Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module
NASA Astrophysics Data System (ADS)
Deepak, SHARMA; Paritosh, CHAUDHURI
2018-04-01
The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; C. P. C. Wong; M. Abdou
2014-10-01
A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2010-06-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2007-08-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR
NASA Astrophysics Data System (ADS)
Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI
2017-11-01
The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.
Tokamak blanket design study, final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steelmore » is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.« less
ITER-FEAT vacuum vessel and blanket design features and implications for the R&D programme
NASA Astrophysics Data System (ADS)
Ioki, K.; Dänner, W.; Koizumi, K.; Krylov, V. A.; Cardella, A.; Elio, F.; Onozuka, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
A configuration in which the vacuum vessel (VV) fits tightly to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the toroidal field ripple. The blanket modules are supported directly by the VV. A full scale VV sector model has provided critical information related to fabrication technology and for testing the magnitude of welding distortions and achievable tolerances. This R&D validated the fundamental feasibility of the double wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and robustness of solid hot isostatic pressing joining were demonstrated in the R&D by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal.
APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadday, M.A.
1999-09-20
The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less
Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO
NASA Astrophysics Data System (ADS)
Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.
2017-04-01
The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.
Mechanical design of a light water breeder reactor
Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.
1976-01-01
In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.
Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components
NASA Astrophysics Data System (ADS)
Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.
2017-12-01
In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.
Axially staggered seed-blanket reactor fuel module construction
Cowell, Gary K.; DiGuiseppe, Carl P.
1985-01-01
A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.
Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.Y.
1978-10-01
Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less
Current status of final design and R&D for ITER blanket shield blocks in Korea
NASA Astrophysics Data System (ADS)
Ha, M. S.; Kim, S. W.; Jung, H. C.; Hwang, H. S.; Heo, Y. G.; Kim, D. H.; Ahn, H. J.; Lee, H. G.; Jung, K. J.
2015-07-01
The main function of the ITER blanket shield block (SB) is to provide nuclear shielding and support the first wall (FW) panel. It needs to accommodate all the components located on the vacuum vessel (in particular the in-vessel coils, blanket manifolds and the diagnostics). The conceptual, preliminary and final design reviews have been completed in the framework of the Blanket Integrated Product Team. The Korean Domestic Agency has successfully completed not only the final design activities, including thermo-hydraulic and thermo-mechanical analyses for SBs #2, #6, #8 and #16, but also the SB full scale prototype (FSP) pre-qualification program prior to issuing of the procurement agreement. SBs #2 and #6 are located at the in-board region of the tokamak. The pressure drop was less than 0.3 MPa and fully satisfied the design criteria. The thermo-mechanical stresses were also allowable even though the peak stresses occurred at nearby radial slit end holes, and their fatigue lives were evaluated over many more than 30 000 cycles. SB #8 is one of the most difficult modules to design, since this module will endure severe thermal loading not only from nuclear heating but also from plasma heat flux at uncovered regions by the FW. In order to resolve this design issue, the neutral beam shine-through module concept was applied to the FW uncovered region and it has been successfully verified as a possible design solution. SB #16 is located at the out-board central region of the tokamak. This module is under much higher nuclear loading than other modules and is covered by an enhanced heat flux FW panel. In the early design stage, many cooling headers on the front region were inserted to mitigate peak stresses near the access hole and radial slit end hole. However, the cooling headers on the front region needed to be removed in order to reduce the risk from cover welding during manufacturing. A few cooling headers now remain after efforts through several iterations to remove them and to optimize the cooling channels. The SB #8 FSP was manufactured and tested in accordance with the pre-qualification program based on the preliminary design, and related R&D activities were implemented to resolve the fabrication issues. This paper provides the current status of the final design and relevant R&D activities of the blanket SB.
An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR
NASA Astrophysics Data System (ADS)
Yu, Guanying; Liu, Xufeng; Liu, Songlin
2016-10-01
The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)
Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Alice; Popov, Emilian L
2011-01-01
ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricapito, I.; Calderoni, P.; Poitevin, Y.
2015-03-15
Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for themore » design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)« less
NASA Astrophysics Data System (ADS)
Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo
This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.
NASA Astrophysics Data System (ADS)
Poitevin, Y.; Aubert, Ph.; Diegele, E.; de Dinechin, G.; Rey, J.; Rieth, M.; Rigal, E.; von der Weth, A.; Boutard, J.-L.; Tavassoli, F.
2011-10-01
Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.
Progress on DCLL Blanket Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Clement; Abdou, M.; Katoh, Yutai
2013-09-01
Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) frommore » the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.« less
Tokamak blanket design study: FY 78 summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
A tokamak blanket cylindrical module concept was designed, developed, and analyzed after review of several existing generic concepts. The design is based on use of state-of-the-art structural materials (20% cold worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders and features direct wall cooling by flowing helium between the outer (first wall) cylinder and the inner lithium containing cylinder. Each cylinder is capable of withstanding full coolant pressure for enhanced reliability. Results show that stainless steel is a viable material for a first wall subjectedmore » to 4 MW/m/sup 2/ neutron and 1 MW/m/sup 2/ particle heat flux. A lifetime analysis showed that the first wall design meets the goal of operating at 20 minute cycles with 95% duty for 10/sup 5/ cycles. The design is attractive for further development, and additional work and supporting experiments are identified to reduce analytical uncertainties and enhance the design reliability.« less
NASA Astrophysics Data System (ADS)
Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato
2009-06-01
As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.
NASA Astrophysics Data System (ADS)
Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald
2018-01-01
Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.
Annual report, October 1, 1978-September 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-01
This report covers the following areas: (1) PLT, (2) PDX, (3) smaller devices, (4) TFTR, (5) TFTR blanket module experiments, (6) engineering, (7) machine design and fabrication, and (8) advanced projects design and analysis, (9) design studies for new devices, (10) theory, (11) administration, and (12) graduate education. (MOW)
ITER in-vessel system design and performance
NASA Astrophysics Data System (ADS)
Parker, R. R.
2000-03-01
The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.
Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket
NASA Astrophysics Data System (ADS)
Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.
2018-03-01
Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.
Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility
1986-01-01
Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and
Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumortier, Pierre; Louche, Fabrice; Messiaen, André
2014-02-12
In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, whichmore » could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less
Lightweight solar array blanket tooling, laser welding and cover process technology
NASA Technical Reports Server (NTRS)
Dillard, P. A.
1983-01-01
A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.
Magnetically-induced forces on a ferromagnetic HT-9 first wall/blanket module
NASA Astrophysics Data System (ADS)
Lechtenberg, T. A.; Dahms, C. F.; Attaya, H.
1984-05-01
A model of the Starfire commercial tokamak reactor was used as the basis for calculating magnetic loads induced on typical fusion reactor first wall components fabricated of ferromagnetic material. The component analyzed was the first wall/blanket module because this structure experiences the greatest neutron fluence level and is the component for which the low swelling ferromagnetic Sandvik alloy, HT-9, may have the greatest benefit. The magnitudes of the magnetic body forces calculated were consistent with analyses performed on structures within other types of reactors. The loads generated within the module structure by the magnetic forces were found to be of the same order of magnitude as those arising from other sources such as pressure differential, dead weight, temperature distribution. Only small structural design modifications would be required if the magnetic alloy, Sandvik HT-9 were utilized.
Source-to-incident-flux relation in a Tokamak blanket module
NASA Astrophysics Data System (ADS)
Imel, G. R.
The next-generation Tokamak experiments, including the Tokamak fusion test reactor (TFTR), will utilize small blanket modules to measure performance parameters such as tritium breeding profiles, power deposition profiles, and neutron flux profiles. Specifically, a neutron calorimeter (simply a neutron moderating blanket module) which permits inferring the incident 14 MeV flux based on measured temperature profiles was proposed for TFTR. The problem of how to relate this total scalar flux to the fusion neutron source is addressed. This relation is necessary since the calorimeter is proposed as a total fusion energy monitor. The methods and assumptions presented was valid for the TFTR Lithium Breeding Module (LBM), as well as other modules on larger Tokamak reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Nuclear Engineering Division
2005-05-01
In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Yousry
2005-05-15
In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less
Axially staggered seed-blanket reactor-fuel-module construction. [LWBR
Cowell, G.K.; DiGuiseppe, C.P.
1982-10-28
A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.
Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Rayl, G.
1978-01-01
A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.
NASA Astrophysics Data System (ADS)
Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.
2006-02-01
This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.
Fusion reactor blanket/shield design study
NASA Astrophysics Data System (ADS)
Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.
1979-07-01
A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR
NASA Astrophysics Data System (ADS)
Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong
2016-02-01
China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
High temperature - low mass solar blanket
NASA Technical Reports Server (NTRS)
Mesch, H. G.
1979-01-01
Interconnect materials and designs for use with ultrathin silicon solar cells are discussed, as well as the results of an investigation of the applicability of parallel-gap resistance welding for interconnecting these cells. Data relating contact pull strength and cell electrical degradation to variations in welding parameters such as time, voltage and pressure are presented. Methods for bonding ultrathin cells to flexible substances and for bonding thin (75 micrometers) covers to these cells are described. Also, factors influencing fabrication yield and approaches for increasing yield are discussed. The results of vacuum thermal cycling and thermal soak tests on prototype ultrathin cell test coupons and one solar module blanket are presented.
PEP solar array definition study
NASA Technical Reports Server (NTRS)
1979-01-01
The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durodié, F., E-mail: frederic.durodie@rma.ac.be; Dumortier, P.; Vrancken, M.
2014-06-15
ITER's Ion Cyclotron Range of Frequencies (ICRF) system [Lamalle et al., Fusion Eng. Des. 88, 517–520 (2013)] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf of ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV andmore » limits on RF electric fields depending on their location and direction with respect to, respectively, the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less
Applicability of tungsten/EUROFER blanket module for the DEMO first wall
NASA Astrophysics Data System (ADS)
Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.
2013-07-01
In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.
Results of availability imposed configuration details developed for K-DEMO
Brown, Tom; Titus, Peter; Brooks, Art; ...
2016-02-05
We completed a two year study using the Korean fusion demonstration reactor (K-DEMO) where we looked at key Tokamak components and configuration options in preparation of a conceptual design phase. A key part of a device configuration centers on defining an arrangement that enhances the ability to reach high availability values by defining design solutions that foster simplified maintenance operations. In order to maximize the size and minimize the number of in-vessel components enlarged TF coils were defined that incorporate a pair of windings within each coil to mitigate pressure drop issues and to reduce the cost of the coils.more » Furthermore, we defined a semi-permanent shield structure in order to develop labyrinth interfaces between double-null plasma contoured shield modules, provide an entity to align blanket components and provide support against disruption loads—with a load path that equilibrates blanket, TF and PF loads through a base structure. Blanket piping services and auxiliary systems that interface with in-vessel components have played a major role in defining the overall device arrangement—concept details will be presented along with general arrangement features and preliminary results obtained from disruption analysis.« less
Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules
NASA Astrophysics Data System (ADS)
Fradera, J.; Sedano, L.; Mas de les Valls, E.; Batet, L.
2011-10-01
Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phenomena in liquid Pb17.5Li and EUROFER is proposed. In a first approximation, it has been considered that He bubbles can be represented as a passive scalar. The nucleation model is based on the classical theory and includes a simplified bubble growth model. The model captures the interaction of tritium with bubbles and tritium diffusion through walls. Results show the influence of helium cavitation on tritium inventory and the importance of simulating the system walls instead of imposing fixed boundary conditions.
Design and tritium permeation analysis of China HCCB TBM port cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiangfeng, S.; Guoqiang, H.; Zhiyong, H.
2015-03-15
China is planning to develop a helium-cooled ceramic breeder (HCCB) test blanket module (TBM) on ITER to test key blanket technologies. In this paper, the design and tritium permeation analysis of China HCCB TBM port cell are introduced. A theoretical model has been developed to estimate tritium permeation rates and leak rates from the components and pipes which China has scheduled to house in the port cell. It is shown that on normal working conditions, the permeation and leak rate of the systems in the port cell will be no higher than 1.58 Ci/d without the use of tritium permeationmore » barriers, and 0.10 Ci/d with the use of tritium permeation barriers. It also appears that tritium permeation barriers are necessary for high temperature components such as the reduction bed and the heater.« less
Comparative studies for two different orientations of pebble bed in an HCCB blanket
NASA Astrophysics Data System (ADS)
Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR
2017-12-01
The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead-lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal-radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal-radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.
NASA Technical Reports Server (NTRS)
1976-01-01
Design concepts for a 1000 mw thermal stationary power plant employing the UF6 fueled gas core breeder reactor are examined. Three design combinations-gaseous UF6 core with a solid matrix blanket, gaseous UF6 core with a liquid blanket, and gaseous UF6 core with a circulating blanket were considered. Results show the gaseous UF6 core with a circulating blanket was best suited to the power plant concept.
Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
Light-water breeder reactor (LWBR Development Program)
Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...
2016-08-11
The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less
Functional materials for breeding blankets—status and developments
NASA Astrophysics Data System (ADS)
Konishi, S.; Enoeda, M.; Nakamichi, M.; Hoshino, T.; Ying, A.; Sharafat, S.; Smolentsev, S.
2017-09-01
The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li2TiO3) and lithium orthosilicate (Li4SiO4) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be12Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.
Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept
NASA Astrophysics Data System (ADS)
Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun
2014-04-01
CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.
Lunar Reconnaissance Orbiter (LRO) Rapid Thermal Design Development
NASA Technical Reports Server (NTRS)
Baker, Charles; Cottingham, Christine; Garrison, Matthew; Melak, Tony; Peabody, Sharon; Powers, Dan
2009-01-01
The Lunar Reconnaissance Orbiter (LRO) project had a rapid development schedule starting with project conception in spring of 2004, instrument and launch vehicle selection late in 2005 and then launch in early 2009. The lunar thermal environment is one of the harshest in our solar system with the heavy infrared loading of the moon due to low albedo, lack of lunar atmosphere, and low effective regolith conduction. This set of constraints required a thermal design which maximized performance (minimized radiator area and cold control heater power) and minimized thermal hardware build at the orbiter level (blanketing, and heater service). The orbiter design located most of the avionics on an isothermalized heat pipe panel called the IsoThermal Panel (ITP). The ITP was coupled by dual bore heat pipes to an Optical Solar Reflector (OSR) covered heat pipe radiator. By coupling all of the avionics to one system, the hardware was simplified. The seven instruments were mainly heritage instruments which resulted in their desired radiators being located by their heritage design. This minimized instrument redesigns and therefore allowed them to be delivered earlier, though it resulted in a more complex orbiter level blanket and heater service design. Three of the instruments were mounted on a tight pointing M55J optical bench that needed to be covered in heaters to maintain pointing. Two were mounted to spacecraft controlled radiators. One was mounted to the ITP Dual Bores. The last was mounted directly to the bus structure on the moon facing panel. The propulsion system utilized four-20 pound insertion thrusters and eight-5 pound attitude control thrusters (ACS) in addition to 1000 kg of fuel in two large tanks. The propulsion system had a heater cylinder and a heated mounting deck for the insertion thrusters which coupled most of the propulsion design together simplifying the heater design. The High Gain Antenna System (HGAS) and Solar Array System (SAS) used dual axis actuator gimbal systems. HGAS required additional boom heaters to cool the approximately 10 W of RF losses thru the rotary joints and wave guides from the 40 W Ka system. By design this module needed a fair amount of heater, blanketing, and radiator complexity. The SAS system required a separate cable wrap radiator to help cool the Solar Array harness which dissipated 30 W thru the actuators and cable wraps. This module also was complex.
Structural materials by powder HIP for fusion reactors
NASA Astrophysics Data System (ADS)
Dellis, C.; Le Marois, G.; van Osch, E. V.
1998-10-01
Tokamak blankets have complex shapes and geometries with double curvature and embedded cooling channels. Usual manufacturing techniques such as forging, bending and welding generate very complex fabrication routes. Hot Isostatic Pressing (HIP) is a versatile and flexible fabrication technique that has a broad range of commercial applications. Powder HIP appears to be one of the most suitable techniques for the manufacturing of such complex shape components as fusion reactor modules. During the HIP cycle, consolidation of the powder is made and porosity in the material disappears. This involves a variation of 30% in volume of the component. These deformations are not isotropic due to temperature gradients in the part and the stiffness of the canister. This paper discusses the following points: (i) Availability of manufacturing process by powder HIP of 316LN stainless steel (ITER modules) and F82H martensitic steel (ITER Test Module and DEMO blanket) with properties equivalent to the forged one.(ii) Availability of powerful modelling techniques to simulate the densification of powder during the HIP cycle, and to control the deformation of components during consolidation by improving the canister design.(iii) Material data base needed for simulation of the HIP process, and the optimisation of canister geometry.(iv) Irradiation behaviour on powder HIP materials from preliminary results.
Varela, P; Belo, J H; Quental, P B
2016-11-01
The design of the in-vessel antennas for the ITER plasma position reflectometry diagnostic is very challenging due to the need to cope both with the space restrictions inside the vacuum vessel and with the high mechanical and thermal loads during ITER operation. Here, we present the work carried out to assess and optimise the design of the antenna. We show that the blanket modules surrounding the antenna strongly modify its characteristics and need to be considered from the early phases of the design. We also show that it is possible to optimise the antenna performance, within the design restrictions.
NASA Astrophysics Data System (ADS)
Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi
1994-07-01
Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.
Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.
Cassini/Titan-4 Acoustic Blanket Development and Testing
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
1996-01-01
NASA Lewis Research Center recently led a multi-organizational effort to develop and test verify new acoustic blankets. These blankets support NASA's goal in reducing the Titan-4 payload fairing internal acoustic environment to allowable levels for the Cassini spacecraft. To accomplish this goal a two phase acoustic test program was utilized. Phase One consisted of testing numerous blanket designs in a flat panel configuration. Phase Two consisted of testing the most promising designs out of Phase One in a full scale cylindrical payload fairing. This paper will summarize this highly successful test program by providing the rationale and results for each test phase, the impacts of this testing on the Cassini mission, as well as providing some general information on blanket designs.
NASA Astrophysics Data System (ADS)
Kapychev, V.; Davydov, D.; Gorokhov, V.; Ioltukhovskiy, A.; Kazennov, Yu; Tebus, V.; Frolov, V.; Shikov, A.; Shishkov, N.; Kovalenko, V.; Shishkin, N.; Strebkov, Yu
2000-12-01
This paper surveys the modules and materials of blanket tritium-breeding zones developed in the Russian Federation for fusion reactors. Synthesis of lithium orthosilicate, metasilicate and aluminate, fabrication of ceramic pellets and pebbles and experimental reactor units are described. Results of tritium extraction kinetics under irradiation in a water-graphite reactor at a thermal neutron flux of 5×10 13 neutron/(s cm2) are considered. At the present time, development and fabrication of lithium orthosilicate-beryllium modules of the tritium-breeding zone (TBZ), have been carried out within the framework of the ITER and DEMO projects. Two modules containing orthosilicate pellets, porous beryllium and beryllium pebbles are suggested for irradiation tests in the temperature range of 350-700°C. Technical problems associated with manufacturing of the modules are discussed.
Activation, decay heat, and waste classification studies of the European DEMO concept
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.
2017-04-01
Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.
Progress in developing ultrathin solar cell blanket technology
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.
1984-01-01
A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, James A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.
Plasma chamber testing of advanced photovoltaic solar array coupons
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1994-01-01
The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
Improved multilayer insulation applications. [spacecraft thermal control
NASA Technical Reports Server (NTRS)
Mikk, G.
1982-01-01
Multilayer insulation blankets used for the attenuation of radiant heat transfer in spacecraft are addressed. Typically, blanket effectiveness is degraded by heat leaks in the joints between adjacent blankets and by heat leaks caused by the blanket fastener system. An approach to blanket design based upon modular sub-blankets with distributed seams and upon an associated fastener system that practically eliminates the through-the-blanket conductive path is described. Test results are discussed providing confirmation of the approach. The specific case of the thermal control system for the optical assembly of the Space Telescope is examined.
Study on the temperature control mechanism of the tritium breeding blanket for CFETR
NASA Astrophysics Data System (ADS)
Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi
2017-12-01
The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.
Polyimide based amorphous silicon solar modules
NASA Technical Reports Server (NTRS)
Jeffrey, Frank R.; Grimmer, Derrick P.; Martens, Steven A.; Abudagga, Khaled; Thomas, Michael L.; Noak, Max
1993-01-01
Requirements for space power are increasingly emphasizing lower costs and higher specific powers. This results from new fiscal constraints, higher power requirements for larger applications, and the evolution toward longer distance missions such as a Lunar or Mars base. The polyimide based a-Si modules described are being developed to meet these needs. The modules consist of tandem a-Si solar cell material deposited directly on a roll of polyimide. A laser scribing/printing process subdivides the deposition into discrete cell strips which are series connected to produce the required voltage without cutting the polymer backing. The result is a large, monolithic, blanket type module approximately 30 cm wide and variable in length depending on demand. Current production modules have a specific power slightly over 500 W/Kg with room for significant improvement. Costs for the full blanket modules range from $30/Watt to $150/Watt depending on quantity and engineering requirements. Work to date focused on the modules themselves and adjusting them for the AMO spectrum. Work is needed yet to insure that the modules are suitable for the space environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beloglazov, S.; Bekris, N.; Glugla, M.
2005-07-15
The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm datamore » to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.« less
Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.
1962-10-23
A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)
Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Leuer, J.A.
1990-05-01
A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.
Design, optimization, and analysis of a self-deploying PV tent array
NASA Astrophysics Data System (ADS)
Collozza, Anthony J.
1991-06-01
A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.
Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization
NASA Technical Reports Server (NTRS)
Gibson, C. E.
1979-01-01
Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.
Hubble Space Telescope Thermal Blanket Repair Design and Implementation
NASA Technical Reports Server (NTRS)
Ousley, Wes; Skladany, Joseph; Dell, Lawrence
2000-01-01
Substantial damage to the outer layer of Hubble Space Telescope (HST) thermal blankets was observed during the February 1997 servicing mission. After six years in LEO, many areas of the aluminized Teflon(R) outer blanket layer had significant cracks, and some material was peeled away to expose inner layers to solar flux. After the mission, the failure mechanism was determined, and repair materials and priorities were selected for follow-on missions. This paper focuses on the thermal, mechanical, and EVA design requirements for the blanket repair, the creative solutions developed for these unique problems, hardware development, and testing.
Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Smith, D. L.
1999-10-07
The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolantmore » channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.« less
Multiplier, moderator, and reflector materials for advanced lithium?vanadium fusion blankets
NASA Astrophysics Data System (ADS)
Gohar, Y.; Smith, D. L.
2000-12-01
The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at average loading conditions of 2 MW/m 2 surface heat flux and 10 MW/m 2 neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.
Investigation of torque generated by Test Blanket Module mock-up in DIII-D
NASA Astrophysics Data System (ADS)
Salmi, A.; Tala, T.; Lanctot, M.; Degrassie, J. S.; Paz-Soldan, C.; Logan, N.; Solomon, W. M.; Grierson, B. A.
2015-11-01
Experiments at DIII-D have investigated the scaling of Test Blanket Module (TBM) torque with plasma pressure and collisionality by performing dimensionless parameter scans. In each configuration, neutral beam torque modulation and TBM torque modulation were sequentially applied to allow experimental characterization of the TBM generated torque and the underlying transport. Calculations of the neoclassical toroidal viscosity (NTV) torque with PENT code of these plasmas find that TBM torque is strongly edge localized while the tentative experimental analysis indicates a more radially broad TBM torque profile. Both the experimental and PENT results will be elaborated and experimental TBM torque scaling with pressure and collisionality presented. Experimental validation of existing plasma response and NTV torque models is an important step toward understanding the impact of magnetic field ripple on plasma rotation, and for predicting the required compensation fields. Work supported by the US Department of Energy under DE-AC52-07NA27344, DE-FC02-04ER54698 and DE-AC02-09CH11466.
Fusion Advanced Design Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Guebaly, Laila; Henderson, Douglass; Wilson, Paul
2017-03-24
During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequentlymore » the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.« less
Design and optimization of a self-deploying PV tent array
NASA Astrophysics Data System (ADS)
Colozza, Anthony J.
A study was performed to design a self-deploying tent shaped PV (photovoltaic) array and optimize the design for maximum specific power. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both Lunar and Martian environmental conditions. The performance specifications for the array at both locations and with various PV blankets were determined.
Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets
NASA Astrophysics Data System (ADS)
Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.
2011-10-01
In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.
Stainless steel blanket concept for tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbowski, J.S.; Lee, A.Y.; Prevenslik, T.V.
1979-01-25
The purpose of this joint ORNL/Westinghouse Program is to develop a design concept for a tokamak reactor blanket system which satisfies engineering requirements for a utility environment. While previous blanket studies have focused primarily on performance issues (thermal, neutronic, and structural), this study has emphasized consideration of reliability, fabricability, and lifetime.
DOT National Transportation Integrated Search
2016-07-01
A research project to investigate the product approval, design process, and ongoing product evaluation of erosion control blankets : (ECBs) for the Missouri Department of Transportation (MoDOT) was conducted. An overview of federal and state environm...
NASA Astrophysics Data System (ADS)
Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi
Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.
Low RF Reflectivity Spacecraft Thermal Blanket by Using High-Impedance Surface Absorbers
NASA Astrophysics Data System (ADS)
Costa, F.; Monorchio, A.; Carrubba, E.; Zolesi, V.
2012-05-01
A technique for designing a low-RF reflectivity thermal blanket is presented. Multi-layer insulation (MLI) blankets are employed to stabilize the temperature on spacecraft unit but they can be responsible of passive intermodulation products and high-mutual coupling between antennas since they are realized with metallic materials. The possibility to replace the last inner layer of a MLI blanket with an ultra-thin absorbing layer made of high-impedance surface absorber is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud
2015-11-04
This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective ofmore » this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and fabrication capacity per unit of core power. Nevertheless, these high-performance cores were designed to set upper bounds on the S&B core performance by using larger height and pressure drop than those of typical SFR design. A study was subsequently undertaken to quantify the tradeoff between S&B core design variables and the core performance. This study concludes that a viable S&B core can be designed without significant deviation from SFR core design practices. For example, the S&B core with 120cm active height will be comparable in volume, HM mass and specific power with the S-PRISM core and could fit within the S-PRISM reactor vessel. 43% of this core power will be generated by the once-through thorium blanket; the required capacity for reprocessing and remote fuel fabrication per unit of electricity generated will be approximately one fifth of that for a comparable ABR. The sodium void worth of this 120cm tall S&B core is significantly less positive than that of the reference ABR and the Doppler coefficient is only slightly smaller even though the seed uses a fertile-free fuel. The seed in the high transmutation core requires inert matrix fuel (TRU-40Zr) that has been successfully irradiated by the Fuel Cycle Research & Development program. An additional sensitivity analysis was later conducted to remove the bias introduced by the discrepancy between radiation damage constraints -- 200 DPA applied for S&B cores and fast fluence of 4x1023 n(>0.1MeV)/cm2 applied for ABR core design. Although the performance characteristics of the S&B cores are sensitive to the radiation damage constraint applied, the S&B cores offer very significant performance improvements relative to the conventional ABR core design when using identical constraint.« less
NASA Astrophysics Data System (ADS)
Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin
2015-09-01
The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
STS-114: Discovery Mission Status/Post MMT Briefing
NASA Technical Reports Server (NTRS)
2005-01-01
Bob Castle, Mission Operations Representative, and Wayne Hale, Space Shuttle Deputy Program Manager are seen during a post Mission Management Team (MMT) briefing. Bob Castle talks about the Multi-Purpose Logistics Module (MPLM) payload and its readiness for unberthing. Wayne Hale presents pictures of the Space Shuttle Thermal Blanket, Wind Tunnel Tests, and Space Shuttle Blanket Pre and Post Tests. Questions from the news media about the Thermal Protection System after undocking and re-entry of the Space Shuttle Discovery, and lessons learned are addressed.
NASA Astrophysics Data System (ADS)
Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald
2017-09-01
Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.
Design of an arc-free thermal blanket
NASA Technical Reports Server (NTRS)
Fellas, C. N.
1981-01-01
The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.
Space Station Freedom solar array containment box mechanisms
NASA Technical Reports Server (NTRS)
Johnson, Mark E.; Haugen, Bert; Anderson, Grant
1994-01-01
Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.
NASA Astrophysics Data System (ADS)
Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert
2017-09-01
An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.
Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Austin, M. E.; Collins, C. S.
2015-07-21
We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less
Self-cooled liquid-metal blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malang, S.; Arheidt, K.; Barleon, L.
1988-11-01
A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative tomore » other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor.« less
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; ...
2016-09-23
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Thermal design and TDM test of the ETS-VI
NASA Astrophysics Data System (ADS)
Yoshinaka, T.; Kanamori, K.; Takenaka, N.; Kawashima, J.; Ido, Y.; Kuriyama, Y.
The Engineering Test Satellite-VI (ETS-VI) thermal design, thermal development model (TDM) test, and evaluation results are described. The allocation of the thermal control materials on the spacecraft is illustrated. The principal design approach is to minimize the interactions between the antenna tower module and the main body, and between the main body and the liquid apogee propulsion system by means of multilayer insulation blankets and low conductance graphite epoxy support structures. The TDM test shows that the thermal control subsystem is capable of maintaining the on-board components within specified temperature limits. The heat pipe network is confirmed to operate properly, and a uniform panel temperature distribution is accomplished. The thermal analytical model is experimentally verified. The validity of the thermal control subsystem design is confirmed by the modified on-orbit analytical model.
Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew
Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less
Technical Issues for the Fabrication of a CN-HCCB-TBM Based on RAFM Steel CLF-1
NASA Astrophysics Data System (ADS)
Wang, Pinghuai; Chen, Jiming; Fu, Haiying; Liu, Shi; Li, Xiongwei; Xu, Zengyu
2013-02-01
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and characterized at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.
Conceptual approach study of a 200 watt per kilogram solar array, phase 1
NASA Technical Reports Server (NTRS)
Rayl, G. J.; Speight, K. M.; Stanhouse, R. W.
1977-01-01
Two alternative designs were studied; one a retractable rollout design and the other a nonretractable foldout configuration. An end of life (EOL) power for either design of 0.79 beginning of life (BOL) is predicted based on one solar flare during a 3 year interplanetary mission. Both array configurations incorporate the features of flexible substrates and cover sheets. A power capacity of 10 kilowatt is achieved in a blanket area of 76 sq m with an area utilization factor of 0.8. A single array consists of two identical solar cell blankets deployed concurrently by a single, coilable longeron boom. An out of plane angle of 8-1/4 deg is maintained between the two blankets so that the inherent inplane stiffness of the blankets may be used to obtain out of plane stiffness. This V-stiffened design results in a 67% reduction in the stiffness requirement for the boom. Since boom mass scales with stiffness, a lower requirement on boom stiffness results in a lower mass for the boom. These solar arrays are designed to be compatible with the shuttle launch environment and shuttle cargo bay size limitations.
Applications of the Aqueous Self-Cooled Blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, D.; Embrechts, M.J.; Varsamis, G.
1986-11-01
In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.
Composite flexible blanket insulation
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)
1994-01-01
An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, C.B.; Haglund, R.C.; Miller, M.E.
1996-12-31
The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, C.B.; Haglund, R.C.; Miller, M.E.
1996-12-31
The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less
A passively-safe fusion reactor blanket with helium coolant and steel structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosswait, Kenneth Mitchell
1994-04-01
Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel asmore » a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.« less
Trench fast reactor design using the microcomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohach, A.F.; Sankoorikal, J.T.; Schmidt, R.R.
1987-01-01
This project is a study of alternative liquid-metal-cooled fast power reactor system concepts. Specifically, an unconventional primary system is being conceptually designed and evaluated. The project design is based primarily on microcomputer analysis through the use of computational modules. The reactor system concept is a long, narrow pool with a long, narrow reactor called a trench-type pool reactor in it. The reactor consists of five core-blanket modules in a line. Specific power is to be modest, permitting long fuel residence time. Two fuel cycles are currently being considered. The reactor design philosophy is that of the inherently safe concept. Thismore » requires transient analysis dependent on reactivity coefficients: prompt fuel, including Doppler and expansion, fuel expansion, sodium temperature and void, and core expansion. Conceptual reactor design is done on a microcomputer. A part of the trench reactor project is to develop a microcomputer-based system that can be used by the user for scoping studies and design. Current development includes the neutronics and fuel management aspects of the design. Thermal-hydraulic analysis and economics are currently being incorporated into the microcomputer system. The system is menu-driven including preparation of program input data and of output data for displays in graphics form.« less
Space Station Freedom Solar Array tension mechanism development
NASA Technical Reports Server (NTRS)
Allmon, Curtis; Haugen, Bert
1994-01-01
A tension mechanism is used to apply a tension force to the Space Station Freedom Solar Array Blanket. This tension is necessary to meet the deployed frequency requirement of the array as well as maintain the flatness of the flexible substrate solar cell blanket. The mechanism underwent a series of design iterations before arriving at the final design. This paper discusses the design and testing of the mechanism.
Design of Multilayer Insulation for the Multipurpose Hydrogen Test Bed
NASA Technical Reports Server (NTRS)
Marlow, Weston A.
2011-01-01
Multilayer insulation (MLI) is a critical component for future, long term space missions. These missions will require the storage of cryogenic fuels for extended periods of time with little to no boil-off and MLI is vital due to its exceptional radiation shielding properties. Several MLI test articles were designed and fabricated which explored methods of assembling and connecting blankets, yielding results for evaluation. Insight gained, along with previous design experience, will be used in the design of the replacement blanket for the Multipurpose Hydrogen Test Bed (MHTB), which is slated for upcoming tests. Future design considerations are discussed which include mechanical testing to determine robustness of such a system, as well as cryostat testing of samples to give insight to the loss of thermal performance of sewn panels in comparison to the highly efficient, albeit laborious application of the original MHTB blanket.
First-wall structural analysis of the self-cooled water blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.; Steiner, D.; Embrechts, M.J.
1986-01-01
A novel blanket concept recently proposed utilizes water with small amounts of dissolved lithium compound as both coolant and breeder. The inherent simplicity of this idea should result in an attractive breeding blanket for fusion reactors. In addition, the available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate this concept. First-wall and blanket designs have been developed first for the tandem mirror reactor (TMR) due to the obvious advantages of this geometry. First-wall and blanket designs will also be developed for toroidal reactors. A simple plate designmore » with coolant tubes welded on the back (side away from plasma) was chosen as the first wall for the TMR application. Dimensions and materials were chosen to minimize temperature differences and thermal stresses. A finite element code (STRAW), originally developed for the analysis of core components subjected to high-pressure transients in the fast breeder program, was utilized to evaluate stresses in the first wall.« less
MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimann, J.; Barleon, L.; Buehler, L.
1994-12-31
For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less
A photovoltaic catenary-tent array for the Martian surface
NASA Technical Reports Server (NTRS)
Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.
1993-01-01
To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.
Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D
NASA Astrophysics Data System (ADS)
Kramer, G. J.; Budny, R.; Nazikian, R.; Heidbrink, W. W.; Kurki-Suonio, T.; Salmi, A.; Schaffer, M. J.; van Zeeland, M. A.; Shinohara, K.; Snipes, J. A.; Spong, D.
2010-11-01
The fast beam-ion confinement in the presence of a scaled mock-up of two Test Blanket Modules (TBM) for ITER was studied in DIII-D. The TBM on DIII-D has four vertically arranged protective carbon tiles with thermocouples placed at the back of each tile. Temperature increases of up to 200^oC were measured for the two tiles closest to the midplane when the TBM fields were present. These measurements agree qualitatively with results from the full orbit-following beam-ion code, SPIRAL, that predict beam-ion losses to be localized on the central two carbon tiles when the TBM fields present. Within the experimental uncertainties no significant change in the fast-ion population was found in the core of these plasmas which is consistent with SPIRAL analysis. These experiments indicate that the TBM fields do not affect the fast-ion confinement in a harmful way which is good news for ITER.
Summary of LSST systems analysis and integration task for SPS flight test articles
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1981-02-01
The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellesen, C.; Grape, S.; Haakanson, A.
2013-07-01
Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)
Field-Reversed Configuration Power Plant Critical-Issue Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.
A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less
Weighted blankets and sleep in autistic children--a randomized controlled trial.
Gringras, Paul; Green, Dido; Wright, Barry; Rush, Carla; Sparrowhawk, Masako; Pratt, Karen; Allgar, Victoria; Hooke, Naomi; Moore, Danielle; Zaiwalla, Zenobia; Wiggs, Luci
2014-08-01
To assess the effectiveness of a weighted-blanket intervention in treating severe sleep problems in children with autism spectrum disorder (ASD). This phase III trial was a randomized, placebo-controlled crossover design. Participants were aged between 5 years and 16 years 10 months, with a confirmed ASD diagnosis and severe sleep problems, refractory to community-based interventions. The interventions were either a commercially available weighted blanket or otherwise identical usual weight blanket (control), introduced at bedtime; each was used for a 2-week period before crossover to the other blanket. Primary outcome was total sleep time (TST) recorded by actigraphy over each 2-week period. Secondary outcomes included actigraphically recorded sleep-onset latency, sleep efficiency, assessments of child behavior, family functioning, and adverse events. Sleep was also measured by using parent-report diaries. Seventy-three children were randomized and analysis conducted on 67 children who completed the study. Using objective measures, the weighted blanket, compared with the control blanket, did not increase TST as measured by actigraphy and adjusted for baseline TST. There were no group differences in any other objective or subjective measure of sleep, including behavioral outcomes. On subjective preference measures, parents and children favored the weighted blanket. The use of a weighted blanket did not help children with ASD sleep for a longer period of time, fall asleep significantly faster, or wake less often. However, the weighted blanket was favored by children and parents, and blankets were well tolerated over this period. Copyright © 2014 by the American Academy of Pediatrics.
Solar-electric-propulsion cargo vehicles for split/sprint Mars mission
NASA Technical Reports Server (NTRS)
Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott
1991-01-01
In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.
Improved structure and long-life blanket concepts for heliotron reactors
NASA Astrophysics Data System (ADS)
Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.
2005-04-01
New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.
SEAL Studies of Variant Blanket Concepts and Materials
NASA Astrophysics Data System (ADS)
Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.
1997-09-01
Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.
Thermal-hydraulic analysis of low activity fusion blanket designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J A; Powell, J; Yu, W S
1977-01-01
The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian
2017-10-01
Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.
Assessment of the importance of neutron multiplication for tritium production
NASA Astrophysics Data System (ADS)
Chiovaro, P.; Di Maio, P. A.
2017-01-01
One of the major requirements for a fusion power plant in the future is tritium self-sufficiency. For this reason the scientific community has dedicated a lot of effort to research activity on reactor tritium breeding blankets. In the framework of the international project DEMO, many concepts of breeding blanket have been taken into account and some of them will be tested in the experimental reactor ITER by means of appropriate test blanket modules (TBMs). All the breeding blanket concepts rely on the adoption of binary systems composed of a material acting as neutronic multiplier and another as a breeder. This paper addresses a neutronic feature of these kinds of systems. In particular, attention has been focused on the assessment of the importance of neutrons coming from multiplication reactions for the production of tritium. A theoretical framework has been set up and a procedure to evaluate the performance of the multiplier-breeder systems, under the aforementioned point of view, has been developed. Moreover, the model set up has been applied to helium cooled lithium lead and helium cooled pebble bad TBMs under irradiation in ITER and the results have been critically discussed.
Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.
Lasche, G.P.
1983-09-29
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
NASA Astrophysics Data System (ADS)
Lulewicz, J. D.; Roux, N.; Piazza, G.; Reimann, J.; van der Laan, J.
2000-12-01
Li 2ZrO 3 and Li 2TiO 3 pebbles are being investigated at Commissariat à l'Energie Atomique as candidate alternative ceramics for the European helium-cooled pebble bed (HCPB) blanket. The pebbles are fabricated using the extrusion-spheronization-sintering process and are optimized regarding composition, geometrical characteristics, microstructural characteristics, and material purity. Tests were designed and are being performed with other organizations so as to check the functional performance of the pebbles and pebble beds with respect to the HCPB blanket requirements, and, finally, to make the selection of the most appropriate ceramic for the HCPB blanket. Tests include high temperature long-term annealing, thermal shock, thermal cycling, thermal mechanical behaviour of pebble beds, thermal conductivity of pebble beds, and tritium extraction. Current results indicate the attractiveness of these ceramics pebbles for the HCPB blanket.
CAD-centric Computation Management System for a Virtual TBM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakanth Munipalli; K.Y. Szema; P.Y. Huang
HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of themore » analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.« less
Development of in-vessel components of the microfission chamber for ITER.
Ishikawa, M; Kondoh, T; Ookawa, K; Fujita, K; Yamauchi, M; Hayakawa, A; Nishitani, T; Kusama, Y
2010-10-01
Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm.
Development of in-vessel components of the microfission chamber for ITER1
Ishikawa, M.; Kondoh, T.; Ookawa, K.; Fujita, K.; Yamauchi, M.; Hayakawa, A.; Nishitani, T.; Kusama, Y.
2010-01-01
Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm. PMID:21033834
Solar power satellite system definition study. Part 3: Preferred concept system definition
NASA Technical Reports Server (NTRS)
1978-01-01
A concise but complete system description for the preferred concept of the Solar Power Satellite System is presented. Significant selection decisions included the following: (1) single crystal silicon solar cells; (2) glass encapsulated solar cell blankets; (3) concentration ratio 1; (4) graphite composite materials for primary structure; (5) electric propulsion for attitude control; (6) klystron RF amplifier tubes for the transmitter; (7) one kilometer diameter transmitter with a design trans mission link output power of 5,000 megawatts; (8) construction in low earth orbit with self-powered transfer of satellite modules to geosynchronous orbit; and (9) two-stage winged fully reusable rocket vehicle for transportation to low earth orbit.
Neutronic Calculation Analysis for CN HCCB TBM-Set
NASA Astrophysics Data System (ADS)
Cao, Qixiang; Zhao, Fengchao; Zhao, Zhou; Wu, Xinghua; Li, Zaixin; Wang, Xiaoyu; Feng, Kaiming
2015-07-01
Using the Monte Carlo transport code MCNP, neutronic calculation analysis for China helium cooled ceramic breeder test blanket module (CN HCCB TBM) and the associated shield block (together called TBM-set) has been carried out based on the latest design of HCCB TBM-set and C-lite model. Key nuclear responses of HCCB TBM-set, such as the neutron flux, tritium production rate, nuclear heating and radiation damage, have been obtained and discussed. These nuclear performance data can be used as the basic input data for other analyses of HCCB TBM-set, such as thermal-hydraulics, thermal-mechanics and safety analysis. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
NASA Astrophysics Data System (ADS)
Poddubnyi, I. I.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V.; Leshukov, A. Yu.; Aleskovskiy, K. V.; Obukhov, D. M.
2016-12-01
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.
Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poddubnyi, I. I., E-mail: poddubnyyii@nikiet.ru; Pyatnitskaya, N. Yu.; Razuvanov, N. G.
2016-12-15
The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in themore » majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational convection (TGC) on averaged and fluctuating quantities were found. The development of TGC in the presence of a magnetic field leads to the appearance of low-frequency fluctuations whose anomalously high intensity exceeds severalfold the level of turbulence fluctuations. This effect manifest itself over a broad region of regime parameters. It was confirmed that low-energy fluctuations penetrate readily through the wall; therefore, it is necessary to study this effect further—in particular, from the point of view of the fatigue strength of the walls of liquid-metal channels.« less
Rapid thermal cycling of solar array blanket coupons for Space Station Freedom
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.
1991-01-01
The NASA Lewis Research Center has been conducting rapid thermal cycling on blanket coupons for Space Station Freedom. This testing includes two designs (8 coupons total) of the solar array. Four coupons were fabricated as part of the Photovoltaic Array Environmental Protection Program (PAEP), NAS3-25079, at Lockheed Missiles and Space Company. These coupons began cycling in early 1989 and have completed 172,000 thermal cycles. Four other coupons were fabricated a year later and included several design changes; cycling of these began in early 1990 and has reached 90,000 cycles. The objective of this testing is to demonstrate the durability or operational lifetime (15 yrs.) of the welded interconnects within a low earth orbit (LEO) thermal cycling environment. The blanket coupons, design changes, test description, status to date including performance and observed anomalies, and any insights related to the testing of these coupons are described. The description of a third design is included.
