2 and 4 times their nominal size. However, due to this scaling, the inertial power required to sustain hover increases and dominates over the aerodynamic power. Our results show that a torsional spring placed at the wing root can reduce the flapping power required for hover by efficiently storing and releasing energy while operating at its resonance frequency. The spring assisted reduction in flapping power is demonstrated with a well-validated, coupled Navier-Stokes and flight dynamics solver. The total power is reduced by 79%, whereas the flapping power is reduced by 98%. Such a reduction in power paves the way for an efficient, realizable micro air vehicle capable of vertical takeoff and landing as well as sustained flight on Mars. Alabama Space Grant Consortium Fellowship.
Wing flapping with minimum energy
NASA Technical Reports Server (NTRS)
Jones, R. T.
1980-01-01
A technique employed by Prandtl and Munk is adapted for the case of a wing in flapping motion to determine its lift distribution. The problem may be reduced to one of minimizing induced drag for a specified and periodically varying bending moment at the wing root. It is concluded that two wings in close tandem arrangement, moving in opposite phase, would eliminate the induced aerodynamic losses calculated
Revised motion estimation algorithm for PROPELLER MRI.
Pipe, James G; Gibbs, Wende N; Li, Zhiqiang; Karis, John P; Schar, Michael; Zwart, Nicholas R
2014-08-01
To introduce a new algorithm for estimating data shifts (used for both rotation and translation estimates) for motion-corrected PROPELLER MRI. The method estimates shifts for all blades jointly, emphasizing blade-pair correlations that are both strong and more robust to noise. The heads of three volunteers were scanned using a PROPELLER acquisition while they exhibited various amounts of motion. All data were reconstructed twice, using motion estimates from the original and new algorithm. Two radiologists independently and blindly compared 216 image pairs from these scans, ranking the left image as substantially better or worse than, slightly better or worse than, or equivalent to the right image. In the aggregate of 432 scores, the new method was judged substantially better than the old method 11 times, and was never judged substantially worse. The new algorithm compared favorably with the old in its ability to estimate bulk motion in a limited study of volunteer motion. A larger study of patients is planned for future work. Copyright © 2013 Wiley Periodicals, Inc.
[Microsurgery for severe flexion contracture of proximal interphalangeal joint].
Fei, Xiaoxuan; Feng, Shiming; Gao, Shunhong
2012-07-01
To investigate the clinical results of cross-finger flap combined with laterodigital pedicled skin flap for repair of severe flexion contracture of the proximal interphalangeal joint. Between October 2008 and February 2011, 11 patients (11 fingers) with severe flexion contracture of the proximal interphalangeal joint were treated with cross-finger flap combined with laterodigital pedicled skin flap. There were 7 males and 4 females, aged 20-63 years (mean, 32.6 years). The causes of injury were crush or electric-saw injury in 7 cases, burn or explosive injury in 3 cases, and electrical injury in 1 case. The locations were the index finger in 4 cases, the middle finger in 2 cases, the ring finger in 2 cases, and the little finger in 3 cases. The mean disease duration was 12.4 months (range, 6-24 months). All cases were rated as type III according to Stern classification standard. The volar tissue defect ranged from 3.0 cm x 1.5 cm to 5.0 cm x 2.5 cm, with exposed tendons, nerves, vessels, or bone after scar relaxation. The defects were repaired with cross-finger flaps (2.2 cm x 1.8 cm to 3.8 cm x 2.5 cm) combined with laterodigital pedicled skin flaps (1.5 cm x 1.2 cm to 2.5 cm x 2.0 cm). Double laterodigital pedicled skin flaps were used in 3 cases. The flap donor site was sutured directly or repaired with the skin graft. All flaps survived completely and wound healed by first intention. The donor skin graft survived. All the patients were followed up 6-18 months (mean, 11.3 months). The finger appearance was satisfactory. The flaps had soft texture and good color in all cases. No obvious pigmentation or contraction was observed. The contracted fingers could extend completely with good active flexion and extension motion. At last follow-up, the extension of the proximal interphalangeal joint was 10-150. Based on proximal interphalangeal joint motion standard of Chinese Medical Association for hand surgery, the results were excellent in 6 cases, good in 4 cases, and fair in 1 case; the excellent and good rate was 90.9%. It is an easy and simple therapy t o cover wound area of severe flexion contracture of the proximal interphalangeal joint after scar relaxation using cross-finger flap combined with laterodigital pedicled skin flap, which can repair large defect and achieve good results in finger appearance and function.
Development of a linearized unsteady Euler analysis for turbomachinery blade rows
NASA Technical Reports Server (NTRS)
Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.
1995-01-01
A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.
Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics
NASA Technical Reports Server (NTRS)
LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark
2010-01-01
Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session Transcript.
Effect of outer wing separation on lift and thrust generation in a flapping wing system.
Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol
2011-09-01
We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.
Flow structures in the wake of heaving and pitching foils
NASA Astrophysics Data System (ADS)
Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.
2012-11-01
A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.
Sood, Aditya; Therattil, Paul J; Russo, Gerardo; Lee, Edward S
2017-01-01
Objective: The latissimus dorsi flap is a workhorse for plastic surgeons, being used for many years for soft-tissue coverage of the upper extremity as well as for functional reconstruction to restore motion to the elbow and shoulder. The authors present a case of functional latissimus dorsi transfer for restoration of elbow flexion and review the literature on technique and outcomes. Methods: A literature review was performed using MEDLINE and the Cochrane Collaboration Library for primary research articles on functional latissimus dorsi flap transfer. Data related to surgical techniques and outcomes were extracted. Results: The literature search yielded 13 relevant studies, with a total of 52 patients who received pedicled, functional latissimus dorsi flaps for upper-extremity reconstruction. The most common etiology requiring reconstruction was closed brachial plexus injury (n = 13). After flap transfer, 98% of patients were able to flex the elbow against gravity and 82.3% were able to flex against resistance. In the presented case, a 77-year-old man underwent resection of myxofibrosarcoma of the upper arm with elbow prosthesis placement and functional latissimus dorsi transfer. The patient was able to actively flex against gravity at 3-month follow-up. Conclusions: A review of the literature shows that nearly all patients undergoing functional latissimus dorsi transfer for upper-extremity reconstruction regain at least motion against gravity whereas a large proportion regain motion against resistance. Considerations when planning for functional latissimus dorsi transfer include patient positioning, appropriate tensioning of the muscle, safe inset, polarity, management of other affected upper-extremity joints, and educating patients on the expected outcomes.
Therattil, Paul J.; Russo, Gerardo; Lee, Edward S.
2017-01-01
Objective: The latissimus dorsi flap is a workhorse for plastic surgeons, being used for many years for soft-tissue coverage of the upper extremity as well as for functional reconstruction to restore motion to the elbow and shoulder. The authors present a case of functional latissimus dorsi transfer for restoration of elbow flexion and review the literature on technique and outcomes. Methods: A literature review was performed using MEDLINE and the Cochrane Collaboration Library for primary research articles on functional latissimus dorsi flap transfer. Data related to surgical techniques and outcomes were extracted. Results: The literature search yielded 13 relevant studies, with a total of 52 patients who received pedicled, functional latissimus dorsi flaps for upper-extremity reconstruction. The most common etiology requiring reconstruction was closed brachial plexus injury (n = 13). After flap transfer, 98% of patients were able to flex the elbow against gravity and 82.3% were able to flex against resistance. In the presented case, a 77-year-old man underwent resection of myxofibrosarcoma of the upper arm with elbow prosthesis placement and functional latissimus dorsi transfer. The patient was able to actively flex against gravity at 3-month follow-up. Conclusions: A review of the literature shows that nearly all patients undergoing functional latissimus dorsi transfer for upper-extremity reconstruction regain at least motion against gravity whereas a large proportion regain motion against resistance. Considerations when planning for functional latissimus dorsi transfer include patient positioning, appropriate tensioning of the muscle, safe inset, polarity, management of other affected upper-extremity joints, and educating patients on the expected outcomes. PMID:28293330
NASA Technical Reports Server (NTRS)
London, R. J.; Watts, G. A.; Sissingh, G. J.
1973-01-01
An experimental investigation to determine the dynamic characteristics of a hingeless rotor operating at moderate to high lift was conducted on a small scale, 7.5-foot diameter, four-bladed hingeless rotor model in a 7 x 10-foot wind tunnel. The primary objective of this research program was the empirical determination of the rotor steady-state and frequency responses to swashplate and body excitations. Collective pitch was set from 0 to 20 degrees, with the setting at a particular advance ratio limited by the cyclic pitch available for hub moment trim. Advance ratio varied from 0.00 to 0.36 for blades with nondimensional first-flap frequencies at 1.15, 1.28 and 1.33 times the rotor rotation frequency. Several conditions were run with the rotor operating in the transition regime. Rotor response at high lift is shown to be generally nonlinear in this region. As a secondary objective an experimental investigation of the rotor response to 4/revolution swashplate excitations at advance ratios of 0.2 to 0.85 and at a nondimensional, first-flap modal frequency of 1.34 was also conducted, using the 7 x 10-foot wind tunnel. It is shown that 4/revolution swashplate inputs are a method for substantially reducing rotor-induced, shafttransmitted vibratory forces.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2012-05-01
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
Determining effects of turbine blades on fluid motion
Linn, Rodman Ray [Los Alamos, NM; Koo, Eunmo [Los Alamos, NM
2011-05-31
Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.
Rivera, Angela R. V.; Blob, Richard W.
2013-01-01
Changes in muscle activation patterns can lead to new locomotor modes; however, neuromotor conservation—the evolution of new forms of locomotion through changes in structure without concurrent changes to underlying motor patterns—has been documented across diverse styles of locomotion. Animals that swim using appendages do so via rowing (anteroposterior oscilations) or flapping (dorsoventral oscilations). Yet few studies have compared motor patterns between these swimming modes. In swimming turtles, propulsion is generated exclusively by limbs. Kinematically, turtles swim using multiple styles of rowing (freshwater species), flapping (sea turtles) and a unique hybrid style with superficial similarity to flapping by sea turtles and characterized by increased dorsoventral motions of synchronously oscillated forelimbs that have been modified into flippers (Carettochelys insculpta). We compared forelimb motor patterns in four species of turtle (two rowers, Apalone ferox and Trachemys scripta; one flapper, Caretta caretta; and Carettochelys) and found that, despite kinematic differences, motor patterns were generally similar among species with a few notable exceptions: specifically, presence of variable bursts for pectoralis and triceps in Trachemys (though timing of the non-variable pectoralis burst was similar), and the timing of deltoideus activity in Carettochelys and Caretta compared with other taxa. The similarities in motor patterns we find for several muscles provide partial support for neuromotor conservation among turtles using diverse locomotor styles, but the differences implicate deltoideus as a prime contributor to flapping limb motions. PMID:23966596
Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.
Xiao, Qing; Hu, Jianxin; Liu, Hao
2014-03-01
Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.
Van Truong, Tien; Byun, Doyoung; Kim, Min Jun; Yoon, Kwang Joon; Park, Hoon Cheol
2013-09-01
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Unsteady behavior of a reattaching shear layer
NASA Technical Reports Server (NTRS)
Driver, D. M.; Seegmiller, H. L.; Marvin, J.
1983-01-01
A detailed investigation of the unsteadiness in a reattaching, turbulent shear layer is reported. Laser-Doppler velocimeter measurements were conditionally sampled on the basis of instantaneous flow direction near reattachment. Conditions of abnormally short reattachment and abnormally long reattachment were considered. Ensemble-averaging of measurements made during these conditions was used to obtain mean velocities and Rreynolds stresses. In the mean flow, conditional streamlines show a global change in flow pattern which correlates with wall-flow direction. This motion can loosely be described as a 'flapping' of the shear layer. Tuft probes show that the flow direction reversals occur quite randomly and are shortlived. Streses shown also vary with the change in flow pattern. Yet, the global'flapping' motion does not appear to contribute significantly to the stress in the flow. A second type of unsteady motion was identified. Spectral analysis of both wall static pressure and streamwise velocity shows that most of the energy in the flow resides in frequencies that are significantly lower than that of the turbulence. The dominant frequency is at a Strouhal number equal to 0.2, which is the characteristic frequency of roll-up and pairing of vortical structure seen in free shear layers. It is conjectured that the 'flapping' is a disorder of the roll-up and pairing process occurring in the shear layer.
Anthropometry and Range of Motion of the Encumbered Soldier
2017-03-01
this location and positions the anthropometer blade just behind the landmark to obtain the vertical measurement. The measurer is careful not to...evenly on both feet. The measurer stands in front of the TP and lines up the blades of the beam caliper at the level of Chest Point Anterior. The...to maintain contact between the tape and the skin. The tape measure spans the hollows between the shoulder blades and chest. The measurement is
The effect of wing flexibility on sound generation of flapping wings.
Geng, Biao; Xue, Qian; Zheng, Xudong; Liu, Geng; Ren, Yan; Dong, Haibo
2017-12-13
In this study, the unsteady flow and acoustic characteristics of a three-dimensional (3D) flapping wing model of a Tibicen linnei cicada in forward-flight are numerically investigated. A single cicada wing is modelled as a membrane with a prescribed motion reconstructed from high-speed videos of a live insect. The numerical solution takes a hydrodynamic/acoustic splitting approach: the flow field is solved with an incompressible Navier-Stokes flow solver based on an immersed boundary method, and the acoustic field is solved with linearized perturbed compressible equations. The 3D simulation allows for the examination of both the directivity and frequency compositions of the flapping wing sound in a full space. Along with the flexible wing model, a rigid wing model that is extracted from real motion is also simulated to investigate the effects of wing flexibility. The simulation results show that the flapping sound is directional; the dominant frequency varies around the wing. The first and second frequency harmonics show different radiation patterns in the rigid and flexible wing cases, which are demonstrated to be highly associated with wing kinematics and loadings. Furthermore, the rotation and deformation in the flexible wing is found to help lower the sound strength in all directions.
Effects of forward motion on jet and core noise
NASA Technical Reports Server (NTRS)
Low, J. K. C.
1977-01-01
A study was conducted to investigate the effects of forward motion on both jet and core noise. Measured low-frequency noise from static-engine and from flyover tests with a DC-9-30 powered by JT8D-109 turbofan engines and with a DC-10-40 powered by JT9D-59A turbofan engines was separated into jet- and core noise components. Comparisons of the static and the corresponding in-flight jet- and core-noise components are presented. The results indicate that for the DC-9 airplane at low power settings, where core noise is predominant, the effect of convective amplification on core-noise levels is responsible for the higher in-flight low-frequency noise levels in the inlet quadrant. Similarly, it was found that for the DC-10 airplane with engines mounted under the wings and flaps and flap deflection greater than 30 degrees, the contribution from jet-flap-interaction noise is as much as 5 dB in the inlet quadrant and is responsible for higher in-flight low-frequency noise levels during approach conditions. Those results indicate that to properly investigate flight effects, it is important to consider the noise contributions from other low-frequency sources, such as the core and the jet-flap interaction.
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.
1983-01-01
A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.
NASA Technical Reports Server (NTRS)
Egolf, T. A.; Landgrebe, A. J.
