Sample records for blanket processing studies

  1. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. C. Cadwallader; C. P. C. Wong; M. Abdou

    2014-10-01

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module andmore » blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.« less

  2. Effect of processing parameters and pore structure of nanostructured silica aerogel on the physical properties of aerogel blankets

    NASA Astrophysics Data System (ADS)

    Latifi, Fatemeh; Talebi, Zahra; Khalili, Haleh; Zarrebini, Mohammad

    2018-05-01

    This work investigates the influence of processing parameters and aerogel pore structure on the physical properties and hydrophobicity of aerogel blankets. Aerogel blankets were produced by in situ synthesis of nanostructured silica aerogel on a polyester nonwoven substrate. Nitrogen adsorption-desorption analysis, contact angle test and FE-SEM images were used to characterize both the aerogel particles and the blankets. The results showed that the weight and thickness of the blanket were reduced when the low amount of catalyst was used. A decrease in the aerogel pore size from 22 to 11 nm increased the weight and thickness of the blankets. The xerogel particles with high density and pore size of 5 nm reduced the blanket weight. Also, the blanket weight and thickness were increased due to increasing the sol volume. It was found that the hydrophobicity of aerogel blankets is not influenced by sol volume and pore structure of silica aerogel.

  3. Strategic Sourcing and Spend Analysis: A Case Study of the Naval Postgraduate School

    DTIC Science & Technology

    2014-12-01

    ABBREVIATIONS ADP Administrative Processing Data AFIT Air Force Institute of Technology AT&L Acquisition, Technology, and Logistics BPA Blanket...in awarding 74 blanket purchase agreements ( BPAs ) with various discounts less than the Federal Supply Schedule (FSS) pricing. While the cost savings...the NPS contracting office can tailor specific contract vehicles, whether blanket purchase agreements ( BPAs ) 43 or IDIQs, to suit the needs of the

  4. Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization

    NASA Technical Reports Server (NTRS)

    Gibson, C. E.

    1979-01-01

    Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.

  5. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    NASA Astrophysics Data System (ADS)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  6. Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

    NASA Astrophysics Data System (ADS)

    Cheng, Hsien-Chie; Chen, You-Wei; Chen, Wen-Hwa; Lu, Su-Tsai; Lin, Shih-Ming

    2018-03-01

    In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the "off process" and from the blanket to the substrate in the "set process" is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

  7. Key achievements in elementary R&D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-02-01

    This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.

  8. Thermally distinct ejecta blankets from Martian craters

    NASA Astrophysics Data System (ADS)

    Betts, B. H.; Murray, B. C.

    1993-06-01

    A study of Martian ejecta blankets is carried out using the high-resolution thermal IR/visible data from the Termoskan instrument aboard Phobos '88 mission. It is found that approximately 100 craters within the Termoskan data have an ejecta blanket distinct in the thermal infrared (EDITH). These features are examined by (1) a systematic examination of all Termoskan data using high-resolution image processing; (2) a study of the systematics of the data by compiling and analyzing a data base consisting of geographic, geologic, and mormphologic parameters for a significant fraction of the EDITH and nearby non-EDITH; and (3) qualitative and quantitative analyses of localized regions of interest. It is noted that thermally distinct ejecta blankets are excellent locations for future landers and remote sensing because of relatively dust-free surface exposures of material excavated from depth.

  9. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  10. Blanket design and optimization demonstrations of the first wall/blanket/shield design and optimization system (BSDOS).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Nuclear Engineering Division

    2005-05-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  11. Blanket Design and Optimization Demonstrations of the First Wall/Blanket/Shield Design and Optimization System (BSDOS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Yousry

    2005-05-15

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to definemore » the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design capabilities of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art research and design tool for performing blanket design analyses. This paper describes some of the BSDOS capabilities and demonstrates its use. In addition, the use of the optimization capability of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this paper, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design capabilities.« less

  12. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Joel Smith prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Nadine Phillips prepares an area on the orbiter Discovery for blanket installation. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  15. An electrically conductive thermal control surface for spacecraft encountering Low-Earth Orbit (LEO) atomic oxygen indium tin oxide-coated thermal blankets

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1987-01-01

    An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

    NASA Image and Video Library

    2003-12-09

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Duane Williams prepares the blanket insulation to be installed on the body flap on orbiter Discovery. The blankets are part of the Orbiter Thermal Protection System, thermal shields to protect against temperatures as high as 3,000° Fahrenheit, which are produced during descent for landing. Discovery is scheduled to fly on mission STS-121 to the International Space Station.

  17. Viable Circumstances for Financial Negotiations in Pakistan Contracting Process

    DTIC Science & Technology

    2015-06-01

    Submission BIW Bath Iron Works BPA Blanket Purchase Agreement CERP Center for Economic Research in Pakistan CICA Competition in Contracting Act CJCS...IDIQ contracts, blanket purchase agreements ( BPAs ), and contractors team arrangements (CTAs) by fulfilling all pre-requisites of government...wide commercial purchase card (FAR 13.301) 2. Purchase orders (FAR 13.302) 3. Blanket purchase agreements ( BPAs ; FAR13.303) 4. Imprest fund and

  18. Direct LiT Electrolysis in a Metallic Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Luke

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium formore » the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.« less

  19. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon-Mercado, H.; Babineau, D.; Elvington, M.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This workmore » identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. « less

  20. Tritium processing for the European test blanket systems: current status of the design and development strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricapito, I.; Calderoni, P.; Poitevin, Y.

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for themore » design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)« less

  1. Disinfection of woollen blankets in steam at subatmospheric pressure

    PubMed Central

    Alder, V. G.; Gillespie, W. A.

    1961-01-01

    Blankets may be disinfected in steam at subatmospheric pressures by temperatures below boiling point inside a suitably adapted autoclave chamber. The chamber and its contents are thoroughly evacuated of air so as to allow rapid heat penetration, and steam is admitted to a pressure of 10 in. Hg below atmospheric pressure, which corresponds to a temperature of 89°C. Woollen blankets treated 50 times by this process were undamaged. Vegetative organisms were destroyed but not spores. The method is suitable for large-scale disinfection of blankets and for disinfecting various other articles which would be damaged at higher temperatures. PMID:13860203

  2. Fusion reactor blanket/shield design study

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Clemmer, R. G.; Harkness, S. D.; Jung, J.; Krazinski, J. L.; Mattas, R. F.; Stevens, H. C.; Youngdahl, C. K.; Trachsel, C.; Bowers, D.

    1979-07-01

    A joint study of Tokamak reactor first wall/blanket/shield technology was conducted to identify key technological limitations for various tritium breeding blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium breeding blanket concepts were evaluated according to the proposed coolant. The effort concentrated on evaluation of lithium and water cooled blanket designs and helium and molten salt cooled designs. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a Tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  3. HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillo, J.A.

    1983-08-01

    As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less

  4. Thermochemical hydrogen production based on magnetic fusion

    NASA Astrophysics Data System (ADS)

    Krikorian, O. H.; Brown, L. C.

    Preliminary results of a DoE study to define the configuration and production costs for a Tandem Mirror Reactor (TMR) heat source H2 fuel production plant are presented. The TMR uses the D-T reaction to produce thermal energy and dc electrical current, with an Li blanket employed to breed more H-3 for fuel. Various blanket designs are being considered, and the coupling of two of them, a heat pipe blanket to a Joule-boosted decomposer, and a two-temperature zone blanket to a fluidized bed decomposer, are discussed. The thermal energy would be used in an H2SO4 thermochemical cycler to produce the H2. The Joule-boosted decomposer, involving the use of electrically heated commercial SiC furnace elements to transfer process heat to the thermochemical H2 cycle, is found to yield H2 fuel at a cost of $12-14/GJ, which is the projected cost of fossil fuels in 30-40 yr, when the TMR H2 production facility would be operable.

  5. Options for Hardening FinFETS with Flowable Oxide Between Fins

    DTIC Science & Technology

    2017-03-01

    thus hardening by process is needed. Using the methodology of CV measurements on inexpensive experimental blanket oxides we have determined options...NY 10598 Abstract: A methodology using radiation-induced charge measurements by CV techniques on blanket oxides is shown to aid in the choice...of process options for hardening FinFETs. Net positive charge in flowable oxides was reduced by 50 % using a simple non -intrusive process change

  6. Assembly, Integration, and Test Methods for Operationally Responsive Space Satellites

    DTIC Science & Technology

    2010-03-01

    like assembly and vibration tests, to ensure there have been no failures induced by the activities. External thermal control blankets and radiator...configuration of the satellite post- vibration test and adds time to the process. • Thermal blanketing is not realistic with current technology or...patterns for thermal blankets and radiator tape. The computer aided drawing (CAD) solid model was used to generate patterns that were cut and applied real

  7. Evaluation of erosion control blanket properties and test criteria for specification and design : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    A research project to investigate the product approval, design process, and ongoing product evaluation of erosion control blankets : (ECBs) for the Missouri Department of Transportation (MoDOT) was conducted. An overview of federal and state environm...

  8. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  9. Behaviour of Li 2ZrO 3 and Li 2TiO 3 pebbles relevant to their utilization as ceramic breeder for the HCPB blanket

    NASA Astrophysics Data System (ADS)

    Lulewicz, J. D.; Roux, N.; Piazza, G.; Reimann, J.; van der Laan, J.

    2000-12-01

    Li 2ZrO 3 and Li 2TiO 3 pebbles are being investigated at Commissariat à l'Energie Atomique as candidate alternative ceramics for the European helium-cooled pebble bed (HCPB) blanket. The pebbles are fabricated using the extrusion-spheronization-sintering process and are optimized regarding composition, geometrical characteristics, microstructural characteristics, and material purity. Tests were designed and are being performed with other organizations so as to check the functional performance of the pebbles and pebble beds with respect to the HCPB blanket requirements, and, finally, to make the selection of the most appropriate ceramic for the HCPB blanket. Tests include high temperature long-term annealing, thermal shock, thermal cycling, thermal mechanical behaviour of pebble beds, thermal conductivity of pebble beds, and tritium extraction. Current results indicate the attractiveness of these ceramics pebbles for the HCPB blanket.

  10. A computational investigation of the interstitial flow induced by a variably thick blanket of very fine sand covering a coarse sand bed

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Huhn, Katrin; Bryan, Karin R.

    2017-10-01

    Blanketed sediment beds can have different bed mobility characteristics relative to those of beds composed of uniform grain-size distribution. Most of the processes that affect bed mobility act in the direct vicinity of the bed or even within the bed itself. To simulate the general conditions of analogue experiments, a high-resolution three-dimensional numerical `flume tank' model was developed using a coupled finite difference method flow model and a discrete element method particle model. The method was applied to investigate the physical processes within blanketed sediment beds under the influence of varying flow velocities. Four suites of simulations, in which a matrix of uniform large grains (600 μm) was blanketed by variably thick layers of small particles (80 μm; blanket layer thickness approx. 80, 350, 500 and 700 μm), were carried out. All beds were subjected to five predefined flow velocities ( U 1-5=10-30 cm/s). The fluid profiles, relative particle distances and porosity changes within the bed were determined for each configuration. The data show that, as the thickness of the blanket layer increases, increasingly more small particles accumulate in the indentations between the larger particles closest to the surface. This results in decreased porosity and reduced flow into the bed. In addition, with increasing blanket layer thickness, an increasingly larger number of smaller particles are forced into the pore spaces between the larger particles, causing further reduction in porosity. This ultimately causes the interstitial flow, which would normally allow entrainment of particles in the deeper parts of the bed, to decrease to such an extent that the bed is stabilized.

  11. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    NASA Astrophysics Data System (ADS)

    Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald

    2017-09-01

    Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  12. An overview on tritium permeation barrier development for WCLL blanket concept

    NASA Astrophysics Data System (ADS)

    Aiello, A.; Ciampichetti, A.; Benamati, G.

    2004-08-01

    The reduction of tritium permeation through blanket structural materials and cooling tubes has to be carefully evaluated to minimise radiological hazards. A strong effort has been made in the past to select the best technological solution for the realisation of tritium permeation barriers (TPB) on complex structures not directly accessible after the completion of the manufacturing process. The best solution was identified in aluminium rich coatings, which form Al 2O 3 at their surface. Two technologies were selected as reference for the realisation of coating in the WCLL blanket concept: the chemical vapour deposition (CVD) process developed on laboratory scale by CEA, and the hot dipping (HD) process developed by FZK. The results obtained during three years of tests on CVD and HD coated specimens in gas and liquid metal phase are summarised and discussed.

  13. Performance and economics analysis of several laser fusion breeder fueled electricity generation systems

    NASA Astrophysics Data System (ADS)

    Berwald, D. H.; Maniscalco, J. A.

    1981-01-01

    The paper evaluates the potential of several future electricity generating systems composed of laser fusion-driven breeder reactors that provide fissile fuel for current technology light water fission power reactors (LWRs). The performance and economic feasibility of four fusion breeder blanket technologies for laser fusion drivers, namely uranium fast fission (UFF) blankets, uranium-thorium fast fission (UTFF) blankets, thorium fast fission (TFF) blankets and thorium-suppressed fission (TSF) blankets, are considered, including design and costs of two kinds, fixed (indirect) costs associated with plant capital and variable (direct) costs associated with fuel processing and operation and maintenance. Results indicate that the UTFF and TFF systems produce electricity most inexpensively and that any of the four breeder blanket concepts, including the TSF and UFF systems, can produce electricity for about 25 to 33% above the cost of electricity produced by a new LWR operating on the current once-through cycle. It is suggested that fusion breeders could supply most or all of our fissile fuel makeup requirements within about 20 years after commercial introduction.

  14. Advanced Development Waste Processing Unit for Combat Vehicles. Phase 2

    DTIC Science & Technology

    1987-12-29

    Johns Manville Manufacturers # : 5346474 Type: Cera Blanket Size: 6 lb., I" thick Amount Used: 24" x 48" total TIME RPM TI O T 2 F T ,F T 4, Tbient F 1200...WPUBMO01 DATA SHEET DSO01-4 Date:NOV 2 5 186 i~ L , Candidate Insulation: Manufacturer: Johns Manville Manufacturer’s # : 5346474. Type: Cera Blanket Size...SHEET DS001-5 Date: EC 0 3 186 Candidate Insulation: Manufacturer: Johns Manville Manufacturerls # : 5346474 Type: Cera Blanket (F Size: 6 lb., 1

  15. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  16. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  17. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  18. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules

    NASA Astrophysics Data System (ADS)

    Poitevin, Y.; Aubert, Ph.; Diegele, E.; de Dinechin, G.; Rey, J.; Rieth, M.; Rigal, E.; von der Weth, A.; Boutard, J.-L.; Tavassoli, F.

    2011-10-01

    Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.

  19. Study on the temperature control mechanism of the tritium breeding blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Liu, Changle; Qiu, Yang; Zhang, Jie; Zhang, Jianzhong; Li, Lei; Yao, Damao; Li, Guoqiang; Gao, Xiang; Wu, Songtao; Wan, Yuanxi

    2017-12-01

    The Chinese fusion engineering testing reactor (CFETR) will demonstrate tritium self- sufficiency using a tritium breeding blanket for the tritium fuel cycle. The temperature control mechanism (TCM) involves the tritium production of the breeding blanket and has an impact on tritium self-sufficiency. In this letter, the CFETR tritium target is addressed according to its missions. TCM research on the neutronics and thermal hydraulics issues for the CFETR blanket is presented. The key concerns regarding the blanket design for tritium production under temperature field control are depicted. A systematic theory on the TCM is established based on a multiplier blanket model. In particular, a closed-loop method is developed for the mechanism with universal function solutions, which is employed in the CFETR blanket design activity for tritium production. A tritium accumulation phenomenon is found close to the coolant in the blanket interior, which has a very important impact on current blanket concepts using water coolant inside the blanket. In addition, an optimal tritium breeding ratio (TBR) method based on the TCM is proposed, combined with thermal hydraulics and finite element technology. Meanwhile, the energy gain factor is adopted to estimate neutron heat deposition, which is a key parameter relating to the blanket TBR calculations, considering the structural factors. This work will benefit breeding blanket engineering for the CFETR reactor in the future.

  20. Stainless steel blanket concept for tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbowski, J.S.; Lee, A.Y.; Prevenslik, T.V.

    1979-01-25

    The purpose of this joint ORNL/Westinghouse Program is to develop a design concept for a tokamak reactor blanket system which satisfies engineering requirements for a utility environment. While previous blanket studies have focused primarily on performance issues (thermal, neutronic, and structural), this study has emphasized consideration of reliability, fabricability, and lifetime.

  1. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for 233U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    NASA Astrophysics Data System (ADS)

    Azizov, E. A.; Gladush, G. G.; Dokuka, V. N.; Khayrutdinov, R. R.

    2015-12-01

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of 233U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.

  2. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA™ Mox process to treat high-strength landfill leachate.

    PubMed

    Lu, Ting; George, Biju; Zhao, Hong; Liu, Wenjun

    2016-01-01

    A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m(3)·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m(2)·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m(2)·d).

  3. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  4. Study of multilayer thermal insulation by inverse problems method

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2009-11-01

    The purpose of this paper is to introduce a new method in the research of radiative and thermal properties of materials with further applications in the design of thermal control systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the TCS for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the inverse heat transfer problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented as well. The practical approves were made for specimen of the real MLI.

  5. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  6. Concept of a demonstrational hybrid reactor—a tokamak with molten-salt blanket for {sup 233}U fuel production: 1. Concept of a stationary Tokamak as a neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizov, E. A.; Gladush, G. G., E-mail: gladush@triniti.ru; Dokuka, V. N.

    2015-12-15

    On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket basedmore » on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.« less

  7. Spacecraft studies of Phobos and Mars

    NASA Technical Reports Server (NTRS)

    Murray, Bruce C.

    1990-01-01

    Utilizing the Termoskan data set of the Phobos '88 mission we have recognized a new feature on Mars: Ejecta blanket Distinct In the THermal infrared (EDITH). Virtually all of the more than one hundred of these features discovered in the Termoskan data are located on the plains near Valles Manneris. EDITH's have a startlingly clear dependence upon terrains of Hesperian age, implying a spatial or temporal dependence on Hesperian terrains. Almost no thermally distinct ejecta blankets are associated with any of the thousands of craters within the data set that occur on the older Noachian units. EDITH's also do not appear on the portions of the younger Tharsis Amazonian units seen in the data. The Hesperian terrain dependence cannot be explained by either atmospheric or impactor variations; Noachian and Hesperian terrains must have experienced identical atmospheric and impactor conditions during Hesperian times. Thermally distinct eject a blankets therefore reflect target material differences and/or secondary modification processes. A further discussion of EIDTH's is presented.

  8. Spacecraft studies of PHOBOS and Mars

    NASA Astrophysics Data System (ADS)

    Murray, Bruce C.

    Utilizing the Termoskan data set of the Phobos '88 mission we have recognized a new feature on Mars: Ejecta blanket Distinct In the THermal infrared (EDITH). Virtually all of the more than one hundred of these features discovered in the Termoskan data are located on the plains near Valles Manneris. EDITH's have a startlingly clear dependence upon terrains of Hesperian age, implying a spatial or temporal dependence on Hesperian terrains. Almost no thermally distinct ejecta blankets are associated with any of the thousands of craters within the data set that occur on the older Noachian units. EDITH's also do not appear on the portions of the younger Tharsis Amazonian units seen in the data. The Hesperian terrain dependence cannot be explained by either atmospheric or impactor variations; Noachian and Hesperian terrains must have experienced identical atmospheric and impactor conditions during Hesperian times. Thermally distinct eject a blankets therefore reflect target material differences and/or secondary modification processes. A further discussion of EIDTH's is presented.

  9. Self-cooled liquid-metal blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-11-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative tomore » other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor.« less

  10. A preliminary report on the study of the impact sites and particles of the solar maximum satellite thermal blanket

    NASA Technical Reports Server (NTRS)

    Zook, H. A.

    1985-01-01

    A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.

  11. KSC-06pd0573

    NASA Image and Video Library

    2006-04-05

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, Endeavour waits for installation of its reinforced carbon-carbon nose cap. The nose cap is insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  12. KSC-06pd0578

    NASA Image and Video Library

    2006-04-06

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, the reinforced carbon-carbon nose cap has been installed on Endeavour. The nose cap has been insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  13. KSC-06pd0580

    NASA Image and Video Library

    2006-04-06

    KENNEDY SPACE CENTER, FLA. - The reinforced carbon-carbon nose cap has been installed on Endeavour in Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center. The nose cap has been insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  14. Weighted blankets and sleep in autistic children--a randomized controlled trial.

    PubMed

    Gringras, Paul; Green, Dido; Wright, Barry; Rush, Carla; Sparrowhawk, Masako; Pratt, Karen; Allgar, Victoria; Hooke, Naomi; Moore, Danielle; Zaiwalla, Zenobia; Wiggs, Luci

    2014-08-01

    To assess the effectiveness of a weighted-blanket intervention in treating severe sleep problems in children with autism spectrum disorder (ASD). This phase III trial was a randomized, placebo-controlled crossover design. Participants were aged between 5 years and 16 years 10 months, with a confirmed ASD diagnosis and severe sleep problems, refractory to community-based interventions. The interventions were either a commercially available weighted blanket or otherwise identical usual weight blanket (control), introduced at bedtime; each was used for a 2-week period before crossover to the other blanket. Primary outcome was total sleep time (TST) recorded by actigraphy over each 2-week period. Secondary outcomes included actigraphically recorded sleep-onset latency, sleep efficiency, assessments of child behavior, family functioning, and adverse events. Sleep was also measured by using parent-report diaries. Seventy-three children were randomized and analysis conducted on 67 children who completed the study. Using objective measures, the weighted blanket, compared with the control blanket, did not increase TST as measured by actigraphy and adjusted for baseline TST. There were no group differences in any other objective or subjective measure of sleep, including behavioral outcomes. On subjective preference measures, parents and children favored the weighted blanket. The use of a weighted blanket did not help children with ASD sleep for a longer period of time, fall asleep significantly faster, or wake less often. However, the weighted blanket was favored by children and parents, and blankets were well tolerated over this period. Copyright © 2014 by the American Academy of Pediatrics.

  15. Silver Teflon blanket: LDEF tray C-08

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  16. Historical peat loss explains limited short-term response of drained blanket bogs to rewetting.

    PubMed

    Williamson, Jennifer; Rowe, Edwin; Reed, David; Ruffino, Lucia; Jones, Peter; Dolan, Rachel; Buckingham, Helen; Norris, David; Astbury, Shaun; Evans, Chris D

    2017-03-01

    This study assessed the short-term impacts of ditch blocking on water table depth and vegetation community structure in a historically drained blanket bog. A chronosequence approach was used to compare vegetation near ditches blocked 5 years, 4 years and 1 year prior to the study with vegetation near unblocked ditches. Plots adjacent to and 3 m away from 70 ditches within an area of blanket bog were assessed for floristic composition, aeration depth using steel bars, and topography using LiDAR data. No changes in aeration depth or vegetation parameters were detected as a function of ditch-blocking, time since blocking, or distance from the ditch, with the exception of non-Sphagnum bryophytes which had lower cover in quadrats adjacent to ditches that had been blocked for 5 years. Analysis of LiDAR data and the observed proximity of the water table to the peat surface led us to conclude that the subdued ecosystem responses to ditch-blocking were the result of historical peat subsidence within a 4-5 m zone either side of each ditch, which had effectively lowered the peat surface to the new, ditch-influenced water table. We estimate that this process led to the loss of around 500,000 m 3 peat within the 38 km 2 study area following drainage, due to a combination of oxidation and compaction. Assuming that 50% of the volume loss was due to oxidation, this amounts to a carbon loss of 11,000 Mg C over this area, i.e. 3 Mg C ha -1 . The apparent 'self-rewetting' of blanket bogs in the decades following drainage has implications for their restoration as it suggests that there may not be large quantities of dry peat left to rewet, and that there is a risk of inundation (potentially leading to high methane emissions) along subsided ditch lines. Many peatland processes are likely to be maintained in drained blanket bog, including support of typical peatland vegetation, but infilling of lost peat and recovery of original C stocks are likely to take longer than is generally anticipated. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, K. N.

    1998-07-13

    In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomingsmore » which may be corrected or improved.« less

  18. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  19. Security Blanket or Mother: Which Benefits Linus during Pediatric Examinations?

    ERIC Educational Resources Information Center

    Ybarra, Gabriel; Passman, Richard H.; Eisenberg, Carl S. L.

    This study compared the degree to which young children were placated during a standard medical evaluation by the presence of their mother, blanket, mother plus blanket, or no supportive agent. Participating were 64 three-year-olds who underwent 4 routine medical procedures. Children were rated by their mothers as attached or nonattached to…

  20. KSC-06pd0579

    NASA Image and Video Library

    2006-04-06

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, a worker checks the reinforced carbon-carbon nose cap after installation on Endeavour. The nose cap has been insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  1. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.

