Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)
Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R
2005-01-01
Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
Lo, Kam W; Ferguson, Brian G
2012-11-01
The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.
H-BLAST: a fast protein sequence alignment toolkit on heterogeneous computers with GPUs.
Ye, Weicai; Chen, Ying; Zhang, Yongdong; Xu, Yuesheng
2017-04-15
The sequence alignment is a fundamental problem in bioinformatics. BLAST is a routinely used tool for this purpose with over 118 000 citations in the past two decades. As the size of bio-sequence databases grows exponentially, the computational speed of alignment softwares must be improved. We develop the heterogeneous BLAST (H-BLAST), a fast parallel search tool for a heterogeneous computer that couples CPUs and GPUs, to accelerate BLASTX and BLASTP-basic tools of NCBI-BLAST. H-BLAST employs a locally decoupled seed-extension algorithm for better performance on GPUs, and offers a performance tuning mechanism for better efficiency among various CPUs and GPUs combinations. H-BLAST produces identical alignment results as NCBI-BLAST and its computational speed is much faster than that of NCBI-BLAST. Speedups achieved by H-BLAST over sequential NCBI-BLASTP (resp. NCBI-BLASTX) range mostly from 4 to 10 (resp. 5 to 7.2). With 2 CPU threads and 2 GPUs, H-BLAST can be faster than 16-threaded NCBI-BLASTX. Furthermore, H-BLAST is 1.5-4 times faster than GPU-BLAST. https://github.com/Yeyke/H-BLAST.git. yux06@syr.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea
USDA-ARS?s Scientific Manuscript database
A set of isolates genetically similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a Basic Local Alignment Search Tool (BLAST) search of internal transcribed spacer (ITS) similarity among described (GenBank) and undescribed Penicillium isolates...
Evaluation of heat- and blast-protection materials
NASA Technical Reports Server (NTRS)
Morrison, J. D.; Lockhart, B. J.
1971-01-01
A program was initiated at the Kennedy Space Center in December 1967 and conducted through December 1969 to evaluate the performance of heat- and blast-protection materials for ground support equipment used during the Apollo/Saturn launches. Materials believed to be generally suitable for heat and blast protection were subjected to launch-exposure tests. Tests were made during the Apollo/Saturn 502, 503, and 505 launches. Tests were also made in a local laboratory, as an alternative to the restrictive requirements of launch-exposure tests, to determine the effects of torch-flame exposure on ablative materials. Five materials were found to be satisfactory in all major test categories. It was determined that torch-flame tests can probably be utilized as an acceptable substitute for the booster-engine-exhaust exposure tests for basic screening of candidate materials.
Finding similar nucleotide sequences using network BLAST searches.
Ladunga, Istvan
2009-06-01
The Basic Local Alignment Search Tool (BLAST) is a keystone of bioinformatics due to its performance and user-friendliness. Beginner and intermediate users will learn how to design and submit blastn and Megablast searches on the Web pages at the National Center for Biotechnology Information. We map nucleic acid sequences to genomes, find identical or similar mRNA, expressed sequence tag, and noncoding RNA sequences, and run Megablast searches, which are much faster than blastn. Understanding results is assisted by taxonomy reports, genomic views, and multiple alignments. We interpret expected frequency thresholds, biological significance, and statistical significance. Weak hits provide no evidence, but hints for further analyses. We find genes that may code for homologous proteins by translated BLAST. We reduce false positives by filtering out low-complexity regions. Parsed BLAST results can be integrated into analysis pipelines. Links in the output connect to Entrez, PUBMED, structural, sequence, interaction, and expression databases. This facilitates integration with a wide spectrum of biological knowledge.
muBLASTP: database-indexed protein sequence search on multicore CPUs.
Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun
2016-11-04
The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.
Blast waves and how they interact with structures.
Cullis, I G
2001-02-01
The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
Yim, Won Cheol; Cushman, John C.
2017-07-22
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Won Cheol; Cushman, John C.
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Shock tubes and blast injury modeling.
Ning, Ya-Lei; Zhou, Yuan-Guo
2015-01-01
Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.
Effect of Blast Injury on Auditory Localization in Military Service Members.
Kubli, Lina R; Brungart, Douglas; Northern, Jerry
Among the many advantages of binaural hearing are the abilities to localize sounds in space and to attend to one sound in the presence of many sounds. Binaural hearing provides benefits for all listeners, but it may be especially critical for military personnel who must maintain situational awareness in complex tactical environments with multiple speech and noise sources. There is concern that Military Service Members who have been exposed to one or more high-intensity blasts during their tour of duty may have difficulty with binaural and spatial ability due to degradation in auditory and cognitive processes. The primary objective of this study was to assess the ability of blast-exposed Military Service Members to localize speech sounds in quiet and in multisource environments with one or two competing talkers. Participants were presented with one, two, or three topic-related (e.g., sports, food, travel) sentences under headphones and required to attend to, and then locate the source of, the sentence pertaining to a prespecified target topic within a virtual space. The listener's head position was monitored by a head-mounted tracking device that continuously updated the apparent spatial location of the target and competing speech sounds as the subject turned within the virtual space. Measurements of auditory localization ability included mean absolute error in locating the source of the target sentence, the time it took to locate the target sentence within 30 degrees, target/competitor confusion errors, response time, and cumulative head motion. Twenty-one blast-exposed Active-Duty or Veteran Military Service Members (blast-exposed group) and 33 non-blast-exposed Service Members and beneficiaries (control group) were evaluated. In general, the blast-exposed group performed as well as the control group if the task involved localizing the source of a single speech target. However, if the task involved two or three simultaneous talkers, localization ability was compromised for some participants in the blast-exposed group. Blast-exposed participants were less accurate in their localization responses and required more exploratory head movements to find the location of the target talker. Results suggest that blast-exposed participants have more difficulty than non-blast-exposed participants in localizing sounds in complex acoustic environments. This apparent deficit in spatial hearing ability highlights the need to develop new diagnostic tests using complex listening tasks that involve multiple sound sources that require speech segregation and comprehension.