1982-01-01
A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Definition, transformation-formulae and measurements of tipvane angles
NASA Astrophysics Data System (ADS)
Bruining, A.
1987-10-01
The theoretical background of different angle systems used to define tipvane attitude in 3-D space is outlined. Different Euler equations are used for the various, wind tunnel, towing tank, and full scale tipvane models. The influence of rotor blade flapping angle on tipvane angles is described. The tipvane attitude measuring method is outlined in relationship to the Euler angle system. Side effects on the angle of attack of the tipvane due to rotation, translation, and curving of the tipvane are described.
Space-Time Interface-Tracking Computations with Contact Between Solid Surfaces
2014-04-01
parachute FSI [70, 72, 73, 75, 53, 55, 46, 51, 57], flapping-wing aerodynamics [48, 50], and wind - turbine rotor and tower aerodynamics [61]. It can...48, 50], and wind - turbine rotor and tower aerodynamics with the blades passing the tower 18 4 close [61]. As mentioned in [16], one of course...9] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E. Tezduyar. 3D simulation of wind turbine rotors at
Quiet Clean Short-haul Experimental Engine (QCSEE) UTW fan preliminary design
NASA Technical Reports Server (NTRS)
1975-01-01
High bypass geared turbofan engines and propulsion systems designed for short-haul passenger aircraft are described. The propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing is emphasized. The aerodynamic and mechanical preliminary design of the QCSEE under the wing 1.34 pressure ratio fan with variable blade pitch is presented. Design information is given for two pitch change actuation systems which will provide reverse thrust.
1983-10-01
performance results similar to an articulated rotor with non -zero flapping wh~ere the appropriate adjustments to blade cyclic controls were made to run at...additional experimental data are required, limited data from previous investigations tend to support these theoretical observations. The occurrence of close...through 10. The scope of this effort has included both analytical and experimental investigation programs, and the development of distorted and
Experimental data and theoretical analysis of an operating 100 kW wind turbine
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Glasgow, J. C.; Anderson, W. D.; Donham, R. E.
1978-01-01
Experimental test data are correlated with analyses of turbine loads and complete system behavior of the ERDA-NASA 100 kW Mod-0 wind turbine generator over a broad range of steady state conditions, as well as during transient conditions. The deficit in the ambient wind field due to the upwind tower turbine support structure is found to be very significant in exciting higher harmonic loads associated with the flapping response of the blade in bending.
Evaluation of Wind Tunnel and Scaling Effects with the UH-60A Airloads Rotor
2011-05-01
V! free-stream velocity, ft/s x chordwise distance from leading edge, ft #c, #s corrected/geometric shaft angles, deg $1c, $1s cos/sin components...attached to spindles that were retained by elastomeric bearings to a one-piece titanium hub. These bearings permitted blade flap, lead-lag, and...Figure 3. UH-60A small-scale rotor installed in DNW. Main rotor dampers were installed between each of the main rotor spindles and the hub to
Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit
1995-04-01
An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Analysis of an unswept propfan blade with a semiempirical dynamic stall model
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Kaza, K. R. V.
1989-01-01
The time history response of a propfan wind tunnel model with dynamic stall is studied analytically. The response obtained from the analysis is compared with available experimental data. The governing equations of motion are formulated in terms of blade normal modes which are calculated using the COSMIC-NASTRAN computer code. The response analysis considered the blade plunging and pitching motions. The lift, drag and moment coefficients for angles of attack below the static stall angle are obtained from a quasi-steady theory. For angles above static stall angles, a semiempirical dynamic stall model based on a correction to angle of attack is used to obtain lift, drag and moment coefficients. Using these coefficients, the aerodynamic forces are calculated at a selected number of strips, and integrated to obtain the total generalized forces. The combined momentum-blade element theory is used to calculate the induced velocity. The semiempirical stall model predicted a limit cycle oscillation near the setting angle at which large vibratory stresses were observed in an experiment. The predicted mode and frequency of oscillation also agreed with those measured in the experiment near the setting angle.
An experimental and analytical investigation of isolated rotor flap-lag stability in forward flight
NASA Technical Reports Server (NTRS)
Gaonkar, Gopal H.; Mcnulty, Michael J.
1985-01-01
For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasi-steady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62-m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. By computerized symbolic manipulation, an analytical model is developed in substall to predict stability margins with mode indentification. It also predicts substall and stall regions to help explain the correlation between theory and data. The correlation shows both the strengths and weaknesses of the data and theory, and promotes further insights into areas in which further study is needed in substall and stall.
Alibek, Sedat; Adamietz, Boris; Cavallaro, Alexander; Stemmer, Alto; Anders, Katharina; Kramer, Manuel; Bautz, Werner; Staatz, Gundula
2008-08-01
We compared contrast-enhanced T1-weighted magnetic resonance (MR) imaging of the brain using different types of data acquisition techniques: periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) imaging versus standard k-space sampling (conventional spin-echo pulse sequence) in the unsedated pediatric patient with focus on artifact reduction, overall image quality, and lesion detectability. Forty-eight pediatric patients (aged 3 months to 18 years) were scanned with a clinical 1.5-T whole body MR scanner. Cross-sectional contrast-enhanced T1-weighted spin-echo sequence was compared to a T1-weighted dark-fluid fluid-attenuated inversion-recovery (FLAIR) BLADE sequence for qualitative and quantitative criteria (image artifacts, image quality, lesion detectability) by two experienced radiologists. Imaging protocols were matched for imaging parameters. Reader agreement was assessed using the exact Bowker test. BLADE images showed significantly less pulsation and motion artifacts than the standard T1-weighted spin-echo sequence scan. BLADE images showed statistically significant lower signal-to-noise ratio but higher contrast-to-noise ratios with superior gray-white matter contrast. All lesions were demonstrated on FLAIR BLADE imaging, and one false-positive lesion was visible in spin-echo sequence images. BLADE MR imaging at 1.5 T is applicable for central nervous system imaging of the unsedated pediatric patient, reduces motion and pulsation artifacts, and minimizes the need for sedation or general anesthesia without loss of relevant diagnostic information.
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Subramanian, S.
1996-01-01
Since the early 1990s the Aeroflightdynamics Directorate at the Ames Research Center has been conducting tests on isolated hingeless rotors in hover and forward flight. The primary objective is to generate a database on aeroelastic stability in trimmed flight for torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades of NACA 0012 airfoil section with low torsional stiffness. The collective pitch and shaft tilt are set prior to each test run, and then the rotor is trimmed in the following sense: the longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize the 1/rev flapping moment at the 12 percent radial station. In hover, the database comprises lag regressive-mode damping with pitch variations. In forward flight the database comprises cyclic pitch controls, root flap moment and lag regressive-mode damping with advance ratio, shaft angle and pitch variations. This report presents the predictions and their correlation with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag bending and torsion are computed from the measured blade mass and stiffness distributions. The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and pitching moment, and the wake dynamics is represented by a state-space wake model. The trim analysis of finding, the cyclic controls and the corresponding, periodic responses is based on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM) comes out as a byproduct. The stabillty analysis of finding the frequencies and damping levels is based on the eigenvalue-eigenvector analysis of the FTM. All the structural and aerodynamic states are included from modeling to trim analysis. A major finding is that dynamic wake dramatically improves the correlation for the lateral cyclic pitch control. Overall, the correlation is fairly good.
NASA Technical Reports Server (NTRS)
Ungar, E. E.; Chandiramani, K. L.; Barger, J. E.
1972-01-01
Means for predicting the fluctuating pressures acting on externally blown flap surfaces are developed on the basis of generalizations derived from non-dimensionalized empirical data. Approaches for estimation of the fatigue lives of skin-stringer and honeycomb-core sandwich flap structures are derived from vibration response analyses and panel fatigue data. Approximate expressions for fluctuating pressures, structural response, and fatigue life are combined to reveal the important parametric dependences. The two-dimensional equations of motion of multi-element flap systems are derived in general form, so that they can be specialized readily for any particular system. An introduction is presented of an approach to characterizing the excitation pressures and structural responses which makes use of space-time spectral concepts and promises to provide useful insights, as well as experimental and analytical savings.
NASA Technical Reports Server (NTRS)
Gaonkar, G.
1986-01-01
For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. The 1.62 m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear analytical model is developed in substall to predict stability margins with mode identificaton. To help explain the correlation between theory and data it also predicts substall and stall regions of the rotor disk from equilibrium values. The correlation shows both the strengthts and weaknesses of the theory in substall.
Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat
2010-03-01
The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.
The Utility and Versatility of Perforator-Based Propeller Flaps in Burn Care.
Teven, Chad M; Mhlaba, Julie; O'Connor, Annemarie; Gottlieb, Lawrence J
The majority of surgical burn care involves the use of skin grafts. However, there are cases when flaps are required or provide superior outcomes both in the acute setting and for postburn reconstruction. Rarely discussed in the context of burn care, the perforator-based propeller flap is an important option to consider. We describe our experience with perforator-based propeller flaps in the acute and reconstructive phases of burn care. We reviewed demographics, indications, operative details, and outcomes for patients whose burn care included the use of a perforator-based propeller flap at our institution from May 2007 to April 2015. Details of the surgical technique and individual cases are also discussed. Twenty-one perforator-based propeller flaps were used in the care of 17 burn patients. Six flaps (29%) were used in the acute phase for coverage of exposed joints, tendons, cartilage, and bone; coverage of open wounds; and preservation of range of motion (ROM) by minimizing scar contracture. Fifteen flaps (71%) were used for reconstruction of postburn deformities including coverage of chronic wounds, for coverage after scar contracture release, and to improve ROM. The majority of flaps (94% at follow-up) exhibited stable soft tissue coverage and good or improved ROM of adjacent joints. Three cases of partial flap loss and one case of total flap loss occurred. Perforator-based propeller flaps provide reliable vascularized soft tissue for coverage of vital structures and wounds, contracture release, and preservation of ROM across joints. Despite a relatively significant risk of minor complications particularly in the coverage of chronic wounds, our study supports their utility in both the acute and reconstructive phases of burn care.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1991-01-01
An aeroelastic analysis is developed which has general application to all types of axial-flow turbomachinery blades. The approach is based on linear modal analysis, where the blade's dynamic response is represented as a linear combination of contributions from each of its in-vacuum free vibrational modes. A compressible linearized unsteady potential theory is used to model the flow over the oscillating blades. The two-dimensional unsteady flow is evaluated along several stacked axisymmetric strips along the span of the airfoil. The unsteady pressures at the blade surface are integrated to result in the generalized force acting on the blade due to simple harmonic motions. The unsteady aerodynamic forces are coupled to the blade normal modes in the frequency domain using modal analysis. An iterative eigenvalue problem is solved to determine the stability of the blade when the unsteady aerodynamic forces are included in the analysis. The approach is demonstrated by applying it to a high-energy subsonic turbine blade from a rocket engine turbopump power turbine. The results indicate that this turbine could undergo flutter in an edgewise mode of vibration.
Numerical analysis of turbine blade tip treatments
NASA Technical Reports Server (NTRS)
Gopalaswamy, Nath S.; Whitaker, Kevin W.
1992-01-01
Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,
Flow structures around a flapping wing considering ground effect
NASA Astrophysics Data System (ADS)
Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung
2013-07-01
Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.
NASA Astrophysics Data System (ADS)
Allred, Charles Jefferson
Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel mechanism, similar to a Stewart Platform. A calibration method for this device is developed and the improved orientation estimation results are shown. The second method is not specific to the fully articulated rotor head mounting geometry of the first method. Rather, it utilizes micro-electromechanical (MEMS) accelerometers and gyroscopes configured to measure the centrifugal acceleration and rotation rate induced through rotor head rotation differentially. By measuring these quantities differentially, other accelerations from the fuselage reference frame are removed from the measurement, resulting in acceleration and rate quantities that are impacted only by the angle of the sensors relative to the plane of rotation. By mounting these sensors strategically and symmetrically about the rotor blade root center of rotation, the orientation of the rotor blade can be estimated in real time.
Response of a thin airfoil encountering strong density discontinuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, F.E.
1993-12-01
Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less
CFD simulation of a 2 bladed multi megawatt wind turbine with flexible rotor connection
NASA Astrophysics Data System (ADS)
Klein, L.; Luhmann, B.; Rösch, K.-N.; Lutz, T.; Cheng, P.-W.; Krämer, E.
2016-09-01
An innovative passive load reduction concept for a two bladed 3.4 MW wind turbine is investigated by a conjoint CFD and MBS - BEM methodology. The concept consists of a flexible hub mount which allows a tumbling motion of the rotor. First, the system is simulated with a MBS tool coupled to a BEM code. Then, the resulting motion of the rotor is extracted from the simulation and applied on the CFD simulation as prescribed motion. The aerodynamic results show a significant load reduction on the support structure. Hub pitching and yawing moment amplitudes are reduced by more than 50% in a vertically sheared inflow. Furthermore, the suitability of the MBS - BEM approach for the simulation of the load reduction system is shown.
Extracting full-field dynamic strain response of a rotating wind turbine using photogrammetry
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2015-04-01
Health monitoring of wind turbines is typically performed using conventional sensors (e.g. strain-gages and accelerometers) that are usually mounted to the nacelle or gearbox. Although many wind turbines stop operating due to blade failures, there are typically few to no sensor mounted on the blades. Placing sensors on the rotating parts of the structure is a challenge due to the wiring and data transmission constraints. Within the current work, an approach to monitor full-field dynamic response of rotating structures (e.g. wind turbine blades or helicopter rotors) is developed and experimentally verified. A wind turbine rotor was used as the test structure and was mounted to a block and horizontally placed on the ground. A pair of bearings connected to the rotor shaft allowed the turbine to freely spin along the shaft. Several optical targets were mounted to the blades and a pair of high-speed cameras was used to monitor the dynamics of the spinning turbine. Displacements of the targets during rotation were measured using three-dimensional point tracking. The point tracking technique measured both rigid body displacement and flexible deformation of the blades at target locations. While the structure is rotating, only flap displacements of optical targets (displacements out of the rotation plane) were used in strain prediction process. The measured displacements were expanded and applied to the finite element model of the turbine to extract full-field dynamic strain on the structure. The proposed approach enabled the prediction of dynamic response on the outer surface as well as within the inner points of the structure where no other sensor could be easily mounted. In order to validate the proposed approach, the predicted strain was compared to strain measured at four locations on the spinning blades using a wireless strain-gage system.
Wind turbine blade testing system using base excitation
Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay
2014-03-25
An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).
Computer program for aerodynamic and blading design of multistage axial-flow compressors
NASA Technical Reports Server (NTRS)
Crouse, J. E.; Gorrell, W. T.
1981-01-01
A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. Compressible flow, which is assumed to be steady and axisymmetric, is the basis for a two-dimensional solution in the meridional plane with viscous effects modeled by pressure loss coefficients and boundary layer blockage. The radial equation of motion and the continuity equation are solved with the streamline curvature method on calculation stations outside the blade rows. The annulus profile, mass flow, pressure ratio, and rotative speed are input. A number of other input parameters specify and control the blade row aerodynamics and geometry. In particular, blade element centerlines and thicknesses can be specified with fourth degree polynomials for two segments. The output includes a detailed aerodynamic solution and, if desired, blading coordinates that can be used for internal flow analysis codes.