  2. Radiative-conductive inverse problem for lumped parameter systems

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Nenarokomov, A. V.; Gonzalez, V. M.

    2008-11-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  3. Application of the aqueous self-cooled blanket concept to fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, L.; Steiner, D.; Embrechts, M.J.

    1986-01-01

    The development of a reliable, safe, and economically attractive tritium breeding blanket is an essential requirement in the path to commercial fusion power. The primary objective of the recently completed Blanket Comparison and Selection Study (BCSS) was to evaluate previously proposed concepts, and thereby identify a limited number of preferred options that would provide the focus for an R and D program. The water-cooled concepts in the BCSS scored relatively low. We consider it prudent that a promising water-cooled blanket concept be included in this program since nearly all power producing reactors currently rely on water technology. It is inmore » this context that we propose the novel water-cooled blanket concept described herein.« less

  4. KSC-06pd0575

    NASA Image and Video Library

    2006-04-05

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, workers are nearby as a crane lifts the reinforced carbon-carbon nose cap to be installed onto Endeavour. The nose cap is insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  5. KSC-06pd0577

    NASA Image and Video Library

    2006-04-05

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, a worker examines the underside of the reinforced carbon-carbon nose cap that will be installed on Endeavour. The nose cap is insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/George Shelton

  6. KSC-06pd0574

    NASA Image and Video Library

    2006-04-05

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, workers are preparing to move and install the reinforced carbon-carbon nose cap (on the stand) onto Endeavour. The nose cap is insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  7. KSC-06pd0257

    NASA Image and Video Library

    2006-02-09

    KENNEDY SPACE CENTER, FLA. - The thermal protection system blanket insulation (foreground) has been hand-sewn onto a frame before being installed inside Endeavour's Reinforced Carbon-Carbon nose cap, seen in the background, in the NASA Kennedy Space Center Orbiter Processing Facility bay 2. Made of a woven ceramic fabric, the special blankets are used to help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jack Pfaller.

  8. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-09-01

    The self-pumped limiter concept was the impurity control system for the reactor in the Tokamak Power Systems Study (TPSS). The use of a self-pumped limiter had a major impact on the design of the tritium systems of the TPSS fusion reactor. The self-pumped limiter functions by depositing the helium ash under a layer of metal (vanadium). The majority of the hydrogen species are recycled at the plasma edge; a small fraction permeates to the blanket/coolant which was lithium in TPSS. Use of the self-pumped limiter results in the elimination of the plasma processing system. Thus, the blanket tritium processing systemmore » becomes the major tritium system. The main advantages achieved for the tritium systems with a self-pumped limiter are a reduction in the capital cost of tritium processing equipment as well as a reduction in building space, a reduced tritium inventory for processing and for reserve storage, an increase in the inherent safety of the fusion plant and an improvement in economics for a fusion world economy.« less

  9. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater.

    PubMed

    Antwi, Philip; Li, Jianzheng; Meng, Jia; Deng, Kaiwen; Koblah Quashie, Frank; Li, Jiuling; Opoku Boadi, Portia

    2018-06-01

    In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH 4 + , VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R 2 ), the BPANN model demonstrated significant performance with R 2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Comparison of two passive warming devices for prevention of perioperative hypothermia in dogs.

    PubMed

    Potter, J; Murrell, J; MacFarlane, P

    2015-09-01

    To compare effects of two passive warming methods combined with a resistive heating mat on perioperative hypothermia in dogs. Fifty-two dogs were enrolled and randomly allocated to receive a reflective blanket (Blizzard Blanket) or a fabric blanket (VetBed). In addition, in the operating room all dogs were placed onto a table with a resistive heating mat covered with a fabric blanket. Rectal temperature measurements were taken at defined points. Statistical analysis was performed comparing all Blizzard Blanket-treated to all VetBed-treated dogs, and VetBed versus Blizzard Blanket dogs within spay and castrate groups, spay versus castrate groups and within groups less than 10 kg or more than 10 kg bodyweight. Data from 39 dogs were used for analysis. All dogs showed a reduction in perioperative rectal temperature. There were no detected statistical differences between treatments or between the different groups. This study supports previous data on prevalence of hypothermia during surgery. The combination of active and passive warming methods used in this study prevented the development of severe hypothermia, but there were no differences between treatment groups. © 2015 British Small Animal Veterinary Association.

  11. Myelogenous leukemia and electric blanket use.

    PubMed

    Preston-Martin, S; Peters, J M; Yu, M C; Garabrant, D H; Bowman, J D

    1988-01-01

    In a case-control study of adult acute and chronic myelogenous leukemia in Los Angeles County, we tested the hypothesis that excess exposure to electromagnetic fields from electric blankets was associated with risk of leukemia. We did this by studying 116 cases of acute myelogenous leukemia (AML) and 108 cases of chronic myelogenous leukemia (CML) along with matched neighborhood controls. The cases and controls were queried as to electric blanket use and the risks computed. For AML the risk was 0.9 (95% CI 0.5-1.6) and for CML the risk was 0.8 (95% CI 0.4-1.6). Cases did not differ from controls by duration of use, year of first regular use, year since last use, or socioeconomic status. Our best estimates of exposure indicate that electric blanket use increases overall exposure to electric fields by less than 50% and magnetic fields by less than 100%. We conclude that there is no major leukemogenic risk associated with electric blanket use in Los Angeles County.

  12. KSC-06pd0576

    NASA Image and Video Library

    2006-04-05

    KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2 at NASA's Kennedy Space Center, workers maneuver the reinforced carbon-carbon nose cap as it is hoisted into the air. The nose cap will be installed on Endeavour. The nose cap is insulated with thermal protection system blankets made of a woven ceramic fabric. The special blankets help insulate the vehicle's nose cap and protect it from the extreme temperatures it will face during a mission. Photo credit: NASA/Jim Grossmann

  13. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah T.; Valiant, Gregory J.

    2006-10-01

    The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.

  14. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Drolshagen, Gerhard

    1992-06-01

    The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.

  15. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin

    2017-04-01

    Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.

  16. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.

  17. Microvibration and Centre-of-Gravity Shift Measurements on Thermally Stressed Thermal-Control Blankets

    NASA Astrophysics Data System (ADS)

    Magg, Manfred; Grillenbeck, Anton, , Dr.

    2004-08-01

    Several samples of thermal control blankets were subjected to transient thermal loads in a thermal vacuum chamber in order to study their ability to excite micro- vibrations on a carrier structure and to cause tiny centre- of-gravity shifts. The reason for this investigation was driven by the GOCE project in order to minimize micro- vibrations on-board of the spacecraft while on-orbit. The objectives of this investigation were to better understand the mechanism which may produce micro- vibrations induced by the thermal control blankets, and to identify thermal control blanket lay-ups with minimum micro-vibration activity.

  18. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  19. Improved multilayer insulation applications. [spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Mikk, G.

    1982-01-01

    Multilayer insulation blankets used for the attenuation of radiant heat transfer in spacecraft are addressed. Typically, blanket effectiveness is degraded by heat leaks in the joints between adjacent blankets and by heat leaks caused by the blanket fastener system. An approach to blanket design based upon modular sub-blankets with distributed seams and upon an associated fastener system that practically eliminates the through-the-blanket conductive path is described. Test results are discussed providing confirmation of the approach. The specific case of the thermal control system for the optical assembly of the Space Telescope is examined.

  20. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gasmore » was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.« less

  1. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, whichmore » could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.« less

  2. Parameter Identification Of Multilayer Thermal Insulation By Inverse Problems

    NASA Astrophysics Data System (ADS)

    Nenarokomov, Aleksey V.; Alifanov, Oleg M.; Gonzalez, Vivaldo M.

    2012-07-01

    The purpose of this paper is to introduce an iterative regularization method in the research of radiative and thermal properties of materials with further applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (heat capacity, emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the IHTP, based on sensitivity function approach, is presented too. The practical testing was performed for specimen of the real MLI. This paper consists of recent researches, which developed the approach suggested at [1].

  3. 75 FR 50991 - Antidumping Duty Order: Certain Woven Electric Blankets From the People's Republic of China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ...: Certain Woven Electric Blankets From the People's Republic of China AGENCY: Import Administration... electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). FOR FURTHER... Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales at Less...

  4. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less

  5. 75 FR 46911 - Certain Woven Electric Blankets from the People's Republic of China: Amended Final Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... Blankets from the People's Republic of China: Amended Final Determination of Sales at Less Than Fair Value... than fair value (``LTFV'') in the antidumping investigation of certain woven electric blankets (``woven electric blankets'') from the People's Republic of China (``PRC''). See Certain Woven Electric Blankets...

  6. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    PubMed

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.

  7. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become completely encased in an outer layer of TEEK friable balloons. Optionally, the process could be further repeated to produce multiple aerogel-blanket layers interspersed with and encased by TEEK friable balloons.

  8. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  9. Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Tu, Tina

    1994-01-01

    The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.

  10. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.

  11. Space-Spurred Metallized Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Among a score of applications for a space spinoff reflective material called TXG is the emergency blanket manufactured by Metallized Products, Inc. Used by ski patrol to protect a skier shaken by a fall, the blanket retains up to 80% of user's body heat preventing post accident shock or chills. Carried by many types of emergency teams, blanket is large when unfolded, but folds into a package no larger than a deck of cards. Many other uses include, emergency blankets, all weather blanket, tanning blanket, window shields, radar reflector life raft canopies, etc.

  12. Development of a Flammability Test Method for Aircraft Blankets

    DOT National Transportation Integrated Search

    1996-03-01

    Flammability testing of aircraft blankets was conducted in order to develop a fire performance test method and performance criteria for blankets supplied to commercial aircraft operators. Aircraft blankets were subjected to vertical Bunsen burner tes...

  13. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Frances, N.; Timm, W.; Rossbach, D.

    2012-07-01

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less

  14. A torso model comparison of temperature preservation devices for use in the prehospital environment.

    PubMed

    Zasa, Michele; Flowers, Neil; Zideman, David; Hodgetts, Timothy J; Harris, Tim

    2016-06-01

    Hypothermia is an independent predictor of increased morbidity and mortality in patients with trauma. Several strategies and products have been developed to minimise patients' heat loss in the prehospital arena, but there is little evidence to inform the clinician concerning their effectiveness. We used a human torso model consisting of two 5.5-litre fluid bags to simultaneously compare four passive (space blanket, bubble wrap, Blizzard blanket, ambulance blanket) and one active (Ready-Heat II blanket) temperature preservation products. A torso model without any temperature preservation device provided a control. For each test, the torso models were warmed to 37°C and left outdoors. Core temperatures were recorded every 10 min for 1 h in total; tests were repeated 10 times. A significant difference in temperature was detected among groups at 30 and 60 min (F (1.29, 10.30)=103.58, p<0.001 and F (1.64, 14.78)=163.28, p<0.001, respectively). Mean temperature reductions (95% CI) after 1 h of environmental exposure were the following: 11.6 (10.3 to 12.9) °C in control group, 4.5 (3.9 to 5.1) °C in space blanket group, 3.6 (3 to 4.3) °C in bubble-wrap group, 2.1 (1.7 to 2.5) °C in Blizzard blanket group, 6.1 (5.8 to 6.5) °C in ambulance blanket group and 1.1 (0.7 to 1.6) °C in Ready-Heat II blanket group. In this study, using a torso model based on two 5 L dialysate bags we found the Ready-Heat II heating blanket and Blizzard blanket were associated with lower rates of heat loss after 60 min environmental exposure than the other devices tested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Gauge Measures Thicknesses Of Blankets

    NASA Technical Reports Server (NTRS)

    Hagen, George R.; Yoshino, Stanley Y.

    1991-01-01

    Tool makes highly repeatable measurements of thickness of penetrable blanket insulation. Includes commercial holder for replaceable knife blades, which holds needle instead of knife. Needle penetrates blanket to establish reference plane. Ballasted slider applies fixed preload to blanket. Technician reads thickness value on scale.

  16. Toughened Thermal Blanket for MMOD Protection

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Thermal blankets are used extensively on spacecraft to provide passive thermal control of spacecraft hardware from thermal extremes encountered in space. Toughened thermal blankets have been developed that greatly improve protection from hypervelocity micrometeoroid and orbital debris (MMOD) impacts. These blankets can be outfitted if so desired with a reliable means to determine the location, depth and extent of MMOD impact damage by incorporating an impact sensitive piezoelectric film. Improved MMOD protection of thermal blankets was obtained by adding selective materials at various locations within the thermal blanket. As given in Figure 1, three types of materials were added to the thermal blanket to enhance its MMOD performance: (1) disrupter layers, near the outside of the blanket to improve breakup of the projectile, (2) standoff layers, in the middle of the blanket to provide an area or gap that the broken-up projectile can expand, and (3) stopper layers, near the back of the blanket where the projectile debris is captured and stopped. The best suited materials for these different layers vary. Density and thickness is important for the disrupter layer (higher densities generally result in better projectile breakup), whereas a highstrength to weight ratio is useful for the stopper layer, to improve the slowing and capture of debris particles.

  17. First wall structural analysis of the aqueous self-cooled blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, D.A.; Steiner, D.; Embrechts, M.J.

    1986-11-01

    A recently proposed blanket concept using water coolant with dissolved lithium compounds for breeding employs water cooled first walls. Water cooled first walls for blankets have also been proposed for some solid breeder blankets. Design options for water cooled first walls are examined in this paper. Four geometries and three materials are analyzed for water coolant at 300/sup 0/C and 13.8 MPa (2000 psi). Maximum neutron wall loads (with surface heat loads being 25% of neutron wall load) are determined for each geometry and material combination. Of the materials studied, only vanadium alloy is found to be capable of withstandingmore » high wall loads (>10MW/m/sup 2/ neutron and >2.5 MW/m/sup 2/ heat).« less

  18. Influence of nuclear data uncertainties on thorium fusion-fission hybrid blanket nucleonic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, E.T.; Mathews, D.R.

    1979-09-01

    The fusion-fission hybrid blanket proposed for the Tandem Mirror Hybrid Reactor employs thorium metal as the fertile material. Based on the ENDF/B-IV nuclear data, the /sup 233/U and tritium production rate and blanket energy multiplication averaged over the blanket lifetime of about 9 MW-yr/m/sup 2/ are 0.76 and 1.12 per D-T neutron and 4.8, respectively. At the time of the blanket discharge, the /sup 233/U enrichment in the thorium metal is about 3%. The thorium cross sections given by the ENDF/B-IV and V were reviewed, and the important partial cross sections such as (n,2n), (n,3n), and (n,..gamma..) were found tomore » be known to +-10 to 20% in the respective energy range of interest. A sensitivity study showed that the /sup 233/U and tritium production rate and blanket energy multiplication are relatively sensitive to the thorium capture and fission cross section uncertainties. In order to predict the above parameters within +-1%, the Th(n,..gamma..) and Th(n,..nu..f) cross sections must be measured within about +-2% in the energy range 3 to 3000 keV and 13.5 to 15 MeV, respectively.« less

  19. Current Trends of Blanket Research and Deveopment in Japan 4.Blanket Technology Development Using ITER for Demonstration and Commercial Fusion Power Plant

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Jitsukawa, Shiroh; Muroga, Takeo

    This paper describes the status of blanket technology and material development for fusion power demonstration plants and commercial fusion plants. In particular, the ITER Test Blanket Module, IFMIF, JAERI/DOE HFIR and JUPITER-II projects are highlighted, which have the important role to develop these technology. The ITER Test Blanket Module project has been conducted to demonstrate tritium breeding and power generation using test blanket modules, which will be installed into the ITER facility. For structural material development, the present research status is overviewed on reduced activation ferritic steel, vanadium alloys, and SiC/SiC composites.

  20. Thermal comfort and safety of cotton blankets warmed at 130°F and 200°F.

    PubMed

    Kelly, Patricia A; Cooper, Susan K; Krogh, Mary L; Morse, Elizabeth C; Crandall, Craig G; Winslow, Elizabeth H; Balluck, Julie P

    2013-12-01

    In 2009, the ECRI Institute recommended warming cotton blankets in cabinets set at 130°F or less. However, there is limited research to support the use of this cabinet temperature. To measure skin temperatures and thermal comfort in healthy volunteers before and after application of blankets warmed in cabinets set at 130 and 200°F, respectively, and to determine the time-dependent cooling of cotton blankets after removal from warming cabinets set at the two temperatures. Prospective, comparative, descriptive. Participants (n = 20) received one or two blankets warmed in 130 or 200°F cabinets. First, skin temperatures were measured, and thermal comfort reports were obtained at fixed timed intervals. Second, blanket temperatures (n = 10) were measured at fixed intervals after removal from the cabinets. No skin temperatures approached levels reported in the literature that cause epidermal damage. Thermal comfort reports supported using blankets from the 200°F cabinet, and blankets lost heat quickly over time. We recommend warming cotton blankets in cabinets set at 200°F or less to improve thermal comfort without compromising patient safety. Copyright © 2013 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  1. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Yuan, B.; Jin, M.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less

  2. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  3. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.

  4. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    NASA Astrophysics Data System (ADS)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  5. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective ofmore » this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and fabrication capacity per unit of core power. Nevertheless, these high-performance cores were designed to set upper bounds on the S&B core performance by using larger height and pressure drop than those of typical SFR design. A study was subsequently undertaken to quantify the tradeoff between S&B core design variables and the core performance. This study concludes that a viable S&B core can be designed without significant deviation from SFR core design practices. For example, the S&B core with 120cm active height will be comparable in volume, HM mass and specific power with the S-PRISM core and could fit within the S-PRISM reactor vessel. 43% of this core power will be generated by the once-through thorium blanket; the required capacity for reprocessing and remote fuel fabrication per unit of electricity generated will be approximately one fifth of that for a comparable ABR. The sodium void worth of this 120cm tall S&B core is significantly less positive than that of the reference ABR and the Doppler coefficient is only slightly smaller even though the seed uses a fertile-free fuel. The seed in the high transmutation core requires inert matrix fuel (TRU-40Zr) that has been successfully irradiated by the Fuel Cycle Research & Development program. An additional sensitivity analysis was later conducted to remove the bias introduced by the discrepancy between radiation damage constraints -- 200 DPA applied for S&B cores and fast fluence of 4x1023 n(>0.1MeV)/cm2 applied for ABR core design. Although the performance characteristics of the S&B cores are sensitive to the radiation damage constraint applied, the S&B cores offer very significant performance improvements relative to the conventional ABR core design when using identical constraint.« less

  6. Management of horses with focus on blanketing and clipping practices reported by members of the Swedish and Norwegian equestrian community.

    PubMed

    Hartmann, E; Bøe, K E; Jørgensen, G H M; Mejdell, C M; Dahlborn, K

    2017-03-01

    Limited information is available on the extent to which blankets are used on horses and the owners' reasoning behind clipping the horse's coat. Research on the effects of those practices on horse welfare is scarce but results indicate that blanketing and clipping may not be necessary from the horse's perspective and can interfere with the horse's thermoregulatory capacities. Therefore, this survey collected robust, quantitative data on the housing routines and management of horses with focus on blanketing and clipping practices as reported by members of the Swedish and Norwegian equestrian community. Horse owners were approached via an online survey, which was distributed to equestrian organizations and social media. Data from 4,122 Swedish and 2,075 Norwegian respondents were collected, of which 91 and 84% of respondents, respectively, reported using blankets on horses during turnout. Almost all respondents owning warmblood riding horses used blankets outdoors (97% in Sweden and 96% in Norway) whereas owners with Icelandic horses and coldblood riding horses used blankets significantly less ( < 0.05). Blankets were mainly used during rainy, cold, or windy weather conditions and in ambient temperatures of 10°C and below. The horse's coat was clipped by 67% of respondents in Sweden and 35% of Norwegian respondents whereby owners with warmblood horses and horses primarily used for dressage and competition reported clipping the coat most frequently. In contrast to scientific results indicating that recovery time after exercise increases with blankets and that clipped horses have a greater heat loss capacity, only around 50% of respondents agreed to these statements. This indicates that evidence-based information on all aspects of blanketing and clipping has not yet been widely distributed in practice. More research is encouraged, specifically looking at the effect of blankets on sweaty horses being turned out after intense physical exercise and the effect of blankets on social interactions such as mutual grooming. Future efforts should be tailored to disseminate knowledge more efficiently, which can ultimately stimulate thoughtful decision-making by horse owners concerning the use of blankets and clipping the horse's coat.

  7. The micrometeoroid complex and evolution of the lunar regolith

    NASA Technical Reports Server (NTRS)

    Horz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.

    1977-01-01

    Monte Carlo-based computer calculations, as well as analytical approaches utilizing probabilistic arguments, were applied to gain insight into the principal regolith impact processes and their resulting kinetics. Craters 10 to 1500 m in diameter are largely responsible for the overall growth of the regolith. As a consequence the regolith has to be envisioned as a complex sequence of discrete ejecta blankets. Such blankets constitute first-order discontinuities in the evolving debris layer. The micrometeoroid complex then operates intensely on these fresh ejecta blankets and accomplishes only in an uppermost layer of approximately 1-mm thickness. The absolute flux of micrometeoroids based on lunar rock analyses averaged over the past few 10 to the 6th power years is approximately an order of magnitude lower than presentday satellite fluxes; however, there is indication that the flux increased in the past 10 to the 4th power years to become compatible with the satellite data. Furthermore, there is detailed evidence that the micrometeoroid complex existed throughout geologic time.

  8. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be bettermore » protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.« less

  9. 75 FR 38459 - Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... Industries (``Perfect Fit''), a U.S. importer of knitted electric blankets, submitted comments on the scope... investigation to include the following two statements: (1) ``knitted electric blankets in any form, whether... acknowledged that knitted electric blankets and electric mattress pads are not within the scope of the U.S...

  10. Ceramic insulation/multifoil composite for thermal protection of reentry spacecraft

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Kourtides, D. A.

    1989-01-01

    A new type of insulation blanket called Composite Flexible Blanket Insulation is proposed for thermal protection of advanced spacecraft in regions where the maximum temperature is not excessive. The blanket is a composite of two proven insulation materials: ceramic insulation blankets from Space Shuttle technology and multilayer insulation blankets from spacecraft thermal control technology. A potential heatshield weight saving of up to 500 g/sq m is predicted. The concept is described; proof of concept experimental data are presented; and a spaceflight experiment to demonstrate its actual performance is discussed.

  11. KSC-04pd0620

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis. In the foreground is a ring inside of which the blankets will be sewn to fit in the orbiter's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  12. A New Fire Hazard for MR Imaging Systems: Blankets-Case Report.

    PubMed

    Bertrand, Anne; Brunel, Sandrine; Habert, Marie-Odile; Soret, Marine; Jaffre, Simone; Capeau, Nicolas; Bourseul, Laetitia; Dufour-Claude, Isabelle; Kas, Aurélie; Dormont, Didier

    2018-02-01

    In this report, a case of fire in a positron emission tomography (PET)/magnetic resonance (MR) imaging system due to blanket combustion is discussed. Manufacturing companies routinely use copper fibers for blanket fabrication, and these fibers may remain within the blanket hem. By folding a blanket with these copper fibers within an MR imaging system, one can create an electrical current loop with a major risk of local excessive heating, burn injury, and fire. This hazard applies to all MR imaging systems. Hybrid PET/MR imaging systems may be particularly vulnerable to this situation, because blankets are commonly used for fluorodeoxyglucose PET to maintain a normal body temperature and to avoid fluorodeoxyglucose uptake in brown adipose tissue. © RSNA, 2017.

  13. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although themore » results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.« less

  14. Aerogel: From Aerospace to Apparel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aspen Systems Inc. developed an aerogel-manufacturing process solved the handling problems associated with aerogel-based insulation products. Their aerogels can now be manufactured into blankets, thin sheets, beads, and molded parts; and may be transparent, translucent, or opaque. Aspen made the material effective for window and skylight insulation, non-flammable building insulation, and inexpensive firewall insulation that will withstand fires in homes and buildings, and also assist in the prevention of forest fires. Another Aspen product is Spaceloft(TM); an inexpensive, flexible blanket that incorporates a thin layer of aerogel embedded directly into the fabric. Spaceloft, is incorporated into jackets intended for wear in extremely harsh conditions and activities, such as Antarctic expeditions.

  15. KSC-04pd0618

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis's nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  16. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  17. SEAL Studies of Variant Blanket Concepts and Materials

    NASA Astrophysics Data System (ADS)

    Cook, I.; Taylor, N. P.; Forty, C. B. A.; Han, W. E.