NASA Astrophysics Data System (ADS)
Berwald, D. H.; Maniscalco, J. A.
1981-01-01
The paper evaluates the potential of several future electricity generating systems composed of laser fusion-driven breeder reactors that provide fissile fuel for current technology light water fission power reactors (LWRs). The performance and economic feasibility of four fusion breeder blanket technologies for laser fusion drivers, namely uranium fast fission (UFF) blankets, uranium-thorium fast fission (UTFF) blankets, thorium fast fission (TFF) blankets and thorium-suppressed fission (TSF) blankets, are considered, including design and costs of two kinds, fixed (indirect) costs associated with plant capital and variable (direct) costs associated with fuel processing and operation and maintenance. Results indicate that the UTFF and TFF systems produce electricity most inexpensively and that any of the four breeder blanket concepts, including the TSF and UFF systems, can produce electricity for about 25 to 33% above the cost of electricity produced by a new LWR operating on the current once-through cycle. It is suggested that fusion breeders could supply most or all of our fissile fuel makeup requirements within about 20 years after commercial introduction.
RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H
2010-06-01
ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less
LIFE Materials: Thermomechanical Effects Volume 5 - Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M; DeMange, P; Marian, J
2009-05-07
Improved fuel performance is a key issue in the current Laser Inertial-Confinement Fusion-Fission Energy (LIFE) engine design. LIFE is a fusion-fission engine composed of a {approx}40-tons fuel blanket surrounding a pulsed fusion neutron source. Fusion neutrons get multiplied and moderated in a Beryllium blanket before penetrating the subcritical fission blanket. The fuel in the blanket is composed of millions of fuel pebbles, and can in principle be burned to over 99% FIMA without refueling or reprocessing. This report contains the following chapters: Chapter A: LIFE Requirements for Materials -- LIFE Fuel; Chapter B: Summary of Existing Knowledge; Chapter C: Identificationmore » of Gaps in Knowledge & Vulnerabilities; and Chapter D: Strategy and Future Work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.
NASA Astrophysics Data System (ADS)
Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Maekawa, Fujio; Kosako, Kazuaki; Nakamura, Tomoo; Maekawa, Hiroshi; Youssef, Mahmoud Z.; Kumar, Anil; Abdou, Mohamed A.
1994-02-01
A pseudo-line source has been realized by using an accelerator based D-T point neutron source. The pseudo-line source is obtained by time averaging of continuously moving point source or by superposition of finely distributed point sources. The line source is utilized for fusion blanket neutronics experiments with an annular geometry so as to simulate a part of a tokamak reactor. The source neutron characteristics were measured for two operational modes for the line source, continuous and step-wide modes, with the activation foil and the NE213 detectors, respectively. In order to give a source condition for a successive calculational analysis on the annular blanket experiment, the neutron source characteristics was calculated by a Monte Carlo code. The reliability of the Monte Carlo calculation was confirmed by comparison with the measured source characteristics. The shape of the annular blanket system was a rectangular with an inner cavity. The annular blanket was consist of 15 mm-thick first wall (SS304) and 406 mm-thick breeder zone with Li2O at inside and Li2CO3 at outside. The line source was produced at the center of the inner cavity by moving the annular blanket system in the span of 2 m. Three annular blanket configurations were examined; the reference blanket, the blanket covered with 25 mm thick graphite armor and the armor-blanket with a large opening. The neutronics parameters of tritium production rate, neutron spectrum and activation reaction rate were measured with specially developed techniques such as multi-detector data acquisition system, spectrum weighting function method and ramp controlled high voltage system. The present experiment provides unique data for a higher step of benchmark to test a reliability of neutronics design calculation for a realistic tokamak reactor.
Heat transfer correlations for multilayer insulation systems
NASA Astrophysics Data System (ADS)
Krishnaprakas, C. K.; Badari Narayana, K.; Dutta, Pradip
2000-01-01
Multilayer insulation (MLI) blankets are extensively used in spacecrafts as lightweight thermal protection systems. Heat transfer analysis of MLI is sometimes too complex to use in practical design applications. Hence, for practical engineering design purposes, it is necessary to have simpler procedures to evaluate the heat transfer rate through MLI. In this paper, four different empirical models for heat transfer are evaluated by fitting against experimentally observed heat flux through MLI blankets of various configurations, and the results are discussed.
ITER structural design criteria and their extension to advanced reactor blankets*1
NASA Astrophysics Data System (ADS)
Majumdar, S.; Kalinin, G.
2000-12-01
Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.
First wall structural analysis of the aqueous self-cooled blanket concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, D.A.; Steiner, D.; Embrechts, M.J.
1986-11-01
A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1992-01-01
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Operational considerations of the Advanced Photovoltaic Solar Array
NASA Astrophysics Data System (ADS)
Stella, Paul M.; Kurland, Richard M.
Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.
Aerogel Blanket Insulation Materials for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.
2009-01-01
Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off
NASA Technical Reports Server (NTRS)
Bauer, J. L.
1987-01-01
An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.
Lightweight Thermal Insulation for a Liquid-Oxygen Tank
NASA Technical Reports Server (NTRS)
Willen, G. Scott; Lock, Jennifer; Nieczkoski, Steve
2005-01-01
A proposed lightweight, reusable thermal-insulation blanket has been designed for application to a tank containing liquid oxygen, in place of a non-reusable spray-on insulating foam. The blanket would be of the multilayer-insulation (MLI) type and equipped with a pressure-regulated nitrogen purge system. The blanket would contain 16 layers in two 8-layer sub-blankets. Double-aluminized polyimide 0.3 mil (.0.008 mm) thick was selected as a reflective shield material because of its compatibility with oxygen and its ability to withstand ionizing radiation and high temperature. The inner and outer sub-blanket layers, 1 mil (approximately equals 0.025 mm) and 3 mils (approximately equals 0.076 mm) thick, respectively, would be made of the double-aluminized polyimide reinforced with aramid. The inner and outer layers would provide structural support for the more fragile layers between them and would bear the insulation-to-tank attachment loads. The layers would be spaced apart by lightweight, low-thermal-conductance netting made from polyethylene terephthalate.
An overview of ITER diagnostics (invited)
NASA Astrophysics Data System (ADS)
Young, Kenneth M.; Costley, A. E.; ITER-JCT Home Team; ITER Diagnostics Expert Group
1997-01-01
The requirements for plasma measurements for operating and controlling the ITER device have now been determined. Initial criteria for the measurement quality have been set, and the diagnostics that might be expected to achieve these criteria have been chosen. The design of the first set of diagnostics to achieve these goals is now well under way. The design effort is concentrating on the components that interact most strongly with the other ITER systems, particularly the vacuum vessel, blankets, divertor modules, cryostat, and shield wall. The relevant details of the ITER device and facility design and specific examples of diagnostic design to provide the necessary measurements are described. These designs have to take account of the issues associated with very high 14 MeV neutron fluxes and fluences, nuclear heating, high heat loads, and high mechanical forces that can arise during disruptions. The design work is supported by an extensive research and development program, which to date has concentrated on the effects these levels of radiation might cause on diagnostic components. A brief outline of the organization of the diagnostic development program is given.
A novel approach to spacecraft re-entry and recovery
NASA Astrophysics Data System (ADS)
Patten, Richard; Hedgecock, Judson C.
1990-01-01
A deployable radiative heat shield design for spacecraft reentry is discussed. The design would allow the spacecraft to be cylindrical instead of the the traditional conical shape, providing a greater internal volume and thus enhancing mission capabilities. The heat shield uses a flexible thermal blanket material which is deployed in a manner similar to an umbrella. Based on the radiative properties of this blanket material, heating constraints have been established which allow a descent trajectory to be designed. The heat shield and capsule configuration are analyzed for resistance to heat flux and aerodynamic stability based on reentry trajectory. Experimental tests are proposed.
Lightweight IMM PV Flexible Blanket Assembly
NASA Technical Reports Server (NTRS)
Spence, Brian
2015-01-01
Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.
ERIC Educational Resources Information Center
Arasmith, E. E.
The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…
Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander
NASA Technical Reports Server (NTRS)
Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard
1989-01-01
The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
Traditional perforation-resistant wall design for long-duration spacecraft consists of a "bumper" that is placed a small distance away from the main "pressure wall" of a spacecraft compartment or module. This concept has been studied extensively as a means of reducing the perforation threat of hypervelocity projectiles such as meteoroids and orbital debris. If a dual-wall system is employed on an earth-orbiting spacecraft, then a blanket of multi-layer insulation (MLI) will typically be included within the dual-wall system for thermal protection purposes. This paper presents the results of an experimental study in which aluminum dual-wall structures were tested under a variety of high-speed impact conditions to study the effect of MLI thickness and location on perforation resistance. The results presented consist of test-by-test comparisons of the damage sustained by similar dual-wall systems with blanket MLI of various thicknesses and at various locations within the dual-wall systems under similar impact loading conditions. The analyses performed revealed that the placement of the MLI had a significant effect on the ballistic limit of the dual-wall structures considered while reducing the thickness of the MLI by as much as 1/3 did not.
NASA Astrophysics Data System (ADS)
Azizov, E. A.; Gladush, G. G.; Dokuka, V. N.; Khayrutdinov, R. R.
2015-12-01
On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of 233U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.
A path to stable low-torque plasma operation in ITER with test blanket modules
Lanctot, Matthew J.; Snipes, J. A.; Reimerdes, H.; ...
2016-12-12
New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experimentsmore » at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Lastly, given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.« less
A path to stable low-torque plasma operation in ITER with test blanket modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanctot, Matthew J.; Snipes, J. A.; Reimerdes, H.
New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experimentsmore » at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Lastly, given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.« less
NASA Astrophysics Data System (ADS)
1993-08-01
The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.
Conceptual Designing of a Reduced Moderation Pressurized Water Reactor by Use of MVP and MVP-BURN
NASA Astrophysics Data System (ADS)
Kugo, T.
A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew
'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less
Rapid thermal cycling of new technology solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.
1990-01-01
NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.
LMFBR fuel assembly design for HCDA fuel dispersal
Lacko, Robert E.; Tilbrook, Roger W.
1984-01-01
A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.
Geomorphic clues to the Martian volatile inventory. 1: Flow ejecta blankets
NASA Technical Reports Server (NTRS)
Pieri, D.; Baloga, S.; Norris, M.
1984-01-01
There are classes of landforms whose presence on Mars is strongly suggestive, if not confirmatory, of the participation of volatiles, presumably water, in its geomorphic development: (1) valley networks, (2) outflow channels, (3) landslides, and (4) flow-ejecta blankets. The first two may represent landforms generated by the movement of volatiles from sources, while the latter two probably represent the dissipation of energy generated by forcing inputs (e.g., kinetic energy and gravity) modulated by volatiles. In many areas on Mars, all four processes have acted on the same lithologic materials and were influenced by the composition of those units, and possibility by the climatic regime at the time of their formation. One of the approaches discussed to this specific problem of landform genesis, and to the general problem of the present and past states of martian volatiles, is to attempt to constrain the distribution, amount, and history of available volatiles by using possible evidence of volatile participation expressed in the morphology of other related landforms (e.g., flow-ejecta blankets and landslides) coupled with physical models for landform genesis.
Re-analysis of HCPB/HCLL Blanket Mock-up Experiments Using Recent Nuclear Data Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, K., E-mail: keitaro.kondo@kit.edu; Fischer, U.; Klix, A.
2014-06-15
We have re-analysed the two breeding blankets experiments performed previously in the frame of the European fusion program on two mock-ups of the European Helium-Cooled-Lithiium Lead (HCLL) and Helium-Cooled-Pebble-Bed (HCPB) test blanket modules for ITER. The tritium production rate and the neutron and photon spectra measured in these mock-ups were compared with calculations using FENDL-3 Starter Library, release 4 and state-of-the-art nuclear data evaluations, JEFF-3.1.2, JENDL-4.0 and ENDF/B-VII.0. The tritium production calculated for the HCPB mock-up underestimates the experimental result by about 10%. The result calculated with FENDL-3/SLIB4 gives slightly smaller tritium production by 2% than the one with FENDL-2.1.more » The difference attributes to the slight modification of the total and elastic scattering cross section of Be. For the HCLL experiment, all libraries reproduce the experimental results well. FENDL-3/SLIB4 gives better result both for the measured spectra and the tritium production compared to FENDL-2.1.« less
Geomorphic clues to the Martian volatile inventory. 1: Flow ejecta blankets
NASA Astrophysics Data System (ADS)
Pieri, D.; Baloga, S.; Norris, M.
1984-04-01
There are classes of landforms whose presence on Mars is strongly suggestive, if not confirmatory, of the participation of volatiles, presumably water, in its geomorphic development: (1) valley networks, (2) outflow channels, (3) landslides, and (4) flow-ejecta blankets. The first two may represent landforms generated by the movement of volatiles from sources, while the latter two probably represent the dissipation of energy generated by forcing inputs (e.g., kinetic energy and gravity) modulated by volatiles. In many areas on Mars, all four processes have acted on the same lithologic materials and were influenced by the composition of those units, and possibility by the climatic regime at the time of their formation. One of the approaches discussed to this specific problem of landform genesis, and to the general problem of the present and past states of martian volatiles, is to attempt to constrain the distribution, amount, and history of available volatiles by using possible evidence of volatile participation expressed in the morphology of other related landforms (e.g., flow-ejecta blankets and landslides) coupled with physical models for landform genesis.
NASA Technical Reports Server (NTRS)
Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.
1990-01-01
The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
2016-11-03
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
Effect of thick blanket modules on neoclassical tearing mode locking in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.
The rotation of m/n = 2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final 'notch' point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on amore » forecast of initial island rotation using the n = 1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Here, recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizov, E. A.; Gladush, G. G., E-mail: gladush@triniti.ru; Dokuka, V. N.
2015-12-15
On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket basedmore » on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.« less
DEMO port plug design and integration studies
NASA Astrophysics Data System (ADS)
Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.
2017-11-01
The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the blanket segments thermo-mechanical and nuclear design considering mechanical integration aspects but also their impact on tritium breeding ratio. Since DEMO is still in a pre-conceptual phase, the same methodology is applicable to the other two blanket concepts, as well.
46 CFR 34.17-90 - Installations contracted for prior to January 1, 1962-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-90 Installations contracted for prior... § 34.17-5 and § 34.17-25. A 6-inch blanket of foam in 3 minutes for machinery spaces and pumprooms will... tank, it shall be so designed and arranged as to spread a blanket of foam over the entire liquid...
46 CFR 34.17-90 - Installations contracted for prior to January 1, 1962-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FIREFIGHTING EQUIPMENT Fixed Foam Extinguishing Systems, Details § 34.17-90 Installations contracted for prior... § 34.17-5 and § 34.17-25. A 6-inch blanket of foam in 3 minutes for machinery spaces and pumprooms will... tank, it shall be so designed and arranged as to spread a blanket of foam over the entire liquid...
Testing Seam Concepts for Advanced Multilayer Insulation
NASA Technical Reports Server (NTRS)
Chato, D. J.; Johnson, W. L.; Alberts, Samantha J.
2017-01-01
Multilayer insulation (MLI) is considered the state of the art insulation for cryogenic propellant tanks in the space environment. MLI traditionally consists of multiple layers of metalized films separated by low conductivity spacers. In order to better understand some of the details within MLI design and construction, GRC has been investigating the heat loads caused by multiple types of seams. To date testing has been completed with 20 layer and 50 layer blankets. Although a truly seamless blanket is not practical, a blanket lay-up where each individual layer was overlapped and tapped together was used as a baseline for the other seams tests. Other seams concepts tested included: an overlap where the complete blanket was overlapped on top of itself; a butt joint were the blankets were just trimmed and butted up against each other, and a staggered butt joint where the seam in the out layers is offset from the seam in the inner layers. Measured performance is based on a preliminary analysis of rod calibration tests conducted prior to the start of seams testing. Baseline performance for the 50 layer blanket showed a measured heat load of 0.46 Watts with a degradation to about 0.47 Watts in the seamed blankets. Baseline performance for the 20 layer blanket showed a measured heat load of 0.57 Watts. Heat loads for the seamed tests are still begin analyzed. So far analysis work has suggested the need for corrections due to heat loads from both the heater leads and the instrumentation wires. A careful re-examination of the calibration test results with these factors accounted for is also underway. This presentation will discuss the theory of seams in MLI, our test results to date, and the uncertainties in our measurements.
Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolodosky, A.; Fratoni, M.
Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within amore » low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding, low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section 3 discusses the results; Section 4 summarizes findings and future work.« less
Conceptual design of fast-ignition laser fusion reactor FALCON-D
NASA Astrophysics Data System (ADS)
Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.
2009-07-01
A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.
Nuclear design of a very-low-activation fusion reactor
NASA Astrophysics Data System (ADS)
Cheng, E. T.; Hopkins, G. R.
1983-06-01
The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.
The FEI-TPS on the Upper Surface of the X-38
NASA Astrophysics Data System (ADS)
Antonenko, Johann; Kowal, John
2002-01-01
The X-38 is being developed by NASA-JSC as a technology demonstrator of a future Crew Rescue Vehicle. The size of the vehicle is limited to fit into the cargo bay of the shuttle. Due to its small size and shuttle-like trajectory all surfaces will receive comparably high heat rates leading to high surface temperatures. Temperatures on the nose are calculated to reach 1750°C, which is significantly higher than on the shuttle. Due to the lifting body shape, large areas of the central fuselage will be exposed to flow of hot gases around the vehicle. Here temperatures of the upper surface are calculated to reach up to 1000°C and the application of a high temperature blanket thermal protection system (TPS) becomes mandatory. Consecutively, the temperature level of the upper surface and the base area will be significantly high. Unlike on the shuttle, where large areas of the surface are covered by flexible reusable surface insulation (FRSI), locations with temperatures below 400°C will be scarce on the X-38. During development of the European shuttle HERMES the Flexible External Insulation (FEI) was developed for the upper surface TPS. This development was continued by ESA and DLR funded programs and currently a product family is available for temperatures ranging from 450°C to 1100°C for re-usable application. For a single re- entry under ultimate conditions temperatures may reach up to 1400°C. Under funding of DLR and ESA, the FEI assembly is one of the European contributions to the X-38. Three subassemblies have been chosen: the FEI-450, FEI-650 and FEI- 1000, capable of limit temperatures of 450°C, 650°C and 1000°C, respectively. The FEI-650 and FEI-1000 were already developed in the HERMES program. The FEI- 450 was developed in the German TETRA program. The qualification for X-38 application was performed for temperatures up to 510°C for the FEI-450 and up to 1130°C for the FEI-1000. Acoustic noise loads of up to 160dB have been endured, far beyond what X-38 will ever experience. The paper presents the design of the flexible blanket TPS in a joint effort by NASA-JSC and Astrium. The design process at NASA had to consider aerothermal loads and constraints of the structure and parachute subsystems. It provided the configuration of the FEI assembly and the requirements design of the FEI blankets. Astrium first designed the concept and lay-out of the FEI-assembly. Proceeding from NASA furnished model files, the design to manufacturing of the FEI-blankets was established. In addition, Astrium qualified the FEI for X-38 application. The FEI design is constrained by the aeroshell concept that distinguishes acreage panels, carrier panels and close-out areas, with dedicated blankets for each. Close out areas cover the locations of the parafoil system and create an uneven surface requiring vaulted blankets. The total of these requirements leads to an assembly of a large number of blankets, several of which have a complex shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, T.
Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasmamore » disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets` poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs.« less
HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1983-08-01
As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less
A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Frances, N.; Timm, W.; Rossbach, D.
2012-07-01
Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less
Space Station Freedom solar array panels plasma interaction test facility
NASA Technical Reports Server (NTRS)
Martin, Donald F.; Mellott, Kenneth D.
1989-01-01
The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.
Thermochemical hydrogen production based on magnetic fusion
NASA Astrophysics Data System (ADS)
Krikorian, O. H.; Brown, L. C.
Preliminary results of a DoE study to define the configuration and production costs for a Tandem Mirror Reactor (TMR) heat source H2 fuel production plant are presented. The TMR uses the D-T reaction to produce thermal energy and dc electrical current, with an Li blanket employed to breed more H-3 for fuel. Various blanket designs are being considered, and the coupling of two of them, a heat pipe blanket to a Joule-boosted decomposer, and a two-temperature zone blanket to a fluidized bed decomposer, are discussed. The thermal energy would be used in an H2SO4 thermochemical cycler to produce the H2. The Joule-boosted decomposer, involving the use of electrically heated commercial SiC furnace elements to transfer process heat to the thermochemical H2 cycle, is found to yield H2 fuel at a cost of $12-14/GJ, which is the projected cost of fossil fuels in 30-40 yr, when the TMR H2 production facility would be operable.
NASA Astrophysics Data System (ADS)
Martin, Rodger; Ghoniem, Nasr M.
1986-11-01
A pin-type fusion reactor blanket is designed using γ-LiAlO 2 solid tritium breeder. Tritium transport and diffusive inventory are modeled using the DIFFUSE code. Two approaches are used to obtain characteristic LiAlO 2 grain temperatures. DIFFUSE provides intragranular diffusive inventories which scale up to blanket size. These results compare well with a numerical analysis, giving a steady-state blanket tritium inventory of 13 g. Start-up transient inventories are modeled using DIFFUSE for both full and restricted coolant flow. Full flow gives rapid inventory buildup while restricted flow prevents this buildup. Inventories after shutdown are modeled: reduced cooling is found to have little effect on removing tritium, but preheating rapidly purges inventory. DIFFUSE provides parametric modeling of solid breeder density, radiation, and surface effects. 100% dense pins are found to give massive inventory and marginal tritium release. Only large trapping energies and concentrations significantly increase inventory. Diatomic surface recombination is only significant at high temperatures.
