Science.gov

Sample records for blade plate removal

  1. [The use of blade plate and dynamic screw plate osteosynthesis].

    PubMed

    Oestern, H J; Gänsslen, A

    2010-02-01

    Osteosynthesis in fracture treatment and in some reconstructive procedures with blade plates or dynamic screw systems was the standard procedure for several decades. In this review, the current options and concepts using blade plate osteosynthesis, stabilization of proximal and distal femur fractures and reconstructive procedures with the dynamic hip screw or the dynamic condylar blade are discussed. On the basis of a literature review, the present indications, results and region-specific complications are reported and discussed.Blade plates are used mainly in the context of reconstructive procedures, as well as in the treatment of pseudoarthroses. The Pauwel procedure in femoral neck non-unions is one of the best known indications. In contrast, the dynamic hip screw is the gold standard for stabilization of femoral neck and most pertrochanteric fractures, whereas the dynamic condylar screw is still an alternative to internal fixators for proximal and distal femoral fracture fixations.

  2. Scalpel safety and new scalpel blade remover.

    PubMed

    Hajipour, Babak

    2011-09-01

    Percutaneous injuries to surgical staff carry a reciprocal risk for patients, with potential for infection transmission from provider to patient. The operating room is the highest-risk setting for this mode of transmission because open wounds are susceptible to contamination, and injury to the hands of surgical staff resulting in bleeding is not uncommon. The traditional scalpel (surgical knife) has been extensively used in surgery for a number of years and would be the most widely used surgical instrument in the world at present. A conventional surgical scalpel comprises a reusable, sterile handle having a tang at one end on which a replaceable slotted blade is mounted. The handle is intended to be used repeatedly, but the blade is normally discarded after each instance of use. Removal devices are designed to protect the user and downstream staff from accidental injury when removing a scalpel blade from a reusable handle. Passing tray and single-handed scalpel blade remover. It is a primary object of the present invention (Patent No. 62851- 40294) to reduce or substantially eliminate the risk of changing scalpel blades. It is a further object of the present invention to simplify the removal of a scalpel blade from its handle.

  3. Automated annotation removal in agar plates.

    PubMed

    Vera, Sergio; Perez, Frederic; Lara, Laura; Ceresa, Mario; Carranza, Noemi; Herrero Jover, Javier; Gonzalez Ballester, Miguel A

    2013-01-01

    Agar plates are widely used in the biomedical field as a medium in which to artificially grow bacteria, algae or fungi. Agar plates (Petri dishes) are used routinely in microbiology laboratories in order to identify the type of micro-organism responsible for infections. Such diagnoses are based on counting the number and type of bacterial colonies growing in the Petri dish. The count of bacterial colonies is a time consuming task prone to human error, so interest in automated counting systems has increased in the recent years. One of the difficulties of automatizing the counting process is the presence of markers and annotations made in the lower part of the agar plate. Efficient removal of such markers can increase the accuracy of the bacterial counting system. This article introduces a fast method for detection, segmentation and removal of annotations in agar plates that improves the results of existing bacterial colony counting algorithms.

  4. A comparison of reversed locking compression-distal femoral plates and blade plates in osteotomies for young adult hip pathology.

    PubMed

    MacLean, Simon B M; Evans, Scott; O'Hara, John N

    2013-01-01

    The aim of this study was to compare fixation of proximal femoral osteotomies using reverse contralateral LCP-Distal Femoral Plates (LCP-DF) with the more traditional blade plate technique. This was a retrospective review over six years of a single surgeon's practice within a tertiary orthopaedic unit. Patient demographics were collected, along with indication for surgery. Radiological outcomes, fixation failures and the need for revision surgery were recorded. Forty-six patients were identified; 23 patients in the LCP-DF plate group (7 females, 16 males. Mean age 18.3 years old) and 23 patients in the blade plate group (6 females, 17 males. Mean age 19.1 years old). The patients' presenting conditions were; 26 Perthes'; eight hip dysplasia; 11 slipped capital femoral epiphysis; one fibrous dysplasia. Osteotomy type included; 13 Double osteotomy, 11 Imhauser; 13 pure valgus; eight valgus + rotation; There was one revision for implant failure in the LCP-DF group. In the blade plate group, there were four implant failures--three requiring revision operations (p = 0.155). In the LCP-DF group the mean neck-shaft angle difference compared to the contralateral side (if normal) or 135 degrees (if abnormal) was 0.58°. In the condylar plate group the mean difference was 4.37°. The use of a contralateral LCP-DF plate in the reverse contralateral position to stabilise proximal femoral osteotomies in our cohort confers advantages over blade plate technology. We have found that the plate is stiffer, is easier to use and provides increased screw placement options over standard proximal femoral locking plates.

  5. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results

    NASA Astrophysics Data System (ADS)

    Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C. W.; Di Mare, L.; Cerri, G.; Dini, D.

    2012-04-01

    It is well known that the gas turbine blade vibrations can give rise to catastrophic failures and a reduction of the blades life because of fatigue related phenomena[1]-[3] . In last two decades, the adoption of piezoelectric elements, has received considerable attention by many researcher for its potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. Recently, a number of studies of blades vibration control via piezoelectric plates and patches have been reported[4]-[6] . It was reported that the use of piezoelectric elements can be very effective in actively controlling vibrations. In one of their previous contributions[7] , the authors of the present manuscript studied a model to control the blade vibrations by piezoelectric elements and validated their results using a multi-physics finite elements package (COMSOL) and results from the literature. An optimal placement method of piezoelectric plate has been developed and applied to different loading scenarios for realistic configurations encountered in gas turbine blades. It has been demonstrated that the optimal placement depends on the spectrum of the load, so that segmented piezoelectric patches have been considered and, for different loads, an optimal combination of sequential and/or parallel actuation and control of the segments has been studied. In this paper, an experimental investigation carried out by the authors using a simplified beam configuration is reported and discussed. The test results obtained by the investigators are then compared with the numerical predictions [7] .

  6. Removal of symptomatic titanium fixation plates after craniotomy.

    PubMed

    Gupta, Raghav; Adeeb, Nimer; Griessenauer, Christoph J; Moore, Justin M; Patel, Apar S; Thomas, Ajith J; Ogilvy, Christopher S

    2016-10-01

    Titanium fixation plates are routinely used for rigid fixation of bone flaps after craniotomy. In craniofacial surgery or after craniotomy involving orbitozygomatic osteotomies, these plates are occasionally removed because of infection, pain, protrusion, soft tissue erosion, and plate malfunction. However, plate removal because of pain and protrusion after craniotomy without orbitozygomatic osteotomy has rarely been reported. A retrospective analysis of all patients who underwent removal of cranial fixation plates after craniotomy, performed by the senior authors at one institution between 2014 and 2016, was conducted. A total of 319 patients underwent bone flap fixation after craniotomy using cranial fixation plates between 2014 and 2016. Five of those patients (1.6 %) had their cranial plates removed because of pain and protrusion. An additional four patients had a cranial fixation plate removed during that time frame with the original craniotomy performed before 2014. All nine patients had immediate resolution of symptoms after plate removal. We report our experience with cranial fixation plate removal because of pain and protrusion in patients who underwent craniotomy without orbitozygomatic osteotomy, particularly frontotemporal craniotomy. In an attempt to reduce this complication, we recently stopped placing a full-size burr hole in the keyhole area of a frontotemporal craniotomy, eliminating the need for a titanium burr hole cover plate.

  7. Start-up circuit upgrading to reduce the erosion of the rotor blades of the last stages of steam turbines and prevent the mass strips of stellite plates

    NASA Astrophysics Data System (ADS)

    Bozhko, V. V.; Gorin, A. V.; Zaitsev, I. V.; Kovalev, I. A.; Nosovitskii, I. A.; Orlik, V. G.; Lomagin, S. N.; Chernov, V. P.

    2017-03-01

    At turbine starts with low steam flow rates in idle mode, the low-pressure rotor blades consume energy, causing the ventilation heating of the stages and creating higher depression in them than in the condenser. This leads to the return steam flows in the exhaust of the low-pressure cylinder (LPC), reducing the heat due to the moisture of starting steam damps and cooling injections. It is shown that, as a result of upgrading with the transition to fully milled shroud platforms of rotor blades, the depression in the stages decreases and their cooling efficiency is reduced due to the removal of an elastic turn of the rotor blades under the action of centrifugal forces and seal of them by periphery. Heating the rotor blades of the last stages exceeds the temperature threshold of soldering resistance of stellite plates (150°C), and their mass strips begin. The start-up circuit providing both the temperature retention of the last stages lower the soldering resistance threshold due to overwetting the steam damps up to saturation condition and the high degree of removal from the dump steam of excessive erosive-dangerous condensed moisture was proposed, applied, and tested at the operating power unit. The investment in the development and application of the new start-up circuit are compensated in the course of a year owing to guaranteed prevention of the strips of stellite plates that lengthens the service life of the rotor blades of the last stages as well as increase of the rotor blade efficiency due to the sharp decrease of erosive wear of the profiles and reduction of their surface roughness. This reduces the annual consumption of equivalent fuel by approximately 1000 t for every 100 MW of installed capacity.

  8. The "hands together" method of nonsterile scalpel blade mounting and removal.

    PubMed

    Cornwall, Jon

    2014-01-01

    Scalpels are utilized by many different user groups for such purposes as medical procedures and dissection. Injuries caused by scalpels are a potential risk for scalpel users, and include injuries that may occur while mounting and removing the scalpel blade. Between 10% and 20% of all scalpel injuries in education and healthcare settings are reported to occur while scalpel blades are being mounted or removed. At present there are few published or "best practice" demonstrations of safe technique for scalpel blade mounting and removal. This brief article outlines a variation of the procedure for scalpel blade mounting and removal. It includes strategies developed to minimize risk or injury for the scalpel user, including providing a stable base for the hands and arms so as to prevent unnecessary large amplitude movements that may lead to injury of the scalpel user or a third party. Such a technique may promote scalpel safety, contribute to the development of "best practice" scalpel use, and help decrease injuries that may be caused while mounting or removing scalpel blades.

  9. Refracture rate after plate removal from the radial metaphysis

    PubMed Central

    Houle, Jean B.; Tabrizi, Payam; Giachino, A. Alan; Benoit, Michel Y.; Richards, Robert S.; Pham, Ba; Grabowski, Jenny

    2002-01-01

    Objectives To document the refracture rate after removal of internal fixation at the metaphyseal region of the distal radius and to compare this rate to that associated with diaphyseal plate removal reported in the literature. Design A chart review with telephone follow-up. Setting Three tertiary care hospitals (in Ottawa, Burlington, Vt., and London, Ont.). Patients Fifty-three patients (54 radii) underwent elective removal of internal fixation of the distal radius after distal metaphyseal procedures. The mean follow-up was 46.8 months. Main outcome measure The refracture rate. Results No refractures were reported after plate removal, and the overall complication rate was minimal. Conclusions The refracture rate at the metaphysis of the radius after plate removal is lower than the rate after diaphyseal plate removal reported in the literature. PMID:11837922

  10. FIXATION OF SUPRACONDYLAR FEMORAL FRACTURES: A BIOMECHANICAL ANALYSIS COMPARING 95° BLADE PLATES AND DYNAMIC CONDYLAR SCREWS (DCS)

    PubMed Central

    Percope Andrade, Marco Antônio; Rodrigues, André Soares; Mendonça, Celso Junio; Santos Portela, Luiz Gustavo

    2015-01-01

    Objective: To determine, by means of comparative biomechanical tests, whether greater compressive load resistance and flexion is presented by 95° angled blade plates or by dynamic condylar screws (DCS), and to correlate the failure type presented during the tests with each type of plate. Methods: Sixty-five porcine femurs were subjected to 1 cm medial wedge osteotomy, in the metaphysis, to simulate an unstable supracondylar femoral fracture. Osteosynthesis was performed on these pieces: 35 were fixed using 95° lateral blade plates and 30 with DCS plates. Another variable studied was the failure type presented in each group, in an attempt to correlate this with the type of plate. Results: There were no statistically significant differences in biomechanical resistance between the two types of plates, or between the failure type and the plate type used for the osteosynthesis. Conclusion: The two types of plate behaved in a similar fashion. However, the angled blade plate proved to be superior to the DCS in the flexion test. No statistical difference in failure type or type of plate used was observed. PMID:27022525

  11. The "Hands Together" Method of Nonsterile Scalpel Blade Mounting and Removal

    ERIC Educational Resources Information Center

    Cornwall, Jon

    2014-01-01

    Scalpels are utilized by many different user groups for such purposes as medical procedures and dissection. Injuries caused by scalpels are a potential risk for scalpel users, and include injuries that may occur while mounting and removing the scalpel blade. Between 10% and 20% of all scalpel injuries in education and healthcare settings are…

  12. The "Hands Together" Method of Nonsterile Scalpel Blade Mounting and Removal

    ERIC Educational Resources Information Center

    Cornwall, Jon

    2014-01-01

    Scalpels are utilized by many different user groups for such purposes as medical procedures and dissection. Injuries caused by scalpels are a potential risk for scalpel users, and include injuries that may occur while mounting and removing the scalpel blade. Between 10% and 20% of all scalpel injuries in education and healthcare settings are…

  13. Yield comparisons from floating blade and fixed arbor gang ripsaws when processing boards before and after crook removal

    Treesearch

    Charles J. Gatchell; Charles J. Gatchell

    1991-01-01

    Gang-ripping technology that uses a movable (floating) outer blade to eliminate unusable edgings is described, including new tenn1nology for identifying preferred and minimally acceptable strip widths. Because of the large amount of salvage required to achieve total yields, floating blade gang ripping is not recommended for boards with crook. With crook removed by...

  14. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  15. A vibrating razor blade machining tool for material removal on low-density foams

    NASA Astrophysics Data System (ADS)

    Hillyer, D. F., Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 microns (0.001 in.) flatness are achieved over areas of 8.75 sq in. (2.5 x 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described.

  16. Symptomatic plate removal in maxillofacial trauma: a review of 76 cases.

    PubMed

    Murthy, Ananth S; Lehman, James A

    2005-12-01

    This study reviewed the fate of titanium plates used to correct maxillofacial trauma in 76 patients to define risk factors for plate removal. Medical records of 76 consecutive patients at a single institution, over a 10-year period, were retrospectively reviewed. Variables included age, sex, trauma type, diagnosis, fracture type, fracture diagnosis, plate location, surgical approach, and reasons for plate removal. Fracture diagnosis was described as panfacial (42%), blowout (3%), midface (28%), zygoma (26%), mandible angle (6%), ramus (7%), and symphysis (9%). All plate removals according to fracture diagnosis were in the mandible angle (30%) and symphysis (20%). When plate location was reviewed, 68% of the plates were placed in the upper and midface and 32% were placed in the mandible. Specifically, plates were placed in the frontozygomatic suture (18%), zygomaticomaxillary suture (19%), infraorbital rim (14%) and mandible symphysis (15%), mandible angle (9%), piriform (6%), nasal (5%), mandible ramus (4%) and body (4%), zygoma (2%), and frontal (2%). Of 163 plates that were placed, 6 plates (3.7%) were removed. Three (12%) of the symphysis plates and 3 (20%) of the angle plates were removed. Among all variables, only fracture diagnosis (P = 0.01) and plate location (P = 0.01) were statistically significant in plate removal. Five plates were removed for abscess/infection; 1 plate was removed for osteomyelitis. Further review revealed that 4 out of 6 plates removed involved synchronous mandible fractures. Most infections after maxillofacial trauma occur in the mandible, and often these infections are the main reason for plate removal. More vigilance is needed in the treatment of mandible angle and symphyseal fractures, especially if there are synchronous fractures, to prevent infection, plate removal and subsequent malunion.

  17. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  18. Removal of bone plates in patients with maxillofacial trauma: a retrospective study.

    PubMed

    Bakathir, Abdulaziz A; Margasahayam, Manjunath V; Al-Ismaily, Mohammed I

    2008-05-01

    The aim of this retrospective study was to assess the incidence of and indication for the removal of bone plates over a 5-year period in patients with maxillofacial trauma who had received treatment at the Oral and Maxillofacial Surgery Unit, Al-Nahda Hospital, Muscat, Oman. The medical records of all patients who underwent removal of bone plates after facial bone trauma were reviewed over a 5-year period (2000 to 2004). Data concerning age and gender distribution, cause of trauma, year of removal, time between insertion and removal, indication for removal, site of removal, and general medical factors were evaluated for each patient. Facial bone fractures in 1,177 cases were diagnosed during the study period, of which 465 cases underwent open reduction and internal fixation using bone plates and screws. In 109 cases bone plates were removed (79 males and 30 females), with an overall removal rate of 23.4%. The most common indication for removal was young age (53.4%) followed by infection (25%). The mandible was the most common site of removal (80%). Most of the plates (86%) that required removal in adults were removed within the first year after insertion. Based on this study, the incidence of bone plate removal was relatively low, and the most common indications for plate removal were young age followed by infection.

  19. Complications during removal of conventional versus locked compression plates: is there a difference?

    PubMed

    Neumann, Hanjo; Stadler, Anne; Heuer, Hinrich; Auerswald, Marc; Gille, Justus; Schulz, Arndt Peter; Kienast, Benjamin

    2017-08-01

    Osteosynthesis plate removal is one of the most commonly performed procedures in orthopaedic surgery. Due to technological advances and the quality of increasing osteosynthesis material, more and more locked plates have been implanted over the last 20 years. The aim of this study was to determine whether the complication rate during plate removal differs between conventional and locked plates. In this retrospective cohort study, 620 patients were included and divided into two groups based on the type of plate (locked and conventional). Technical complications during implant removal included screw breakage, destroyed screw head, implant breakage, remaining implant material, refracture, bony or soft tissue overgrowth. The following plate-associated complications were identified: osteosynthesis plate not detachable, plate bent or broken, necessity of special tools or plate loosened. Three types of screw-related complications were observed: screw not detachable, screw broken or screw dislocated. Overall, complications related to the plate or screws were documented in 110 of the 620 cases. These complications occurred in 48 of the 382 cases involving conventional osteosynthesis (7.7% of all removals, 12.6% of all conventional removals) and in 62 of the 238 cases involving locked plate osteosynthesis (10.0% of all removals, 26.1% of all locked plate removals). The statistical analysis showed a significantly higher implant-related complication rate with locked plates compared to the conventional plates (p < 0.01). Hardware removal can be a complication-afflicted operation, especially cases involving locked-plate removal should only be performed if a strong indication is evident. Possible benefits of the procedure should be considered carefully, taking the cost-benefit ratio into account.

  20. Hindfoot Arthrodesis with the Blade Plate: Increased Risk of Complications and Nonunion in a Complex Patient Population.

    PubMed

    Gorman, Troy M; Beals, Timothy C; Nickisch, Florian; Saltzman, Charles L; Lyman, Mikayla; Barg, Alexej

    2016-10-01

    Previous hindfoot surgeries present a unique challenge to hindfoot arthrodesis, as the patients may have multiple incisions around the hindfoot. In high-risk patients with compromised soft tissues, a posterior approach can provide an alternative for a fresh soft tissue plane for the surgery. The use of a blade plate construct is widely accepted; however, there are limited data supporting the use of a posterior approach. We asked (1) what proportion of patients treated with this technique achieved osseous union; (2) what complications were observed; (3) were any patient-demographic or health-related factors associated with the likelihood that a patient would have a complication develop? Between December 2001 and July 2014, 42 patients received a posterior blade plate. During the period in question, indications for hindfoot arthrodesis using posterior blade fixation were subtalar osteoarthritis below an ankle fusion, malunion or nonunion, failed tibiotalocalcaneal arthrodesis attributable to nonunion of the tibiotalar and/or subtalar joint; or tibiotalar and subtalar osteoarthritis in patients with impaired bone or soft tissue quality (particularly if the soft tissue problem was anterior). During that period, all patients who met those indications were treated with a posterior blade plate. Forty (95%) were included in this study, and two were lost to followup before the 1-year minimum required by the study. Demographics (age, gender, BMI, smoking status, and comorbidities) and surgical data (indication, previous treatment, and additional procedures) were analyzed. Of the 40 patients included, 27 (68%) were male and 13 (33%) were female, with a median of two previous hindfoot or ankle surgeries (range, 0-9 surgeries). The mean age of the patients was 56 ± 13 years. Followup averaged 47 ± 28 months (range, 14-137 months). Twenty-eight of 40 (70%) patients had a tibiotalocalcaneal arthrodesis as a primary (n = 6), primary staged (n = 10), revision (n = 9), or

  1. A method for the harmonic removal in operational modal analysis of rotating blades

    NASA Astrophysics Data System (ADS)

    Agneni, Alessandro; Coppotelli, Giuliano; Grappasonni, Chiara

    2012-02-01

    The operational modal analysis, OMA, allows estimating the dynamic properties of a structure, natural frequencies, damping ratios, and mode shapes, without measuring the input forces. According to the main hypothesis concerning the input excitation, i.e., stochastic with frequency independent spectra (at least in the frequency band of interest), it is not theoretically possible to apply the OMA procedures in structures characterized by the presence of harmonic components in the excitation loading. In this paper, an approach capable to identify the presence of harmonic excitations, acting together with a broad band stochastic loading, and then to remove their effects in the modal parameter estimate is presented. The approach is based on the joint use of the statistical parameter called "entropy" and the already developed output-only procedure based on the application of the Hilbert transform properties to the output response signals. The capability to improve the OMA procedures is investigated numerically and through whirl tower experimental tests of a rotating blade in which both stochastic and harmonic contributions to the dynamic excitations have been provided by the perturbations arising from the operative conditions. A sensitivity analysis has been also performed to evaluate the effects of the filtered responses, in the time domain, on the statistical characterization, required to distinguish the operational frequencies from the natural ones.

  2. Incidence of Hardware Removal Following Volar Plate Fixation of Distal Radius Fracture.

    PubMed

    Lutsky, Kevin F; Beredjiklian, Pedro K; Hioe, Stephen; Bilello, Justin; Kim, Nayoung; Matzon, Jonas L

    2015-12-01

    To assess the risk of tendon rupture or plate removal after volar plate fixation of distal radius fractures and to determine the incidence of hardware removal. We searched the surgical database of 5 attending hand surgeons at a single institution from 2009 to 2014. All patients who had undergone volar plate fixation were included. Patients were excluded if they underwent an alternate form of fixation, had less than 1 year of follow-up, or could not be reached for follow-up. Postoperative radiographs were examined for Soong grade, plate distance to the critical line, and plate distance to the volar rim. If patients had hardware removed, the reason for plate removal was identified. For all patients who did not have documented hardware removal at our institution, we placed a follow-up call to determine whether they had hardware removed elsewhere. A total of 517 patients underwent volar plate fixation, 143 of whom did not have their hardware removed at our institution but could not be reached for follow-up. Of the remaining 374 patients, 37 (10%) had hardware removed. For group 1 (hardware retained), Soong grades were 13% grade 0, 85% grade 1, and 2% grade 2. For group 2 (hardware removed) the proportions were 11%, 76%, and 5%, respectively, and 8% undetermined. Mean plate distance to the critical line was significantly greater for group 2 (1.9 mm) compared with group 1 (1.2 mm). Mean plate distance to the volar rim did not differ (5.1 mm vs 5.3 mm). The incidence of hardware removal in our series was 10%. The vast majority of patients had Soong grade 1 prominence. Patients who had hardware removed had a greater plate prominence volar to the critical line. Plate distance to the volar rim was not associated with removal. Prognostic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Design Evaluation Using Finite Element Analysis of Cooled Silicon Nitride Plates for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.

  4. Electrostatic particle collector with improved features for installing and/or removing its collector plates

    DOEpatents

    Siegfried, Matthew J.; Radford, Daniel R.; Huffman, Russell K.

    2017-04-04

    An electrostatic particle collector may generally include a housing having sidewalls extending lengthwise between a first end and a second end. The housing may define a plate slot that extends heightwise within the housing between a top end and a bottom end. The housing may further include a plate access window that provides access to the bottom end of the plate slot. The collector may also include a collector plate configured to be installed within the plate slot that extends heightwise between a top edge and a bottom edge. Additionally, when the collector plate is installed within the plate slot, the bottom edge of the collector plate may be accessible from an exterior of the housing via the plate access window so as to allow the bottom edge of the collector plate to be moved relative to the housing to facilitate removal of the collector plate from the housing.

  5. Radar Cross-Sectional Spectra of Rotating Multiple Skew-Plated Metal Fan Blades by Physical Optics/Physical Theory of Diffraction, Equivalent Currents Approximation

    NASA Astrophysics Data System (ADS)

    Bor, Sheau-Shong; Yang, Tai-Lin; Yang, Shui-Yuan

    1992-05-01

    The monostatic radar cross-sectional spectra of rotating multiple skew-plated metal fan blades are investigated. The theoretical treatment of such a slowly rotating and electrically large scatterer is based on the quasi-stationary method together with physical optics/physical theory of diffraction (PO/PTD) equivalent current techniques. Only the θθ polarization case is considered here, but the \\psi\\psi polarization case can be treated in the same way. This solution is applicable to any observation angle, and is represented by such a general form as one which enables us to treat a similar scatterer with multiple blades and with different skew angles. Three rotating skew-plated blades are taken as an example, and the agreements between the theoretical and experimental results are satisfactory.

  6. Mini-plate removal in maxillofacial trauma patients during a five-year retrospective study

    PubMed Central

    2016-01-01

    Objectives The purpose of this study was to analyze the incidence of indications for the removal of mini-plates over a five-year period in maxillofacial trauma patients. Materials and Methods The medical records of 530 patients who underwent treatment with mini-plate fixation after maxillofacial trauma were reviewed for a five-year period (May 2007 to May 2012). Patients were evaluated concerning the number of mini-plates removed, age and gender distributions, time between insertion and removal, indication for removal, and site of removal. Results The plates of 120 patients were removed (26 females and 94 males). The removal rate was 22.6%. The most frequent indication for removal was patient demand (81.7%), followed by tooth extraction (7.5%), and pain (3.3%). The most frequent removal site was the mandible (95.0%). Conclusion The number of mini-plates removed was small, and the most common indication for removal was patient demand. There is no evidence to support a recommendation for the routine removal of titanium mini-plates. PMID:27595084

  7. Turbine blade platform seal

    SciTech Connect

    Zagar, Thomas W.; Schiavo, Anthony L.

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  8. What is the hardware removal rate after anteroinferior plating of the clavicle? A retrospective cohort study.

    PubMed

    Baltes, Thomas P A; Donders, Johanna C E; Kloen, Peter

    2017-05-03

    Plate position in the operative treatment of displaced midshaft clavicle fractures or nonunions is most often on the superior side. However, superior clavicular plating often results in complaints of plate prominence and local soft tissue irritation, necessitating hardware removal. We have used anteroinferior placement of the plate in the hope of increasing biomechanical stability and fixation and also of lowering complaints of plate prominence and soft tissue irritation. In this report, we set out to study the percentage of hardware removal in our group of patients treated with anteroinferior plating of the clavicle after long-term follow-up. In this retrospective review, we evaluated all patients who were surgically treated with anteroinferior plating for midshaft clavicle fracture, delayed union, or nonunion by the senior author between February 2003 and July 2015. Patients required a minimum age of 16 years at time of surgery and a follow-up of >12 months. Patients with malunion, plating on the superior aspect, or double plating were excluded. The medical records of 53 patients (54 fractures) were reviewed after a mean follow-up duration of 6.4 years (range, 1.1-13.1). The mean age at follow-up was 47.8 years (range, 20.4-80.7). All fractures and nonunions healed. In only 3 cases (5.6%), hardware removal was requested by the patient because of plate prominence. Anteroinferior plating of midshaft clavicle fractures, delayed unions, and nonunions resulted in low hardware removal rates in our cohort. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  10. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  11. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    PubMed

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  12. [Follow-up examinations after removal of titanium plates coated with anodic titanium oxide ceramic].

    PubMed

    Velich, Norbert; Németh, Zsolt; Barabás, József; Szabó, György

    2002-04-01

    Transformation of the titanium metal surface with titanium oxides produced in various ways belongs among the most up-to-date procedures. The authors as pioneers in this field (e.g. Nobel Biocare TiUnite surface), have been utilizing for more than 15 years dental root implants and fixing elements (for mandibular osteosynthesis) coated with titanium oxide ceramics, produced by anodic oxidation and thermal treatment. The aim of this work was to assess the extent to which a titanium oxide ceramic coating influences the fate of plates applied for osteosynthesis within the human body. During a 5-year period (1995-1999), 108 of 1396 titanium oxide ceramic plates had to be removed for various reasons: loosening of the plate [47], osteomyelitis [25], a palpable swelling and tenderness [21] at the request of the patient for psychological reasons (13) or breaking of the plate [2]. When these 108 plates were removed, it was not possible to detect metallosis in even a single case; nor was there any tissue damage that could be attributed to the surface of the plates, whereas the literature data indicate that such damage is relatively frequent in the environment of traditional titanium fixing elements. The present investigation confirms the favourable properties of the titanium oxide ceramic surface.

  13. ETR, TRA642. REACTOR FLOOR. TOP PLATES AND PLUGS ARE REMOVED. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. REACTOR FLOOR. TOP PLATES AND PLUGS ARE REMOVED. CAMERA LOOKS INTO ETR TANK. TEST LOOP APPARATUS DESCENDS THROUGH REACTOR'S TEST HOLES. INL NEGATIVE NO. 60-1930. Unknown Photographer, ca. 1960 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Does plate type influence the clinical outcomes and implant removal in midclavicular fractures fixed with 2.7-mm anteroinferior plates? A retrospective cohort study.

    PubMed

    Gilde, Alex K; Jones, Clifford B; Sietsema, Debra L; Hoffmann, Martin F

    2014-07-04

    The purpose of this study was to evaluate surgical healing rates, implant failure, implant removal, and the need for surgical revision with regards to plate type in midshaft clavicle fractures fixed with 2.7-mm anteroinferior plates utilizing modern plating techniques. This retrospective exploratory cohort review took place at a level I teaching trauma center and a single large private practice office. A total of 155 skeletally mature individuals with 156 midshaft clavicle fractures between March 2002 and March 2012 were included in the final results. Fractures were identified by mechanism of injury and classified based on OTA/AO criteria. All fractures were fixed with 2.7-mm anteroinferior plates. Primary outcome measurements included implant failure, malunion, nonunion, and implant removal. Secondary outcome measurements included pain with the visual analog scale and range of motion. Statistically significant testing was set at 0.05, and testing was performed using chi-square, Fisher's exact, Mann-Whitney U, and Kruskall-Wallis. Implant failure occurred more often in reconstruction plates as compared to dynamic compression plates (p = 0.029). Malunions and nonunions occurred more often in fractures fixed with reconstruction plates as compared to dynamic compression plates, but it was not statistically significant. Implant removal attributed to irritation or implant prominence was observed in 14 patients. Statistically significant levels of pain were seen in patients requiring implant removal (p = 0.001) but were not associated with the plate type. Anteroinferior clavicular fracture fixation with 2.7-mm dynamic compression plates results in excellent healing rates with low removal rates in accordance with the published literature. Given higher rates of failure, 2.7-mm reconstruction plates should be discouraged in comparison to stiffer and more reliable 2.7-mm dynamic compression plates.