Interactive multi-mode blade impact analysis
NASA Technical Reports Server (NTRS)
Alexander, A.; Cornell, R. W.
1978-01-01
The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.
Unsteady flow model for circulation-control airfoils
NASA Technical Reports Server (NTRS)
Rao, B. M.
1979-01-01
An analysis and a numerical lifting surface method are developed for predicting the unsteady airloads on two-dimensional circulation control airfoils in incompressible flow. The analysis and the computer program are validated by correlating the computed unsteady airloads with test data and also with other theoretical solutions. Additionally, a mathematical model for predicting the bending-torsion flutter of a two-dimensional airfoil (a reference section of a wing or rotor blade) and a computer program using an iterative scheme are developed. The flutter program has a provision for using the CC airfoil airloads program or the Theodorsen hard flap solution to compute the unsteady lift and moment used in the flutter equations. The adopted mathematical model and the iterative scheme are used to perform a flutter analysis of a typical CC rotor blade reference section. The program seems to work well within the basic assumption of the incompressible flow.
Rotational effects on impingement cooling
NASA Technical Reports Server (NTRS)
Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.
1987-01-01
The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.
Effect of wing mass in free flight of a two-dimensional symmetric flapping wing-body model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Aoki, Takaaki; Yoshino, Masato
2017-10-01
The effect of wing mass in the free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a model consisting of two-dimensional symmetric flapping wings with uniform mass density connected by a body represented as a point mass. We simulate free flights of the two-dimensional symmetric flapping wing with various mass ratios of the wings to the body. In free flights without gravity, it is found that the time-averaged lift force becomes smaller as the mass ratio increases, since with a large mass ratio the body experiences a large vertical oscillation in one period and consequently the wing-tip speed relatively decreases. We define the effective Reynolds number {{Re}}{eff} taking the body motion into consideration and investigate the critical value of {{Re}}{eff} over which the symmetry breaking of flows occurs. As a result, it is found that the critical value is {{Re}}{eff} ≃ 70 independently of the mass ratio. In free flights with gravity, the time-averaged lift force becomes smaller as the mass ratio increases in the same way as free flights without gravity. In addition, the unstable rotational motion around the body is suppressed as the mass ratio increases, since with a large mass ratio the vortices shedding from the wing tip are small and easily decay.
Transonic Free-To-Roll Analysis of the F/A-18E and F-35 Configurations
NASA Technical Reports Server (NTRS)
Owens, D. Bruce; McConnell, Jeffrey K.; Brandon, Jay M.; Hall, Robert M.
2004-01-01
The free-to-roll technique is used as a tool for predicting areas of uncommanded lateral motions. Recently, the NASA/Navy/Air Force Abrupt Wing Stall Program extended the use of this technique to the transonic speed regime. Using this technique, this paper evaluates various wing configurations on the pre-production F/A-18E aircraft and the Joint Strike Fighter (F-35) aircraft. The configurations investigated include leading and trailing edge flap deflections, fences, leading edge flap gap seals, and vortex generators. These tests were conducted in the NASA Langley 16-Foot Transonic Tunnel. The analysis used a modification of a figure-of-merit developed during the Abrupt Wing Stall Program to discern configuration effects. The results showed how the figure-of-merit can be used to schedule wing flap deflections to avoid areas of uncommanded lateral motion. The analysis also used both static and dynamic wind tunnel data to provide insight into the uncommanded lateral behavior. The dynamic data was extracted from the time history data using parameter identification techniques. In general, modifications to the pre-production F/A-18E resulted in shifts in angle-of-attack where uncommanded lateral activity occurred. Sealing the gap between the inboard and outboard leading-edge flaps on the Navy version of the F-35 eliminated uncommanded lateral activity or delayed the activity to a higher angle-of-attack.
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance.
Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin
2011-04-12
Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior--in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
Eberle, A L; Dickerson, B H; Reinhall, P G; Daniel, T L
2015-03-06
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings
Eberle, A. L.; Dickerson, B. H.; Reinhall, P. G.; Daniel, T. L.
2015-01-01
Insects perform fast rotational manoeuvres during flight. While two insect orders use flapping halteres (specialized organs evolved from wings) to detect body dynamics, it is unknown how other insects detect rotational motions. Like halteres, insect wings experience gyroscopic forces when they are flapped and rotated and recent evidence suggests that wings might indeed mediate reflexes to body rotations. But, can gyroscopic forces be detected using only changes in the structural dynamics of a flapping, flexing insect wing? We built computational and robotic models to rotate a flapping wing about an axis orthogonal to flapping. We recorded high-speed video of the model wing, which had a flexural stiffness similar to the wing of the Manduca sexta hawkmoth, while flapping it at the wingbeat frequency of Manduca (25 Hz). We compared the three-dimensional structural dynamics of the wing with and without a 3 Hz, 10° rotation about the yaw axis. Our computational model revealed that body rotation induces a new dynamic mode: torsion. We verified our result by measuring wing tip displacement, shear strain and normal strain of the robotic wing. The strains we observed could stimulate an insect's mechanoreceptors and trigger reflexive responses to body rotations. PMID:25631565
Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance
Ramananarivo, Sophie; Godoy-Diana, Ramiro; Thiria, Benjamin
2011-01-01
Saving energy and enhancing performance are secular preoccupations shared by both nature and human beings. In animal locomotion, flapping flyers or swimmers rely on the flexibility of their wings or body to passively increase their efficiency using an appropriate cycle of storing and releasing elastic energy. Despite the convergence of many observations pointing out this feature, the underlying mechanisms explaining how the elastic nature of the wings is related to propulsive efficiency remain unclear. Here we use an experiment with a self-propelled simplified insect model allowing to show how wing compliance governs the performance of flapping flyers. Reducing the description of the flapping wing to a forced oscillator model, we pinpoint different nonlinear effects that can account for the observed behavior—in particular a set of cubic nonlinearities coming from the clamped-free beam equation used to model the wing and a quadratic damping term representing the fluid drag associated to the fast flapping motion. In contrast to what has been repeatedly suggested in the literature, we show that flapping flyers optimize their performance not by especially looking for resonance to achieve larger flapping amplitudes with less effort, but by tuning the temporal evolution of the wing shape (i.e., the phase dynamics in the oscillator model) to optimize the aerodynamics. PMID:21444774
NASA Astrophysics Data System (ADS)
Viswanath, Kamal
This dissertation broadly seeks to understand the effect different kinematic parameters, external forces, and dynamic wing conformation have on the fluid dynamics of flapping flight. The primary motivation is to better grasp the fundamental fluid phenomena driving efficient flapping flight in the Reynolds number regime of birds, bats, and man made fliers of similar scale. The CFD solver (GenIDLEST) used is a Navier-Stokes solver in a finite volume formulation on non-staggered structured multiblock meshes. It has the capability for both body-fitted moving grid simulations and Immersed Boundary Method (IBM) for simulating complex bodies moving within a fluid. To that purpose we investigate the response of a rigid flapping thin surface planar wing in forward flight, at Re=10,000, subjected to frontal gusts. Gusts are a common ecological hazard for flapping fliers, especially in crowded environments. Among the various temporal and spatial scales of gust possible, we look at the phasing and duration of very large spatial scale gusts and their impact on the unsteady fluid dynamics of flapping within a single flapping cycle. The gust is characterized by a step function with time scale much smaller than the flapping time period. Having the advantage of prescribing the motion, as well as the timing and duration of the gust, this allowed the observation of the effect of angle of attack (AOA) and wing rotation on the evolution of the Leading Edge Vortex (LEV) and, hence the instantaneous lift and thrust profiles, by varying the parameters. During the downstroke, frontal gusts accelerated the flow development resulting in early separation of existing LEVs and formation of new ones on the wing surface which influenced the force generation by increasing the lift and thrust. These phenomena underscored the importance of the unsteady vortex structures as the primary force generators in flapping flight. The effect of the gust is observed to be diminished when it occurs during rapid supination of the wing. Unlike the influence of the vortices during the downstroke, the upstroke primarily reacted to effective AOA changes. A key characteristic of the kinematics of fliers in nature is stroke deviation. We investigate this phenomenon using a similar framework as above on a rigid thin surface flat-plate flapping wing in forward flight. Stroke deviation happens due to a variety of factors including wing flexion, wing lateral translation, and wing area change and here we investigate the different stroke deviation trajectories. Various trajectories were analyzed to assess the different capabilities that such kinematics might offer. The instantaneous lift and thrust profiles were observed to be influenced by a combination of the Leading Edge Vortex (LEV) and the Trailing Edge Vortex (TEV) structures existing in the flow at any given time. As an index of the cost of performance across all cases, the power requirements for the different cases, based on the fluid torques, are analyzed. Anti-clockwise figure-of-eight-cycle deviation is shown to be very complex with high power costs while having better performance. The clockwise elliptic-cycle held promise in being utilized as a viable stroke deviation trajectory for forward flight over the base non stroke deviation case. Armed with insight gained from these simple flapping structures, we are able to conduct the analysis of the flapping flight data obtained on a fruit bat. Understanding the full complexity of bat flight and the ways in which bat flight differs from that of other vertebrate flight requires attention to the intricate functional mechanics and architecture of the wings and the resulting unsteady transient mechanisms of the flow around the wings. We extract the detailed kinematic motion of the bat wing from the recorded data and then simulate the bat wing motion in the CFD framework for a range of Reynolds numbers. The Strouhal number calculated from the data is high indicating that the flow physics is dominated by the oscillatory motion. From the data the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. This force output is modulated by the bat through varying wing camber and the wing area. Proper orthogonal decomposition of the wing kinematics is undertaken to compile a simpler set of kinematic modes that can approximate the original motion used by the fruit bat. These modes are then analyzed based on aerodynamic performance and power cost for more efficient flight. Understanding the physics of these modes will help us use them as prescribed kinematics for mechanical flappers as well as improve upon them from nature.
NASA Astrophysics Data System (ADS)
Başbuǧ, S.; Papadakis, G.; Vassilicos, J. C.
2017-06-01
Flow in an unbaffled stirred vessel agitated by a four-bladed radial impeller is investigated by using direct numerical simulations at Re = 320 and 1600. We observe fluctuations in the power consumption with a peak frequency at ca. three times the impeller rotational speed for both Reynolds numbers. It is discovered that these fluctuations are associated with a periodic event in the wake of the blades, which involves alternating growth and decay of the upper and lower cores of the trailing vortex pair as well as up-and-down swinging motion of the radial jet. Moreover, the phase relation between the wakes of the different blades is examined in detail. Further studies using fractal-shaped blades show that the exact blade shape does not have a strong influence on this phenomenon. However, the wake interaction between the blades, hence the number of blades, has a direct influence on the unsteadiness of trailing vortices.
SU-F-I-58: Image Quality Comparisons of Different Motion Magnitudes and TR Values in MR-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, J; Thompson, R; Tavallaei, M
2016-06-15
Purpose: The aim of this work is to evaluate the accuracy and sensitivity of a respiratory-triggered MR-PET protocol in detecting four different sized lesions at two different magnitudes of motion, with two different TR values, using a novel PET-MR-CT compatible respiratory motion phantom. Methods: The eight-compartment torso phantom was setup adjacent to the motion stage, which moved four spherical compartments (28, 22, 17, 10 mm diameter) in two separate (1 and 2 cm) linear motion profiles, simulating a 3.5 second respiratory cycle. Scans were acquired on a 3T MR-PET system (Biograph mMR; Siemens Medical Solutions, Germany). MR measurements were takenmore » with: 1) Respiratory-triggered T2-weighted turbo spin echo (BLADE) sequence in coronal orientation, and 2) Real-time balanced steady-state gradient echo sequence (TrueFISP) in coronal and sagittal planes. PET was acquired simultaneously with MR. Sphere geometries and motion profiles were measured and compared with ground truths for T2 BLADE-TSE acquisitions and real time TrueFISP images. PET quantification and geometry measurements were taken using standardized uptake values, voxel intensity plots and were compared with known values, and examined alongside MR-based attenuation maps. Contrast and signal-to-noise ratios were also compared for each of the acquisitions as functions of motion range and TR. Results: Comparison of lesion diameters indicate the respiratory triggered T2 BLADE-TSE was able to maintain geometry within −2 mm for 1 cm motion for both TR values, and within −3.1 mm for TR = 2000 ms at 2 cm motion. Sphere measurements in respiratory triggered PET images were accurate within +/− 5 mm for both ranges of motion for 28, 22, and 17 mm diameter spheres. Conclusion: Hybrid MR-PET systems show promise in imaging lung cancer in non-compliant patients, with their ability to acquire both modalities simultaneously. However, MR-based attenuation maps are still susceptible to motion derived artifacts and pose the potential to affect PET accuracy.« less
The effect of cyclic feathering motions on dynamic rotor loads. [for helicopters
NASA Technical Reports Server (NTRS)
Harvey, K. W.
1974-01-01
The dynamic loads of a helicopter rotor in forward flight are influenced significantly by the geometric pitch angles between the structural axes of the hub and blade sections and the plane of rotation. The analytical study presented includes elastic coupling between inplane and out-of-plane deflections as a function of geometric pitch between the plane of rotation and the principal axes of inertia of each blade. The numerical evaluation is based on a transient analysis using lumped masses and elastic substructure techniques. A comparison of cases with and without cyclic feathering motion shows the effect on computed dynamic rotor loads.
Wake Characteristics of a Flapping Wing Optimized for both Aerial and Aquatic Flight
NASA Astrophysics Data System (ADS)
Izraelevitz, Jacob; Kotidis, Miranda; Triantafyllou, Michael
2017-11-01
Multiple aquatic bird species (including murres, puffins, and other auks) employ a single actuator to propel themselves in two different fluid media: both flying and swimming using primarily their flapping wings. This impressive design compromise could be adopted by engineered implementations of dual aerial/aquatic robotic platforms, as it offers an existence proof for favorable flow physics. We discuss one realization of a 3D flapping wing actuation system for use in both air and water. The wing oscillates by the root and employs an active in-line motion degree-of-freedom. An experiment-coupled optimization routine generates the wing trajectories, controlling the unsteady forces throughout each flapping cycle. We elucidate the wakes of these wing trajectories using dye visualization, correlating the wake vortex structures with simultaneous force measurements. After optimization, the wing generates the large force envelope necessary for propulsion in both fluid media, and furthermore, demonstrate improved control over the unsteady wake.
Initial piloted simulation study of geared flap control for tilt-wing V/STOL aircraft
NASA Technical Reports Server (NTRS)
Guerrero, Lourdes M.; Corliss, Lloyd D.
1991-01-01
A simulation study of a representative tilt wing transport aircraft was conducted in 1990 on the Ames Vertical Motion Simulator. This simulation is in response to renewed interest in the tilt wing concept for use in future military and civil applications. For past tilt wing concepts, pitch control in hover and low-speed flight has required a tail rotor or reaction jets at the tail. Use of mono cyclic propellers or a geared flap have also been proposed as alternate methods for providing pitch control at low speed. The geared flap is a subject of this current study. This report describes the geared flap concept, the tilt wing aircraft, the simulation model, the simulation facility and experiment setup, the pilots' evaluation tasks and procedures, and the results obtained from the simulation experiment. The pilot evaluations and comments are also documented in the report appendix.