    1997-09-01

    Within the European SEAL ( Safety and Environmental Assessment of fusion power, Long-term) program, safety and environmental assessments have been performed which extend the results of the earlier SEAFP (Safety and Environmental Assessment of Fusion Power) program to a wider range of blanket designs and material choices. The four blanket designs analysed were those which had been developed within the Blanket program of the European Fusion Programme. All four are based on martensitic steel as structural material, and otherwise may be summarized as: water-cooled lithium-lead; dual-cooled lithium-lead; helium-cooled lithium silicate (BOT geometry); helium-cooled lithium aluminate (or zirconate) (BIT geometry). The results reveal that all the blankets show the favorable S&E characteristics of fusion, though there are interesting and significant differences between them. The key results are described. Assessments have also been performed of a wider range of materials than was considered in SEAFP. These were: an alternative vanadium alloy, an alternative low-activation martensitic steel, titanium-aluminum intermetallic, and SiC composite. Assessed impurities were included in the compositions, and these had very important effects upon some of the results. Key results impacting upon accident characteristics, recycling, and waste management are described.

  18. Mechanical design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts for a 1000 mw thermal stationary power plant employing the UF6 fueled gas core breeder reactor are examined. Three design combinations-gaseous UF6 core with a solid matrix blanket, gaseous UF6 core with a liquid blanket, and gaseous UF6 core with a circulating blanket were considered. Results show the gaseous UF6 core with a circulating blanket was best suited to the power plant concept.

  19. Storing and Deploying Solar Panels

    NASA Technical Reports Server (NTRS)

    Browning, D. L.; Stocker, H. M.; Kleidon, E. H.

    1982-01-01

    Like upward-drawn window shades, solar blankets are unfurled to length of 89m, almost filling opening in 95.59-meter-square frame. When frame is completely assembled, solar blankets are pulled from canisters, one by one by electric motor. A Thin cushion sheet is rolled up with each blanket to cushion solar cells. Sheet is taken up on roller as blanket is unfurled. Unrolling proceeds automatically.

  20. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within amore » low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding, low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section 3 discusses the results; Section 4 summarizes findings and future work.« less

  1. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  2. Water table dynamics in undisturbed, drained and restored blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.

    2011-05-01

    SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.

  3. Phase 3 experiments of the JAERI/USDOE collaborative program on fusion blanket neutronics. Volume 1: Experiment

    NASA Astrophysics Data System (ADS)

    Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Maekawa, Fujio; Kosako, Kazuaki; Nakamura, Tomoo; Maekawa, Hiroshi; Youssef, Mahmoud Z.; Kumar, Anil; Abdou, Mohamed A.

    1994-02-01

    A pseudo-line source has been realized by using an accelerator based D-T point neutron source. The pseudo-line source is obtained by time averaging of continuously moving point source or by superposition of finely distributed point sources. The line source is utilized for fusion blanket neutronics experiments with an annular geometry so as to simulate a part of a tokamak reactor. The source neutron characteristics were measured for two operational modes for the line source, continuous and step-wide modes, with the activation foil and the NE213 detectors, respectively. In order to give a source condition for a successive calculational analysis on the annular blanket experiment, the neutron source characteristics was calculated by a Monte Carlo code. The reliability of the Monte Carlo calculation was confirmed by comparison with the measured source characteristics. The shape of the annular blanket system was a rectangular with an inner cavity. The annular blanket was consist of 15 mm-thick first wall (SS304) and 406 mm-thick breeder zone with Li2O at inside and Li2CO3 at outside. The line source was produced at the center of the inner cavity by moving the annular blanket system in the span of 2 m. Three annular blanket configurations were examined; the reference blanket, the blanket covered with 25 mm thick graphite armor and the armor-blanket with a large opening. The neutronics parameters of tritium production rate, neutron spectrum and activation reaction rate were measured with specially developed techniques such as multi-detector data acquisition system, spectrum weighting function method and ramp controlled high voltage system. The present experiment provides unique data for a higher step of benchmark to test a reliability of neutronics design calculation for a realistic tokamak reactor.

  4. Analysis of thermal performance of penetrated multi-layer insulation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Yoo, Chai H.; Barrett, William E.

    1988-01-01

    Results of research performed for the purpose of studying the sensitivity of multi-layer insulation blanket performance caused by penetrations through the blanket are presented. The work described in this paper presents the experimental data obtained from thermal vacuum tests of various penetration geometries similar to those present on the Hubble Space Telescope. The data obtained from these tests is presented in terms of electrical power required sensitivity factors referenced to a multi-layer blanket without a penetration. The results of these experiments indicate that a significant increase in electrical power is required to overcome the radiation heat losses in the vicinity of the penetrations.

  5. Design and optimization of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Colozza, Anthony J.

    A study was performed to design a self-deploying tent shaped PV (photovoltaic) array and optimize the design for maximum specific power. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both Lunar and Martian environmental conditions. The performance specifications for the array at both locations and with various PV blankets were determined.

  6. 48 CFR 313.303 - Blanket purchase agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements. 313.303 Section 313.303 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES....303 Blanket purchase agreements. ...

  7. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    PubMed Central

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  8. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  9. Parametric study of two planar high power flexible solar array concepts

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.

    1978-01-01

    The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.

  10. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  11. Spacecraft thermal blanket cleaning - Vacuum baking or gaseous flow purging

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1992-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours. In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  12. Accelerator-Driven Subcritical System for Disposing of the U.S. Spent Nuclear Fuel Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Yousry; Cao, Yan; Kraus, Adam R.

    The current United States inventory of the spent nuclear fuel (SNF) is ~80,000 metric tons of heavy metal (MTHM), including ~131 tons of minor actinides (MAs) and ~669 tons of plutonium. This study describes a conceptual design of an accelerator-driven subcritical (ADS) system for disposing of this SNF inventory by utilizing the 131 tons of MAs inventory and a fraction of the plutonium inventory for energy production, and transmuting some long-lived fission products. An ADS system with a homogeneous subcritical fission blanket was first examined. A spallation neutron source is used to drive the blanket and it is produced frommore » the interaction of a 1-GeV proton beam with a lead-bismuth eutectic (LBE) target. The blanket has a liquid mobile fuel using LBE as the fuel carrier. The fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Monte Carlo analyses were performed to determine the overall parameters of the concept. Steady-state Monte Carlo simulations were performed for three similar fission blankets. Except for, the loaded amount of actinide materials in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factors of the three blankets are ~0.98 and the initial MAs blanket inventories are ~10 tons. In addition, Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. During operation, fresh fuel was fed into the fission blanket to adjust its reactivity and to control the system power. The burnup analysis shows that the three ADS concepts consume about 1.2 tons of actinides per full power year and produce 3 GW thermal power, with a proton beam power of 25 MW. For the blankets with 5, 7, or 10% actinide fuel particles loaded in the LBE, assuming that the ADS systems can be operated for 35 full-power years, the total MA materials consumed in the three ADS systems are about 30.6, 35.3, and 37.2 tons, respectively. Thus, the corresponding numbers of ADS systems to utilize the 131 tons of MA materials of the SNF inventory are 4.3, 3.7, or 3.5, respectively. ADS concepts with tube bundles inserted in the fission blanket were analyzed to overcome the disadvantages of the homogeneous blanket concept. The liquid lead is used as the target material, the mobile fuel carrier, and the primary coolant to avoid the polonium production from bismuth. Reactor physics and thermal-hydraulic analyses were coupled to determine the parameters of the heterogeneous fission blanket. The engineering requirements for a satisfactory operation performance of the HT-9 ferritic steel structure material have been realized. Two heterogeneous concepts of the subcritical fission blanket with the liquid lead mobile fuel inside or outside the tube bundles were considered. The heterogeneous configuration with the mobile fuel inside the tubes showed better performance than the configuration with mobile fuel outside the bundle tubes. The Monte Carlo burnup codes, MCB5 and SERPENT were both used to simulate the fuel burnup in the ADS concepts with the mobile fuels inside the tubes. The burnup analyses were carried out for 35 full power years. The results show that 5 ADS systems can dispose of the total United States inventory of the spent nuclear fuel.« less

  13. KSC-04pd0615

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- A closeup of the stitching being done on pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  14. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  15. KSC-04pd0624

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes a piece of insulation blanket from an “oven” after heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  16. KSC-04pd0626

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, covers another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  17. KSC-04pd0623

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, places pieces of insulation blanket into an “oven” for heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  18. KSC-04pd0628

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, gets ready to place insulation blankets on the shelf after they have been heated. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  19. KSC-04pd0625

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes another insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  20. KSC-04pd0627

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, prepares the cover of another insulation blanket in the “oven” prior to heat cleaning. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  1. KSC-04pd0622

    NASA Image and Video Library

    2004-03-25

    KENNEDY SPACE CENTER, FLA. -- Damon Petty, with United Space Alliance, removes an insulation blanket from a shelf prior to heat cleaning and waterproofing. The blankets fit inside the nose cap of an orbiter. They consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  2. KSC-04pd0614

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  3. KSC-04pd0613

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  4. KSC-04PD-0613

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches.

  5. KSC-04PD-0616

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  6. KSC-04pd0616

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Ginger Morrison and Michael Williams stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  7. KSC-04PD-0614

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance workers Michael Williams and Ginger Morrison stitch together pieces of insulation blankets inside the ring that fits in the nose cap of Discovery. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through- stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  8. KSC-04pd0600

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  9. KSC-04pd0601

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  10. KSC-04pd0602

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  11. 48 CFR 613.303 - Blanket purchase agreements (BPAs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 613.303 Section 613.303 Federal Acquisition Regulations System DEPARTMENT OF STATE....303 Blanket purchase agreements (BPAs). ...

  12. 48 CFR 1313.303 - Blanket Purchase Agreements (BPAs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Blanket Purchase Agreements (BPAs). 1313.303 Section 1313.303 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE....303 Blanket Purchase Agreements (BPAs). ...

  13. 48 CFR 13.303 - Blanket purchase agreements (BPAs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 13.303 Section 13.303 Federal Acquisition Regulations System FEDERAL ACQUISITION... Methods 13.303 Blanket purchase agreements (BPAs). ...

  14. Epoxy blanket protects milled part during explosive forming

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Epoxy blanket protects chemically milled or machined sections of large, complex structural parts during explosive forming. The blanket uniformly covers all exposed surfaces and fills any voids to support and protect the entire part.

  15. Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module

    NASA Astrophysics Data System (ADS)

    Deepak, SHARMA; Paritosh, CHAUDHURI

    2018-04-01

    The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.

  16. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolantmore » channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.« less

  17. The Markov blankets of life: autonomy, active inference and the free energy principle

    PubMed Central

    Palacios, Ensor; Friston, Karl; Kiverstein, Julian

    2018-01-01

    This work addresses the autonomous organization of biological systems. It does so by considering the boundaries of biological systems, from individual cells to Home sapiens, in terms of the presence of Markov blankets under the active inference scheme—a corollary of the free energy principle. A Markov blanket defines the boundaries of a system in a statistical sense. Here we consider how a collective of Markov blankets can self-assemble into a global system that itself has a Markov blanket; thereby providing an illustration of how autonomous systems can be understood as having layers of nested and self-sustaining boundaries. This allows us to show that: (i) any living system is a Markov blanketed system and (ii) the boundaries of such systems need not be co-extensive with the biophysical boundaries of a living organism. In other words, autonomous systems are hierarchically composed of Markov blankets of Markov blankets—all the way down to individual cells, all the way up to you and me, and all the way out to include elements of the local environment. PMID:29343629

  18. Multiplier, moderator, and reflector materials for advanced lithium?vanadium fusion blankets

    NASA Astrophysics Data System (ADS)

    Gohar, Y.; Smith, D. L.

    2000-12-01

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at average loading conditions of 2 MW/m 2 surface heat flux and 10 MW/m 2 neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  19. 48 CFR 213.303 - Blanket purchase agreements (BPAs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 213.303 Section 213.303 Federal Acquisition Regulations System DEFENSE ACQUISITION... PROCEDURES Simplified Acquisition Methods 213.303 Blanket purchase agreements (BPAs). ...

  20. "Easy-on, Easy-off" Blanket Fastener

    NASA Technical Reports Server (NTRS)

    Kolecki, Ronald E.; Clatterbuck, Carroll H.

    1992-01-01

    Fasteners hold flexible blanket on set of posts on supporting structure. Disk of silicone rubber cast on disk of Mylar, fastened to blanket and press-fit over post to nest securely in groove. No tools needed for installation or removal.

  1. Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting

    NASA Technical Reports Server (NTRS)

    Calamito, Dominic P.

    1989-01-01

    Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented.

  2. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) Manager of the Thermal Protection System (TPS) Facility Martin Wilson (right) briefs NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (left) on the properties of a thermal blanket used in the Shuttle's TPS. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  3. Hierarchical Markov blankets and adaptive active inference. Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Michael

    2018-03-01

    Ramstead MJD, Badcock PB, Friston KJ. Answering Schrödinger's question: A free-energy formulation. Phys Life Rev 2018. https://doi.org/10.1016/j.plrev.2017.09.001 [this issue] motivate a multiscale characterisation of living systems in terms of hierarchically structured Markov blankets - a view of living systems as comprised of Markov blankets of Markov blankets [1-4]. It is effectively a treatment of what life is and how it is realised, cast in terms of how Markov blankets of living systems self-organise via active inference - a corollary of the free energy principle [5-7].

  4. KSC-04pd0621

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- In the Thermal Protection System Facility, Pilar Ryan, with United Space Alliance, stitches a piece of insulation blanket for Atlantis' nose cap. Behind her is a cover for the nose cap. The blankets consist of layered, pure silica felt sandwiched between a layer of silica fabric (the hot side) and a layer of S-Glass fabric. The blankets are semi-rigid and can be made as large as 30 inches by 30 inches. The blanket is through-stitched with pure silica thread in a 1-inch grid pattern. After fabrication, the blanket is bonded directly to the vehicle structure and finally coated with a high purity silica coating that improves erosion resistance.

  5. Modeling of leachate recirculation using combined drainage blanket-horizontal trench systems in bioreactor landfills.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Xie, Hai-Jian

    2017-10-01

    Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.

  6. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    NASA Astrophysics Data System (ADS)

    Woronow, A.

    1981-02-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  7. Thermal environment and sleep in winter shelter-analogue settings

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yosuke; Maeda, Kazuki; Nabeshima, Yuki; Tsuzuki, Kazuyo

    2017-10-01

    We aimed to examine sleep in shelter-analogue settings in winter to determine the sleep and environmental conditions in evacuation shelters. Twelve young healthy students took part in the sleep study of two nights for seven hours from 0 AM to 7 AM in a gymnasium. One night the subject used a pair of futons and on the other the subject used emergency supplies consisting of four blankets and a set of portable partitions. Air temperature, humidity were measured around the sleeping subjects through the night. Sleep parameters, skin temperature, microclimate temperature, rectal temperature, and heart rate of the subjects were continuously measured and recorded during the sleeping period. The subjects completed questionnaires relating to thermal comfort and subjective sleep before and after sleep. The sleep efficiency indices were lower when the subjects slept using the blankets. As the microclimate temperature between the human body and blanket was lower, mean skin temperature was significantly lower in the case of blankets.

  8. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  9. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    NASA Technical Reports Server (NTRS)

    Woronow, A.

    1981-01-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  10. Geomorphic clues to the Martian volatile inventory. 1: Flow ejecta blankets

    NASA Technical Reports Server (NTRS)

    Pieri, D.; Baloga, S.; Norris, M.

    1984-01-01

    There are classes of landforms whose presence on Mars is strongly suggestive, if not confirmatory, of the participation of volatiles, presumably water, in its geomorphic development: (1) valley networks, (2) outflow channels, (3) landslides, and (4) flow-ejecta blankets. The first two may represent landforms generated by the movement of volatiles from sources, while the latter two probably represent the dissipation of energy generated by forcing inputs (e.g., kinetic energy and gravity) modulated by volatiles. In many areas on Mars, all four processes have acted on the same lithologic materials and were influenced by the composition of those units, and possibility by the climatic regime at the time of their formation. One of the approaches discussed to this specific problem of landform genesis, and to the general problem of the present and past states of martian volatiles, is to attempt to constrain the distribution, amount, and history of available volatiles by using possible evidence of volatile participation expressed in the morphology of other related landforms (e.g., flow-ejecta blankets and landslides) coupled with physical models for landform genesis.

  11. Covering surface nanobubbles with a NaCl nanoblanket.

    PubMed

    Berkelaar, Robin P; Zandvliet, Harold J W; Lohse, Detlef

    2013-09-10

    By letting a NaCl aqueous solution of low (0.01 M) concentration evaporate on a highly oriented pyrolytic graphite (HOPG) surface, it is possible to form a thin film of salt. However, pre-existing surface nanobubbles prevent the homogeneous coverage of the surface with the salt, keeping the footprint areas on the substrate pristine. Comparing the surface nanobubbles in the salt solution with their associated footprint after drying, provides information on the shrinkage of nanobubbles during the hours-long process of drying the liquid film. At a slightly higher NaCl concentration and thus salt layer thickness, the nanobubbles are covered with a thin blanket of salt. Once the liquid film has evaporated until a water film remains that is smaller than the height of the nanobubbles, the blanket of salt cracks and unfolds into a flower-like pattern of salt flakes that is located at the rim of the nanobubble footprint. The formation of a blanket of salt covering the nanobubbles is likely to considerably or even completely block the gas out-flux from the nanobubble, partially stabilizing the nanobubbles against dissolution.

  12. Geomorphic clues to the Martian volatile inventory. 1: Flow ejecta blankets

    NASA Astrophysics Data System (ADS)

    Pieri, D.; Baloga, S.; Norris, M.

    1984-04-01

    There are classes of landforms whose presence on Mars is strongly suggestive, if not confirmatory, of the participation of volatiles, presumably water, in its geomorphic development: (1) valley networks, (2) outflow channels, (3) landslides, and (4) flow-ejecta blankets. The first two may represent landforms generated by the movement of volatiles from sources, while the latter two probably represent the dissipation of energy generated by forcing inputs (e.g., kinetic energy and gravity) modulated by volatiles. In many areas on Mars, all four processes have acted on the same lithologic materials and were influenced by the composition of those units, and possibility by the climatic regime at the time of their formation. One of the approaches discussed to this specific problem of landform genesis, and to the general problem of the present and past states of martian volatiles, is to attempt to constrain the distribution, amount, and history of available volatiles by using possible evidence of volatile participation expressed in the morphology of other related landforms (e.g., flow-ejecta blankets and landslides) coupled with physical models for landform genesis.

  13. Low RF Reflectivity Spacecraft Thermal Blanket by Using High-Impedance Surface Absorbers

    NASA Astrophysics Data System (ADS)

    Costa, F.; Monorchio, A.; Carrubba, E.; Zolesi, V.

    2012-05-01

    A technique for designing a low-RF reflectivity thermal blanket is presented. Multi-layer insulation (MLI) blankets are employed to stabilize the temperature on spacecraft unit but they can be responsible of passive intermodulation products and high-mutual coupling between antennas since they are realized with metallic materials. The possibility to replace the last inner layer of a MLI blanket with an ultra-thin absorbing layer made of high-impedance surface absorber is discussed.

  14. Improved Acoustic Blanket Developed and Tested

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Acoustic blankets are used in the payload fairing of expendable launch vehicles to reduce the fairing's interior acoustics and the subsequent vibration response of the spacecraft. The Cassini spacecraft, to be launched on a Titan IV in October 1997, requires acoustic levels lower than those provided by the standard Titan IV blankets. Therefore, new acoustic blankets were recently developed and tested to reach NASA's goal of reducing the Titan IV acoustic environment to the allowable levels for the Cassini spacecraft.

  15. High temperature lined conduits, elbows and tees

    DOEpatents

    De Feo, Angelo; Drewniany, Edward

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  16. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maranon, E.; Castrillon, L.; Fernandez, Y.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1more » cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.« less

  17. SOLVING THE STAND-OFF PROBLEM FOR MAGNETIZED TARGET FUSION: PLASMA STREAMS AS DISPOSABLE ELECTRODES, PLUS A LOCAL SPHERICAL BLANKET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D D; Thio, Y F

    In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes ismore » discussed.« less

  18. 47 CFR 73.318 - FM blanketing interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false FM blanketing interference. 73.318 Section 73.318 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.318 FM blanketing interference. Areas adjacent to the...

  19. Thermally distinct ejecta blankets from Martian craters

    NASA Astrophysics Data System (ADS)

    Betts, B. H.; Murray, B. C.

    1992-09-01

    The study of ejecta blankets on Mars gives information about the Martian surface, subsurface, geologic history, atmospheric history, and impact process. In Feb. and Mar. 1989, the Termoskan instrument on board the Phobos 1988 spacecraft of the USSR acquired the highest spatial resolution thermal data ever obtained for Mars, ranging in the resolution from 300 meters to 3 km per pixel. Termoskan simultaneously obtained broad band visible channel data. The data covers a large portion of the equatorial region from 30 degrees S latitude to 6 degrees N latitude. Utilizing the data set we have discovered tens of craters with thermal infrared distinct ejecta (TIDE) in the equatorial regions of Mars. In order to look for correlations within the data, we have compiled a database which currently consists of 110 craters in an area rich in TIDE's and geologic unit variations. For each crater, we include morphologic information from Barlow's Catalog of Large Martian Impact Craters in addition to geographic, geologic, and physical information and Termoskan thermal infrared and visible data.

  20. Thermally distinct ejecta blankets from Martian craters

    NASA Technical Reports Server (NTRS)

    Betts, B. H.; Murray, B. C.

    1992-01-01

    The study of ejecta blankets on Mars gives information about the Martian surface, subsurface, geologic history, atmospheric history, and impact process. In Feb. and Mar. 1989, the Termoskan instrument on board the Phobos 1988 spacecraft of the USSR acquired the highest spatial resolution thermal data ever obtained for Mars, ranging in the resolution from 300 meters to 3 km per pixel. Termoskan simultaneously obtained broad band visible channel data. The data covers a large portion of the equatorial region from 30 degrees S latitude to 6 degrees N latitude. Utilizing the data set we have discovered tens of craters with thermal infrared distinct ejecta (TIDE) in the equatorial regions of Mars. In order to look for correlations within the data, we have compiled a database which currently consists of 110 craters in an area rich in TIDE's and geologic unit variations. For each crater, we include morphologic information from Barlow's Catalog of Large Martian Impact Craters in addition to geographic, geologic, and physical information and Termoskan thermal infrared and visible data.

  1. A photovoltaic catenary-tent array for the Martian surface

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.

    1993-01-01

    To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequentlymore » the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.« less

  3. Development of a new multi-layer insulation blanket with non-interlayer-contact spacer for space cryogenic mission

    NASA Astrophysics Data System (ADS)

    Miyakita, Takeshi; Hatakenaka, Ryuta; Sugita, Hiroyuki; Saitoh, Masanori; Hirai, Tomoyuki

    2014-11-01

    For conventional Multi-Layer Insulation (MLI) blankets, it is difficult to control the layer density and the thermal insulation performance degrades due to the increase in conductive heat leak through interlayer contacts. At low temperatures, the proportion of conductive heat transfer through MLI blankets is large compared to that of radiative heat transfer, hence the decline in thermal insulation performance is significant. A new type of MLI blanket using new spacers; the Non-Interlayer-Contact Spacer MLI (NICS MLI) has been developed. This new MLI blanket uses small discrete spacers and can exclude uncertain interlayer contact between films. It is made of polyetheretherketone (PEEK) making it suitable for space use. The cross-sectional area to length ratio of the spacer is 1.0 × 10-5 m with a 10 mm diameter and 4 mm height. The insulation performance is measured with a boil-off calorimeter. Because the NICS MLI blanket can exclude uncertain interlayer contact, the test results showed good agreement with estimations. Furthermore, the NICS MLI blanket shows significantly good insulation performance (effective emissivity is 0.0046 at ordinary temperature), particularly at low temperatures, due to the high thermal resistance of this spacer.

  4. Security Blanket or Crutch? Crib Card Usage Depends on Students' Abilities

    ERIC Educational Resources Information Center

    Burns, Kathleen C.

    2014-01-01

    This study investigated whether students use crib cards as a security blanket or a crutch by asking students to tally the number of times they used them during exams in a statistics class. There was a negative correlation between the number of times students used their crib cards and exam performance. High-achieving students did not utilize their…

  5. KSC Electrostatic Discharge (ESD) Issues

    NASA Technical Reports Server (NTRS)

    Buhler, Charles

    2008-01-01

    Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.

  6. Conceptual approach study of a 200 watt per kilogram solar array, phase 1

    NASA Technical Reports Server (NTRS)

    Rayl, G. J.; Speight, K. M.; Stanhouse, R. W.