  15. Does plate type influence the clinical outcomes and implant removal in midclavicular fractures fixed with 2.7-mm anteroinferior plates? A retrospective cohort study

    PubMed Central

    2014-01-01

    Background The purpose of this study was to evaluate surgical healing rates, implant failure, implant removal, and the need for surgical revision with regards to plate type in midshaft clavicle fractures fixed with 2.7-mm anteroinferior plates utilizing modern plating techniques. Methods This retrospective exploratory cohort review took place at a level I teaching trauma center and a single large private practice office. A total of 155 skeletally mature individuals with 156 midshaft clavicle fractures between March 2002 and March 2012 were included in the final results. Fractures were identified by mechanism of injury and classified based on OTA/AO criteria. All fractures were fixed with 2.7-mm anteroinferior plates. Primary outcome measurements included implant failure, malunion, nonunion, and implant removal. Secondary outcome measurements included pain with the visual analog scale and range of motion. Statistically significant testing was set at 0.05, and testing was performed using chi-square, Fisher’s exact, Mann–Whitney U, and Kruskall-Wallis. Results Implant failure occurred more often in reconstruction plates as compared to dynamic compression plates (p = 0.029). Malunions and nonunions occurred more often in fractures fixed with reconstruction plates as compared to dynamic compression plates, but it was not statistically significant. Implant removal attributed to irritation or implant prominence was observed in 14 patients. Statistically significant levels of pain were seen in patients requiring implant removal (p = 0.001) but were not associated with the plate type. Conclusions Anteroinferior clavicular fracture fixation with 2.7-mm dynamic compression plates results in excellent healing rates with low removal rates in accordance with the published literature. Given higher rates of failure, 2.7-mm reconstruction plates should be discouraged in comparison to stiffer and more reliable 2.7-mm dynamic compression plates. PMID:24993508

  16. Apparatus for loading a band saw blade

    DOEpatents

    Reeves, Steven R.

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  17. Apparatus for loading a band saw blade

    DOEpatents

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  18. Removal of titanium plates coated with anodic titanium oxide ceramic: retrospective study.

    PubMed

    Velich, Norbert; Németh, Zsolt; Suba, Csongor; Szabó, György

    2002-09-01

    Transformation of the surface of metallic titanium with titanium oxides prepared in various ways is a modern procedure. For more than 15 years, the authors have been utilizing fixing elements coated with titanium oxide ceramics, prepared by anodic oxidation and thermal treatment, for purposes of jawbone osteosynthesis. The aim of the authors' work was to assess the extent to which the titanium oxide ceramic coating influences the fate of the plates used for osteosynthesis within the human organism, in regard to the possible need for their removal. During a 5-year period, 108 of 1,396 plates coated with anodic titanium oxide had to be removed for various reasons: plate exposure (47), osteomyelitis (25), palpable swelling and tenderness (21), patient request for psychological reasons (13), or fracture of the plate (2). In none of these 108 cases was metallosis observed, which otherwise is reported relatively frequently in the vicinity of traditional titanium fixing elements, nor was any tissue damage connected with the surface of the plates. The results indicate the favorable properties of the titanium oxide ceramic surface.

  19. Scalpel blade changer.

    PubMed

    Monadi Sefidan, A R; Hajipour, B

    2014-11-01

    Surgical knife has been extensively used in surgery for a number of years and is the most widely used surgical instrument in the world at present. Manual removal of the blade can be difficult, particularly when the scalpel is wet. Percutaneous injuries during changing the scalpel blade may lead to serious and potentially fatal infections from blood borne pathogens such as hepatitis B virus (HBV), hepatitis C (HCV), or human immunodeficiency virus (HIV) and others including cytomegalovirus, herpes simplex virus and parvovirus B19. In addition to the risk of illness and death after an exposure, psychological trauma and long-term disability are of great concern. Many devices have been developed in an effort to facilitate the removal of the blade from the scalpel, and to render the removal procedure less dangerous. But there is no device to both remove and install the blade at the same time. In particular, the present invention relates to a scalpel blade changer that enables a blade to be removed from a scalpel and retained in the remover and at the same time to install the blade on to the scalpel handle.

  20. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    PubMed

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio.

  1. Comparison of damping treatments for gas turbine blades

    NASA Astrophysics Data System (ADS)

    Gordon, Robert W.; Hollkamp, Joseph J.

    1996-05-01

    High frequency vibration of gas turbine fan blades is a high cycle fatigue concern. Friction damping devices are ineffective in suppressing high frequency vibration modes and external damping treatments are plagued by creep concerns. An alternative approach is to apply viscoelastic material internally in the blades. In this paper, an analytical comparison of internal damping treatments for fan blades is presented. The fan blade is modeled as a solid, flat, cantilevered titanium plate. Internal portions are removed producing cavities that are filled with viscoelastic material. Configurations with one, two, and three cavities are modeled using the modal strain energy method in conjunction with finite element analysis to estimate damping. Results show that appreciable damping levels for high frequency modes are possible with stiff viscoelastic material. Other design criteria are also considered. Results indicate that the hydrostatic load from the viscoelastic material on the cavity walls may be a concern.

  2. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  3. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, David W.

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  4. Removable plate treatment of anterior forced crossbite: Effectiveness, efficiency, and potential outcome predictors.

    PubMed

    Bock, Niko C; Klewitz, Heidi; Hudel, Helge; Ruf, Sabine

    2015-07-01

    In addition to studying the effectiveness and efficiency of removable acrylic plates in correcting anterior forced crossbite, the influence of outcome predictors were evaluated. In all, 65 patients met the inclusion criteria of anterior forced crossbite, mixed dentition, removable plate treatment, and complete case documentation. Effectiveness was assessed based on pre- and posttreatment study casts (which were analyzed for successful treatment outcomes defined as ≥ 1 mm of overjet and overbite) and efficiency was assessed based on treatment duration and number of appointments. Potential outcome predictors were also evaluated, including age, gender, dental maturity, Angle Class, number of teeth in crossbite, severity of crossbite, overbite, ANB angle, Wits appraisal, mandibular plane angle, and patient compliance. Successful crossbite correction was achieved in 48 of the 65 patients (74%) within a median of 2.8 months and 2.0 appointments. Plate treatment was discontinued following another median of 11.6 months and 6.5 appointments. Promising outcome predictors are the number of teeth in crossbite (1-2 versus 3-4 teeth = success in 81 versus 42% of cases), dental maturity (early versus late mixed dentition = success in 84 versus 52% of cases), and Angle Class (I versus III = success in 83 versus 61% of cases). Removable acrylic plates were found to be moderately effective and efficient in correcting anterior forced crossbite. Children presenting with Angle Class I and crossbites involving not more than two teeth when treatment is started during the period of early mixed dentition had the best prognosis for treatment success.

  5. [The parallel saw blade].

    PubMed

    Mühldorfer-Fodor, M; Hohendorff, B; Prommersberger, K-J; van Schoonhoven, J

    2011-04-01

    For shortening osteotomy, two exactly parallel osteotomies are needed to assure a congruent adaption of the shortened bone after segment resection. This is required for regular bone healing. In addition, it is difficult to shorten a bone to a precise distance using an oblique segment resection. A mobile spacer between two saw blades keeps the distance of the blades exactly parallel during an osteotomy cut. The parallel saw blades from Synthes® are designed for 2, 2.5, 3, 4, and 5 mm shortening distances. Two types of blades are available (e.g., for transverse or oblique osteotomies) to assure precise shortening. Preoperatively, the desired type of osteotomy (transverse or oblique) and the shortening distance has to be determined. Then, the appropriate parallel saw blade is chosen, which is compatible to Synthes® Colibri with an oscillating saw attachment. During the osteotomy cut, the spacer should be kept as close to the bone as possible. Excessive force that may deform the blades should be avoided. Before manipulating the bone ends, it is important to determine that the bone is completely dissected by both saw blades to prevent fracturing of the corticalis with bony spurs. The shortening osteotomy is mainly fixated by plate osteosynthesis. For compression of the bone ends, the screws should be placed eccentrically in the plate holes. For an oblique osteotomy, an additional lag screw should be used.

  6. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.

  7. Hot-blade stripper for polyester insulation on FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.

  8. Process optimization for particle removal on blank chrome mask plates in preparation for resist application

    NASA Astrophysics Data System (ADS)

    Osborne, Stephen; Smith, Eryn; Woster, Eric; Pelayo, Anthony

    2002-03-01

    As integrated circuits require smaller lines to provide the memory and processing capability for tomorrow's marketplace, the photomask industry is adopting higher contrast resists to improve photomask lithography. Photomask yield for several high-contrast resist recipes may be improved by coating masks at the mask shop. When coating at a mask shop, an effective method is available that uses coat/bake cluster tools to ensure blanks are clean prior to coating. Many high-contrast resists are available, and some are more susceptible to time-dependent performance factors than conventional resists. One of these factors is the time between coating and writing. Although future methods may reduce the impact of this factor, one current trend is to reduce this time by coating plates at the mask shop just prior to writing. Establishing an effective process to clean blanks prior to coating is necessary for product quality control and is a new task that is critical for maskmakers who previously purchased mask plates but have decided to begin coating them within their facility. This paper provides a strategy and method to be used within coat/bake cluster tools to remove particle contamination from mask blanks. The process uses excimer-UV ionizing radiation and ozone to remove organic contaminants, and then uses a wet process combined with megasonic agitation, surfactant, and spin forces. Megasonic agitation with surfactant lifts up particles, while the convective outflow of water enhances centripetal shear without accumulating harmful charge.

  9. Mechanical removal of necrotic periodontal ligament by either Robinson bristle brush with pumice or scalpel blade. Histomorphometric analysis and scanning electron microscopy.

    PubMed

    Esper, Helen Ramon; Panzarini, Sônia Regina; Poi, Wilson Roberto; Sonoda, Celso Koogi; Casatti, Cláudio Aparecido

    2007-12-01

    One of the important factors accounting for successful delayed replantation of avulsed teeth is seemingly the type of root surface treatment. Removal of necrotic cemental periodontal ligament remnants may prevent the occurrence of external root resorption, which is the major cause of loss of teeth replanted in such conditions. The purpose of this study was to compare the efficacy of two mechanical techniques for removal of root-adhered periodontal ligament. Preservation or removal of the cementum layer concomitantly with these procedures was also assessed. Forty-five roots of healthy premolars extracted for orthodontic purposes were selected. After extraction, the teeth were kept dry at room temperature for 1 h and then immersed in saline for rehydration for an additional 10 min. Thereafter, the roots were assigned to three groups, as follows: group 1 (control)--the cemental periodontal ligament was preserved; group 2--removal of the periodontal ligament by scraping root surface with a scalpel blade (SBS); group 3--periodontal ligament remnants were removed using a Robinson bristle brush at low-speed with pumice/water slurry (RBP). The specimens were analysed histomorphometrically and examined by scanning electron microscopy. The quantitative and qualitative analyses of the results showed that the RBP technique was significantly more effective than the SBS technique for removal of the periodontal ligament remnants adhered to root surface. Both techniques preserved the cementum layer.

  10. Smoother Turbine Blades Resist Thermal Shock Better

    NASA Technical Reports Server (NTRS)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  11. Micro-scratching tests of a rolled aluminium alloy AA2024-T351 thick plate using a diamond micro-blade

    NASA Astrophysics Data System (ADS)

    Pirva, E.; Tudor, A.; Gavrus, A.; Chisiu, G.; Stoica, N.; Predescu, A.

    2017-02-01

    The present research work is focused on investigating the apparent coefficient of abrasive friction of a rolled thick plate of an AA2024-T351 aluminium alloy, using micro-scratch tests. For this study, specific materials specimens and a particular UMT Micro-Scratch Equipment were used. The test involved the generation of a scratch process at a local scale using a diamond stylus (micro-blade defined by a radius of 0.8 μm) moving along a specified path under a constant normal force (10 N) and with a constant speed (0.2 mm/s). For the characterization of the surface quality, two orthogonal directions were considered: the longitudinal one, along the rolling direction, and the corresponding transversal one. Given the fractal nature of the surface, an investigation was done in order to assess its influence on the coefficient of abrasive friction. The fractal dimension Df, one of the most important parameters in a fractal surface analysis, was used to determine this influence in the global friction and abrasion phenomena. The abrasion factor was calculated using the Zum Gahr method for the data obtained with a specialized Mitutoyo SJ-301 surface tester. Measurements were made at the beginning, middle and at the end of the scratch channel. The obtained value for the abrasion factor was slightly less than zero. Other influences of anisotropic material features on global abrasion effects were also analyzed via comparisons of the coefficients of abrasive friction for both static and kinematic conditions.

  12. The dynamic locking blade plate, a new implant for intracapsular hip fractures: biomechanical comparison with the sliding hip screw and Twin Hook.

    PubMed

    Roerdink, W H; Aalsma, A M M; Nijenbanning, G; van Walsum, A D P

    2009-03-01

    Internal fixation of intracapsular hip fractures results in a high failure rate with non-union and avascular necrosis being the two most important complications. In order to prevent these possible complications treatment should consist of an anatomical reduction and stable fixation by insertion of a low volume, dynamic implant, providing angular and rotational stability to the femoral head. According to these principles a new implant, the dynamic locking blade plate (DLBP) was designed for the fixation of intracapsular hip fractures. We performed a biomechanical analysis in synthetic bone to compare the rotational stability and cut out resistance of the DLBP with a conventional sliding hip screw (SHS) and the more recently developed Twin Hook. The rotational stability of the DLBP proved to be three times higher than the rotational stability of a SHS and two times higher than the Twin Hook. There was no major difference in cut out resistance between the different implants. The design of the DLBP and possible advantages with regard to the healing of an intracapsular hip fracture are discussed.

  13. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system.

    PubMed

    Stiefel, Philipp; Rosenberg, Urs; Schneider, Jana; Mauerhofer, Stefan; Maniura-Weber, Katharina; Ren, Qun

    2016-05-01

    Various methods have been reported to quantify total biofilm or different components of biofilm; however, these methods are often confusedly used, leading to discrepancies and misleading results. In this study, different methods for quantification of biofilm, including those for total biomass, total amount of bacterial cells, viable cell number, and amount of extracellular polymeric substances, were systematically compared in microtiter plates. To evaluate which method is suitable for assessment of biofilm removal and for bacterial killing, biofilm samples were treated with various cleaners possessing removing and/or killing capacities. It was found that most of the methods tested in this study in general exhibited high reproducibility and repeatability. Crystal Violet staining was a simple but reliable method for total biomass quantification. Total bacteria cell numbers could be reliably quantified by the fluorescent DNA-binding dye Acridine Orange. Viable cells could be quantified by either an ATP-based assay or a proliferation assay. Both of these viability methods showed a broad detection range and led to precise measurement. For quantification of proteins in the biofilm, staining with fluorescein isothiocyanate was most suitable. Furthermore, it was revealed that a combination of different methods is required to determine if a cleaner kills or removes biofilm.

  14. Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment

    NASA Technical Reports Server (NTRS)

    Gotsky, Edward R.; Cusick, James P.; Bogart, Donald

    1959-01-01

    Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.

  15. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    PubMed

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  16. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates.

    PubMed

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-03-04

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s(-1) rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 10(7) to 3.7 × 10(11) CFU g(-1).

  17. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  18. Vibrations of twisted rotating blades

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    The literature dealing with vibrations of turbomachinery blades is voluminous, but the vast majority of it treats the blades as beams. In a previous paper a two-dimensional analytical procedure was developed and demonstrated on simple models of blades having camber. The procedure utilizes shallow shell theory along with the classical Ritz method for solving the vibration problem. Displacement functions are taken as algebraic polynomials. In the present paper the method is demonstrated on blade models having camber. Comparisons are first made with results in the literature for nonrotating twisted plates and various disagreements between results are pointed out. A method for depicting mode shape information is demonstrated, permitting one to examine all three components of displacement. Finally, the analytical procedure is demonstrated on rotating twisted blade modes, both without and with camber.

  19. The digital AcuBlade laser system to remove huge vocal fold granulations following subglottic airway stent.

    PubMed

    Fiorelli, Alfonso; Mazzone, Salvatore; Mazzone, Adriano; Santini, Mario

    2013-09-01

    We report a case of granulations that complicated subglottic stent placement and completely destroyed vocal folds with luminal stent obstruction. A microbial aetiology significantly contributed to the occurrence of granulations associated with mechanical irritation. The granulations were successfully resected using a digital AcuBlade laser system, a new generation of CO2 laser used in otorhinolaryngology, particularly in vocal cord disease. It permitted a precise control of the scan line between vocal fold and granulation for several reasons. The scan line was completely electronic and integrated in the scanner. The sweep in speed was constant and the energy distribution was uniform along the entire length of the time. The interpulse pause was of ∼1 ms, allowing the tissue cooling with reduction of thermal spread and quicker healing support. The result was the radical excision of granulations without injuring vocal folds. The respiratory function was restored and no other treatments such as arytenoidectomy or cordectomy associated with the alteration of phonatry function were required. No intraoperative or/and postoperative complications were registered and the patient was discharged 7 days after the procedure.

  20. Use of a video laryngoscope to facilitate removal of a long, sharp-pointed blade from the esophagus.

    PubMed

    Hiller, Kenneth N; Hagberg, Carin A

    2016-08-01

    Initial management of ingested esophageal foreign bodies involves airway assessment, determination of the requirement for and timing of therapeutic intervention, risk mitigation during removal, and identification of all indicated equipment for retrieval. Long, sharp-pointed objects lodged in the esophagus require emergent attention and should be retrieved endoscopically, if perforation has not occurred. Inducing general anesthesia and rapidly securing the airway can minimize the risk of aspiration, mitigate any effects of tracheal compression, avoid the potential of exacerbating existing trauma, and provide optimal conditions for removal of long, sharp-pointed esophageal foreign bodies. Video laryngoscopy provides improved recognition of anatomical structures in both normal and difficult airways, enabling assessment for hypopharyngeal and glottic trauma resulting from foreign body ingestion. The indirect view of video laryngoscopy also facilitates the coordinated manipulation of the airway by both the anesthesiologist and the surgeon as they visualize the anatomy together while securing the airway and removing the foreign body.

  1. Impact of blade motion on mass flux to seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, J.; Nepf, H. M.

    2016-12-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This mass flux may depend on the flow velocity (U), which can influence both the posture/motion of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. Flow over sufficiently pronated, hydraulically-smooth blades resembles flow over a flat-plate, on which a laminar boundary layer develops, producing mass flux that proportionally increases with the square root of the current speed (U0.5). Our laboratory experiments show that a laminar boundary layer condition is appropriate when the blades are sufficiently flexible; however, the model overestimates the flux when the blades are stiff. A meadow-scale analysis suggests that the mass exchange at the blade scale controls the uptake at the meadow scale, so that uptake at the meadow scale should also follow a U0.5 dependence. This is consistent with field measurements under unidirectional current, for which the flux, represented by a transfer velocity (K), exhibits a dependence on velocity of U0.4±0.2. For purely oscillatory flows we anticipate that the mass flux depends on the relative motion between the blade and the water flow. Preliminary flume experiments show that blade motion under wave conditions has two distinct regimes. In the first regime, the blade moves passively with the flow, which diminishes the relative motion and the mass flux. The second regime occurs when the blade is stiff. In this case, the phase lag between the blade and the flow enhances the relative motion, and thus also the mass flux.

  2. Monostatic radar cross-section spectra of a rotating-fan array, with tilted plate metal blades, in the PO/PTD approximation

    NASA Astrophysics Data System (ADS)

    Yang, T.-L.; Bor, S.-S.

    1992-12-01

    The monostatic radar cross-section spectra of a rotating-fan array, with tilted blades, are investigated. The high-frequency theoretical treatment of a slowly rotating and electrically large scatterer is based on the quasi-stationary method with the physical optics/physical theory of diffraction (PO/PTD) technique. Only the theta-theta polarization case is considered here, although the psi-psi polarization case can be treated in the same way. The solution is applicable to any observation angles, and, except for the condition of the same rotational velocity, each fan need not have the same number of blades and dimensions or the same spacing. An example, a linear array with two synchronously rotating fans, each with three identical tilted blades, is presented. The agreement between the theoretical and experimental results is acceptable.

  3. A fluid dynamic investigation of the Big Blade and Macon oar blade designs in rowing propulsion.

    PubMed

    Caplan, Nicholas; Gardner, Trevor N

    2007-04-01

    The purpose of this investigation was to examine the fluid dynamic characteristics of the two most commonly used oar blades: the Big Blade and the Macon. Scaled models of each blade, as well as a flat Big Blade, were tested in a water flume using a quasi-static method similar to that used in swimming and kayaking research. Measurement of the normal and tangential blade forces enabled lift and drag forces generated by the oar blades to be calculated over the full range of sweep angles observed during a rowing stroke. Lift and drag force coefficients were then calculated and compared between blades. The results showed that the Big Blade and Macon oar blades exhibited very similar characteristics. Hydraulic blade efficiency was not therefore found to be the reason for claims that the Big Blade could elicit a 2% improvement in performance over the Macon. The Big Blade was also shown to have similar characteristics to the flat plate when the angle of attack was below 90 degrees , despite significant increases in the lift coefficient when the angle of attack increased above 90 degrees . This result suggests that the Big Blade design may not be completely optimized over the whole stroke.

  4. Removal of ethmoidal malignant tumors by the isolated paralateronasal approach with resection of the cribriform plate and the dura mater.

    PubMed

    Faure, Alexis; Ferron, Christophe; Khalfallah, Mansour; Toquet, Judicaël; Hamel, Olivier; Raoul, Sylvie; Beauvillain de Montreuil, Claude; Robert, Roger

    2003-11-01

    A series of ethmoidal tumors was resected by an entirely extracranial approach through a lateral rhinotomy incision, with partial maxillectomy and removal of the cribriform plate and dura mater from below. Thirty-four consecutive patients (32 male, 2 female; mean age 64 years, range 45-78) with malignant tumors of the ethmoid sinus were operated by this technique between July 1998 and February 2002. All had complete tumor resection, including the cribriform plate and the dura mater. Excision was performed en bloc 23 times (68%). Although cerebral involvement was encountered in four cases (T4 IC), this technique was adequate for tumor resection, together with corticectomy when necessary. The method used for tumor resection and rebuilding of the anterior skull base is described in detail. There were no immediate postoperative deaths. One patient developed pneumococcal meningitis with cerebrospinal fluid leakage as a result of a technical error and required further surgery. Four patients presented a confusion syndrome that regressed during the hospital stay, 2 complained of transient diplopia, and 4 had hematoma of the abdominal wall. Mean follow-up of 10.4 months (1-41 months) is still too short to reach definitive conclusions about oncologic results. This approach is particularly suitable for removal of tumors in contact with or invading the cribriform plate. Tumor resection is as extensive as with the traditional mixed approach, but does not require the frontal lobes to be drawn aside.

  5. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    PubMed

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated.

  6. Biomechanics and biology of plate fixation of distal radius fractures.

    PubMed

    Freeland, Alan E; Luber, Kurre T

    2005-08-01

    The fracture management principles of anatomic or near anatomic reduction, fracture stabilization, minimal operative trauma, and early joint motion are paramount in man-aging unstable distal radial fractures. The operative approach and plate selection should correlate with the fracture configuration. Plates have the advantages of providing secure fixation throughout the entire healing process without protruding wires or pins and allowing early and intensive forearm, wrist, and digital exercises. Disadvantages include additional operative trauma, including fragment devascularization; some additional risk of wrist stiffness; occasional tendon rupture; and at times, the need for plate removal. New developments in plate and screw design and operative strategies, fragment specific fixation, and plate strength have improved results with plate fixation. Fixed angle blades and locking screws and pegs enhance overall plate stability, support the articular surface of the distal radius, and are effective in fractures occurring in osteopenic bone.

  7. Successful Solutions to SSME/AT Development Turbine Blade Distress

    NASA Technical Reports Server (NTRS)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  8. Successful Solutions to SSME/AT Development Turbine Blade Distress

    NASA Technical Reports Server (NTRS)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  9. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1993-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  10. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1988-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  11. Routine removal of the plate after surgical treatment for mandibular angle fracture with a third molar in relation to the fracture line

    PubMed Central

    Yamamoto, Kazuhiko; Matsusue, Yumiko; Horita, Satoshi; Murakami, Kazuhiro; Sugiura, Tsutomu; Kirita, Tadaaki

    2015-01-01

    Purpose: The purpose was to analyze the clinical course of surgically treated mandibular angle fractures from the viewpoint of routine removal of the plate because these fractures are associated with high rates of complications and plate removal. Subjects and Methods: The subjects were 40 patients with unilateral mandibular angle fracture, which was intraorally reduced and principally fixed with a single miniplate on the external oblique ridge. The third molar in relation to the fracture line was extracted in seven patients during the surgery. Clinical course was evaluated in terms of removal of the plate, preservation of the third molar and complications. Results: One patient showed a wound infection postoperatively, and two patients developed pericoronitis during the follow-up. These were managed with medication and local irrigation. One patient with a preserved third molar did not make a required visit and was lost from the follow-up. Removal of the plates was performed in 39 patients after confirmation of good fracture healing, mostly within a year. Twenty-four of 32 preserved third molars were simultaneously extracted. These procedures were generally performed under local anesthesia on an outpatient basis, and they did not cause any complications. Conclusions: Routine removal of the plate after surgical treatment for mandibular angle fractures, simultaneously with extraction of the third molar if indicated, may be beneficial to avoid complications related to the plate and the third molar later in life. PMID:26389039

  12. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    PubMed

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds.

  13. Removal of H2S pollutant from gasifier syngas by a multistage dual-flow sieve plate column wet scrubber.

    PubMed

    Kurella, Swamy; Bhukya, Pawan Kishan; Meikap, B C

    2017-02-16

    The objective of this study was to observe the performance of a lab-scale three-stage dual-flow sieve plate column scrubber for hydrogen sulfide (H2S) gas removal from a gas stream, in which the H2S concentration was similar to that of gasifier syngas. The tap water was used as scrubbing liquid. The gas and liquid were operated at flow rates in the range of 16.59 × 10(-4)-27.65 × 10(-4) Nm(3)/s and 20.649 × 10(-6)-48.183 × 10(-6) m(3)/s, respectively. The effects of gas and liquid flow rates on the percentage removal of H2S were studied at 50-300 ppm inlet concentrations of H2S. The increase in liquid flow rate, gas flow rate and inlet H2S concentration increased the percentage removal of H2S. The maximum of 78.88% removal of H2S was observed at 27.65 × 10(-4) Nm(3)/s gas flow rate and 48.183 × 10(-6) m(3)/s liquid flow rate for 300 ppm inlet concentration of H2S. A model has also been developed to predict the H2S gas removal by using the results from the experiments and adding the parameters that affect the scrubber's performance. The deviations between experimental and predicted H2S percentage removal values were observed as less than 16%.

  14. Blade for turbine engine

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Babu, Michael (Inventor); Murdock, James R. (Inventor)

    2004-01-01

    A blade for a turbine engine having a centerline. The blade comprises: a root section extending at an angle relative to the centerline; and an airfoil section extending from the root section. The root section is directly adjacent said airfoil section. In other words, the blade is neckless. The blade is part of a rotor assembly, and is preferably a fan blade.

  15. The use of air fuel cell cathodes to remove contaminants from spent chromium plating solutions.

    PubMed

    Huang, K L; Holsen, T M; Chou, T C; Yang, M C

    2004-01-01

    Results from experiments using an impregnation-reduction (I-R) Pt / Nafion membrane electrode assembly (MEA) in an air fuel cell cathode to remove contaminants (Cu(II), Ni(II), and Fe(III)) from spent chromium electroplating baths are presented in this study. A platinum-carbon (Pt-C) / Nafion MEA and a Pb planar cathode were also used for comparison. The average removal rates of Cu(II) and Ni(II) were almost the same (0.39 and 0.40 mM hr(-1) (or 0.117 and 0.12 mmol hr(-1)), respectively) but higher than that of Fe(III) (0.16 mM hr(-1), or 0.048 mmol hr(-1)) in accordance with the Nernst-Planck flux equation. The removal rates for the same cation were independent of the cathode used. The average removal rate of each impurity was approximately proportional to the product of its initial concentration and separator area/anolyte volume ratio using Pb cathodes. Under constant current conditions the system using the Pt-C / Nafion cathode needed the highest cell voltage, about 3 V more than needed for the system with the Pt / Nafion cathode. The cell voltage required using the Pt / Nafion cathode was similar to that using the conventional planar Pb cathode. Analyses of cathode deposits by SEM/EDS and XPS techniques indicated they were minimal on the Pb and Pt / Nafion cathode and more apparent on the Pt-C / Nafion cathode. The primary deposits on the Pb cathode were chromium oxides (e.g., Cr2O3) with minor amount of lead chromate (lead dichromate or lead trichromate) and other chromium solids (Cr black). As expected, the dominant deposit on the lead anode surface was PbO2.

  16. Turbine blade root design concept promises superior alignment

    NASA Technical Reports Server (NTRS)

    King, O. D.

    1966-01-01

    Blade-to-hub mounting concept assures excellent alignment integrity and results in elimination of some welding problems associated with designs. With this design, if rework is required, blade removal and replacement may be readily accomplished without damage to blade positioning media on the wheel hub.

  17. Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: Peanut hulls

    SciTech Connect

    Periasamy, K.; Namasivayam, C.

    1995-07-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Ni(II) from aqueous solution. The process of uptake obeys both Freundlich and Langmuir adsorption isotherms. The applicability of Lagergren kinetic model has also been investigated. Quantitative removal of Ni(II) from 100 mL aqueous solution containing 20 mg/L Ni(II) by 85 mg PHC was observed over a pH range of 4.0 to 10.0. The suitability of PHC for treating nickel plating industry wastewater was also tested. A comparative study with a commercial granular activated carbon (GAC) showed that PHC is 36 times more efficient compared to GAC based on Langmuir adsorption capacity (Q{sub O}).