An Adjoint-Based Approach to Study a Flexible Flapping Wing in Pitching-Rolling Motion
NASA Astrophysics Data System (ADS)
Jia, Kun; Wei, Mingjun; Xu, Min; Li, Chengyu; Dong, Haibo
2017-11-01
Flapping-wing aerodynamics, with advantages in agility, efficiency, and hovering capability, has been the choice of many flyers in nature. However, the study of bio-inspired flapping-wing propulsion is often hindered by the problem's large control space with different wing kinematics and deformation. The adjoint-based approach reduces largely the computational cost to a feasible level by solving an inverse problem. Facing the complication from moving boundaries, non-cylindrical calculus provides an easy extension of traditional adjoint-based approach to handle the optimization involving moving boundaries. The improved adjoint method with non-cylindrical calculus for boundary treatment is first applied on a rigid pitching-rolling plate, then extended to a flexible one with active deformation to further increase its propulsion efficiency. The comparison of flow dynamics with the initial and optimal kinematics and deformation provides a unique opportunity to understand the flapping-wing mechanism. Supported by AFOSR and ARL.
Origin and diversification of wings: Insights from a neopteran insect.
Medved, Victor; Marden, James H; Fescemyer, Howard W; Der, Joshua P; Liu, Jin; Mahfooz, Najmus; Popadić, Aleksandar
2015-12-29
Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification. First, a set of dorsally derived outgrowths evolved along a number of body segments including the first thoracic segment (T1). Homeotic genes were subsequently co-opted to suppress growth of some dorsal flaps in the thorax and abdomen. In T1 this suppression was accomplished by Sex combs reduced, that when experimentally removed, results in an ectopic T1 flap similar to prothoracic winglets present in fossil hemipteroids and other early insects. Global gene-expression differences in ectopic T1 vs. T2/T3 wings suggest that the transition from flaps to wings required ventrally originating cells, homologous with those in ancestral arthropod gill flaps/epipods, to migrate dorsally and fuse with the dorsal flap tissue thereby bringing new functional gene networks; these presumably enabled the T2/T3 wing's increased size and functionality. Third, "fused" wings became both the wing blade and surrounding regions of the dorsal thorax cuticle, providing tissue for subsequent modifications including wing folding and the fit of folded wings. Finally, Ultrabithorax was co-opted to uncouple the morphology of T2 and T3 wings and to act as a general modifier of hindwings, which in turn governed the subsequent diversification of lineage-specific wing forms.
Origin and diversification of wings: Insights from a neopteran insect
Medved, Victor; Marden, James H.; Fescemyer, Howard W.; Der, Joshua P.; Liu, Jin; Mahfooz, Najmus; Popadić, Aleksandar
2015-01-01
Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification. First, a set of dorsally derived outgrowths evolved along a number of body segments including the first thoracic segment (T1). Homeotic genes were subsequently co-opted to suppress growth of some dorsal flaps in the thorax and abdomen. In T1 this suppression was accomplished by Sex combs reduced, that when experimentally removed, results in an ectopic T1 flap similar to prothoracic winglets present in fossil hemipteroids and other early insects. Global gene-expression differences in ectopic T1 vs. T2/T3 wings suggest that the transition from flaps to wings required ventrally originating cells, homologous with those in ancestral arthropod gill flaps/epipods, to migrate dorsally and fuse with the dorsal flap tissue thereby bringing new functional gene networks; these presumably enabled the T2/T3 wing’s increased size and functionality. Third, “fused” wings became both the wing blade and surrounding regions of the dorsal thorax cuticle, providing tissue for subsequent modifications including wing folding and the fit of folded wings. Finally, Ultrabithorax was co-opted to uncouple the morphology of T2 and T3 wings and to act as a general modifier of hindwings, which in turn governed the subsequent diversification of lineage-specific wing forms. PMID:26668365
Passive control of the flow around unsteady aerofoils using a self-activated deployable flap
NASA Astrophysics Data System (ADS)
Rosti, Marco E.; Omidyeganeh, Mohammad; Pinelli, Alfredo
2018-03-01
Self-activated feathers are used by many birds to adapt their wing characteristics to the sudden change of flight incidence angle. In particular, dorsal feathers are believed to pop-up as a consequence of unsteady flow separation and to interact with the flow to palliate the sudden stall breakdown typical of dynamic stall. Inspired by the adaptive character of birds feathers, some authors have envisaged the potential benefits of using of flexible flaps mounted on aerodynamic surfaces to counteract the negative aerodynamic effects associated with dynamic stall. This contribution explores more in depth the physical mechanisms that play a role in the modification of the unsteady flow field generated by a NACA0020 aerofoil equipped with an elastically mounted flap undergoing a specific ramp-up manoeuvre. We discuss the design of flaps that limit the severity of the dynamic stall breakdown by increasing the value of the lift overshoot also smoothing its abrupt decay in time. A detailed analysis on the modification of the turbulent and unsteady vorticity field due to the flap flow interaction during the ramp-up motion is also provided to explain the more benign aerodynamic response obtained when the flap is in use.
Shaft flexibility effects on the forced response of a bladed-disk assembly
NASA Technical Reports Server (NTRS)
Khader, N.; Loewy, R. G.
1990-01-01
A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.
Theoretical analysis of linearized acoustics and aerodynamics of advanced supersonic propellers
NASA Technical Reports Server (NTRS)
Farassat, F.
1985-01-01
The derivation of a formula for prediction of the noise of supersonic propellers using time domain analysis is presented. This formula is a solution of the Ffowcs Williams-Hawkings equation and does not have the Doppler singularity of some other formulations. The result presented involves some surface integrals over the blade and line integrals over the leading and trailing edges. The blade geometry, motion and surface pressure are needed for noise calculation. To obtain the blade surface pressure, the observer is moved onto the blade surface and a linear singular integral equation is derived which can be solved numerically. Two examples of acoustic calculations using a computer program are currently under development.
Evaluation of MOSTAS computer code for predicting dynamic loads in two-bladed wind turbines
NASA Technical Reports Server (NTRS)
Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.
1979-01-01
Calculated dynamic blade loads are compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-0 wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multiblade coordinate transformation for two-bladed rotors to solve the equations of motion by standard eigenanalysis. The results obtained with this approximate analysis do not agree with dynamic blade load amplifications at or close to resonance conditions. The results of the second version, which accounts for periodic coefficients while solving the equations by a time history integration, compare well with the measured data.
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Srivastava, R.
1996-01-01
This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.
Stability analysis of flexible wind turbine blades using finite element method
NASA Technical Reports Server (NTRS)
Kamoulakos, A.
1982-01-01
Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.
Wind-Tunnel Investigation of the Horizontal Motion of a Wing Near the Ground
NASA Technical Reports Server (NTRS)
Serebrisky, Y. M.; Biachuev, S. A.
1946-01-01
By the method of images the horizontal steady motion of a wing at small heights above the ground was investigated in the wind tunnel, A rectangular wing with Clark Y-H profile was tested with and without flaps. The distance from the trailing edge of the wing to the ground was varied within the limits 0.75 less than or = s/c less than or = 0.25. Measurements were made of the lift, the drag, the pitching moment, and the pressure distribution at one section. For a wing without flaps and one with flaps a considereble decrease in the lift force and a,drop in the drag was obtained at angles of attack below stalling. The flow separation near the ground occurs at smaller angles of attack than is the case for a great height above the ground. At horizontal steady flight for practical values of the height above the ground the maximum lift coefficient for the wing without flaps changes little, but markedly decreases for the wing with flaps. Analysis of these phenomena involves the investigation of the pressure distribution. The pressure distribution curves showed that the changes occurring near the ground are not equivalent to a change in the angle of attack. At the lower surface of the section a very strong increase in the pressures is observed. The pressure changes on the upper surface at angles of attack below stalling are insignificant and lead mainly to an increase in the unfavorable pressure gradient, resulting in the earlier occurrence of separation. For a wing with flaps at large angles of attack for distances from the trailing edge of the flap to the ground less than 0.5 chord, the flow between the wing end the ground is retarded so greatly that the pressure coefficient at the lower surface of the section is very near its limiting value (P = 1), and any further possibility of increase in the pressure is very small. In the application an approximate computation procedure is given of the change of certain aerodynamic characteristics for horizontal steady flight near the ground.
Helicopter flight dynamics simulation with a time-accurate free-vortex wake model
NASA Astrophysics Data System (ADS)
Ribera, Maria
This dissertation describes the implementation and validation of a coupled rotor-fuselage simulation model with a time-accurate free-vortex wake model capable of capturing the response to maneuvers of arbitrary amplitude. The resulting model has been used to analyze different flight conditions, including both steady and transient maneuvers. The flight dynamics model is based on a system of coupled nonlinear rotor-fuselage differential equations in first-order, state-space form. The rotor model includes flexible blades, with coupled flap-lag-torsion dynamics and swept tips; the rigid body dynamics are modeled with the non-linear Euler equations. The free wake models the rotor flow field by tracking the vortices released at the blade tips. Their behavior is described by the equations of vorticity transport, which is approximated using finite differences, and solved using a time-accurate numerical scheme. The flight dynamics model can be solved as a system of non-linear algebraic trim equations to determine the steady state solution, or integrated in time in response to pilot-applied controls. This study also implements new approaches to reduce the prohibitive computational costs associated with such complex models without losing accuracy. The mathematical model was validated for trim conditions in level flight, turns, climbs and descents. The results obtained correlate well with flight test data, both in level flight as well as turning and climbing and descending flight. The swept tip model was also found to improve the trim predictions, particularly at high speed. The behavior of the rigid body and the rotor blade dynamics were also studied and related to the aerodynamic load distributions obtained with the free wake induced velocities. The model was also validated in a lateral maneuver from hover. The results show improvements in the on-axis prediction, and indicate a possible relation between the off-axis prediction and the lack of rotor-body interaction aerodynamics. The swept blade model improves both the on-axis and off-axis response. An axial descent though the vortex ring state was simulated. As theǒrtex ring" goes through the rotor, the unsteady loads produce large attitude changes, unsteady flapping, fluctuating thrust and an increase in power required. A roll reversal maneuver was found useful in understanding the cross-couplings effects found in rotorcraft, specifically the effect of the aerodynamic loading on the rotor orientation and the off-axis response.
Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Togashi, Kaori
2008-10-01
The purpose of this study was to evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER [BLADE in the MR systems from Siemens Medical Solutions]) with a respiratory compensation technique for motion correction, image noise reduction, improved sharpness of liver edge, and image quality of the upper abdomen. Twenty healthy adult volunteers with a mean age of 28 years (age range, 23-42 years) underwent upper abdominal MRI with a 1.5-T scanner. For each subject, fat-saturated T2-weighted turbo spin-echo (TSE) sequences with respiratory compensation (prospective acquisition correction [PACE]) were performed with and without the BLADE technique. Ghosting artifact, artifacts except ghosting artifact such as respiratory motion and bowel movement, sharpness of liver edge, image noise, and overall image quality were evaluated visually by three radiologists using a 5-point scale for qualitative analysis. The Wilcoxon's signed rank test was used to determine whether a significant difference existed between images with and without BLADE. A p value less than 0.05 was considered to be statistically significant. In the BLADE images, image artifacts, sharpness of liver edge, image noise, and overall image quality were significantly improved (p < 0.001). With the BLADE technique, T2-weighted TSE images of the upper abdomen could provide reduced image artifacts including ghosting artifact and image noise and provide better image quality.
Transonic airfoil design for helicopter rotor applications
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Jackson, B.
1989-01-01
Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.
An experimental investigation of the structural dynamics of a torsionally soft rotor in vacuum
NASA Technical Reports Server (NTRS)
Srinivasan, A. V.; Cutts, D. G.; Shu, H. T.
1986-01-01
An extensive data base of structural dynamic characteristics has been generated from an experimental program conducted on a torsionally soft two-bladed model helicopter rotor system. Measurements of vibratory strains for five modes of vibration were made at twenty-one locations on the two blades at speeds varying from 0 to 1000 RPM and for several combinations of precone, droop and flexure stiffness. Tests were conducted in vacuum under carefully controlled conditions using a unique excitation device with a system of piezoelectric crystals bonded to the blade surface near the root. Frequencies, strain mode shapes and dampings are extracted from the time histories and can be used to validate structural dynamics codes. The dynamics of the system are such that there is a clear tendency for the first torsion and second flap modes to couple within the speed range considered. Strain mode shapes vary significantly with speed and configuration. This feature is important in the calcualtion of aeroelastic instabilities. The tension axis tests confirmed that the modulus-weighted centroid for the nonhomogeneous airfoil is slightly off the mass centroid and validated previous static tests done to determine location of the tension axis.
2013-11-13
are important and relevant to any vehicle configuration with either fixed, flapping, or rotary wings. Major Research Activities and Findings A...rotates about the leading edge spar. Analysis also shows that synchronization of normal acceleration and pitching angle is important for achieving...2.5, 2.6] found that twist and camber deformations play an important part in the motion of flapping wings and are attributed to elastic deformations of
Rosti, Marco E; Kamps, Laura; Bruecker, Christoph; Omidyeganeh, Mohammad; Pinelli, Alfredo
2017-01-01
During the flight of birds, it is often possible to notice that some of the primaries and covert feathers on the upper side of the wing pop-up under critical flight conditions, such as the landing approach or when stalking their prey (see Fig. 1) . It is often conjectured that the feathers pop up plays an aerodynamic role by limiting the spread of flow separation . A combined experimental and numerical study was conducted to shed some light on the physical mechanism determining the feathers self actuation and their effective role in controlling the flow field in nominally stalled conditions. In particular, we have considered a NACA0020 aerofoil, equipped with a flexible flap at low chord Reynolds numbers. A parametric study has been conducted on the effects of the length, natural frequency, and position of the flap. A configuration with a single flap hinged on the suction side at 70 % of the chord size c (from the leading edge), with a length of [Formula: see text] matching the shedding frequency of vortices at stall condition has been found to be optimum in delivering maximum aerodynamic efficiency and lift gains. Flow evolution both during a ramp-up motion (incidence angle from [Formula: see text] to [Formula: see text] with a reduced frequency of [Formula: see text], [Formula: see text] being the free stream velocity magnitude), and at a static stalled condition ([Formula: see text]) were analysed with and without the flap. A significant increase of the mean lift after a ramp-up manoeuvre is observed in presence of the flap. Stall dynamics (i.e., lift overshoot and oscillations) are altered and the simulations reveal a periodic re-generation cycle composed of a leading edge vortex that lift the flap during his passage, and an ejection generated by the relaxing of the flap in its equilibrium position. The flap movement in turns avoid the interaction between leading and trailing edge vortices when lift up and push the trailing edge vortex downstream when relaxing back. This cyclic behaviour is clearly shown by the periodic variation of the lift about the average value, and also from the periodic motion of the flap. A comparison with the experiments shows a similar but somewhat higher non-dimensional frequency of the flap oscillation. By assuming that the cycle frequency scales inversely with the boundary layer thickness, one can explain the higher frequencies observed in the experiments which were run at a Reynolds number about one order of magnitude higher than in the simulations. In addition, in experiments the periodic re-generation cycle decays after 3-4 periods ultimately leading to the full stall of the aerofoil. In contrast, the 2D simulations show that the cycle can become self-sustained without any decay when the flap parameters are accurately tuned.