    1977-01-01

    Two alternative designs were studied; one a retractable rollout design and the other a nonretractable foldout configuration. An end of life (EOL) power for either design of 0.79 beginning of life (BOL) is predicted based on one solar flare during a 3 year interplanetary mission. Both array configurations incorporate the features of flexible substrates and cover sheets. A power capacity of 10 kilowatt is achieved in a blanket area of 76 sq m with an area utilization factor of 0.8. A single array consists of two identical solar cell blankets deployed concurrently by a single, coilable longeron boom. An out of plane angle of 8-1/4 deg is maintained between the two blankets so that the inherent inplane stiffness of the blankets may be used to obtain out of plane stiffness. This V-stiffened design results in a 67% reduction in the stiffness requirement for the boom. Since boom mass scales with stiffness, a lower requirement on boom stiffness results in a lower mass for the boom. These solar arrays are designed to be compatible with the shuttle launch environment and shuttle cargo bay size limitations.

  7. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    NASA Astrophysics Data System (ADS)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  8. Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    NASA Technical Reports Server (NTRS)

    Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.

    1977-01-01

    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.

  9. Retractable Sun Shade

    NASA Technical Reports Server (NTRS)

    Frank, A.; Derespinis, S. F.; Mockovciak, John, Jr.

    1986-01-01

    Window-shade type spring roller contains blanket, taken up by rotating cylindrical frame and held by frame over area to be shaded. Blanket made of tough, opaque polyimide material. Readily unfurled by mechanism to protect space it encloses from Sun. Blanket forms arched canopy over space and allows full access to it from below. When shading not needed, retracted mechanism stores blanket compactly. Developed for protecting sensitive Space Shuttle payloads from direct sunlight while cargo-bay doors open. Adapted to shading of greenhouses, swimming pools, and boats.

  10. Thin Thermal-Insulation Blankets for Very High Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately. A blanket according to the proposal (see figure) would be made of molybdenum, titanium nitride, and carbon- carbon composite mesh, which melt at temperatures of 2,610, 2,930, and 2,130 C, respectively. The emittance of molybdenum is 0.24, while that of titanium nitride is 0.03. Carbon-carbon composite mesh is a thermal insulator. Typically, the blanket would include 0.25-mil (.0.00635-mm)-thick hot-side and cold-side cover layers of molybdenum. Titanium nitride would be vapor-deposited on both surfaces of each cover layer. Between the cover layers there would be 10 inner layers of 0.15-mil (.0.0038-mm)-thick molybdenum with vapor-deposited titanium nitride on both sides of each layer. The thickness of each titanium nitride coat would be about 1,000 A. The cover and inner layers would be interspersed with 0.25-mil (0.00635-mm)-thick layers of carbon-carbon composite mesh. The blanket would have total thickness of 4.75 mils (approximately equal to 0.121 mm) and an areal mass density of 0.7 kilograms per square meter. One could, of course, increase the thermal- insulation capability of the blanket by increasing number of inner layers (thereby unavoidably increasing the total thickness and mass density).

  11. Cassini/Titan-4 Acoustic Blanket Development and Testing

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    1996-01-01

    NASA Lewis Research Center recently led a multi-organizational effort to develop and test verify new acoustic blankets. These blankets support NASA's goal in reducing the Titan-4 payload fairing internal acoustic environment to allowable levels for the Cassini spacecraft. To accomplish this goal a two phase acoustic test program was utilized. Phase One consisted of testing numerous blanket designs in a flat panel configuration. Phase Two consisted of testing the most promising designs out of Phase One in a full scale cylindrical payload fairing. This paper will summarize this highly successful test program by providing the rationale and results for each test phase, the impacts of this testing on the Cassini mission, as well as providing some general information on blanket designs.

  12. Evaluation of compost blankets for erosion control from disturbed lands.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Distributing Radiant Heat in Insulation Tests

    NASA Technical Reports Server (NTRS)

    Freitag, H. J.; Reyes, A. R.; Ammerman, M. C.

    1986-01-01

    Thermally radiating blanket of stepped thickness distributes heat over insulation sample during thermal vacuum testing. Woven of silicon carbide fibers, blanket spreads heat from quartz lamps evenly over insulation sample. Because of fewer blanket layers toward periphery of sample, more heat initially penetrates there for more uniform heat distribution.

  14. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...

  15. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...

  16. 18 CFR 284.402 - Blanket marketing certificates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Blanket marketing certificates. 284.402 Section 284.402 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing...

  17. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket.

    PubMed

    Lo Frano, Rosa; Puccini, Monica; Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano

    2018-05-02

    An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li₄SiO₄) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1⁻1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.

  18. Redesigning the work system of rubber industries based on total ergonomics and ergo-micmac integration

    NASA Astrophysics Data System (ADS)

    Setiawan, H.

    2018-01-01

    The factory capacity achievement and the bottleneck reduction of production process at wet-blanket workstations are influenced by the balance of life quality rates and worker’s productivity, along with the worker’s ability and limitations, tasks, organization and work environment. The life quality of workers is indicated by: the reduction of workload, and fatigue. Meanwhile, work productivity is measured by increasing production results per work shift. The optimization of the quality of life and productivity of workers is achieved by redesigning the system and workstations based on ergonomics integrating Total Ergonomics with Ergo-MicMac (Micro Ergonomics and Macro Ergonomics), which includes redesigning wet-blanket folding worktable, regulating the system pattern of working in pairs, giving official break time, giving extra nutritious intakes such as sweet tea and snack Pempek, giving personal protective equipments, and redesigning physical working environments.This study was an experimental study, with treatment by subject design involving 30 workers sampled at a workstation condition before and after Ergonomics based redesign. The findings and conclusions of the study were derived from the reduction of the workload by 16.06%, fatigue by 18.84% and the increase of production results per work shift by 20.29%.

  19. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is limited and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical working experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, it is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium alloy option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  20. Electromagnetic Launch Vehicle Fairing and Acoustic Blanket Model of Received Power Using FEKO

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Evaluating the impact of radio frequency transmission in vehicle fairings is important to electromagnetically sensitive spacecraft. This study employs the multilevel fast multipole method (MLFMM) from a commercial electromagnetic tool, FEKO, to model the fairing electromagnetic environment in the presence of an internal transmitter with improved accuracy over industry applied techniques. This fairing model includes material properties representative of acoustic blanketing commonly used in vehicles. Equivalent surface material models within FEKO were successfully applied to simulate the test case. Finally, a simplified model is presented using Nicholson Ross Weir derived blanket material properties. These properties are implemented with the coated metal option to reduce the model to one layer within the accuracy of the original three layer simulation.

  1. 48 CFR 313.303-5 - Purchases under blanket purchase agreements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Purchases under blanket purchase agreements. 313.303-5 Section 313.303-5 Federal Acquisition Regulations System HEALTH AND HUMAN... Methods 313.303-5 Purchases under blanket purchase agreements. (e)(5) HHS personnel that sign delivery...

  2. 75 FR 51482 - Woven Electric Blankets From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... From China Determination On the basis of the record \\1\\ developed in the subject investigation, the... injured by reason of imports from China of woven electric blankets, provided for in subheading 6301.10.00... notification of a preliminary determination by Commerce that imports of woven electric blankets from China were...

  3. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in Docket...

  4. FAST NEUTRON REACTOR

    DOEpatents

    Soodak, H.; Wigner, E.P.

    1961-07-25

    A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

  5. 77 FR 34876 - Airworthiness Directives; The Boeing Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... (a flammable fluid leakage zone) or heat damage to the APU power feeder cable, insulation blankets... heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead. Relevant Service... feeder cable and heat damage of the insulation blanket adjacent to the clamp, a detailed inspection for...

  6. 18 CFR 33.1 - Applicability, definitions, and blanket authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Applicability, definitions, and blanket authorizations. 33.1 Section 33.1 Conservation of Power and Water Resources FEDERAL... UNDER FEDERAL POWER ACT SECTION 203 § 33.1 Applicability, definitions, and blanket authorizations. (a...

  7. HEAT GENERATION

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1963-12-01

    Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

  8. KSC-04pd0597

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers prepare for contact of NASA’s MESSENGER spacecraft with a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  9. KSC-04pd0599

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers verify the correct placement of NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  10. KSC-04pd0594

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers prepare to move NASA’s MESSENGER spacecraft onto a test stand using an overhead crane. There, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  11. KSC-04pd0598

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers check for the correct alignment of NASA’s MESSENGER spacecraft as it is lowered onto a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  12. KSC-04pd0595

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers lower NASA’s MESSENGER spacecraft onto a test stand using an overhead crane. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  13. KSC-04pd0603

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, the attachment of NASA’s MESSENGER spacecraft to a test stand is complete. The spacecraft is now ready for employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, to begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  14. KSC-04pd0596

    NASA Image and Video Library

    2004-03-22

    KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers monitor NASA’s MESSENGER spacecraft as it is lowered onto a test stand by an overhead crane. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.

  15. Discovering collectively informative descriptors from high-throughput experiments

    PubMed Central

    2009-01-01

    Background Improvements in high-throughput technology and its increasing use have led to the generation of many highly complex datasets that often address similar biological questions. Combining information from these studies can increase the reliability and generalizability of results and also yield new insights that guide future research. Results This paper describes a novel algorithm called BLANKET for symmetric analysis of two experiments that assess informativeness of descriptors. The experiments are required to be related only in that their descriptor sets intersect substantially and their definitions of case and control are consistent. From resulting lists of n descriptors ranked by informativeness, BLANKET determines shortlists of descriptors from each experiment, generally of different lengths p and q. For any pair of shortlists, four numbers are evident: the number of descriptors appearing in both shortlists, in exactly one shortlist, or in neither shortlist. From the associated contingency table, BLANKET computes Right Fisher Exact Test (RFET) values used as scores over a plane of possible pairs of shortlist lengths [1,2]. BLANKET then chooses a pair or pairs with RFET score less than a threshold; the threshold depends upon n and shortlist length limits and represents a quality of intersection achieved by less than 5% of random lists. Conclusions Researchers seek within a universe of descriptors some minimal subset that collectively and efficiently predicts experimental outcomes. Ideally, any smaller subset should be insufficient for reliable prediction and any larger subset should have little additional accuracy. As a method, BLANKET is easy to conceptualize and presents only moderate computational complexity. Many existing databases could be mined using BLANKET to suggest optimal sets of predictive descriptors. PMID:20021653

  16. Spectral properties of Titan's impact craters imply chemical weathering of its surface

    PubMed Central

    Barnes, J. W.; Sotin, C.; MacKenzie, S.; Soderblom, J. M.; Le Mouélic, S.; Kirk, R. L.; Stiles, B. W.; Malaska, M. J.; Le Gall, A.; Brown, R. H.; Baines, K. H.; Buratti, B.; Clark, R. N.; Nicholson, P. D.

    2015-01-01

    Abstract We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions. PMID:27656006

  17. Lunar magnetic anomalies and the Cayley formation

    NASA Technical Reports Server (NTRS)

    Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Mcconnell, R. K.

    1973-01-01

    It is proposed that magnetic anomalies such as found at the Apollo 16 site are associated with breccia flows which cooled in place from above 770 C. The required field at the time that this process took place is a few thousand gamma. It is suggested that the surface and orbital magnetic anomalies are caused by basins filled with Cayley-like breccia flows to a thickness of the order of a kilometer. These breccia blankets settled in place from temperatures above 770 C and a thickness on the order of 1 km was welded to a level of 2 to 4 on Warner's scale. A base surge caused by impact or by a volcanic event could be the mechanism by which these breccia blankets were deposited.

  18. KSC-2012-1961

    NASA Image and Video Library

    2012-04-05

    CAPE CANAVERAL, Fla. – Kennedy Space Center Director Bob Cabana, right, shows a space shuttle felt reusable surface insulation FRSI blanket to Florida’s Lt. Gov. Jennifer Carroll during a tour of Kennedy’s Orbiter Processing Facility-1. The blanket is part of the shuttle’s thermal protection system which covers the shuttle’s exterior and protects it from the heat of re-entry. The tour coincided with Carroll’s visit to Kennedy for a meeting with Cabana. Atlantis is being prepared for public display at the Kennedy Space Center Visitor Complex in 2013. The groundbreaking for Atlantis’ exhibit hall took place in January Atlantis is scheduled to be moved to the visitor complex in November. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Jim Grossmann

  19. Composite aerogel insulation for cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Kyeongho, Kim; Hyungmook, Kang; Soojin, Shin; In Hwan, Oh; Changhee, Son; Hyung, Cho Yun; Yongchan, Kim; Sarng Woo, Karng

    2017-02-01

    High porosity materials such as aerogel known as a good insulator in a vacuum range (10-3 ∼ 1 Torr) was widely used to storage and to transport cryogenic fluids. It is necessary to be investigated the performance of aerogel insulations for cryogenic liquid storage in soft vacuum range to atmospheric pressure. A one-dimensional insulating experimental apparatus was designed and fabricated to consist of a cold mass tank, a heat absorber and an annular vacuum space with 5-layer (each 10 mm thickness) of the aerogel insulation materials. Aerogel blanket for cryogenic (used maximum temperature is 400K), aerogel blanket for normal temperature (used maximum temperature is 923K), and combination of the two kinds of aerogel blankets were 5-layer laminated between the cryogenic liquid wall and the ambient wall in vacuum space. Also, 1-D effective thermal conductivities of the insulation materials were evaluated by measuring boil-off rate from liquid nitrogen and liquid argon. In this study, the effective thermal conductivities and the temperature-thickness profiles of the two kinds of insulators and the layered combination of the two different aerogel blankets were presented.

  20. A passively-safe fusion reactor blanket with helium coolant and steel structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosswait, Kenneth Mitchell

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel asmore » a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.« less

  1. 18 CFR 284.224 - Certain transportation and sales by local distribution companies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...

  2. 18 CFR 284.224 - Certain transportation and sales by local distribution companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...

  3. 18 CFR 284.224 - Certain transportation and sales by local distribution companies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...

  4. 18 CFR 284.224 - Certain transportation and sales by local distribution companies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain... to the jurisdiction of the Commission, by reason of section 1(c) of the Natural Gas Act. (b) Blanket... apply for a blanket certificate under this section. (2) Upon application for a certificate under this...

  5. 76 FR 13612 - Freebird Gas Storage, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... Storage, LLC; Notice of Request Under Blanket Authorization Take notice that on March 1, 2011, Freebird Gas Storage, LLC (Freebird) filed a Prior Notice Request pursuant to sections 157.205 and 157.208 of... blanket certificate for authorization to increase the storage capacity and deliverability at its East...

  6. 75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... DEPARTMENT OF ENERGY [FE Docket No. 10-31-LNG] Cheniere Marketing, LLC; Application for Blanket... receipt of an application, filed on March 23, 2010, by Cheniere Marketing, LLC (CMI), requesting blanket... amended to reflect a name change from Cheniere Marketing, Inc to Cheniere Marketing, LLC.\\1\\ \\1\\ Cheniere...

  7. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    PubMed

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hubble Space Telescope Thermal Blanket Repair Design and Implementation

    NASA Technical Reports Server (NTRS)

    Ousley, Wes; Skladany, Joseph; Dell, Lawrence

    2000-01-01

    Substantial damage to the outer layer of Hubble Space Telescope (HST) thermal blankets was observed during the February 1997 servicing mission. After six years in LEO, many areas of the aluminized Teflon(R) outer blanket layer had significant cracks, and some material was peeled away to expose inner layers to solar flux. After the mission, the failure mechanism was determined, and repair materials and priorities were selected for follow-on missions. This paper focuses on the thermal, mechanical, and EVA design requirements for the blanket repair, the creative solutions developed for these unique problems, hardware development, and testing.

  9. Beryllium R&D for blanket application

    NASA Astrophysics Data System (ADS)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  10. Variability of alpha-tocopherol values associated with procurement, storage, and freezing of equine serum and plasma samples.

    PubMed

    Craig, A M; Blythe, L L; Rowe, K E; Lassen, E D; Barrington, R; Walker, K C

    1992-12-01

    Recent evidence concerning the pathogenesis of equine degenerative myeloencephalopathy indicated that low blood alpha-tocopherol values are a factor in the disease process. Variables that could be introduced by a veterinarian procuring, transporting, or storing samples were evaluated for effects on alpha-tocopherol concentration in equine blood. These variables included temperature; light; exposure to the rubber stopper of the evacuated blood collection tube; hemolysis; duration of freezing time, with and without nitrogen blanketing; and repeated freeze/thaw cycles. It was found that hemolysis caused the greatest change in high-performance liquid chromatography-measured serum alpha-tocopherol values, with mean decrease of 33% (P < 0.001). Lesser, but significant (P < 0.01) changes in serum alpha-tocopherol values were an approximate 10% decrease when refrigerated blood was left in contact with the red rubber stopper of the blood collection tube for 72 hours and an approximate 5% increase when blood was stored at 20 to 25 C (room temperature) for 72 hours. Repeated freeze/thaw cycles resulted in a significant (P < 0.05) 3% decrease in alpha-tocopherol values in heparinized plasma by the third thawing cycle. Freezer storage for a 3-month period without nitrogen blanketing resulted in slight (2%) decrease in mean serum alpha-tocopherol values, whereas values in serum stored for an identical period under nitrogen blanketing did not change. A significant (P < 0.001) mean decrease (10.3%) in alpha-tocopherol values was associated with freezer (-16 C) storage of nitrogen blanketed serum for 6 months.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    NASA Astrophysics Data System (ADS)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  12. Progress on DCLL Blanket Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Clement; Abdou, M.; Katoh, Yutai

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) frommore » the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.« less

  13. 75 FR 13755 - Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Amend Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of Application to Amend Blanket Authorization. SUMMARY: The Office of Fossil Energy (FE) of the... Oil and Gas Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000...

  14. 75 FR 59167 - Airworthiness Directives; The Boeing Company Model 737-600, -700, -700C, -800, -900, and -900ER...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... inner wall and insulation blankets). This proposed AD results from reports of heat damage to the inner... insulation blankets and heat transfer through the upper compression pad area and the fireseal bracket support... upper and lower inner wall insulation blankets, measuring the electrical conductivity on the aluminum...

  15. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEPARTMENT OF ENERGY [FE Docket No. 12-161-LNG] Eni USA Gas Marketing LLC; Application for Blanket..., by Eni USA Gas Marketing LLC (Eni USA Gas Marketing), requesting blanket authorization to export... U.S. law or policy. Eni USA Gas Marketing is requesting this authorization both on its own behalf...

  16. Clinical outcome comparison of immediate blanket treatment versus a delayed pathogen-based treatment protocol for clinical mastitis in a New York dairy herd.

    PubMed

    Vasquez, A K; Nydam, D V; Capel, M B; Eicker, S; Virkler, P D

    2017-04-01

    The purpose was to compare immediate intramammary antimicrobial treatment of all cases of clinical mastitis with a selective treatment protocol based on 24-h culture results. The study was conducted at a 3,500-cow commercial farm in New York. Using a randomized design, mild to moderate clinical mastitis cases were assigned to either the blanket therapy or pathogen-based therapy group. Cows in the blanket therapy group received immediate on-label intramammary treatment with ceftiofur hydrochloride for 5 d. Upon receipt of 24 h culture results, cows in the pathogen-based group followed a protocol automatically assigned via Dairy Comp 305 (Valley Agricultural Software, Tulare, CA): Staphylococcus spp., Streptococcus spp., or Enterococcus spp. were administered on-label intramammary treatment with cephapirin sodium for 1 d. Others, including cows with no-growth or gram-negative results, received no treatment. A total of 725 cases of clinical mastitis were observed; 114 cows were not enrolled due to severity. An additional 122 cases did not meet inclusion criteria. Distribution of treatments for the 489 qualifying events was equal between groups (pathogen-based, n = 246; blanket, n = 243). The proportions of cases assigned to the blanket and pathogen-based groups that received intramammary therapy were 100 and 32%, respectively. No significant differences existed between blanket therapy and pathogen-based therapy in days to clinical cure; means were 4.8 and 4.5 d, respectively. The difference in post-event milk production between groups was not statistically significant (blanket therapy = 34.7 kg; pathogen-based = 35.4 kg). No differences were observed in test-day linear scores between groups; least squares means of linear scores was 4.3 for pathogen-based cows and 4.2 for blanket therapy cows. Odds of survival 30 d postenrollment was similar between groups (odds ratio of pathogen-based = 1.6; 95% confidence interval: 0.7-3.7) as was odds of survival to 60 d (odds ratio = 1.4; 95% confidence interval: 0.7-2.6). The one significant difference found for the effect of treatment was in hospital days; pathogen-based cows experienced, on average, 3 fewer days than blanket therapy cows. A majority (68.5%) of moderate and mild clinical cases would not have been treated if all cows on this trial were enrolled in a pathogen-based protocol. The use of a strategic treatment protocol based on 24-h postmastitis pathogen results has potential to efficiently reduce antimicrobial use. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Clinical considerations in the use of forced-air warming blankets during orthognathic surgery to avoid postanesthetic shivering

    PubMed Central

    Park, Fiona Daye; Park, Sookyung; Chi, Seong-In; Kim, Hyun Jeong; Kim, Hye-Jung; Han, Jin-Hee; Han, Hee-Jeong; Lee, Eun-Hee

    2015-01-01

    Background During head and neck surgery including orthognathic surgery, mild intraoperative hypothermia occurs frequently. Hypothermia is associated with postanesthetic shivering, which may increase the risk of other postoperative complications. To improve intraoperative thermoregulation, devices such as forced-air warming blankets can be applied. This study aimed to evaluate the effect of supplemental forced-air warming blankets in preventing postanesthetic shivering. Methods This retrospective study included 113 patients who underwent orthognathic surgery between March and September 2015. According to the active warming method utilized during surgery, patients were divided into two groups: Group W (n = 55), circulating-water mattress; and Group F (n = 58), circulating-water mattress and forced-air warming blanket. Surgical notes and anesthesia and recovery room records were evaluated. Results Initial axillary temperatures did not significantly differ between groups (Group W = 35.9 ± 0.7℃, Group F = 35.8 ± 0.6℃). However, at the end of surgery, the temperatures in Group W were significantly lower than those in Group F (35.2 ± 0.5℃ and 36.2 ± 0.5℃, respectively, P = 0.04). The average body temperatures in Groups W and F were, respectively, 35.9 ± 0.5℃ and 36.2 ± 0.5℃ (P = 0.0001). In Group W, 24 patients (43.6%) experienced postanesthetic shivering, while in Group F, only 12 (20.7%) patients required treatment for postanesthetic shivering (P = 0.009, odds ratio = 0.333, 95% confidence interval: 0.147–0.772). Conclusions Additional use of forced-air warming blankets in orthognathic surgery was superior in maintaining normothermia and reduced the incidence of postanesthetic shivering. PMID:28879279

  18. P-channel differential multiple-time programmable memory cells by laterally coupled floating metal gate fin field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Min; Chien, Wei-Yu; Hsu, Chia-Ling; Lin, Chrong Jung; King, Ya-Chin

    2018-04-01

    In this paper, we present a new differential p-channel multiple-time programmable (MTP) memory cell that is fully compatible with advanced 16 nm CMOS fin field-effect transistors (FinFET) logic processes. This differential MTP cell stores complementary data in floating gates coupled by a slot contact structure, which make different read currents possible on a single cell. In nanoscale CMOS FinFET logic processes, the gate dielectric layer becomes too thin to retain charges inside floating gates for nonvolatile data storage. By using a differential architecture, the sensing window of the cell can be extended and maintained by an advanced blanket boost scheme. The charge retention problem in floating gate cells can be improved by periodic restoring lost charges when significant read window narrowing occurs. In addition to high programming efficiency, this p-channel MTP cells also exhibit good cycling endurance as well as disturbance immunity. The blanket boost scheme can remedy the charge loss problem under thin gate dielectrics.

  19. Driving down defect density in composite EUV patterning film stacks

    NASA Astrophysics Data System (ADS)

    Meli, Luciana; Petrillo, Karen; De Silva, Anuja; Arnold, John; Felix, Nelson; Johnson, Richard; Murray, Cody; Hubbard, Alex; Durrant, Danielle; Hontake, Koichi; Huli, Lior; Lemley, Corey; Hetzer, Dave; Kawakami, Shinichiro; Matsunaga, Koichi

    2017-03-01

    Extreme ultraviolet lithography (EUVL) technology is one of the leading candidates for enabling the next generation devices, for 7nm node and beyond. As the technology matures, further improvement is required in the area of blanket film defectivity, pattern defectivity, CD uniformity, and LWR/LER. As EUV pitch scaling approaches sub 20 nm, new techniques and methods must be developed to reduce the overall defectivity, mitigate pattern collapse and eliminate film related defect. IBM Corporation and Tokyo Electron Limited (TELTM) are continuously collaborating to develop manufacturing quality processes for EUVL. In this paper, we review key defectivity learning required to enable 7nm node and beyond technology. We will describe ongoing progress in addressing these challenges through track-based processes (coating, developer, baking), highlighting the limitations of common defect detection strategies and outlining methodologies necessary for accurate characterization and mitigation of blanket defectivity in EUV patterning stacks. We will further discuss defects related to pattern collapse and thinning of underlayer films.