  18. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1995-04-11

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

  19. Ceramic blade attachment system

    SciTech Connect

    Boyd, Gary L.

    1995-01-01

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

  20. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  1. Drum lid removal tool

    DOEpatents

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  2. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    PubMed

    Rivera, F F; González, I; Nava, J L

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid.

  3. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.

    PubMed

    Bayat, Belgin; Sari, Bulent

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25+/-2 degrees C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching>ferric chloride leaching>sulfuric acid

  4. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  5. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam.

    PubMed

    Lee, Chang-Gu; Lee, Soonjae; Park, Jeong-Ann; Park, Chanhyuk; Lee, Sang Jeong; Kim, Song-Bae; An, Byungryul; Yun, Seong-Taek; Lee, Sang-Hyup; Choi, Jae-Woo

    2017-01-01

    In this study, the characterizations and adsorption efficiencies for chromium, copper and nickel were evaluated using manufacture-grade Fe2O3-carbon foam. SEM, XRD, XRF and BET analyses were performed to determine the characteristics of the material. Various pore sizes (12-420 μm) and iron contents (3.62%) were found on the surface of the Fe2O3-carbon foam. Fe2O3-carbon foam was found to have excellent adsorption efficiency compared to carbon foam for mixed solutions of cationic and anionic heavy metals. The adsorption capacities for chromium, copper and nickel were 6.7, 3.8 and 6.4 mg/g, respectively, which were obtained using a dual exponential adsorption model. In experiments with varying dosages of the Fe2O3 powder, no notable differences were observed in the removal efficiency. In a fixed-bed column test, Fe2O3-carbon foam achieved adsorption capacities for chromium, copper and nickel of 33.0, 12.0 and 9.5 mg/g, respectively, after 104 h. Based on these results, Fe2O3-carbon foam was observed to be a promising material for treatment of plating wastewater.

  6. Elucidation of the reaction mechanism during the removal of copper oxide by halogen surfactant at the surface of copper plate

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki

    2013-01-01

    Although copper nanoparticles have various attractive properties, electrical applications of these was not achieved because of its surface oxide layer which prohibited electrical conduction. Thus, it can be considered that a new elimination method of the oxide on Cu surface, which simultaneously provide the resistance to re-oxidized, should be developed. In this study, the reaction between the metal oxide on Cu plate surface and halogen surfactant was introduced into development as a new elimination method of surface oxide layer. Since electrochemical and surface analysis are effective for analyzing the reaction mechanism which expected to be the reduction reaction of the oxide on metal surface, Cu electrode, which represented material of Cu nanoparticles surface, was used for the reaction mechanism analysis. The oxide is removed by controlling the temperature and selecting the optimal combination of solvents and the halogen surfactant (TIC). Results of electrochemical measurements strongly suggest that the chemical reaction between the oxides on the surface with the halogen surfactant is a substitution reaction which converts Cu oxide to Cu bromide, and continuously formed Cu bromide was dissolved into solvent. Totally, the oxide on the Cu surface was successfully eliminated.

  7. Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments.

    PubMed

    Lee, Seung-Chan; Kang, Jin-Kyu; Sim, Eun-Hye; Choi, Nag-Choul; Kim, Song-Bae

    2017-09-18

    The aim of this study was to investigate Cr(VI) removal from chromium-plating rinse water using modacrylic anion-exchange fibers (KaracaronTM KC31). Batch experiments were performed with synthetic Cr(VI) solutions to characterize the KC31 fibers in Cr(VI) removal. Cr(VI) removal by the fibers was affected by solution pH; the Cr(VI) removal capacity was the highest at pH 2 and decreased gradually with a pH increase from 2 to 12. In regeneration and reuse experiments, the Cr(VI) removal capacity remained above 37.0 mg g-1 over five adsorption-desorption cycles, demonstrating that the fibers could be successfully regenerated with NaCl solution and reused. The maximum Cr(VI) removal capacity was determined to be 250.3 mg g-1 from the Langmuir model. In Fourier-transform infrared spectra, a Cr = O peak newly appeared at 897 cm-1 after Cr(VI) removal, whereas a Cr-O peak was detected at 772 cm-1 due to the association of Cr(VI) ions with ion-exchange sites. X-ray photoelectron spectroscopy analyses demonstrated that Cr(VI) was partially reduced to Cr(III) after the ion exchange on the surfaces of the fibers. Batch experiments with chromium-plating rinse water (Cr(VI) concentration = 1178.8 mg L-1) showed that the fibers had a Cr(VI) removal capacity of 28.1-186.4 mg g-1 under the given conditions (fiber dose = 1-10 g L-1). Column experiments (column length = 10 cm, inner diameter = 2.5 cm) were conducted to examine Cr(VI) removal from chromium-plating rinse water by the fibers under flow-through column conditions. The Cr(VI) removal capacities for the fibers at flow rates of 0.5 and 1.0 mL min-1 were 214.8 and 171.5 mg g-1, respectively. This study demonstrates that KC31 fibers are effective in the removal of Cr(VI) ions from chromium-plating rinse water.

  8. Turbine blade

    SciTech Connect

    Butts, D.

    1993-08-03

    A blade is described for use in a gas turbine engine comprising: leading and trailing edges and first and second side walls extending there between, the side walls defining a coolant passage having a width D extending between the first and second side walls for channeling coolant there through in a direction substantially parallel to a longitudinal axis thereof, one of the side walls including a plurality of longitudinally spaced substantially straight turbulator ribs disposed substantially perpendicularly to the longitudinal axis in the coolant passage, each of the ribs having a height E and the radio E/D being greater than about 0.07; and further including a root and a first partition extending therefrom and wherein the coolant passage comprises a serpentine passage defined by the first partition and the side walls and includes a first passage extending along the leading edge and a second passage disposed substantially parallel to and in flow communication with the first passage, the ribs extending from the partition along both the first and second side walls to the leading edge in the first passage and from the first partition along both the first and second side walls in the second passage.

  9. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  10. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  11. Desulfurization Of Gas-Turbine Blades

    NASA Technical Reports Server (NTRS)

    Outlaw, Ronald A.

    1994-01-01

    Sulfur removed from nickel-base superalloy used to make gas-turbine blades by heating alloy and simultaneously subjecting it to sputtering by directed Ar(Sup+) ions from ion gun or from glow discharge. Reduction of sulfur content of superalloy by factor of 10 increases lifetime of turbine blade made of alloy by similar factor, because stability of protective surface oxide formed during operation of turbine increased.

  12. Vibration and flutter of mistuned bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  13. Advanced turbofan blade refurbishment technique

    SciTech Connect

    Roberts, W.B.

    1995-10-01

    The purpose of the work reported here is to investigate whether the lessons learned from the work of Suder et al. can be used to reduce the in-service performance deterioration of a fan on a high bypass ratio turbofan engine. To this end, a back-to-back test was done on the fan of an RB211-22B engine with the cooperation of Delta Airlines. The fan and engine were first overhauled per normal airline practice and cell-tested to establish that the engine performance met flight acceptance standards. This test, which the engine passed, also established a performance baseline for the overhauled engine. At this point the fan blade leading edge had not been filed or scraped and the blade surfaces had not been polished because the leading edge damage and blade surface roughness fell within the acceptable limits specified by the manufacturer for normal overhaul practice. After the cell test, the fan was removed from the engine and sent to Sermatech International where the following additional operations were performed: (1) the blade surfaces were polished to a finish of 20 rms {micro}in; (2) leading edge roughness due to particle impact damage was removed and the leading edge was polished to a finish of 20 rms {micro}in; (3) the leading edge shape was rounded and the leading edge thickness was reduced over the first 5--10% of chord. Test results indicated a 0.7% drop in thrust specific fuel consumption (lb fuel/lb thrust/hr) relative to the baseline engine after the enhanced fan overhaul. Based on the results of Suder et al. (1995) it appears that 70--80% of this performance gain is due to the thin smooth leading edge and the remainder to the highly polished finish of the blade.

  14. Turbine blade testing methods

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Testing procedures which could be used to model test turbine blades are developed. The methods studied were methods which used and extended current modal testing procedures. An acoustical impacting testing method was perfected for testing small turbine blades.

  15. Turbomachine blade assembly

    DOEpatents

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  16. Turbomachine blade reinforcement

    SciTech Connect

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  17. Turbine blade damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1984-01-01

    Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.

  18. Hydrodynamic blade guide

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  19. Turbulent transport on the endwall in the region between adjacent turbine blades

    SciTech Connect

    Goldstein, R.J.; Spores, R.A. )

    1988-11-01

    The complex three-dimensional flow in the endwall region near the base of a turbine blade has an important impact on the local heat transfer. The initial horseshoe vortex, the passage vortex, and resulting corner vortices cause large variations in heat transfer over the entire endwall region. Due to these large surface gradients in heat transfer, conventional measurement techniques generally do not provide in accurate determination of the local heat transfer coefficients. In the present study the heat/mass transfer analogy is used to examine the local transport coefficients for two different endwall boundary layer thicknesses and two free-stream Reynolds numbers. A linear turbine blade cascade is used in conjunction with a removable endwall plate. Napthalene (C{sub 10}H{sub 8}) is cast into a mold on the plate and the rate of naphthalene sublimation is determined at 6,000+ locations on the simulated endwall by employing a computer-aided data acquisition system. This technique allows one to obtain detailed contour plots of the local convection coefficient over the entire endwall. By examining the mass transfer contours, it is possible to infer information on three-dimensional flow in the passage between the blades. Extremely high transport coefficients on the endwall indicate locations of potential overheating and failure in actual turbine.

  20. Blade reliability collaborative :

    SciTech Connect

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  1. Composite fan blade

    SciTech Connect

    Farr, J.D.

    1993-08-31

    A composite fan blade is described for a prop fan engine comprising: a support disk having a plurality of hinge lugs formed therein, the disk being connected to an engine drive means; a bushing element; a fan blade formed from a first set of radially oriented unidirectional layers of fibers, the first set of layers of fibers being wrapped around the bushing element to form an elongated front side, an elongated back side, and a portion encompassing the bushing element; a blade platform formed from a second set of unidirectional layers of fibers having a first and a second end which are both wrapped around respective resin filler elements to form resin filled support pockets, the second set of unidirectional layers of fibers being wrapped around the portion of the fan blade encompassing the bushing element to place the resin filled support pockets against the portion of the fan blade encompassing the bushing element, wherein the fan blade and the blade platform form a fan blade assembly, the fan blade assembly having a plurality of hinge slots formed therein; and a pin element extending through the hinge formed by the plurality of hinge lugs in the support disk and the plurality of hinge slots in the fan blade assembly for attaching the fan blade assembly to the support disk.

  2. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2012-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  3. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  4. Weld bead reinforcement removal: A method of improving the strength and ductility of peaked welds in 2219-T87 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1979-01-01

    The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.

  5. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  6. Centrifugal Barrel Finishing Of Turbine-Blade "Fir Trees"

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.

    1990-01-01

    Modified centrifugal barrel-finishing machine imparts desired residual compressive stresses to "fir trees" of turbine blades. Centrifugal forces generate compressive stresses, which are transmitted to turbine blades through abrasive slurries in which suspended. Eliminates need for shot peening, rounding of edges and burrs caused by shot peening and, consequently, need for mass finishing operations to remove burrs. Improves surface finish of "fir trees".

  7. Veterans Administration Cooperative Dental Implant Study--comparisons between fixed partial dentures supported by blade-vent implants and removable partial dentures. Part IV: Comparisons of patient satisfaction between two treatment modalities.

    PubMed

    Kapur, K K

    1991-10-01

    This study compares treatment assessments made by two groups of patients with Kennedy class I or class II mandibular edentulous conditions, who received either a removable partial denture (RPD) (N = 115) or one or two fixed partial dentures (FPDs), each supported distally by a blade implant (N = 113). Two questionnaires were administered, one at 16 weeks after the implant or RPD insertion and at the 6-month interval and the other at 18, 36, and 60 months. Marked functional improvements were perceived by a large majority of patients in both groups after the insertion of prosthesis. At 6 months, a higher percent of patients with RPDs than those with FPDs found it easy to clean their RPDs and experienced chewing discomfort, restriction of food choices, feeling of insecurity with their RPDs, and difficulty with their pronunciation. The exclusion of assessments by 25 RPD patients, whose treatment was judged to be a failure functionally, made the mean differences between the two treatments statistically significant (p less than 0.05) only for ease of cleaning in favor of the RPD and fewer restrictions of food choices in favor of the FPD group. At 60 months, significant differences between the percents of patients with the most favorable responses occurred for perceptions of eating enjoyment, food particles seldom getting under the removable partial denture, and improvement in social life in favor of the FPD treatment and for the ease of cleaning the removable partial denture in favor of the RPD treatment. The results seem to support superiority of the FPD in terms of patient satisfaction, but not enough to favor this type of prosthesis over the RPD without consideration of other pertinent factors.

  8. Usage of low-intensity laser radiation for the treatment of the inflammatory processes of the oral cavity mucosa after applying removable plate dentures

    NASA Astrophysics Data System (ADS)

    Kalivradzhiyan, Edvard; Lesnykh, Nikolay; Kunin, Vadim; Mutafyan, Mikhail

    1995-04-01

    Effective methods of reveling overload zones of the oral mucosa under the bases of plane dentures, the effect of low intensity laser radiation ont he increase of its resistance are discussed. At present removable plate dentures of different modifications to a certain degree restore aesthetic proportions of the face, phonetics and malfunction of the teeth and jaws. Besides, removable bridge are known not to secure even distribution of mastication pressure along the whole dentures bed which results in the development of inflammatory and dystrophic processes, and, finally in the accelerated atrophy of the oral mucosa and bony tissue of the alveolar process of upper and alveolar parts of the mandible. Many papers are devoted to the anti-inflammatory effect of laser therapy. Improvement of metabolic processes and revascularization of the dentures bed mucosa, normalization of the oral microflora structure, anesthetizing effect is noted too. At the same time there are no papers about studying the therapeutic effect of low intensity laser radiation intraumatic dentures stomatitis, inflammation of the oral mucosa in the literature available for us. To increase the functional effectiveness of removable plate dentures, profilaxy of inflammation and dystrophic phenomena and to decrease adaptation period we have developed methods of early detection of overload zone of oral mucosa at the initial stages of acute inflammation with the help of macrohistochemical reaction. Visible with the naked eye for the timely and precise correction of the dentures.

  9. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  10. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-07-11

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

  11. Propeller blade retention system

    NASA Technical Reports Server (NTRS)

    Elston, III, Sidney B. (Inventor); Simon, III, Victor H. (Inventor); Tseng, Wu-Yang (Inventor); Butler, Lawrence (Inventor)

    1993-01-01

    The invention concerns the mounting of propeller blades to a ring-shaped rotor. The blades are of the variable pitch type, and the shank of each blade extends through a respective hole in the rotor. Each hole contains an annular shelf which is fastened to the wall of the hole and surrounds each shank. Each shank bears a pair of bearing races which sandwich the annular shelf in order to connect the blade to the rotor. Bearing rollers are positioned between the annular shelf and the bearing races.

  12. Impact absorbing blade mounts for variable pitch blades

    NASA Technical Reports Server (NTRS)

    Ravenhall, R.; Salemme, C. T.; Adamson, A. P. (Inventor)

    1977-01-01

    A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained.

  13. Effects of carriers on nutrient removal and membrane fouling in combined process of inclined-plates hydrolytic tank and membrane bioreactor.

    PubMed

    Li, Xin; Liu, Yali; Chu, Mingxing; Liu, Aimin

    2016-11-01

    A novel process, inclined-plates hydrolytic tank (IHT) and membrane bioreactor (MBR), was used to treat domestic sewage continuously. In this study, the effects of carriers' addition on operational performances of IHT-MBR were studied at the hydraulic retention time of 5.4 h and the recycling rate of 200%. Experimental results indicated the removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus reached 86.8%, 82.9% and 89.6%, respectively, corresponding trans-membrane pressure decreased to 1.50 kPa/d at a packing ratio of 20%. Simultaneously, the scanning electron microscope and soluble microbial products analysis demonstrated that high nutrient removal and low membrane fouling were attributed to the attached growth of microorganisms on carriers. The bioattachment and adsorption of carriers not only decreased the soluble proteins and polysaccharide in MBR, but also provided good living environments for denitrifying bacteria and phosphorus-accumulating bacteria.

  14. Veterans Administration Cooperative Dental Implant Study--comparisons between fixed partial dentures supported by blade-vent implants and removable partial dentures. Part I: Methodology and comparisons between treatment groups at baseline.

    PubMed

    Kapur, K K

    1987-10-01

    This study was conducted to determine whether fixed partial dentures supported by dental implants provide an acceptable alternative to conventional removable partial dentures in patients with Kennedy class I or class II edentulous conditions. The acceptability of the new treatment will be based on success rates, impact on the health of the remaining dentition, masticatory performance, patient satisfaction, and maintenance care and cost. The study was planned also to provide comparisons between two designs commonly used by dentists for fabricating removable partial dentures. The designs differed only in terms of the type of the retainer (clasp type) and tooth support (rest location). A total of 272 patients with Kennedy class I and class II edentulous conditions were assigned on a random basis to one of the treatment groups, 134 to receive a removable partial denture and 138 a fixed partial denture supported by a blade-vent implant. All of the patients were medically screened and met prespecified criteria for oral hygiene, bone support for abutment teeth, and size of the residual ridge. Thirty-four patients were eliminated from the study before completion of their treatment. An additional six patients with early implant failures were reentered in the study and followed up as a separate group. The remaining 232 patients received comprehensive dental care, including removable partial dentures for 118 and fixed partial dentures for 114 patients. A series of examinations, radiographs, masticatory performance tests, patient satisfaction, food selection questionnaires, and dietary history were completed before initiation of the treatment, 16 weeks after the insertion of an RPD or an implant, and thereafter at 6-, 18-, 36-, and 60-month intervals. In addition, patients were seen at 6-month intervals for a recall dental examination, oral prophylaxis, plaque instructions, radiographic survey of the implant, and any needed dental treatment. The randomization stratification

  15. Evaluation of MARC for the analysis of rotating composite blades

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-01-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  16. Bistable devices for morphing rotor blades

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence

    This dissertation presents two bistable concepts for morphing rotor blades. These concepts are simple and are composed of bistable devices that act as coupling structures between an actuator and the rotor blade. Bistable or "snap-through" mechanisms have two stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). The first concept that is presented in this dissertation is a that is composed of a bistable twisting device that twists the tip of helicopter rotor blades. This work examines the performance of the presented bistable twisting device for rotor morphing, specifically, blade tip twist under an aerodynamic lift load. The device is analyzed using finite element analysis to predict its load carrying capability and bistable behavior. The second concept that is presented is a concept that is composed of a bistable arch for rotor blade chord extension. The bistable arch is coupled to a thin flat plate that is supported by rollers. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. In this work, a methodology is presented to design the bistable arches for chord morphing using the finite element analysis and pseudo-rigid body model method. This work also examines the effect of different arches, arch hinge size and shape, inertial loads and rigidity on arch performance. Finally, this work shows results from an experiment that was conducted to validate the developed numerical model and demonstrates how the arch can be actuated using a Nitinol Shape Memory Alloy (SMA) wire to extend the chord of a helicopter rotor blade.

  17. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  18. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  19. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-01-10

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

  20. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  1. Helicopter blade tips

    NASA Technical Reports Server (NTRS)

    Lyothier, R.

    1983-01-01

    Methods of improving helicopter performance and vibration level by proper shaping of helicopter blade tips are considered. The principle involved consists of reducing the extent of the supersonic zone above the advancing tip and of the turbulent interaction. For stationary and advancing flight, the influence of the rotor and the problems posed by blade tips are reviewed. The theoretical methods of dealing with the two types of flight are briefly stated, and the experimental apparatus is described, including model triple and quadruple rotors. Different blade tip shapes are shown and briefly discussed. The theoretical results include an advancing speed of 309 km/H and a blade tip rotational speed of 215 m/s. The experimental values are advancing speed of 302 km/h and blade tip Mach number 0.86 for both types of rotors.

  2. Removal from the membrane affects the interaction of rat osseous plate ecto-nucleosidetriphosphate diphosphohydrolase-1 with substrates and ions.

    PubMed

    Garçon, Daniela P; Masui, Douglas C; Furriel, Rosa P M; Leone, Francisco A

    2008-01-01

    We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M (r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always <2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.

  3. Turbine Blade Research

    NASA Astrophysics Data System (ADS)

    1982-01-01

    Under contract with the New York State Energy Research and Development Authority, GE's Energy Systems Programs Department used a COSMIC program in assessing the problem of blade erosion in a PFB (pressurized fluid bed) environment. Data provided by this program and an associated program enabled the company engineers to determine gas velocities and the velocities of the particles striking the blades, calculations necessary for predicting blade erosion and potential damage. The assessment resulted in a new estimate for the allowable dust load for a modern heavy duty gas turbine.

  4. The Cooling of Turbine Blades,

    DTIC Science & Technology

    1981-06-11

    aviation gas turbine engine , everyone has ceaselessly come up with ways of raising the temperature of gases in a turbine before combustion. The reason for...temperature of the blade concerned by approximately 200 degrees. Jet -type cooling. When the surface of a turbine blade is at a temperature which is...the blade and multiplying the drop in the temperature of the blade . Figure 3 is a cross-section diagram of a turbine blade cooled by the jet

  5. Osteosynthesis using plates and screws after removing a limited area of the periosteum in order to reduce misclassified during radiological assessment metacarpal shaft fractures.

    PubMed

    Neagu, T P; Popescu, S A; Cobilinschi, C; Tincu, R; Tiglis, M; Lascar, I

    2016-01-01

    Hand fractures are one of the most common causes for presenting to the emergency room. Metacarpal fractures count about 18 to 44% of all hand fractures, and are most often standalone closed injuries, without misplacement, not needing operative treatment. We present a case in which osteosynthesis with plates and screws was used to reduce two metacarpal fractures in order to allow an early motion recovery, despite the fact that a small portion of the periosteum needed to be removed. The type of fractures were misclassified according to the radiological findings, therefore the correct diagnosis was established during surgery. The results according to the radiological aspects and to the DASH score were excellent with 95% function recovery at twelve months. In this case, the use of osteosynthesis with plates and screws led to a good fracture healing without any major complications. However, there are a series of complications related to this method that should be taken into consideration. Being misled by the radiological aspects of the fractures, the most certain way to classify a metacarpal shaft fracture is through exploratory surgery, even if in most of the cases the three radiological views are enough to establish the diagnosis. Abbreviations: DASH score = Disability of Arm, Shoulder and Hand score, TAM = Total Active Motion, MCP = metacarpal phalangeal joint, PIP = proximal inter phalangeal joint.

  6. Osteosynthesis using plates and screws after removing a limited area of the periosteum in order to reduce misclassified during radiological assessment metacarpal shaft fractures

    PubMed Central

    Neagu, TP; Popescu, SA; Cobilinschi, C; Tincu, R; Tiglis, M; Lascar, I

    2016-01-01

    Hand fractures are one of the most common causes for presenting to the emergency room. Metacarpal fractures count about 18 to 44% of all hand fractures, and are most often standalone closed injuries, without misplacement, not needing operative treatment. We present a case in which osteosynthesis with plates and screws was used to reduce two metacarpal fractures in order to allow an early motion recovery, despite the fact that a small portion of the periosteum needed to be removed. The type of fractures were misclassified according to the radiological findings, therefore the correct diagnosis was established during surgery. The results according to the radiological aspects and to the DASH score were excellent with 95% function recovery at twelve months. In this case, the use of osteosynthesis with plates and screws led to a good fracture healing without any major complications. However, there are a series of complications related to this method that should be taken into consideration. Being misled by the radiological aspects of the fractures, the most certain way to classify a metacarpal shaft fracture is through exploratory surgery, even if in most of the cases the three radiological views are enough to establish the diagnosis. Abbreviations: DASH score = Disability of Arm, Shoulder and Hand score, TAM = Total Active Motion, MCP = metacarpal phalangeal joint, PIP = proximal inter phalangeal joint PMID:27974942

  7. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1994-12-13

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

  8. Blades Across Pluto

    NASA Image and Video Library

    2016-03-31

    The red outline in this global view of Pluto from NASA New Horizons marks the large area of mysterious, bladed terrain extending from the eastern section of the large feature informally named Tombaugh Regio.

  9. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1994-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

  10. Blade attachment assembly

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  11. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  12. Blade Testing Trends (Presentation)

    SciTech Connect

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  13. Turbine Blade Illusion

    PubMed Central

    Lee, Rob

    2017-01-01

    In January 2017, a large wind turbine blade was installed temporarily in a city square as a public artwork. At first sight, media photographs of the installation appeared to be fakes – the blade looks like it could not really be part of the scene. Close inspection of the object shows that its paradoxical visual appearance can be attributed to unconscious assumptions about object shape and light source direction. PMID:28596821

  14. Turbine Blade Illusion.

    PubMed

    Mather, George; Lee, Rob

    2017-01-01

    In January 2017, a large wind turbine blade was installed temporarily in a city square as a public artwork. At first sight, media photographs of the installation appeared to be fakes - the blade looks like it could not really be part of the scene. Close inspection of the object shows that its paradoxical visual appearance can be attributed to unconscious assumptions about object shape and light source direction.

  15. Jet Engine Fan Blade Containment Using an Alternate Geometry

    NASA Technical Reports Server (NTRS)

    Carney, K.S.; Pereira, J.M.; Revilock, D.M.; Matheny, P.

    2008-01-01

    With a goal of reducing jet engine weight, simulations of a fan blade containment system with an alternate geometry were tested and analyzed. A projectile simulating a fan blade was shot at two alternate geometry containment case configurations using a gas gun. The first configuration was a flat plate representing a standard case configuration. The second configuration was a flat plate with a radially convex curve section at the impact point. The curved surface was designed to force the blade to deform plastically, dissipating energy before the full impact of the blade is received by the plate. The curved case was able to tolerate a higher impact velocity before failure. The computational model was developed and correlated with the tests and a weight savings assessment was performed. For the particular test configuration used in this study the ballistic impact velocity of the curved plate was approximately 60 m/s (200 ft/s) greater than that of the flat plate. For the computational model to successfully duplicate the test, the very high strain rate behavior of the materials had to be incorporated.

  16. Jet Engine Fan Blade Containment Using an Alternate Geometry

    NASA Technical Reports Server (NTRS)

    Carney, K.S.; Pereira, J.M.; Revilock, D.M.; Matheny, P.

    2008-01-01

    With a goal of reducing jet engine weight, simulations of a fan blade containment system with an alternate geometry were tested and analyzed. A projectile simulating a fan blade was shot at two alternate geometry containment case configurations using a gas gun. The first configuration was a flat plate representing a standard case configuration. The second configuration was a flat plate with a radially convex curve section at the impact point. The curved surface was designed to force the blade to deform plastically, dissipating energy before the full impact of the blade is received by the plate. The curved case was able to tolerate a higher impact velocity before failure. The computational model was developed and correlated with the tests and a weight savings assessment was performed. For the particular test configuration used in this study the ballistic impact velocity of the curved plate was approximately 60 m/s (200 ft/s) greater than that of the flat plate. For the computational model to successfully duplicate the test, the very high strain rate behavior of the materials had to be incorporated.

  17. Acoustic emission monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  18. Ceramic blade attachment system

    DOEpatents

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  19. Ceramic blade attachment system

    DOEpatents

    Frey, deceased, Gary A.; Jimenez, Oscar D.

    1996-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

  20. SSME blade damper technology

    NASA Technical Reports Server (NTRS)

    Kielb, Robert E.; Griffin, Jerry H.

    1987-01-01

    Before 1975 turbine blade damper designs were based on experience and very simple mathematical models. Failure of the dampers to perform as expected showed the need to gain a better understanding of the physical mechanism of friction dampers. Over the last 10 years research on friction dampers for aeronautical propulsion systems has resulted in methods to optimize damper designs. The first-stage turbine blades on the Space Shuttle Main Engine (SSME) high-pressure oxygen pump have experienced cracking problems due to excessive vibration. A solution is to incorporate a well-designed friction dampers to attenuate blade vibration. The subject study, a cooperative effort between NASA Lewis and Carnegie-Mellon University, represents an application of recently developed friction damper technology to the SSME high-pressure oxygen turbopump. The major emphasis was the contractor's design known as the two-piece damper. Damping occurs at the frictional interface between the top half of the damper and the underside of the platforms of the adjacent blades. The lower half of the damper is an air seal to retard airflow in the volume between blade necks.

  1. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  2. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  3. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  4. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  5. Turbojet engine blade damping

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.

    1981-01-01

    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  6. Fluid blade disablement tool

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  7. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  8. Design of thin shear blades for crosscut shearing of wood.

    Treesearch

    Rodger A. Arola; Thomas R. Grimm

    1974-01-01

    Discusses principles and presents formulations for evaluating the elastic stability of thin plates subjected to edge loadings. Three different prestress methods to increase late stability are presented. A procedure is given to evaluate the elastic stability of thin shear blades under expected shearing loads.

  9. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Coppa, A. P.; Stotler, C. L.

    1977-01-01

    The development of containment concepts for use with large composite fan blades, taking into account the frangible nature of composite blades is considered. Aspects of the development program include; (1) an analysis to predict the interaction between a failed fan blade and the blade containment structure; (2) scaling factors to allow impact testing using subscale containment rings and simulated blades; (3) the design and fabrication of containment systems for further evaluation in a rotating rig test facility; (4) evaluate the test data against the analytically predicted results; and (5) determine overall systems weights and design characteristics of a composite fan stage installation and compare to the requirements of an equivalent titanium fan blade system. Progress in the blade impact penetration tests and the design and fabrication of blade containment systems is reported.

  10. Failure Analysis of Fencing Blades

    NASA Astrophysics Data System (ADS)

    Kibaroglu, D.; Baydogan, M.; Cimenoglu, H.; Bas, B.; Yagsi, C.; Aliyeva, N.

    2017-05-01

    This study deals with the failure analysis of broken fencing blades (one épée and one foil). For the characterization of the broken blades, metallographic examinations, chemical analysis, hardness measurements, fracture surface examinations and tensile tests were performed. Maximum stress occurred at the outer fibres of the blades was estimated as high as 1456 MPa and 1298 MPa for épée and foil, respectively. Results showed that failure of the blades was initiated from a notch, which has been formed as the result of an impact action during training, or from the groove machined along the blade for inserting an electrical wire. In order to increase resistance of the blades against such failures, alternative blade material, modified blade geometry and a surface hardening treatment were proposed.