Noise Transmission Studies of an Advanced Grid-Stiffened Composite Fairing
2007-10-01
increase in blanket thickness and weight [7]. The evolved expendable launch vehicle (EELV) programs have conducted research to ensure that their launch...uses an aluminum fairing that is 4 to 5 m in diameter. The Atlas V 500 and heavy lift vehicles use a fairing designed and built by Contraves , which...builds the Ariane V launch vehicle for the European Space Agency. Contraves developed an innovative acoustic blanket for fairing noise reduction that
Trends in Materials' Outgassing Technology
NASA Technical Reports Server (NTRS)
Colony, J. A.
1979-01-01
Test sample acquisition and chemical analysis techniques for outgassing products from spacecraft, experiment modules, and support equipment is described. The reduction of test data to a computer compatible format to implement materials selection policies is described. A list of the most troublesome outgassing species is given and several materials correlations are discussed. Outgassing from solar panels, thermal blankets, and wire insulation are examined individually.
Resent Status of ITER Equatorial Launcher Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, K.; Kajiwara, K.; Kasugai, A.
2009-11-26
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. Themore » high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.« less
Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, J; Abbott, R; Fratoni, M
The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine designmore » with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.« less
Readying ISIM for its First Thermal Vacuum Test
2017-12-08
Engineers work with the Integrated Science Instrument Module for the James Webb Space Telescope inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. The ISIM and the ISIM System Integration Fixture that holds the ISIM Electronics Compartment was recently lifted inside the chamber for its first thermal vacuum test. In this image one of the ISIM's many protective blanket layers is pulled back. The blankets will be removed during testing. Image credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Shi, Xue-Ming; Peng, Xian-Jue
2016-09-01
Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.
Preliminary Shielding Analysis for HCCB TBM Transport
NASA Astrophysics Data System (ADS)
Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming
2015-09-01
A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)
Tritium assay of Li sub 2 O pellets in the LBM/LOTUS experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanci, J.; Azam, S.; Bertone, P.
1986-01-01
One of the objectives of the Lithium Blanket Module (LBM) program is to test the ability of advanced neutronics codes to model the tritium breeding characteristics of a fusion blanket exposed to a toroidal fusion neutron source. The LBM consists of over 20,000 cylindrical lithium oxide pellets and numerous diagnostic pellets and wafers. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a Haefely sealed neutron generator that gives a point deuterium-tritium neutron source up to 5 {times} 10{sup 12} 14-MeV n/s. Both Princeton Plasma Physics Laboratory (PPL) and EPFL assayed the tritiummore » bred at various positions in the LBM. EPFL employed a dissolution technique while PPL recovered the tritium by a thermal extraction method. EPFL uses 0.38-g, 75% TD, lithium oxide diagnostic wafers to evaluate the tritium bred in the LBM. PPPL employs a thermal extraction method to determine the tritium bred in lithium oxide samples. In the initial experiments, diagnostic pellets and wafers were placed at five locations in the LBM central removable test rod at distances of 3, 9, 21, 36, and 48 cm from the front face of the module. The two sets of data for the tritium bred in the LBM along its centerline as a function of distance from the front face of the module were compared with each other, and with the predictions of two-dimensional neutronics codes. 1 ref.« less
Three-dimensional Monte Carlo calculation of some nuclear parameters
NASA Astrophysics Data System (ADS)
Günay, Mehtap; Şeker, Gökmen
2017-09-01
In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
A path to stable low-torque plasma operation in ITER with test blanket modules
NASA Astrophysics Data System (ADS)
Lanctot, M. J.; Snipes, J. A.; Reimerdes, H.; Paz-Soldan, C.; Logan, N.; Hanson, J. M.; Buttery, R. J.; deGrassie, J. S.; Garofalo, A. M.; Gray, T. K.; Grierson, B. A.; King, J. D.; Kramer, G. J.; La Haye, R. J.; Pace, D. C.; Park, J.-K.; Salmi, A.; Shiraki, D.; Strait, E. J.; Solomon, W. M.; Tala, T.; Van Zeeland, M. A.
2017-03-01
New experiments in the low-torque ITER Q = 10 scenario on DIII-D demonstrate that n = 1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n = 1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n = 1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n = 1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n = 1 plasma response plays a dominant role in determining plasma stability, and that n = 1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.
Gas core reactors for actinide transmutation. [uranium hexafluoride
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.
1979-01-01
The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.
Composite aerogel insulation for cryogenic liquid storage
NASA Astrophysics Data System (ADS)
Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng
2017-02-01
High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.
Tritium assay of Li/sub 2/O in the LBM/LOTUS experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quanci, J.; Azam, S.; Bertone, P.
1986-11-01
The Lithium Blanket Module (LBM) is an assembly of over 20,000 cylindrical lithium oxide pellets in an array representative of a limited-coverage breeding zone for a toroidal fusion device. A principal objective of the LBM program is to test the ability of advanced neutronics coding to model the tritium breeding characteristics of a fusion device blanket. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a 14 MeV point-neutron source. Princeton Plasma Physics Laboratory (PPPL) and EPFL assayed the tritium bred in lithium oxide diagnostic samples placed at various positions in the LBM.more » PPPL employed a thermal extraction technique while EPFL used a dissolution method. The results for the assay are reported and compared to MCNP Monte Carlo neutronics calculations for the LBM/LOTUS system.« less
Two-dimensional over-all neutronics analysis of the ITER device
NASA Astrophysics Data System (ADS)
Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi
1993-07-01
The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.
NASA Astrophysics Data System (ADS)
Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah
2018-01-01
Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.
NASA Astrophysics Data System (ADS)
Nored, Donald L.
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
NASA Technical Reports Server (NTRS)
Nored, Donald L.
1990-01-01
Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.
Erosion simulation of first wall beryllium armour under ITER transient heat loads
NASA Astrophysics Data System (ADS)
Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.
2009-04-01
The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
Models for X-Ray Emission from Isolated Pulsars
NASA Technical Reports Server (NTRS)
Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)
2001-01-01
A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field evolution, especially of polar cap areas, become relevant to observations. The models are compared to X-ray data from Geminga, PSR 1055-52, PSR 0656+14, PSR 1929+10, and PSR 0950+08.
Advanced photovoltaic solar array - Design and performance
NASA Technical Reports Server (NTRS)
Kurland, Richard; Stella, Paul
1992-01-01
This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.
Multi-100 kW: Planar low cost solar array development
NASA Technical Reports Server (NTRS)
1982-01-01
The applicability of selected low cost options to solar array blanket design was studied by fabricating representative modules and submitting them to thermal cycle environment. Large area (5.9 x 5.9 cm) solar cells of 3 varieties were purchased: (1) Standard wraparound, (2) Copper contacts substituted for the conventional Titanium-Palladium-Silver, and (3) Standard wraparound except with gridded back contact instead of continuous metallization. The baseline cell was purchased to compare fabrication cost and to serve as a control cell during test evaluation of the other two cells. All cells were assembled into either substrate modules where the cell is individually filtered and welded to an integrated Kapton-copper circuit or into a superstrate configuration with 4 cells jointly adhered to a single sheet of microsheet and then welded to the integrated Kapton-copper circuit. Cell quality, particularly in the metallization of contacts, was less than desired. Problems were encountered with copper metallization in laying down a barrier metal which would ohmically bond to the silicon. The cells received were shunted (sintered) or with low contact pull strength (non-sintered), thus leading to the decision to solder rather than weld the copper cells to the Kapton substrate.
Design and fabrication of a flexible tunnel for Sortie Laboratory
NASA Technical Reports Server (NTRS)
1975-01-01
A program was conducted to update a prototype design and to fabricate a flexible tunnel for a space shuttle/spacelab interface structure. The significant changes in the prototype are as follows: (1) elimination of foam from bladder laminate to increase bladder flexibility, (2) heat treat pulley brackets, bolts, and hinge pin to 160,000 psi minimum tensile strength, and (3) reduction of the meteoroid barrier from 0.5 inch to 0.375 inch. The thermal blanket installation study resulted in developing a method of installation by properly folding the various layers so that a uniform thickness could be maintained under the clamps. A single-lobe mockup was fabricated and cycled open and closed several times with no apparent damage to the blanket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori
1994-08-01
Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications
NASA Technical Reports Server (NTRS)
Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric;
2000-01-01
The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.
Advanced Design Program (ARIES) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillack, Mark
2016-02-16
Progress is reported for the ARIES 3-year research program at UC San Diego, including three main tasks: 1. Completion of ARIES research on PMI/PFC issues. 2. Detailed engineering design and analysis of divertors and first wall/blankets. 3. Mission & requirements of FNSF.
Geologic setting of the apollo 14 samples
Swann, G.A.; Trask, N.J.; Hait, M.H.; Sutton, R.L.
1971-01-01
The apollo 14 lunar module landed in a region of the lunar highlands that is part of a widespread blanket of ejecta surrounding the Mare Imbrium basin. Samples were collected from the regolith developed on a nearly level plain, a ridge 100 meters high, and a blacky ejecta deposit around a young crater. Large boulders in the vicinity of the landing site are coherent fragmental rocks as are some of the returned samples.
Accelerator-Driven Subcritical System for Disposing of the U.S. Spent Nuclear Fuel Inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Yousry; Cao, Yan; Kraus, Adam R.
The current United States inventory of the spent nuclear fuel (SNF) is ~80,000 metric tons of heavy metal (MTHM), including ~131 tons of minor actinides (MAs) and ~669 tons of plutonium. This study describes a conceptual design of an accelerator-driven subcritical (ADS) system for disposing of this SNF inventory by utilizing the 131 tons of MAs inventory and a fraction of the plutonium inventory for energy production, and transmuting some long-lived fission products. An ADS system with a homogeneous subcritical fission blanket was first examined. A spallation neutron source is used to drive the blanket and it is produced frommore » the interaction of a 1-GeV proton beam with a lead-bismuth eutectic (LBE) target. The blanket has a liquid mobile fuel using LBE as the fuel carrier. The fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Monte Carlo analyses were performed to determine the overall parameters of the concept. Steady-state Monte Carlo simulations were performed for three similar fission blankets. Except for, the loaded amount of actinide materials in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factors of the three blankets are ~0.98 and the initial MAs blanket inventories are ~10 tons. In addition, Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. During operation, fresh fuel was fed into the fission blanket to adjust its reactivity and to control the system power. The burnup analysis shows that the three ADS concepts consume about 1.2 tons of actinides per full power year and produce 3 GW thermal power, with a proton beam power of 25 MW. For the blankets with 5, 7, or 10% actinide fuel particles loaded in the LBE, assuming that the ADS systems can be operated for 35 full-power years, the total MA materials consumed in the three ADS systems are about 30.6, 35.3, and 37.2 tons, respectively. Thus, the corresponding numbers of ADS systems to utilize the 131 tons of MA materials of the SNF inventory are 4.3, 3.7, or 3.5, respectively. ADS concepts with tube bundles inserted in the fission blanket were analyzed to overcome the disadvantages of the homogeneous blanket concept. The liquid lead is used as the target material, the mobile fuel carrier, and the primary coolant to avoid the polonium production from bismuth. Reactor physics and thermal-hydraulic analyses were coupled to determine the parameters of the heterogeneous fission blanket. The engineering requirements for a satisfactory operation performance of the HT-9 ferritic steel structure material have been realized. Two heterogeneous concepts of the subcritical fission blanket with the liquid lead mobile fuel inside or outside the tube bundles were considered. The heterogeneous configuration with the mobile fuel inside the tubes showed better performance than the configuration with mobile fuel outside the bundle tubes. The Monte Carlo burnup codes, MCB5 and SERPENT were both used to simulate the fuel burnup in the ADS concepts with the mobile fuels inside the tubes. The burnup analyses were carried out for 35 full power years. The results show that 5 ADS systems can dispose of the total United States inventory of the spent nuclear fuel.« less
Multipurpose hardened spacecraft insulation
NASA Technical Reports Server (NTRS)
Steimer, Carlos H.
1990-01-01
A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).
Of Elephant Blankets and Sieves: Designing a Professional Body for Outdoor Education.
ERIC Educational Resources Information Center
Higgins, Peter
1998-01-01
Examines elements in designing a single organization for outdoor education professionals in the United Kingdom. Discusses the responsibilities and activities of a professional association, characteristics of potential members, organizational structure, possible problems, professional image and qualifications, relationships with National Governing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gayathri Devi, V.; Sircar, A.; Sarkar, B.
One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption massmore » transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)« less
Foreman, J H; Benson, G J; Foreman, M H
2006-08-01
Horses generate considerable internal heat burdens when exercising. Although common practice for a trainer or groom to place a wet blanket or towel on the dorsum of a hot horse post exercise, there are no data supporting the efficacy of this cooling method. To test the hypothesis that a pre-moistened blanket designed with a multilayered breathable fabric would enhance heat loss in horses post exercise. Eight treadmill-trained horses performed a standardised exercise test (SET) weekly for 3 weeks, with 3 different recovery treatments administered randomly. Pulmonary artery temperature (PAT) was measured via Swan-Ganz catheter. The SET consisted of 10 min at 3.7 m/sec, 3 min at 11.0 m/sec, 25 min at 3.7 m/sec and 20 min of recovery walking at 2.0 m/sec (58 min exercise and recovery under laboratory conditions of 35.0-40.6 degrees C and 27-49% RH). From 3-7 min during recovery, the treadmill was stopped and horses randomly received either: (a) no bath (negative control); (b) a bath consisting of 32 l of 1-4 degrees C water split into 3-4 cycles of bilateral water application (positive control) followed by water removal ('scraping'); or (c) application of a multilayered fabric blanket soaked in 16-19 degrees C water, wrung out, and placed over the dorsum and sides of the horse. PAT was compared using RM ANOVA with the Student Neuman-Keul's test used post hoc to discriminate between treatments at specific points in time. Mean PAT rose with each phase of exercise (P<0.001) and peaked at a mean of 40.2 +/- 0.2 degrees C. During recovery, the cold bath decreased HR and PAT for 9 min after walking resumed (P<0.001-P<0.05). The blanket did not decrease HR or PAT compared to negative control (P>0.05), and both were hotter than the cold bath treatment through 16 min of recovery (P<0.05). A specially-designed cooling blanket failed to reduce PAT when compared to negative control. Cold water bathing decreased HR and PAT but was not effective throughout all of recovery. A specially-designed, pre-moistened multilayered breathable fabric failed to promote evaporative cooling compared to negative control. Cold water baths may need to be repeated throughout recovery to optimise their effect.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...: Certain Woven Electric Blankets From the People's Republic of China AGENCY: Import Administration... electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). FOR FURTHER... Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales at Less...
Telescopic Imaging of Heater-Induced Airglow at HAARP
2007-01-01
03-01-2007 Final1 10-09-2003 - 10-09-2006 4. TITLE AND SUBTITLE Ba. CONTRACT NUMBER Telescopic Imaging of Heater-Induced Airglow at HAARP N00014-03-1... HAARP to optically measure fine structure in the ionosphere and to study airglow sources. In the presence of aurora and a strong blanketing E layer... HAARP was modulated at intervals of several seconds. For several cycles, small bright airglow spots were observed whenever HAARP was on. These spots
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
46 CFR 151.50-50 - Elemental phosphorus in water.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design calculations...
Children's Activity Book, New Mexico. 1992 Festival of American Folklife.
ERIC Educational Resources Information Center
Smithsonian Institution, Washington, DC. Center for Folklife Programs and Cultural Studies.
This booklet was designed in conjunction with a Festival of American Folklife focusing on New Mexico, but can be used when teaching lessons on the culture of New Mexico. It introduces young children to activities adapting Santa Clara Pueblo pottery designs, adobe model making, Rio Grande blanket designs, tinwork picture frames, and ramilletes de…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... Blankets from the People's Republic of China: Amended Final Determination of Sales at Less Than Fair Value... than fair value (``LTFV'') in the antidumping investigation of certain woven electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). See Certain Woven Electric Blankets...
Infant Deaths and Injuries Associated with Wearable Blankets, Swaddle Wraps, and Swaddling
McDonnell, Emily; Moon, Rachel Y.
2014-01-01
Objective To assess risks involved in using wearable blankets, swaddle wraps, and swaddling. Study design Retrospective review of incidents reported to the Consumer Product Safety Commission in 2004–2012. Results 36 incidents involving wearable blankets and swaddle wraps were reviewed, including 10 deaths, 2 injuries, and 12 incidents without injury. The median age at death was 3.5 months; 80% of deaths were attributed to positional asphyxia related to prone sleeping. 70% had additional risk factors, usually soft bedding. Two injuries involved tooth extraction from the zipper. The 12 incidents without injury reported concern for strangulation/suffocation when the swaddle wrap became wrapped around the face/neck, and potential choking hazard when the zipper detached. All 12 incidents involving swaddling in ordinary blankets resulted in death. The median age was 2 months; 58% of deaths were attributed to positional asphyxia related to prone sleeping. 92% involved additional risk factors, most commonly soft bedding. Conclusions Reports of sudden unexpected death in swaddled infants are rare. Risks can be reduced by placing infants supine, and discontinuing swaddling as soon as an infant’s earliest attempts to roll are observed. Risks can be further reduced by removing soft bedding and bumper pads from the sleep environment. When using commercial swaddle wraps, fasteners must be securely attached. PMID:24507866
NASA Astrophysics Data System (ADS)
Latifi, Fatemeh; Talebi, Zahra; Khalili, Haleh; Zarrebini, Mohammad
2018-05-01
This work investigates the influence of processing parameters and aerogel pore structure on the physical properties and hydrophobicity of aerogel blankets. Aerogel blankets were produced by in situ synthesis of nanostructured silica aerogel on a polyester nonwoven substrate. Nitrogen adsorption-desorption analysis, contact angle test and FE-SEM images were used to characterize both the aerogel particles and the blankets. The results showed that the weight and thickness of the blanket were reduced when the low amount of catalyst was used. A decrease in the aerogel pore size from 22 to 11 nm increased the weight and thickness of the blankets. The xerogel particles with high density and pore size of 5 nm reduced the blanket weight. Also, the blanket weight and thickness were increased due to increasing the sol volume. It was found that the hydrophobicity of aerogel blankets is not influenced by sol volume and pore structure of silica aerogel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klix, A.; Fischer, U.; Raj, P.
Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data andmore » Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for SPND which would be sensitive also to the fast neutron flux expected in the TBMs. To this end simulations were done with the European Activation System EASY and neutron flux spectra which were calculated with MCNP for the HCPB TBM. Preliminary tests with commercial SPND in a fast reactor were performed. As a result of these activities, several materials have been found which may be suitable for the measurement of fast neutron fluxes in the TBM. Test detectors are under preparation for testing with DT neutron generators. Within the I{sub S}MART project, funded by KIC InnoEnergy, KIT is developing an online detector based on silicon carbide electronics for the TBMs. The operation of such detectors at TBM relevant temperatures is expected to incur lower accumulated radiation damage to them than at room temperature due to annealing effects. Detectors of several designs have been already irradiated with DT neutrons. Irradiation tests at elevated temperatures have been done and further tests are currently underway. This paper summarizes the status of the work for these three neutron flux monitor systems. (authors)« less
Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolodosky, A.; Fratoni, M.
2014-11-20
Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less
Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications
NASA Technical Reports Server (NTRS)
Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric;
2000-01-01
The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components. A viewgraph presentation is attached that outlines the same information as the paper and includes more images of the Terra Spacecraft and its components.
Radiolysis aspects of the aqueous self-cooled blanket concept and the problem of tritium extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruggeman, A.; Snykers, M.; DeRegge, P.
1988-09-01
In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous /sup 6/Li solution in a metallic structure is used as a fusion reactor shielding-breeding blanket. Radiolysis effects could be very important for the design and the use of an ASCB. Although many aspects of the radiation chemistry of water and dilute aqueous solutions are now reasonably well understood, it is not possible to predict the radiochemical behaviour of the concentrated candidate ASCB solutions quantitatively. However, by means of a worst case calculation for a possible ASCB for the Next European Torus (NET) it is shown that even with an important ratemore » of water decomposition the ASCB concept is still workable. Gas bubbles and explosive mixtures can be avoided by increasing the pressure in the neutron irradiated zone and by extracting and/or recombining the radiolytically produced hydrogen and oxygen. This could require an additional inert gas loop, which could also be used as part of the tritium extraction installation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobromir Panayotov; Andrew Grief; Brad J. Merrill
'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and atmore » the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and figures. Description of each phase and its results in detail as well the methodology applications to EU HCLL and HCPB TBSs will be published in separate papers. The developed methodology is applicable to accident analyses of other TBSs to be tested in ITER and as well to DEMO breeding blankets.« less
Space-Spurred Metallized Materials
NASA Technical Reports Server (NTRS)
1988-01-01
Among a score of applications for a space spinoff reflective material called TXG is the emergency blanket manufactured by Metallized Products, Inc. Used by ski patrol to protect a skier shaken by a fall, the blanket retains up to 80% of user's body heat preventing post accident shock or chills. Carried by many types of emergency teams, blanket is large when unfolded, but folds into a package no larger than a deck of cards. Many other uses include, emergency blankets, all weather blanket, tanning blanket, window shields, radar reflector life raft canopies, etc.