Maneuvering Rotorcraft Noise Prediction: A New Code for a New Problem
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Bres, Guillaume A.; Perez, Guillaume; Jones, Henry E.
2002-01-01
This paper presents the unique aspects of the development of an entirely new maneuver noise prediction code called PSU-WOPWOP. The main focus of the code is the aeroacoustic aspects of the maneuver noise problem, when the aeromechanical input data are provided (namely aircraft and blade motion, blade airloads). The PSU-WOPWOP noise prediction capability was developed for rotors in steady and transient maneuvering flight. Featuring an object-oriented design, the code allows great flexibility for complex rotor configuration and motion (including multiple rotors and full aircraft motion). The relative locations and number of hinges, flexures, and body motions can be arbitrarily specified to match the any specific rotorcraft. An analysis of algorithm efficiency is performed for maneuver noise prediction along with a description of the tradeoffs made specifically for the maneuvering noise problem. Noise predictions for the main rotor of a rotorcraft in steady descent, transient (arrested) descent, hover and a mild "pop-up" maneuver are demonstrated.
Jandali, Zaher; Lam, Martin C; Merwart, Benedikt; Möhring, Bernd; Geil, Stephanie; Müller, Klaus; Ionac, Mihai; Jiga, Lucian P
2018-06-26
The composite anterolateral thigh flap with vascularized fascia lata (ALT-FL flap) for covering complex soft tissue defects involving the Achilles tendon has shown promising results. The age and body mass index (BMI) are important predictors of clinical outcome after surgical treatment of Achilles tendon ruptures. In this study, we investigate whether these also influence the outcome of patients after Achilles tendon reconstruction using the ALT-FL flap. Twenty patients (mean age: 55.9 ± 8.7 years) with complex tissue defects involving the Achilles tendon underwent reconstruction with the ALT-FL flap. Both the Achilles tendon Total Rupture Score (ATRS) and the American Orthopaedic Foot and Ankle Society (AOFAS) score were assessed preoperatively and 12 months postoperatively. In addition, postoperative magnetic resonance imaging (MRI) studies and measurements of the ankle range of motion were performed and results compared with existing literature. All flaps survived and MRI studies confirmed complete anatomical integration of the fascia lata as "neotendon" at the recipient site. In our patient cohort, the age did not correlate with the outcome measurements, whereas the BMI showed significant negative correlation with the postoperative ATRS ( p < 0.001) and AOFAS scores ( p < 0.05). The ATRS and AOFAS scores of all patients improved significantly ( p < 0.001). However, obese patients with a BMI of more than 30 kg/m 2 achieved significant lower ATRS ( p < 0.001) and AOFAS scores ( p < 0.01), as well as patients with peripheral artery disease (PAD) ( p < 0.05). The mean ankle range of motion after ALT-FL flap reconstruction remained statistical insignificant compared with previous avascular or vascularized tendon repairs of the Achilles tendon. The ALT-FL flap enables reconstruction of complex tissue defects involving the Achilles tendon with good functional results. However, the presence of an increased BMI or PAD, but not necessarily the age, proves to be a predictor of poor clinical outcome and therefore should be subject to scrutiny during patient selection. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Klos, Kajetan; Gueorguiev, Boyko; Schwieger, Karsten; Fröber, Rosemarie; Brodt, Steffen; Hofmann, Gunther O; Windolf, Markus; Mückley, Thomas
2009-12-01
Retrograde intramedullary nailing is an established technique for tibiotalocalcaneal arthrodesis (TTCA). In poor bone stock (osteoporosis, neuroarthropathy), device fixation in the hindfoot remains a problem. Fixed-angle spiral-blade fixation of the nail in the calcaneus could be useful. In seven matched pairs of human below-knee specimens, bone mineral density (BMD) was determined, and TTCA was performed with an intramedullary nail (Synthes Hindfoot Arthrodesis Nail HAN Expert Nailing System), using a conventional screw plus a fixed-angle spiral blade versus a conventional screw plus a fixed-angle screw, in the calcaneus. The constructs were subjected to quasi-static loading (dorsiflexion/plantarflexion, varus/valgus, rotation) and to cyclic loading to failure. Parameters studied were construct neutral zone (NZ) and range of motion (ROM), and number of cycles to failure. With dorsiflexion/plantarflexion loading, the screw-plus-spiral-blade constructs had a significantly smaller ROM in the quasi-static test (p = 0.028) and early in the cyclic test (p = 0.02); differences in the other parameters were not significant. There was a significant correlation between BMD and cycles to failure for the two-screw constructs (r = 0.94; p = 0.002) and for the screw-plus-spiral-blade constructs (r = 0.86; p = 0.014). In TTCA with a HAN Expert Nailing System, the use of a calcaneal spiral blade can further reduce motion within the construct. This may be especially useful in poor bone stock. Results obtained in this study could be used to guide the operating surgeon's TTCA strategy.
Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
Nudds, Robert L; Dyke, Gareth J
2009-04-01
Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.
Beard reconstruction: A surgical algorithm.
Ninkovic, M; Heidekrueger, P I; Ehrl, D; von Spiegel, F; Broer, P N
2016-06-01
Facial defects with loss of hair-bearing regions can be caused by trauma, infection, tumor excision, or burn injury. The presented analysis evaluates a series of different surgical approaches with a focus on male beard reconstruction, emphasizing the role of tissue expansion of regional and free flaps. Locoregional and free flap reconstructions were performed in 11 male patients with 14 facial defects affecting the hair-bearing bucco-mandibular or perioral region. In order to minimize donor-site morbidity and obtain large amounts of thin, pliable, hair-bearing tissue, pre-expansion was performed in five of 14 patients. Eight of 14 patients were treated with locoregional flap reconstructions and six with free flap reconstructions. Algorithms regarding pre- and intraoperative decision making are discussed and long-term (mean follow-up 1.5 years) results analyzed. Major complications, including tissue expander infection with the need for removal or exchange, partial or full flap loss, occurred in 0% (0/8) of patients with locoregional flaps and in 17% (1/6) of patients undergoing free flap reconstructions. Secondary refinement surgery was performed in 25% (2/8) of locoregional flaps and in 67% (4/6) of free flaps. Both locoregional and distant tissue transfers play a role in beard reconstruction, while pre-expansion remains an invaluable tool. Paying attention to the presented principles and considering the significance of aesthetic facial subunits, range of motion, aesthetics, and patient satisfaction were improved long term in all our patients while minimizing donor-site morbidity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Chi, Zhenglin; Lin, Damu; Chen, Yiheng; Xue, Jixin; Li, Shi; Chu, Tinggang; Li, Zhijie
2018-06-01
Closure of the donor site on the index finger after raising a first dorsal metacarpal artery (DMA) flap harvest is challenging. The conventional choice is to use a full-thickness skin graft. However, this procedure is associated with several complications and a second donor site to harvest the skin graft is inevitable. The aim of this study was to design a modified incision to allow harvest of a first DMA flap without skin graft. From 2015 to 2016, 18 patients with a soft tissue defect of the thumb had reconstruction of the defect using a first DMA flap. A modified incision was used and a relaying perforator flap pedicled on the second DMA was raised through the same incision to cover the donor site. Patient satisfaction, appearance of the injured hand, and the active range of motion (ROM) were assessed. The sensitivity was evaluated by the 2-point discrimination (2-PD) test. All flaps survived completely without complications. Good coverage was obtained with only one linear scar in the dorsum of the hand and no skin grafts. All patients recovered full range of movement in their fingers and regained sensitivity of the flaps. All patients were satisfied with their hand function according to the Michigan Hand Outcomes Questionnaire (MHQ). The mean cosmetic score for the appearance of the injured hand was 8.2 out of 10. Using our modified incision, it was possible to harvest a second DMA flap at the same time as a first DMA flap allowing simultaneous coverage of the donor defect on the index finger. This prevented the need for a skin graft with all of the associated disadvantages. Copyright © 2018. Published by Elsevier Ltd.
Whirl Flutter Stability of Two-Bladed Proprotor/Pylon Systems In High Speed Flight
NASA Technical Reports Server (NTRS)
Singh, Beerinder; Chopra, Inderjit; Pototzky, A. (Technical Monitor)
2002-01-01
The lack of polar symmetry in two-bladed rotors leads to equations of motion with periodic coefficients in axial flight, which is contrary to three or more bladed rotors that result in constant coefficient equations. With periodic coefficients, the analysis becomes involved, as a result very few studies have been directed towards the analysis of two-bladed rotors. In this paper, the aeroelastic stability of two-bladed proprotor/pylon/wing combinations is examined in high speed axial flight. Several parametric studies are carried out to illustrate the special nature of two-bladed proprotors and to better understand the mechanism of whirl-flutter in such rotors. The wing beam bending mode for two-bladed rotors is found to be stable over the range of parameters examined, a behaviour very different from three-bladed rotors. Also, the wing torsion mode exhibits a new type of instability similar to a wing torsional divergence scouring at I/rev frequency. This type of behaviour is not seen in three and more bladed rotors. The interaction between wing chordwise bending and torsion modes is found to be much greater in the case of two-bladed rotors and, over the range of parameters considered, these two modes govern the stability of the system.
Folding in and out: passive morphing in flapping wings.
Stowers, Amanda K; Lentink, David
2015-03-25
We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover within a beat.
NASA Astrophysics Data System (ADS)
Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.
2017-06-01
Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.
Straight-line climbing flight aerodynamics of a fruit bat
NASA Astrophysics Data System (ADS)
Viswanath, K.; Nagendra, K.; Cotter, J.; Frauenthal, M.; Tafti, D. K.
2014-02-01
From flight data obtained on a fruit bat, Cynopterus brachyotis, a kinematic model for straight-line flapping motion is extracted and analyzed in a computational fluid dynamics (CFD) framework to gain insight into the complexity of bat flight. The intricate functional mechanics and architecture of the bat wings set it apart from other vertebrate flight. The extracted kinematic model is simulated for a range of Reynolds numbers, to observe the effect these phenomena have on the unsteady transient mechanisms of the flow produced by the flapping wings. The Strouhal number calculated from the data is high indicating that the oscillatory motion dominates the flow physics. From the obtained data, the bat exhibits fine control of its mechanics by actively varying wing camber, wing area, torsional rotation of the wing, forward and backward translational sweep of the wing, and wing conformation to dictate the fluid dynamics. As is common in flapping flight, the primary force generation is through the attached unsteady vortices on the wing surface. The bat through varying the wing camber and the wing area modulates this force output. The power requirement for the kinematics is analyzed and correlated with the aerodynamic performance.
Ling, Barbara M; Wettstein, Reto; Staub, Daniel; Schaefer, Dirk J; Kalbermatten, Daniel F
2018-02-07
The gastrocnemius muscle flap may be considered the first choice in many cases of soft-tissue reconstruction about the knee. Limited arc of rotation and reach of the flap as well as unsightly muscle bulk are major disadvantages and were the impetus to look for a local alternative. The aim of this study is to present a consecutive series of patients with a reconstruction about the knee involving the medial sural artery perforator flap (MSAPF). A consecutive series of 17 cases of defect reconstructions about the knee using the MSAPF is described, with an emphasis on early postoperative complications. No major flap-related complications occurred except 1 case of tip necrosis that healed uneventfully after excision and secondary suture. Two patients with direct donor-site closure had a minor complication that required no revision, and 2 had partial skin-graft loss. In summary, use of this pedicled perforator flap represents a reliable technique for soft-tissue reconstruction about the knee with an acceptable complication rate and optimal contour reconstruction without the need for a skin graft and secondary debulking procedures. The range of motion associated with the MSAPF in comparison to the range associated with the gastrocnemius muscle flap is increased so that more proximal and lateral defects can be covered. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Fluid Structure Interaction in a Turbine Blade
NASA Technical Reports Server (NTRS)
Gorla, Rama S. R.
2004-01-01
An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.
Generating A Strobed Laser Light Sheet
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Franke, John M.; Rhodes, David B.; Jones, Stephen B.
1994-01-01
An optoelectronic system generating synchronous, strobed sheet of laser light developed for use in making visible flow of air about model helicopter rotor. Used in wind-tunnel tests to determine actual locations of vortices for comparison with locations predicted by mathematical models to validate models. Each blade tip produces vortex. By establishing successive vortex locations, researcher determines trajectory of vortex pattern. Light-sheet strobe circuits provide selection of blade positions, strobe-pulse durations, and multiple pulses per revolution for rotors having two to nine blades. To make flow visible, vaporizing propylene glycol injected upstream of model. System also provides calibrated trigger delay of strobe pulses, adjustable strobe-pulse durations, selectable number of blades, and slip-sync mode to make flow visible as though in slow motion.
NASA Astrophysics Data System (ADS)
Adhikari, D.; Webster, D. R.; Yen, J.
2016-02-01
Antarctic pteropods (Limacina helicina antarctica), which are currently threatened by ocean acidification, swim in seawater with a pair of gelatinous parapodia (or "wings") via a distinctive propulsion mechanism. By flapping their parapodia in a way that resembles insect flight, they exhibit a unique shell wobble (or periodic shell pitching) motion and sawtooth-like trajectory. We present three-dimensional kinematics and volumetric fluid velocity fields for upward-swimming pteropods. Time-resolved data were collected with a unique infrared tomographic particle image velocimetry (tomo-PIV) system that was transported to Palmer Station, Antarctica. Both power and recovery strokes of the parapodia propel the pteropod (1.5 - 5 mm in size) upward in a sawtooth-like trajectory with average speed of 14 - 30 mm/s and periodically pitch the shell at 1.9 - 3 Hz with up to 110° difference in pitching angle. The pitch motion effectively positions the parapodia such that they stroke downward during both the power and recovery strokes. We use the kinematics measurement to illustrate the relationship between flapping, swimming and pitching, where the corresponding Reynolds numbers (i.e. Ref, ReU, and ReΩ) characterize the motion of the pteropod. For example, when Ref < 50, the shell does not pitch and the pteropod swims abnormally with little or no vertical translation. We show that the flow field and vortices generated during pteropod propulsion resemble some aspects of insect-flight aerodynamics reported in classic literature, albeit with distinct aquatic variations.
NASA Astrophysics Data System (ADS)
Novikova, Y.; Zubanov, V.
2018-01-01
The article describes the numerical investigation of the input air irregularity influence of turbofan engine on its characteristics. The investigated fan has a wide-blade, an inlet diameter about 2 meters, a pressure ratio about 1.6 and the bypass ratio about 4.8. The flow irregularity was simulated by the flap input in the fan inlet channel. Input of flap was carried out by an amount of 10 to 22,5% of the input channel diameter with increments of 2,5%. A nonlinear harmonic analysis (NLH-analysis) of NUMECA Fine/Turbo software was used to study the flow irregularity. The behavior of the calculated LPC characteristics repeats the experiment behavior, but there is a quantitative difference: the calculated efficiency and pressure ratio of booster consistent with the experimental data within 3% and 2% respectively, the calculated efficiency and pressure ratio of fan duct - within 4% and 2.5% respectively. An increasing the level of air irregularity in the input stage of the fan reduces the calculated mass flow, maximum pressure ratio and efficiency. With the value of flap input 12.5%, reducing the maximum air flow is 1.44%, lowering the maximum pressure ratio is 2.6%, efficiency decreasing is 3.1%.