  11. Surface controlled blade stabilizer

    DOEpatents

    Russell, Larry R.

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  12. Improved function of prototype 4.3-mm Medtronic Quadcut microdebrider blade over standard 4.0-mm Medtronic Tricut microdebrider blade.

    PubMed

    Boone, John L; Feldt, Brent A; McMains, Kevin C; Weitzel, Erik K

    2011-01-01

    Test performance of a new prototype microdebrider blade. The commercially-available, standard 4.0-mm Medtronic straight Tricut blade was tested against the new, prototype 4.3-mm Medtronic straight Quadcut blade in experimental surgical conditions utilizing both a nasal polyp (NP) analog (raw oysters) and an allergic fungal sinusitis (AFS) analog (minced beef cat food). Both sides of 5 thawed, fresh-frozen cadaver heads were utilized for NP analog removal. AFS analog was removed out of specimen containers. A total of 10 paired data points were collected for time of surgical removal and number of clogs comparing the 2 blades. For simulated AFS debris, the prototype clogged less than the standard blade (0 vs 4.5, p < 0.0001). There were no clogs noted for either blade with the NP analog. Time for debris eradication was significantly improved for both AFS analog (147.4 vs 262.0 seconds, p < 0.0001) and NP analog (43.7 vs 112.1 seconds, p < 0.0001). The prototype blade offers faster debris and polyp removal and clogs less in the setting of allergic fungal debris. As the new blade is faster and more aggressive, introduction into a surgical setting should be guarded with an appropriate degree of caution. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  13. Cooled snubber structure for turbine blades

    DOEpatents

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  14. Eutectic Composite Turbine Blade Development

    DTIC Science & Technology

    1976-11-01

    turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13...composites in turbine blades for aircraft engines . An MC carbide fiber reinforced eutectic alloy, NiTaC-13 and the low pressure turbine blade of the...identified that appeared to have potential for application to aircraft engine turbine blade hardware. The potential benefits offered by these materials

  15. The MOD-1 steel blade

    NASA Technical Reports Server (NTRS)

    Vanbronkhorst, J.

    1979-01-01

    The design, development, fabrication, testing, and transport of two 100 foot metal blades for the MOD-1 WTS are summarized. Because the metal blade design was started late in the MOD-1 system development, many of the design requirements (allocations) were restrictive for the metal blade concept, particularly the maximum weight requirement. The design solutions required to achieve the weight goal resulted in a labor intensive (expensive) fabrication, particularly for a quantity of only two blades manufactured using minimal tooling.

  16. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.

    PubMed

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Okamoto, Yukihiro; Nakamura, Shinichiro; Nakamura, Takashi

    2009-02-01

    In response to socioeconomic pressure to cut budgets in medicine, single-use surgical instruments are often reprocessed despite potential biological hazard. To evaluate the quality and contaminants of reprocessed shaver blades. Reprocessed shaver blades have mechanical damage and chemical contamination. Controlled laboratory study. Seven blades and 3 abraders were reprocessed 1 time or 3 times and then were assessed. In the first part of the study, structural damage on the blades after 3 reprocessings was compared to that after 1 reprocessing using optical microscopy. In the second part, surface damage was observed using optical microscopy and scanning electron microscopy; elemental and chemical analyses of contaminants found by the microscopy were performed using scanning electron microscopy/energy dispersive x-ray spectroscopy, scanning Auger microscopy, and Fourier transform infrared spectroscopy. Optical microscopic examination revealed abrasion on the surface of the inner blade and cracks on the inner tube after 1 reprocessing. These changes were more evident after 3 reprocessings. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the blade reprocessed once showed contaminants containing calcium, carbon, oxygen, and silicon, and Fourier transform infrared spectroscopy demonstrated biological protein consisting mainly of collagen, some type of salts, and polycarbonate used in plastic molding. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the reprocessed abrader revealed contaminants containing carbon, calcium, phosphorous, and oxygen, and Fourier transform infrared spectroscopy showed H2O, hydroxyapatite, and hydroxyl proteins. Scanning Auger microscopy showed that the tin-nickel plating on the moving blade and abrader was missing in some locations. This is the first study to evaluate both mechanical damage and chemical contaminants containing collagen, hydroxyapatite, and salts

  17. Resistive band for turbomachine blade

    DOEpatents

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  18. Shock-free turbomachinery blade design

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. P.; Seebass, A. R.

    1985-01-01

    A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.

  19. Rotor blade system with reduced blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leishman, John G. (Inventor); Han, Yong Oun (Inventor)

    2005-01-01

    A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.

  20. Blade lock for a rotor disk and rotor blade assembly

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  1. Razor Blades to Computers.

    ERIC Educational Resources Information Center

    Schneider, Arthur

    Stages in developing editing equipment and processes for videotape are described. In 1956, when the first broadcast videotape recorders were installed, a splicing block, consisting of an aluminum block, steel ruler, and sharp razor blade, was used. Gradually, technicians developed more sophisticated methods. At present, two very advanced methods…

  2. Thermosyphon Method for Cooling the Rotor Blades of High-Temperature Steam Turbines

    NASA Astrophysics Data System (ADS)

    Bogomolov, Alexander R.; Temnikova, Elena Yu.

    2016-02-01

    The design scheme of closed two-phase thermosyphon were suggested that can provide standard thermal operation of blades of high-temperature steam turbine. The method for thermosyphon calculation is developed. The example of thermal calculation was implemented, it showed that to cool the steam turbine blades at their heating by high-temperature steam, the heat can be removed in the rear part of the blades by air with the temperature of about 440°C.

  3. Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Kosmatka, John B.

    1997-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  4. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  5. Turbine blade and non-integral platform with pin attachment

    DOEpatents

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  6. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  7. Turbine blade and non-integral platform with pin attachment

    DOEpatents

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  8. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  9. Laser-based gluing of diamond-tipped saw blades

    NASA Astrophysics Data System (ADS)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  10. Calculation of the adjoint masses for an annular blade assembly

    SciTech Connect

    Tkacheva, L.A.

    1984-03-01

    It is necessary to know the adjoint-mass coefficients in order to solve various problems in turbine aeroelasticity such as the calculation of the natural frequencies and forms of blade vibrations. These coefficients are known only for the planar set of plates, so interest attaches to estimating the effects of the three-dimensional flow on their magnitudes. Here the authors consider the adjoint masses for a three-dimensional ring set of thin blades performing small harmonic oscillations with a constant phase shift in an incompressible fluid.

  11. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  12. Stator Blade Laser Window Research

    NASA Technical Reports Server (NTRS)

    Lugas, Grant A.

    2004-01-01

    All turbofan engines used in modern aviation contain a series of fan blades and compressor blades which are all connected to one drive shaft. Inside the jet engine between each set of blades are stator blades, which are pitched opposite of the fan and compressor blades, the stator blades are both rotational and axial fixed in place. The project that I was assigned to involves the QAT 22 fan test rig; which is currently under final design review and very soon will be fabricated. The purpose of this research facility is to better understand the effects of stator blades. Stator blades are used to straiten the air in a turbine. The researcher's primary aim is to determine what the airflow is like at both the leading edge and the trailing edge of a stator blade. My work focused on designing the windows usable for both a compressor rig and a test fan rig. The difference between the two is the test fan application will be looking into a stator blade array rather than just looking at the rotor. My discussion will include a detailed explanation of how the PIV laser window system functions fiom start to finish. I will also discuss how the information is gathered and organized. Further more I plan to talk about the purpose of this kind of research and the advantages to using this technology to determine the airflow characteristics of blade designs. Finally I will discuss the researcher s conclusion on the relationship between aerodynamics of a blade and how noise is produced. NASA's main goal with this particular facility is find ways to quiet engine noise by reducing the amount of cavitations that occurs around the blades of a turbofan engine. Additional information is included in the original extended abstract.

  13. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  14. Bladed disk vibration

    NASA Technical Reports Server (NTRS)

    Griffin, J. H.

    1987-01-01

    The objective was to better understand the vibratory response of bladed disk assemblies that occur in jet engines or turbopumps. Two basic problems were investigated: how friction affects flutter; and how friction, mistuning, and stage aerodynamics affect resonance. Understanding these phenomena allows a better understanding of why some stages have high vibratory stresses, how best to manage those stresses, and what to do about reducing them if they are too large.

  15. Controllable Camber Windmill Blades

    DTIC Science & Technology

    2001-04-18

    reduce turbulence and noise. 2 5 Windmills are alternative energy sources with low 2 6 environment impact and have been around for many centuries...present invention to provide a 12 wind operated power generation system as above which extends the 13 range of wind speeds at which energy can be...which the windmill can practically 3 produce energy . Secondly, at any specific wind speed, the 4 blade’s shape is optimized for that speed and

  16. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  17. Impact of current speed on mass flux to a model flexible seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2016-07-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. This flux may depend on the current speed (U), which can influence both the posture of flexible blades (reconfiguration) and the thickness of the flux-limiting diffusive layer. The impact of current speed (U) on mass flux to flexible blades of model seagrass was studied through a combination of laboratory flume experiments, numerical modeling and theory. Model seagrass blades were constructed from low-density polyethylene (LDPE), and 1, 2-dichlorobenzene was used as a tracer chemical. The tracer mass accumulation in the blades was measured at different unidirectional current speeds. A numerical model was used to estimate the transfer velocity (K) by fitting the measured mass uptake to a one-dimensional diffusion model. The measured transfer velocity was compared to predictions based on laminar and turbulent boundary layers developing over a flat plate parallel to flow, for which K∝U0.5 and ∝U, respectively. The degree of blade reconfiguration depended on the dimensionless Cauchy number, Ca, which is a function of both the blade stiffness and flow velocity. For large Ca, the majority of the blade was parallel to the flow, and the measured transfer velocity agreed with laminar boundary layer theory, K∝U0.5. For small Ca, the model blades remained upright, and the flux to the blade was diminished relative to the flat-plate model. A meadow-scale analysis suggests that the mass exchange at the blade scale may control the uptake at the meadow scale.

  18. Snubber assembly for turbine blades

    SciTech Connect

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  19. Ceramic Barrier Turbine Blade Demonstration.

    DTIC Science & Technology

    1986-05-01

    turbine engine in which high temperature capability was being incorporated. The baseline engine is the F107 , currently used to power the Air Force cruise... F107 engine, the complexity of the blade profile was reduced to keep design, RI/RD86-150 -3- %% • =C analysis, and fabrication effort within the...final blade profile was reviewed by Williams International and found to be acceptable for use in the ,1 F107 engine. CERAMIC BARRIER TURBINE BLADE

  20. CALUTRON FACE PLATE

    DOEpatents

    Brobeck, W.M.

    1959-08-25

    The construction of a removable cover plate for a calutron tank is described. The plate is fabricated of a rectangular frame member to which is welded a bowed or dished plate of thin steel, reinforced with transverse stiffening ribs. When the tank is placed between the poles of a magnet, the plate may be pivoted away from the tank and magnet and is adapted to support the ion separation mechanism secured to its inner side as well as the vacuum load within the tank.

  1. Ceramic blade with tip seal

    DOEpatents

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  2. Helicopter rotor blade design for minimum vibration

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1984-01-01

    The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.

  3. Development of Repair and Reprocess Coatings for Air-Cooled Nickel Alloy Turbine Blades.

    DTIC Science & Technology

    NICKEL ALLOYS , METAL COATINGS, GAS TURBINE BLADES, MAINTENANCE, PROCESSING, ABRASIVE BLASTING, MATERIALS, REMOVAL, SUBSTRATES, SLURRY COATING...NONDESTRUCTIVE TESTING, OXIDATION, CORROSION, AIR COOLED, RUPTURE, CREEP, STRUCTURAL PROPERTIES, EROSION, SPALLATION, LIFE EXPECTANCY(SERVICE LIFE), COBALT ALLOYS , DIFFUSION.

  4. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  5. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  6. Process of forming a plated wirepack with abrasive particles only in the cutting surface with a controlled kerf

    NASA Technical Reports Server (NTRS)

    Smith, Maynard B. (Inventor); Schmid, Frederick (Inventor); Khattak, Chandra P. (Inventor)

    1983-01-01

    A narrow wire blade with abrasive particles plated within a longitudinally-extending, plated cutting portion that extends from only one side of a wire core and has parallel side walls spaced by a controlled width.

  7. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    PubMed Central

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-01

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612

  8. A non-uniformly under-sampled blade tip-timing signal reconstruction method for blade vibration monitoring.

    PubMed

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-22

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  9. Blade design. [structural design criteria

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Glassman, A. J.

    1973-01-01

    The design of turbine blading is considered that will produce the flow angles and velocities required by velocity diagrams consistent with the desired efficiency and/or number of stages. The determination of the size, shape, and spacing of the blades is fundamental.

  10. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  11. Integrated circuit cooled turbine blade

    DOEpatents

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  12. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  13. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  14. Rub energetics of compressor blade tip seals

    NASA Technical Reports Server (NTRS)

    Laverty, W. F.

    1981-01-01

    The rub mechanics of aircraft gas turbine engine compressor abradable blade tip seals was studied at simulated engine conditions. In 12 statistically planned, instrumented rub tests using single titanium blades and fiber-metal rubstrips the rub velocity, incursion rate, incursion depth, blade thickness, and abradable strength were varied to determine the effects on rub energy, heat split between the blade, rubstrip surface and rub debris, and blade and seal wear. The rub energies were found to be most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. In five additional rub tests using single nickel alloy blades and multiple titanium alloy blades, rub energy and wear effects were found to be similar for titanium and nickel alloy blades while rub energies increased for multiple blades relative to single blade test results.

  15. Rub energetics of compressor blade tip seals

    SciTech Connect

    Laverty, W.F.

    1981-03-30

    The rub mechanics of aircraft gas turbine engine compressor abradable blade tip seals was studied at simulated engine conditions. In 12 statistically planned, instrumented rub tests using single titanium blades and fiber-metal rubstrips, the rub velocity, incursion rate, incursion depth, blade thickness, and abradable strength were varied to determine the effects on rub energy, heat split between the blade, rubstrip surface and rub debris, and blade and seal wear. The rub energies were found to be most significantly affected by the incursion rate while rub velocity and blade thickness were of secondary importance. In five additional rub tests using single nickel alloy blades and multiple titanium alloy blades, rub energy and wear effects were found to be similar for titanium and nickel alloy blades while rub energies increased for multiple blades relative to single blade test results.

  16. Theoretical analysis of impact in composite plates

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1973-01-01

    The calculated stresses and displacements induced anisotropic plates by short duration impact forces are presented. The theoretical model attempts to model the response of fiber composite turbine fan blades to impact by foreign objects such as stones and hailstones. In this model the determination of the impact force uses the Hertz impact theory. The plate response treats the laminated blade as an equivalent anisotropic material using a form of Mindlin's theory for crystal plates. The analysis makes use of a computational tool called the fast Fourier transform. Results are presented in the form of stress contour plots in the plane of the plate for various times after impact. Examination of the maximum stresses due to impact versus ply layup angle reveals that the + or - 15 deg layup angle gives lower flexural stresses than 0 deg, + or - 30 deg and + or - 45 deg. cases.

  17. Vibrations of blades with variable thickness and curvature by shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    A procedure for analyzing the vibrations of rotating turbomachinery blades has been previously developed. This procedure is based upon shallow shell theory, and utilizes the Ritz method to determine frequencies and mode shapes. However, it has been limited heretofore to blades of uniform thickness, uniform curvature, and/or twist and rectangular planform. The present work shows how the procedure may be generalized to eliminate the aforementioned restrictions. Nonrectangular planforms are dealt with by a suitable coordinate transformation. This, as well as variable thickness, curvature and twist, require using numerical integration. The procedure is demonstrated on four examples of cantilevered blades for which theoretical and experimental data have been previously published: (1) flat plate with spanwise taper, (2) flat plate with chordwise taper, (3) twisted plate with chordwise taper, and (4) cylindrical shell with chordwise taper.

  18. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  19. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D [Jupiter, FL

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  20. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  1. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  2. [Blade auricular septostomy].

    PubMed

    Ledesma Velasco, M; Nuñez Garduño, D; Salgado Escobar, J L; Munayer Calderón, J; Rodríguez Hernández, L; Rangel Abundis, A

    1987-01-01

    We describe the first case of BAS in our country in a three months old child with transposition of the great arteries, restrictive atrial septal defect (RASD) and intact interventricular septum. When he was 15 days old, we performed a balloon atrial septostomy. He had temporal improvement and six weeks later his cyanosis increased, and a new catheterization showed systemic arterial oxygen saturation of 30%, RASD and an interatrial pressure gradient of 2.1 mmHg (left atrium LA: 3.9 and right atrium RA: 1.8). We decided to perform a new septostomy with Park's blade atrial septostomy catheter. After the procedure the interatrial pressure gradient decreased to 0.2 mmHg (RA: 4.3 and LA: 4.5), the angiography shunt and atrial pressures increased. Five months later the child is alive and the systemic arterial oxygen saturation is 51.3%. The technique, advantages and complications are described.

  3. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  4. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  5. Flat Plate Cascades at Supersonic Speed

    NASA Technical Reports Server (NTRS)

    El Badrawy, Rashad M

    1956-01-01

    A brief review of exact two-dimensional supersonic flow theory and Ackeret's linearized theory are first presented. The lift and drag coefficients of a cascade of flat plates are calculated exactly and compared to those obtained using the linearized theory. The forces on the cascade are determined for unsteady inlet flow. The flat plate cascade theory is extended to compute the efficiency of a supersonic propeller with friction and finite blade thickness.

  6. Novel Compressor Blade Design Study

    NASA Astrophysics Data System (ADS)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  7. Wooden wind turbine blade manufacturing process

    DOEpatents

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  8. Optical Blade Position Tracking System Test

    SciTech Connect

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  9. Turbine blade thermal fatigue testing Pratt and Whitney aircraft hollow core blades

    NASA Technical Reports Server (NTRS)

    Ingram, J.; Gross, L.

    1985-01-01

    The results of low cycle fatigue testing on turbine blades for use in hydrogen/oxygen rocket engines is presented. Cored blade and cored blades with circulation were tested in the MSFC thermal fatigue tester. Both blade configurations showed significant low cycle fatigue life improvements when compared to baseline solid blades.

  10. Monitoring system of wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Schubert, L.; Meyendorf, N.; Friedmann, H.; Ebert, C.

    2009-03-01

    Conventionally, modal monitoring of Wind Turbine Rotor Blades is primarily based on the evaluation of eigenfrequencies. Beyond this, combining a sensor network with the Operational Modal Analysis (OMA) method, mode shape and parallely a local component are utilized here. In addition it is expected that the damping, which is also determined by the OMA method, will give a lead on damage development at the rotor already at an early stage. Modal monitoring by means of measurement is combined with FEM simulation and with the comparison of results obtained from measurement and simulation. Moreover, this will establish a connection between the engineer and the design data of a rotor blade, which also are based on FEM analyzes. A further significant increase regarding error resolution is possible by combining the global modal methods with locally sensitive monitoring methods, based on guided elastic waves. These assume plate-like structures through which elastic waves propagate in the low-frequency ultrasonic range (10 - 100 kHz) in certain modes. These different wave modes interact distinctively with inner structural damages such as web fractures and delaminations. It is differentiated between piezoelectrically excited waves (acousto ultrasonics), and waves produced by energy released at fractures, delamination etc. (acoustic emission). Applying a moderate number of sensors, the combination of both methods can allow an effective monitoring of the global structure.

  11. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  12. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  13. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Coppa, A. P.

    1979-01-01

    A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.

  14. Tiltrotor research aircraft composite blade repairs: Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  15. Optical and thermal performance of bladed receivers

    NASA Astrophysics Data System (ADS)

    Pye, John; Coventry, Joe; Ho, Clifford; Yellowhair, Julius; Nock, Ian; Wang, Ye; Abbasi, Ehsan; Christian, Joshua; Ortega, Jesus; Hughes, Graham

    2017-06-01

    Bladed receivers use conventional receiver tube-banks rearranged into bladed/finned structures, and offer better light trapping, reduced radiative and convective losses, and reduced tube mass, based on the presented optical and thermal analysis. Optimising for optical performance, deep blades emerge. Considering thermal losses leads to shallower blades. Horizontal blades perform better, in both windy and no-wind conditions, than vertical blades, at the scales considered so far. Air curtains offer options to further reduce convective losses; high flux on blade-tips is still a concern.

  16. Rotor blade assembly having internal loading features

    DOEpatents

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  17. Blade Manufacturing Improvement Project: Final Report

    SciTech Connect

    SHERWOOD, KENT

    2002-10-01

    The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

  18. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  19. Impact resistance of spar-shell composite fan blades

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1973-01-01

    Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.

  20. Horizontally rotating disc recirculated photoreactor with TiO2-P25 nanoparticles immobilized onto a HDPE plate for photocatalytic removal of p-nitrophenol.

    PubMed

    Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed

    2017-05-05

    In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO2) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min(-1)) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO2-P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.

  1. Ceramic blade with tip seal

    DOEpatents

    Glezer, Boris; Bhardwaj, Narender K.; Jones, Russell B.

    1997-01-01

    The present gas turbine engine (10) includes a disc assembly (64) defining a disc (66) having a plurality of blades (70) attached thereto. The disc (66) has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc (66). A shroud assembly (100) is attached to the gas turbine engine (10) and is spaced from the plurality of blades (70) a preestablished distance forming an interface (108) therebetween. Positioned in the interface is a seal (110) having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades (70).

  2. Turbine Blade Image Processing System

    NASA Astrophysics Data System (ADS)

    Page, Neal S.; Snyder, Wesley E.; Rajala, Sarah A.

    1983-10-01

    A vision system has been developed at North Carolina State University to identify the orientation and three dimensional location of steam turbine blades that are stacked in an industrial A-frame cart. The system uses a controlled light source for structured illumination and a single camera to extract the information required by the image processing software to calculate the position and orientation of a turbine blade in real time.

  3. Blade tip timing (BTT) uncertainties

    NASA Astrophysics Data System (ADS)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  4. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    PubMed

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%.

  5. Bonding quality evaluation of wind turbine blades by pulsed thermography

    NASA Astrophysics Data System (ADS)

    He, Rui-gang; Kong, De-juan; Zeng, Zhi; Tao, Ning; Zhang, Cun-lin; Feng, Li-chun

    2011-08-01

    The glue defects of the wind turbine blades which are composed of the glass fiber reinforced plastic (GFRP) composite plates make its strength greatly reduced, so security issues could be caused. To improve the safety of wind turbine blades, nondestructive testing technique using pulsed thermography is being investigated in this study. The results of ultrasonic C scan test were compared with the results of thermography. The current results indicated that both methods can successfully detect two gluing situations. However, the inspect specimens need to be putted in the water in the detection process by ultrasonic C scan, and the detection time lasts much longer than pulsed thermography. And in situ applications, the measured wind turbine blades are normally in the size of several tens meter, and also only one side is available for the inspection especially at the tip of blades. Thus, ultrasonic C scan of current experimental setup is not suitable for the applications in the field. Pulsed thermography is not necessary to contact with inspected specimens. The infrared results by pulsed thermography indicate that the shape and size of deficiency glue defects in the specimens show good agreement with the real situation, so it is more suitable for the inspection in the field. The preliminary results in this study indicate that pulse thermography can be used to detect glue faults of GFRP which are not too thick.

  6. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  7. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  8. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  9. Application of image analysis and time-frequency analysis for tracking the rotating blades vibration

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ting; Hsiung, Wan-Ying; Yang, Yuan-Shen; Loh, Chin-Hsiung

    2014-03-01

    The objective of this paper is to investigate the application of the photogrammetric approach to measuring the vibration of a research-scale wind turbine blade model (both damage and undamaged blade). In order to control the excitation (rotation of the wind turbine blade), a motor was used to spin the blades at controlled angular velocities. Two cameras are set in front of the turbine to tape the video images. Through a sequence of stereo image pairs acquired by high speed camera, the images are studied. The camera we used is the BASLER acA2000-340km (2048x1088, 340FPS). Before taking the photos camera calibration was conducted which include lens distortion and skew factor is examined. To analyze the displacement of the motion target on the turbine blade, after loading the 3D calibration, the 3D positions are calculated by using a stereo triangulation technique. Then the displacement fields by image template matching can be calculated. Application of the technique to track the 3D motion of the rotating wind turbine blade is demonstrated by using data from the research-scale wind turbine. Different from the image processing technique data from the contact sensors (accelerometers) is also used. Through Rodrigues' rotation formula to remove the rotation frequency it is easy to extract the out-of-plane motion of the blade, from which the model frequency of the blade can be identified.

  10. Synthesis of individual rotor blade control system for gust alleviation

    NASA Technical Reports Server (NTRS)

    Wang, Ji C.; Chu, Alphonse Y.; Talbot, Peter D.

    1990-01-01

    The utilization of rotor flapping in synthesizing an Individual Blade Control (IBC) system for gust alleviation is demonstrated. The objective is to illustrate and seek to improve Ham's IBC method. A sensor arrangement with two accelerometers mounted on the root and tip of a blade is proposed for estimating of flapping states for feedback control. Equivalent swash plate implementation of IBC is also deliberated. The study concludes by addressing the concept of general rotor states feedback, of which the IBC method is a special case. The blade flapping equation of motion is derived. Ham's original IBC method and a modified IBC scheme called Model Reference (MRIBC) are examined, followed by simulation study with ideal measurements and relative performances of the two methods. The practical aspects of IBC implementation are presented. Different configuration of sensors and their merits are considered. The realization of IBC using equivalent swash plate instead of direct actuator motion is discussed. It is shown that IBC is a particular case of rotor states feedback. The idea of general rotor states feedback is further elaborated. Finally, major conclusions are given.

  11. Large, low cost composite wind turbine blades

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  12. Probabilistic Evaluation of Blade Impact Damage

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Abumeri, G. H.

    2003-01-01

    The response to high velocity impact of a composite blade is probabilistically evaluated. The evaluation is focused on quantifying probabilistically the effects of uncertainties (scatter) in the variables that describe the impact, the blade make-up (geometry and material), the blade response (displacements, strains, stresses, frequencies), the blade residual strength after impact, and the blade damage tolerance. The results of probabilistic evaluations results are in terms of probability cumulative distribution functions and probabilistic sensitivities. Results show that the blade has relatively low damage tolerance at 0.999 probability of structural failure and substantial at 0.01 probability.

  13. Ceramic blade attachments. [for turbine rotors

    NASA Technical Reports Server (NTRS)

    Calvert, G. S.; Carruthers, W. D.

    1978-01-01

    Studies under way on two concepts for producing a turbine rotor with ceramic blades and superalloy disks are discussed. One concept employs hot-pressed silicon nitride blades and a compliant interlayer at the blade root end fitting whereas the second concept relies on a superplastic plastic forging technique to attach ceramic blades to the metal disk. This latter concept has been hot spin tested at 2250 F and 45,000 RPM for 50 hours in a vacuum spin pit. The fully bladed (30 blades) rotor survived this major test.

  14. Stability analysis of flexible wind turbine blades using finite element method

    NASA Technical Reports Server (NTRS)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  15. Stability analysis of flexible wind-turbine blades using finite-element method

    SciTech Connect

    Kamoulakos, A.

    1982-08-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to a common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  16. Structural integrity design for an active helicopter rotor blade with piezoelectric flap actuators

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwan; Shin, SangJoon

    2011-04-01

    Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. The aerodynamic load and aeroacoustic noise is at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle with N/rev. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to reduce the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber line of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  17. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  18. The three-dimensional boundary layer on a rotating helical blade

    NASA Technical Reports Server (NTRS)

    Morris, P. J.

    1981-01-01

    The laminar boundary layer on a twisted helical blade is considered. The blade geometry is the same as that proposed by Horlock and Wordsworth (1965). However, the blade is twisted about the leading edge in the manner described by Miyake and Fujita (1974). The flow may be considered to be the analog, in a rotating reference frame, of the flat-plate boundary layer in a stationary frame. It is shown that a coordinate system which is orthogonal in the blade surface may be developed. With the appropriate scaling of the dependent variables a solution for the boundary layer flow is readily obtained. The systems of ordinary differential equations for the stream function of the primary flow and the cross-flow are solved numerically.

  19. Progressive failure of composite wind blades with a shear-web spar subjected to static testing

    NASA Astrophysics Data System (ADS)

    Kam, T. Y.; Chiu, Y. H.

    2017-06-01

    Composite wind blades of 1m long comprising glass-fabric/epoxy skins and a sandwich plate-type spar were designed and fabricated for static testing. In the composite wind blades, the spar supports the top and bottom skins to form the airfoil shape of NACA4418. The blades were tested to failure and the failure modes were identified at different loading stages. A structural failure analysis method which consists of a geometrically nonlinear finite element (FE) model and appropriate phenomenological failure criteria is used to study the progressive failure behaviours of the blades subjected to different types of quasi-static loads. The experimental load-displacement curves as well as failure loads and locations for different failure modes are used to validate the suitability of the proposed failure analysis method.

  20. Blade tip vortex measurements on actively twisted rotor blades

    NASA Astrophysics Data System (ADS)

    Bauknecht, André; Ewers, Benjamin; Schneider, Oliver; Raffel, Markus

    2017-05-01

    Active rotor control concepts, such as active twist actuation, have the potential to effectively reduce the noise and vibrations of helicopter rotors. The present study focuses on the experimental investigation of active twist for the reduction of blade-vortex interaction (BVI) effects on a model rotor. Results of a large-scale smart-twisting active rotor test under hover conditions are described. This test investigated the effects of individual blade twist control on the blade tip vortices. The rotor blades were actuated with peak torsion amplitudes of up to 2° and harmonic frequencies of 1-5/rev with different phase angles. Time-resolved stereoscopic particle image velocimetry was carried out to study the effects of active twist on the strength and trajectories of the tip vortices between ψ _ {v}= 3.6° and 45.7° of vortex age. The analysis of the vortex trajectories revealed that the 1/rev active twist actuation mainly caused a vertical deflection of the blade tip and the corresponding vortex trajectories of up to 1.3% of the rotor radius R above and -1%R below the unactuated condition. An actuation with frequencies of 2 and 3/rev significantly affected the shapes of the vortex trajectories and caused negative vertical displacements of the vortices relative to the unactuated case of up to 2%R within the first 35° of wake age. The 2 and 3/rev actuation also had the most significant effects on the vortex strength and altered the initial peak swirl velocity by up to -34 and +31% relative to the unactuated value. The present aerodynamic investigation reveals a high control authority of the active twist actuation on the strength and trajectories of the trailing blade tip vortices. The magnitude of the evoked changes indicates that the active twist actuation constitutes an effective measure for the mitigation of BVI-induced noise on helicopters.