Vasquez, A K; Nydam, D V; Capel, M B; Eicker, S; Virkler, P D
2017-04-01
The purpose was to compare immediate intramammary antimicrobial treatment of all cases of clinical mastitis with a selective treatment protocol based on 24-h culture results. The study was conducted at a 3,500-cow commercial farm in New York. Using a randomized design, mild to moderate clinical mastitis cases were assigned to either the blanket therapy or pathogen-based therapy group. Cows in the blanket therapy group received immediate on-label intramammary treatment with ceftiofur hydrochloride for 5 d. Upon receipt of 24 h culture results, cows in the pathogen-based group followed a protocol automatically assigned via Dairy Comp 305 (Valley Agricultural Software, Tulare, CA): Staphylococcus spp., Streptococcus spp., or Enterococcus spp. were administered on-label intramammary treatment with cephapirin sodium for 1 d. Others, including cows with no-growth or gram-negative results, received no treatment. A total of 725 cases of clinical mastitis were observed; 114 cows were not enrolled due to severity. An additional 122 cases did not meet inclusion criteria. Distribution of treatments for the 489 qualifying events was equal between groups (pathogen-based, n = 246; blanket, n = 243). The proportions of cases assigned to the blanket and pathogen-based groups that received intramammary therapy were 100 and 32%, respectively. No significant differences existed between blanket therapy and pathogen-based therapy in days to clinical cure; means were 4.8 and 4.5 d, respectively. The difference in post-event milk production between groups was not statistically significant (blanket therapy = 34.7 kg; pathogen-based = 35.4 kg). No differences were observed in test-day linear scores between groups; least squares means of linear scores was 4.3 for pathogen-based cows and 4.2 for blanket therapy cows. Odds of survival 30 d postenrollment was similar between groups (odds ratio of pathogen-based = 1.6; 95% confidence interval: 0.7-3.7) as was odds of survival to 60 d (odds ratio = 1.4; 95% confidence interval: 0.7-2.6). The one significant difference found for the effect of treatment was in hospital days; pathogen-based cows experienced, on average, 3 fewer days than blanket therapy cows. A majority (68.5%) of moderate and mild clinical cases would not have been treated if all cows on this trial were enrolled in a pathogen-based protocol. The use of a strategic treatment protocol based on 24-h postmastitis pathogen results has potential to efficiently reduce antimicrobial use. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.
2005-12-01
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.
2017-09-04
10 years @ 90% depth of discharge o Weight – 170 lb/374 kg PV panels: 12 panels with a 3.36 kW solar array capacity Generator: 10 kW TQG...lightweight thin-film PV panels ( solar modules or “ solar blankets”). These solar blankets were Door Sensor Figure 92: Temperature and Humidity Tripod...collected by various PV panels, and charging times for BB2590 batteries. 4.5.2 Operational Script The experimental nano-coated solar panel
Expedition 17 Automated Transfer Vehicle (ATV) Undocking
2008-09-05
ISS017-E-015496 (5 Sept. 2008) --- Backdropped by a blanket of clouds, European Space Agency's (ESA) "Jules Verne" Automated Transfer Vehicle (ATV) continues its relative separation from the International Space Station. The ATV undocked from the aft port of the Zvezda Service Module at 4:29 p.m. (CDT) on Sept. 5, 2008 and was placed in a parking orbit for three weeks, scheduled to be deorbited on Sept. 29 when lighting conditions are correct for an ESA imagery experiment of reentry.
Development of a Flammability Test Method for Aircraft Blankets
DOT National Transportation Integrated Search
1996-03-01
Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...
STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of the temperature pressure and plasma
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Murphy, G.
1983-01-01
Designed to withstand the thermal extremes of the STS-3 mission through the use of heaters and thermal blankets, the plasma diagnostics package sat on the release/engagement mechanism on the OSS-1 payload pallet without a coldplate and was attached to the RMS for two extended periods. Plots show temperature versus mission elapsed time for two temperature sensors. Pressure in the range of 10 to the -3 power torr and 10 to the -7 power torr, measured 3 inches from the skin of the package is plotted against GMT during the mission. The most distinctive feature of the pressure profile is the modulation at the obit period. It was found that pressure peaks when the atmospheric gas is rammed into the cargo bay. Electric and magnetic noise spectra and time variability due to orbiter systems, UHF and S-band transmitter field strengths, and measurements of the ion spectra obtained both in the cargo bay and during experiments are plotted.
SlimCS—compact low aspect ratio DEMO reactor with reduced-size central solenoid
NASA Astrophysics Data System (ADS)
Tobita, K.; Nishio, S.; Sato, M.; Sakurai, S.; Hayashi, T.; Shibama, Y. K.; Isono, T.; Enoeda, M.; Nakamura, H.; Sato, S.; Ezato, K.; Hayashi, T.; Hirose, T.; Ide, S.; Inoue, T.; Kamada, Y.; Kawamura, Y.; Kawashima, H.; Koizumi, N.; Kurita, G.; Nakamura, Y.; Mouri, K.; Nishitani, T.; Ohmori, J.; Oyama, N.; Sakamoto, K.; Suzuki, S.; Suzuki, T.; Tanigawa, H.; Tsuchiya, K.; Tsuru, D.
2007-08-01
The concept for a compact DEMO reactor named 'SlimCS' is presented. Distinctive features of the concept are low aspect ratio (A = 2.6) and use of a reduced-size centre solenoid (CS) which has the function of plasma shaping rather than poloidal flux supply. The reduced-size CS enables us to introduce a thin toroidal field coil system which contributes to reducing the weight and perhaps lessening the construction cost. Low-A has merits of vertical stability for high elongation (κ) and high normalized beta (βN), which leads to a high power density with reasonable physics requirements. This is because high κ facilitates high nGW (because of an increase in Ip), which allows efficient use of the capacity of high βN. From an engineering aspect, low-A may ensure ease in designing blanket modules robust to electromagnetic forces acting on disruptions. Thus, a superconducting low-A tokamak reactor such as SlimCS can be a promising DEMO concept with physics and engineering advantages.
Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C
NASA Astrophysics Data System (ADS)
Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun
2018-04-01
In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.
Gauge Measures Thicknesses Of Blankets
NASA Technical Reports Server (NTRS)
Hagen, George R.; Yoshino, Stanley Y.
1991-01-01
Tool makes highly repeatable measurements of thickness of penetrable blanket insulation. Includes commercial holder for replaceable knife blades, which holds needle instead of knife. Needle penetrates blanket to establish reference plane. Ballasted slider applies fixed preload to blanket. Technician reads thickness value on scale.
Toughened Thermal Blanket for MMOD Protection
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Thermal blankets are used extensively on spacecraft to provide passive thermal control of spacecraft hardware from thermal extremes encountered in space. Toughened thermal blankets have been developed that greatly improve protection from hypervelocity micrometeoroid and orbital debris (MMOD) impacts. These blankets can be outfitted if so desired with a reliable means to determine the location, depth and extent of MMOD impact damage by incorporating an impact sensitive piezoelectric film. Improved MMOD protection of thermal blankets was obtained by adding selective materials at various locations within the thermal blanket. As given in Figure 1, three types of materials were added to the thermal blanket to enhance its MMOD performance: (1) disrupter layers, near the outside of the blanket to improve breakup of the projectile, (2) standoff layers, in the middle of the blanket to provide an area or gap that the broken-up projectile can expand, and (3) stopper layers, near the back of the blanket where the projectile debris is captured and stopped. The best suited materials for these different layers vary. Density and thickness is important for the disrupter layer (higher densities generally result in better projectile breakup), whereas a highstrength to weight ratio is useful for the stopper layer, to improve the slowing and capture of debris particles.
History of Hubble Space Telescope (HST)
1985-01-01
This is a view of a solar cell blanket deployed on a water table during the Solar Array deployment test. The Hubble Space Telescope (HST) Solar Arrays provide power to the spacecraft. The arrays are mounted on opposite sides of the HST, on the forward shell of the Support Systems Module. Each array stands on a 4-foot mast that supports a retractable wing of solar panels 40-feet (12.1-meters) long and 8.2-feet (2.5-meters) wide, in full extension. The arrays rotate so that the solar cells face the Sun as much as possible to harness the Sun's energy. The Space Telescope Operations Control Center at the Goddard Space Center operates the array, extending the panels and maneuvering the spacecraft to focus maximum sunlight on the arrays. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST Solar Array was designed by the European Space Agency and built by British Aerospace. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST.
NASA Astrophysics Data System (ADS)
Powers, Jeffrey J.
2011-12-01
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.
Thermal comfort and safety of cotton blankets warmed at 130°F and 200°F.
Kelly, Patricia A; Cooper, Susan K; Krogh, Mary L; Morse, Elizabeth C; Crandall, Craig G; Winslow, Elizabeth H; Balluck, Julie P
2013-12-01
In 2009, the ECRI Institute recommended warming cotton blankets in cabinets set at 130°F or less. However, there is limited research to support the use of this cabinet temperature. To measure skin temperatures and thermal comfort in healthy volunteers before and after application of blankets warmed in cabinets set at 130 and 200°F, respectively, and to determine the time-dependent cooling of cotton blankets after removal from warming cabinets set at the two temperatures. Prospective, comparative, descriptive. Participants (n = 20) received one or two blankets warmed in 130 or 200°F cabinets. First, skin temperatures were measured, and thermal comfort reports were obtained at fixed timed intervals. Second, blanket temperatures (n = 10) were measured at fixed intervals after removal from the cabinets. No skin temperatures approached levels reported in the literature that cause epidermal damage. Thermal comfort reports supported using blankets from the 200°F cabinet, and blankets lost heat quickly over time. We recommend warming cotton blankets in cabinets set at 200°F or less to improve thermal comfort without compromising patient safety. Copyright © 2013 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
High field side launch of RF waves: A new approach to reactor actuators
NASA Astrophysics Data System (ADS)
Wallace, G. M.; Baek, S. G.; Bonoli, P. T.; Faust, I. C.; LaBombard, B. L.; Lin, Y.; Mumgaard, R. T.; Parker, R. R.; Shiraiwa, S.; Vieira, R.; Whyte, D. G.; Wukitch, S. J.
2015-12-01
Launching radio frequency (RF) waves from the high field side (HFS) of a tokamak offers significant advantages over low field side (LFS) launch with respect to both wave physics and plasma material interactions (PMI). For lower hybrid (LH) waves, the higher magnetic field opens the window between wave accessibility (n∥≡c k∥/ω >√{1 -ωpi 2/ω2+ωpe 2/ωce 2 }+ωp e/|ωc e| ) and the condition for strong electron Landau damping (n∥˜√{30 /Te } with Te in keV), allowing LH waves from the HFS to penetrate into the core of a burning plasma, while waves launched from the LFS are restricted to the periphery of the plasma. The lower n∥ of waves absorbed at higher Te yields a higher current drive efficiency as well. In the ion cyclotron range of frequencies (ICRF), HFS launch allows for direct access to the mode conversion layer where mode converted waves absorb strongly on thermal electrons and ions, thus avoiding the generation of energetic minority ion tails. The absence of turbulent heat and particle fluxes on the HFS, particularly in double null configuration, makes it the ideal location to minimize PMI damage to the antenna structure. The quiescent SOL also eliminates the need to couple LH waves across a long distance to the separatrix, as the antenna can be located close to plasma without risking damage to the structure. Improved impurity screening on the HFS will help eliminate the long-standing issues of high Z impurity accumulation with ICRF. Looking toward a fusion reactor, the HFS is the only possible location for a plasma-facing RF antenna that will survive long-term. By integrating the antenna into the blanket module it is possible to improve the tritium breeding ratio compared with an antenna occupying an equatorial port plug. Blanket modules will require remote handling of numerous cooling pipes and electrical connections, and the addition of transmission lines will not substantially increase the level of complexity. The obvious engineering challenges associated with locating antenna structures on the HFS can be overcome if HFS antennas are incorporated in the overall experimental design from the start. The Advanced Divertor and radio frequency eXperiment(ADX) will include LH and ICRF antennas located on the HFS. Compact antenna designs based on proven technologies (e.g. multi-junction and "4-way splitter" antennas) fit within the available space on the HFS of ADX. Field aligned ICRF antennas are also located on the HFS. The ADX vacuum vessel design includes dedicated space for transmission lines, pressure windows, and vacuum feedthrus for accessing the HFS wall.
Dobson, Andrew D M; Taylor, Jennifer L; Randolph, Sarah E
2011-06-01
The seasonal risk to humans of picking up Ixodes ricinus ticks in different habitats at 3 recreational sites in the UK was assessed. A comprehensive range of vegetation types was sampled at 3-weekly intervals for 2 years, using standard blanket-dragging complemented by woollen leggings and square 'heel flags'. Ticks were found in all vegetation types sampled, including short grass close to car parks, but highest densities were consistently found in plots with trees present. Blankets picked up the greatest number of ticks, but heel flags provided important complementary counts of the immature stages in bracken plots; they showed clearly that the decline in tick numbers on blankets in early summer was due to the seasonal growth of vegetation that lifted the blanket clear of the typical questing height, but in reality ticks remained abundant through the summer. Leggings picked up only 11% of the total nymphs and 22% of total adults counted, but this still represented a significant hazard to humans. These results should prompt a greater awareness of the fine-scale distribution of this species in relation to human activities that determines the most likely zones of contact between humans and ticks. Risk communication may then be designed accordingly. Copyright © 2011 Elsevier GmbH. All rights reserved.
Neutronic investigation and activation calculation for CFETR HCCB blankets
NASA Astrophysics Data System (ADS)
Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI
2017-12-01
The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.
Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, C.O.; Cramer, S.N.; Ingersoll, D.T.
1979-08-01
The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experimentmore » were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
Impact of Solar Array Designs on High Voltage Operations
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark
2006-01-01
As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone adhesive. In practice, these cover glasses and adhesive do not cover the cell edges. Finally, in the SLA, the entire cell and cell edges are fully encapsulated by a cover glass that overhangs the cell perimeter and the silicone adhesive covers the cell edges providing a sealed environment. These three types of blanket technology have been tested at GRC and Auburn. The results of these tests will be described. For example, 15 modules composed of four state-of-the-art 2x4 cm GaAs solar cells with 150 pm cover glasses connected in two-cell series strings were tested at high voltage, in plasma under hypervelocity impact. A picture of one of the modules is shown in figure 1. These were prepared by standard industry practice from a major supplier and had efficiencies above 18%. The test results and other fabrication factors that influenced the tests will be presented. In addition, results for SLA segments tested under the same conditions will be presented. Testing of thin film blankets at GRC will also be presented. Figure 1 : Typical GaAs Solar Cell Module These results will show significant differences in resistance to arcing that are directly related to array design and manufacturing procedures. Finally, the approaches for mitigating the problems uncovered by these tests will be described. These will lay the foundation for future higher voltage array operation, even including voltages above 300-600 V for direct drive SEP applications.
Thin Thermal-Insulation Blankets for Very High Temperatures
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, B.G.
A recently completed two-year study of a commercial tandem mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted.
Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur
NASA Technical Reports Server (NTRS)
Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary
2008-01-01
The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the future plans leading up to a flight test in the 2011 time frame.
76 FR 14654 - Gulfstream Natural Gas System, L.L.C. Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... design and construct, one 30-inch tie-in assembly connecting the outlet of the Gulf LNG Pipeline facilities to Gulfstream's 36-inch diameter Line No. 060, electronic gas measurement equipment, and...
Development of tritium permeation barriers on Al base in Europe
NASA Astrophysics Data System (ADS)
Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.
The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (<1 g/d). Because of experimental work previously performed, one of the most promising TPB candidates is A1 base coatings. Within the EU a large R&D programme is in progress to develop a TPB fabrication technique, compatible with the structural materials requirements and capable of producing coatings with acceptable performances. The research is focused on chemical vapour deposition (CVD), hot dipping, hot isostatic pressing (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.
STS-97 P6 truss moves to a payload transport canister
NASA Technical Reports Server (NTRS)
2000-01-01
As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.
Hartmann, E; Bøe, K E; Jørgensen, G H M; Mejdell, C M; Dahlborn, K
2017-03-01
Limited information is available on the extent to which blankets are used on horses and the owners' reasoning behind clipping the horse's coat. Research on the effects of those practices on horse welfare is scarce but results indicate that blanketing and clipping may not be necessary from the horse's perspective and can interfere with the horse's thermoregulatory capacities. Therefore, this survey collected robust, quantitative data on the housing routines and management of horses with focus on blanketing and clipping practices as reported by members of the Swedish and Norwegian equestrian community. Horse owners were approached via an online survey, which was distributed to equestrian organizations and social media. Data from 4,122 Swedish and 2,075 Norwegian respondents were collected, of which 91 and 84% of respondents, respectively, reported using blankets on horses during turnout. Almost all respondents owning warmblood riding horses used blankets outdoors (97% in Sweden and 96% in Norway) whereas owners with Icelandic horses and coldblood riding horses used blankets significantly less ( < 0.05). Blankets were mainly used during rainy, cold, or windy weather conditions and in ambient temperatures of 10°C and below. The horse's coat was clipped by 67% of respondents in Sweden and 35% of Norwegian respondents whereby owners with warmblood horses and horses primarily used for dressage and competition reported clipping the coat most frequently. In contrast to scientific results indicating that recovery time after exercise increases with blankets and that clipped horses have a greater heat loss capacity, only around 50% of respondents agreed to these statements. This indicates that evidence-based information on all aspects of blanketing and clipping has not yet been widely distributed in practice. More research is encouraged, specifically looking at the effect of blankets on sweaty horses being turned out after intense physical exercise and the effect of blankets on social interactions such as mutual grooming. Future efforts should be tailored to disseminate knowledge more efficiently, which can ultimately stimulate thoughtful decision-making by horse owners concerning the use of blankets and clipping the horse's coat.
NASA Astrophysics Data System (ADS)
Günay, M.; Şarer, B.; Kasap, H.
2014-08-01
In the present investigation, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa ferritic steel structural material and 99-95 % Li20Sn80-1-5 % SFG-Pu, 99-95 % Li20Sn80-1-5 % SFG-PuF4, 99-95 % Li20Sn80-1-5 % SFG-PuO2 the molten salt-heavy metal mixtures, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium zone with the width of 3 cm was used for the neutron multiplicity between liquid first wall and blanket. The contributions of each isotope in fluids on the nuclear parameters of a fusion-fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, heat deposition rate were computed in liquid first wall, blanket and shield zones. Three-dimensional analyses were performed by using Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.
NASA Astrophysics Data System (ADS)
See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.
1992-06-01
A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.
1992-01-01
A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... Industries (``Perfect Fit''), a U.S. importer of knitted electric blankets, submitted comments on the scope... investigation to include the following two statements: (1) ``knitted electric blankets in any form, whether... acknowledged that knitted electric blankets and electric mattress pads are not within the scope of the U.S...
Ceramic insulation/multifoil composite for thermal protection of reentry spacecraft
NASA Technical Reports Server (NTRS)
Pitts, W. C.; Kourtides, D. A.
1989-01-01
A new type of insulation blanket called Composite Flexible Blanket Insulation is proposed for thermal protection of advanced spacecraft in regions where the maximum temperature is not excessive. The blanket is a composite of two proven insulation materials: ceramic insulation blankets from Space Shuttle technology and multilayer insulation blankets from spacecraft thermal control technology. A potential heatshield weight saving of up to 500 g/sq m is predicted. The concept is described; proof of concept experimental data are presented; and a spaceflight experiment to demonstrate its actual performance is discussed.
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis. In the foreground is a ring inside of which the blankets will be sewn to fit in the orbiter's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
A New Fire Hazard for MR Imaging Systems: Blankets-Case Report.
Bertrand, Anne; Brunel, Sandrine; Habert, Marie-Odile; Soret, Marine; Jaffre, Simone; Capeau, Nicolas; Bourseul, Laetitia; Dufour-Claude, Isabelle; Kas, Aurélie; Dormont, Didier
2018-02-01
In this report, a case of fire in a positron emission tomography (PET)/magnetic resonance (MR) imaging system due to blanket combustion is discussed. Manufacturing companies routinely use copper fibers for blanket fabrication, and these fibers may remain within the blanket hem. By folding a blanket with these copper fibers within an MR imaging system, one can create an electrical current loop with a major risk of local excessive heating, burn injury, and fire. This hazard applies to all MR imaging systems. Hybrid PET/MR imaging systems may be particularly vulnerable to this situation, because blankets are commonly used for fluorodeoxyglucose PET to maintain a normal body temperature and to avoid fluorodeoxyglucose uptake in brown adipose tissue. © RSNA, 2017.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install thermal blankets around the area where several Nanoracks will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians prepare thermal blankets for several Nanoracks that will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
77 FR 76015 - Prior Notice of Activity Under Blanket Certificate; Dominion Transmission, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Dominion's authorization in Docket No. CP88-712-000, 52 FERC ]61,112 (1990) for authority to replace TL-465... pipeline to meet Class 3 design requirements, as more fully detailed in the Application. Questions...
NASA Technical Reports Server (NTRS)
Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.
1978-01-01
The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).
NASA Astrophysics Data System (ADS)
Stork, D.; Agostini, P.; Boutard, J. L.; Buckthorpe, D.; Diegele, E.; Dudarev, S. L.; English, C.; Federici, G.; Gilbert, M. R.; Gonzalez, S.; Ibarra, A.; Linsmeier, Ch.; Li Puma, A.; Marbach, G.; Morris, P. F.; Packer, L. W.; Raj, B.; Rieth, M.; Tran, M. Q.; Ward, D. J.; Zinkle, S. J.
2014-12-01
The findings of the EU 'Materials Assessment Group' (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision. A DEMO phase I with a 'Starter Blanket' and 'Starter Divertor' is foreseen: the blanket being capable of withstanding ⩾2 MW yr m-2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m-2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290-320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200-350 °C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds. Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed. Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ⩾30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.
Parameter Study of the LIFE Engine Nuclear Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, K J; Meier, W R; Latkowski, J F
2009-07-10
LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power ismore » held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.« less
Silver Teflon blanket: LDEF tray C-08
NASA Technical Reports Server (NTRS)
Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.
1992-01-01
A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.
Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W
2003-01-01
Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
Storing and Deploying Solar Panels
NASA Technical Reports Server (NTRS)
Browning, D. L.; Stocker, H. M.; Kleidon, E. H.
1982-01-01
Like upward-drawn window shades, solar blankets are unfurled to length of 89m, almost filling opening in 95.59-meter-square frame. When frame is completely assembled, solar blankets are pulled from canisters, one by one by electric motor. A Thin cushion sheet is rolled up with each blanket to cushion solar cells. Sheet is taken up on roller as blanket is unfurled. Unrolling proceeds automatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Jeffrey James
2011-11-30
This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importancemore » of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW th, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.« less
Batch settling curve registration via image data modeling.
Derlon, Nicolas; Thürlimann, Christian; Dürrenmatt, David; Villez, Kris
2017-05-01
To this day, obtaining reliable characterization of sludge settling properties remains a challenging and time-consuming task. Without such assessments however, optimal design and operation of secondary settling tanks is challenging and conservative approaches will remain necessary. With this study, we show that automated sludge blanket height registration and zone settling velocity estimation is possible thanks to analysis of images taken during batch settling experiments. The experimental setup is particularly interesting for practical applications as it consists of off-the-shelf components only, no moving parts are required, and the software is released publicly. Furthermore, the proposed multivariate shape constrained spline model for image analysis appears to be a promising method for reliable sludge blanket height profile registration. Copyright © 2017 Elsevier Ltd. All rights reserved.