GTE blade injection moulding modeling and verification of models during process approbation
NASA Astrophysics Data System (ADS)
Stepanenko, I. S.; Khaimovich, A. I.
2017-02-01
The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.
NASA Technical Reports Server (NTRS)
Mall, G. H.; Farassat, F.
1976-01-01
A computer program is presented for the determination of the thickness noise of helicopter rotors. The results were obtained in the form of an acoutic pressure time history. The parameters of the program are the rotor geometry and the helicopter motion descriptors, and the formulation employed is valid in the near and far fields. The blade planform must be rectangular, but the helicopter motion is arbitrary; the observer position is fixed with respect to the ground with a maximum elevation of 45 deg above or below the rotor plane. With these restrictions, the program can also be used for the calculation of thickness noise of propellers.
Dynamic response characteristics of dual flow-path integrally bladed rotors
NASA Astrophysics Data System (ADS)
Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.
2015-02-01
New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.
NASA Astrophysics Data System (ADS)
Gao, Jin-gui; Jiang, Zhao-fang; Luo, Lai-peng
2017-04-01
Taking the MJ3210A motion band saw as the research object, the AE value of the band saw blade vibration was obtained by analyzing the VIBSYS vibration signal acquisition and analysis software system in Beijing, and the change of the AE value of the band saw and the crack was found out. The experimental results show that in the MJ3210A sports car sawing machine, the band saw blade with width of 130 mm is used, and the AE value of the cracked band saw blade is well in the high band saw blade AE value. Under the best working condition of the band saw, the band saw blade AE If the value exceeds 104.7 dB (A) above, it means that the band saw blade has at least one crack length greater than 1.38 mm for the crack defect and the need to replace the band saw blade in time. Different species with saw blade of the AE value is different, white pine wood minimum, the largest oak wood; according to a variety of wood processing AE instrument value to determine the band saw blade crack to the situation; so as to fully rational use of band saw blade, The failure and the degree of development to find a new method.
Unsteady flows in rotor-stator cascades
NASA Astrophysics Data System (ADS)
Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.
1991-03-01
A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.
Some issues on modeling atmospheric turbulence experienced by helicopter rotor blades
NASA Technical Reports Server (NTRS)
Costello, Mark; Gaonkar, G. H.; Prasad, J. V. R.; Schrage, D. P.
1992-01-01
The atmospheric turbulence velocities seen by nonrotating aircraft components and rotating blades can be substantially different. The differences are due to the spatial motion of the rotor blades, which move fore and aft through the gust waves. Body-fixed atmospheric turbulence refers to the actual atmospheric turbulence experienced by a point fixed on a nonrotating aircraft component such as the aircraft's center of gravity or the rotor hub, while blade-fixed atmospheric turbulence refers to the atmospheric turbulence experienced by an element of the rotating rotor blade. An example is presented, which, though overly simplified, shows important differences between blade- and body-fixed rotorcraft atmospheric turbulence models. All of the information necessary to develop the dynamic equations describing the atmospheric turbulence velocity field experienced by an aircraft is contained in the atmospheric turbulence velocity correlation matrix. It is for this reason that a generalized formulation of the correlation matrix describing atmospheric turbulence that a rotating blade encounters is developed. From this correlation matrix, earlier treated cases restricted to a rotor flying straight and level directly into the mean wind can be recovered as special cases.
Cascade Analysis of a Floating Wind Turbine Rotor
NASA Astrophysics Data System (ADS)
Eliassen, Lene; Jakobsen, Jasna B.; Knauer, Andreas; Nielsen, Finn Gunnar
2014-12-01
Mounting a wind turbine on a floating foundation introduces more complexity to the aerodynamic loading. The floater motion contains a wide range of frequencies. To study some of the basic dynamic load effect on the blades due to these motions, a two-dimensional cascade approach, combined with a potential vortex method, is used. This is an alternative method to study the aeroelastic behavior of wind turbines that is different from the traditional blade element momentum method. The analysis tool demands little computational power relative to a full three dimensional vortex method, and can handle unsteady flows. When using the cascade plane, a "cut" is made at a section of the wind turbine blade. The flow is viewed parallel to the blade axis at this cut. The cascade model is commonly used for analysis of turbo machineries. Due to the simplicity of the code it requires little computational resources, however it has limitations in its validity. It can only handle two-dimensional potential flow, i.e. including neither three-dimensional effects, such as the tip loss effect, nor boundary layers and stall effects are modeled. The computational tool can however be valuable in the overall analysis of floating wind turbines, and evaluation of the rotor control system. A check of the validity of the vortex panel code using an airfoil profile is performed, comparing the variation of the lift force, to the theoretically derived Wagner function. To analyse the floating wind turbine, a floating structure with hub height 90 m is chosen. An axial motion of the rotor is considered.
A linearized Euler analysis of unsteady flows in turbomachinery
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Crawley, Edward F.
1987-01-01
A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).
NASA Technical Reports Server (NTRS)
Curtiss, H. C., Jr.
1976-01-01
The equations of motion for the longitudinal dynamics of a tilting prop/rotor aircraft are developed. The analysis represents an extension of the equations of motion. The effects of the longitudinal degrees of freedom of the body (pitch, heave and horizontal velocity) are included. The results of body freedom can be added to the equations of motion for the flexible wing propeller combination.
Damping Property and Vibration Analysis of Blades with Viscoelastic Layers
NASA Astrophysics Data System (ADS)
Huang, Shyh-Chin; Chiu, Yi-Jui; Lu, Yao-Ju
This paper showed the damping effect and the vibration analysis of a shaft-disk-blade system with viscoelastic layers on blades. The focus of the research is on the shaft's torsional vibration and the blade's bending vibration. The equations of motion were derived from the energy approach. This model, unlike the previous, used only two displacement functions for layered blades. Then, the assumed-modes method was employed to discretize the equations. The analyses of natural frequencies damping property were discussed afterwards. The numerical results showed the damping effects due to various constraining layer (CL) thickness and viscoelastic material (VEM) thickness. The research also compared FRF's of the systems with and without viscoelastic layers. It is concluded that both CL and VEM layers promote the damping capability but the marginal effect decreases with their thickness. The CLD treatment also found drop the natural frequencies slightly.
NASA Astrophysics Data System (ADS)
Luo, Pan; Zhang, Xingwei; Huang, Panpan; Xie, Lingwang
2017-10-01
The aim of this study is to investigate the aerodynamic characteristics of a flapping airfoil in the adjustment stage between two specific flight patterns during the forward flight. Four flapping movement models in adjustment stage are firstly established by using the multi-objective optimization algorithm. Then, a numerical experiment is carried out by using finite volume method to solve the two-dimensional time-dependent incompressible Navier-Stokes equations. The attack angles are selected from -5° to 7.5° with an increase of 2.5°. The results are systematically analyzed and special attention is paid to the corresponding changes of aerodynamic forces, vortex shedding mechanism in the wake structure and thrust efficiency. Present results show that output aerodynamic performance of flapping airfoil can be improved by the increasement of amplitude and frequency in the flapping adjustment stage, which further validates and complements previous studies. Moreover, it is also show that the manner using multi-objective optimization algorithm to generate a movement model in adjustment stage, to connect other two specific plunging motions, is a feasible and effective method. Current study is dedicated to providing some helpful references for the design and control of artificial flapping wing air vehicles.
Formation of vortex pairs with hinged rigid flaps at the nozzle exit
NASA Astrophysics Data System (ADS)
Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant
2013-11-01
Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.
Efficiency of lift production in flapping and gliding flight of swifts.
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag.
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Henningsson, Per; Hedenström, Anders; Bomphrey, Richard J.
2014-01-01
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag. PMID:24587260
Jang, Hyo Seok; Lee, Young Ho; Kim, Min Bom; Chung, Joo Young; Seok, Hyun Sik; Baek, Goo Hyun
2018-03-01
A skin defect of the hand and wrist is a common manifestation in industrial crushing injuries, traffic accidents or after excision of tumors. We reconstructed a skin defect in the ulnar aspect of the hand and wrist with a perforator-based propeller flap from the ulnar artery. The aims of our study are to evaluate the utility and effectiveness of this flap and to discuss the advantages and disadvantages of the flap in hand and wrist reconstruction with a review of the literature. Between April 2011 and November 2016, five cases of skin defect were reconstructed with a perforator-based propeller flap from the ulnar artery. There were four males and one female. The age of patients ranged from 36 to 73 years. Skin defect sites were on the dorso-ulnar side of the hand in three cases and palmar-ulnar side of the wrist in two cases. The size of the skin defect ranged from 4 × 3 cm to 8 × 5 cm. We evaluated the viability of the flap, postoperative complication and patient's satisfaction. There was no failure of flap in all cases. The size of the flap ranged from 4 × 4 cm to 12 × 4 cm. One patient, who had a burn scar contracture, presented with limited active and passive motion of the wrist after the operation. The other patients had no complications postoperatively. Cosmetic results of the surgery were excellent in one patient, good in three patients, and fair in one patient. The fasciocutaneous propeller flap based on a perforating branch of the ulnar artery is a reliable treatment option for the ulnar side skin defect of the hand and wrist.
Vortex shedding noise of a cylinder with hairy flaps
NASA Astrophysics Data System (ADS)
Kamps, Laura; Geyer, Thomas F.; Sarradj, Ennes; Brücker, Christoph
2017-02-01
This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such a modified cylinder and the results were compared to the reference case of a plain cylinder. The acoustic spectrum was measured using two microphones while simultaneously recording the flap motion. To further examine the flow structures in the downstream vicinity of the cylinder, constant temperature anemometry measurements as well as flow visualizations were also performed. The results show that, above a certain Reynolds number, the hairy flaps lead to a jump in the vortex shedding frequency. This phenomenon is similarly observed in the water flow experiments as a jump in the non-dimensional Strouhal number that is related to the change of the shedding cycle. This jump appears to be coupled to a resonant excitation of the flaps. The specific Reynolds number at which the jump occurs is higher in the present case, which is attributed to the lower added mass in air as compared with the one in water. The flow visualizations confirmed that such action of the flaps lead to a more slender elongated shape of the time-averaged separation bubble. In addition, the hairy flaps induce a noticeable reduction of the tonal noise as well as broadband noise as long as the flaps do not touch each other.
Hayashida, Kenji; Saijo, Hiroto; Fujioka, Masaki
2018-01-01
We describe the use of a composite flap composed of a sural neurofasciocutaneous flap and a vascularized peroneus longus tendon for the reconstruction of severe composite forearm tissue defects in a patient. A 43-year-old man had his left arm caught in a conveyor belt resulting in a large soft-tissue defect of 18 × 11 cm over the dorsum forearm. The extensor carpi radialis, superficial radial nerve, and radial artery were severely damaged. A free neurofasciocutaneous composite flap measuring 16 × 11 cm was outlined on the patient's left lower leg to allow simultaneous skin, tendon, nerve, and artery reconstruction. The flap, which included the peroneus longus tendon, was elevated on the subfascial plane. After the flap was transferred to the recipient site, the peroneal artery was anastomosed to the radial artery in a flow-through manner. The vascularized tendon graft with 15 cm in length was used to reconstruct the extensor carpi radialis longus tendon defect using an interlacing suture technique. As the skin paddle of the sural neurofasciocutaneous flap and the vascularized peroneus longus tendon graft were linked by the perforator and minimal fascial tissue, the skin paddle was able to rotate and slide with comparative ease. The flap survived completely without any complications. The length of follow-up was 12 months and was uneventful. Range of motion of his left wrist joint was slightly limited to 75 degrees. This novel composite flap may be useful for reconstructing long tendon defects associated with extensive forearm soft tissue defects. © 2016 Wiley Periodicals, Inc.
Influence of wing tip morphology on vortex dynamics of flapping flight
NASA Astrophysics Data System (ADS)
Krishna, Swathi; Mulleners, Karen
2013-11-01
The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.
NASA Technical Reports Server (NTRS)
Patterson, James C., Jr. (Inventor)
1990-01-01
A means for extracting rotational energy from the vortex created at aircraft wing tips which consists of a turbine with blades located in the crossflow of the vortex and attached downstream of the wingtip. The turbine has blades attached to a core. When the aircraft is in motion, rotation of a core transmits energy to a centrally attached shaft. The rotational energy thus generated may be put to use within the airfoil or aircraft fuselage.
Numerical and experimental investigations on unsteady aerodynamics of flapping wings
NASA Astrophysics Data System (ADS)
Yu, Meilin
The development of a dynamic unstructured grid high-order accurate spectral difference (SD) method for the three dimensional compressible Navier-Stokes (N-S) equations and its applications in flapping-wing aerodynamics are carried out in this work. Grid deformation is achieved via an algebraic blending strategy to save computational cost. The Geometric Conservation Law (GCL) is imposed to ensure that grid deformation will not contaminate the flow physics. A low Mach number preconditioning procedure is conducted in the developed solver to handle the bio-inspired flow. The capability of the low Mach number preconditioned SD solver is demonstrated by a series of two dimensional (2D) and three dimensional (3D) simulations of the unsteady vortex dominated flow. Several topics in the flapping wing aerodynamics are numerically and experimentally investigated in this work. These topics cover some of the cutting-edge issues in flapping wing aerodynamics, including the wake structure analysis, airfoil thickness and kinematics effects on the aerodynamic performances, vortex structure analysis around 3D flapping wings and the kinematics optimization. Wake structures behind a sinusoidally pitching NACA0012 airfoil are studied with both experimental and numerical approaches. The experiments are carried out with Particle Image Velocimetry (PIV) and two types of wake transition processes, namely the transition from a drag-indicative wake to a thrust-indicative wake and that from the symmetric wake to the asymmetric wake are distinguished. The numerical results from the developed SD solver agree well with the experimental results. It is numerically found that the deflective direction of the asymmetric wake is determined by the initial conditions, e.g. initial phase angle. As most insects use thin wings (i. e., wing thickness is only a few percent of the chord length) in flapping flight, the effects of airfoil thickness on thrust generation are numerically investigated by simulating the flow fields around a series of plunging NACA symmetric airfoils with thickness ratio ranging from 4.0% to 20.0% of the airfoil chord length. The contribution of viscous force to flapping propulsion is accessed and it is found that viscous force becomes thrust producing, instead of drag producing, and plays a non-negligible role in thrust generation for thin airfoils. This is closely related to the variations of the dynamics of the unsteady vortex structures around the plunging airfoils. As nature flyers use complex wing kinematics in flapping flight, kinematics effects on the aerodynamic performance with different airfoil thicknesses are numerically studied by using a series of NACA symmetric airfoils. It is found that the combined plunging and pitching motion can outperform the pure plunging or pitching motion by sophisticatedly adjusting the airfoil gestures during the oscillation stroke. The thin airfoil better manipulates leading edge vortices (LEVs) than the thick airfoil (NACA0030) does in studied cases, and there exists an optimal thickness for large thrust generation with reasonable propulsive efficiency. With the present kinematics and dynamic parameters, relatively low reduced frequency is conducive for thrust production and propulsive efficiency for all tested airfoil thicknesses. In order to obtain the optimal kinematics parameters of flapping flight, a kinematics optimization is then performed. A gradient-based optimization algorithm is coupled with a second-order SD Navier-Stokes solver to search for the optimal kinematics of a certain airfoil undergoing a combined plunging and pitching motion. Then a high-order SD scheme is used to verify the optimization results and reveal the detailed vortex structures associated with the optimal kinematics of the flapping flight. It is found that for the case with maximum propulsive efficiency, there exists no leading edge separation during most of the oscillation cycle. In order to provide constructive suggestions to the design of micro-air-vehicles (MAVs), 3D simulations of the flapping wings are carried out in this work. Both the rectangular and bio-inspired wings with different kinematics are investigated. The formation process of two-jet-like wake patterns behind the finite-span flapping wing is found to be closely related to the interaction between trailing edge vortices and tip vortices. Then the effects of the wing planforms on the aerodynamics performance of the finite-span flapping wings are elucidated in terms of the evolution and dynamic interaction of unsteady vortex structures.