  1. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  2. Blade Tip Rubbing Stress Prediction

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.; Clough, Ray C.

    1991-01-01

    An analytical model was constructed to predict the magnitude of stresses produced by rubbing a turbine blade against its tip seal. This model used a linearized approach to the problem, after a parametric study, found that the nonlinear effects were of insignificant magnitude. The important input parameters to the model were: the arc through which rubbing occurs, the turbine rotor speed, normal force exerted on the blade, and the rubbing coefficient of friction. Since it is not possible to exactly specify some of these parameters, values were entered into the model which bracket likely values. The form of the forcing function was another variable which was impossible to specify precisely, but the assumption of a half-sine wave with a period equal to the duration of the rub was taken as a realistic assumption. The analytical model predicted resonances between harmonics of the forcing function decomposition and known harmonics of the blade. Thus, it seemed probable that blade tip rubbing could be at least a contributor to the blade-cracking phenomenon. A full-scale, full-speed test conducted on the space shuttle main engine high pressure fuel turbopump Whirligig tester was conducted at speeds between 33,000 and 28,000 RPM to confirm analytical predictions.

  3. Hub-mounted actuators for blade pitch collective control

    NASA Technical Reports Server (NTRS)

    Jeffery, Philip A. E. (Inventor); Luecke, Greg R. (Inventor)

    1985-01-01

    Blade collective pitch control is provided for a rotor system by rotary actuators located between adjacent blades. Each actuator is connected to the leading edge of one adjacent blade and the trailing edge of the other adjacent blade.

  4. Dynamic response and aeroelastic analysis of a propeller blade of a prop-fan engine

    NASA Astrophysics Data System (ADS)

    Joo, Gene; Lee, Hae-Kyung

    Blades are modeled as cantilevered sandwich plates with Gr/Ep composite faces and orthotropic cores and also as curved twisted beams for the aeroelastic analysis. A free vibration analysis for the cantilevered sandwich plate model is performed using Rayleigh-Ritz method. Calculated results are compared with FEM codes and free vibration test results. A free vibration equation for the aeroelastic analysis is obtained by small linear perturbation about the nonlinear static equilibrium position of the curved and twisted beam model. An aeroelastic stability is analyzed along with unsteady aerodynamic analysis results with 2-D cascade effects. For analyzing dynamic response of the real prop-fan blade mode, F.E.M. codes are used. In order to verify computed results, SR-3 composite prop-fan blades with various stacking sequencies are manufactured. Natural frequencies of prop-fan specimen are obtained by modal testing method using impact hammer and FFT analyzer.

  5. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  6. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    NASA Astrophysics Data System (ADS)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  7. Use of Blade Lean in Turbomachinery Redesign

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-01-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  8. Fan Blade Development

    DTIC Science & Technology

    1982-09-01

    following. o Injection Molding o Reaction Injection Molding o Rotational Molding o Blow Molding j o Thermoforming o Compressive Molding I GARD’s...process investigation for the alternate material PVK indicated Sthat of the above, injection molding and thermoforming are the two processes directly... thermoforming does require some secondary trimming after the part is removed. The preheated temperature for the fan material in the thermoforming

  9. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  10. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  11. Turbine blade tip durability analysis

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.

    1981-01-01

    An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.

  12. Spring-Blade Impact Tester

    NASA Technical Reports Server (NTRS)

    Holmes, Alan M.; Champagne, James W.

    1989-01-01

    Record of energy relationships retrieved from compact, portable tester. Spring-blade impact tester developed to support evaluation of tolerance to damage of struts under consideration for use in Space Station. Approach offers potential for determining damage as function of change in relationship between applied and absorbed energies as applied energy successively increased with each impact. Impactor strikes specimen at moment of maximum kinetic energy after spring blades released from cocked position. Concept also provides potential for measuring behavior during impact, and energy relationships retrievable from oscilloscope traces of impact.

  13. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    NASA Astrophysics Data System (ADS)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  14. Structural tailoring of engine blades (STAEBL)

    NASA Technical Reports Server (NTRS)

    Platt, C. E.; Pratt, T. K.; Brown, K. W.

    1982-01-01

    A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.

  15. Cracking-Induced Mistuning in Bladed Disks

    DTIC Science & Technology

    2005-10-01

    caused by blade vibrations 1. Adding to this concern is the increased use in modern engines of integrated bladed disks, or blisks , which have dynamic...cracking induced mistuning for a weakly coupled research blisk using 3D finite methods. It was found that the natural frequencies of the cracked blade...decreased significantly only when the crack was sufficiently large. However, the cracked blade dramatically changed the dynamic response of the blisk

  16. The boundary layer over turbine blade models with realistic rough surfaces

    NASA Astrophysics Data System (ADS)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  17. A comparison of model helicopter rotor Primary and Secondary blade/vortex interaction blade slap

    NASA Technical Reports Server (NTRS)

    Hubbard, J. E., Jr.; Leighton, K. P.

    1983-01-01

    A study of the relative importance of blade/vortex interactions which occur on the retreating side of a model helicopter rotor disk is described. Some of the salient characteristics of this phenomenon are presented and discussed. It is shown that the resulting Secondary blade slap may be of equal or greater intensity than the advancing side (Primary) blade slap. Instrumented model helicopter rotor data is presented which reveals the nature of the retreating blade/vortex interaction. The importance of Secondary blade slap as it applies to predictive techniques or approaches is discussed. When Secondary blade slap occurs it acts to enlarge the window of operating conditions for which blade slap exists.

  18. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  19. Computer Program Aids Design Of Impeller Blades

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Galazin, John V.

    1992-01-01

    Impeller blades for centrifugal turbopumps designed quickly with help of computer program. Generates blade contours and continually subjects them to evaluation. Checks physical parameters to ensure they are compatible with required performance and recycles design if criteria not met. Program written for centrifugal turbomachinery, also adapted to such axial pump components as inducer blades and stator vanes.

  20. Glass-bead peen plating

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  1. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  2. Advanced Rotor Blade Materials Evaluation

    DTIC Science & Technology

    2014-07-23

    helicopter rotor blade erosion resistant treatments that had been supplied in response to a US Navy BAA Program. The Navy Program was meant to improve the...earlier ONR BAA Program had been concluded and while this specific program was active. This program was one of the drivers behind the need to

  3. Design procedures for compressor blades

    NASA Technical Reports Server (NTRS)

    Starken, H.

    1983-01-01

    The conventional methods for the design of the blades in the case of axial turbomachines are considered, taking into account difficulties concerning the determination of optimal blade profiles. These difficulties have been partly overcome as a consequence of the introduction of new numerical methods during the last few years. It is pointed out that, in the case of the subsonic range, a new procedure is now available for the determination of the form of blade profile on the basis of a given velocity distribution on the profile surface. The search for a profile form with favorable characteristics is consequently transformed into a search for a favorable velocity or pressure distribution on the blade. The distribution of velocities depends to a large degree on the characteristics of the profile boundary layers. The considered concept is not new. However, its practical implementation has only recently become possible. The employment of the new design procedure is illustrated with the aid of an example involving a concrete design problem.

  4. Twistable mold for helicopter blades

    NASA Technical Reports Server (NTRS)

    Carter, E. S.; Kiely, E. F.

    1972-01-01

    Design is described of mold for fabrication of blades composed of sets of aerodynamic shells having same airfoil section characteristics but different distributions. Mold consists of opposing stacks of thin templates held together by long bolts. When bolts are loosened, templates can be set at different positions with respect to each other and then locked in place.

  5. Photo Surfing in Blade Runner

    ERIC Educational Resources Information Center

    Ohler, Jason

    2005-01-01

    This month's "Mining Movies" looks at Blade Runner, Ridley Scott's film set in the year 2019. It is a sad time for Earth, which is in the midst of environmental degradation so severe that other planets are being prepared for colonization. The main source of labor for this preparation work are "replicants," organic robots that look and behave like…

  6. Photo Surfing in Blade Runner

    ERIC Educational Resources Information Center

    Ohler, Jason

    2005-01-01

    This month's "Mining Movies" looks at Blade Runner, Ridley Scott's film set in the year 2019. It is a sad time for Earth, which is in the midst of environmental degradation so severe that other planets are being prepared for colonization. The main source of labor for this preparation work are "replicants," organic robots that look and behave like…

  7. COBSTRAN - COMPOSITE BLADE STRUCTURAL ANALYZER

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.

    1994-01-01

    The COBSTRAN (COmposite Blade STRuctural ANalyzer) program is a pre- and post-processor that facilitates the design and analysis of composite turbofan and turboprop blades, as well as composite wind turbine blades. COBSTRAN combines composite mechanics and laminate theory with a data base of fiber and matrix properties. As a preprocessor for NASTRAN or another Finite Element Method (FEM) program, COBSTRAN generates an FEM model with anisotropic homogeneous material properties. Stress output from the FEM program is provided as input to the COBSTRAN postprocessor. The postprocessor then uses the composite mechanics and laminate theory routines to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. COBSTRAN is designed to carry out the many linear analyses required to efficiently model and analyze blade-like structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials can also be modeled as a special case of COBSTRAN. NASTRAN MAT1 or MAT2 material cards are generated according to user supplied properties. COBSTRAN is written in FORTRAN 77 and was implemented on a CRAY X-MP with a UNICOS 5.0.12 operating system. The program requires either COSMIC NASTRAN or MSC NASTRAN as a structural analysis package. COBSTRAN was developed in 1989, and has a memory requirement of 262,066 64 bit words.

  8. Turbine blade tip gap reduction system

    SciTech Connect

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  9. Recent developments in turbine blade internal cooling.

    PubMed

    Han, J C; Dutta, S

    2001-05-01

    This paper focuses on turbine blade internal cooling. Internal cooling is achieved by passing the coolant through several rib-enhanced serpentine passages inside the blade and extracting the heat from the outside of the blades. Both jet impingement and pin-fin-cooling are also used as a method of internal cooling. In the past number of years there has been considerable progress in turbine blade internal cooling research and this paper is limited to reviewing a few selected publications to reflect recent developments in turbine blade internal cooling.

  10. Near-blade flow structure modification

    NASA Astrophysics Data System (ADS)

    Kura, T.; Fornalik-Wajs, E.

    2016-10-01

    In this paper, the importance of near-blade flow structure influence on the performance of a centrifugal compressor was discussed. The negative effects of eddies and secondary flows appearance were described, together with the proposal of their reduction. Three-dimensional analyses were performed for the rotors. Focus was placed on the blade's 3D curvature impact on the efficiency of compression, and the influence of blade-shroud tip existence. A few design proposals were investigated - their performance maps were the basis of further analysis. Proposed modification of blade shape changed the near-blade flow structure and improved the compressor performance.

  11. Heat transfer in the tip region of a rotor blade simulator

    NASA Technical Reports Server (NTRS)

    Chyu, M. K.; Moon, H. K.; Metzger, D. E.

    1986-01-01

    In gas turbines, the blades of axial turbine stages rotate in close proximity to a stationary peripheral wall. Differential expansion of the turbine wheel, blades, and the shroud causes variations in the size of the clearance gap between blade tip and stationary shroud. The necessity to tolerate this differential thermal expansion dictates that the clearance gap cannot be eliminated altogether, despite accurate engine machining. Pressure differences between the pressure and suction sides of a blade drives a flow through the clearance gap. This flow, the tip leakage flow, is detrimental to engine performance. The primary detrimental effect of tip leakage flow is the reduction of turbine stage efficiency, and a second is the convective heat transfer associated with the flow. The surface area at the blade tip in contact with the hot working gas represents an additional thermal loading on the blade which, together with heat transfer to the suction and pressure side surface area, must be removed by the blade internal cooling flows. Experimental results concerned with the local heat transfer characteristics on all surfaces of shrouded, rectangular cavities are reported. A brief discussion of the mass transfer system used is given.

  12. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOEpatents

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  13. Examination, evaluation and repair of laminated wood blades after service on the Mod-OA wind turbine

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1983-01-01

    Laminated wood blades were designed, fabricated, and installed on a 200-KW wind turbine (Mod-OA). The machine uses a two-blade rotor with a diameter of 38.1 m (125 ft). Each blade weights less than 1361 kg (3000 lb). After operating in the field, two blade sets were returned for inspection. One set had been in Hawaii for 17 months (7844 hr of operation) and the other had been at Block Island, Rhode Island, for 26 months (22 months operating - 7564 hr). The Hawaii set was returned because of one of the studs that holds the blade to the hub had failed. This was found to be caused by a combination of improper installation and inadequate corrosion protection. No other problems were found. The broken stud (along with four others that were badly corroded) was replaced and the blades are now in storage. The Block Island set of blades was returned at the completion of the test program, but one blade was found to have developed a crack in the leading edge along the entire span. This crack was found to be the result of a manufacturing process problem but was not structurally critical. When a load-deflection test was conducted on the cracked blade, the response was identical to that measured before installation. In general, the laminate quality of both blade sets was excellent. No significant internal delamination or structural defects were found in any blade. The stud bonding process requires close tolerance control and adequate corrosion protection, but studs can be removed and replaced without major problems. Moisture content stabilization does not appear to be a problem, and laminated wood blades are satisfactory for long-term operation on Mod-OA wind turbines.

  14. Structural modification of a steam turbine blade

    NASA Astrophysics Data System (ADS)

    Heidari, M.; Amini, K.

    2017-05-01

    Blades are significant components of steam turbines which are failed due to stresses arising from centrifugal and bending forces. The turbine blade has a number of geometrical variables that need to be considered at the design stage. Hence, this paper investigated a three-dimensional model of steam turbine blade with different lengths and thicknesses using finite element method. A three-dimensional model of blade was developed using a computer-aided design software. All materials were assumed linear, homogenous, elastic and isotropic. A 5 N widespread force was applied to the blade. The results of this study showed that longer blades are experienced higher maximum Von Mises stress and strain than shorter ones. The blade with the length of 400 mm and thickness of 20 mm experienced the lowest maximum Von Mises stress at 51 kPa. Furthermore, blade with the length of 400 mm and 600 mm experienced the lowest and highest strain at 3.07 × 10-6 and 4.3 × 10-6 respectively. In addition, thicker blades were undergone less maximum Von Mises stress and strain than thinner ones. Understanding stress and strain pattern in turbine blades provides useful knowledge which can be useful to estimate the fatigue in turbine blades.

  15. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1990-01-01

    An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.

  16. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1992-01-01

    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  17. A Prospective Randomized Study Comparing Disposable with Reusable Blades for a Morcellator Device.

    PubMed

    Becker, Benedikt; Orywal, Ann Katrin; Hausmann, Teresa; Gross, Andreas J; Netsch, Christopher

    2017-03-01

    facilitates efficient tissue removal with single-use and reusable blades. Disposable morcellator blades increase tissue removal significantly at 1500 rpm.

  18. Measurement of turbine blade temperature using pyrometer

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Du, C.

    1985-09-01

    This paper presents the study of application of a self-made turbine blade pyrometer to measuring rotating turbine blade temperatures in a bed testing aeroengine. The study includes the temperature measuring principle and the pyrometer system; installation and adjustment of the double ball-floating type configuration optical head which goes through four different high temperatures bulkheads; and measurement of three kinds of temperature (the average blade temperature Ta, the average peak blade temperature Tap, and the maximum peak blade temperature Tmp) for all rotor blades of the turbine first stage. The experimental data analysis reveals that the first attempt of application of this pyrometer is successful. The measurement errors in the temperature range of 550-1200 C are within + or - 1 percent of calculated blade temperatures.

  19. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.

    PubMed

    Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng

    2010-02-01

    Computational fluid dynamic simulations of the flow in the Kyoto-NTN (Kyoto University, Kyoto, Japan) magnetically suspended centrifugal blood pump with a 16-straight-bladed impeller were performed in the present study. The flow in the pump was assumed as unsteady and turbulent, and blood was treated as a Newtonian fluid. At the impeller rotating speed of 2000 rpm and flow rate of 5 L/min, the pump produces a pressure head of 113.5 mm Hg according to the simulation. It was found that the double volute of the pump has caused symmetrical pressure distribution in the volute passages and subsequently caused symmetrical flow patterns in the blade channels. Due to the tangentially increasing pressure in the volute passages, the flow through the blade channels initially increases at the low-pressure region and then decreases due to the increased pressure. The reverse flow and vortices have been identified in the impeller blade channels. The high shear stress of the flow in the pump mainly occurred at the inlet and outlet of the blade channels, the beginning of the volute passages and the regions around the tips of the cutwater and splitter plate. Higher shear stress is obtained when the tips of the cutwater and splitter plate are located at the impeller blade trailing edges than when they are located at the middle of the impeller blade channel. It was found that the blood damage index assessed based on the blood corpuscle path tracing of the present pump was about 0.94%, which has the same order of magnitude as those of the clinical centrifugal pumps reported in the literature.

  20. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    NASA Astrophysics Data System (ADS)

    Johansen, R. J.; Hansen, L. M.; Ulriksen, M. D.; Tcherniak, D.; Damkilde, L.

    2015-07-01

    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors associated with the lowest singular values into static pseudo-loads and apply these alternately to an undamaged reference model with known stiffness matrix. By doing so, the stresses in the potentially damaged elements will, theoretically, approach zero. The present paper demonstrates an application of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method.

  1. Broadband noise generated by turbulent inflow to rotor or stator blades in an annular duct

    NASA Technical Reports Server (NTRS)

    Lnae, F.

    1975-01-01

    The Green's function relating the radiated pressure field to the fluctuating forces on rotor or stator blades is developed in the presence of dissipation due to turbulent velocity fluctuations and sound speed fluctuations. The resonances in the output power spectrum which would occur at the cut-off frequencies in the absence of dissipation should be removed and smeared out by the incorporation of dissipation. Wave number dependence is developed for an effective eddy viscosity due to the aforementioned fluctuations in the background medium. The space-time correlation function for blade-normal velocity fluctuations on a single or on two different blades is developed in terms of the velocity correlation tensor for the inflow under the assumptions of isotropy and (Taylor) frozen behavior. The correlation function is then simplified under certain approximations and the behavior of the blade-force correlation function is inferred.

  2. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  3. Aeroelastic stability of wind turbine blade/aileron systems

    NASA Technical Reports Server (NTRS)

    Strain, J. C.; Mirandy, L.

    1995-01-01

    Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  4. Prediction of helicopter rotor noise from measured blade surface pressure

    NASA Astrophysics Data System (ADS)

    Succi, G. P.; Brieger, J. T.

    The current techniques of helicopter rotor noise prediction attempt to describe the details of the noise field precisely and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The purpose of this paper is to review those techniques in general and the Farassat/Nystrom analysis in particular. The predictions of the Farassat/Nystrom noise computer program, using both measured and calculated blade surface pressure data, are compared to measured noise level data. This study is based on a contract from NASA to Bolt Beranek and Newman Inc. (BBN) with measured data from the AH-lG Helicopter Operational Loads Survey flight test program supplied by Bell Helicopter Textron.

  5. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  6. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, Peter J.

    1987-01-01

    A method of electrically inducing mechanical precompression of a ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion.

  7. Impact resistance of composite fan blades

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of a program to determine the impact resistance of composite fan blades subjected to foreign object damage (FOD) while operating under conditions simulating a short take-off and landing (STOL) engine at takeoff. The full-scale TF39 first-stage fan blade was chosen as the base design for the demonstration component since its configuration and operating tip speeds are similar to a typical STOL fan blade several composite configurations had already been designed and evaluated under previous programs. The first portion of the program was devoted toward fabricating and testing high impact resistant, aerodynamically acceptable composite blades which utilized only a single material system in any given blade. In order to increase the blade impact capability beyond this point, several mixed material (hybrid) designs were investigated using S-glass and Kevlar as well as boron and graphite fibers. These hybrid composite blades showed a marked improvement in resistance to bird impact over those blades made of a single composite material. The work conducted under this program has demonstrated substantial improvement in composite fan blades with respect to FOD resistance and has indicated that the hybrid design concept, which utilizes different types of fibers in various portions of a fan blade design depending on the particular requirements of the different areas and the characteristics of the different fibers involved, shows a significant improvement over those designs utilizing only one material system.

  8. Laser vibrometry measurements of rotating blade vibrations

    SciTech Connect

    Reinhardt, A.K.; Kadambi, J.R.; Quinn, R.D.

    1995-07-01

    One of the most important design factors in modern turbomachinery is the vibration of turbomachinery blading. There is a need for developing an in-service, noncontacting, noninterfering method for the measurement and monitoring of gas turbine, jet engine, and steam turbine blade vibrations and stresses. Such a technique would also be useful for monitoring rotating helicopter blades. In the power generation industry, blade failures can result in millions of dollars of downtime. The measurement of blade vibrations and dynamic stresses is an important guide for preventive maintenance, which can be a major contributor to the availability of steam turbine, gas turbine, and helicopter operations. An experiment is designed to verify the feasibility of such a vibration monitoring system using the reference beam on-axis laser-Doppler technique. The experimental setup consists of two flat, cantilever blades mounted on a hub attached to the shaft of a dc motor. The motor rests on a linear bearing permitting motion only in the direction of the motor shaft. The motor and blade assembly is then excited via an electrodynamic shaker at the first natural frequency of the blades. The resulting blade vibration is then detected using a laser vibrometer. The vibration frequencies and amplitudes of the two rotating blades are successfully measured.

  9. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  10. Flutter of swept fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Kaza, K. R. V.

    1984-01-01

    The effect of sweep on fan blade flutter is studied by applying the analytical methods developed for aeroelastic analysis of advance turboprops. Two methods are used. The first method utilizes an approximate structural model in which the blade is represented by a swept, nonuniform beam. The second method utilizes a finite element technique to conduct modal flutter analysis. For both methods the unsteady aerodynamic loads are calculated using two dimensional cascade theories which are modified to account for sweep. An advanced fan stage is analyzed with 0, 15 and 30 degrees of sweep. It is shown that sweep has a beneficial effect on predominantly torsional flutter and a detrimental effect on predominantly bending flutter. This detrimental effect is shown to be significantly destabilizing for 30 degrees of sweep.

  11. Unsteady aerodynamics of blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.

    1989-01-01

    The requirements placed on an unsteady aerodynamic theory intended for turbomachinery aeroelastic or aeroacoustic applications are discussed along with a brief description of the various theoretical models that are available to address these requirements. The major emphasis is placed on the description of a linearized inviscid theory which fully accounts for the affects of a nonuniform mean or steady flow on unsteady aerodynamic response. Although this linearization was developed primarily for blade flutter prediction, more general equations are presented which account for unsteady excitations due to incident external aerodynamic disturbances as well as those due to prescribed blade motions. The motivation for this linearized unsteady aerodynamic theory is focused on, its physical and mathematical formulation is outlined and examples are presented to illustrate the status of numerical solution procedures and several effects of mean flow nonuniformity on unsteady aerodynamic response.

  12. Rotor blades for turbine engines

    DOEpatents

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  13. Jet Flap Stator Blade Test in the High Reaction Turbine Blade Cascade Tunnel

    NASA Image and Video Library

    1970-03-21

    A researcher examines the setup of a jet flap blade in the High Reaction Turbine Blade Cascade Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers were seeking ways to increase turbine blade loading on aircraft engines in an effort to reduce the overall size and weight of engines. The ability of each blade to handle higher loads meant that fewer stages and fewer blades were required. This study analyzed the performance of a turbine blade using a jet flap and high loading. A jet of air was injected into the main stream from the pressure surface near the trailing edge. The jet formed an aerodynamic flap which deflected the flow and changed the circulation around the blade and thus increased the blade loading. The air jet also reduced boundary layer thickness. The jet-flap blade design was appealing because the cooling air may also be used for the jet. The performance was studied in a two-dimensional cascade including six blades. The researcher is checking the jet flat cascade with an exit survey probe. The probe measured the differential pressure that was proportional to the flow angle. The blades were tested over a range of velocity ratios and three jet flow conditions. Increased jet flow improved the turning and decreased both the weight flow and the blade loading. However, high blade loadings were obtained at all jet flow conditions.

  14. Structural tailoring of engine blades (STAEBL) user's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  15. Structural tailoring of engine blades (STAEBL) theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This Theoretical Manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  16. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1998-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  17. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    NASA Astrophysics Data System (ADS)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  18. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  19. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  20. Uncertainties in predicting turbine blade metal temperatures

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1980-01-01

    An analysis is presented of the effects of the hot-gas and coolant temperatures, the gas-to-blade and blade-to-coolant heat transfer coefficients, and the thermal conductances of a metal wall and a ceramic thermal-barrier coating on the prediction of local turbine-blade surface temperatures. The analysis was applied to the conditions of an advanced turbofan engine and a 1700 K, 40 atm turbine test rig, and to conditions that simulated the engine at 756 K and 15.6 atm. The results showed that with current information on boundary conditions, geometry, heat-transfer coefficients, and material thermal properties, the uncertainty in predicting and verifying local turbine-blade surface temperatures in an average engine is 98 kelvins or 7.6% of the reference metal absolute temperature for uncoated blades, and 62 kelvins or 5.7% for ceramic-thermal-barrier-coated blades.

  1. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  2. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  3. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  4. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  5. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  6. Active Control of Helicopter Blade Stall

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Warmbrodt, William (Technical Monitor)

    1996-01-01

    In an effort to expand the helicopter flight envelope, this analytical study proposes the concept of using high frequency blade pitch actuation to alleviate blade stall at high speed and/or high thrust flight conditions. The availability of high-frequency blade-mounted actuators has made this concept realizable. This study is carried out using the University of Maryland Advanced Rotorcraft Code (or UMARC), which employs state-of-the-art structural and aerodynamic modelings. The salient features of this code include the application of the finite element methods in both space and time domains, and the incorporation of an advanced unsteady aerodynamic and nonuniform inflow models. Preliminary results indicate that two-per-rev blade pitch control can reduce retreating blade stall for a rotor operating at high speed and high thrust flight condition. Current efforts concentrate on developing an automatic stall suppression system which employs a combination of higher harmonic blade pitch schedule.

  7. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  8. Wind Turbine Blade Design for Subscale Testing

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Arash; Naughton, Jonathan W.; Kelley, Christopher L.; Maniaci, David C.

    2016-09-01

    Two different inverse design approaches are proposed for developing wind turbine blades for sub-scale wake testing. In the first approach, dimensionless circulation is matched for full scale and sub-scale wind turbine blades for equal shed vorticity in the wake. In the second approach, the normalized normal and tangential force distributions are matched for large scale and small scale wind turbine blades, as these forces determine the wake dynamics and stability. The two approaches are applied for the same target full scale turbine blade, and the shape of the blades are compared. The results show that the two approaches have been successfully implemented, and the designed blades are able to produce the target circulation and target normal and tangential force distributions.

  9. Cooling arrangement for a tapered turbine blade

    SciTech Connect

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  10. Diagnostic methods of a bladed disc mode shape evaluation used for shrouded blades in steam turbines

    NASA Astrophysics Data System (ADS)

    Strnad, Jaromir; Liska, Jindrich

    2015-11-01

    This paper deals with advanced methods for the evaluation of a bladed disc behavior in terms of the wheel vibration and blade service time consumption. These methods are developed as parts of the noncontact vibration monitoring system of the steam turbine shrouded blades. The proposed methods utilize the time-frequency processing (cross spectra) and the method using least squares to analyse the data from the optical and magnetoresistive sensors, which are mounted in the stator radially above the rotor blades. Fundamentally, the blade vibrations are detected during the blade passages under the sensors and the following signal processing, which covers also the proposed methods, leads to the estimation of the blade residual service life. The prototype system implementing above mentioned techniques was installed into the last stage of the new steam turbine (LP part). The methods for bladed disc mode shape evaluation were successfully verified on the signals, which were obtained during the commission operation of the turbine.

  11. Hardfacing and wear plates battle abrasion

    SciTech Connect

    Miller, R.F.

    1983-06-01

    This article examines abrasion-resistant steels and hardfacing as two effective weapons at the disposal of material handlers. It points out that abrasion is probably the single most destructive form of wear in the mixing and processing of coal. Particulate matter such as quartz sand and other minerals including coal curtail in-service life of dragline buckets, chute, crusher rolls, gates and valves, exhauster fan blades, target plates, truck beds, hoppers, vibrating pans, grinding mills, piping elbows, etc. The advantages of abrasion-resistant steels and hardfacing can be obtained in the form of a composite wear plate-hardfacing on a carbon steel backup plate. It concludes that the composite wear plate represents a major innovation since its advantages include ease of handling, low cost and easy installation, minimum on-site welding time and versatility. Its use is limited only to the consumer's creativity in application.

  12. The Slotted Blade Axial-Flow Blower

    DTIC Science & Technology

    1955-09-01

    YORK 18, NEW YORK w is|’ .THE SLOTTED BLADE AXIAL-FLOW BLOVER AUG 0 1 13941J F Dr. H. E. Sheets, Member ASME Chief Research and Development Engineer ... blades of an axial flow blower. The subject of boundary-layer control has attracted considerable attention in respect to the isolated airfoil (1)1 but... blades . Flow through airfoils displays a region of laminar flow beginning at the leading edge. Further downstream, at approximately the location of the

  13. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  14. Forced response of mistuned bladed disk assemblies

    NASA Technical Reports Server (NTRS)

    Watson, Brian C.; Kamat, Manohar P.; Murthy, Durbha V.

    1993-01-01

    A complete analytic model of mistuned bladed disk assemblies, designed to simulate the dynamical behavior of these systems, is analyzed. The model incorporates a generalized method for describing the mistuning of the assembly through the introduction of specific mistuning modes. The model is used to develop a computational bladed disk assembly model for a series of parametric studies. Results are presented demonstrating that the response amplitudes of bladed disk assemblies depend both on the excitation mode and on the mistune mode.

  15. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  16. Turbine blade tip with offset squealer

    DOEpatents

    Bunker, Ronald Scott

    2001-01-01

    An industrial turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationary shroud. The rotating blade includes a root section, an airfoil having a pressure sidewall and a suction sidewall defining an outer periphery and a tip portion having a tip cap. An offset squealer is disposed on the tip cap. The offset squealer is positioned inward from the outer periphery of the rotating blade. The offset squealer increases the flow resistance and reduces the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  17. Impeller blade design method for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  18. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  19. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  20. Fan Blade Deflection Measurement and Analyses Correlation

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Janetzke, David C.