48 CFR 313.303 - Blanket purchase agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements. 313.303 Section 313.303 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES....303 Blanket purchase agreements. ...
Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W
2002-09-01
Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.
Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1990-01-01
The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.
Spacecraft thermal blanket cleaning - Vacuum baking or gaseous flow purging
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1992-01-01
The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours. In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.
SRB thermal curtain design support
NASA Technical Reports Server (NTRS)
Lundblad, Wayne E.
1990-01-01
The objective during this time period was to perform a preliminary thermal analysis using some measured and estimated thermal properties on the angle-interlock materials. This preliminary thermal analysis is to serve as a guide for identifying any potential problems in blanket construction and identifying future tests.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- A closeup of the stitching being done on pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes a piece of insulation blanket from an “oven” after heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, covers another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, places pieces of insulation blanket into an “oven” for heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, gets ready to place insulation blankets on the shelf after they have been heated. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes another insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, prepares the cover of another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-25
KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes an insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
2004-03-24
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
48 CFR 613.303 - Blanket purchase agreements (BPAs).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 613.303 Section 613.303 Federal Acquisition Regulations System DEPARTMENT OF STATE....303 Blanket purchase agreements (BPAs). ...
48 CFR 1313.303 - Blanket Purchase Agreements (BPAs).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Blanket Purchase Agreements (BPAs). 1313.303 Section 1313.303 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE....303 Blanket Purchase Agreements (BPAs). ...
48 CFR 13.303 - Blanket purchase agreements (BPAs).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 13.303 Section 13.303 Federal Acquisition Regulations System FEDERAL ACQUISITION... Methods 13.303 Blanket purchase agreements (BPAs). ...
Epoxy blanket protects milled part during explosive forming
NASA Technical Reports Server (NTRS)
1966-01-01
Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.
The Markov blankets of life: autonomy, active inference and the free energy principle
Palacios, Ensor; Friston, Karl; Kiverstein, Julian
2018-01-01
This work addresses the autonomous organization of biological systems. It does so by considering the boundaries of biological systems, from individual cells to Home sapiens, in terms of the presence of Markov blankets under the active inference scheme—a corollary of the free energy principle. A Markov blanket defines the boundaries of a system in a statistical sense. Here we consider how a collective of Markov blankets can self-assemble into a global system that itself has a Markov blanket; thereby providing an illustration of how autonomous systems can be understood as having layers of nested and self-sustaining boundaries. This allows us to show that: (i) any living system is a Markov blanketed system and (ii) the boundaries of such systems need not be co-extensive with the biophysical boundaries of a living organism. In other words, autonomous systems are hierarchically composed of Markov blankets of Markov blankets—all the way down to individual cells, all the way up to you and me, and all the way out to include elements of the local environment. PMID:29343629
Ambient pressure environment surrounding the MSX spacecraft during the first year on orbit
NASA Astrophysics Data System (ADS)
Boies, Mark T.; Green, B. David; Galica, Gary E.; Uy, O. Manuel; Silver, David M.; Benson, Richard C.; Lesho, Jeffrey C.; Wood, Bob E.; Hall, David F.; Dyer, James S.
1998-10-01
The Total Pressure Sensor (TPS) on-board the Midcourse Space Experiment (MSX) Spacecraft has continuously measured the ambient local pressure since launch of MSX on April 24, 1996. The primary goals of the sensor are: 1) to monitor the ambient pressure surrounding the spacecraft's optical telescopes and to indicate when environmental conditions are acceptable for opening the protective covers, and 2) to monitor the long-term decay of the species outgassed from the spacecraft. The water-induced environment was expected to rapidly decay over the first few months to elves more closely approaching the natural environment. The data generally shows decay toward this level, however, the pressure is quite variable with time and can be influenced by discrete illumination and spacecraft orbital events. Several experiments, conducted approximately one year into the mission, indicate that the thermal blankets retain significant quantities of water. The local pressure due to water vapor is shown to increase by a factor of 100 from direct solar illumination of the blankets. Moreover, the multi-layer construction of the blankets causes them to form a deep reservoir, which continues to be a source of water vapor several tens of months into the mission. Additionally, the TPS has monitored numerous events in which the measured ambient pressure on the optics deck has exceeded 10-9 Torr. Several of these events did not include solar illumination of the blankets. These events indicate that sources other than the MLI blankets are the cause for certain high-pressure transients. Finally, these events are not limited to the early mission, outgassing phase of the program. They have been witnessed over a year into the mission. The results documented herein indicate that special consideration must be given in the design of optical sensors to account for long term outgassing of a spacecraft.
2004-07-15
KENNEDY SPACE CENTER, FLA. - Unpacking of the Pump Flow Control Subsystem (PFCS) begins in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - Technicians attach a crane to the Pump Flow Control Subsystem (PFCS) in the Space Station Processing Facility. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
Recent Advances in Stellarator Optimization
NASA Astrophysics Data System (ADS)
Gates, David; Brown, T.; Breslau, J.; Landreman, M.; Lazerson, S. A.; Mynick, H.; Neilson, G. H.; Pomphrey, N.
2016-10-01
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. One criticism that has been levelled at this method of design is the complexity of the resultant field coils. Recently, a new coil optimization code, COILOPT + + , was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. We have also explored possibilities for generating an experimental database that could check whether the reduction in turbulent transport that is predicted by GENE as a function of local shear would be consistent with experiments. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified. This work was supported by U.S. DoE Contract #DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundar Rajan, S.; Sinha, A.K.; Sachan, Udai G.P.
4-Tesla warm bore superconducting magnet is being constructed at Bhabha Atomic Research Centre in India. The adiabatically cooled superconducting magnet will be used for corrosion and Magneto Hydro Dynamic (MHD) studies related to development of Lead Lithium Cooled Ceramic Breeder (LLCB) test blanket module (TBM). Magnet aperture is of 300 mm diameter and is accessible from both ends. Magnet is completely immersed in liquid helium bath at 4.2K. The stored magnetic energy during normal operation is 2.6 MJ. Huge amount of Lorentz forces acts on the magnet coils during operation. These forces try to axially compress the coils and causemore » outward radial movement of the conductor. Micro meter movement of the coils result in energy deposition due to large operating fields. This energy, albeit small, is still sufficient to cause quench in the magnet as the heat capacities at cryogenic temperatures are very low. Pre-stressing and banding of the superconducting strands help to overcome conductor movement by increasing structural rigidity. This paper describes the thermal, structural and magnetic design the superconducting solenoid magnet. (author)« less
48 CFR 213.303 - Blanket purchase agreements (BPAs).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 213.303 Section 213.303 Federal Acquisition Regulations System DEFENSE ACQUISITION... PROCEDURES Simplified Acquisition Methods 213.303 Blanket purchase agreements (BPAs). ...
"Easy-on, Easy-off" Blanket Fastener
NASA Technical Reports Server (NTRS)
Kolecki, Ronald E.; Clatterbuck, Carroll H.
1992-01-01
Fasteners hold flexible blanket on set of posts on supporting structure. Disk of silicone rubber cast on disk of Mylar, fastened to blanket and press-fit over post to nest securely in groove. No tools needed for installation or removal.
2014-12-01
manufacturing BPA blanket purchase agreement BMW Bavarian Motor Works CAD computer-aided design CASREP casualty report CDSA Combat Direction...agreements ( BPA ), and through existing indefinite delivery and indefinite quantity (IDIQ) contracts. These types of procurement methods have less visibility
Modeling Natural Space Ionizing Radiation Effects on External Materials
NASA Technical Reports Server (NTRS)
Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)
2000-01-01
Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
Modeling natural space ionizing radiation effects on external materials
NASA Astrophysics Data System (ADS)
Altstatt, Richard L.; Edwards, David L.
2000-10-01
Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment, model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.
NASA Astrophysics Data System (ADS)
Kirchhoff, Michael
2018-03-01
Ramstead MJD, Badcock PB, Friston KJ. Answering Schrödinger's question: A free-energy formulation. Phys Life Rev 2018. https://doi.org/10.1016/j.plrev.2017.09.001 [this issue] motivate a multiscale characterisation of living systems in terms of hierarchically structured Markov blankets - a view of living systems as comprised of Markov blankets of Markov blankets [1-4]. It is effectively a treatment of what life is and how it is realised, cast in terms of how Markov blankets of living systems self-organise via active inference - a corollary of the free energy principle [5-7].
2004-03-24
KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis' nose cap. Behind her is a cover for the nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.
Improved Acoustic Blanket Developed and Tested
NASA Technical Reports Server (NTRS)
1996-01-01
Acoustic blankets are used in the payload fairing of expendable launch vehicles to reduce the fairing's interior acoustics and the subsequent vibration response of the spacecraft. The Cassini spacecraft, to be launched on a Titan IV in October 1997, requires acoustic levels lower than those provided by the standard Titan IV blankets. Therefore, new acoustic blankets were recently developed and tested to reach NASA's goal of reducing the Titan IV acoustic environment to the allowable levels for the Cassini spacecraft.
High temperature lined conduits, elbows and tees
De Feo, Angelo; Drewniany, Edward
1982-01-01
A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.
47 CFR 73.318 - FM blanketing interference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM blanketing interference. 73.318 Section 73.318 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.318 FM blanketing interference. Areas adjacent to the...
2017-02-27
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, a technician adjusts the thermal blankets around the area where several Nanoracks will be installed on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.
The LBM program at the EPFL/LOTUS Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
File, J.; Jassby, D.L.; Tsang, F.Y.
1986-11-01
An experimental program of neutron transport studies of the Lithium Blanket Module (LBM) is being carried out with the LOTUS point-neutron source facility at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. Preliminary experiments use passive neutron dosimetry within the fuel rods in the LBM central zone, as well as, both thermal extraction and dissolution methods to assay tritium bred in Li/sub 2/O diagnostic wafers and LBM pellets. These measurements are being compared and reconciled with each other and with the predictions of two-dimensional discrete-ordinates and continuous-energy Monte-Carlo analyses of the Lotus/LBM system.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
NASA Astrophysics Data System (ADS)
Miyakita, Takeshi; Hatakenaka, Ryuta; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki
2014-11-01
For conventional Multi-Layer Insulation (MLI) blankets, it is difficult to control the layer density and the thermal insulation performance degrades due to the increase in conductive heat leak through interlayer contacts. At low temperatures, the proportion of conductive heat transfer through MLI blankets is large compared to that of radiative heat transfer, hence the decline in thermal insulation performance is significant. A new type of MLI blanket using new spacers; the Non-Interlayer-Contact Spacer MLI (NICS MLI) has been developed. This new MLI blanket uses small discrete spacers and can exclude uncertain interlayer contact between films. It is made of polyetheretherketone (PEEK) making it suitable for space use. The cross-sectional area to length ratio of the spacer is 1.0 × 10-5 m with a 10 mm diameter and 4 mm height. The insulation performance is measured with a boil-off calorimeter. Because the NICS MLI blanket can exclude uncertain interlayer contact, the test results showed good agreement with estimations. Furthermore, the NICS MLI blanket shows significantly good insulation performance (effective emissivity is 0.0046 at ordinary temperature), particularly at low temperatures, due to the high thermal resistance of this spacer.
Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials
NASA Technical Reports Server (NTRS)
Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.
1977-01-01
The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.
NASA Technical Reports Server (NTRS)
Frank, A.; Derespinis, S. F.; Mockovciak, John, Jr.
1986-01-01
Window-shade type spring roller contains blanket, taken up by rotating cylindrical frame and held by frame over area to be shaded. Blanket made of tough, opaque polyimide material. Readily unfurled by mechanism to protect space it encloses from Sun. Blanket forms arched canopy over space and allows full access to it from below. When shading not needed, retracted mechanism stores blanket compactly. Developed for protecting sensitive Space Shuttle payloads from direct sunlight while cargo-bay doors open. Adapted to shading of greenhouses, swimming pools, and boats.
NASA Astrophysics Data System (ADS)
Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group
2017-08-01
The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.
40 CFR Appendix A to Subpart Nnn... - Method for the Determination of LOI
Code of Federal Regulations, 2013 CFR
2013-07-01
... LOI 1. Purpose The purpose of this test is to determine the LOI of cured blanket insulation. The.... 2.2Furnace designed to heat to at least 540 °C (1,000 °F) and controllable to ±10 °C (50 °F). 2...
40 CFR Appendix A to Subpart Nnn... - Method for the Determination of LOI
Code of Federal Regulations, 2014 CFR
2014-07-01
... LOI 1. Purpose The purpose of this test is to determine the LOI of cured blanket insulation. The.... 2.2Furnace designed to heat to at least 540 °C (1,000 °F) and controllable to ±10 °C (50 °F). 2...
Thin Thermal-Insulation Blankets for Very High Temperatures
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).
Application of the aqueous self-cooled blanket concept to fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, L.; Steiner, D.; Embrechts, M.J.
1986-01-01
The development of a reliable, safe, and economically attractive tritium breeding blanket is an essential requirement in the path to commercial fusion power. The primary objective of the recently completed Blanket Comparison and Selection Study (BCSS) was to evaluate previously proposed concepts, and thereby identify a limited number of preferred options that would provide the focus for an R and D program. The water-cooled concepts in the BCSS scored relatively low. We consider it prudent that a promising water-cooled blanket concept be included in this program since nearly all power producing reactors currently rely on water technology. It is inmore » this context that we propose the novel water-cooled blanket concept described herein.« less
Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels
NASA Technical Reports Server (NTRS)
Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun
2010-01-01
Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.
Distributing Radiant Heat in Insulation Tests
NASA Technical Reports Server (NTRS)
Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.
1986-01-01
Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
18 CFR 284.402 - Blanket marketing certificates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...
Characterization of 316L(N)-IG SS joint produced by hot isostatic pressing technique
NASA Astrophysics Data System (ADS)
Nakano, J.; Miwa, Y.; Tsukada, T.; Kikuchi, M.; Kita, S.; Nemoto, Y.; Tsuji, H.; Jitsukawa, S.
2002-12-01
Type 316L(N) stainless steel of the international thermonuclear experimental reactor grade (316L(N)-IG SS) is being considered for the first wall/blanket module. Hot isostatic pressing (HIP) technique is expected for the fabrication of the module. To evaluate the integrity and susceptibility to stress corrosion cracking (SCC) of HIPed 316L(N)-IG SS, tensile tests in vacuum and slow strain rate tests in high temperature water were performed. Specimen with the HIPed joint had similar tensile properties to specimens of 316L(N)-IG SS, and did not show susceptibility to SCC in oxygenated water at 423 K. Thermally sensitized specimen was low susceptible to SCC even in the creviced condition. It is concluded that the tensile properties of HIPed SS are as high as those of the base alloy and the HIP process caused no deleterious effects.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists a technician check out the Pump Flow Control Subsystem (PFCS) before it is installed on the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians position the Pump Flow Control Subsystem (PFCS) over the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician steadies the Pump Flow Control Subsystem (PFCS) as it is lifted and moved toward the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (second from left) assists technicians lower the Pump Flow Control Subsystem (PFCS) into position onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
2004-07-15
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Tracy Caldwell (left) assists technicians install the Pump Flow Control Subsystem (PFCS) onto the upper deck of the S6 Truss. The PFCS pumps and controls the liquid ammonia used to cool the various Orbital Replacement Units on the Integrated Equipment Assembly that make up the S6 Photo-Voltaic Power Module on the International Space Station (ISS). The fourth starboard truss segment, the S6 Truss measures 112 feet long by 39 feet wide. Its solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery to the ISS. Once in orbit, astronauts will deploy the blankets to their full size. When completed, the Station's electrical power system (EPS) will use eight photovoltaic solar arrays to convert sunlight to electricity. Delivery of the S6 Truss, the last power module truss segment, is targeted for mission STS-119.
48 CFR 313.303-5 - Purchases under blanket purchase agreements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Purchases under blanket purchase agreements. 313.303-5 Section 313.303-5 Federal Acquisition Regulations System HEALTH AND HUMAN... Methods 313.303-5 Purchases under blanket purchase agreements. (e)(5) HHS personnel that sign delivery...
75 FR 51482 - Woven Electric Blankets From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... From China Determination On the basis of the record \\1\\ developed in the subject investigation, the... injured by reason of imports from China of woven electric blankets, provided for in subheading 6301.10.00... notification of a preliminary determination by Commerce that imports of woven electric blankets from China were...
77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in Docket...
Soodak, H.; Wigner, E.P.
1961-07-25
A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.
77 FR 34876 - Airworthiness Directives; The Boeing Company
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... (a flammable fluid leakage zone) or heat damage to the APU power feeder cable, insulation blankets... heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead. Relevant Service... feeder cable and heat damage of the insulation blanket adjacent to the clamp, a detailed inspection for...
18 CFR 33.1 - Applicability, definitions, and blanket authorizations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Applicability, definitions, and blanket authorizations. 33.1 Section 33.1 Conservation of Power and Water Resources FEDERAL... UNDER FEDERAL POWER ACT SECTION 203 § 33.1 Applicability, definitions, and blanket authorizations. (a...
NASA Astrophysics Data System (ADS)
Kramer, Kevin James
This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the 6Li/7Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant 6Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive Mesh Refinement (AMR) adjusts the depletion zone size according to the variation in flux across the zone or fractional contribution to total absorption or fission. A parametric analysis on a fully mixed fuel core was performed using the LNC and ABL code suites. The resulting system parameters are found to optimize performance metrics using a 20 MT DU fuel load with a 20% TRISO packing and a 300 im kernel diameter operated with a fusion input power of 500 MW and a fission blanket gain of 4.0. LFFH potentially offers a proliferation resistant technology relative to other nuclear energy systems primarily because of no need for fuel enrichment or reprocessing. A figure of merit of the material attractiveness is examined and it is found that the fuel is effectively contaminated to an unattractive level shortly after the system is started due to fission product and minor actinide build up.
Imhoff, D.H.; Harker, W.H.
1963-12-01
Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)
Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen
2001-03-15
Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinarymore » hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be highlighted:1. The heat flux removable in rectangular electrically conducting ducts at walls parallel to the magnetic field is by a factor of 2 higher than in the slug flow model previously used in design calculations. Conditions for which this heat transfer enhancement is attainable are presented. The measured dimensionless pressure gradient coincides with the theoretical one and is constant throughout the whole Reynolds number regime investigated (Re = 10{sup 3} {yields} 10{sup 5}), although the flow turns from laminar to turbulent. The use of electromagnetic TPs close to the heated wall leads to nonmeasurable increase of the heat transfer in the same Re regime as long as they do not lead to an interaction with the wall adjacent boundary layers.2. Mechanical TPs used in an electrically insulated rectangular duct improved the heat transfer up to seven times compared to slug flow, but the pressure drop can increase also up to 300%. In a cost-benefit analysis, the advantageous parameter regime for applying this method is determined.3. Experiments performed in a flat box both in a vertical and a horizontal arrangement within a horizontal magnetic field show the expected increase of damping of the fluid motion with increasing Hartmann number M. At high M, buoyant convection will be completely suppressed in the horizontal case. In the vertical setup, the fluid motion is reduced to one large vortex leading to a decreasing heat transfer between heated and cooled plate to pure heat conduction.From an analysis of the experimental and theoretical results, general design criteria are derived for the orientation and shape of the first wall coolant ducts of self-cooled liquid metal blankets. Methods to generate additional turbulence within the flow, which can improve the heat transfer further are elaborated.« less
A torso model comparison of temperature preservation devices for use in the prehospital environment.
Zasa, Michele; Flowers, Neil; Zideman, David; Hodgetts, Timothy J; Harris, Tim
2016-06-01
Hypothermia is an independent predictor of increased morbidity and mortality in patients with trauma. Several strategies and products have been developed to minimise patients' heat loss in the prehospital arena, but there is little evidence to inform the clinician concerning their effectiveness. We used a human torso model consisting of two 5.5-litre fluid bags to simultaneously compare four passive (space blanket, bubble wrap, Blizzard blanket, ambulance blanket) and one active (Ready-Heat II blanket) temperature preservation products. A torso model without any temperature preservation device provided a control. For each test, the torso models were warmed to 37°C and left outdoors. Core temperatures were recorded every 10 min for 1 h in total; tests were repeated 10 times. A significant difference in temperature was detected among groups at 30 and 60 min (F (1.29, 10.30)=103.58, p<0.001 and F (1.64, 14.78)=163.28, p<0.001, respectively). Mean temperature reductions (95% CI) after 1 h of environmental exposure were the following: 11.6 (10.3 to 12.9) °C in control group, 4.5 (3.9 to 5.1) °C in space blanket group, 3.6 (3 to 4.3) °C in bubble-wrap group, 2.1 (1.7 to 2.5) °C in Blizzard blanket group, 6.1 (5.8 to 6.5) °C in ambulance blanket group and 1.1 (0.7 to 1.6) °C in Ready-Heat II blanket group. In this study, using a torso model based on two 5 L dialysate bags we found the Ready-Heat II heating blanket and Blizzard blanket were associated with lower rates of heat loss after 60 min environmental exposure than the other devices tested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
33 CFR 145.05 - Classification of fire extinguishers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effects of quantities of water, or solutions containing large percentages of water, are of first importance. (2) “B” for fires in flammable liquids, greases, etc., where a blanketing effect is essential. (3... first importance. (c) The number designations for size will start with “I” for the smallest to “V” for...
40 CFR Appendix A to Subpart Nnn... - Method for the Determination of LOI
Code of Federal Regulations, 2011 CFR
2011-07-01
... The purpose of this test is to determine the LOI of cured blanket insulation. The method is applicable... designed to heat to at least 540 °C (1,000 °F) and controllable to ±10 °C (50 °F). 2.3Wire tray for holding...
40 CFR Appendix A to Subpart Nnn... - Method for the Determination of LOI
Code of Federal Regulations, 2010 CFR
2010-07-01
... The purpose of this test is to determine the LOI of cured blanket insulation. The method is applicable... designed to heat to at least 540 °C (1,000 °F) and controllable to ±10 °C (50 °F). 2.3Wire tray for holding...