Aerodynamic loads on a Darrieus rotor blade
NASA Astrophysics Data System (ADS)
Wilson, R. E.; McKie, W. R.; Lissaman, P. B. S.; James, M.
1983-03-01
A method is presented for the free vortex analysis of a Darrieus rotor blade in nonsteady motion, which employs the circle theorem to map the moving rotor airfoil into the circle plane and models the wake generated in terms of point vortices. Nascent vortex strength and position are taken from the Kutta condition, so that the nascent vortex has the same strength as a vortex sheet of uniform strength. Pressure integration over the plate and wake vortex impulse methods yields the same numerical results. The numerical results presented for a one-bladed Darrieus rotor at a tip/speed ratio of three, and two different chord sizes, indicate that the moment on the blade can be adequately approximated by quasi-steady relationships, although the accurate determination of local velocity and circulation are still required.
14 CFR 29.395 - Control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...
14 CFR 29.395 - Control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Control system. (a) The reaction to the loads prescribed in § 29.397 must be provided by— (1) The control... its limit of motion); (4) The attachment of the control system to the rotor blade pitch control horn... of its motion); and (5) The attachment of the control system to the control surface horn (with the...
Ishihara, Daisuke; Horie, T; Denda, Mitsunori
2009-01-01
In this study, the passive pitching due to wing torsional flexibility and its lift generation in dipteran flight were investigated using (a) the non-linear finite element method for the fluid-structure interaction, which analyzes the precise motions of the passive pitching of the wing interacting with the surrounding fluid flow, (b) the fluid-structure interaction similarity law, which characterizes insect flight, (c) the lumped torsional flexibility model as a simplified dipteran wing, and (d) the analytical wing model, which explains the characteristics of the passive pitching motion in the simulation. Given sinusoidal flapping with a frequency below the natural frequency of the wing torsion, the resulting passive pitching in the steady state, under fluid damping, is approximately sinusoidal with the advanced phase shift. We demonstrate that the generated lift can support the weight of some Diptera.
The effects of gusts on the fluctuating airloads of airfoils in transonic flow
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1984-01-01
Unsteady interactions of distributed and sharp-edged gusts with a stationary airfoil have been analyzed in two-dimensional transonic flow.A simple method of introducing such disturbances has been numerically implemented within the framework of unsteady, transonic small-disturbance theory. Representative solutions for various airfoils subjected to chordwise and transverse gusts show that the strength and unsteady motion of the shock wave on the airfoil significantly affect the flowfield development and, consequently, the dynamic airloads. Also a study was made of the reductions in the unsteady airloads that can be achieved by the proper active control motion of a trailing-edge flap, and a simple gust-alleviation strategy was developed. However, the chordwise pressure distributions associated with gusts are very different from those produced by trailing-edge flap oscillations. Consequently, the fluctuating lift and the unsteady pitching moments cannot both be eliminated simultaneously.
NASA Astrophysics Data System (ADS)
Bao, Y.; Zhou, D.; Tao, J. J.; Peng, Z.; Zhu, H. B.; Sun, Z. L.; Tong, H. L.
2017-03-01
A two-dimensional computational hydrodynamic model is developed to investigate the propulsive performance of a flapping foil system in viscous incompressible flows, which consists of two anti-phase flapping foils in side-by-side arrangement. In the simulations, the gap between the two foils is varied from 1.0 to 4.0 times of the diameter of the semi-circular leading edge; the amplitude-based Strouhal number is changed from 0.06 to 0.55. The simulations therefore cover the flow regimes from negligible to strong interference in the wake flow. The generations of drag and thrust are investigated as well. The numerical results reveal that the counter-phase flapping motion significantly changes the hydrodynamic force generation and associated propulsive wake. Furthermore, the wake interference becomes important for the case with a smaller foil-foil gap and induces the inverted Bénard von Kármán vortex streets. The results show that the hydrodynamic performance of two anti-phase flapping foils can be significantly different from an isolated pitching foil. Findings of this study are expected to provide new insight for developing hydrodynamic propulsive systems by improving the performance based on the foil-foil interaction.
Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C.
1998-01-01
The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that higher lift is achieved with the deployed slat with no increase in angle of attack. The layouts demonstrate that these slat systems can be designed with no need for slave links, and an experimental test program is outlined to experimentally validate the lift characteristics of the shallow slat.
NASA Technical Reports Server (NTRS)
Zilliac, Greg; Long, Kurt; Nixon, David (Technical Monitor)
1998-01-01
For over thirty years now, the H-46 Sea Knight tandem rotor helicopter has operated successfully from the decks of various U.S. Navy ships. There have been approximately 210 thousand landings and takeoffs at sea and the vast majority have occurred without incident. Only a small percent of the total H-46 landings and takeoffs have been less than fully satisfactory. On certain ships, (e.g. the LHA amphibious assault ship) the combination of winds at 15 deg. or so off of the bow and low rotor r.p.m. are conditions under which, on occasion, the rear rotor blades have been observed to flap uncontrollably. Cases have been reported where the rotor blades have struck the H-46 sync-shaft cover during startup and shutdown while the H-46 is sitting on the deck. One life has been lost, several people injured and the repair costs total of the 110+ incidents has been estimated to exceed $20 million. To date, the root cause of this problem has not been identified.
Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.
2015-01-01
An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.
Correlation between vortex structures and unsteady loads for flapping motion in hover
NASA Astrophysics Data System (ADS)
Jardin, Thierry; Chatellier, Ludovic; Farcy, Alain; David, Laurent
2009-10-01
During the past decade, efforts were made to develop a new generation of unmanned aircrafts, qualified as Micro-Air Vehicles. The particularity of these systems resides in their maximum dimension limited to 15 cm, which, in terms of aerodynamics, corresponds to low Reynolds number flows ( Re ≈ 102 to 104). At low Reynolds number, the concept of flapping wings seems to be an interesting alternative to the conventional fixed and rotary wings. Despite the fact that this concept may lead to enhanced lift forces and efficiency ratios, it allows hovering coupled with a low-noise generation. Previous studies (Dickinson et al. in Science 284:1954-1960, 1999) revealed that the flow engendered by flapping wings is highly vortical and unsteady, inducing significant temporal variations of the loads experienced by the airfoil. In order to enhance the aerodynamic performance of such flapping wings, it is essential to give further insight into the loads generating mechanisms by correlating the spatial and temporal evolution of the vortical structures together with the time-dependent lift and drag. In this paper, Time Resolved Particle Image Velocimetry is used as a basis to evaluate both unsteady forces and vortical structures generated by an airfoil undergoing complex motion (i.e. asymmetric flapping flight), through the momentum equation approach and a multidimensional wavelet-like vortex parameterization method, respectively. The momentum equation approach relies on the integration of flow variables inside and around a control volume surrounding the airfoil (Noca et al. in J Fluids Struct 11:345-350, 1997; Unal et al. in J Fluids Struct 11:965-971, 1997). Besides the direct link performed between the flow behavior and the force mechanisms, the load characterization is here non-intrusive and specifically convenient for flapping flight studies thanks to its low Reynolds flows’ sensitivity and adaptability to moving bodies. Results are supported by a vortex parameterization which evaluates the circulation of the multiple vortices generated in such complex flows. The temporal evolution of the loads matches the flow behavior and hence reveals the preponderant inertial force component and that due to vortical structures.
Performance of active and passive control of an airfoil using CPFD
NASA Astrophysics Data System (ADS)
Asselin, Daniel; Young, Jay; Williamson, C. H. K.
2016-11-01
Birds and fish employ flapping motions of their wings and fins in order to produce thrust and maneuver in flight and underwater. There is considerable interest in designing aerial and submersible systems that mimic these motions for the purposes of surveillance, environmental monitoring, and search and rescue, among other applications. Flapping motions are typically composed of combined pitch and heave and can provide good thrust and efficiency (Read, et al. 2003). In this study, we examine the performance of an airfoil actuated only in the heave direction. Using a cyber-physical fluid dynamics system (Mackowski & Williamson 2011, 2015, 2016), we simulate the presence of a torsion spring to enable the airfoil to undergo a passively controlled pitching motion. The addition of passive pitching combined with active heaving ("Active-Passive" or AP) provides significantly improved thrust and efficiency compared with heaving alone. In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom ("Active-Active" or AA). By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining or improving performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.
Quiet Clean Short-haul Experimental Engine (QCSEE)
NASA Technical Reports Server (NTRS)
Willis, W. S.
1979-01-01
The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The UTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight goals were demonstrated.
Adams, Rick A.; Snode, Emily R.; Shaw, Jason B.
2012-01-01
Historically, studies concerning bat flight have focused primarily on the wings. By analyzing high-speed video taken on 48 individuals of five species of vespertilionid bats, we show that the capacity to flap the tail-membrane (uropatagium) in order to generate thrust and lift during takeoffs and minimal-speed flight (<1 m s−1) was largely underestimated. Indeed, bats flapped the tail-membrane by extensive dorso-ventral fanning motions covering as much as 135 degrees of arc consistent with thrust generation by air displacement. The degree of dorsal extension of the tail-membrane, and thus the potential amount of thrust generated during platform launches, was significantly correlated with body mass (P = 0.02). Adduction of the hind limbs during upstrokes collapsed the tail-membrane thereby reducing its surface area and minimizing negative lift forces. Abduction of the hind limbs during the downstroke fully expanded the tail-membrane as it was swept ventrally. The flapping kinematics of the tail-membrane is thus consistent with expectations for an airfoil. Timing offsets between the wings and tail-membrane during downstrokes was as much as 50%, suggesting that the tail-membrane was providing thrust and perhaps lift when the wings were retracting through the upstoke phase of the wing-beat cycle. The extent to which the tail-membrane was used during takeoffs differed significantly among four vespertilionid species (P = 0.01) and aligned with predictions derived from bat ecomorphology. The extensive fanning motion of the tail membrane by vespertilionid bats has not been reported for other flying vertebrates. PMID:22393378
Dosari, Mohamed Al Ateeq Al; Hameed, Shamsi; Mukhtar, Khalid; Elmhiregh, Aissam
2017-01-01
The usual indication for reverse shoulder arthroplasty is glenohumeral arthritis with inadequate rotator cuff and intact deltoid muscle. We report here a case of reverse shoulder arthroplasty using a lattisimus dorsi flap in a patient with deltoid-deficient shoulder following a gunshot injury. The patient was an otherwise healthy 51-year-old male with a history of gunshot injury of the left shoulder 2006. Upon presentation in 2011, the patient had a loss of most of his shoulder bony and muscular structures. Due to deltoid muscle deficiency, the patient underwent Lattisimus Dorsi muscle flap followed by reverse shoulder arthroplasty in order to establish an upper limb function. Upon discharge, 11days after the surgery, the patient was able to achieve 150° flexion and 90° abduction while in the supine position and 45° in each direction, while sitting. He was able to perform internal rotation (behind back) up to the level of the L1 vertebra, assisted active abduction of 90°, and external rotation of 20°. Power tests showed power of grade 4/5 for both shoulder flexion and extension and grade 2+/5 for both abduction and adduction. At the last follow up one year after the operation, The patient still had passive pain-free full range of motion, but no progress in active range of motion beyond that upon discharge. Reverse shoulder arthroplasty after Latissmus dori flap in patient with deltoid deficient shoulders can be a successful and reproducible approach to treat such conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Horta, Ricardo; Henriques-Coelho, Tiago; Costa, Joana; Estevão-Costa, José; Monteiro, Diana; Dias, Mariana; Braga, José; Silva, Alvaro; Azevedo, Inês; Amarante, José Manuel
2015-08-01
Congenital diaphragmatic hernia is a severe developmental anomaly characterized by the malformation of the diaphragm. An innervated reversed latissimus dorsi flap reconstruction for recurrent congenital diaphragmatic hernia has been described as an alternative to prosthetic patch repair to achieve pleuroperitoneal separation. However, there is very little supporting scientific data; therefore, there is no real basic understanding of the condition of the phrenic nerve in the absence of diaphragmatic muscle or even the neurotization options for restoring neodiaphragmatic muscle motion. We have reviewed the literature regarding phrenic nerve anatomy and neurotization options, and to our knowledge, this is the first time that the application of a fascicular repair is being described where the continuity of one remaining fascicle of the diaphragm has been preserved close to the phrenic nerve distal division. The procedure was undertaken in a 3 year-old boy, with the diagnosis of congenital large posteromedial diaphragmatic hernia and dependence of mechanical ventilation in consequence of severe bronchopulmonary dysplasia.The phrenic nerve divides itself into several terminal branches, usually three, at the diaphragm level, or just above it. This allows the selective coaptation of separate fascicular branches. In the case described, videofluoroscopy evaluation showed no evidence of paradoxical neodiaphragmatic motion, with synchronous contraction movements and intact pleura-peritoneal separation. The child is now asymptomatic and shows improvement of his previous restrictive pulmonary disease.We believe that fascicular repair can achieve some reinnervation of the flap without jeopardizing the potential of diaphragmatic function by contraction of reminiscent native diaphragm.
Fei, Yueh-Han John; Yang, Jing-Tang
2015-09-01
A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J=0.89) at the beginning of the downstroke, and a decrease to a minimum (J=0.17) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.
NASA Astrophysics Data System (ADS)
Fei, Yueh-Han John; Yang, Jing-Tang
2015-09-01
A butterfly with broad wings, flapping at a small frequency, flies an erratic trajectory at an inconstant speed. A large variation of speed within a cycle is observed in the forward flight of a butterfly. A self-propulsion model to simulate a butterfly is thus created to investigate the transient translation of the body; the results, which are in accordance with experimental data, show that the shape of the variation of the flight speed is similar to a sinusoidal wave with a maximum (J =0.89 ) at the beginning of the downstroke, and a decrease to a minimum (J =0.17 ) during a transition from downstroke to upstroke; the difference between the extrema of the flight speed is enormous in a flapping cycle. At a high speed, a clapping motion of the butterfly wings decreases the generation of drag. At a small speed, a butterfly is able to capture the induced wakes generated in a downstroke, and effectively generates a thrust at the beginning of an upstroke. The wing motion of a butterfly skillfully interacts with its speed so as to enable an increased speed with the same motion. Considering a butterfly to fly in a constant inflow leads to either an underestimate of its speed or an overestimate of its generated lift, which yields an inaccurate interpretation of the insect's flight. Our results reveal the effect of transient translation on a butterfly in forward flight, which is especially important for an insect with a small flapping frequency.