    1997-01-01

    Steady deflection measurements were taken of two identical NASA/Pratt & Whitney-designed fan blades while they were rotating in a vacuum in NASA Lewis Research Center's Dynamic Spin Facility. The one-fifth-scale fan blades, which have a tip diameter of 22 in. and a pinroot retention, are of sparshell construction and were unducted for this test. The purpose of the test was to measure the change of the radial deflection of the blade tip and blade angle at selected radial stations along the blade span with respect to rotational speed. The procedure for radial deflection measurement had no precedent and was newly developed for this test. Radial deflection measurements were made to assure adequate tip clearance existed between the fan blades and the duct for a follow-on wind tunnel test. Also, blade angle deflection measurements were desired before pitchsetting parts for the wind tunnel test were finish machined. During the test, laser beams were aimed across the blade path into photodiodes to give signals that were used to determine blade angle change or tip radial deflection. These laser beams were set parallel to the spin axis at selected radial stations.

  1. Fiber composite fan blade impact improvement

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  2. Reflection-Zone-Plate Antenna

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Leighty, Bradley D.

    1989-01-01

    Microwave antenna, based on reflection holography, designed and tested. Modified to produce arbitrary beam patterns by controlling relief pattern. Antenna planar or contoured to supporting structure. Low off-axis radar cross section at frequencies removed from operational frequency. Interference pattern produced by spherical wave intersecting plane wave consists of concentric circles similar to Newton's rings. Pattern identical to Fresnel zone plate, which has lens properties. Plane wave incident on hologram, or zone plate, focused to point.

  3. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    SciTech Connect

    Desmond, M.; Hughes, S.; Paquette, J.

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  4. Detection of hidden shot balls in a gas-cooled turbine blade with an NRT gadolinium tagging method

    NASA Astrophysics Data System (ADS)

    Sim, Cheul Muu; Kim, Yi Kyung; Kim, TaeJoo; Lee, Kye Hong; Kim, Jeong Uk

    2009-06-01

    This report provides a preliminary insight into the benefits and effectiveness of neutron radiography in identifying alien materials, namely shot balls hidden in a turbine blade that are otherwise undetected using other methods. The detection of 0.2-mm-diameter shot balls in gas-cooled turbine blades is possible for thermal neutron radiography. A tagging processing is more useful for a distinctive image of newer turbine blades. Areas of concern for the tagging process include the solution concentration and the possibility of a slight washing of the blades. The location of the shot balls within the turbine blades tagged with Gd((2%, 5%)+water) was shown. Shot balls were placed externally on a turbine blade (F100-700, F100-200) surface in order to check for a dead zone from a surface examination. The image is produced from neutron radiography after a 5 min exposure time. When the blade is tagged with 2% and 5% Gd with slight washing, the shot can also be effectively seen on the SR-45 film. Shot balls are more obvious on a neutron image SR-45 film than an image plate or a DR film.

  5. An experimental assessment of resistance reduction and wake modification of a kvlcc model by using outer-layer vertical blades

    NASA Astrophysics Data System (ADS)

    An, Nam Hyun; Ryu, Sang Hoon; Chun, Ho Hwan; Lee, Inwon

    2014-03-01

    In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

  6. Optimization of an installation angle of a root-cutting blade for an automatic spinach harvester

    NASA Astrophysics Data System (ADS)

    Fujisawa, A.; Chida, Y.

    2016-09-01

    This paper presents an optimization of the installation angle of a root-cutting blade relative to the arm of an automatic spinach harvester. In the harvesting operation, the blade, which is a rigid body, moves under the planted rows in soil of powder consistency to cut the roots of the spinach and to harvest the spinach on a conveyor. Therefore, the interaction between a rigid body and powder is an important consideration. Experiments were conducted on the design of the harvester. The experiments revealed that a certain path of the blade is more favorable for both harvesting spinach easily and minimizing the amount of soil removed by the blade. In this paper, without revising the favorable path, the optimum installation angle of the blade is derived. To derive the installation angle, a nonlinear optimization problem is solved as an evaluation function consisting of the volume of soil pushed by the blade and the installation angle, which is a design parameter. The utility of the installation angle is confirmed by the Discrete Element Method (DEM), which analyzes the interaction between a rigid body and powder.

  7. Spin Testing for Durability Began on a Self-Tuning Impact Damper for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten; Mehmed, Oral

    2003-01-01

    NASA and Pratt & Whitney will collaborate under a Space Act Agreement to perform spin testing of the impact damper to verify damping effectiveness and durability. Pratt & Whitney will provide the turbine blade and damper hardware for the tests. NASA will provide the facility and perform the tests. Effectiveness and durability will be investigated during and after sustained sweeps of rotor speed through resonance. Tests of a platform wedge damper are also planned to compare its effectiveness with that of the impact damper. Results from baseline tests without dampers will be used to measure damping effectiveness. The self-tuning impact damper combines two damping methods-the tuned mass damper and the impact damper. It consists of a ball located within a cavity in the blade. This ball rolls back and forth on a spherical trough under centrifugal load (tuned mass damper) and can strike the walls of the cavity (impact damper). The ball s rolling natural frequency is proportional to the rotor speed and can be designed to follow an engine-order line (integer multiple of rotor speed). Aerodynamic forcing frequencies typically follow these engineorder lines, and a damper tuned to the engine order will most effectively reduce blade vibrations when the resonant frequency equals the engine-order forcing frequency. This damper has been tested in flat plates and turbine blades in the Dynamic Spin Facility. During testing, a pair of plates or blades rotates in vacuum. Excitation is provided by one of three methods--eddy-current engine-order excitation (ECE), electromechanical shakers, and magnetic bearing excitation. The eddy-current system consists of magnets located circumferentially around the rotor. As a blade passes a magnet, a force is imparted on the blade. The number of magnets used can be varied to change the desired engine order of the excitation. The magnets are remotely raised or lowered to change the magnitude of the force on the blades. The other two methods apply

  8. The Rene 150 directionally solidified superalloy turbine blades, volume 1

    NASA Technical Reports Server (NTRS)

    Deboer, G. J.

    1981-01-01

    Turbine blade design and analysis, preliminary Rene 150 system refinement, coating adaptation and evaluation, final Rene 150 system refinement, component-test blade production and evaluation, engine-test blade production, and engine test are discussed.

  9. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  10. [Manufacture of diamond blades via microsystem technology].

    PubMed

    Spraul, Christoph W; Ertl, Stephan; Strobel, Stefan; Gretzschel, Ralph; Schirmer, Enrico; Rösch, Rudolf; Lingenfelder, Christian; Lang, Gerhard K

    2003-04-01

    The application of diamond knives has steadily increased in ophthalmic surgery. However, the geometry of the blade, its thickness and the sharpness of the cutting edge are limited by the abrasive diamond polishing process, e. g. the crystalline morphology of the bulk material and the grinding powder used. A new generation of diamond blades is presented herewith allowing free choice of blade shape and thickness and possessing excellent sharpness due to a new polishing process. The new production method is based on a high-quality CVD (chemical vapour deposition) diamond film of some tenths of microns thickness, deposited on a silicon wafer as microchip technology. The mechanical properties of this synthetic diamond film are almost equal to those of a natural diamond and the surface of this film is mirror-like after deposition without requiring post-polishing. The shape of the blade can be freely defined and is transferred into the diamond film by a plasma polishing process adopted from microsystem technology. The new production method results in highly reproducible diamond blades. Concave blades and round shapes can now be realised without the restrictions of the conventional production process. The force-free fabrication method even allows realisation of miniaturized blades (e. g. width < 0.125 mm, thickness < 50 microm) far beyond the possibilities of conventional diamond blade production. Plasma polishing by means of gas atoms results in extreme sharpness with the cutting edge radius in the range of approx. 3 nm. Utilising microsystem technology we were able to manufacture reproducible artificial diamond blades. The new process offers for the first time surgeons a possibility of designing blades with a geometry close to their personal needs. Furthermore, the potential of facet-free ergonomically shaped diamond blades may stimulate further improvements towards novel surgical techniques.

  11. Panel resonant behavior of wind turbine blades.

    SciTech Connect

    Paquette, Joshua A.; Griffith, Daniel Todd

    2010-03-01

    The principal design drivers in the certification of wind turbine blades are ultimate strength, fatigue resistance, adequate tip-tower clearance, and buckling resistance. Buckling resistance is typically strongly correlated to both ultimate strength and fatigue resistance. A composite shell with spar caps forms the airfoil shape of a blade and reinforcing shear webs are placed inside the blade to stiffen the blade in the flap-wise direction. The spar caps are dimensioned and the shear webs are placed so as to add stiffness to unsupported panel regions and reduce their length. The panels are not the major flap-wise load carrying element of a blade; however, they must be designed carefully to avoid buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static testing of blades under a simulated extreme loading condition. The focus of this paper is on the use of experimental modal analysis to measure localized resonances of the blade panels. It can be shown that the resonant behavior of these panels can also provide a means to evaluate buckling resistance by means of analytical or experimental modal analysis. Further, panel resonances have use in structural health monitoring by observing changes in modal parameters associated with panel resonances, and use in improving panel laminate model parameters by correlation with test data. In recent modal testing of wind turbine blades, a set of panel modes were measured. This paper will report on the findings of these tests and accompanying numerical and analytical modeling efforts aimed at investigating the potential uses of panel resonances for blade evaluation, health monitoring, and design.

  12. Multiple piece turbine rotor blade

    DOEpatents

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  13. Vibrations of Bladed Disk Assemblies

    DTIC Science & Technology

    1991-03-29

    OF PI"iPONMING ONGANIZATION W OFFICE SYMSOL 7a. NAPAG d1rmoNiTo.iNG OAGANIZATION Purdue Research Foundation LOOAGSS IC41Y. Staff .A&R ZIP Code) 7b...8217 PRF grant #670-1667. The objective of the proposed research was to gain a fundamental understanding of how and why periodically configured mechanical...bladed-disk research literature, numerical studies which show that uneven amplitudes of vibration in perturbed cyclic systems can arise both under strong

  14. Estimating Blade Section Airloads from Blade Leading-Edge Pressure Measurements

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.

    2003-01-01

    The Tilt-Rotor Aeroacoustic Model (TRAM) test in the Duitse-Nederlandse Wind (DNW) Tunnel acquired blade pressure data for forward flight test conditions of a tiltrotor in helicopter mode. Chordwise pressure data at seven radial locations were integrated to obtain the blade section normal force. The present investigation evaluates the use of linear regression analysis and of neural networks in estimating the blade section normal force coefficient from a limited number of blade leading-edge pressure measurements and representative operating conditions. These network models are subsequently used to estimate the airloads at intermediate radial locations where only blade pressure measurements at the 3.5% chordwise stations are available.

  15. Impact behavior of graphite-epoxy simulated fan blades

    NASA Technical Reports Server (NTRS)

    Cook, T. S.; Preston, J. L., Jr.

    1977-01-01

    The response of a graphite-epoxy material, Modmor II/PR-286, to foreign object impact was investigated by impacting spherical projectiles of three different materials - gelatin, ice, and steel - on simulated blade specimens. Visual and metallographic inspection revealed three damage mechanisms: penetration, leading edge bending failure, and stress wave delamination and cracking. The steel projectiles caused penetration damage regardless of the impact location and angle. For the ice and gelatin particles impacting the leading edge, failure was due to large local bending strains, resulting in significant material removal and delamination damage.

  16. Impact behavior of graphite-epoxy simulated fan blades

    NASA Technical Reports Server (NTRS)

    Cook, T. S.; Preston, J. L., Jr.

    1977-01-01

    The response of a graphite-epoxy material, Modmor II/PR-286, to foreign object impact was investigated by impacting spherical projectiles of three different materials - gelatin, ice, and steel - on simulated blade specimens. Visual and metallographic inspection revealed three damage mechanisms: penetration, leading edge bending failure, and stress wave delamination and cracking. The steel projectiles caused penetration damage regardless of the impact location and angle. For the ice and gelatin particles impacting the leading edge, failure was due to large local bending strains, resulting in significant material removal and delamination damage.

  17. Impingement flow heat transfer measurements of turbine blades using a jet array

    NASA Astrophysics Data System (ADS)

    Vantreuren, Kenneth W.

    1994-08-01

    The requirement for increased gas turbine engine performance has led to the use of much higher turbine entry temperature (TET). The higher temperatures require active cooling of the turbine blade using compressor bleed air. Arrays of impinging jets are one method currently used to reduce the blade temperature on the midspan and leading edge. Air flows through small holes in a blade insert and is directed on the inside surface of a turbine blade to reduce local surface temperature. The engine situation was represented by a 10-20 times scale model tested in the internal cooling transient facility at the University of Oxford. The geometry chosen was for a widely spaced array with a jet spacing of 8d and a plate thickness to jet diameter of 1.2. Experiments were accomplished for a range of impingement plate to target surface spacings, z/d, (1, 2 and 4) and jet Reynolds numbers, Re(sub j), (10,000 - 40,000) with both staggered and inline array hole configurations. The transient liquid crystal technique, both peak intensity narrowband and hue temperature history wideband, enabled the determination of heat transfer coefficient and adiabatic wall temperature. For the first time, local detail of heat transfer on the target surface as well as observation of the crossflow influence on the jet at the target surface are possible. A large variation in heat transfer exists between the stagnation point and channel passage between jets (2-4 times) which was unknown in previous experiments.

  18. Computational fluid dynamics simulation of sound propagation through a blade row.

    PubMed

    Zhao, Lei; Qiao, Weiyang; Ji, Liang

    2012-10-01

    The propagation of sound waves through a blade row is investigated numerically. A wave splitting method in a two-dimensional duct with arbitrary mean flow is presented, based on which pressure amplitude of different wave mode can be extracted at an axial plane. The propagation of sound wave through a flat plate blade row has been simulated by solving the unsteady Reynolds average Navier-Stokes equations (URANS). The transmission and reflection coefficients obtained by Computational Fluid Dynamics (CFD) are compared with semi-analytical results. It indicates that the low order URANS scheme will cause large errors if the sound pressure level is lower than -100 dB (with as reference pressure the product of density, main flow velocity, and speed of sound). The CFD code has sufficient precision when solving the interaction of sound wave and blade row providing the boundary reflections have no substantial influence. Finally, the effects of flow Mach number, blade thickness, and blade turning angle on sound propagation are studied.

  19. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Technical Reports Server (NTRS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-01-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  20. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  1. ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,

    DTIC Science & Technology

    TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR

  2. Turbine blade-tip clearance excitation forces

    NASA Technical Reports Server (NTRS)

    Martinez-Sanchez, M.; Greitzer, E. M.

    1985-01-01

    The results of an effort to assess the existing knowledge and plan the required experimentation in the area of turbine blade tip excitation forces is summarized. The work was carried out in three phases. The first was a literature search and evaluation, which served to highlight the state of the art and to expose the need for an articulated theoretical experimental effort to provide not only design data, but also a rational framework for their extrapolation to new configurations and regimes. The second phase was a start in this direction, in which several of the explicit or implicit assumptions contained in the usual formulations of the Alford force effect were removed and a rigorous linearized flow analysis of the behavior of a nonsymmetric actuator disc was carried out. In the third phase a preliminary design of a turbine test facility that would be used to measure both the excitation forces themselves and the flow patterns responsible for them were conducted and do so over a realistic range of dimensionless parameters.

  3. Rotor system having alternating length rotor blades for reducing blade-vortex interaction (BVI) noise

    NASA Technical Reports Server (NTRS)

    Moffitt, Robert C. (Inventor); Visintainer, Joseph A. (Inventor)

    1997-01-01

    A rotor system (4) having odd and even blade assemblies (O.sub.b, E.sub.b) mounting to and rotating with a rotor hub assembly (6) wherein the odd blade assemblies (O.sub.b) define a radial length R.sub.O, and the even blade assemblies (E.sub.b) define a radial length R.sub.E and wherein the radial length R.sub.E is between about 70% to about 95% of the radial length R.sub.O. Other embodiments of the invention are directed to a Variable Diameter Rotor system (4) which may be configured for operating in various operating modes for optimizing aerodynamic and acoustic performance. The Variable Diameter Rotor system (4) includes odd and even blade assemblies (O.sub.b, E.sub.b) having inboard and outboard blade sections (10, 12) wherein the outboard blade sections (12) telescopically mount to the inboard blade sections (10). The outboard blade sections (12) are positioned with respect to the inboard blade sections (10 such that the radial length R.sub.E of the even blade assemblies (E.sub.b) is equal to the radial length R.sub.O of the odd blade assemblies (O.sub.b) in a first operating mode, and such that the radial length R.sub.E is between about 70% to about 95% of the length R.sub.O in a second operating mode.

  4. The use of carbon fibers in wind turbine blade design: A SERI-8 blade example

    SciTech Connect

    ONG,CHENG-HUAT; TSAI,STEPHEN W.

    2000-03-01

    The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

  5. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  6. Numerical analysis of turbine blade tip treatments

    NASA Technical Reports Server (NTRS)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  7. Aeroelastic stability of wind turbine blades

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.

    1928-01-01

    The second degree nonlinear aeroelastic equations for a flexible, twisted, nonuniform wind turbine blade were developed using Hamilton's principle. The derivation of these equations has its basis in the geometric nonlinear theory of elasticity. These equations with periodic coefficients are suitable for determining the aeroelastic stability and response of large wind turbine blades. Methods for solving these equations are discussed.

  8. Flutter of Darrieus wind turbine blades

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  9. Method of making counterrotating aircraft propeller blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1990-01-01

    An aircraft propeller blade is constructed by forming two shells of composite material laminates and bonding the two shells to a metallic spar with foam filler pieces interposed between the shells at desired locations. The blade is then balanced radially and chordwise.

  10. Flutter of aircraft engine turbine blades

    NASA Astrophysics Data System (ADS)

    Panovsky, Josef, Jr.

    1997-11-01

    The goal of this research is to eliminate occurrences of flutter of low-pressure turbine blades in aircraft engines. Fundamental unsteady aerodynamic experiments in an annular cascade plus correlating analyses are conducted to improve the understanding of the flutter mechanism in these blades and to identify the key flutter parameters. The use of two- and three-dimensional linearized Euler methods for the calculation of the unsteady pressures due to the blade motion are validated through detailed comparison with the experimental data. Unexpected features of the steady and unsteady flows are also investigated using these computational tools. The validated computer codes are used to extend the range of the experimental data in a series of parametric studies, where the influence of mode shape, reduced frequency, and blade loading are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions while filtering out terms of less significance. Design rules for the preliminary concept phase and procedures for the detailed analysis phase of the typical blade design process are defined. Utilization of these procedures will lead to blade designs which are free of flutter.

  11. Massachusetts Large Blade Test Facility Final Report

    SciTech Connect

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  12. 49 CFR 236.707 - Blade, semaphore.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm....

  13. 49 CFR 236.707 - Blade, semaphore.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm....

  14. 49 CFR 236.707 - Blade, semaphore.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm....

  15. 49 CFR 236.707 - Blade, semaphore.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm....

  16. 49 CFR 236.707 - Blade, semaphore.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm....

  17. Blade feathering system for wind turbines

    SciTech Connect

    Harner, K.I.; Patrick, J.P.; Vosseller, K.F.

    1984-07-31

    A blade feathering system for wind turbines includes a feather actuator, control means operatively connected thereto and an adjustment means operatively connected to the control means for selectively varying the rate of operation of the feather actuator for feathering the wind turbine blades at a variable rate.

  18. Numerical analysis in the effects of blade's arrangement on the torque load characteristics of the three-blade planetary mixer

    NASA Astrophysics Data System (ADS)

    Liang, Jian; He, Ruibo; Zhan, Xiaobin; Li, Xiwen; Shi, Tielin

    2017-08-01

    The three-blade planetary mixer is one of the important solid propellant mixing equipment, the layout of blades will affect the blades' torque load and the power consumption. In this paper, the effects of the eccentric distance (Es=0˜16 mm), the solid blade form (two paddles, and four paddlers), and the blade arrangement (linear arrangement, triangle arrangement) on the blades' torque load are investigated during the mixer stirring the solid propellant process.

  19. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  20. Two-dimensional Navier-Stokes heat transfer analysis for rough turbine blades

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Civinskas, K. C.

    1991-01-01

    A quasi-three-dimensional thin-layer Navier-Stokes analysis was used to predict heat transfer to rough surfaces. Comparisons are made between predicted and experimental heat transfer for turbine blades and flat plates of known roughness. The effect of surface roughness on heat transfer was modeled using a mixing length approach. The effect of near-wall grid spacing and convergence criteria on the accuracy of the heat transfer predictions are examined. An eddy viscosity mixing length model having an inner and outer layer was used. A discussion of the appropriate model for the crossover between the inner and outer layers is included. The analytic results are compared with experimental data for both flat plates and turbine blade geometries. Comparisons between predicted and experimental heat transfer showed that a modeling roughness effects using a modified mixing length approach results in good predictions of the trends in heat transfer due to roughness.

  1. Design optimization for active twist rotor blades

    NASA Astrophysics Data System (ADS)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  2. Turbine blade damping device with controlled loading

    DOEpatents

    Marra, John J.

    2015-09-29

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  3. The SNL100-01 blade :

    SciTech Connect

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  4. Turbine blade damping device with controlled loading

    SciTech Connect

    Marra, John J

    2013-09-24

    A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.

  5. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  6. Advanced Blade Manufacturing Project - Final Report

    SciTech Connect

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  7. Platform for a swing root turbomachinery blade

    NASA Technical Reports Server (NTRS)

    Ravenhall, R. (Inventor)

    1977-01-01

    A rotor apparatus, comprising a blade having a root adapted to swing laterally within a supporting spindle under impact loading, is provided with a flow path defining platform. The platform comprises an inner shroud extending generally laterally of the blade airfoil portion and adapted to swing laterally. In one embodiment, wherein the blade primarily comprises a laminate of composite filament plies, the inner shroud is bonded to the laminate. An outer shroud, fixed with respect to the supporting spindle, forms a lateral extension of the inner shroud with the blade in its normal operating position. The inner and outer shrouds are provided with a pair of complementary adjacent surfaces contoured to pass in relatively close-fitting relationships to each other when the blade swings under impact loadings.

  8. Optimization of oar blade design for improved performance in rowing.

    PubMed

    Caplan, Nicholas; Gardner, Trevor N

    2007-11-01

    The aim of the present study was to find a more optimal blade design for rowing performance than the Big Blade, which has been shown to be less than optimal for propulsion. As well as the Big Blade, a flat Big Blade, a flat rectangular blade, and a rectangular blade with the same curvature and projected area as the Big Blade were tested in a water flume to determine their fluid dynamic characteristics at the full range of angles at which the oar blade might present itself to the water. Similarities were observed between the flat Big Blade and rectangular blades. However, the curved rectangular blade generated significantly more lift in the angle range 0-90 degrees than the curved Big Blade, although it was similar between 90 and 180 degrees. This difference was attributed to the shape of the upper and lower edges of the blade and their influence on the fluid flow around the blade. Although the influence of oar blade design on boat speed was not investigated here, the significant increases in fluid force coefficients for the curved rectangular blade suggest that this new oar blade design could elicit a practically significant improvement in rowing performance.

  9. Impact of composite plates: Analysis of stresses and forces

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Kim, B. S.; Fang-Landau, S. R.

    1976-01-01

    The foreign object damage resistance of composite fan blades was studied. Edge impact stresses in an anisotropic plate were first calculated incorporating a constrained layer damping model. It is shown that a very thin damping layer can dramatically decrease the maximum normal impact stresses. A multilayer model of a composite plate is then presented which allows computation of the interlaminar normal and shear stresses. Results are presented for the stresses due to a line impact load normal to the plane of a composite plate. It is shown that significant interlaminar tensile stresses can develop during impact. A computer code was developed for this problem using the fast Fourier transform. A marker and cell computer code were also used to investigate the hydrodynamic impact of a fluid slug against a wall or turbine blade. Application of fluid modeling of bird impact is reviewed.

  10. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  11. Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Jun; Hu, Zheng; Chen, Zhong-Sheng; Yang, Yong-Min; Xu, Hai-Long

    2016-12-01

    Severe blade vibrations may reduce the useful life of the high-speed blade. Nowadays, non-contact measurement using blade tip-timing (BTT) technology is becoming promising in blade vibration monitoring. However, blade tip-timing signals are typically under-sampled. How to extract characteristic features of unknown multi-mode blade vibrations by analyzing these under-sampled signals becomes a big challenge. In this paper, a novel BTT analysis method for reconstructing unknown multi-mode blade vibration signals is proposed. The method consists of two key steps. First, a sparse representation (SR) mathematical model for sparse blade tip-timing signals is built. Second, a multi-mode blade vibration reconstruction algorithm is proposed to solve this SR problem. Experiments are carried out to validate the feasibility of the proposed method. The main advantage of this method is its ability to reconstruct unknown multi-mode blade vibration signals with high accuracy. The minimal requirements of probe number are also presented to provide guidelines for BTT system design.

  12. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    SciTech Connect

    Tangler, J.L.

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  13. Experimental simulation of impingement cooling in midchord region of turbine blade

    NASA Astrophysics Data System (ADS)

    Li, Liguo; Jiang, Jun; Chang, Haiping; Zhang, Donglia

    1989-10-01

    Simulation experiments have been completed to research the characteristics of impingement cooling in the midchord region of a turbine blade for a given geometric parameter of jet array, initial crossflow, and pressure ratios of the film-cooling exhaust. Comparative experiments have been made on curvilinear and flat plate impinged surfaces, and impinged surfaces with and without a chordwise fin. Moreover, the thermal patterns from a liquid crystal show that the jet hole arrangement and distance between cooled surface and jet plate affect the heat transfer distributions for jet array impingement. Finally, the effects of the cooling air axially injected into guide tube on radial jet flow have also been determined.

  14. An experimental investigation of turbomachine blade row aeromechanics

    NASA Astrophysics Data System (ADS)

    Feiereisen, John Michael

    This research was directed at understanding two major issues in turbomachine unsteady aerodynamics: (1) two-dimensional modeling of the unsteady aerodynamic excitation to a blade row within the constraints of linearized theory, and (2) the resulting unsteady aerodynamic loading of a blade row utilizing linearized theory analysis. These objectives were pursued by means of a series of experiments in the Purdue Annular Cascade Research Facility. This facility experimentally reproduces the fundamental unsteady flow phenomena inherent in axial flow turbomachines. The unsteady periodic flow field generated by rotating rows of perforated plates and airfoil cascades was measured with a two-component hot-wire anemometer and an unsteady total pressure probe and characterized in terms of the two-dimensional unsteady velocity and unsteady static pressure perturbations. The resulting unsteady periodic chordwise surface pressure distributions on a downstream stator row were measured with miniature high-frequency response pressure transducers mounted within the stator airfoils. Thus the unsteady aerodynamic excitation and resulting unsteady aerodynamic response were quantitatively ascertained. The periodic unsteady flow perturbations were analyzed as superpositions of harmonic vortical and potential flow perturbations, with each of these fundamental perturbations modeled as a spatial flow nonuniformity which is temporally steady in an appropriately rotating reference frame. The unsteady velocity associated with an harmonic vortical perturbation was shown to be parallel to the mean velocity vector in the rotating relative reference frame. The unsteady potential perturbations were shown to either propagate or decay axially depending upon flow conditions, with the propagation or decay determined by the mean relative Mach number in the rotating reference frame. Unsteady flow fields generated by rotating rows of perforated plates were found to be almost purely vortical perturbations

  15. The SNL100-02 blade :

    SciTech Connect

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  16. Plate electronics

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Using a Cray T3D supercomputer and a simple assumption about the physical character of Earth's mantle, a pair of researchers from the University of California at Berkeley have built a computer model that may help explain why the planet's tectonic plates look the way they do.In creating a three-dimensional numerical simulation of convection in the Earth's interior, UC researchers Hans-Peter Bunge and Mark Richards simplified their model to account for just one major physical effect: that the viscosity of the mantle increases with depth. Reviewing some recent—but not yet widely accepted—seismic data, Bunge and Richards assumed for the sake of the model that the viscosity of the mantle increases by a factor of 30 from the lithosphere to the core-mantle boundary. Relying on that assumption, the pair ran the model for nearly three weeks on a supercomputer at Los Alamos National Laboratory and found that the simulation produced an effect similar to what we see on the surface of Earth. The model produced a surface paralleling the actual width of plates and the geometry of the plate boundaries.

  17. High performance flat plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Reynolds, R.

    1976-01-01

    The potential use of porous construction is presented to achieve efficient heat removal from a power producing solid and is applied to solar air heaters. Analytical solutions are given for the temperature distribution within a gas-cooled porous flat plate having its surface exposed to the sun's energy. The extracted thermal energy is calculated for two different types of plate transparency. Results show the great improvement in performance obtained with porous flat plate collectors as compared with analogous nonporous types.

  18. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  19. Wind turbine blade waste in 2050.

    PubMed

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, Clint

    1984-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  1. Method of making a wooden wind turbine blade

    DOEpatents

    Coleman, C.

    1984-08-14

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis. 8 figs.

  2. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1984-01-01

    The optimal design of helicopter rotor blades is addressed. The forced response of an initial (i.e., non-optimized) blade to those of a final (optimized) blade are compared. Response of starting design and optimal designs for varying forcing frequencies, blade response to harmonics of rotor speed, and derivation of mass and stiffness matrices or functions of natural frequencies are discussed.

  3. Superhydrophobic anti-ultraviolet films by doctor blade coating

    SciTech Connect

    Cai, Chang-Yun; Yang, Hongta; Lin, Kun-Yi Andrew

    2014-11-17

    This article reports a scalable technology for fabricating polymer films with excellent water-repelling and anti-ultraviolet properties. A roll-to-roll compatible doctor blade coating technology is utilized to prepare silica colloidal crystal-polymer composites. The silica microspheres can then be selectively removed to create flexible self-standing macroporous polymer films with crystalline arrays of pores. The void sizes are controlled by tuning the duration of a reactive ion etching process prior to the removal of the templating silica microspheres. After surface modification, superhydrophobic surface can be achieved. This study further demonstrates that the as-prepared transparent porous films with 200 nm of pores exhibit diffraction of ultraviolet lights originated from the Bragg's diffractive of light from the three-dimensional highly ordered air cavities.