40 CFR Appendix A to Subpart Nnn... - Method for the Determination of LOI
Code of Federal Regulations, 2012 CFR
2012-07-01
... The purpose of this test is to determine the LOI of cured blanket insulation. The method is applicable... designed to heat to at least 540 °C (1,000 °F) and controllable to ±10 °C (50 °F). 2.3Wire tray for holding...
NASA Technical Reports Server (NTRS)
Allaway, H. G.; Senstad, K.
1972-01-01
The scientific experiments onboard the Thor-Delta 1Z spacecraft are described. The experiments were designed to study high energy emissions from stellar and galactic sources and the Sun not visible to earth bound observations. Studies were also made of the ultraviolet radiation, X-rays, gamma rays unhindered by the blanketing and absorbing effect of the earth's atmosphere.
ERIC Educational Resources Information Center
Hawkins, T. H.
2008-01-01
Purpose: The purpose of this paper is to outline the different types and features of apprenticeships available in the 1950s. Design/methodology/approach: The term "apprenticeship" has lost the weight it had when it was originally conceived in the sixteenth century, and has now (at the time of writing) become a blanket term. It covers:…
Fusion technologies for Laser Inertial Fusion Energy (LIFE)
NASA Astrophysics Data System (ADS)
Kramer, K. J.; Latkowski, J. F.; Abbott, R. P.; Anklam, T. P.; Dunne, A. M.; El-Dasher, B. S.; Flowers, D. L.; Fluss, M. J.; Lafuente, A.; Loosmore, G. A.; Morris, K. R.; Moses, E.; Reyes, S.
2013-11-01
The Laser Inertial Fusion-based Energy (LIFE) engine design builds upon on going progress at the National Ignition Facility (NIF) and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Security Blanket or Mother: Which Benefits Linus during Pediatric Examinations?
ERIC Educational Resources Information Center
Ybarra, Gabriel; Passman, Richard H.; Eisenberg, Carl S. L.
This study compared the degree to which young children were placated during a standard medical evaluation by the presence of their mother, blanket, mother plus blanket, or no supportive agent. Participating were 64 three-year-olds who underwent 4 routine medical procedures. Children were rated by their mothers as attached or nonattached to…
18 CFR 284.224 - Certain transportation and sales by local distribution companies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...
18 CFR 284.224 - Certain transportation and sales by local distribution companies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...
18 CFR 284.224 - Certain transportation and sales by local distribution companies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...
18 CFR 284.224 - Certain transportation and sales by local distribution companies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...
76 FR 13612 - Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Freebird Gas Storage, LLC (Freebird) filed a Prior Notice Request pursuant to sections 157.205 and 157.208 of... blanket certificate for authorization to increase the storage capacity and deliverability at its East...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... DEPARTMENT OF ENERGY [FE Docket No. 10-31-LNG] Cheniere Marketing, LLC; Application for Blanket... receipt of an application, filed on March 23, 2010, by Cheniere Marketing, LLC (CMI), requesting blanket... amended to reflect a name change from Cheniere Marketing, Inc to Cheniere Marketing, LLC.\\1\\ \\1\\ Cheniere...
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Astrophysics Data System (ADS)
Drolshagen, Gerhard
1992-06-01
The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on a 87.6 in diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
NASA Astrophysics Data System (ADS)
Stochl, Robert J.; Knoll, Richard H.
1991-06-01
The results are presented of a study conducted to obtain experimental heat transfer data on a liquid hydrogen tank insulated with 34 layers of MLI (multilayer insulation) for warm side boundary temperatures of 630, 530, and 150 R. The MLI system consisted of two blankets, each blanket made up of alternate layers of double silk net (16 layers) and double aluminized Mylar radiation shields (15 layers) contained between two cover sheets of Dacron scrim reinforced Mylar. The insulation system was designed for and installed on an 87.6 in. diameter liquid hydrogen tank. Nominal layer density of the insulation blankets is 45 layers/in. The insulation system contained penetrations for structural support, plumbing, and electrical wiring that would be representative of a cryogenic spacecraft. The total steady state heat transfer rates into the test tank for shroud temperatures of 630, 530, 152 R were 164.4, 95.8, and 15.9 BTU/hr, respectively. The noninsulation heat leaks into the tank (12 fiberglass support struts, tank plumbing, and instrumentation lines) represent between 13 to 17 pct. of the total heat input. The heat input values would translate to liquid H2 losses of 2.3, 1.3, and 0.2 pct/day, with the tank held at atmospheric pressure.
Hypervelocity Impact Testing of Space Station Freedom Solar Cells
NASA Technical Reports Server (NTRS)
Christie, Robert J.; Best, Steve R.; Myhre, Craig A.
1994-01-01
Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.
Beryllium R&D for blanket application
NASA Astrophysics Data System (ADS)
Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.
1998-10-01
The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.
Disinfection of woollen blankets in steam at subatmospheric pressure
Alder, V. G.; Gillespie, W. A.
1961-01-01
Blankets may be disinfected in steam at subatmospheric pressures by temperatures below boiling point inside a suitably adapted autoclave chamber. The chamber and its contents are thoroughly evacuated of air so as to allow rapid heat penetration, and steam is admitted to a pressure of 10 in. Hg below atmospheric pressure, which corresponds to a temperature of 89°C. Woollen blankets treated 50 times by this process were undamaged. Vegetative organisms were destroyed but not spores. The method is suitable for large-scale disinfection of blankets and for disinfecting various other articles which would be damaged at higher temperatures. PMID:13860203
2001-12-04
KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for launch before heading to Launch Pad 39B and Space Shuttle Endeavour. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition 3 and Expedition 4 crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and the crew's completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Launch is scheduled for 5:45 p.m. EST Dec. 4, 2001, from Launch Pad 39B
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-23
... Amend Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of Application to Amend Blanket Authorization. SUMMARY: The Office of Fossil Energy (FE) of the... Oil and Gas Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... inner wall and insulation blankets). This proposed AD results from reports of heat damage to the inner... insulation blankets and heat transfer through the upper compression pad area and the fireseal bracket support... upper and lower inner wall insulation blankets, measuring the electrical conductivity on the aluminum...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... DEPARTMENT OF ENERGY [FE Docket No. 12-161-LNG] Eni USA Gas Marketing LLC; Application for Blanket..., by Eni USA Gas Marketing LLC (Eni USA Gas Marketing), requesting blanket authorization to export... U.S. law or policy. Eni USA Gas Marketing is requesting this authorization both on its own behalf...
NASA Astrophysics Data System (ADS)
DeMange, P.; Marian, J.; Caro, M.; Caro, A.
2009-11-01
Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 °C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.
Multilayer insulation blanket, fabricating apparatus and method
Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.
1992-01-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Method of fabricating a multilayer insulation blanket
Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.
1993-01-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Method of fabricating a multilayer insulation blanket
Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.
1993-07-06
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.
Multilayer insulation blanket, fabricating apparatus and method
Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.
1992-09-01
An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.
NASA Astrophysics Data System (ADS)
Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.
2009-06-01
This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.
NASA Technical Reports Server (NTRS)
Zook, H. A.
1985-01-01
A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.
NASA Astrophysics Data System (ADS)
Viennot, Laurence; Décamp, Nicolas
2016-01-01
One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.
Saliba, Pollyane Diniz; von Sperling, Marcos
2017-10-01
The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Southwest Science and Technology Univ., No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031; Chen, Y.
2012-07-01
China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjustedmore » to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)« less
NASA Astrophysics Data System (ADS)
Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen
2014-10-01
Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; deGroh, Kim K.
1999-01-01
A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.
NASA Astrophysics Data System (ADS)
Magg, Manfred; Grillenbeck, Anton, , Dr.
2004-08-01
Several samples of thermal control blankets were subjected to transient thermal loads in a thermal vacuum chamber in order to study their ability to excite micro- vibrations on a carrier structure and to cause tiny centre- of-gravity shifts. The reason for this investigation was driven by the GOCE project in order to minimize micro- vibrations on-board of the spacecraft while on-orbit. The objectives of this investigation were to better understand the mechanism which may produce micro- vibrations induced by the thermal control blankets, and to identify thermal control blanket lay-ups with minimum micro-vibration activity.
Comparison of two passive warming devices for prevention of perioperative hypothermia in dogs.
Potter, J; Murrell, J; MacFarlane, P
2015-09-01
To compare effects of two passive warming methods combined with a resistive heating mat on perioperative hypothermia in dogs. Fifty-two dogs were enrolled and randomly allocated to receive a reflective blanket (Blizzard Blanket) or a fabric blanket (VetBed). In addition, in the operating room all dogs were placed onto a table with a resistive heating mat covered with a fabric blanket. Rectal temperature measurements were taken at defined points. Statistical analysis was performed comparing all Blizzard Blanket-treated to all VetBed-treated dogs, and VetBed versus Blizzard Blanket dogs within spay and castrate groups, spay versus castrate groups and within groups less than 10 kg or more than 10 kg bodyweight. Data from 39 dogs were used for analysis. All dogs showed a reduction in perioperative rectal temperature. There were no detected statistical differences between treatments or between the different groups. This study supports previous data on prevalence of hypothermia during surgery. The combination of active and passive warming methods used in this study prevented the development of severe hypothermia, but there were no differences between treatment groups. © 2015 British Small Animal Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, L.R.; Praeg, W.F.
1982-03-01
The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.
75 FR 78594 - Airworthiness Directives; The Boeing Company Model 777-200 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... which a T/R is installed with a design change known as ``Commonality T/R,'' which is common to Model 777... Airworthiness Directives; The Boeing Company Model 777-200 Series Airplanes AGENCY: Federal Aviation... certain Model 777-200 series airplanes. This AD requires installing a new insulation blanket on the latch...
The History of Venting (part I)
NASA Technical Reports Server (NTRS)
Leiter, Stephen C.
2017-01-01
Venting techniques and design are an important implementation strategy for observatory and payload contamination control, and yet venting analysis has seen a topsey turvey history, at lease from the perspective of the simple Layman trying to design a black box. Additionally, designing the vent has competing controls from Safety and EMIEMC. In the days of Shuttle, Safety placed liens against the vents of blankets, boxes, and large structural items principally to protect cargo bay vents but also from a flammability perspective. What continues to elude the Designer Community is a stable, simple way of designing vents for black boxes that satisfies everybody. But we continue to try.
Radiative-conductive inverse problem for lumped parameter systems
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2008-11-01
The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.
Study of multilayer thermal insulation by inverse problems method
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.
2009-11-01
The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.
Viable Circumstances for Financial Negotiations in Pakistan Contracting Process
2015-06-01
Submission BIW Bath Iron Works BPA Blanket Purchase Agreement CERP Center for Economic Research in Pakistan CICA Competition in Contracting Act CJCS...IDIQ contracts, blanket purchase agreements ( BPAs ), and contractors team arrangements (CTAs) by fulfilling all pre-requisites of government...wide commercial purchase card (FAR 13.301) 2. Purchase orders (FAR 13.302) 3. Blanket purchase agreements ( BPAs ; FAR13.303) 4. Imprest fund and
Neutron economic reactivity control system for light water reactors
Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve
1989-01-01
A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.
32 CFR Appendix C to Part 310 - DoD Blanket Routine Uses
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false DoD Blanket Routine Uses C Appendix C to Part...) PRIVACY PROGRAM DOD PRIVACY PROGRAM Pt. 310, App. C Appendix C to Part 310—DoD Blanket Routine Uses (See paragraph (c) of § 310.22 of subpart E) A. Routine Use—Law Enforcement If a system of records maintained by...
Preliminary space station solar array structural design study
NASA Technical Reports Server (NTRS)
Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.
1984-01-01
Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.
Preliminary space station solar array structural design study
NASA Astrophysics Data System (ADS)
Dorsey, J. T.; Bush, H. G.; Mikulas, M. M., Jr.
Structurally efficient ways to support the large solar arrays (3,716 square meters which are currently considered for space station use) are examined. An erectable truss concept is presented for the on orbit construction of winged solar arrays. The means for future growth, maintenance, and repair are integrally designed into this concept. Results from parametric studies, which highlight the physical and structural differences between various configuration options are presented. Consideration is given to both solar blanket and hard panel arrays.
Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seifried, J E; Fratoni, M; Kramer, K J
A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of anymore » number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge burnups with reduced proliferation concerns. Neutron transport results that are central to the operation of the design are tritium production for fusion fuel, fission of fissile isotopes for energy multiplication, and production of fissile isotopes for sustained power. In previous work, explicit cross-sectional uncertainty analyses were performed for reaction rates related to the figures of merit for the depleted uranium hybrid LIFE blanket. Counting precision was also quantified for both the figures of merit themselves and the cross-sectional uncertainty estimates to gauge the validity of the analysis. All cross-sectional uncertainties were small (0.1-0.8%), bounded counting uncertainties, and were precise with regard to counting precision. Adjoint/importance distributions were generated for the same reaction rates. The current work leverages those adjoint distributions to transition from explicit sensitivities, in which the neutron flux is constrained, to implicit sensitivities, in which the neutron flux responds to input perturbations. This treatment vastly expands the set of data that contribute to uncertainties to produce larger, more physically accurate uncertainty estimates.« less
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Technical Reports Server (NTRS)
Drolshagen, Gerhard
1993-01-01
The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.
An active target for the accelerator-based transmutation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebyonkin, K.F.
1995-10-01
Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less
HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM
Johnson, E.F.
1962-06-01
This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)
Effects of the LDEF environment on the Ag/FEP thermal blankets
NASA Technical Reports Server (NTRS)
Levadou, Francois; Pippin, H. Gary
1992-01-01
This presentation was made by Francois Levadou at the NASA Langley Research Center LDEF materials workshop, November 19-22, 1991. It represents the results to date on the examination of silvered teflon thermal blankets primarily from the Ultra-heavy Cosmic Ray Experiment and also from the blanket from the Park Seed Company experiment. ESA/ESTEC and Boeing conducted a number of independent measurements on the blankets and in particular on the exposed fluorinated ethylene-propylene (FEP) layer of the blankets. Mass loss, thickness, and thickness profile measurements have been used by ESA, Boeing, and NASA LeRC to determine recession and average erosion yield under atomic oxygen exposure. Tensile strength and percent elongation to failure data, surface characterization by ESCA, and SEM images are presented. The Jet Propulsion Laboratory analysis of vacuum radiation effects is also presented. The results obtained by the laboratories mentioned and additional results from the Aerospace Corporation on samples provided by Boeing are quite similar and give confidence in the validity of the data.
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun
2018-03-01
The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.
Doutres, Olivier; Atalla, Noureddine
2010-08-01
The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.
Myelogenous leukemia and electric blanket use.
Preston-Martin, S; Peters, J M; Yu, M C; Garabrant, D H; Bowman, J D
1988-01-01
In a case-control study of adult acute and chronic myelogenous leukemia in Los Angeles County, we tested the hypothesis that excess exposure to electromagnetic fields from electric blankets was associated with risk of leukemia. We did this by studying 116 cases of acute myelogenous leukemia (AML) and 108 cases of chronic myelogenous leukemia (CML) along with matched neighborhood controls. The cases and controls were queried as to electric blanket use and the risks computed. For AML the risk was 0.9 (95% CI 0.5-1.6) and for CML the risk was 0.8 (95% CI 0.4-1.6). Cases did not differ from controls by duration of use, year of first regular use, year since last use, or socioeconomic status. Our best estimates of exposure indicate that electric blanket use increases overall exposure to electric fields by less than 50% and magnetic fields by less than 100%. We conclude that there is no major leukemogenic risk associated with electric blanket use in Los Angeles County.
Strategic Sourcing and Spend Analysis: A Case Study of the Naval Postgraduate School
2014-12-01
ABBREVIATIONS ADP Administrative Processing Data AFIT Air Force Institute of Technology AT&L Acquisition, Technology, and Logistics BPA Blanket...in awarding 74 blanket purchase agreements ( BPAs ) with various discounts less than the Federal Supply Schedule (FSS) pricing. While the cost savings...the NPS contracting office can tailor specific contract vehicles, whether blanket purchase agreements ( BPAs ) 43 or IDIQs, to suit the needs of the
32 CFR Appendix C to Part 806b - DoD ‘Blanket Routine Uses’
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false DoD âBlanket Routine Usesâ C Appendix C to Part... PRIVACY ACT PROGRAM Pt. 806b, App. C Appendix C to Part 806b—DoD ‘Blanket Routine Uses’ Certain DoD... the issuance of a license, grant, or other benefit. c. Disclosure of Requested Information Routine Use...
32 CFR Appendix C to Part 806b - DoD ‘Blanket Routine Uses’
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false DoD âBlanket Routine Usesâ C Appendix C to Part... PRIVACY ACT PROGRAM Pt. 806b, App. C Appendix C to Part 806b—DoD ‘Blanket Routine Uses’ Certain DoD... the issuance of a license, grant, or other benefit. c. Disclosure of Requested Information Routine Use...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, E.T.; Mathews, D.R.
1979-09-01
The fusion-fission hybrid blanket proposed for the Tandem Mirror Hybrid Reactor employs thorium metal as the fertile material. Based on the ENDF/B-IV nuclear data, the /sup 233/U and tritium production rate and blanket energy multiplication averaged over the blanket lifetime of about 9 MW-yr/m/sup 2/ are 0.76 and 1.12 per D-T neutron and 4.8, respectively. At the time of the blanket discharge, the /sup 233/U enrichment in the thorium metal is about 3%. The thorium cross sections given by the ENDF/B-IV and V were reviewed, and the important partial cross sections such as (n,2n), (n,3n), and (n,..gamma..) were found tomore » be known to +-10 to 20% in the respective energy range of interest. A sensitivity study showed that the /sup 233/U and tritium production rate and blanket energy multiplication are relatively sensitive to the thorium capture and fission cross section uncertainties. In order to predict the above parameters within +-1%, the Th(n,..gamma..) and Th(n,..nu..f) cross sections must be measured within about +-2% in the energy range 3 to 3000 keV and 13.5 to 15 MeV, respectively.« less
Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing
NASA Astrophysics Data System (ADS)
Cheng, Hsien-Chie; Chen, You-Wei; Chen, Wen-Hwa; Lu, Su-Tsai; Lin, Shih-Ming
2018-03-01
In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the "off process" and from the blanket to the substrate in the "set process" is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2011 CFR
2011-07-01
... insulation. The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
40 CFR Appendix C to Subpart Nnn... - Method for the Determination of Product Density
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The method is applicable to all cured board and blanket products. 2. Equipment One square foot (12 in. by 12 in.) template, or templates that are multiples of one square foot, for use in cutting... procedure for the designated product. 3.2Cut samples using one square foot (or multiples of one square foot...
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-12-31
Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less
Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)
NASA Technical Reports Server (NTRS)
DeVor, Robert William
2014-01-01
The goal of this task order was to complete optimization and development of the Green PCB Remediation from Sediment Systems(GPRSSs) technology, culminating in the production of functioning demonstration test units which would be deployed at a suitable demonstration location. This location would be selected in conjunction with Toxicological & Ecological Associates who have entered into a SAA with NASA to partner with and further develop this technology. The GPRSSs technology was initially developed under ESC Task Order 83 with the purpose of providing a green remediation technology capable of in-situ removal and remediation of polychlorinated biphenyls (PCBs) from contaminated sediments. The core concept of the technology, a polymeric blanket capable of absorbing PCBs when in contact with contaminated sediments was then transitioned to Task Order 165 where the primary objective was to fully design and optimize a functioning test unit capable of testing the theoretical and laboratory scale concepts in a real world situation. Results from both task orders are included in this report for completeness, although Task Order 165 focused on the blanket design and the small scale field demonstration in which is currently still ongoing in Altavista, VA.
A charging study of ACTS using NASCAP
NASA Technical Reports Server (NTRS)
Herr, Joel L.
1991-01-01
The NASA Charging Analyzer Program (NASCAP) computer code is a three dimensional finite element charging code designed to analyze spacecraft charging in the magnetosphere. Because of the characteristics of this problem, NASCAP can use an quasi-static approach to provide a spacecraft designer with an understanding of how a specific spacecraft will interact with a geomagnetic substorm. The results of the simulation can help designers evaluate the probability and location of arc discharges of charged surfaces on the spacecraft. A charging study of NASA's Advanced Communication Technology Satellite (ACTS) using NASCAP is reported. The results show that the ACTS metalized multilayer insulating blanket design should provide good electrostatic discharge control.
Rotation and neoclassical ripple transport in ITER
Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.; ...
2017-07-13
Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less
STS-108 Mission Specialist Daniel M. Tani final suit checkout
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Daniel M. Tani final suit checkout KSC-01PD-1717 KENNEDY SPACE CENTER, Fla. - STS-108 Mission Specialist Daniel M. Tani waves as he undergoes final suit check before launch on Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.
STS-108 Mission Specialist Linda A. Godwin final suit checkout
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Linda A. Godwin final suit checkout KSC-01PD-1720 KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin undergoes final suit check before launch on mission STS-108 Nov. 29. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition Three and Expedition Four crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Liftoff is scheduled for 7:41 p.m. EST.
Rotation and neoclassical ripple transport in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Elizabeth Joy; Landreman, Matt; Poli, Francesca M.
Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the Variational Moments Equilibrium Code (VMEC). Furthermore, neoclassical transport quantities in the presence of these error fields are calculated using the Stellarator Fokker-Planckmore » Iterative Neoclassical Conservative Solver (SFINCS).« less
Assembly, Integration, and Test Methods for Operationally Responsive Space Satellites
2010-03-01
like assembly and vibration tests, to ensure there have been no failures induced by the activities. External thermal control blankets and radiator...configuration of the satellite post- vibration test and adds time to the process. • Thermal blanketing is not realistic with current technology or...patterns for thermal blankets and radiator tape. The computer aided drawing (CAD) solid model was used to generate patterns that were cut and applied real
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
NASA Technical Reports Server (NTRS)
de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce
2015-01-01
Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.
Experimental impacts into Teflon targets and LDEF thermal blankets
NASA Astrophysics Data System (ADS)
Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.
1994-03-01
The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.
NASA Astrophysics Data System (ADS)
Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.