  20. KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians demonstrate the construction of a thermal blanket used in the Shuttle's thermal protection system for USA Vice President and Space Shuttle Program Manager Howard DeCastro (second from left) and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  1. Al-based anti-corrosion and T-permeation barrier development for future DEMO blankets

    NASA Astrophysics Data System (ADS)

    Krauss, W.; Konys, J.; Holstein, N.; Zimmermann, H.

    2011-10-01

    In the Helium-Cooled-Liquid-Lead (HCLL) design of Test-Blanket-Modules (TBM's) for a future fusion power plant Pb-15.7Li is used as liquid breeder which is in direct contact with the structure material, e.g. EUROFER steel. Compatibility testing showed that high corrosion attack appears and that the dissolved steel components form precipitates with a high risk of system blockages. A reliable operation needs coatings as corrosion barriers. The earlier developed Hot-Dip Aluminisation (HDA) process has shown that Al-based scales can act as anti-corrosion as well as T-permeation barriers. Meanwhile two advanced electro-chemically based processes for deposition of Al-scales were successfully developed. The first (ECA = Electro-Chemical Al-deposition) is working with an organic electrolyte and the second one (ECX = Electro-Chemical-X-metal-deposition) is based on ionic liquids. Coatings in the μm-range were deposited homogeneously with exact controllable thicknesses. Metallurgical investigations showed the successful generation of protective scales and compatibility testing demonstrated the barrier function.

  2. Testing Seam Concepts for Advanced Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Chato, D. J.; Johnson, W. L.; Alberts, Samantha J.

    2017-01-01

    Multilayer insulation (MLI) is considered the state of the art insulation for cryogenic propellant tanks in the space environment. MLI traditionally consists of multiple layers of metalized films separated by low conductivity spacers. In order to better understand some of the details within MLI design and construction, GRC has been investigating the heat loads caused by multiple types of seams. To date testing has been completed with 20 layer and 50 layer blankets. Although a truly seamless blanket is not practical, a blanket lay-up where each individual layer was overlapped and tapped together was used as a baseline for the other seams tests. Other seams concepts tested included: an overlap where the complete blanket was overlapped on top of itself; a butt joint were the blankets were just trimmed and butted up against each other, and a staggered butt joint where the seam in the out layers is offset from the seam in the inner layers. Measured performance is based on a preliminary analysis of rod calibration tests conducted prior to the start of seams testing. Baseline performance for the 50 layer blanket showed a measured heat load of 0.46 Watts with a degradation to about 0.47 Watts in the seamed blankets. Baseline performance for the 20 layer blanket showed a measured heat load of 0.57 Watts. Heat loads for the seamed tests are still begin analyzed. So far analysis work has suggested the need for corrections due to heat loads from both the heater leads and the instrumentation wires. A careful re-examination of the calibration test results with these factors accounted for is also underway. This presentation will discuss the theory of seams in MLI, our test results to date, and the uncertainties in our measurements.

  3. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1992-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  4. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, John D.; Niemann, Ralph C.; Boroski, William N.

    1993-01-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  5. Method of fabricating a multilayer insulation blanket

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1993-07-06

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel.

  6. Multilayer insulation blanket, fabricating apparatus and method

    DOEpatents

    Gonczy, J.D.; Niemann, R.C.; Boroski, W.N.

    1992-09-01

    An improved multilayer insulation blanket for insulating cryogenic structures operating at very low temperatures is disclosed. An apparatus and method for fabricating the improved blanket are also disclosed. In the improved blanket, each successive layer of insulating material is greater in length and width than the preceding layer so as to accommodate thermal contraction of the layers closest to the cryogenic structure. The fabricating apparatus has a rotatable cylindrical mandrel having an outer surface of fixed radius that is substantially arcuate, preferably convex, in cross-section. The method of fabricating the improved blanket comprises (a) winding a continuous sheet of thermally reflective material around the circumference of the mandrel to form multiple layers, (b) binding the layers along two lines substantially parallel to the edges of the circumference of the mandrel, (c) cutting the layers along a line parallel to the axle of the mandrel, and (d) removing the bound layers from the mandrel. 7 figs.

  7. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    NASA Astrophysics Data System (ADS)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  8. Increase in transmission loss of a double panel system by addition of mass inclusions to a poro-elastic layer: A comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.

    2009-06-01

    This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.

  9. Noise Transmission Studies of an Advanced Grid-Stiffened Composite Fairing

    DTIC Science & Technology

    2007-10-01

    increase in blanket thickness and weight [7]. The evolved expendable launch vehicle (EELV) programs have conducted research to ensure that their launch...uses an aluminum fairing that is 4 to 5 m in diameter. The Atlas V 500 and heavy lift vehicles use a fairing designed and built by Contraves , which...builds the Ariane V launch vehicle for the European Space Agency. Contraves developed an innovative acoustic blanket for fairing noise reduction that

  10. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  11. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    NASA Astrophysics Data System (ADS)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  12. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellesen, C.; Grape, S.; Haakanson, A.

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  13. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.

  14. KSC-04pd2074

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, technicians install the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  15. KSC-04pd2078

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician installs the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  16. KSC-04pd2081

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, a technician performs blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  17. KSC-04pd2076

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  18. KSC-04pd2082

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  19. KSC-04pd2075

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician works on a blanket installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  20. KSC-04pd2077

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - Hangar AE, Cape Canaveral Air Force Station, a technician trims blanket material that will be installed around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  1. KSC-04pd2080

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians perform blanket closeouts on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  2. Controls on the Seafloor Exposure of Detachment Fault Surfaces

    NASA Astrophysics Data System (ADS)

    Olive, J. A. L.; Parnell-Turner, R. E.; Escartin, J.; Smith, D. K.; Petersen, S.

    2017-12-01

    Morphological and seismological evidence suggests that asymmetric accretion involving oceanic detachment faulting takes place along 40% of the Northern Mid-Atlantic Ridge. However, seafloor exposures of corrugated slip surfaces -a telltale sign of this kind of faulting- remain scarce and spatially limited according to multibeam bathymetric surveys. This raises the question of whether geomorphic processes can hinder the exposure of pristine fault surfaces during detachment growth. We address this problem by analyzing ≤2-m resolution bathymetry data from four areas where corrugated surfaces emerge from the seafloor (13º20'N, 16º25'N, 16º36'N, and TAG). We identify two key processes capable of degrading or masking a corrugated large-offset fault surface. The first is gravitational mass wasting of steep (>25º) slopes, which is widespread in the breakaway region of most normal faults. The second is blanketing of the shallow-dipping termination area by a thin apron of hanging wall-derived debris. We model this process using critical taper theory, and infer low effective friction coefficients ( 0.15) on the emerging portion of detachment faults. A corollary to this result is that faults emerging from the seafloor with an angle <10º are more likely to blanket themselves under an apron of hanging wall debris. Optimal exposure of detachment surfaces therefore occurs when the fault emerges at slopes between 10° and 25º. We generalize these findings into a simple model for the progressive exhumation and flexural rotation of detachment footwalls, which accounts for the continued action of seafloor geomorphic processes. Our model suggests that many moderate-offset `blanketed' detachments may exist along slow mid-ocean ridges, but their corrugated surfaces are unlikely to be detected in shipboard multibeam bathymetry (e.g., TAG). Furthermore, many `irregular massifs' may correspond to the degraded footwalls of detachment faults.

  3. Comparative studies for two different orientations of pebble bed in an HCCB blanket

    NASA Astrophysics Data System (ADS)

    Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR

    2017-12-01

    The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead-lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal-radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal-radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.

  4. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin

    2015-12-01

    Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  5. Neutron economic reactivity control system for light water reactors

    DOEpatents

    Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.; Gregurech, Steve

    1989-01-01

    A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

  6. Applications of the Aqueous Self-Cooled Blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.

    1986-11-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids.

  7. 32 CFR Appendix C to Part 310 - DoD Blanket Routine Uses

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false DoD Blanket Routine Uses C Appendix C to Part...) PRIVACY PROGRAM DOD PRIVACY PROGRAM Pt. 310, App. C Appendix C to Part 310—DoD Blanket Routine Uses (See paragraph (c) of § 310.22 of subpart E) A. Routine Use—Law Enforcement If a system of records maintained by...

  8. Experimental studies on tungsten-armour impact on nuclear responses of solid breeding blanket

    NASA Astrophysics Data System (ADS)

    Sato, Satoshi; Nakao, Makoto; Verzilov, Yury; Ochiai, Kentaro; Wada, Masayuki; Kubota, Naoyoshi; Kondo, Keitaro; Yamauchi, Michinori; Nishitani, Takeo

    2005-07-01

    In order to experimentally evaluate the tungsten armour impact on tritium production of the solid breeding blanket being developed by JAERI for tokamak-type DEMO reactors, neutronics integral experiments have been performed using DT neutrons at the Fusion Neutron Source facility of JAERI. Solid breeding blanket mockups relevant to the DEMO blanket have been applied in this study. The mockups are made of a set of layers consisting of 0-25.2 mm thick tungsten, 16 mm thick F82H, 12 mm thick Li2TiO3 and 100-200 mm thick beryllium with a cross-section of 660 × 660 mm in maximum. Pellets of Li2CO3 are embedded in the Li2TiO3 layers to measure the tritium production rate. By installing the 5 mm, 12.6 mm and 25.2 mm thick tungsten armours, the sum of the integrated tritium productions at the pellets are reduced by about 2.1%, 2.5% and 6.1% relative to the case without the armour, respectively. Numerical calculations have been conducted using the Monte Carlo code. In the case of the mockups with the tungsten armour, calculation results for the sum of the integrated tritium productions agree well with the experimental data within 4% and 19% in the experiments without and with a neutron reflector, respectively.

  9. Manufacturing Technology of Ceramic Pebbles for Breeding Blanket

    PubMed Central

    Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano

    2018-01-01

    An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders. PMID:29724071

  10. A transient plasticity study and low cycle fatigue analysis of the Space Station Freedom photovoltaic solar array blanket

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.

    1990-01-01

    The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.

  11. Comparison of the Effect of Plastic Cover and Blanket on Body Temperature of Preterm Infants Hospitalized in NICU: Randomized Clinical Trial

    PubMed Central

    Valizadeh, Leila; Mahallei, Majid; Safaiyan, Abdolrasoul; Ghorbani, Fatemeh; Peyghami, Maryam

    2017-01-01

    Introduction: Preterm infants are unable to regulate their body temperature and there are insufficient research evidences on different kinds of covers for hospitalized preterm infants; therefore, the present study was conducted with the aim of comparing the effects of plastic and blanket covers on the body temperature of preterm infants under radiant warmer. Methods: This randomized cross-over clinical trial was carried out upon 80 infants with the gestational age of 28-30 weeks and birth weight of 800- 1250 gr who were in Neonatal Intensive Care Unit on the second day of their hospitalization. The study lasted for two days. In group 1, the plastic cover was used during the first day of the study while the blankets were used during the second day. Infants’ heads were kept out of the cover and coated with a hat. In group 2, the plastic cover was used during the first day of the study while the blanket was used during second day. Digital thermometer was used to measure infants’ axillary temperature. The data was analyzed using SPSS ver 13 and MiniTab software. Descriptive statistics, (Mean (SE), 95%CI) and inferential statistics (Repeated measurement and ANCOVA tests) were used. Results: The mean body temperature of the infants in the group covered with the plastic was calculated to be higher and the warmer was set on low temperature. Conclusion: Using plastic cover during the first few days of hospitalization in NICU resulted in regulation of preterm infants’ body temperature. PMID:28680870

  12. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Drolshagen, Gerhard

    1993-01-01

    The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.

  13. An active target for the accelerator-based transmutation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebyonkin, K.F.

    1995-10-01

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less

  14. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

    DOEpatents

    Johnson, E.F.

    1962-06-01

    This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

  15. A methodology for accident analysis of fusion breeder blankets and its application to helium-cooled lead–lithium blanket

    DOE PAGES

    Panayotov, Dobromir; Poitevin, Yves; Grief, Andrew; ...

    2016-09-23

    'Fusion for Energy' (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials,more » and phenomena while remaining consistent with the approach already applied to ITER accident analyses. Furthermore, the methodology phases are illustrated in the paper by its application to the EU HCLL TBS using both MELCOR and RELAP5 codes.« less

  16. Effects of the LDEF environment on the Ag/FEP thermal blankets

    NASA Technical Reports Server (NTRS)

    Levadou, Francois; Pippin, H. Gary

    1992-01-01

    This presentation was made by Francois Levadou at the NASA Langley Research Center LDEF materials workshop, November 19-22, 1991. It represents the results to date on the examination of silvered teflon thermal blankets primarily from the Ultra-heavy Cosmic Ray Experiment and also from the blanket from the Park Seed Company experiment. ESA/ESTEC and Boeing conducted a number of independent measurements on the blankets and in particular on the exposed fluorinated ethylene-propylene (FEP) layer of the blankets. Mass loss, thickness, and thickness profile measurements have been used by ESA, Boeing, and NASA LeRC to determine recession and average erosion yield under atomic oxygen exposure. Tensile strength and percent elongation to failure data, surface characterization by ESCA, and SEM images are presented. The Jet Propulsion Laboratory analysis of vacuum radiation effects is also presented. The results obtained by the laboratories mentioned and additional results from the Aerospace Corporation on samples provided by Boeing are quite similar and give confidence in the validity of the data.

  17. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  18. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    PubMed

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  19. Lightweight Thermal Insulation for a Liquid-Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Willen, G. Scott; Lock, Jennifer; Nieczkoski, Steve

    2005-01-01

    A proposed lightweight, reusable thermal-insulation blanket has been designed for application to a tank containing liquid oxygen, in place of a non-reusable spray-on insulating foam. The blanket would be of the multilayer-insulation (MLI) type and equipped with a pressure-regulated nitrogen purge system. The blanket would contain 16 layers in two 8-layer sub-blankets. Double-aluminized polyimide 0.3 mil (.0.008 mm) thick was selected as a reflective shield material because of its compatibility with oxygen and its ability to withstand ionizing radiation and high temperature. The inner and outer sub-blanket layers, 1 mil (approximately equals 0.025 mm) and 3 mils (approximately equals 0.076 mm) thick, respectively, would be made of the double-aluminized polyimide reinforced with aramid. The inner and outer layers would provide structural support for the more fragile layers between them and would bear the insulation-to-tank attachment loads. The layers would be spaced apart by lightweight, low-thermal-conductance netting made from polyethylene terephthalate.

  20. 32 CFR Appendix C to Part 806b - DoD ‘Blanket Routine Uses’

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false DoD âBlanket Routine Usesâ C Appendix C to Part... PRIVACY ACT PROGRAM Pt. 806b, App. C Appendix C to Part 806b—DoD ‘Blanket Routine Uses’ Certain DoD... the issuance of a license, grant, or other benefit. c. Disclosure of Requested Information Routine Use...

  1. 32 CFR Appendix C to Part 806b - DoD ‘Blanket Routine Uses’

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false DoD âBlanket Routine Usesâ C Appendix C to Part... PRIVACY ACT PROGRAM Pt. 806b, App. C Appendix C to Part 806b—DoD ‘Blanket Routine Uses’ Certain DoD... the issuance of a license, grant, or other benefit. c. Disclosure of Requested Information Routine Use...

  2. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Buehler, L.

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less

  3. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    PubMed

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  4. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  5. Ultracold Field Gradient Magnetometry and Transport to Study Correlated Topological Phases

    DTIC Science & Technology

    2016-10-01

    glove box. Note that in Fig. 1(b) baking blankets are attached to the MBE, but are removed during normal operation of the system. The manipulator...Note that in Fig. 1(b)  baking   blankets are attached to the MBE, but are removed during normal operation of the system.  The  manipulator arms are

  6. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is secure after transfer to the work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is secure after transfer to the work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  7. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  8. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  9. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, workers check the placement of NASA’s MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, workers check the placement of NASA’s MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  10. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers move NASA’s MESSENGER spacecraft into a high bay clean room. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers move NASA’s MESSENGER spacecraft into a high bay clean room. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  11. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane moves NASA’s MESSENGER spacecraft toward a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane moves NASA’s MESSENGER spacecraft toward a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  12. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane lowers NASA’s MESSENGER spacecraft onto a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane lowers NASA’s MESSENGER spacecraft onto a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  13. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft is revealed. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft is revealed. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  14. KSC-04pd2083

    NASA Image and Video Library

    2004-10-05

    KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, technicians take a final look at the blankets installed on the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.

  15. KSC-04pd2079

    NASA Image and Video Library

    2004-10-03

    KENNEDY SPACE CENTER, FLA. - At Hangar AE, Cape Canaveral Air Force Station, a technician (right) watches while another completes installation of the blankets around the Swift spacecraft. The blankets provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Swift is expected to observe more than 200 gamma-ray bursts - the most comprehensive study of GRB afterglows to date - during its 2-year mission.

  16. LIFE Materials: Thermomechanical Effects Volume 5 - Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, M; DeMange, P; Marian, J

    2009-05-07

    Improved fuel performance is a key issue in the current Laser Inertial-Confinement Fusion-Fission Energy (LIFE) engine design. LIFE is a fusion-fission engine composed of a {approx}40-tons fuel blanket surrounding a pulsed fusion neutron source. Fusion neutrons get multiplied and moderated in a Beryllium blanket before penetrating the subcritical fission blanket. The fuel in the blanket is composed of millions of fuel pebbles, and can in principle be burned to over 99% FIMA without refueling or reprocessing. This report contains the following chapters: Chapter A: LIFE Requirements for Materials -- LIFE Fuel; Chapter B: Summary of Existing Knowledge; Chapter C: Identificationmore » of Gaps in Knowledge & Vulnerabilities; and Chapter D: Strategy and Future Work.« less

  17. Design of an arc-free thermal blanket

    NASA Technical Reports Server (NTRS)

    Fellas, C. N.

    1981-01-01

    The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.

  18. The use of synthetic bedding in children. Do strategies of change influence associations with asthma?

    PubMed

    Behrens, Thomas; Maziak, Wasim; Weiland, Stephan K; Siebert, Edith; Rzehak, Peter; Keil, Ulrich

    2005-04-01

    Epidemiological data suggest in contrast to clinical recommendations a negative effect of synthetic bedding on asthma and respiratory symptoms. To assess the effects of bedding filled with synthetic material on the risk of asthma and respiratory symptoms in 6- to 7-year-old children, taking into account allergy-related change of bedding material. We analyzed data from the ISAAC Phase III cross-sectional survey (1999/2000) in Münster, Germany. Data were collected by parental report from representative school-based samples of 6- to 7-year old children (n = 3,529). We calculated prevalence ratios with 95% confidence intervals for the association between respiratory symptoms suggestive of asthma and synthetic pillows and blankets and adjusting for potential confounders. In the preliminary analyses, synthetic pillows and synthetic blankets were positively associated with the studied respiratory outcomes. For example, a high number of wheezing attacks was positively associated with synthetic pillows (PR = 4.44; 95% CI 2.84-6.94) and synthetic blankets (PR = 3.80; 95% CI 2.48-5.82). However, in the restricted analysis, excluding participants reporting allergy-related change of bedding (pillows n = 440; blankets n = 437), the positive associations disappeared for all studied outcomes. Our findings suggest that allergy-related choice of bedding is an important factor in the assessment of the relation between synthetic bedding and asthma symptoms. Ignoring those changes can lead to false-positive risk estimates. Prospective studies that allow to disentangle the temporal sequence of disease, exposure, and change of bedding should help to further clarify this issue.

  19. Preventing hypothermia: comparison of current devices used by the US Army in an in vitro warmed fluid model.

    PubMed

    Allen, Paul B; Salyer, Steven W; Dubick, Michael A; Holcomb, John B; Blackbourne, Lorne H

    2010-07-01

    The purpose of this study was to develop an in vitro torso model constructed with fluid bags and to determine whether this model could be used to differentiate between the heat prevention performance of devices with active chemical or radiant forced-air heating systems compared with passive heat loss prevention devices. We tested three active (Hypothermia Prevention Management Kit [HPMK], Ready-Heat, and Bair Hugger) and five passive (wool, space blankets, Blizzard blankets, human remains pouch, and Hot Pocket) hypothermia prevention products. Active warming devices included products with chemically or electrically heated systems. Both groups were tested on a fluid model warmed to 37 degrees C versus a control with no warming device. Core temperatures were recorded every 5 minutes for 120 minutes in total. Products that prevent heat loss with an actively heated element performed better than most passive prevention methods. The original HPMK achieved and maintained significantly higher temperatures than all other methods and the controls at 120 minutes (p < 0.05). None of the devices with an actively heated element achieved the sustained 44 degrees C that could damage human tissue if left in place for 6 hours. The best passive methods of heat loss prevention were the Hot Pocket and Blizzard blanket, which performed the same as two of the three active heating methods tested at 120 minutes. Our in vitro fluid bag "torso" model seemed sensitive to detect heat loss in the evaluation of several active or passive warming devices. All active and most passive devices were better than wool blankets. Under conditions near room temperature, passive warming methods (Blizzard blanket or the Hot Pocket) were as effective as active warming devices other than the original HPMK. Further studies are necessary to determine how these data can translate to field conditions in preventing heat loss in combat casualties.

  20. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 4.Technology and Material Research in Fusion Power Plant Development

    NASA Astrophysics Data System (ADS)

    Akiba, Masato; Matsui, Hideki; Takatsu, Hideyuki; Konishi, Satoshi

    Technical issues regarding the fusion power plant that are required to be developed in the period of ITER construction and operation, both with ITER and with other facilities that complement ITER are described in this section. Three major fields are considered to be important in fusion technology. Section 4.1 summarizes blanket study, and ITER Test Blanket Module (TBM) development that focuses its effort on the first generation power blanket to be installed in DEMO. ITER will be equipped with 6 TBMs which are developed under each party's fusion program. In Japan, the solid breeder using water as a coolant is the primary candidate, and He-cooled pebble bed is the alternative. Other liquid options such as LiPb, Li or molten salt are developed by other parties' initiatives. The Test Blanket Working Group (TBWG) is coordinating these efforts. Japanese universities are investigating advanced concepts and fundamental crosscutting technologies. Section 4.2 introduces material development and particularly, the international irradiation facility, IFMIF. Reduced activation ferritic/martensitic steels are identified as promising candidates for the structural material of the first generation fusion blanket, while and vanadium alloy and SiC/SiC composite are pursued as advanced options. The IFMIF is currently planning the next phase of joint activity, EVEDA (Engineering Validation and Engineering Design Activity) that encompasses construction. Material studies together with the ITER TBM will provide essential technical information for development of the fusion power plant. Other technical issues to be addressed regarding the first generation fusion power plant are summarized in section 4.3. Development of components for ITER made remarkable progress for the major essential technology also necessary for future fusion plants, however many still need further improvements toward power plant. Such areas includes; the divertor, plasma heating/current drive, magnets, tritium, and remote handling. There remain many other technical issues for power plant which require integrated efforts.

  1. Basic requirements for a 1000-MW(electric) class tokamak fusion-fission hybrid reactor and its blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori

    1994-08-01

    Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less

  2. Infant Deaths and Injuries Associated with Wearable Blankets, Swaddle Wraps, and Swaddling

    PubMed Central

    McDonnell, Emily; Moon, Rachel Y.

    2014-01-01

    Objective To assess risks involved in using wearable blankets, swaddle wraps, and swaddling. Study design Retrospective review of incidents reported to the Consumer Product Safety Commission in 2004–2012. Results 36 incidents involving wearable blankets and swaddle wraps were reviewed, including 10 deaths, 2 injuries, and 12 incidents without injury. The median age at death was 3.5 months; 80% of deaths were attributed to positional asphyxia related to prone sleeping. 70% had additional risk factors, usually soft bedding. Two injuries involved tooth extraction from the zipper. The 12 incidents without injury reported concern for strangulation/suffocation when the swaddle wrap became wrapped around the face/neck, and potential choking hazard when the zipper detached. All 12 incidents involving swaddling in ordinary blankets resulted in death. The median age was 2 months; 58% of deaths were attributed to positional asphyxia related to prone sleeping. 92% involved additional risk factors, most commonly soft bedding. Conclusions Reports of sudden unexpected death in swaddled infants are rare. Risks can be reduced by placing infants supine, and discontinuing swaddling as soon as an infant’s earliest attempts to roll are observed. Risks can be further reduced by removing soft bedding and bumper pads from the sleep environment. When using commercial swaddle wraps, fasteners must be securely attached. PMID:24507866

  3. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less

  4. Functional materials for breeding blankets—status and developments

    NASA Astrophysics Data System (ADS)

    Konishi, S.; Enoeda, M.; Nakamichi, M.; Hoshino, T.; Ying, A.; Sharafat, S.; Smolentsev, S.