  4. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  5. Wind turbine blade with viscoelastic damping

    DOEpatents

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  6. Vortex control for rotor blade devices

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2008-01-01

    To control vortices originating at the tips of a rotor's blades rotating through the air at a revolution frequency f, separation control device(s) are actuated to periodically introduce perturbations into the airflow moving over the blades. The periodic introduction of perturbations is controlled in accordance with a periodic modulating frequency of introduction f.sub.0 while the frequency of the perturbations so-introduced is designated as f.sub.e. Vortex control is achieved when the periodic modulating frequency of introduction f.sub.0 satisfies the relationship nf.ltoreq.f.sub.0.ltoreq.f.sub.e where n is the number of blades.

  7. Rotating blade vibration analysis using shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    Shallow shell theory and the Ritz method are employed to determine the frequencies and mode shapes of turbomachinery blades having both camber and twist, rotating with non-zero angles of attack. Frequencies obtained for different degrees of shallowness and thickness are compared with results available in the literature, obtained from finite element analyses of nonrotating blades. Frequencies are also determined for a rotating blade, showing the effects of changing the (1) angular velocity of rotation, (2) disk radius and (3) angle of attack, as well as the significance of the most important body force terms.

  8. Blade loss transient dynamic analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.

    1982-01-01

    This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.

  9. Blade loss transient dynamic analysis of turbomachinery

    NASA Technical Reports Server (NTRS)

    Stallone, M. J.; Gallardo, V.; Storace, A. F.; Bach, L. J.; Black, G.; Gaffney, E. F.

    1982-01-01

    This paper reports on work completed to develop an analytical method for predicting the transient non-linear response of a complete aircraft engine system due to the loss of a fan blade, and to validate the analysis by comparing the results against actual blade loss test data. The solution, which is based on the component element method, accounts for rotor-to-casing rubs, high damping and rapid deceleration rates associated with the blade loss event. A comparison of test results and predicted response show good agreement except for an initial overshoot spike not observed in test. The method is effective for analysis of large systems.

  10. In situ repair welding of steam turbine shroud for replacing a cracked blade

    NASA Astrophysics Data System (ADS)

    Albert, S. K.; Das, C. R.; Ramasubbu, V.; Bhaduri, A. K.; Ray, S. K.; Raj, Baldev

    2002-06-01

    A root-cracked blade in a high-pressure steam turbine of a nuclear power plant had to be replaced with a new blade by cutting the shroud to remove the cracked blade. This necessitated in situ welding of a new shroud piece with the existing shroud after the blade replacement. The in situ welding of the shroud, a 12% Cr martensitic stainless steel with tempered martensite microstructure, was carried out using gastungsten arc welding and 316L austenitic stainless steel filler metal followed by localized postweld heat treatment at 873 K for 1 h using a specially designed electrical resistance-heating furnace. Mock-up trials were carried out to ensure that sound welds could be made under the constraints present during the in situ repair welding operation. In situ metallography of the repair weld after postweld heat treatment confirmed the adequate tempering of the martensitic structure in the heat-affected zone. Metallurgical investigations carried out in the laboratory on a shroud test-piece that had been welded using the same procedure as employed in the field confirmed the success of the in situ repair operation. The alternate option available was replacing the cracked blade and the shroud piece to which it is riveted with a new one, reducing the height of all the blades attached to the shroud by machining, riveting the blades with reduced height to the new shroud, and, finally, dynamic balancing of the entire turbine after completion of the repair. This option is both time-consuming and expensive. Hence, the successful completion of this repair welding resulted in enormous savings both in terms of reducing the downtime of the plant and the cost of the repair. The turbine has been put back into service and has been operating satisfactorily since December 2000.

  11. Numerical simulation on the aerodynamic effects of blade icing on small scale Straight-bladed VAWT

    NASA Astrophysics Data System (ADS)

    Feng, Fang; Li, Shengmao; Li, Yan; Tian, Wenqiang

    To invest the effects of blade surface icing on the aerodynamics performance of the straight-bladed vertical-axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a static straight blade using a simple icing wind tunnel. Firstly, the icing situations on blade surface at some kinds of typical attack angle were observed and recorded under different cold water flow fluxes. Then the iced blade airfoils were combined into a SB-VAWT model with two blades. Numerical simulations were carried out on this model, and the static and dynamic torque coefficients of the model with and without icing were computed. Both the static and dynamic torque coefficients were decreased for the icing effects.

  12. Studies of blade-vortex interaction noise reduction by rotor blade modification

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas F.

    Blade-vortex interaction (BVI) noise is one of the most objectionable types of helicopter noise. This impulsive blade-slap noise can be particularly intense during low-speed landing approach and maneuvers. Over the years, a number of flight and model rotor tests have examined blade tip modification and other blade design changes to reduce this noise. Many times these tests have produced conflicting results. In the present paper, a number of these studies are reviewed in light of the current understanding of the BVI noise problem. Results from one study in particular are used to help establish the noise reduction potential and to shed light on the role of blade design. Current blade studies and some new concepts under development are also described.

  13. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi

    2017-10-01

    Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.

  14. Dynamic blade loading in the ERDA/NASA 100 kW and 200 kW wind turbines

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Janetzke, D. C.; Richards, T. R.

    1977-01-01

    Dynamic blade loads, including aerodynamic, gravitational, and inertial effects, are presented for two large horizontal-axis wind turbines: the ERDA-NASA 100 kW Mod-0 and 200 kw Mod-0A wind power systems. Calculated and measured loads are compared for an experimental Mod-0 machine in operation. Predicted blade loads are also given for the higher power Mod-0A wind turbine now being assembled for operation as part of a municipal power plant. Two major structural modifications have been made to the Mod-0 wind turbine for the purpose of reducing blade loads. A stairway within the truss tower was removed to reduce the impulsive aerodynamic loading caused by the tower wake on the downwind rotor blades. Also, the torsional stiffness of the yaw drive mechanism connecting the turbine nacelle to the tower was doubled to reduce rotor-tower interaction loads. Measured reductions in load obtained by means of these two modifications equaled or exceeded predictions.

  15. Numerical and experimental investigation of turbine blade film cooling

    NASA Astrophysics Data System (ADS)

    Berkache, Amar; Dizene, Rabah

    2017-06-01

    The blades in a gas turbine engine are exposed to extreme temperature levels that exceed the melting temperature of the material. Therefore, efficient cooling is a requirement for high performance of the gas turbine engine. The present study investigates film cooling by means of 3D numerical simulations using a commercial code: Fluent. Three numerical models, namely k-ɛ, RSM and SST turbulence models; are applied and then prediction results are compared to experimental measurements conducted by PIV technique. The experimental model realized in the ENSEMA laboratory uses a flat plate with several rows of staggered holes. The performance of the injected flow into the mainstream is analyzed. The comparison shows that the RANS closure models improve the over-predictions of center-line film cooling velocities that is caused by the limitations of the RANS method due to its isotropy eddy diffusivity.

  16. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    SciTech Connect

    Griffin, Dayton A.

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  17. Eulerian laser Doppler vibrometry: Online blade damage identification on a multi-blade test rotor

    NASA Astrophysics Data System (ADS)

    Oberholster, A. J.; Heyns, P. S.

    2011-01-01

    Laser Doppler vibrometry enables the telemetry-free measurement of online turbomachinery blade vibration. Specifically, the Eulerian or fixed reference frame implementation of laser vibrometry provides a practical solution to the condition monitoring of rotating blades. The short data samples that are characteristic of this measurement approach do however negate the use of traditional frequency domain signal processing techniques. It is therefore necessary to employ techniques such as time domain analysis and non-harmonic Fourier analysis to obtain useful information from the blade vibration signatures. The latter analysis technique allows the calculation of phase angle trends which can be used as indicators of blade health deterioration, as has been shown in previous work for a single-blade rotor. This article presents the results from tests conducted on a five-blade axial-flow test rotor at different rotor speeds and measurement positions. With the aid of artificial neural networks, it is demonstrated that the parameters obtained from non-harmonic Fourier analysis and time domain signal processing on Eulerian laser Doppler vibrometry signals can successfully be used to identify and quantify blade damage from among healthy blades. It is also shown that the natural frequencies of individual blades can be approximated from the Eulerian signatures recorded during rotor run-up and run-down.

  18. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, James E.

    1995-01-01

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints.

  19. Pin and roller attachment system for ceramic blades

    DOEpatents

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  20. Blade Vibration Measurement System for Unducted Fans

    NASA Technical Reports Server (NTRS)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  1. Pluto Bladed Terrain in 3-D

    NASA Image and Video Library

    2016-03-31

    One of the strangest landforms spotted by NASA New Horizons spacecraft when it flew past Pluto last July was the bladed terrain just east of Tombaugh Regio, the informal name given to Pluto large heart-shaped surface feature.

  2. Drag blade bit with diamond cutting elements

    SciTech Connect

    Radtke, R. P.; Morris, W. V.

    1985-02-19

    A drag blade bit for connection on a drill string has a hollow body on which there are welded a plurality of cutting or drilling blades. The blades extend longitudinally and radially of the bit body and terminate in relatively flat, radially extending cutting edges. A plurality of cutters are positioned in and spaced along the cutting edges and consists of cylindrical sintered carbide inserts with polycrystalline diamond cutting elements mounted thereon. Hardfacing is provided on the cutting edges between the cutters and on the other surfaces of the blades and the bit body subject to abrasive wear. One or more nozzles are positioned in passages from the interior of the bit body for directing flow of drilling fluid for flushing cuttings from the well bore and for cooling the bit.

  3. Composite Blade Structural Analyzer (COBSTRAN) demonstration manual

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.

    1989-01-01

    The input deck setup is described for a computer code, composite blade structural analyzer (COBSTRAN) which was developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades. This manual is intended for use in conjunction with the COBSTRAN user's manual. Seven demonstration problems are described with pre- and postprocessing input decks. Modeling of blades which are solid thru-the-thickness and also aircraft wing airfoils with internal spars is shown. Corresponding NASTRAN and databank input decks are also shown. Detail descriptions of each line of the pre- and post-processing decks is provided with reference to the Card Groups defined in the user's manual. A dictionary of all program variables and terms used in this manual may be found in Section 6 of the user's manual.

  4. Composite blade structural analyzer (COBSTRAN) user's manual

    NASA Technical Reports Server (NTRS)

    Aiello, Robert A.

    1989-01-01

    The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.

  5. Helicopter Rotor Blade With Free Tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles

    1992-01-01

    Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.

  6. The UMass wind furnace blade design

    NASA Technical Reports Server (NTRS)

    Cromack, D. E.

    1978-01-01

    A brief description of the wind furnace concept is presented along with some preliminary performance data. Particular emphasis is placed on the design, construction, and manufacturing procedure for the 32.5 foot diameter GRP blades.

  7. Wireless Sensors for Wind Turbine Blades Monitoring

    NASA Astrophysics Data System (ADS)

    Iftimie, N.; Steigmann, R.; Danila, N. A.; Rosu, D.; Barsanescu, P. D.; Savin, A.

    2017-06-01

    The most common defects in turbine blades may be faulty microscopic and mesoscopic appeared in matrix, no detected by classical nondestructive testing (i.e. using phased array sensors), broken fibers can also appear and develop under moderated loads, or cracks and delaminations due to low energy impacts, etc. The paper propose to present the results obtained from testing of glass fiber reinforced plastic used in the construction of the wind turbine blades as well as the monitoring of the entire scalable blade using wireless sensors placed on critical location on blade. In order to monitories the strain/stress during the tests, the determination of the location and the nature of defects have been simulated using FEM.

  8. Helicopter Rotor Blade With Free Tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles

    1992-01-01

    Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.

  9. Structural analysis considerations for wind turbine blades

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1979-01-01

    Approaches to the structural analysis of wind turbine blade designs are reviewed. Specifications and materials data are discussed along with the analysis of vibrations, loads, stresses, and failure modes.

  10. Wireless Inductive Power Device Suppresses Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  11. Delamination, upper plate extension, and plate margin complexity

    NASA Astrophysics Data System (ADS)

    Ueda, Kosuke; Gerya, Taras; Willett, Sean

    2017-04-01

    We investigate the syn- and post-subduction margin evolution with respect to extension, lithospheric removal, and magmatic and topographic consequences by employing 3D geodynamic models. In all experiments, regions of extended partial melting are overlain by up to 3 km high plateaus. There is complex geometric entanglement between upper mantle, partially molten rocks, and lithosphere, which is thermally eroded, over hundreds of kilometers across the plate contact. A complex lithosphere-asthenosphere-boundary features elongated anomalies at scales of few tens to hundred kilometers. First-order, synthetic seismic anomaly patterns, based on thermodynamic velocities which are tabulated for model p,T conditions, are accordingly complex. Passive margin geometry variations in the lower plate effect consistent and inherited differences in dynamic evolution. Promontories along the margin tend to trigger three stages of evolution: 1) a magmatic arc; 2) a lower plate, eduction-like exhumation of buried continental crust in domal patterns of few tens of km wavelength; and subsequently, 3) the formation of extended zones on the upper plate which lack a lithospheric mantle, undergo partial extension, and feature lower crustal melting. Slab break-off is consistently favoured in locations where the lower plate margin is relatively recessed. Concerning the classical removal mechanisms, transitions and co-evolution between delamination, convective thinning, and upper-plate extension are gradual and these modes are not mutually exclusive. Almost complete mixed-mode removal and extension can be compared to the Aegean. Slab window formation by margin geometry variation produces characteristic uplift patterns that are comparable to the Apennines, where higher uplift rates could be a consequence of incipient necking of the slab below central Calabria.

  12. Advanced blade tip seal system, volume 2

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    The results of the endurance and performance engine tests conducted on monocrystal/abrasive-tipped CF6-50 Stage 1 HPT blades fabricated in Task VII of MATE Project 3 are presented. Two engine tests are conducted. The endurance engine test is conducted for 1000 C cycles. The performance engine test is conducted on a variable cycle core engine. Posttest evaluation and analyses of the blades and shrouds included visual, dimensional, and destructive evaluations.

  13. Active attenuation of propeller blade passage noise

    NASA Technical Reports Server (NTRS)

    Zalas, J. M.; Tichy, J.

    1984-01-01

    Acoustic measurements are presented to show that active cancellation can be used to achieve significant reduction of blade passage noise in a turboprop cabin. Simultaneous suppression of all blade passage frequencies was attained. The spatial volume over which cancellation occurred, however, is limited. Acoustic intensity maps are presented to show that the acoustic input to the fuselage was sufficiently non-localized so as to require more judicious selection of cancellation speaker location.

  14. Labyrinthine turbine-rotor-blade tip seal

    NASA Technical Reports Server (NTRS)

    Wagner, William R. (Inventor)

    1987-01-01

    Means for sealing the tip 18 of a rotor turbine blade 10 against tip leakage flow comprising a multiplicity of recesses 30 formed in the surface of the tip 18. The recesses 30 are preferably formed in a labyrinthine or slaggered pattern which interposes at least one recess 30 in every leakage flow path across the tip 18 from the pressure side 26 to the suction side 28 of the blade 10.

  15. Flowfield Characteristics on a Retreating Rotor Blade

    DTIC Science & Technology

    2015-12-03

    these is the dynamic stall problem . In order to balance the rolling moments between the two sides of the rotor, the blade pitch is increased as the blade...consistent frequency. A similar phenomenon occurs in the canonical problem of flow induced over a spinning disk, when the disk has edgewise flow at an...turn bring closure to the 3-D dynamic stall problem . We also performed stereo Particle Image Velocimetry (SPIV) capture of the 3-component, phase

  16. Rotor blade construction for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Carter, Sr., Donald R. (Inventor); Krauss, Timothy A. (Inventor); Sedlak, Matthew (Inventor)

    1986-01-01

    A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.

  17. High efficiency turbine blade coatings

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  18. The environmental impact of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Liu, P.; Barlow, C. Y.

    2016-07-01

    The first generation of wind turbine (WT) blades are now reaching their end of life, signalling the beginning of a large problem for the future. Currently most waste is sent to landfill, which is not an environmentally desirable solution. Awareness of this issue is rising, but no studies have fully assessed the eco impact of WT blades. The present study aims to provide a macroscopic quantitative assessment of the lifetime environmental impact of WT blades. The first stage has been to analyse global data to calculate the amount of WT blade materials consumed in the past. The life cycle environmental impact of a single WT blade has then been estimated using eco data for raw materials, manufacturing processes, transportation, and operation and maintenance processes. For a typical 45.2 meter 1.5 MW blade this is 795 GJ (CO2 footprint 42.1 tonnes), dominated by manufacturing processes and raw materials (96% of the total. Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt. These figures will provide a basis for suggesting possible solutions to reduce WTB environmental impact.

  19. Brake for counter rotating bladed members

    SciTech Connect

    Cedoz, R.W.

    1987-02-10

    This patent describes a propulsion system including a gas turbine engine having an output shaft and a gear drive having a planetary gear set with a first element connected to the engine output shaft and a second element connected to a first bladed member and a third element connected to a second bladed member whereby the first and second bladed members are rotated in opposite directions by the output shaft. A brake is described comprising, a first transfer shaft supported on a stationary housing for rotation about an axis of the latter, a second transfer shaft supported on the stationary housing for rotation about the axis, gear means between one of the counter rotating bladed members and the first transfer shaft and gear means between the other of the counter rotating bladed members and the second transfer shaft. The brake also includes a selectively operable brake actuator on the housing movable between an extended position and a retracted position, and friction means between the brake actuator and each of first and second transfer shafts operative in the extended position of the brake actuator to simultaneously frictionally retard rotation of each of the first and the second transfer shafts whereby each of the counter rotating bladed members is simultaneously braked.

  20. Plating on some difficult-to-plate metals and alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests.

  1. Plating on some difficult-to-plate metals and alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1984-02-21

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests. 3 figures, 9 tables.

  2. Forced response of rotating bladed disks: Blade Tip-Timing measurements

    NASA Astrophysics Data System (ADS)

    Battiato, G.; Firrone, C. M.; Berruti, T. M.

    2017-02-01

    The Blade Tip-Timing is a well-known non-contact measurement technique currently employed for the identification of the dynamic behaviours of rotating bladed disks. Although the measurement system has become a typical industry equipment for bladed disks vibration surveys, the type of sensors, the positioning of the sensors around the bladed disk and the used algorithm for data post-processing are still not standard techniques, and their reliability has to be proved for different operation conditions by the comparison with other well-established measurement techniques used as reference like strain gauges. This paper aims at evaluating the accuracy of a latest generation Tip-Timing system on two dummy blisks characterized by different geometrical, structural and dynamical properties. Both disks are tested into a spin-rig where a fixed number of permanent magnets excite synchronous vibrations with respect to the rotor speed. A new positioning for the Blade Tip-Timing optical sensors is tested in the case of a shrouded bladed disk. Due to the presence of shrouds, the sensors cannot be positioned at the outer radius of the disk pointing radially toward the rotation axis as in the most common applications, since the displacements at the tips are very small and cannot be detected. For this reason a particular placement of optical laser sensors is studied in order to point at the leading and trailing edges' locations where the blades experience the largest vibration amplitudes with the aim of not interfering with the flow path. Besides the typical Blade Tip-Timing application aimed at identifying the dynamical properties of each blade, an original method is here proposed to identify the operative deflection shape of a bladed disk through the experimental determination of the nodal diameters. The method is applicable when a small mistuning pattern perturbs the ideal cyclic symmetry of the bladed disk.

  3. Characterization of Deficiencies in the Frequency Domain Forced Response Analysis Technique for Supersonic Turbine Bladed Disks

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Schmauch, Preston

    2012-01-01

    Turbine blades in rocket and jet engine turbomachinery experience enormous harmonic loading conditions. These loads result from the integer number of upstream and downstream stator vanes as well as the other turbine stages. Assessing the blade structural integrity is a complex task requiring an initial characterization of whether resonance is possible and then performing a forced response analysis if that condition is met. The standard technique for forced response analysis in rocket engine turbines is to decompose a computational fluid dynamics (CFD).generated flow field into its harmonic components, and to then perform a frequency response analysis at the problematic natural frequencies using cyclically symmetric structural dynamic models. Recent CFD analysis and water-flow testing at NASA/MSFC, though, indicates that this technique may miss substantial harmonic and non ]harmonic excitation sources that become present in complex flows. This complex content can only be captured by a CFD flow field encompassing at least an entire revolution. A substantial development effort to create a series of software programs to enable application of the 360 degree forcing function in a frequency response analysis on cyclic symmetric models has been completed (to be described in a future paper), but the question still remains whether the frequency response analysis itself is capable of capturing the excitation content sufficiently. Two studies comparing frequency response analysis with transient response analysis, therefore, of bladed-disks undergoing this complex flow environment have been performed. The first is of a bladed disk with each blade modeled by simple beam elements and the disk modeled with plates (using the finite element code MSC/NASTRAN). The focus of this model is to be representative of response of realistic bladed disks, and so the dimensions are roughly equivalent to the new J2X rocket engine 1st stage fuel pump turbine. The simplicity of the model allows

  4. Near wall flow parameters in the blade end-wall corner region

    NASA Astrophysics Data System (ADS)

    Bhargava, R. K.; Raj, R.

    The effects of secondary end-wall corner flows on near wall flow parameters in turbomachinary are studied. Important near wall flow parameters such as the wall shear stress vector, the mean wall pressure, the wall pressure fluctuations, and the correlation of the wall pressure fluctuation with the velocity fluctuation in three-dimensional turbulent flows are first experimentally investigated. The blade end-wall corner region is simulated by mounting airfoil section of symmetric blades on both sides of the flat plate with semicircular leading edge. Observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the streching and attenuation of the horseshoe vortex. The values of wall pressure fluctuation intensity in the blade end-wall corner region are found to be influenced by the changes of the strength of the horseshoe vortex. The correlation of the wall pressure fluctuation with the velocity fluctuation indicated higher values of correlation coefficient in the inner region as compared to the outer region of the shear layer. The values of wall pressure-velocity correlation coefficient in the blade end-wall corner region also decrease in the streamwise direction while increasing in the presence of favorable and adverse pressure gradients.

  5. Near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R. K.; Raj, R.

    1989-01-01

    The effects of secondary end-wall corner flows on near wall flow parameters in turbomachinary are studied. Important near wall flow parameters such as the wall shear stress vector, the mean wall pressure, the wall pressure fluctuations, and the correlation of the wall pressure fluctuation with the velocity fluctuation in three-dimensional turbulent flows are first experimentally investigated. The blade end-wall corner region is simulated by mounting airfoil section of symmetric blades on both sides of the flat plate with semicircular leading edge. Observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the streching and attenuation of the horseshoe vortex. The values of wall pressure fluctuation intensity in the blade end-wall corner region are found to be influenced by the changes of the strength of the horseshoe vortex. The correlation of the wall pressure fluctuation with the velocity fluctuation indicated higher values of correlation coefficient in the inner region as compared to the outer region of the shear layer. The values of wall pressure-velocity correlation coefficient in the blade end-wall corner region also decrease in the streamwise direction while increasing in the presence of favorable and adverse pressure gradients.

  6. Shaft instantaneous angular speed for blade vibration in rotating machine

    NASA Astrophysics Data System (ADS)

    Gubran, Ahmed A.; Sinha, Jyoti K.

    2014-02-01

    Reliable blade health monitoring (BHM) in rotating machines like steam turbines and gas turbines, is a topic of research since decades to reduce machine down time, maintenance costs and to maintain the overall safety. Transverse blade vibration is often transmitted to the shaft as torsional vibration. The shaft instantaneous angular speed (IAS) is nothing but the representing the shaft torsional vibration. Hence the shaft IAS has been extracted from the measured encoder data during machine run-up to understand the blade vibration and to explore the possibility of reliable assessment of blade health. A number of experiments on an experimental rig with a bladed disk were conducted with healthy but mistuned blades and with different faults simulation in the blades. The measured shaft torsional vibration shows a distinct difference between the healthy and the faulty blade conditions. Hence, the observations are useful for the BHM in future. The paper presents the experimental setup, simulation of blade faults, experiments conducted, observations and results.

  7. User's Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine

    SciTech Connect

    Bir, G. S.

    2010-09-01

    This guide explains how to use MBC3, a MATLAB-based script NREL developed to perform multi-blade coordinate transformation of system matrices for three-bladed wind turbines. In its current form, MBC3 can be applied to system matrices generated by FAST.2.

  8. Method of calculating blade-to-blade plane flow in centrifugal pump

    NASA Technical Reports Server (NTRS)

    Jackson, E. D.

    1970-01-01

    Steam filament solution determines velocity distribution due to potential flow in the blade-to-blade plane of the radial impeller. This is used to determine the mass-averaged relative fluid angle, which is in turn used in an axisymmetric program to obtain steam surfaces of the assumed axisymmetric flow.

  9. Additional calcar support using a blade device reduces secondary varus displacement following reconstruction of the proximal humerus: a prospective study.

    PubMed

    Beirer, Marc; Crönlein, Moritz; Venjakob, Arne J; Saier, Tim; Schmitt-Sody, Marcus; Huber-Wagner, Stefan; Biberthaler, Peter; Kirchhoff, Chlodwig

    2015-10-07

    Locking plate fixation of displaced fractures of the proximal humerus is still accompanied by a distinct complication rate, especially in case of osteoporotic bone, short-segment fracture length and comminution of the medial calcar. Secondary loss of reduction leading to varus deformity and screw cutout most frequently lead to surgical revision. The aim of the present study was to evaluate the clinical and radiological outcome of a recently developed polyaxial locking plate that allows for the additional placement of a helical blade device, aiming for support of the medial calcar. In this prospective study, 17 patients with a mean age of 63.0 ± 16.0 years suffering from displaced fractures of the proximal humerus (Neer type two-, three- and four-part) were enrolled. All patients were surgically treated using a polyaxial locking plate with additional blade device (group PAB, n = 12) or without blade device (group PA, n = 5). Functional outcome was recorded using the Munich Shoulder Questionnaire allowing for qualitative self-assessment of the Shoulder Pain and Disability Index (SPADI), the Disability of the Arm, Shoulder and Hand (DASH score) and the Constant Score. Radiological outcome was assessed by analyzing standardized true anterior-posterior and outlet-view radiographs with respect to radiographic evidence of secondary varus displacement, cutout of screws and hardware failure. Results were compared to an age-, gender- and fracture type-matched collective treated by monoaxial locking plate fixation (group MA, n = 15). The mean follow-up was 12.4 ± 2.9 months after surgery. There were no statistical significant differences in clinical outcome in all three groups. Group MA and group PA revealed significant secondary varus displacement in comparison to group PAB at the final follow-up compared to postoperative analysis (p < 0.001). The distance between the blade and the articular surface showed no significant increase in group PAB at the final

  10. Fuel cell cooler-humidifier plate

    DOEpatents

    Vitale, Nicholas G.; Jones, Daniel O.

    2000-01-01

    A cooler-humidifier plate for use in a proton exchange membrane (PEM) fuel cell stack assembly is provided. The cooler-humidifier plate combines functions of cooling and humidification within the fuel cell stack assembly, thereby providing a more compact structure, simpler manifolding, and reduced reject heat from the fuel cell. Coolant on the cooler side of the plate removes heat generated within the fuel cell assembly. Heat is also removed by the humidifier side of the plate for use in evaporating the humidification water. On the humidifier side of the plate, evaporating water humidifies reactant gas flowing over a moistened wick. After exiting the humidifier side of the plate, humidified reactant gas provides needed moisture to the proton exchange membranes used in the fuel cell stack assembly. The invention also provides a fuel cell plate that maximizes structural support within the fuel cell by ensuring that the ribs that form the boundaries of channels on one side of the plate have ends at locations that substantially correspond to the locations of ribs on the opposite side of the plate.

  11. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    PubMed

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions.

  12. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  13. Further development of the swinging-blade Savonius rotor

    NASA Astrophysics Data System (ADS)

    Aldoss, T. K.; Najjar, Y. S. H.

    Savonius rotor performance is improved by allowing both downwind and upwind rotor blades to swing back through an optimum angle. This will minimize the drag on the upwind blade and maximize the drag on the down-wind blade. A combination of 50 degrees upwind blade swing angle and 13.5 degrees downwind blade swing angle have been found experimentally to be the optimum swing angles that increased the rotor maximum power coefficient to about 23.5 percent compared with 18 percent with optimum upwind blade swing alone.

  14. Bird impact analysis package for turbine engine fan blades

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.

    1982-01-01

    A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.

  15. Determination of HART I Blade Structural Properties by Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  16. Bird impact analysis package for turbine engine fan blades

    NASA Technical Reports Server (NTRS)

    Hirschbein, M. S.

    1982-01-01

    A computer program has been developed to analyze the gross structural response of turbine engine fan blades subjected to bird strikes. The program couples a NASTRAN finite element model and modal analysis of a fan blade with a multi-mode bird impact analysis computer program. The impact analysis uses the NASTRAN blade model and a fluid jet model of the bird to interactively calculate blade loading during a bird strike event. The analysis package is computationaly efficient, easy to use and provides a comprehensive history of the gross structual blade response. Example cases are presented for a representative fan blade.

  17. Blade-to-coolant heat-transfer results and operating data from a natural-convection water-cooled single-stage turbine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Freche, John C

    1951-01-01

    Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.

  18. An experimental investigation of the effect of rotor tip shape on helicopter blade-slap noise. [in the langley v/stol wind tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip-shape modification on blade-vortex interaction-induced helicopter blade-slap noise was investigated. The general rotor model system (GRMS) with a 3.148 m (10.33 ft) diameter, four-bladed fully articulated rotor was installed in the Langley V/STOL wind tunnel. The tunnel was operated in the open-throat configuration with treatment to improve the semi-anechoic characteristics of the test chamber. Based on previous investigation, four promising tips (ogee, sub-wing, 60 deg swept-tapered, and end-plate) were used along with a standard square tip as a baseline configuration. Aerodynamic and acoustical data concerning the relative applicability of the various tip configurations for blade-slap noise reduction are presented without analysis or discussion.

  19. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOEpatents

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  20. Material development for fan blade containment casing

    NASA Astrophysics Data System (ADS)

    McMillan, A.