Contributions to DoD Mission Success from High Performance Computing - March 1995
1995-03-01
the flow . The physics to be considered may entail additional force fields, coupling to surface physics and microphysics, changes of phase, changes...in this program concerns the structural mechanics of bolted-on propeller blades. An important objective of the program was to determine the effects of...motion between the rotor blades and the airframe. The flow past each component is then computed using an efficient, implicit three-dimensional unsteady
Vibrational analysis of vertical axis wind turbine blades
NASA Astrophysics Data System (ADS)
Kapucu, Onur
The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.
Development of advanced blade pitching kinematics for cycloturbines and cyclorotors
NASA Astrophysics Data System (ADS)
Adams, Zachary Howard
Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required to achieve optimum performance. A novel inverse method was developed implementing a new semi-empirical curvilinear flow blade aerodynamic coefficient model to predict optimum cycloturbine blade pitch waveforms from the ideal fluid deceleration. These improved blade pitch waveforms were evaluated on a 1.37m diameter by 1.37m span cycloturbine to definitively characterize their improvement over existing blade pitch motions and demonstrate the practicality of a variable blade pitch system. The Fluxline Optimal pitching kinematics outperformed sinusoidal and fixed pitching kinematics. The turbine achieved a mean gross aerodynamic power coefficient of 0.44 (95% confidence interval: [0.388,0.490]) and 0.52 (95% confidence interval: [0.426,0.614]) at tip speed ratios (TSRs) of 1.5 and 2.25 respectively which exceeds all other low TSR vertical axis wind turbines. Two-dimensional incompressible Reynolds-averaged Navier-Stokes computational fluid dynamic simulations were used to characterize higher order effects of the blade interaction with the fluid. These simulations suggest Fluxline Optimal pitch kinematics achieve high power coefficients by evenly extracting energy from the flow without blade stall or detached turbine wakes. Fluxline Theory was adapted to inform the design of high efficiency cyclorotors by incorporating the concept of rotor angle of attack as well as a power and drag loss model for blade support structure. A blade element version of this theory predicts rotor performance. For hovering, a simplified variation of the theory instructs that cyclorotors will achieve the greatest power loading at low disk loadings with high solidity blades pitched to maximum lift coefficient. Increasing lift coefficients in the upstream portion of the rotor disproportionately increases performance compared to magnifying lift in the downstream portion. This suggests airfoil sections that counter curvilinear flow effects could improve hovering efficiency. Additionally, the simplified hovering theory explains the cyclorotor side force which was observed experimentally, but never adequately explained. In contrast, a separate simplified version of the theory for high speed forward flight points to better rotor performance with a low solidity, high disk loading rotor operated at high advance ratios. High rotor aspect ratios will improve performance in both hover and forward flight. A new mechanical blade pitch mechanism was designed to actuate the high efficiency blade pitch motions predicted by Fluxline Theory for both cyclorotors and cycloturbines. The mechanism optimizes blade pitch at all operating conditions via different cross sections of a three dimensionally contoured cam. Varying the position of the cam accounts for changing wind direction and velocity on a cycloturbine, or for pilot-controlled thrust vectoring, forward speed, and aircraft angle of attack as a cyclorotor. A simplified variation of the mechanism, which implemented fully aerodynamically-shrouded blade pitch links, performed flawlessly on the cycloturbine experiment.
Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly
NASA Astrophysics Data System (ADS)
Adhikari, Deepak; Webster, Donald; Yen, Jeannette
2016-11-01
A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.
Forced response analysis of an aerodynamically detuned supersonic turbomachine rotor
NASA Technical Reports Server (NTRS)
Hoyniak, D.; Fleeter, S.
1985-01-01
High performance aircraft-engine fan and compressor blades are vulnerable to aerodynamically forced vibrations generated by inlet flow distortions due to wakes from upstream blade and vane rows, atmospheric gusts, and maldistributions in inlet ducts. In this report, an analysis is developed to predict the flow-induced forced response of an aerodynamically detuned rotor operating in a supersonic flow with a subsonic axial component. The aerodynamic detuning is achieved by alternating the circumferential spacing of adjacent rotor blades. The total unsteady aerodynamic loading acting on the blading, as a result of the convection of the transverse gust past the airfoil cascade and the resulting motion of the cascade, is developed in terms of influence coefficients. This analysis is used to investigate the effect of aerodynamic detuning on the forced response of a 12-blade rotor, with Verdon's Cascade B flow geometry as a uniformly spaced baseline configuration. The results of this study indicate that, for forward traveling wave gust excitations, aerodynamic detuning is very beneficial, resulting in significantly decreased maximum-amplitude blade responses for many interblade phase angles.
Simulation of Aircraft Engine Blade-Out Structural Dynamics
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
An unsteady lifting surface method for single rotation propellers
NASA Technical Reports Server (NTRS)
Williams, Marc H.
1990-01-01
The mathematical formulation of a lifting surface method for evaluating the steady and unsteady loads induced on single rotation propellers by blade vibration and inflow distortion is described. The scheme is based on 3-D linearized compressible aerodynamics and presumes that all disturbances are simple harmonic in time. This approximation leads to a direct linear integral relation between the normal velocity on the blade (which is determined from the blade geometry and motion) and the distribution of pressure difference across the blade. This linear relation is discretized by breaking the blade up into subareas (panels) on which the pressure difference is treated as approximately constant, and constraining the normal velocity at one (control) point on each panel. The piece-wise constant loads can then be determined by Gaussian elimination. The resulting blade loads can be used in performance, stability and forced response predictions for the rotor. Mathematical and numerical aspects of the method are examined. A selection of results obtained from the method is presented. The appendices include various details of the derivation that were felt to be secondary to the main development in Section 1.
NASA Astrophysics Data System (ADS)
Smith, Marilyn Jones
Some of the computational issues relating to the development of a three-dimensional fourth-order compact Euler/Navier-Stokes methodology for rotary wing flows and its coupling with an elastic rotor blade beam structural model have been explored. The compact Euler/NavierStokes method is used to predict the aerodynamic loads on an isolated rotor blade. Because the scheme is fourth-order, fewer grid nodes are necessary to predict loads with the same accuracy as traditional second order methodologies on finer grids. Grid and numerical parameter optimizations were performed to examine the changes in the predictive capabilities of the higher-order scheme. Comparisons were made with experimental data for a rotor using NACA 0012 airfoil sections and a rectangular planform with no twist. Simulations for both lifting and non-lifting configurations at various tip Mach numbers were performed. This Euler/Navier-Stokes methodology can be applied to rotor blades with either rigid-blade or elastic-beam-structural models to determine the steady-state response in hovering flight. The blade is represented by a geometrically nonlinear beam model which accounts for coupled flap bending, lead-lag bending and torsion. Moderately large displacements and rotations due to structural deformations can be simulated. The analysis has been performed for blade configurations having uniform mass and stiffness, no twist, and no chordwise offsets of the elastic and tension axes, as well as the center of mass. The results are compared with a panel method coupled with the same structural dynamics model. Computations have been made to predict the aerodynamic deflections for the rotor in hover. A starting solution using initial deflections predicted by aeroelastic analyses with a two-dimensional aerodynamic model was investigated. The present Euler/Navier-Stokes method using a momentum wake and a contracting vortex wake shows the impact on the aeroelastic deflections of a three-dimensional aerodynamic module which includes rotational and viscous effects, particularly at higher collective pitch angles. The differences in the aeroelastic predictions using fully coupled and loosely coupled aerodynamic analyses are examined. The induced wake plays a critical role in determining the final equilibrium tip deflections.
Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
Bluman, James; Kang, Chang-Kwon
2017-06-15
Wing-wake interaction is a characteristic nonlinear flow feature that can enhance unsteady lift in flapping flight. However, the effects of wing-wake interaction on the flight dynamics of hover are inadequately understood. We use a well-validated 2D Navier-Stokes equation solver and a quasi-steady model to investigate the role of wing-wake interaction on the hover stability of a fruit fly scale flapping flyer. The Navier-Stokes equations capture wing-wake interaction, whereas the quasi-steady models do not. Both aerodynamic models are tightly coupled to a flight dynamic model, which includes the effects of wing mass. The flapping amplitude, stroke plane angle, and flapping offset angle are adjusted in free flight for various wing rotations to achieve hover equilibrium. We present stability results for 152 simulations which consider different kinematics involving the pitch amplitude and pitch axis as well as the duration and timing of pitch rotation. The stability of all studied motions was qualitatively similar, with an unstable oscillatory mode present in each case. Wing-wake interaction has a destabilizing effect on the longitudinal stability, which cannot be predicted by a quasi-steady model. Wing-wake interaction increases the tendency of the flapping flyer to pitch up in the presence of a horizontal velocity perturbation, which further destabilizes the unstable oscillatory mode of hovering flight dynamics.
Mericli, Alexander F; Black, Jonathan S; Morgan, Raymond F
2015-09-01
To describe the technique and results of the tapered M-to-V flap for syndactyly web space construction. We reviewed a single-surgeon, single-institution experience of all syndactyly reconstructions performed between 1982 and 2013. Demographic data and patient characteristics were recorded. Complications included flap loss, graft loss, web creep, infection, restricted range of motion, and digit deviation. A total of 138 web spaces were reconstructed in 93 patients. There were 89 primary congenital hand and 32 foot syndactylies. Four patients had an acquired simple incomplete syndactyly and 13 patients had secondary reconstructions. The complication rate was 14%. The most common complication was web creep resulting from partial skin graft loss (12 web spaces; 9%). There were no total flap losses. Univariate analysis revealed no factor to be predictive of an elevated complication rate. Average follow-up was 2.6 years (range, 6 mo to 26 y). The tapered M-to-V flap proved to be a reliable and versatile technique for web space reconstruction, offering several advantages over the standard rectangular flap method of repair, such as ease of intraoperative adjustment, a z-plasty at the palmodigital crease to minimize scar contracture, and better color match. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Hydrodynamics of a freely movable flexible fin near the ground
NASA Astrophysics Data System (ADS)
Jeong, Young Dal; Lee, Jae Hwa
2017-11-01
In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion
NASA Technical Reports Server (NTRS)
Hodges, D. H.
1978-01-01
Equations of motion for a coupled rotor-body system were derived for the purpose of studying air and ground resonance characteristics of helicopters that have bearingless main rotors. For the fuselage, only four rigid body degrees of freedom are considered; longitudinal and lateral translations, pitch, and roll. The rotor is assumed to consist of three or more rigid blades. Each blade is joined to the hub by means of a flexible beam segment (flexbeam or strap). Pitch change is accomplished by twisting the flexbeam with the pitch-control system, the characteristics of which are variable. Thus, the analysis is capable of implicitly treating aeroelastic couplings generated by the flexbeam elastic deflections, the pitch-control system, and the angular offsets of the blade and flexbeam. The linearized equations are written in the nonrotating system retaining only the cyclic rotor modes; thus, they comprise a system of homogeneous ordinary differential equations with constant coefficients. All contributions to the linearized perturbation equations from inertia, gravity, quasi-steady aerodynamics, and the flexbeam equilibrium deflections are retained exactly.
Large-area photogrammetry based testing of wind turbine blades
NASA Astrophysics Data System (ADS)
Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul
2017-03-01
An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International Electro-Technical Commission standard (IEC 61400-23). For static tests, the blade is pulled in either flap-wise or edge-wise directions to measure deflection or distributed strain at a few limited locations of a large-sized blade. Additionally, the paper explores the error associated with using a multi-camera system (two stereo-vision systems) in measuring 3D displacement and extracting structural dynamic parameters on a mock set up emulating a utility-scale wind turbine blade. The results obtained in this paper reveal that the multi-camera measurement system has the potential to identify the dynamic characteristics of a very large structure.
NASA Technical Reports Server (NTRS)
Boyd, David D. Jr.
2009-01-01
Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.
Distal femoral osteotomy in genovalgum: internal fixation with blade plate versus casting.
Makhmalbaf, Hadi; Moradi, Ali; Ganji, Saeid
2014-10-01
To compare the results of two different ways of distal femoral osteotomy stabilization in patients suffering from genuvalgum: internal fixation with plate, and casting. In a non-randomized prospective study, after distal femoral osteotomy with the zigzag method, patients were divided into two groups: long leg casting, and internal fixation with blade plate. For all patients, questionnaires were filled to obtain data. Information such as range of motion, tibiofemoral anatomical angle and complications were recorded. 38 knees with valgus deformity underwent distal femoral supracondylar osteotomy. (8 with plaster cast and 30 with internal fixation using a blade plate). Preoperative range of motion was 129±6° and six months later it was 120±14°. The preoperative tibiofemoral angle was 32±6°; postoperative tibiofemoral angles were 3±3°, 6±2°, and 7±3° just after operation, six months, and two years later, respectively. Although this angle was greater among the group stabilized with a cast, this difference was not statistically significant. In postoperative complications, over-correction was found in five, recorvatom deformity in one, knee stiffness in three and superficial wound infection was recorded in three knees. There is no prominent difference in final range of motion and alignment whether fixation is done with casting or internal fixation. However, the complication rate seems higher in the casting method.
Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.
2013-12-01
The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.; Brooks, Thomas F.; Burley, Casey L.; Jolly, J. Ralph, Jr.
1998-01-01
This document details the methodology and use of the CAMRAD.Mod1/HIRES codes, which were developed at NASA Langley Research Center for the prediction of helicopter harmonic and Blade-Vortex Interaction (BVI) noise. CANMAD.Mod1 is a substantially modified version of the performance/trim/wake code CANMAD. High resolution blade loading is determined in post-processing by HIRES and an associated indicial aerodynamics code. Extensive capabilities of importance to noise prediction accuracy are documented, including a new multi-core tip vortex roll-up wake model, higher harmonic and individual blade control, tunnel and fuselage correction input, diagnostic blade motion input, and interfaces for acoustic and CFD aerodynamics codes. Modifications and new code capabilities are documented with examples. A users' job preparation guide and listings of variables and namelists are given.
Autorotation motions of a turbine coursed by the Magnus effect
NASA Astrophysics Data System (ADS)
Ishkhanyan, M. V.; Klimina, L. A.; Privalova, O. G.
2018-05-01
The motion of the turbine in the flow is studied. Each blade of the main turbine is represented by a Savonius rotor. Self-induced rotation of Savonius rotors produces the Magnus force that courses the rotation of the main turbine. Existence and stability of the self-induced rotation are discussed. Parametrical analysis is carried out.
The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system
NASA Technical Reports Server (NTRS)
Gallardo, V. C.; Stallone, M. J.
1984-01-01
This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.
A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows
NASA Technical Reports Server (NTRS)
Chuang, H. Andrew; Verdon, Joseph M.
1998-01-01
The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.