    2017-09-01

    The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li2TiO3) and lithium orthosilicate (Li4SiO4) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be12Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.

  5. Analysis of Air Force Office of Special Investigations Agents Knowledge of the Contract Management Process

    DTIC Science & Technology

    2015-12-01

    AND ABBREVIATIONS ACFE ACO AFFAR AFICA AFOSI AFMC AOR AT&L AUSA B BEP BPA BRAC BSIC C2 CEO CFE CFR CICA CID CITP CMMM CONUS COR...or blanket purchase agreements ( BPAs ), thereby providing flexibility to meet fluctuating government demands. c. Proposal Evaluation Criteria

  6. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  7. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-03-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  8. Annular seed-blanket thorium fuel core concepts for heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen is a 35-element bundle made with a homogeneous mixture of reactor grade Pu andmore » Th, and with a central zirconia rod to help reduce coolant void reactivity. Several annular heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that the various core concepts can achieve a fissile utilization that is up to 30% higher than is currently achieved in a PT-HWR using conventional natural uranium fuel bundles. Up to 67% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 363 kg/year of U-233 is produced. Seed-blanket cores with ∼50% content of low-power blanket bundles may require power de-rating (∼58% to 65%) to avoid exceeding maximum limits for peak channel power, bundle power and linear element ratings. (authors)« less

  9. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  10. Improved structure and long-life blanket concepts for heliotron reactors

    NASA Astrophysics Data System (ADS)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  11. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less

  12. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  13. A Proposed Methodology to Control Body Temperature in Patients at Risk of Hypothermia by means of Active Rewarming Systems

    PubMed Central

    Costanzo, Silvia; Cusumano, Alessia; Giaconia, Carlo; Mazzacane, Sante

    2014-01-01

    Hypothermia is a common complication in patients undergoing surgery under general anesthesia. It has been noted that, during the first hour of surgery, the patient's internal temperature (T core) decreases by 0.5–1.5°C due to the vasodilatory effect of anesthetic gases, which affect the body's thermoregulatory system by inhibiting vasoconstriction. Thus a continuous check on patient temperature must be carried out. The currently most used methods to avoid hypothermia are based on passive systems (such as blankets reducing body heat loss) and on active ones (thermal blankets, electric or hot-water mattresses, forced hot air, warming lamps, etc.). Within a broader research upon the environmental conditions, pollution, heat stress, and hypothermia risk in operating theatres, the authors set up an experimental investigation by using a warming blanket chosen from several types on sale. Their aim was to identify times and ways the human body reacts to the heat flowing from the blanket and the blanket's effect on the average temperature T skin and, as a consequence, on T core temperature of the patient. The here proposed methodology could allow surgeons to fix in advance the thermal power to supply through a warming blanket for reaching, in a prescribed time, the desired body temperature starting from a given state of hypothermia. PMID:25485278

  14. Economics of movable interior blankets for greenhouses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, G.B.; Fohner, G.R.; Albright, L.D.

    1981-01-01

    A model for evaluating the economic impact of investment in a movable interior blanket was formulated. The method of analysis was net present value (NPV), in which the discounted, after-tax cash flow of costs and benefits was computed for the useful life of the system. An added feature was a random number component which permitted any or all of the input parameters to be varied within a specified range. Results from 100 computer runs indicated that all of the NPV estimates generated were positive, showing that the investment was profitable. However, there was a wide range of NPV estimates, frommore » $16.00/m/sup 2/ to $86.40/m/sup 2/, with a median value of $49.34/m/sup 2/. Key variables allowed to range in the analysis were: (1) the cost of fuel before the blanket is installed; (2) the percent fuel savings resulting from use of the blanket; (3) the annual real increase in the cost of fuel; and (4) the change in the annual value of the crop. The wide range in NPV estimates indicates the difficulty in making general recommendations regarding the economic feasibility of the investment when uncertainty exists as to the correct values for key variables in commercial settings. The results also point out needed research into the effect of the blanket on the crop, and on performance characteristics of the blanket.« less

  15. Fusion neutron source blanket: requirements for calculation accuracy and benchmark experiment precision

    NASA Astrophysics Data System (ADS)

    Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.

    2017-06-01

    In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.

  16. First-wall structural analysis of the self-cooled water blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, D.A.; Steiner, D.; Embrechts, M.J.

    1986-01-01

    A novel blanket concept recently proposed utilizes water with small amounts of dissolved lithium compound as both coolant and breeder. The inherent simplicity of this idea should result in an attractive breeding blanket for fusion reactors. In addition, the available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate this concept. First-wall and blanket designs have been developed first for the tandem mirror reactor (TMR) due to the obvious advantages of this geometry. First-wall and blanket designs will also be developed for toroidal reactors. A simple plate designmore » with coolant tubes welded on the back (side away from plasma) was chosen as the first wall for the TMR application. Dimensions and materials were chosen to minimize temperature differences and thermal stresses. A finite element code (STRAW), originally developed for the analysis of core components subjected to high-pressure transients in the fast breeder program, was utilized to evaluate stresses in the first wall.« less

  17. On the use of tin?lithium alloys as breeder material for blankets of fusion power plants

    NASA Astrophysics Data System (ADS)

    Fütterer, M. A.; Aiello, G.; Barbier, F.; Giancarli, L.; Poitevin, Y.; Sardain, P.; Szczepanski, J.; Li Puma, A.; Ruvutuso, G.; Vella, G.

    2000-12-01

    Tin-lithium alloys have several attractive thermo-physical properties, in particular high thermal conductivity and heat capacity, that make them potentially interesting candidates for use in liquid metal blankets. This paper presents an evaluation of the advantages and drawbacks caused by the substitution of the currently employed alloy lead-lithium (Pb-17Li) by a suitable tin-lithium alloy: (i) for the European water-cooled Pb-17Li (WCLL) blanket concept with reduced activation ferritic-martensitic steel as the structural material; (ii) for the European self-cooled TAURO blanket with SiC f/SiC as the structural material. It was found that in none of these blankets Sn-Li alloys would lead to significant advantages, in particular due to the low tritium breeding capability. Only in forced convection cooled divertors with W-alloy structure, Sn-Li alloys would be slightly more favorable. It is concluded that Sn-Li alloys are only advantageous in free surface cooled reactor internals, as this would make maximum use of the principal advantage of Sn-Li, i.e., the low vapor pressure.

  18. Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge.

    PubMed

    Saliba, Pollyane Diniz; von Sperling, Marcos

    2017-10-01

    The objective of this study was to evaluate the behaviour of a system comprising an upflow anaerobic sludge blanket reactor followed by activated sludge to treat domestic sewage. The Betim Central sewage treatment plant, Brazil, was designed to treat a mean influent flow of 514 L/s. The study consisted of statistical treatment of monitoring data from the treatment plant covering a period of 4 years. This work presents the concentrations and removal efficiencies of the main constituents in each stage of the treatment process, and a mass balance of chemical oxygen demand (COD) and nitrogen. The results highlight the good overall performance of the system, with high mean removal efficiencies: BOD (biochemical oxygen demand) (94%), COD (91%), ammonia (72%) and total suspended solids (92%). As expected, this system was not effective for the removal of nutrients, since it was not designed for this purpose. The removal of Escherichia coli (99.83%) was higher than expected. There was no apparent influence of operational and design parameters on the effluent quality in terms of organic matter removal, with the exceptions of the BOD load upstream of the aeration tank and the sludge age in the unit. Results suggest that this system is well suited for the treatment of domestic sewage.

  19. Energy and Process Optimization and Benchmarking of Army Industrial Processes

    DTIC Science & Technology

    2006-09-01

    casting is a metal part formed by pouring molten iron, steel, aluminum, zinc , titanium, magnesium, copper, brass, bronze or cobalt, in nearly all...blanketing techniques. The loss of high-priced alloys is also mini- mized, while slag or dross rates are cut in half to help decrease disposal costs...fabricated of iron and steel; hot dip coating such items with aluminum, lead, or zinc ; retin- ning cans and utensils; (3) engraving, chasing and

  20. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...

  1. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...

  2. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...

  3. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of... consumer antenna systems, or the use of high gain antennas or antenna booster amplifiers by consumers. (d...

  4. Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly

    NASA Technical Reports Server (NTRS)

    Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.

    1976-01-01

    The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.

  5. Comfort for Sportsmen

    NASA Technical Reports Server (NTRS)

    1976-01-01

    MPI Outdoor Safety Products developed aluminized mylar to make Echo Satellites more reflective, to insulate cryogenic fluids, and for space suit insulation. This technology has spun off to a variety of consumer products. Sportsman's blankets and jackets, ski parkas, sleeping bags, and even life-raft canopies are among them. Sportsman's blanket weighing 12 ounces can be used equally well to keep heat away or keep available heat in. Emergency rescue blanket has heat retention qualities similar to those of Sportsman's blanket. Strong enough to be used as a litter, yet folds up so small you can carry it in your shirt pocket. 10 ounce reversible jacket absorbs warmth from sun. A silver colored side next to your body retains a large portion of body heat. In warm weather you wear silver side out to reflect sun's rays.

  6. Effectiveness of pelvic lead blanket to reduce the doses to eye lens and hands of interventional cardiologists and assistant nurses.

    PubMed

    Grabowicz, W; Domienik-Andrzejewska, J; Masiarek, K; Górnik, T; Grycewicz, T; Brodecki, M; Lubiński, A

    2017-09-01

    The aim of the present study is to analyse quantitatively the potential reduction of doses to the eye lens and the hands of an operator and a nurse by the use of a pelvic lead blanket during coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) procedures. Thermoluminescent dosimeters were used to assess dose levels to the left eye lens and fingers on both hands of both physician and nurses during single procedures performed with or without the lead blanket. The measurements were carried out at one medical centre and include dosimetric data from 100 procedures. Additional measurements including physician's and patient's doses were made on phantoms in the laboratory. In order to determine the reduction potential of the lead blanket, the doses normalized to DAP (Dose-Area Product) corresponding to the same position of dosimeter were compared against each other for both procedure categories (with and without protection). There was no statistically significant decrease observed in physicians' and nurses' eye lens doses, nor in doses normalized to DAP due to the use of the lead pelvic shield in clinic. However, some trend in reducing the eye lens doses by this shield can be observed. Regarding finger doses, the differences are statistically significant but only for physicians. The mean DAP-normalised doses to the eye lens and left and right finger of physicians, in the presence of a ceiling-suspended transparent lead shield, were 2.24e-5 ± 1.41e-5 mSv/μGym 2 , 2.31e-4 ± 1.21e-4 mSv/μGym 2 , and 2.60e-5 ± 1.57e-5 mSv/μGym 2 for standard procedures performed without the lead blanket, and 1.77e-5 ± 1.17e-5 mSv/μGym 2 , 1.70e-4 ± 1.01e-4 mSv/μGym 2 , and 1.86e-5 ± 1.13e-5 mSv/μGym 2 for procedures performed with it. A comparison of the results from the laboratory and the clinic shows that they are consistent regarding the eye lens, while for fingers it suggests that the dose reduction properties of the lead shield are related to the physician's work technique and both patient and lead blanket sizes or its positioning. The highest degree of reduction is observed for cranial and caudal projections together with the use of a patient-adjustable lead blanket; about a 2-fold decrease in finger doses is expected for optimum conditions. However, the laboratory measurements suggest that the use of lead blanket might slightly increase the patient dose, but only when specific projections are constantly used. This limitation should be considered by cardiologists during clinical work if this protection is used. In the light of the presented results, the ceiling-suspended transparent lead shield and the lead glasses seem to be the preferred way to reduce the doses to the eye lens, compared to the lead blanket.

  7. Impact penetration experiments in teflon targets of variable thickness

    NASA Astrophysics Data System (ADS)

    Hoerz, F.; Cintala, M. J.; Bernhard, R. P.; See, T. H.

    1993-03-01

    Approximately 20.4 sq m of Teflon thermal blankets on the nonspinning Long Duration Exposure Facility (LDEF) were exposed to the orbital debris and micrometeoroid environment in low-Earth orbit (LEO) for approximately 5.7 years. Each blanket consisted of an outer layer (approximately 125 micron thick) of FEP Teflon that was backed by a vapor-deposited metal mirror (Inconel; less than 1 micron thick). The inner surface consisted of organic binders and Chemglaze thermal protective paint (approximately 50 micron thick) resulting in a somewhat variable, total blanket thickness of approximately 180 to 200 microns. There was at least one of these blankets, each exposing approximately 1.2 sq m of surface area, on nine of LDEF's 12 principal pointing directions, the exceptions being Rows 3, 9, and 12. As a consequence, these blankets represent a significant opportunity for micrometeoroid and debris studies, in general, and specifically they provide an opportunity to address those issues that require information about pointing direction (i.e., spatial density of impact events as a function of instrument orientation). During deintegration of the LDEF spacecraft at KSC, all penetration holes greater than or equal to 300 micron in diameter were documented and were recently synthesized in terms of spatial density as a function of LDEF viewing direction by. The present report describes ongoing cratering and penetration experiments in pure Teflon targets, which are intended to establish the relationships between crater or penetration-hole diameters and the associated projectile dimensions at laboratory velocities (i.e., 6 km/s). The ultimate objective of these efforts is to extract reliable mass-frequencies and associated fluxes of hypervelocity particles in LEO.

  8. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.

  9. Three-dimensional Monte Carlo calculation of some nuclear parameters

    NASA Astrophysics Data System (ADS)

    Günay, Mehtap; Şeker, Gökmen

    2017-09-01

    In this study, a fusion-fission hybrid reactor system was designed by using 9Cr2WVTa Ferritic steel structural material and the molten salt-heavy metal mixtures 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2, as fluids. The fluids were used in the liquid first wall, blanket and shield zones of a fusion-fission hybrid reactor system. Beryllium (Be) zone with the width of 3 cm was used for the neutron multiplication between the liquid first wall and blanket. This study analyzes the nuclear parameters such as tritium breeding ratio (TBR), energy multiplication factor (M), heat deposition rate, fission reaction rate in liquid first wall, blanket and shield zones and investigates effects of reactor grade Pu content in the designed system on these nuclear parameters. Three-dimensional analyses were performed by using the Monte Carlo code MCNPX-2.7.0 and nuclear data library ENDF/B-VII.0.

  10. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  11. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  12. COUPLED FAST-THERMAL POWER BREEDER REACTOR

    DOEpatents

    Avery, R.

    1961-07-18

    A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.

  13. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  14. DEMO port plug design and integration studies

    NASA Astrophysics Data System (ADS)

    Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.

    2017-11-01

    The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the blanket segments thermo-mechanical and nuclear design considering mechanical integration aspects but also their impact on tritium breeding ratio. Since DEMO is still in a pre-conceptual phase, the same methodology is applicable to the other two blanket concepts, as well.

  15. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    PubMed

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer rates for crops when trash was retained (≤20 kg N ha(-1) per plant or ratoon crop) while maintaining ≥95% of maximum yields. While these savings in N fertilizer use were modest at the field scale, they were potentially important when aggregated at the regional level.

  16. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  17. Experimental study of noise transmission into a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Bofilios, D. A.; Eisler, R.

    1984-01-01

    The effect of add-on treatments on noise transmission into a cabin of a light aircraft was studied under laboratory conditions for diffuse and localized noise inputs. Results indicate that stiffening skin panels with honeycomb would provide on the average 3dB to 7 dB insertion loss over the most of selected frequency range H1 to 1000 Hz. Addition of damping tape on top of the honeycomb treatment increases insertion loss by 2dB to 3dB. Porous acoustic blankets show no attenuation of transmitted noise for frequencies below 300 Hz. Insertion of impervious vinyl septa between the layers of porous acoustic blankets do not provide additional noise reduction for frequencies up to about 500 Hz. Similar behavior was observed for noise barriers composed of urethane elastomer, decoupler foam and acoustic foam. A treatment composed from several layers of acoustic foams does not increase noise attenuation for the entire frequency range studied. An acoustic treatment composed of honeycomb panels, constrained layer damping tape, 2 to 3 inches of porous acoustic blankets, and limptrim which is isolated from the vibrations of the main fuselage structure seems to provide the best option for noise control.

  18. Map Database for Surficial Materials in the Conterminous United States

    USGS Publications Warehouse

    Soller, David R.; Reheis, Marith C.; Garrity, Christopher P.; Van Sistine, D. R.

    2009-01-01

    The Earth's bedrock is overlain in many places by a loosely compacted and mostly unconsolidated blanket of sediments in which soils commonly are developed. These sediments generally were eroded from underlying rock, and then were transported and deposited. In places, they exceed 1000 ft (330 m) in thickness. Where the sediment blanket is absent, bedrock is either exposed or has been weathered to produce a residual soil. For the conterminous United States, a map by Soller and Reheis (2004, scale 1:5,000,000; http://pubs.usgs.gov/of/2003/of03-275/) shows these sediments and the weathered, residual material; for ease of discussion, these are referred to as 'surficial materials'. That map was produced as a PDF file, from an Adobe Illustrator-formatted version of the provisional GIS database. The provisional GIS files were further processed without modifying the content of the published map, and are here published.

  19. Composite flexible blanket insulation

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A. (Inventor); Lowe, David M. (Inventor)

    1994-01-01

    An improved composite flexible blanket insulation is presented comprising top silicon carbide having an interlock design, wherein the reflective shield is composed of single or double aluminized polyimide and wherein the polyimide film has a honeycomb pattern.

  20. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.

    2015-12-01

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.

  1. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less

  2. Conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less

  3. Design, optimization, and analysis of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Collozza, Anthony J.

    1991-06-01

    A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.

  4. KSC-05pd2513

    NASA Image and Video Library

    2005-11-19

    KENNEDY SPACE CENTER, FLA. - Inside the RLV Hangar at NASA Kennedy Space Center, employees prepare a blanket sewing machine to be transferred back to the Thermal Protection System (TPS) facility. The upper floor of the facility, where soft material was processed, was damaged during the 2004 hurricanes. While the TPS facility was being repaired, normal work activity was done in the hangar.

  5. CAD-centric Computation Management System for a Virtual TBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth Munipalli; K.Y. Szema; P.Y. Huang

    HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of themore » analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.« less

  6. TBM/MTM for HTS-FNSF: An innovative testing strategy to qualify/validate fusion technologies for U.S. DEMO

    DOE PAGES

    El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...

    2016-08-11

    The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less

  7. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  8. APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadday, M.A.

    1999-09-20

    The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less

  9. The FEI-TPS on the Upper Surface of the X-38

    NASA Astrophysics Data System (ADS)

    Antonenko, Johann; Kowal, John

    2002-01-01

    The X-38 is being developed by NASA-JSC as a technology demonstrator of a future Crew Rescue Vehicle. The size of the vehicle is limited to fit into the cargo bay of the shuttle. Due to its small size and shuttle-like trajectory all surfaces will receive comparably high heat rates leading to high surface temperatures. Temperatures on the nose are calculated to reach 1750°C, which is significantly higher than on the shuttle. Due to the lifting body shape, large areas of the central fuselage will be exposed to flow of hot gases around the vehicle. Here temperatures of the upper surface are calculated to reach up to 1000°C and the application of a high temperature blanket thermal protection system (TPS) becomes mandatory. Consecutively, the temperature level of the upper surface and the base area will be significantly high. Unlike on the shuttle, where large areas of the surface are covered by flexible reusable surface insulation (FRSI), locations with temperatures below 400°C will be scarce on the X-38. During development of the European shuttle HERMES the Flexible External Insulation (FEI) was developed for the upper surface TPS. This development was continued by ESA and DLR funded programs and currently a product family is available for temperatures ranging from 450°C to 1100°C for re-usable application. For a single re- entry under ultimate conditions temperatures may reach up to 1400°C. Under funding of DLR and ESA, the FEI assembly is one of the European contributions to the X-38. Three subassemblies have been chosen: the FEI-450, FEI-650 and FEI- 1000, capable of limit temperatures of 450°C, 650°C and 1000°C, respectively. The FEI-650 and FEI-1000 were already developed in the HERMES program. The FEI- 450 was developed in the German TETRA program. The qualification for X-38 application was performed for temperatures up to 510°C for the FEI-450 and up to 1130°C for the FEI-1000. Acoustic noise loads of up to 160dB have been endured, far beyond what X-38 will ever experience. The paper presents the design of the flexible blanket TPS in a joint effort by NASA-JSC and Astrium. The design process at NASA had to consider aerothermal loads and constraints of the structure and parachute subsystems. It provided the configuration of the FEI assembly and the requirements design of the FEI blankets. Astrium first designed the concept and lay-out of the FEI-assembly. Proceeding from NASA furnished model files, the design to manufacturing of the FEI-blankets was established. In addition, Astrium qualified the FEI for X-38 application. The FEI design is constrained by the aeroshell concept that distinguishes acreage panels, carrier panels and close-out areas, with dedicated blankets for each. Close out areas cover the locations of the parafoil system and create an uneven surface requiring vaulted blankets. The total of these requirements leads to an assembly of a large number of blankets, several of which have a complex shape.

  10. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare NASA’s MESSENGER spacecraft for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare NASA’s MESSENGER spacecraft for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  11. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  12. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  13. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  14. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  15. Vibration and shape control of hinged light structures using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuji; Miyachi, Shigenobu; Sasaki, Toshiyuki

    2003-08-01

    This paper describes a new electromagnetic device for vibration control of a light-weighted deployable/retractable structure which consists of many small units connected with mechanical hinges. A typical example of such a structure is a solar cell paddle of an artificial satellite which is composed of many thin flexible blankets connected in series. Vibration and shape control of the paddle is not easy, because control force and energy do not transmit well between the blankets which are discretely connected by hinges with each other. The new device consists of a permanent magnet glued along an edge of a blanket and an electric current-conducting coil glued along an adjoining edge of another adjacent blanket. Conduction of the electric current in a magnetic field from the magnet generates an electromagnetic force on the coil. By changing the current in the coil, therefore, we may control the vibration and shape of the blankets. To confirm the effectiveness of the new device, constructing a simple paddle model consisting eight hinge- panels, we have carried out a model experiment of vibration and shape control of the paddle. In addition, a numerical simulation of vibration control of the hinge structure is performed to compare with measured data.

  16. The use of electric bed heaters and the risk of clinically recognized spontaneous abortion.

    PubMed

    Lee, G M; Neutra, R R; Hristova, L; Yost, M; Hiatt, R A

    2000-07-01

    We conducted a prospective cohort study to evaluate the relation of spontaneous abortion and electric bed heater use during the first trimester of pregnancy. Compared with non-users, rates of spontaneous abortion were lower for women who used electric bed heaters. The adjusted odds ratio and 95% confidence interval (CI) for the two major devices used, electric blankets (N = 524) and waterbeds (N = 796), were, respectively, 0.8 (95% CI = 0.5-1.1) and 0.9 (95% CI = 0.7-1.2). An increase of risk with increasing intensity (setting-duration combination) of use was not observed. Users of electric blankets at low settings for most of the night (N = 171) had lower risks of spontaneous abortion than non-users (adjusted odds ratio = 0.5; 95% CI = 0.3-1.0). Twenty women who used electric blankets at a high setting for 1 hour or less had an adjusted odds ratio of 3.0 (95% CI = 1.1-8.3), but we found no spontaneous abortions among the few women (N = 13) who used a high setting for 2 or more hours. We found that exposure rankings of the magnetic field time-weighted average and a rate of change metric did not correspond monotonically to the pattern of spontaneous abortion risks and that electric blankets contribute less to overnight time-weighted average magnetic fields than has been thought.

  17. Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.Y.

    1978-10-01

    Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less

  18. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-11-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  19. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  20. Will blocking historical drainage ditches increase carbon sequestration in upland blanket mires of Southwest England?

    NASA Astrophysics Data System (ADS)

    Le Feuvre, N.; Hartley, I.; Anderson, K.; Luscombe, D.; Grand-Clement, E.; Smith, D.; Brazier, R.