2017-10-01
Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.
Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.
2012-01-01
Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.
Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante
2014-01-01
Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (T core) decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature T skin and, as a consequence, on T core temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia. PMID:25485278
Economics of movable interior blankets for greenhouses
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, G.B.; Fohner, G.R.; Albright, L.D.
1981-01-01
A model for evaluating the economic impact of investment in a movable interior blanket was formulated. The method of analysis was net present value (NPV), in which the discounted, after-tax cash flow of costs and benefits was computed for the useful life of the system. An added feature was a random number component which permitted any or all of the input parameters to be varied within a specified range. Results from 100 computer runs indicated that all of the NPV estimates generated were positive, showing that the investment was profitable. However, there was a wide range of NPV estimates, frommore » $16.00/m/sup 2/ to $86.40/m/sup 2/, with a median value of $49.34/m/sup 2/. Key variables allowed to range in the analysis were: (1) the cost of fuel before the blanket is installed; (2) the percent fuel savings resulting from use of the blanket; (3) the annual real increase in the cost of fuel; and (4) the change in the annual value of the crop. The wide range in NPV estimates indicates the difficulty in making general recommendations regarding the economic feasibility of the investment when uncertainty exists as to the correct values for key variables in commercial settings. The results also point out needed research into the effect of the blanket on the crop, and on performance characteristics of the blanket.« less
Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Christiansen, Eric
2013-01-01
As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
On the use of tin?lithium alloys as breeder material for blankets of fusion power plants
NASA Astrophysics Data System (ADS)
Fütterer, M. A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.
2000-12-01
Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f/SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure.
47 CFR 22.353 - Blanketing interference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...
47 CFR 22.353 - Blanketing interference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...
47 CFR 22.353 - Blanketing interference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...
47 CFR 22.353 - Blanketing interference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly
NASA Technical Reports Server (NTRS)
Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.
1976-01-01
The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.
NASA Technical Reports Server (NTRS)
1976-01-01
MPI Outdoor Safety Products developed aluminized mylar to make Echo Satellites more reflective, to insulate cryogenic fluids, and for space suit insulation. This technology has spun off to a variety of consumer products. Sportsman's blankets and jackets, ski parkas, sleeping bags, and even life-raft canopies are among them. Sportsman's blanket weighing 12 ounces can be used equally well to keep heat away or keep available heat in. Emergency rescue blanket has heat retention qualities similar to those of Sportsman's blanket. Strong enough to be used as a litter, yet folds up so small you can carry it in your shirt pocket. 10 ounce reversible jacket absorbs warmth from sun. A silver colored side next to your body retains a large portion of body heat. In warm weather you wear silver side out to reflect sun's rays.
Faucette, L B; Scholl, B; Beighley, R E; Governo, J
2009-01-01
The National Pollutant Discharge Elimination System (NPDES) Phase II requires construction activities to have erosion and sediment control best management practices (BMPs) designed and installed for site storm water management. Although BMPs are specified on storm water pollution prevention plans (SWPPPs) as part of the construction general permit (GP), there is little evidence in the research literature as to how BMPs perform or should be designed. The objectives of this study were to: (i) comparatively evaluate the performance of common construction activity erosion control BMPs under a standardized test method, (ii) evaluate the performance of compost erosion control blanket thickness, (iii) evaluate the performance of compost erosion control blankets (CECBs) on a variety of slope angles, and (iv) determine Universal Soil Loss Equation (USLE) cover management factors (C factors) for these BMPs to assist site designers and engineers. Twenty-three erosion control BMPs were evaluated using American Society of Testing and Materials (ASTM) D-6459, standard test method for determination of ECB performance in protecting hill slopes from rainfall induced erosion, on 4:1 (H:V), 3:1, and 2:1 slopes. Soil loss reduction for treatments exposed to 5 cm of rainfall on a 2:1 slope ranged from-7 to 99%. For rainfall exposure of 10 cm, treatment soil loss reduction ranged from 8 to 99%. The 2.5 and 5 cm CECBs significantly reduced erosion on slopes up to 2:1, while CECBs < 2.5 cm are not recommended on slopes >or= 4:1 when rainfall totals reach 5 cm. Based on the soil loss results, USLE C factors ranged from 0.01 to 0.9. These performance and design criteria should aid site planners and designers in decision-making processes.
Temperature modulation with an esophageal heat transfer device - a pediatric swine model study.
Kulstad, Erik B; Naiman, Melissa; Shanley, Patrick; Garrett, Frank; Haryu, Todd; Waller, Donald; Azarafrooz, Farshid; Courtney, Daniel Mark
2015-01-01
An increasing number of conditions appear to benefit from control and modulation of temperature, but available techniques to control temperature often have limitations, particularly in smaller patients with high surface to mass ratios. We aimed to evaluate a new method of temperature modulation with an esophageal heat transfer device in a pediatric swine model, hypothesizing that clinically significant modulation in temperature (both increases and decreases of more than 1°C) would be possible. Three female Yorkshire swine averaging 23 kg were anesthetized with inhalational isoflurane prior to placement of the esophageal device, which was powered by a commercially available heat exchanger. Swine temperature was measured rectally and cooling and warming were performed by selecting the appropriate external heat exchanger mode. Temperature was recorded over time in order to calculate rates of temperature change. Histopathology of esophageal tissue was performed after study completion. Average swine baseline temperature was 38.3°C. Swine #1 exhibited a cooling rate of 3.5°C/hr; however, passive cooling may have contributed to this rate. External warming blankets maintained thermal equilibrium in swine #2 and #3, demonstrating maximum temperature decrease of 1.7°C/hr. Warming rates averaged 0.29°C/hr. Histopathologic analysis of esophageal tissue showed no adverse effects. An esophageal heat transfer device successfully modulated the temperature in a pediatric swine model. This approach to temperature modulation may offer a useful new modality to control temperature in conditions warranting temperature management (such as maintenance of normothermia, induction of hypothermia, fever control, or malignant hyperthermia).
Insulation Blankets for High-Temperature Use
NASA Technical Reports Server (NTRS)
Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.
1986-01-01
Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.
COUPLED FAST-THERMAL POWER BREEDER REACTOR
Avery, R.
1961-07-18
A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.
Moir, Ralph W.
1981-01-01
A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.
Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6
NASA Technical Reports Server (NTRS)
Greenberg, H. S.; Tu, Tina
1994-01-01
The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab, or RMS Lab, inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Rafael Rodriguez, lead RMS advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Patrick Manning, an advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Performance of silvered Teflon (trademark) thermal control blankets on spacecraft
NASA Technical Reports Server (NTRS)
Pippin, Gary; Stuckey, Wayne; Hemminger, Carol
1993-01-01
Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.
Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor
NASA Astrophysics Data System (ADS)
Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.
2015-12-01
The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.
Direct LiT Electrolysis in a Metallic Fusion Blanket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Luke
2016-09-30
A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium formore » the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.« less
Thermally distinct ejecta blankets from Martian craters
NASA Astrophysics Data System (ADS)
Betts, B. H.; Murray, B. C.
1993-06-01
A study of Martian ejecta blankets is carried out using the high-resolution thermal IR/visible data from the Termoskan instrument aboard Phobos '88 mission. It is found that approximately 100 craters within the Termoskan data have an ejecta blanket distinct in the thermal infrared (EDITH). These features are examined by (1) a systematic examination of all Termoskan data using high-resolution image processing; (2) a study of the systematics of the data by compiling and analyzing a data base consisting of geographic, geologic, and mormphologic parameters for a significant fraction of the EDITH and nearby non-EDITH; and (3) qualitative and quantitative analyses of localized regions of interest. It is noted that thermally distinct ejecta blankets are excellent locations for future landers and remote sensing because of relatively dust-free surface exposures of material excavated from depth.
Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon-Mercado, H.; Babineau, D.; Elvington, M.
2015-10-13
A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This workmore » identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. « less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khorasanov, G. L.; Blokhin, A. I.
The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as amore » result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)« less
Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi
2017-12-01
High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.
Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Himelblau, Harry
2000-01-01
The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.
Parameter Identification Of Multilayer Thermal Insulation By Inverse Problems
NASA Astrophysics Data System (ADS)
Nenarokomov, Aleksey V.; Alifanov, Oleg M.; Gonzalez, Vivaldo M.
2012-07-01
The purpose of this paper is to introduce an iterative regularization method in the research of radiative and thermal properties of materials with further applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (heat capacity, emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the IHTP, based on sensitivity function approach, is presented too. The practical testing was performed for specimen of the real MLI. This paper consists of recent researches, which developed the approach suggested at [1].
NASA Technical Reports Server (NTRS)
Davis, W.
1975-01-01
The development of a Dewar system for handling liquid helium under weightless conditions is described. Porous plug designs for the prevention of superfluid creep out of the dewar through the vent line were evaluated. For the purpose of designing a neck to provide a transition from the cold cavity to the outside, the loads carried by the neck and equipment supports were studied. Temperature, pressure, and mass flow instrumentation for monitoring Dewar performance were also evaluated. In addition, multilayer blankets consisting of aluminized Mylar separated by Dacron net sheets were designed to insulate the pressure vessel. The dewar system is suggested for use with the star tracking telescope aboard the relativity satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Zakharov, J. Li and Y. Wu
The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.
Vibration and shape control of hinged light structures using electromagnetic forces
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki
2003-08-01
This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.
ISIM Lowered into Thermal Vacuum Chamber
2017-12-08
An overhead glimpse inside the thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md., as engineers ready the James Webb Space Telescope's Integrated Science Instrument Module, just lowered into the chamber for its first thermal vacuum test. The ISIM and the ISIM System Integration Fixture that holds the ISIM Electronics Compartment is completely covered in protective blankets to shield it from contamination. Image credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Status and improvement of CLAM for nuclear application
NASA Astrophysics Data System (ADS)
Huang, Qunying
2017-08-01
A program for China low activation martensitic steel (CLAM) development has been underway since 2001 to satisfy the material requirements of the test blanket module (TBM) for ITER, China fusion engineering test reactor and China fusion demonstration reactor. It has been undertaken by the Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences under wide domestic and international collaborations. Extensive work and efforts are being devoted to the R&D of CLAM, such as mechanical property evaluation before and after neutron irradiation, fabrication of scaled TBM by welding and additive manufacturing, improvement of its irradiation resistance as well as high temperature properties by precipitate strengthening to achieve its final successful application in fusion systems. The status and improvement of CLAM are introduced in this paper.
2001-12-05
KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani waits in the White Room for final preparations of his launch and entry suit before entering Endeavour. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST (22:19 GMT) Dec. 5, 2001, from Launch Pad 39B
2009-09-30
NRL Code 8221) is the Lead Thermal Engineer for heater and blanket design for the mission. WORK COMPLETED The program developed a briefing...development of such science-enabling technology is critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power...critical for space-flight mission on small spacecraft , such as CubeSats, that cannot afford the mass, power or cost of traditional star trackers but
Structural heat pipe. [for spacecraft wall thermal insulation system
NASA Technical Reports Server (NTRS)
Ollendorf, S. (Inventor)
1974-01-01
A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.
Advanced Development Waste Processing Unit for Combat Vehicles. Phase 2
1987-12-29
Johns Manville Manufacturers # : 5346474 Type: Cera Blanket Size: 6 lb., I" thick Amount Used: 24" x 48" total TIME RPM TI O T 2 F T ,F T 4, Tbient F 1200...WPUBMO01 DATA SHEET DSO01-4 Date:NOV 2 5 186 i~ L , Candidate Insulation: Manufacturer: Johns Manville Manufacturer’s # : 5346474. Type: Cera Blanket Size...SHEET DS001-5 Date: EC 0 3 186 Candidate Insulation: Manufacturer: Johns Manville Manufacturerls # : 5346474 Type: Cera Blanket (F Size: 6 lb., 1
Improved Aerogel Vacuum Thermal Insulation
NASA Technical Reports Server (NTRS)
Ruemmele, Warren P.; Bue, Grant C.
2009-01-01
An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.
LOFA analysis in helium and Pb-Li circuits of LLCB TBM by FE simulation
NASA Astrophysics Data System (ADS)
Chaudhuri, Paritosh; Ranjithkumar, S.; Sharma, Deepak; Danani, Chandan
2017-04-01
One of the main ITER objectives is to demonstrate the feasibility of the breeding blanket concepts that would lead to tritium self-sufficiency and the extraction of a high-grade heat for electricity production. India has developed the LLCB TBM to be tested in ITER for the validation of design concepts for tritium breeding blankets relevant DEMO and future power reactor. LLCB concept has the unique features of combination of both solid (lithium titanate as packed pebble bed) and liquid breeders (molten lead lithium). India specific IN-RAFMS is the structural material for TBM. The First Wall is actively cooled by high-pressure helium (He) gas [1]. It is important to validate the design of TBM to withstand various loads acting on it including accident analysis like LOCA, LOFA etc. Detailed thermal-hydraulic simulation studies including LOFA in helium and Pb-Li circuits of LLCB TBM have been performed using Finite Element using ANSYS. These analyses will provide important information about the temperature distribution in different materials used in TBM during steady state and transient condition. Thermal-hydraulic safety requirement has also been envisaged for the initiation the FPPS (Fusion Power Shutdown System) during LOFA. All these analysis will be presented in detail in this paper.
Conceptual design study for heat exhaust management in the ARC fusion pilot plant
NASA Astrophysics Data System (ADS)
Dennett, C. A.; Cao, N. M.; Creely, A. J.; Hecla, J.; Hoffman, H.; Kuang, A. Q.; Major, M.; Ruiz Ruiz, J.; Tinguely, R. A.; Tolman, E. A.; Brunner, D.; Labombard, B.; Sorbom, B. N.; Whyte, D. G.; Grover, P.; Laughman, C.
2017-10-01
The ARC pilot plant conceptual design study has been extended to explore solutions for managing heat exhaust resulting from 525 MW of fusion power in a compact (R 3.3 m) tokamak. Superconducting poloidal field coils are configured to produce double-null equilibria that support X-point target divertors while maintaining the original core plasma shape and toroidal field coil size. Long outer divertor legs are appended to the original vacuum vessel, providing both large surface areas for surface dissipation of radiative heat and significantly reduced neutron damage for divertor components. A molten salt FLiBe blanket adequately shields all superconductors and functions as a tritium breeder, with advanced neutronics calculations indicating a tritium breeding ratio of 1.08. In addition, FLiBe is used as the active coolant for the entire vessel. A tungsten swirl-tube cooling channel is implemented in the divertor, capable of exhausting 12 MW/m2, heat flux while keeping total FliBe pumping power below 1% of fusion power. Finally, three novel diagnostics are explored: Cherenkov radiation emitted in FLiBe to measure fusion reaction rate, microwave interferometry to measure divertor detachment front location, and IR imaging through the FLiBe blanket to monitor selected divertor ``hotspots.''
Significance of dissolved methane in effluents of anaerobically ...
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro
2014 Strategic Sustainability Performance Plan
2014-06-30
Strategic Sourcing Initiatives, such as Blanket Purchase Agreements ( BPAs ) for office products and imaging equipment, which include sustainable...end of FY2014. Use Federal Strategic Sourcing Initiatives, such as Blanket Purchase Agreements ( BPAs ) Yes USACE is required to participate in
Acquisition Quality Improvement Within Naval Facilities Engineering Command Southwest
2015-06-01
Act BMS Business Management System BPA Blanket Purchase Agreement COR Contracting Officer Representative CS Contract Specialist DASN...Services (MOPAS) missing in two service contract files. (2) Blanket Purchase Agreement ( BPA ) procedures were not followed. (3) Business
Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitulski, R.H.
1979-10-01
A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although themore » results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.« less
NASA Astrophysics Data System (ADS)
Adams, L. R.; Vonroos, A.
1985-04-01
An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed.
Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia
The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less
Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR
NASA Astrophysics Data System (ADS)
Zhu, Qingjun; Li, Jia; Liu, Songlin
2016-07-01
In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
Geology of Southern Quintana Roo (Mexico) and the Chicxulub Ejecta Blanket
NASA Astrophysics Data System (ADS)
Schönian, F.; Tagle, R.; Stöffler, D.; Kenkmann, T.
2005-03-01
In southern Quintana Roo (Mexico) the Chicxulub ejecta blanket is discontinuously filling a karstified pre-KT land surface. This suggests a completely new scenario for the geological evolution of the southern Yucatán Peninsula.
Self-deploying photovoltaic power system
NASA Technical Reports Server (NTRS)
Colozza, Anthony J. (Inventor)
1993-01-01
A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.
76 FR 48855 - Questar Pipeline Company; Notice of Request Under Blanket Authorization
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... gas to be stored at its Clay Basin storage reservoir and increase the maximum certificated shut-in pressure of Clay Basin located in Daggett County, Utah. The request was made pursuant to the blanket...
NASA Technical Reports Server (NTRS)
Rosen, Charles D.; Mitchell, Shirley M.; Jolly, Stanley R.; Jackson, Richard G.; Fleming, Scott T.; Roberts, William J.; Bell, Daniel R., III
1996-01-01
Instrument yielding presence or absence of waterproofing agent at any given depth in blanket developed. In original application, blankets in question part of space shuttle thermal protection system. Instrument utilized to determine extent of waterproofing "burnout" due to re-entry heating and adverse environment exposure.
What are the Effects of Protest Fear?
2014-06-01
Program AT&L Acquisition, Technology, and Logistics BPA blanket purchase agreement CONUS continental United States COR...they have awarded a task/delivery order against an IDIQ contract (or Blanket Purchase Agreement [ BPA ]) in order to avoid a bid protest. The data shows
Automated Laser Cutting In Three Dimensions
NASA Technical Reports Server (NTRS)
Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.
1995-01-01
Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.
Olivas participating in EVA during Expedition/STS-117 Joint Operations
2007-06-15
ISS015-E-12943 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.
Olivas participating in EVA during Expedition/STS-117 Joint Operations
2007-06-15
ISS015-E-12952 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.
Recent advances in stellarator optimization
Gates, D. A.; Boozer, A. H.; Brown, T.; ...
2017-10-27
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Recent advances in stellarator optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, D. A.; Boozer, A. H.; Brown, T.
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
What are the Effects of Protest Fear?
2014-06-17
Acquisition Professional Development Program AT&L Acquisition, Technology, and Logistics BPA blanket purchase agreement CONUS continental United States...Blanket Purchase Agreement [ BPA ]) in order to avoid a bid protest. The data shows that 88 respondents had done so throughout their career with 4,139
Warm Ocean Temperatures Blanket the Far-Western Pacific
2001-03-28
Data taken during a 10-day collection cycle ending March 9, 2001, show that above-normal sea-surface heights and warmer ocean temp. red and white areas still blanket the far-western tropical Pacific and much of the north and south mid-Pacific.
Discovering collectively informative descriptors from high-throughput experiments
2009-01-01
Background Improvements in high-throughput technology and its increasing use have led to the generation of many highly complex datasets that often address similar biological questions. Combining information from these studies can increase the reliability and generalizability of results and also yield new insights that guide future research. Results This paper describes a novel algorithm called BLANKET for symmetric analysis of two experiments that assess informativeness of descriptors. The experiments are required to be related only in that their descriptor sets intersect substantially and their definitions of case and control are consistent. From resulting lists of n descriptors ranked by informativeness, BLANKET determines shortlists of descriptors from each experiment, generally of different lengths p and q. For any pair of shortlists, four numbers are evident: the number of descriptors appearing in both shortlists, in exactly one shortlist, or in neither shortlist. From the associated contingency table, BLANKET computes Right Fisher Exact Test (RFET) values used as scores over a plane of possible pairs of shortlist lengths [1,2]. BLANKET then chooses a pair or pairs with RFET score less than a threshold; the threshold depends upon n and shortlist length limits and represents a quality of intersection achieved by less than 5% of random lists. Conclusions Researchers seek within a universe of descriptors some minimal subset that collectively and efficiently predicts experimental outcomes. Ideally, any smaller subset should be insufficient for reliable prediction and any larger subset should have little additional accuracy. As a method, BLANKET is easy to conceptualize and presents only moderate computational complexity. Many existing databases could be mined using BLANKET to suggest optimal sets of predictive descriptors. PMID:20021653
Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, B.P.; Hyland, B.
2013-07-01
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less
77 FR 20511 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... heat damage to the inner wall of the thrust reversers, which could result in separation of adjacent... the upper and lower inner wall insulation blankets, measuring the electrical conductivity on the..., doing various concurrent actions (including replacing the inner wall blanket insulation, installing...
Unified first wall - blanket structure for plasma device applications
Gruen, D.M.
A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.
Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content
NASA Astrophysics Data System (ADS)
Woronow, A.
1981-02-01
Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.
Thermal environment and sleep in winter shelter-analogue settings
NASA Astrophysics Data System (ADS)
Mochizuki, Yosuke; Maeda, Kazuki; Nabeshima, Yuki; Tsuzuki, Kazuyo
2017-10-01
We aimed to examine sleep in shelter-analogue settings in winter to determine the sleep and environmental conditions in evacuation shelters. Twelve young healthy students took part in the sleep study of two nights for seven hours from 0 AM to 7 AM in a gymnasium. One night the subject used a pair of futons and on the other the subject used emergency supplies consisting of four blankets and a set of portable partitions. Air temperature, humidity were measured around the sleeping subjects through the night. Sleep parameters, skin temperature, microclimate temperature, rectal temperature, and heart rate of the subjects were continuously measured and recorded during the sleeping period. The subjects completed questionnaires relating to thermal comfort and subjective sleep before and after sleep. The sleep efficiency indices were lower when the subjects slept using the blankets. As the microclimate temperature between the human body and blanket was lower, mean skin temperature was significantly lower in the case of blankets.
NASA Technical Reports Server (NTRS)
Myers, David E.; Martin, Carl J.; Blosser, Max L.
2000-01-01
A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.
Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content
NASA Technical Reports Server (NTRS)
Woronow, A.
1981-01-01
Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.
2001-12-05
KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani is happy to be suiting up for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST (22:19 GMT) Dec. 5, 2001, from Launch Pad 39B
Treatment System for Removing Halogenated Compounds from Contaminated Sources
NASA Technical Reports Server (NTRS)
Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)
2015-01-01
A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.