    2008-03-01

    This paper describes the physics reasoning and the engineering development process for the structured material system adopted for the containment system of the Trent 900 engine. This is the Rolls-Royce engine that powers the Airbus A380 double-decker aeroplane, which is on the point of entering service. The fan blade containment casing is the near cylindrical casing that surrounds the fan blades at the front of the engine. The fan blades provide the main part of the thrust of the engine; the power to the fan is provided through a shaft from the turbine. The fan is approximately three meters in diameter, with the tips of the blade travelling at a little over Mach speed. The purpose of the containment system is to catch and contain a blade in the extremely unlikely event of a part or whole blade becoming detached. This is known as a ''Fan Blade Off (FBO)'' event. The requirement is that no high-energy fragments should escape the containment system; this is essential to prevent damage to other engines or to the fuselage of the aircraft. Traditionally the containment system philosophy has been to provide a sufficiently thick solid metallic skin that the blade cannot penetrate. Obviously, this is heavy. A good choice of metal in this case is a highly ductile steel, which arrests the kinetic energy of the blade through plastic deformation, and possibly, a controlled amount of cracking. This is known as ''hard wall'' containment. More recently, to reduce weight, containment systems have incorporated a Kevlar fibre wrap. In this case, the thinner metallic wall provides some containment, which is backed up by the stretching of the Kevlar fibres. This is known as ''soft wall'' containment; but it suffers the disadvantage of requiring a large empty volume in the nacelle in to which to expand. For the Trent 900 engine, there was a requirement to make a substantial weight saving while still adopting a hard wall style of containment system. To achieve this, a hollow structured

  1. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  2. Instrumented composite turbine blade for health monitoring

    NASA Astrophysics Data System (ADS)

    Robison, Kevin E.; Watkins, Steve E.; Nicholas, James; Chandrashekhara, K.; Rovey, Joshua L.

    2012-04-01

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission.

  3. Structural health monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  4. Individual blade pitch for yaw control

    NASA Astrophysics Data System (ADS)

    Navalkar, S. T.; van Wingerden, J. W.; van Kuik, G. A. M.

    2014-06-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design.

  5. An analysis system for blade forced response

    SciTech Connect

    Chiang, H.W.D.; Kielb, R.E. )

    1993-10-01

    A frequent cause of turbomachinery blade failure is excessive resonant response. The most common excitation source is the nonuniform flow field generated by inlet distortion, wakes and/or pressure disturbances from adjacent blade rows. The standard method for dealing with this problem is to avoid resonant conditions using a Campbell diagram. Unfortunately, it is impossible to avoid all resonant conditions. Therefore, judgments based on past experience are used to determine the acceptability of the blade design. A new analysis system has been developed to predict blade forced response. The system provides a design tool, over and above the standard Campbell diagram approach, for predicting potential forced response problems. The incoming excitation sources are modeled using a semi-empirical rotor wake/vortex model for wake excitation, measured data for inlet distortion, and a quasi-three-dimensional Euler code for pressure disturbances. Using these aerodynamic stimuli, and the blade's natural frequencies and mode shapes from a finite element model, the unsteady aerodynamic modal forces and the aerodynamic damping are calculated. A modal response solution is then performed. This paper provides a basic description of the system, which includes: (1) models for the wake excitation, inlet distortion, and pressure disturbance; (2) a kernel function solution technique for unsteady aerodynamics; and (3) a modal aeroelastic solution using strip theory. Also, results of the two applications are presented.

  6. 3X-100 blade field test.

    SciTech Connect

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  7. Service failure of hot-stage turbine blades:

    NASA Astrophysics Data System (ADS)

    Oldfield, William; Oldfield, Freda M.

    1993-10-01

    Surface-connected porosity in current military aircraft hot-stage turbine engine blades is associated with blade failure. Oxidation ratcheting is suggested as the failure mechanism. Sta- tistical comparison of new and used blade populations showed that for blades cast with an equiaxed structure, the porosity in new blades was associated with crack formation on the con- cave surface of the used blades. The pores did not tend to develop into cracks on the compressed (convex) surface of the blade. Insufficient suitable data on directionally solidified blades pre- vented similar statistical correlations. However, metallography of the directionally solidified blades showed that the in-service cracks were related to oxidation inside surface-connected pores and that the cracks were oriented in the same direction as the (axial) casting pores. Thus, the proposed failure mechanism through ratcheting is based on the following insights: (1) the blades are thermally cycled as a normal part of service; (2) the hot blades expand and the open pores are filled with oxide; (3) when the blade is cooled, thermal contraction of the metal is greater than the oxide, causing compressive stress and yield; and (4) thermal expansion of the blades opens the pores again, since yield relaxed compressive stress at low temperature. These insights were supported by metallographic and computer-simulation studies which showed that the pores grow 20 to 50 pct in width per 100 missions (about 90 hours of operation) for a military aircraft on a typical mission profile.

  8. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  9. Application of local indentations for film cooling of gas turbine blade leading edge

    NASA Astrophysics Data System (ADS)

    Petelchyts, V. Yu.; Khalatov, A. A.; Pysmennyi, D. N.; Dashevskyy, Yu. Ya.

    2016-09-01

    The paper presents results of computer simulation of the film cooling on the turbine blade leading edge model where the air coolant is supplied through radial holes and row of cylindrical inclined holes placed inside hemispherical dimples or trench. The blowing factor was varied from 0.5 to 2.0. The model size and key initial parameters for simulation were taken as for a real blade of a high-pressure high-performance gas turbine. Simulation was performed using commercial software code ANSYS CFX. The simulation results were compared with reference variant (no dimples or trench) both for the leading edge area and for the flat plate downstream of the leading edge.

  10. Operative Cost Comparison: Plating Versus Intramedullary Fixation for Clavicle Fractures.

    PubMed

    Hanselman, Andrew E; Murphy, Timothy R; Bal, George K; McDonough, E Barry

    2016-09-01

    Although clavicle fractures often heal well with nonoperative management, current literature has shown improved outcomes with operative intervention for specific fracture patterns in specific patient types. The 2 most common methods of midshaft clavicle fracture fixation are intramedullary and plate devices. Through retrospective analysis, this study performed a direct cost comparison of these 2 types of fixation at a single institution over a 5-year period. Outcome measures included operative costs for initial surgery and any hardware removal surgeries. This study reviewed 154 patients (157 fractures), and of these, 99 had intramedullary fixation and 58 had plate fixation. A total of 80% (79 of 99) of intramedullary devices and 3% (2 of 58) of plates were removed. Average cost for initial intramedullary placement was $2955 (US dollars) less than that for initial plate placement (P<.001); average cost for removal was $1874 less than that for plate removal surgery (P=.2). Average total cost for all intramedullary surgeries was $1392 less than the average cost for all plating surgeries (P<.001). Average cost for all intramedullary surgeries requiring plate placement and removal was $653 less than the average cost for all plating surgeries that involved only placement (P=.04). Intramedullary fixation of clavicle fractures resulted in a statistically significant cost reduction compared with plate fixation, despite the incidence of more frequent removal surgeries. [Orthopedics.2016; 39(5):e877-e882.].

  11. An approach for aerodynamic optimization of transonic fan blades

    NASA Astrophysics Data System (ADS)

    Khelghatibana, Maryam

    demonstrate the relation between near-stall efficiency and stall margin. The proposed method is applied to redesign NASA rotor 67 for single and multiple operating conditions. The single-point design optimization showed +0.28 points improvement of isentropic efficiency at design point, while the design pressure ratio and mass flow are, respectively, within 0.12% and 0.11% of the reference blade. Two cases of multi-point optimization are performed: First, the proposed multi-point optimization problem is relaxed by removing the choke margin constraint in order to demonstrate the relation between near-stall efficiency and stall margin. An investigation on the Pareto-optimal solutions of this optimization shows that the stall margin has been increased with improving near-stall efficiency. The second multi-point optimization case is performed with considering all the objectives and constraints. One selected optimized design on the Pareto front presents +0.41, +0.56 and +0.9 points improvement in near-peak efficiency, near-stall efficiency and stall margin, respectively. The design pressure ratio and mass flow are, respectively, within 0.3% and 0.26% of the reference blade. Moreover the optimized design maintains the required choking margin. Detailed aerodynamic analyses are performed to investigate the effect of shape optimization on shock occurrence, secondary flows, tip leakage and shock/tip-leakage interactions in both single and multi-point optimizations.

  12. Precontoured plating of clavicle fractures: decreased hardware-related complications?

    PubMed

    VanBeek, Corinne; Boselli, Karen J; Cadet, Edwin R; Ahmad, Christopher S; Levine, William N

    2011-12-01

    Operative treatment of displaced midshaft clavicle fractures reportedly decreases the risk of symptomatic malunion, nonunion, and residual shoulder disability. Plating these fractures, however, may trade these complications for hardware-related problems. Low-profile anatomically precontoured plates may reduce the rates of plate prominence and hardware removal. We compared the outcomes after precontoured and noncontoured superior plating of acute displaced midshaft clavicle fractures. Primary outcomes were rate of plate prominence, rate of hardware removal, and rate of complications. Secondary outcomes were ROM and pain and function scores. We retrospectively reviewed 52 patients with 52 acute, displaced midshaft clavicle fractures treated with either noncontoured or precontoured superior clavicle plate fixation. Fourteen patients with noncontoured plates and 28 with precontoured plates were available for followup at a minimum of 1 year postoperatively. Postoperative assessment included ROM, radiographs, and subjective scores including visual analog scale for pain, American Shoulder and Elbow Surgeons questionnaire, and Simple Shoulder Test. Patients complained of prominent hardware in nine of 14 in the noncontoured group and nine of 28 in the precontoured group. Hardware removal rates were three of 14 in the noncontoured group and three of 28 in the precontoured group. Postoperative ROM and postoperative subjective scores were similar in the two groups. Precontoured plating versus noncontoured plating of displaced midshaft clavicle fractures results in a lower rate of plate prominence in patients who do not undergo hardware removal. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  13. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  14. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  15. Effect of plateout, air motion and dust removal on radon decay product concentration in a simulated residence.

    PubMed

    Rudnick, S N; Hinds, W C; Maher, E F; First, M W

    1983-08-01

    The effectiveness of increased air motion and dust removal in reducing radon decay product concentration in residences subject to radon intrusion was evaluated in a 78-m3 room under steady-state conditions for air infiltration rates between 0.2 and 0.9 air changes per hour. Room-size, portable electrostatic precipitators and high-efficiency fibrous filters were tested as typical residential air cleaning devices; a portable box fan and a ceiling fan were employed as typical residential air movers. Reductions in working levels of 40-90% were found. The fate of radon decay products, with and without mixing fans, was determined by direct measurement. When mixing fans were used, most of the nonairborne potential alpha-energy was plated out on the room surfaces; less than 10% was deposited on the fan blades or housing. Results were compared to a mathematical model based on well-mixed room air, and good agreement was obtained.

  16. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  17. Sliding hip screw versus sliding helical blade for intertrochanteric fractures: a propensity score-matched case control study.

    PubMed

    Fang, C; Lau, T W; Wong, T M; Lee, H L; Leung, F

    2015-03-01

    The spiral blade modification of the Dynamic Hip Screw (DHS) was designed for superior biomechanical fixation in the osteoporotic femoral head. Our objective was to compare clinical outcomes and in particular the incidence of loss of fixation. In a series of 197 consecutive patients over the age of 50 years treated with DHS-blades (blades) and 242 patients treated with conventional DHS (screw) for AO/OTA 31.A1 or A2 intertrochanteric fractures were identified from a prospectively compiled database in a level 1 trauma centre. Using propensity score matching, two groups comprising 177 matched patients were compiled and radiological and clinical outcomes compared. In each group there were 66 males and 111 females. Mean age was 83.6 (54 to 100) for the conventional DHS group and 83.8 (52 to 101) for the blade group. Loss of fixation occurred in two blades and 13 DHSs. None of the blades had observable migration while nine DHSs had gross migration within the femoral head before the fracture healed. There were two versus four implant cut-outs respectively and one side plate pull-out in the DHS group. There was no significant difference in mortality and eventual walking ability between the groups. Multiple logistic regression suggested that poor reduction (odds ratio (OR) 11.49, 95% confidence intervals (CI) 1.45 to 90.9, p = 0.021) and fixation by DHS (OR 15.85, 95%CI 2.50 to 100.3, p = 0.003) were independent predictors of loss of fixation. The spiral blade design may decrease the risk of implant migration in the femoral head but does not reduce the incidence of cut-out and reoperation. Reduction of the fracture is of paramount importance since poor reduction was an independent predictor for loss of fixation regardless of the implant being used. Cite this article: Bone Joint J 2015;97-B:398-404.

  18. Spreading granular material with a blade

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban

    2015-11-01

    The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.

  19. Thermal-barrier-coated turbine blade study

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Hillig, W. B.

    1981-01-01

    The effects of coating TBC on a CF6-50 stage 2 high-pressure turbine blade were analyzed with respect to changes in the mean bulk temperature, cooling air requirements, and high-cycle fatigue. Localized spallation was found to have a possible deleterious effect on low-cycle fatigue life. New blade design concepts were developed to take optimum advantage of TBCs. Process and material development work and rig evaluations were undertaken which identified the most promising combination as ZrO2 containing 8 w/o Y2O3 applied by air plasma spray onto a Ni22Cr-10Al-1Y bond layer. The bond layer was applied by a low-pressure, high-velocity plasma spray process onto the base alloy. During the initial startup cycles the blades experienced localized leading edge spallation caused by foreign objects.

  20. Methods of making wind turbine rotor blades

    DOEpatents

    Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  1. Methods of making wind turbine rotor blades

    DOEpatents

    Livingston, Jamie T.; Burke, Arthur H. E.; Bakhuis, Jan Willem; Van Breugel, Sjef; Billen, Andrew

    2008-04-01

    A method of manufacturing a root portion of a wind turbine blade includes, in an exemplary embodiment, providing an outer layer of reinforcing fibers including at least two woven mats of reinforcing fibers, providing an inner layer of reinforcing fibers including at least two woven mats of reinforcing fibers, and positioning at least two bands of reinforcing fibers between the inner and outer layers, with each band of reinforcing fibers including at least two woven mats of reinforcing fibers. The method further includes positioning a mat of randomly arranged reinforcing fibers between each pair of adjacent bands of reinforcing fibers, introducing a polymeric resin into the root potion of the wind turbine blade, infusing the resin through the outer layer, the inner layer, each band of reinforcing fibers, and each mat of random reinforcing fibers, and curing the resin to form the root portion of the wind turbine blade.

  2. Microtextured Surfaces for Turbine Blade Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  3. Transonic aeroelasticity analysis for rotor blades

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Chang, I-Chung; Gea, Lie-Mine

    1989-01-01

    A numerical method is presented for calculating the unsteady transonic rotor flow with aeroelasticity effects. The blade structural dynamic equations based on beam theory were formulated by FEM and were solved in the time domain, instead of the frequency domain. For different combinations of precone, droop, and pitch, the correlations are very good in the first three flapping modes and the first twisting mode. However, the predicted frequencies are too high for the first lagging mode at high rotational speeds. This new structure code has been coupled into a transonic rotor flow code, TFAR2, to demonstrate the capability of treating elastic blades in transonic rotor flow calculations. The flow fields for a model-scale rotor in both hover and forward flight are calculated. Results show that the blade elasticity significantly affects the flow characteristics in forward flight.

  4. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  5. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    SciTech Connect

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  6. Structural integrity of wind tunnel wooden fan blades

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wingate, Robert T.; Rooker, James R.; Mort, Kenneth W.; Zager, Harold E.

    1991-01-01

    Information is presented which was compiled by the NASA Inter-Center Committee on Structural Integrity of Wooden Fan Blades and is intended for use as a guide in design, fabrication, evaluation, and assurance of fan systems using wooden blades. A risk assessment approach for existing NASA wind tunnels with wooden fan blades is provided. Also, state of the art information is provided for wooden fan blade design, drive system considerations, inspection and monitoring methods, and fan blade repair. Proposed research and development activities are discussed, and recommendations are provided which are aimed at future wooden fan blade design activities and safely maintaining existing NASA wind tunnel fan blades. Information is presented that will be of value to wooden fan blade designers, fabricators, inspectors, and wind tunnel operations personnel.

  7. Helicopter individual-blade-control and its applications

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1984-01-01

    A new, advanced type of active control for helicopters and its applications are described. The system, based on previously developed M.I.T. Individual-Blade-Control hardware, employs blade-mounted accelerometers to sense blade motion and feeds back information to control blade pitch in such a manner as to reduce the response of selected blade modes. A linear model of the blade and control system dynamics is used to give guidance in the design process as well as to aid in analysis of experimental results. System performance in wind tunnel tests is described, and evidence is given of the system's ability to provide substantial reduction in blade modal responses, including blade bending vibration.

  8. Wind blade spar cap and method of making

    DOEpatents

    Mohamed, Mansour H.

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  9. Wear Behavior of Thermal Spray Coatings on Rotavator Blades

    NASA Astrophysics Data System (ADS)

    Kang, Amardeep Singh; Grewal, Jasmaninder Singh; Jain, Deepak; Kang, Shivani

    2012-03-01

    A rotavator is a motorized cultivator, popularly used to decrease the total time and human efforts in soil preparation. However, under dynamic loading, rotavator blades are subjected to extreme abrasive wear. The objective of this study was to enhance the working life of the rotavator blade in order to decrease the idle time required to reinstate the blade periodically during cultivation. The objective was carried out by means of thermal spray coatings, where the effect of the coatings on the extent of wear and the wear characteristics of the rotavator blades were examined. Three different detonation gun sprayed coatings, namely WC-Co-Cr, Cr3C2NiCr and Stellite-21 were compared in this study on high tensile steel rotavator blades. The wear rates of Cr3C2NiCr and Stellite-21 coated blades showed significant superiority over the uncoated blade, but not as much as shown by WC-Co-Cr coated blade.

  10. Modal analysis of UH-60A instrumented rotor blades

    NASA Technical Reports Server (NTRS)

    Hamade, Karen S.; Kufeld, Robert M.

    1990-01-01

    The dynamic characteristics of instrumented and production UH-60A Black Hawk main rotor blades were measured, and the results were validated with NASTRAN finite element models. The blades tested included pressure and strain-gage instrumented blades, which are part of the NASA Airloads Flight Research Phase of the Modern Technology Rotor Program. The dynamic similarity of the blades was required for accurate data collection in this program. Therefore, a nonrotating blade modal analysis was performed on the first 10 free-free modes to measure blade similarities. The results showed small differences between the modal frequencies of instrumented and production blades and a close correlation with the NASTRAN models. This type of modal testing and analysis is recommended as a standard procedure for future instrumented blade flight testing.

  11. Methods and apparatus for rotor blade ice detection

    DOEpatents

    LeMieux, David Lawrence

    2006-08-08

    A method for detecting ice on a wind turbine having a rotor and one or more rotor blades each having blade roots includes monitoring meteorological conditions relating to icing conditions and monitoring one or more physical characteristics of the wind turbine in operation that vary in accordance with at least one of the mass of the one or more rotor blades or a mass imbalance between the rotor blades. The method also includes using the one or more monitored physical characteristics to determine whether a blade mass anomaly exists, determining whether the monitored meteorological conditions are consistent with blade icing; and signaling an icing-related blade mass anomaly when a blade mass anomaly is determined to exist and the monitored meteorological conditions are determined to be consistent with icing.

  12. Simulation of Rotor Blade Element Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.; Duisenberg, Ken

    1996-01-01

    A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.

  13. Simulation of Rotor Blade Element Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.; Duisenberg, Ken

    1996-01-01

    A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.

  14. Microwave Scattering Model for Grass Blade Structures

    NASA Technical Reports Server (NTRS)

    Stiles, James M.; Sarabandi, Kamal; Ulaby, Fawwaz T.

    1993-01-01

    In this paper, the electromagnetic scattering solution for a grass blade with complex cross-section geometry is considered. It is assumed that the blade cross section is electrically small, but its length is large compared to the incident wavelength. In a recent study it has been shown that the scattering solution for such problems, in the form of a polarizability tensor, can be obtained using the low-frequency approximation in conjunction with the method of moments. In addition, the study shows that the relationship between the polarizability tensor of a dielectric cylinder and its dielectric constant can be approximated by a simple algebraic expression. The results of this study are used to show that this algebraic approximation is valid also for cylinders with cross sections the shape of grass blades, providing that proper values am selected for each of three constants appearing in the expression. These constants are dependent on cylinder shape, and if the relationship between the constants and the three parameters describing a grass blade shape can be determined, an algebraic approximation relating polarizability tensor to blade shape, as well as dielectric constant, can be formed. Since the elements of the polarizability tensor are dependent on only these parameters, this algebraic approximation can replace the cumbersome method of moments model. A conjugate gradient method is then implemented to correctly determine the three constants of the algebraic approximation for each blade shape. A third-order polynomial fit to the data is then determined for each constant, thus providing a complete analytic replacement to the numerical (moment method) scattering model. Comparisons of this approximation to the numerical model show an average error of less than 3%.

  15. Microwave Scattering Model for Grass Blade Structures

    NASA Technical Reports Server (NTRS)

    Stiles, James M.; Sarabandi, Kamal; Ulaby, Fawwaz T.

    1993-01-01

    In this paper, the electromagnetic scattering solution for a grass blade with complex cross-section geometry is considered. It is assumed that the blade cross section is electrically small, but its length is large compared to the incident wavelength. In a recent study it has been shown that the scattering solution for such problems, in the form of a polarizability tensor, can be obtained using the low-frequency approximation in conjunction with the method of moments. In addition, the study shows that the relationship between the polarizability tensor of a dielectric cylinder and its dielectric constant can be approximated by a simple algebraic expression. The results of this study are used to show that this algebraic approximation is valid also for cylinders with cross sections the shape of grass blades, providing that proper values am selected for each of three constants appearing in the expression. These constants are dependent on cylinder shape, and if the relationship between the constants and the three parameters describing a grass blade shape can be determined, an algebraic approximation relating polarizability tensor to blade shape, as well as dielectric constant, can be formed. Since the elements of the polarizability tensor are dependent on only these parameters, this algebraic approximation can replace the cumbersome method of moments model. A conjugate gradient method is then implemented to correctly determine the three constants of the algebraic approximation for each blade shape. A third-order polynomial fit to the data is then determined for each constant, thus providing a complete analytic replacement to the numerical (moment method) scattering model. Comparisons of this approximation to the numerical model show an average error of less than 3%.

  16. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  17. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  18. Adenoid removal

    MedlinePlus

    ... taken out at the same time as the tonsils ( tonsillectomy ). Adenoid removal is also called adenoidectomy. The procedure is most often done in children. ... can be removed again if necessary. Alternative Names Adenoidectomy; Removal of ... Instructions Tonsil and adenoid removal - discharge Tonsil removal - what to ...

  19. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  20. Simple theoretical models for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  1. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  2. Blade dynamics analysis using NASTRAN. [effects of blade geometry, temperature gradients, and rotational speed

    NASA Technical Reports Server (NTRS)

    Kuo, P. S.

    1973-01-01

    The complexities of turbine engine blade vibration are compounded by blade geometry, temperature gradients, and rotational speeds. Experience indicates that dynamics analysis using the finite element approach provides an effective means for predicting vibration characteristics of compressor and turbine blades whose geometry may be irregular, have curved boundaries, and be subjected to high temperatures and speeds. The NASTRAN program was chosen to help analyze the dynamics of normal modes, rotational stiffening and thermal effects on the normal modes, and forced responses. The program has produced reasonable success. This paper presents the analytical procedures and the NASTRAN results, in comparison with a conventional beam element program and laboratory data.

  3. Measurement on stages with 3D bladings and different relative width of stator blades

    NASA Astrophysics Data System (ADS)

    Milcak, Petr; Hoznedl, Michal; Zitek, Pavel

    2012-04-01

    Two variants of a stage with modern 3D bladings were tested on a single-stage air turbine to determine the influence of relative width of stator blades (nozzles). The first case means a high-density nozzle row with t/Bax = 0.61; the second one represents a low-density row with t/Bax = 1.12. The 3D shaping of both nozzle cases is based on the same design features. Rotor blades (buckets) are kept the same (also 3D shaped). Comparisons of overall stage efficiency as well as measured flow fields data are presented in the paper.

  4. Structural analysis of hollow blades: Torsional stress analysis of hollow fan blades for aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Ogawa, A.; Sofue, Y.; Isobe, T.

    1979-01-01

    A torsional stress analysis of hollow fans blades by the finite element method is presented. The fans are considered to be double circular arc blades, hollowed 30 percent, and twisted by a component of the centrifugal force by the rated revolution. The effects of blade hollowing on strength and rigidity are discussed. The effects of reinforcing webs, placed in the hollowed section in varying numbers and locations, on torsional rigidity and the convergence of stresses, are reported. A forecast of the 30 percent hollowing against torsional loadings is discussed.

  5. BladeCAD: An Interactive Geometric Design Tool for Turbomachinery Blades

    NASA Technical Reports Server (NTRS)

    Miller, Perry L., IV; Oliver, James H.; Miller, David P.; Tweedt, Daniel L.

    1996-01-01

    A new metthodology for interactive design of turbomachinery blades is presented. Software implementation of the meth- ods provides a user interface that is intuitive to aero-designers while operating with standardized geometric forms. The primary contribution is that blade sections may be defined with respect to general surfaces of revolution which may be defined to represent the path of fluid flow through the turbomachine. The completed blade design is represented as a non-uniform rational B-spline (NURBS) surface and is written to a standard IGES file which is portable to most design, analysis, and manufacturing applications.

  6. Innovative design approaches for large wind turbine blades : final report.

    SciTech Connect

    Not Available

    2004-05-01

    The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

  7. The Development of a Hollow Blade for Exhaust Gas Turbines

    NASA Technical Reports Server (NTRS)

    Kohlmann, H

    1950-01-01

    The subject of the development of German hollow turbine blades for use with internal cooling is discussed in detail. The development of a suitable blade profile from cascade theory is described. Also a discussion of the temperature distribution and stresses in a turbine blade is presented. Various methods of manufacturing hollow blades and the methods by which they are mounted in the turbine rotor are presented in detail.

  8. Method and apparatus for reducing cleaning blade wear

    DOEpatents

    Grannes, Steven G.; Rhoades, Charles A.; Hebbie, Terry L.

    1992-01-01

    An improved cleaning blade construction (10) for eliminating erosion troughs (6) in the upper surface (15) of a cleaning blade member (14) by introducing pressurized fluid through a pressure manifold chamber (16) formed in the upper surface (15) of the cleaning blade member (14). The pressurized fluid will prevent carryback material (7) from passing through a wear groove (6) formed in the cleaning blade member.

  9. Aero/structural tailoring of engine blades (AERO/STAEBL)

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1988-01-01

    This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.

  10. Rubber stopper remover

    DOEpatents

    Stitt, Robert R.

    1994-01-01

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  11. Data On Flow About A Compressor Blade In Cascade

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1993-01-01

    Development and testing of software to compute values of flow-field characteristics greatly enhanced by using recorded experimental data to test results of computations. Report "The Measurement Of Boundary Layers On Compressor Blade In Cascade" is data base providing detailed measurements of boundary layer and wake in flow field about double-circular-arc compressor blades in cascade of such blades.

  12. Boron/aluminum fan blades for SCAR engines

    NASA Technical Reports Server (NTRS)

    Stabrylla, R. G.; Carlson, R. G.

    1977-01-01

    Processing procedures were developed to enhance boron/aluminum bond behavior and foreign object damage (FOD) tolerance. Design and analysis indicated that the J101 Stage 1 fan blade meets the required frequencies without a midspan shroud. The fabricability of full size J101 blades was assessed, while six blades were fabricated and finished machined.

  13. Optimization and analysis of gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Vandenbrink, D. J.; Hopkins, D. A.

    1987-01-01

    A gas turbine engine blade design is optimized using STAEBL. To validate the STAEBL analysis, the optimized blade design is analyzed using MARC, MHOST and BEST3D. The results show good agreement between STAEBL, MARC, and MHOST. The conclusion is that STAEBL can be used to optimize an engine blade design.

  14. Calculation of transonic flow in radial turbine blade cascade

    NASA Astrophysics Data System (ADS)

    Petr, Straka

    2017-09-01

    Numerical modeling of transonic centripetal turbulent flow in radial blade cascade is described in this paper. Attention is paid to effect of the outlet confusor on flow through the radial blade cascade. Parameters of presented radial blade cascade are compared with its linear representation

  15. Method for maintaining a cutting blade centered in a kerf

    DOEpatents

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2002-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  16. Axial-Loading Circumferential Dovetail Turbine-Blade Mount

    NASA Technical Reports Server (NTRS)

    Pierce, Martin J.; Ward, Steven D.; Eskridge, Ronald R.

    1992-01-01

    In new configuration, retaining ring holds base of blades in circumferential dovetail slot. Blades inserted axially via loading slots into circumferential dovetail slot. Ring placed over loading slots and fastened with split ring held by arm of disk. Blades less likely to be shaken loose during operation.

  17. Thermal stress analysis for a wood composite blade. [wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.

  18. Helicopter noise: Blade slap. Part 2: Experimental results

    NASA Technical Reports Server (NTRS)

    Leverton, J. W.

    1972-01-01

    Blade slap encountered in rotary wings and its effect on helicopter performance are reported. The results of various individual flight tests are presented and, where possible, correlated with one another. Observations from the subjective evaluation of blade slap are included, together with a modified form of the blade slap factor (BSF) which can be used as a design criteria.

  19. Wind turbine generator rotor blade concepts with low cost potential

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Cahill, T. P.; Griffee, D. G., Jr.; Gewehr, H. W.

    1977-01-01

    Four processed for producing blades are examined. Two use filament winding techniques and two involve filling a mold or form to produce all or part of a blade. The processes are described and a comparison is made of cost, material properties, design and free vibration characteristics. Conclusions are made regarding the feasibility of each process to produce low cost, structurally adequate blades.

  20. On the transonic aerodynamics of a compressor blade row

    NASA Technical Reports Server (NTRS)

    Erickson, J. C., Jr.; Lordi, J. A.; Rae, W. J.

    1971-01-01

    Linearized analyses have been carried out for the induced velocity and pressure fields within a compressor blade row operating in an infinite annulus at transonic Mach numbers of the flow relative to the blades. In addition, the relationship between the induced velocity and the shape of the mean blade surface has been determined. A computational scheme has been developed for evaluating the blade mean surface ordinates and surface pressure distributions. The separation of the effects of a specified blade thickness distribution from the effects of a specified distribution of the blade lift has been established. In this way, blade mean surface shapes that are necessary for the blades to be locally nonlifting have been computed and are presented for two examples of blades with biconvex parabolic arc sections of radially tapering thickness. Blade shapes that are required to achieve a zero thickness, uniform chordwise loading, constant work spanwise loading are also presented for two examples. In addition, corresponding surface pressure distributions are given. The flow relative to the blade tips has a high subsonic Mach number in the examples that have been computed. The results suggest that at near-sonic relative tip speeds the effective blade shape is dominated by the thickness distribution, with the lift distribution playing only a minor role.