    2012-04-01

    Peat soils in the United Kingdom are estimated to store a minimum of 3,121Mt C (Lindsay, 2010). Despite being such a large carbon store the annual imbalance between uptake and release is small and susceptible to change in response to land management, atmospheric deposition and climate change. The upland blanket mires of Southwest England have been subject to extensive drainage and are particularly vulnerable to climate change as they lie at the lower edge of the peatland climatic envelope. The Mires-on-the-Moors project, funded by South West Water will restore over 2000 hectares of drained mire by April 2015. Herein, we question whether this restoration, which will block historical drainage ditches will allow the blanket bogs of Exmoor and Dartmoor National Parks to recover their ecohydrological functionality. We hypothesise that such mire restoration will increase the resilience of these ecosystems to climate change and will return these upland mires to peat forming/carbon sequestering systems. A method is proposed which aims to understand the processes driving gaseous carbon exchange and peat formation in an upland blanket bog and quantifies the effect restoration has on these processes. We propose to measure the spatial variation in gas fluxes with respect to structural features of the mire; drainage ditches and nanotopes. The role of vegetation; the community composition, phenology and health will be explored as well as environmental variables such as water table depths, temperature and photosynthetically active radiation. Importantly, the experiment will partition below ground respiration to assess the environmental controls and effect of restoration on autotrophic and heterotrophic respiration separately. Unusually, it will be possible to collect both pre- and post-restoration data for two experimental sites with existing intensive hydrological monitoring (baseline monitoring of water table depths at 15 minute timesteps has been in place for > 1 year at ca. 160 locations across two experimental catchments on Exmoor). Remote sensing of vegetation structure (using both airborne LiDAR and ground-based laser scanning tools) alongside geospatial modelling will enable the effects of restoration on carbon storage to be modelled from headwater catchment to moorland scales. Lindsay, R. (2010) Peatbogs and Carbon: A Critical Synthesis. University of East London, London.

  1. Structural heat pipe. [for spacecraft wall thermal insulation system

    NASA Technical Reports Server (NTRS)

    Ollendorf, S. (Inventor)

    1974-01-01

    A combined structural reinforcing element and heat transfer member is disclosed for placement between a structural wall and an outer insulation blanket. The element comprises a heat pipe, one side of which supports the outer insulation blanket, the opposite side of which is connected to the structural wall. Heat penetrating through the outer insulation blanket directly reaches the heat pipe and is drawn off, thereby reducing thermal gradients in the structural wall. The element, due to its attachment to the structural wall, further functions as a reinforcing member.

  2. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  3. Evaluation of selective dry cow treatment following on-farm culture: risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation.

    PubMed

    Cameron, M; McKenna, S L; MacDonald, K A; Dohoo, I R; Roy, J P; Keefe, G P

    2014-01-01

    The objective of the study was to evaluate the utility of a Petrifilm-based on-farm culture system when used to make selective antimicrobial treatment decisions on low somatic cell count cows (<200,000 cells/mL) at drying off. A total of 729 cows from 16 commercial dairy herds with a low bulk tank somatic cell count (<250,000 cells/mL) were randomly assigned to receive either blanket dry cow therapy (DCT) or Petrifilm-based selective DCT. Cows belonging to the blanket DCT group were infused with a commercial dry cow antimicrobial product and an internal teat sealant (ITS) at drying off. Using composite milk samples collected on the day before drying off, cows in the selective DCT group were treated at drying off based on the results obtained by the Petrifilm on-farm culture system with DCT + ITS (Petrifilm culture positive), or ITS alone (Petrifilm culture negative). Quarters of all cows were sampled for standard laboratory bacteriology on the day before drying off, at 3 to 4d in milk (DIM), at 5 to 18 DIM, and from the first case of clinical mastitis occurring within 120 DIM. Multilevel logistic regression was used to assess the effect of study group (blanket or selective DCT) and resulting dry cow treatment (DCT + ITS, or ITS alone) on the risk of intramammary infection (IMI) at calving and the risk of a first case of clinical mastitis between calving and 120 DIM. According to univariable analysis, no difference was observed between study groups with respect to quarter-level cure risk and new IMI risk over the dry period. Likewise, the risk of IMI at calving and the risk of clinical mastitis in the first 120 DIM was not different between quarters belonging to cows in the blanket DCT group and quarters belonging to cows in the selective DCT group. The results of this study indicate that selective DCT based on results obtained by the Petrifilm on-farm culture system achieved the same level of success with respect to treatment and prevention of IMI over the dry period as blanket DCT and did not affect the risk of clinical mastitis in the first 120 d of the subsequent lactation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. 2014 Strategic Sustainability Performance Plan

    DTIC Science & Technology

    2014-06-30

    Strategic Sourcing Initiatives, such as Blanket Purchase Agreements ( BPAs ) for office products and imaging equipment, which include sustainable...end of FY2014. Use Federal Strategic Sourcing Initiatives, such as Blanket Purchase Agreements ( BPAs ) Yes USACE is required to participate in

  5. Acquisition Quality Improvement Within Naval Facilities Engineering Command Southwest

    DTIC Science & Technology

    2015-06-01

    Act BMS Business Management System BPA Blanket Purchase Agreement COR Contracting Officer Representative CS Contract Specialist DASN...Services (MOPAS) missing in two service contract files. (2) Blanket Purchase Agreement ( BPA ) procedures were not followed. (3) Business

  6. Stacbeam 2

    NASA Astrophysics Data System (ADS)

    Adams, L. R.; Vonroos, A.

    1985-04-01

    An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed.

  7. Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia

    The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less

  8. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    NASA Astrophysics Data System (ADS)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  9. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  10. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Astrophysics Data System (ADS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-09-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  11. Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    NASA Technical Reports Server (NTRS)

    Adams, L. R.; Hedgepeth, J. M.

    1981-01-01

    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.

  12. Geology of Southern Quintana Roo (Mexico) and the Chicxulub Ejecta Blanket

    NASA Astrophysics Data System (ADS)

    Schönian, F.; Tagle, R.; Stöffler, D.; Kenkmann, T.

    2005-03-01

    In southern Quintana Roo (Mexico) the Chicxulub ejecta blanket is discontinuously filling a karstified pre-KT land surface. This suggests a completely new scenario for the geological evolution of the southern Yucatán Peninsula.

  13. Self-deploying photovoltaic power system

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J. (Inventor)

    1993-01-01

    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

  14. 76 FR 48855 - Questar Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... gas to be stored at its Clay Basin storage reservoir and increase the maximum certificated shut-in pressure of Clay Basin located in Daggett County, Utah. The request was made pursuant to the blanket...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobromir Panayotov; Andrew Grief; Brad J. Merrill

    'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and atmore » the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and figures. Description of each phase and its results in detail as well the methodology applications to EU HCLL and HCPB TBSs will be published in separate papers. The developed methodology is applicable to accident analyses of other TBSs to be tested in ITER and as well to DEMO breeding blankets.« less

  16. KSC-05pd2515

    NASA Image and Video Library

    2005-11-19

    KENNEDY SPACE CENTER, FLA. - One of the blanket sewing machines used on Thermal Protection System materials has been returned to the TPS facility. It was moved to the RLV Hangar at NASA Kennedy Space Center after the 2004 hurricanes damaged the upper floor, where soft material was processed, of the TPS facility. While the TPS facility was being repaired, normal work activity was done in the hangar.

  17. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data

    NASA Astrophysics Data System (ADS)

    Peukert, Anne; Schoening, Timm; Alevizos, Evangelos; Köser, Kevin; Kwasnitschka, Tom; Greinert, Jens

    2018-04-01

    In this study, ship- and autonomous underwater vehicle (AUV)-based multibeam data from the German ferromanganese-nodule (Mn-nodule) license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground-truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high-resolution AUV bathymetry, this revealed a correlation of small-scale terrain variations ( < 5 m horizontally, < 1 m vertically) with nodule coverage. In the presented data set, increased nodule coverage could be correlated with slopes > 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule coverage and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of resettled sediment following a disturbance and sediment cloud generation during a sampling deployment of an epibenthic sledge. Data from before and after the disturbance allow a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 h after the disturbance. The visually detectable impact was spatially limited to a maximum of 100 m distance from the disturbance track, downstream of the bottom water current. A correlation with high-resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor ( < 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining mineable areas. At the same time, it shows the importance of high-resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining operations.

  18. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  19. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less

  20. Water-Repellency Probe

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D.; Mitchell, Shirley M.; Jolly, Stanley R.; Jackson, Richard G.; Fleming, Scott T.; Roberts, William J.; Bell, Daniel R., III

    1996-01-01

    Instrument yielding presence or absence of waterproofing agent at any given depth in blanket developed. In original application, blankets in question part of space shuttle thermal protection system. Instrument utilized to determine extent of waterproofing "burnout" due to re-entry heating and adverse environment exposure.

  1. What are the Effects of Protest Fear?

    DTIC Science & Technology

    2014-06-01

    Program AT&L Acquisition, Technology, and Logistics BPA blanket purchase agreement CONUS continental United States COR...they have awarded a task/delivery order against an IDIQ contract (or Blanket Purchase Agreement [ BPA ]) in order to avoid a bid protest. The data shows

  2. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  3. Automated Laser Cutting In Three Dimensions

    NASA Technical Reports Server (NTRS)

    Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.

    1995-01-01

    Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.

  4. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12943 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  5. Olivas participating in EVA during Expedition/STS-117 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12952 (15 June 2007) --- Anchored to a foot restraint on Space Shuttle Atlantis' remote manipulator system (RMS) robotic arm, astronaut John "Danny" Olivas, STS-117 mission specialist, repairs a 4-by-6-inch section of a thermal blanket on Atlantis' port orbital maneuvering system (OMS) pod that was damaged during the shuttle's climb to orbit last week. During the repair, Olivas pushed the turned up portion of the thermal blanket back into position, used a medical stapler to secure the layers of the blanket, and pinned it in place against adjacent thermal tile.

  6. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    NASA Astrophysics Data System (ADS)

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  7. Thermal-hydraulic analysis of low activity fusion blanket designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fillo, J A; Powell, J; Yu, W S

    1977-01-01

    The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.

  8. What are the Effects of Protest Fear?

    DTIC Science & Technology

    2014-06-17

    Acquisition Professional Development Program AT&L Acquisition, Technology, and Logistics BPA blanket purchase agreement CONUS continental United States...Blanket Purchase Agreement [ BPA ]) in order to avoid a bid protest. The data shows that 88 respondents had done so throughout their career with 4,139

  9. Warm Ocean Temperatures Blanket the Far-Western Pacific

    NASA Image and Video Library

    2001-03-28

    Data taken during a 10-day collection cycle ending March 9, 2001, show that above-normal sea-surface heights and warmer ocean temp. red and white areas still blanket the far-western tropical Pacific and much of the north and south mid-Pacific.

  10. Tokamak blanket design study, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steelmore » is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.« less

  11. Checkerboard seed-blanket thorium fuel core concepts for heavy water moderated reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, B.P.; Hyland, B.

    2013-07-01

    New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWR) are highly advantageous for implementing the use of thorium-based fuels because of their high neutron economy and on-line re-fuelling capability. The use of heterogeneous seed-blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize the fissile utilization and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor grade Pu (aboutmore » 67 wt% fissile) and Th, and with a central zirconia rod to help reduce coolant void reactivity. Several checkerboard heterogeneous seed-blanket core concepts with plutonium-thorium-based fuels in a 700-MWe-class PT-HWR were analyzed, using a once-through thorium (OTT) cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, fissile utilization, power distributions, and other performance parameters. It was found that various checkerboard core concepts can achieve a fissile utilization that is up to 26% higher than that achieved in a PT-HWR using more conventional natural uranium fuel bundles. Up to 60% of the Pu is consumed; up to 43% of the energy is produced from thorium, and up to 303 kg/year of Pa-233/U-233/U-235 are produced. Checkerboard cores with about 50% of low-power blanket bundles may require power de-rating (65% to 74%) to avoid exceeding maximum limits for channel and bundle powers and linear element ratings. (authors)« less

  12. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare to attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare to attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  13. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  14. KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  15. KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  16. 77 FR 20511 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... heat damage to the inner wall of the thrust reversers, which could result in separation of adjacent... the upper and lower inner wall insulation blankets, measuring the electrical conductivity on the..., doing various concurrent actions (including replacing the inner wall blanket insulation, installing...

  17. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  18. Mechanical design of a light water breeder reactor

    DOEpatents

    Fauth, Jr., William L.; Jones, Daniel S.; Kolsun, George J.; Erbes, John G.; Brennan, John J.; Weissburg, James A.; Sharbaugh, John E.

    1976-01-01

    In a light water reactor system using the thorium-232 -- uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements.

  19. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  20. Modeling of tritium transport in a fusion reactor pin-type solid breeder blanket using the diffuse code

    NASA Astrophysics Data System (ADS)

    Martin, Rodger; Ghoniem, Nasr M.

    1986-11-01

    A pin-type fusion reactor blanket is designed using γ-LiAlO 2 solid tritium breeder. Tritium transport and diffusive inventory are modeled using the DIFFUSE code. Two approaches are used to obtain characteristic LiAlO 2 grain temperatures. DIFFUSE provides intragranular diffusive inventories which scale up to blanket size. These results compare well with a numerical analysis, giving a steady-state blanket tritium inventory of 13 g. Start-up transient inventories are modeled using DIFFUSE for both full and restricted coolant flow. Full flow gives rapid inventory buildup while restricted flow prevents this buildup. Inventories after shutdown are modeled: reduced cooling is found to have little effect on removing tritium, but preheating rapidly purges inventory. DIFFUSE provides parametric modeling of solid breeder density, radiation, and surface effects. 100% dense pins are found to give massive inventory and marginal tritium release. Only large trapping energies and concentrations significantly increase inventory. Diatomic surface recombination is only significant at high temperatures.

  1. A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Dixon, S.; Evans, M.

    2014-12-01

    This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.

  2. Effect of the self-pumped limiter concept on the tritium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, P.A.; Sze, D.K.; Hassanein, A.

    1988-01-01

    The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.

  3. Surface Modeling to Support Small-Body Spacecraft Exploration and Proximity Operations

    NASA Technical Reports Server (NTRS)

    Riedel, Joseph E.; Mastrodemos, Nickolaos; Gaskell, Robert W.

    2011-01-01

    In order to simulate physically plausible surfaces that represent geologically evolved surfaces, demonstrating demanding surface-relative guidance navigation and control (GN&C) actions, such surfaces must be made to mimic the geological processes themselves. A report describes how, using software and algorithms to model body surfaces as a series of digital terrain maps, a series of processes was put in place that evolve the surface from some assumed nominal starting condition. The physical processes modeled in this algorithmic technique include fractal regolith substrate texturing, fractally textured rocks (of empirically derived size and distribution power laws), cratering, and regolith migration under potential energy gradient. Starting with a global model that may be determined observationally or created ad hoc, the surface evolution is begun. First, material of some assumed strength is layered on the global model in a fractally random pattern. Then, rocks are distributed according to power laws measured on the Moon. Cratering then takes place in a temporal fashion, including modeling of ejecta blankets and taking into account the gravity of the object (which determines how much of the ejecta blanket falls back to the surface), and causing the observed phenomena of older craters being progressively buried by the ejecta of earlier impacts. Finally, regolith migration occurs which stratifies finer materials from coarser, as the fine material progressively migrates to regions of lower potential energy.

  4. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    PubMed

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  5. Parametric Weight Comparison of Current and Proposed Thermal Protection System (TPS) Concepts

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    1999-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (1 -D) thermal finite element sizing code. This sizing code contained models to ac- count for coatings, fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) rocket-powered single-stage-to-orbit (SSTO) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a particular trajectory. Eight TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile systems and approaches blanket TPS weights for higher integrated heat loads.

  6. KSC-03pd3258

    NASA Image and Video Library

    2003-12-19

    KENNEDY SPACE CENTER, FLA. -- A United Space Alliance (USA) technician (left) discusses the construction of a thermal blanket used in the Shuttle's thermal protection system with USA Vice President and Space Shuttle Program Manager Howard DeCastro (right). NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.

  7. Communication satellites for STS-5 being readied for loading

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two commercial communication satellites scheduled for flight on STS-5 are pictured as they are being readied for loading into a special canister that will transport them to the launch pad. Telsat Canada's Anik C-3 (at bottom) is seen in its blanket covered cradle assemble. Satellite Business System's SBS-3 is at top. This photo was taken inside the vertical processing facility (VPF).

  8. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    NASA Astrophysics Data System (ADS)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  9. Venting through multiple-layer insulation on Space Station Freedom. II - Ascent rate pressure chamber testing

    NASA Technical Reports Server (NTRS)

    Sharp, Jeffrey B.; Buitekant, Alan; Fay, John F.; Holladay, Jon B.

    1993-01-01

    A test was conducted to determine the venting characteristics of the multiple-layer insulation (MLI) to be installed on the Space Station Freedom (SSF). A full MLI blanket with inter-blanket joints was installed onto a model of a section of the SSF pressure wall, support structure, and debris shield. Data were taken from this test and were used to predict the venting of the actual Space Station pressure-wall/MLI/debris-shield assemply during launch and possible re-entry. It was found that the pressure differences across the debris shields and MLI blankets were well within the specified limits in all cases.

  10. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  11. Mountains on Titan observed by Cassini Radar

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  12. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  13. Lifting the Markov blankets of socio-cultural evolution. A comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Leydesdorff, Loet

    2018-03-01

    Ramstead et al. [8] claim an encompassing ontology which can be used as a heuristics for studying life, mind, and society both empirically and in terms of computer simulations. The systems levels are self-organizing into a hierarchy; "Markov blankets" close the various levels for one another. Homo sapiens sapiens is placed at the top of this hierarchy as "the world's most complex living systems." Humans are said to generate "(epi)genetically-specified expectations that have been shaped by selection to guide action-perception cycles toward adaptive or unsurprising states."

  14. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Blanket Certificates Authorizing Certain Natural Gas...

  15. An investigation into the feasibility of thorium fuels utilization in seed-blanket configurations for TRIGA PUSPATI Reactor (RTP)

    NASA Astrophysics Data System (ADS)

    Damahuri, Abdul Hannan Bin; Mohamed, Hassan; Aziz Mohamed, Abdul; Idris, Faridah

    2018-01-01

    Thorium is one of the elements that needs to be explored for nuclear fuel research and development. One of the popular core configurations of thorium fuel is seed-blanket configuration or also known as Radkowsky Thorium Fuel concept. The seed will act as a supplier of neutrons, which will be placed inside of the core. The blanket, on the other hand, is the consumer of neutrons that is located at outermost of the core. In this work, a neutronic analysis of seed-blanket configuration for the TRIGA PUSPATI Reactor (RTP) is carried out using Monte Carlo method. The reactor, which has been operated since 1982 use uranium zirconium hydride (U-ZrH1.6) as the fuel and have multiple uranium weight which are 8.5, 12 and 20 wt.%. The pool type reactor is one and only research reactor that located in Malaysia. The design of core included the Uranium Zirconium Hydride located at the centre of the core that will act as the seed to supply neutron. The thorium oxide that will act as blanket situated outside of seed region will receive neutron to transmute 232Th to 233U. The neutron multiplication factor or criticality of each configuration is estimated. Results show that the highest initial criticality achieved is 1.30153.

  16. Development and Testing of Data Mining Algorithms for Earth Observation

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.

  17. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.

    PubMed

    Patidar, S K; Tare, Vinod

    2004-01-01

    This paper describes the effect of the nutrients iron (Fe), nickel (Ni), zinc (Zn), cobalt (Co), and molybdenum (Mo) on biomass evolution in an upflow anaerobic sludge blanket (UASB) reactor metabolizing synthetic sulfate-laden organics at varying operating conditions during a period of 540 days. A bench-scale model of a UASB reactor was operated at a temperature of 35 degrees C for a chemical oxygen demand-to-sulfate (COD/SO4(2-)) ratio of 8.59 to 2.0, a sulfate loading rate of 0.54 to 1.88 kg SO4(2-)/m3 x d, and an organic loading rate of 1.9 to 5.75 kg COD/m3 x d. Biomass was characterized in terms of total methanogenic activity, acetate-utilizing methanogenic activity, total sulfidogenic activity, acetate-utilizing sulfidogenic activity, and scanning electron microscopy (SEM). Nickel and cobalt limitation appears to affect the activity of hydrogen-utilizing methane-producing bacteria (HMPB) significantly without having an appreciable effect on the activity of acetate-utilizing methane-producing bacteria (AMPB). Nickel and cobalt supplementation resulted in increased availability and, consequently, restoration of biomass activity and process performance. Iron limitation and sulfidogenic conditions resulted in the growth of low-density, hollow, fragile granules that washed out, causing process instability and performance deterioration. Iron and cobalt supplementation indicated significant stimulation of AMPB with slight inhibition of HMPB. Examination of biomass through SEM indicated a population shift with dominance of sarcina-type organisms and the formation of hollow granules. Granule disintegration was observed toward the end of the study.

  18. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  19. 76 FR 14387 - Texas Eastern Transmission, LP; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-118-000] Texas Eastern... Eastern Transmission, LP (Texas Eastern), Post Office Box 1642, Houston, Texas 77251-1642, filed in Docket... West Cameron Blocks 566, 565, and 548, offshore Louisiana, under Texas Eastern's blanket certificate...

  20. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this paragraph (b) (2)); (3) Twenty-four triangular bandages (15 if a splint-stretcher combination is used); (4) Eight 4-inch bandage compresses; (5) Eight 2-inch bandage compresses; (6) Twelve 1-inch adhesive compresses; (7) An approved burn remedy; (8) Two cloth blankets; (9) One rubber blanket or...

  1. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this paragraph (b) (2)); (3) Twenty-four triangular bandages (15 if a splint-stretcher combination is used); (4) Eight 4-inch bandage compresses; (5) Eight 2-inch bandage compresses; (6) Twelve 1-inch adhesive compresses; (7) An approved burn remedy; (8) Two cloth blankets; (9) One rubber blanket or...

  2. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this paragraph (b) (2)); (3) Twenty-four triangular bandages (15 if a splint-stretcher combination is used); (4) Eight 4-inch bandage compresses; (5) Eight 2-inch bandage compresses; (6) Twelve 1-inch adhesive compresses; (7) An approved burn remedy; (8) Two cloth blankets; (9) One rubber blanket or...

  3. 30 CFR 77.1707 - First aid equipment; location; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this paragraph (b) (2)); (3) Twenty-four triangular bandages (15 if a splint-stretcher combination is used); (4) Eight 4-inch bandage compresses; (5) Eight 2-inch bandage compresses; (6) Twelve 1-inch adhesive compresses; (7) An approved burn remedy; (8) Two cloth blankets; (9) One rubber blanket or...

  4. Project Summary Report : Evaluation of Effectiveness and Cost-Benefits of Woolen Roadside Reclamation Products

    DOT National Transportation Integrated Search

    2017-12-01

    Wool has been used by humans for millennia for clothing, blankets, and even for housing like the yurts of central Asia. This project took a fresh look at wool and explored its potential for incorporation in erosion control blankets (ECBs) and to incr...

  5. Silicon-fiber blanket solar-cell array concept

    NASA Technical Reports Server (NTRS)

    Eliason, J. T.

    1973-01-01

    Proposed economical manufacture of solar-cell arrays involves parallel, planar weaving of filaments made of doped silicon fibers with diffused radial junction. Each filament is a solar cell connected either in series or parallel with others to form a blanket of deposited grids or attached electrode wire mesh screens.

  6. 75 FR 11557 - Woven Electric Blankets From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final phase... States is materially retarded, by reason of less-than-fair-value imports from China of woven electric... blankets from the People's Republic of China are being sold in the United States at less than fair value...

  7. 75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124... Federal Energy Regulatory Commission's regulations under the Natural Gas Act for authorization to abandon...

  8. 32 CFR 318.14 - Blanket routine uses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Armed Forces, information as to last known residential or home of record address may be provided to the... 32 National Defense 2 2011-07-01 2011-07-01 false Blanket routine uses. 318.14 Section 318.14 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY...

  9. 32 CFR 318.14 - Blanket routine uses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Armed Forces, information as to last known residential or home of record address may be provided to the... 32 National Defense 2 2010-07-01 2010-07-01 false Blanket routine uses. 318.14 Section 318.14 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY...

  10. 77 FR 36206 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... experienced smoke and heat damage from insulation blankets that smoldered after molten debris from a P200 ELMS power panel fell on the insulation blankets. When a contactor in the ELMS panel fails and overheats, the... ELMS contactor breakdown, consequent smoke and heat damage to airplane structure and equipment during...

  11. 76 FR 2371 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... would compensate the landowner's transition to an alternative source of energy. Any questions concerning... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-57-000] Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization January 5, 2011. Take notice that on December...

  12. The Haida Button Blanket.

    ERIC Educational Resources Information Center

    Johnson, Vesta

    In the Haida nation, there are two phratries, Eagle and Raven, divided into a number of clans sharing one or more emblems. These emblems, inherited from the mother's line, adorn the button blankets which are the traditional ceremonial robes that serve to identify the family of the wearer. Written instructions and diagrams guide students in…

  13. 76 FR 66920 - Commission Information Collection Activities (FERC-549); Comment Request; Submitted for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... sharp increase in demand for natural gas outside of the traditional winter months. Withdrawals and... activities and unbundled sales activities of interstate natural gas pipelines and blanket marketing... and to monitor and evaluate transactions and operations of interstate pipelines and blanket marketing...

  14. 76 FR 46783 - Commission Information Collection Activities (FERC-549); Comment Request; Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... 1992. There has been a sharp increase in demand for natural gas outside of the traditional winter... activities and unbundled sales activities of interstate natural gas pipelines and blanket marketing... and to monitor and evaluate transactions and operations of interstate pipelines and blanket marketing...

  15. 78 FR 9679 - National Fuel Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Gas Supply Corporation; Prior Notice of Activity Under Blanket Certificate On January 24, 2013, National Fuel Gas Supply Corporation (National Fuel) filed with the Federal Energy Regulatory Commission... this application may be directed to David W. Reitz, Deputy General Counsel, National Fuel Gas Supply...

  16. 78 FR 53745 - National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-530-000] National Fuel Gas Supply Corporation; Notice of Request Under Blanket Authorization Take notice that on August 12, 2013, National Fuel Gas Supply Corporation (National Fuel), 6363 Main Street, Williamsville, New York...

  17. 77 FR 50101 - Cadeville Gas Storage LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Storage LLC; Notice of Request Under Blanket Authorization On July 27, 2012, Cadeville Gas Storage LLC....213(b) of the Commission's Regulations for authority to construct an additional natural gas storage and injection well at Cadeville's natural gas storage facility in Ouachita Parish, Louisiana. The...

  18. 78 FR 30918 - Perryville Gas Storage LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Storage LLC; Notice of Request Under Blanket Authorization Take notice that on May 3, 2013, Perryville Gas Storage LLC (Perryville), Three Riverway, Suite 1350, Houston, Texas 77056, filed a prior notice request... Perryville's natural gas storage facility in Franklin and Richland Parishes, Louisiana. Perryville does not...

  19. 75 FR 57017 - Venice Gathering System, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-497-000] Venice Gathering System, LLC; Notice of Request Under Blanket Authorization September 10, 2010. Take notice that on September 3, 2010, Venice Gathering System, LLC (VGS), 1000 Louisiana, Suite 4300, Houston, Texas 77002...

  20. KSC-2012-3431

    NASA Image and Video Library

    2012-06-21

    CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians install protective thermal blankets around the Radiation Belt Storm Probes, or RBSP, spacecraft A. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-3438

    NASA Image and Video Library

    2012-06-21

    CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians install protective thermal blankets around the Radiation Belt Storm Probes, or RBSP, spacecraft A. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett

  2. KSC-98pc1164

    NASA Image and Video Library

    1998-09-28

    The orbiter Atlantis is towed away from the Shuttle Landing Facility after returning home from California atop its Shuttle Carrier Aircraft. The orbiter spent 10 months in Palmdale undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations in the Orbiter Processing Facility at KSC for its planned flight in June 1999

  3. KSC-04PD-1680

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, workers help guide the nose cap (right) toward the orbiter Atlantis for installation. The nose cap was removed from the vehicle in May and sent back to the vendor for thorough Non- Destructive Engineering evaluation and recoating. Thermography was also performed to check for internal flaws. This procedure uses high intensity light to heat areas that are immediately scanned with an infrared camera. White Thermal Protection System blankets were reinstalled on the nose cap before installation. Processing continues on Atlantis for its future mission to the International Space Station.

  4. KSC-04PD-1681

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, workers help install the nose cap (right) onto the orbiter Atlantis. The nose cap was removed from the vehicle in May and sent back to the vendor for thorough Non-Destructive Engineering evaluation and recoating. Thermography was also performed to check for internal flaws. This procedure uses high intensity light to heat areas that are immediately scanned with an infrared camera. White Thermal Protection System blankets were reinstalled on the nose cap before installation. Processing continues on Atlantis for its future mission to the International Space Station.

  5. Studies of mist deposition for the formation of quantum dot CdSe films

    NASA Astrophysics Data System (ADS)

    Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.

    2009-10-01

    Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.

  6. Influence of sludge reflux ratios on biodegradation performance in a coupled landfill leachate treatment process based on UASB and submerged MBR.

    PubMed

    Wang, Bing; Li, Wei; Liu, Lei; Huang, Guo He

    2016-07-28

    This study was undertaken to investigate the effects of different sludge reflux ratios (SRRs) on the overall performance and the fouling behavior of the up-flow anaerobic sludge blanket (UASB) reactor-anoxic-membrane bioreactor (MBR). The leachate and synthetic municipal wastewater were mixed in order to improve the biodegradability of the old leachate. Results showed that excellent removal efficiencies for chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) were obtained by using the integrated UASB-anoxic-MBR process. The average COD removals were 91.01%, 93.90%, and 92.67% and that of NH3-N were 98.1%, 98.5%, and 98.9% when SRRs were 100%, 300%, and 500%, respectively. The study of the membrane fouling mechanism indicated that proteins, hydrocarbons and inorganic matter are the main elements of the cake layers.

  7. Source-to-incident-flux relation in a Tokamak blanket module

    NASA Astrophysics Data System (ADS)

    Imel, G. R.

    The next-generation Tokamak experiments, including the Tokamak fusion test reactor (TFTR), will utilize small blanket modules to measure performance parameters such as tritium breeding profiles, power deposition profiles, and neutron flux profiles. Specifically, a neutron calorimeter (simply a neutron moderating blanket module) which permits inferring the incident 14 MeV flux based on measured temperature profiles was proposed for TFTR. The problem of how to relate this total scalar flux to the fusion neutron source is addressed. This relation is necessary since the calorimeter is proposed as a total fusion energy monitor. The methods and assumptions presented was valid for the TFTR Lithium Breeding Module (LBM), as well as other modules on larger Tokamak reactors.

  8. Sporadic E movement followed with a pencil beam high frequency radar

    NASA Astrophysics Data System (ADS)

    From, W. R.

    1983-12-01

    Several types of sporadic E are observed using the 5.80 and 3.84-MHz Bribie Island pencil-beam high-frequency radar. Blanketing Es takes the form of large flat sheets with ripples in them. Non-blanketing Es is observed to be small clouds that drift across the field of view (40 deg). There is continuous gradation of sporadic E structure between these extremes. There are at least four different physical means by which sporadic E clouds may apparently move. It is concluded that non-blanketing sporadic E consists of separate clouds which follow the movement of the constructive interference between internal gravity waves rather than being blown by the background wind.

  9. KSC-04pd0705

    NASA Image and Video Library

    2004-04-05

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance (USA) technicians Mike Williams (left) and R. Justin Hopmann (right) lift the thermal blanket insulation into Discovery’s nose cap, which is under a protective cover and seated above them on a work stand. The work is being done in a low bay area outside the Orbiter Processing Facility. Discovery is the orbiter named as the vehicle for Return to Flight with mission STS-114.

  10. Tritium

    DTIC Science & Technology

    2011-11-01

    fusion energy -production processes of the particular type of reactor using a lithium (Li) blanket or related alloys such as the Pb-17Li eutectic. As such, tritium breeding is intimately connected with energy production, thermal management, radioactivity management, materials properties, and mechanical structures of any plausible future large-scale fusion power reactor. JASON is asked to examine the current state of scientific knowledge and engineering practice on the physical and chemical bases for large-scale tritium

  11. Structural materials by powder HIP for fusion reactors

    NASA Astrophysics Data System (ADS)

    Dellis, C.; Le Marois, G.; van Osch, E. V.

    1998-10-01

    Tokamak blankets have complex shapes and geometries with double curvature and embedded cooling channels. Usual manufacturing techniques such as forging, bending and welding generate very complex fabrication routes. Hot Isostatic Pressing (HIP) is a versatile and flexible fabrication technique that has a broad range of commercial applications. Powder HIP appears to be one of the most suitable techniques for the manufacturing of such complex shape components as fusion reactor modules. During the HIP cycle, consolidation of the powder is made and porosity in the material disappears. This involves a variation of 30% in volume of the component. These deformations are not isotropic due to temperature gradients in the part and the stiffness of the canister. This paper discusses the following points: (i) Availability of manufacturing process by powder HIP of 316LN stainless steel (ITER modules) and F82H martensitic steel (ITER Test Module and DEMO blanket) with properties equivalent to the forged one.(ii) Availability of powerful modelling techniques to simulate the densification of powder during the HIP cycle, and to control the deformation of components during consolidation by improving the canister design.(iii) Material data base needed for simulation of the HIP process, and the optimisation of canister geometry.(iv) Irradiation behaviour on powder HIP materials from preliminary results.

  12. Electronic structure of nickel silicide in subhalf-micron lines and blanket films: An x-ray absorption fine structures study at the Ni and Si L3,2 edge

    NASA Astrophysics Data System (ADS)

    Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.

    1999-05-01

    We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.

  13. The Chemistry of Impacting Bodies Recorded on EURECA

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Grady, M. M.; Sexton, A.

    1995-09-01

    The European Retrievable Satellite (EURECA) was in orbit at an altitude of 500km for 11 months. After recovery, the multi-layer thermal insulation blankets (MLI) covering the craft were removed and scanned for signs of micrometeoroid impacts. A total of ~29m^2 of the blankets was surveyed, (~37% of the surface) [1]. Further examination indicated that there were 59 penetration features, ranging in diameter from ~1200 micrometers down to ~60 micrometers [2]; holes of smaller dimensions cannot be detected in MLI, due to the structure of the topmost surface (beta-cloth, made from woven fibres of Teflon-coated glass fibre. a Si-, Al- and Ca-rich material). We have now completed EDAX-SEM analysis of residual material associated with the impacts, and have attempted to classify the residues and thus ascertain the relative proportions of holes produced by natural micrometeoroids and space debris. The multi-layered nature of the blankets allowed impacting particles to decelerate progressively and thus be captured. Particles were readily detected within most blankets, and individual penetration features often contained many particles, frequently with differing compositions, and at various levels within the blanket structure. Particles were not always close to an impact feature. In Type 6 MLI, (the most common blanket-type on EURECA, with 22 layers), there is a positive correlation between the diameter of the impact hole in the beta-cloth and the number of layers subsequently penetrated (mainly Al foil). This observation is consistent with the largest holes being made by the particles with the highest energy. The criteria used to assess the possible origins of the residual material were those of Zolensky et al. [3]. Analysis (see table) indicated that 7% of the particles were natural micrometeoroids, and 43% were pieces of beta-cloth carried into the intenor of the blankets as a result of impacts. The remainder was space debris. Normalizing the analyses to a "per hole" basis, S impacts were produced by natural micrometeoroids and 20 by space debris. The remaining 34 holes could not be assigned a specific origin. Space debris occurred as paint flakes, rocket propellant, fragments of electronic components and spacecraft materials, in addition to inorganic salts, possibly from astronaut waste. The search for residues of natural origin was hampered by the presence of shattered fragments and melted pieces of beta-cloth. The material believed to be of possible natural origin was present as Mg-silicate (at 2 sites), and one occurrence each of Fe, Mg-silicate, Ti, Al-silicate and Fe, Ni metal. It is clear from the results of this study that beta-cloth is not an ideal surface for the recovery of natural micrometeoroid debris for further investigation. References: [1] Aceti R. et al. (1994) ESA Bulletin, 80, 21-26. [2] Grady M. M. et al. (1995) LPS XXVI, 485-486. [3] Zolensky M. E. et al. (1993) LDEF--69 Months in Space, Second Post-Retrieval Symposium, 277-302.

  14. 76 FR 29234 - Texas Eastern Transmission, LP; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-477-000] Texas Eastern Transmission, LP; Notice of Request Under Blanket Authorization Take notice that on May 10, 2011 Texas Eastern Transmission, LP (Texas Eastern), 5400 Westheimer Court, Houston, Texas 77056, filed in Docket No. CP11-477-000...

  15. 77 FR 25999 - PGPV, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1603-000] PGPV, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of PGPV, LLC's application for...

  16. An Analysis of Purchasing Systems at the Ship Level in the United States and Hellenic Navies

    DTIC Science & Technology

    2014-12-01

    ABBREVIATIONS AT&L acquisition, technology, and logistics BPA blanket purchase agreement BBP better buying power DOD Department of Defense FC Fleet...the ships can also solicit and award formal contracts or blanket purchase agreements ( BPA )— BPA are charging accounts with selected suppliers for the

  17. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Blanket certification. 157.203 Section 157.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... restoration of the right-of way; (B) Provide a local or toll-free phone number and a name of a specific person...

  18. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket certification. 157.203 Section 157.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... restoration of the right-of way; (B) Provide a local or toll-free phone number and a name of a specific person...

  19. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Blanket certification. 157.203 Section 157.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... restoration of the right-of way; (B) Provide a local or toll-free phone number and a name of a specific person...

  20. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Blanket certification. 157.203 Section 157.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... restoration of the right-of way; (B) Provide a local or toll-free phone number and a name of a specific person...

  1. 18 CFR 157.203 - Blanket certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Blanket certification. 157.203 Section 157.203 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... restoration of the right-of way; (B) Provide a local or toll-free phone number and a name of a specific person...

  2. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563, Birmingham, Alabama 35202-2563, filed in... Regulations under the Natural Gas Act (NGA) as amended, to abandon in place a supply lateral that extends from...

  3. 75 FR 3232 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Natural Gas Company; Notice of Request Under Blanket Authorization January 8, 2010. Take notice that on December 30, 2009, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124...'s regulations under the Natural Gas Act for authorization to increase its maximum storage capacity...

  4. 78 FR 66915 - Notice of Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Request Under Blanket Authorization; Southern Star Central Gas Pipeline, Inc. Take notice that on October 21, 2013 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro... Counties, Missouri, under authorization issued to Southern Star in Docket No. CP82-479-000 pursuant to...

  5. 77 FR 38622 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-475-000] Southern Star..., Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky 42301, filed... amended and Southern Star's blanket certificate issued in Docket No. CP82-479-000 \\1\\ for authorization to...

  6. 32 CFR Appendix C to Part 310 - DoD Blanket Routine Uses

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false DoD Blanket Routine Uses C Appendix C to Part 310 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED..., whether civil, criminal, or regulatory in nature, and whether arising by general statute or by regulation...

  7. 32 CFR Appendix C to Part 327 - DeCA Blanket Routine Uses

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... personnel separated, discharged, or retired from the Armed Forces, information as to last known residential... 32 National Defense 2 2011-07-01 2011-07-01 false DeCA Blanket Routine Uses C Appendix C to Part 327 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED...

  8. 77 FR 70355 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... leakage zone) or heat damage to the APU power feeder cable, insulation blankets, or pressure bulkhead...) of the NPRM requires repair of the APU power feeder, insulation blankets, and clamps, if no primer... bulletin, which states, ``If visual indications of heat damage are found, do steps 6.c through 6.f...

  9. Structural and Kinetic Properties of Graphite Intercalation Compounds

    DTIC Science & Technology

    1983-04-29

    The exfoliation of graphite-FeCl 3NH has been used for making blankets for the extinction of metal fires [12). In addition. exfoliated graphite is...FeCl3-oH3 has been used (Aerotech GCma, 0.5 MHz wideband) equipped with for making blankets for the extinction of metal fires (3). In addition

  10. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... Blanket Authorization to Export Previously Imported Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE) of the Department of... Natural Gas Regulatory Activities, Office of Fossil Energy, P.O. Box 44375, Washington, DC 20026-4375...

  11. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  12. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  13. Gas core reactors for actinide transmutation. [uranium hexafluoride

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  14. ITER-FEAT vacuum vessel and blanket design features and implications for the R&D programme

    NASA Astrophysics Data System (ADS)

    Ioki, K.; Dänner, W.; Koizumi, K.; Krylov, V. A.; Cardella, A.; Elio, F.; Onozuka, M.; ITER Joint Central Team; ITER Home Teams

    2001-03-01

    A configuration in which the vacuum vessel (VV) fits tightly to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the toroidal field ripple. The blanket modules are supported directly by the VV. A full scale VV sector model has provided critical information related to fabrication technology and for testing the magnitude of welding distortions and achievable tolerances. This R&D validated the fundamental feasibility of the double wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and robustness of solid hot isostatic pressing joining were demonstrated in the R&D by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal.

  15. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.

    2017-12-01

    Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.

  16. KSC-98pc1166

    NASA Image and Video Library

    1998-09-28

    The orbiter Atlantis, being towed from the Shuttle Landing Facility toward the Vehicle Assembly Building (VAB) , intersects the morning sun's rays. In the background, to the right of the VAB, are the Orbiter Processing Facility 1 and 2. Atlantis spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations at KSC in Orbiter Processing Facility 2 for its planned flight in June 1999

  17. KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

    NASA Image and Video Library

    2004-03-10

    KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.

  18. Modeling Natural Space Ionizing Radiation Effects on External Materials

    NASA Technical Reports Server (NTRS)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  19. Modeling natural space ionizing radiation effects on external materials

    NASA Astrophysics Data System (ADS)

    Altstatt, Richard L.; Edwards, David L.

    2000-10-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment, model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  20. Forced-air patient warming blankets disrupt unidirectional airflow.

    PubMed

    Legg, A J; Hamer, A J

    2013-03-01

    We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m(3) for forced-air warming vs 1000 particles/m(3) for radiant warming and 2000 particles/m(3) for the control) by drawing potentially contaminated particles from below the operating table into the surgical site. Cite this article: Bone Joint J 2013;95-B:407-10.

  1. Results of availability imposed configuration details developed for K-DEMO

    DOE PAGES

    Brown, Tom; Titus, Peter; Brooks, Art; ...

    2016-02-05

    We completed a two year study using the Korean fusion demonstration reactor (K-DEMO) where we looked at key Tokamak components and configuration options in preparation of a conceptual design phase. A key part of a device configuration centers on defining an arrangement that enhances the ability to reach high availability values by defining design solutions that foster simplified maintenance operations. In order to maximize the size and minimize the number of in-vessel components enlarged TF coils were defined that incorporate a pair of windings within each coil to mitigate pressure drop issues and to reduce the cost of the coils.more » Furthermore, we defined a semi-permanent shield structure in order to develop labyrinth interfaces between double-null plasma contoured shield modules, provide an entity to align blanket components and provide support against disruption loads—with a load path that equilibrates blanket, TF and PF loads through a base structure. Blanket piping services and auxiliary systems that interface with in-vessel components have played a major role in defining the overall device arrangement—concept details will be presented along with general arrangement features and preliminary results obtained from disruption analysis.« less

  2. Development of wet process with substitution reaction for the mass production of Li 2TiO 3 pebbles

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2000-12-01

    Recently, lithium titanate (Li 2TiO 3) has attracted the attention of many researchers from the point of good tritium recovery at low temperature, chemical stability, etc. As the shape of Li 2TiO 3, a small pebble was selected as the Japanese design for a fusion reactor blanket. On the other hand, as the fabrication method of Li 2TiO 3 pebbles, the wet process is the most advantageous from the viewpoint of mass production, etc. In this study, fabrication of small Li 2TiO 3 pebbles less than ∅0.5 mm was performed by the wet process with substitution reaction, and the characteristics of Li 2TiO 3 pebbles fabricated by this process were evaluated. From the results of the fabrication tests, excellent prospects were obtained concerning mass production of Li 2TiO 3 pebbles with the target density (80-85% T.D.) and target diameter (less than ∅0.5 mm).

  3. 78 FR 51182 - Sea Robin Pipeline Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-527-000] Sea Robin... Robin Pipeline Company, LLC (Sea Robin), P. O. Box 4967, Houston, Texas 77210, filed in Docket No. CP13... Regulations under the Natural Gas Act (NGA), and Sea Robin's blanket certificate issued in Docket No. CP82...

  4. 75 FR 26224 - Cheniere Creole Trail Pipeline, L.P.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... Creole Trail Pipeline, L.P.; Notice of Request Under Blanket Authorization May 4, 2010. Take notice that on April 29, 2010, Cheniere Creole Trail Pipeline, L.P. (Creole Trail), 700 Milam, Suite 800, Houston... 157.216(b) of the Commission's regulations under the Natural Gas Act (NGA). Creole Trail seeks...

  5. 75 FR 19646 - Cheniere Creole Trail Pipeline, L.P.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Creole Trail Pipeline, L.P.; Notice of Request Under Blanket Authorization April 7, 2010. Take notice that on April 2, 2010, Cheniere Creole Trail Pipeline, L.P. (Creole Trail), 700 Milam, Suite 800... Trail seeks authorization to construct and operate approximately 550 feet of 12-inch diameter pipe (no...

  6. 77 FR 28875 - Gulfstream Natural Gas System, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Natural Gas System, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on April 30, 2012 Gulfstream Natural Gas System, L.L.C. (Gulfstream), 2701 North Rocky Point Drive, Suite 1050.... Connolly, General Manager, Rates and Certificates, Gulfstream Natural Gas System, L.L.C., 5400 Westheimer...

  7. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Storage Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569 Brookwood Village, Suite 749, Birmingham... this Application should be directed to Tina Hardy, Regulatory Manager, Bear Creek Storage Company, L.L...

  8. 78 FR 44558 - Stingray Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on July 3, 2013, Stingray Pipeline Company, L.L.C. (Stingray), 1100 Louisiana Street, Houston, Texas 77002, filed in Docket... Compliance, Stingray Pipeline Company, L.L.C., 1100 Louisiana, Suite 3300, Houston, Texas 77002, or call (832...

  9. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... DEPARTMENT OF ENERGY [FE Docket No. 10-57-LNG] The Dow Chemical Company; Application for Blanket... receipt of an application (Application), filed on May 26, 2010, by The Dow Chemical Company (Dow... the United States from foreign sources in an amount up to the equivalent of 390 billion cubic feet...

  10. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application. SUMMARY: The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives... Regulatory Activities, Office of Fossil Energy, P.O. Box 44375, Washington, DC 20026-4375. Hand Delivery or...

  11. Depth of Blanket. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…

  12. Energy Conservation in the Home.

    DTIC Science & Technology

    1985-01-01

    inch of properly applied mineral wool insulation would provide. See Figure 2.1 (2:11...fiber. Mineral wool insulation is available in several different types, including blankets, blown insulation, poured insulation, and batts. Blankets...sidewalls can be insulated by a contractor who will blow in one ot several loose fill materials (National Mineral Wool Insulation Assn. Inc.). Figure 2.2

  13. Advanced Polymer For Multilayer Insulating Blankets

    NASA Technical Reports Server (NTRS)

    Haghighat, R. Ross; Shepp, Allan

    1996-01-01

    Polymer resisting degradation by monatomic oxygen undergoing commercial development under trade name "Aorimide" ("atomic-oxygen-resistant imidazole"). Intended for use in thermal blankets for spacecraft in low orbit, useful on Earth in outdoor applications in which sunlight and ozone degrades other plastics. Also used, for example, to make threads and to make films coated with metals for reflectivity.

  14. A Space Acquisition Leading Indicator Based on System Interoperation Maturity

    DTIC Science & Technology

    2010-12-01

    delivered hardware, improper use of soldering materials, improper installation of thermal blankets , and missing test procedure documentation A poor...office, the first GEO integrated payload and spacecraft successfully completed thermal vacuum (TVAC) testing in November 2009. Program officials...contamination in delivered hardware, improper use of soldering materials, improper installation of thermal blankets , and missing test procedure

  15. 18 CFR 284.403 - Code of conduct for persons holding blanket marketing certificates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Code of conduct for persons holding blanket marketing certificates. 284.403 Section 284.403 Conservation of Power and Water... information upon which it billed the prices it charged for the natural gas sold pursuant to its market based...

  16. 78 FR 34093 - WBI Energy Transmission; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Gas Act (NGA), and WBI's blanket certificate issued in Docket No. CP82-487-000, to abandon natural gas... section 157.205 of the Commission's Regulations under the NGA (18 CFR 157.205) file a protest to the... as an application for authorization pursuant to section 7 of the NGA. Persons who wish to comment...

  17. 78 FR 37218 - Tennessee Gas Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Commission's (Commission) regulations under the Natural Gas Act (NGA), and Tennessee's blanket certificate... Commission's staff may, pursuant to section 157.205 of the Commission's Regulations under the NGA (18 CFR 157... instant request shall be treated as an application for authorization pursuant to section 7 of the NGA...

  18. 78 FR 55251 - Southeast Supply Header, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Supply Header, LLC; Notice of Request Under Blanket Authorization Take notice that on August 23, 2013, Southeast Supply Header, LLC (SESH), P.O. Box 1642, Houston, Texas 77251-1642, filed in Docket No. CP13-537... Southeast Supply Header, LLC et al, 119 FERC ] 61,153 (2007). SESH proposes to offset and replace...

  19. 78 FR 63179 - Notice of Request Under Blanket Authorization; Petal Gas Storage, LLC.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Request Under Blanket Authorization; Petal Gas Storage, LLC. Take notice that on October 9, 2013, Petal Gas Storage, L.L.C. (Petal), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046, filed in Docket No... storage capacity in the Petal Salt Dome's Cavern 12A, located in Forrest County, Mississippi, from 8.2 Bcf...

  20. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

Top