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions.
Needham, Charles E; Ritzel, David; Rule, Gregory T; Wiri, Suthee; Young, Leanne
2015-01-01
Over the past several years, we have noticed an increase in the number of blast injury studies published in peer-reviewed biomedical journals that have utilized improperly conceived experiments. Data from these studies will lead to false conclusions and more confusion than advancement in the understanding of blast injury, particularly blast neurotrauma. Computational methods to properly characterize the blast environment have been available for decades. These methods, combined with a basic understanding of blast wave phenomena, enable researchers to extract useful information from well-documented experiments. This basic understanding must include the differences and interrelationships of static pressure, dynamic pressure, reflected pressure, and total or stagnation pressure in transient shockwave flows, how they relate to loading of objects, and how they are properly measured. However, it is critical that the research community effectively overcomes the confusion that has been compounded by a misunderstanding of the differences between the loading produced by a free field explosive blast and loading produced by a conventional shock tube. The principles of blast scaling have been well established for decades and when properly applied will do much to repair these problems. This paper provides guidance regarding proper experimental methods and offers insights into the implications of improperly designed and executed tests. Through application of computational methods, useful data can be extracted from well-documented historical tests, and future work can be conducted in a way to maximize the effectiveness and use of valuable biological test data.
Rock blasting and overbreak control
DOT National Transportation Integrated Search
1991-01-01
This handbook is specifically designed as a guide to highway engineers and blasting practitioners working with highway applications. It was used as a handbook for the FHWA course of the above title. The handbook is a basic review of explosives and th...
NASA Astrophysics Data System (ADS)
Tori, Matija; Vajović, Stanojle; Goleš, Niko; Muhić, Elvir; Peternel, Miha
2017-12-01
This article deals with the extraction of minerals (limestone/marl/flysch) in the quarry Rodež, which is located in western Slovenia. During the extraction of minerals in a quarry, drilling and blasting of benches are used. The focus of the article is on the analysis of the parameters related to drilling and blasting in surface excavations when using a combination of explosions and introducing horizontal wells along with vertical holes in the bench. On the basis of the analysis of basic parameters through a combination of drilling horizontal wells and charging those with the ammonal + Anfex explosive, analyses of effects of seismic disturbances on potentially affected buildings have also been conducted. The article is connected to and deals exclusively with the basic parameters of drilling and blasting, with the introduction of horizontal drilling and with the analysis of seismic measurements of threatened buildings in accordance with the German standard German Institute for Standardisation (DIN) 4150 during the use of a new method of blasting.
A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing
2010-08-01
The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
NASA Astrophysics Data System (ADS)
Huang, Bingxiang; Li, Pengfeng
2015-07-01
The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three zones: the blasting shock zone, the axial extension zone, and the orifice influence zone. The explosion shock zone is the range that is directly impacted by the explosive shock waves. The axial extension zone is the axial crack area with uniform width, which is formed when the blasting fracture in the edge of the explosion shock zone extends along the drillhole wall. The extension of the orifice influence zone is very large because the explosion stress waves reflect at the free face and generate tensile stress waves. In the water pressure blasting of the drillhole, the sealing section should be lengthened to allow the drillhole blasting cracks to extend sufficiently under the long-time effect of the blasting stress field of quasi-hydrostatic pressure.
Pinthong, Watthanai; Muangruen, Panya
2016-01-01
Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555
Procedures for Estimating the Flat-Weighted Peak Level Produced by Surface and Buried Charges
1988-08-01
Demolitions and Their Equivalent Weights 11 3 Blast Noise Complaint Potential 15 4 Results of Tests at Fort Lewis, WA in dB 16 5 Results of Tests at...PRODUCED BY SURFACE AND BURIED CHARGES 1 INTRODUCTION Background Blast noise from Army demolitions often causes residents of nearby communities to... blast noise were compared to measurements made at two different locations. The basic equations used in this procedure are discussed in detail in USA
Relationship between orientation to a blast and pressure wave propagation inside the rat brain.
Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M
2011-01-30
Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. Published by Elsevier B.V.
2016-03-03
for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved
ERIC Educational Resources Information Center
Wefer, Stephen H.
2003-01-01
"Name That Gene" is a simple classroom activity that incorporates bioinformatics (available biological information) into the classroom using "Basic Logical Alignment Search Tool (BLAST)." An excellent classroom activity involving bioinformatics and "BLAST" has been previously explored using sequences from bacteria, but it is tailored for college…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hino, Mitsutaka; Nagasaka, Tetsuya; Katsumata, Akitoshi
1999-08-01
The alumina content in the iron ore imported to Japan is increasing year by year, and some problems in blast furnace operation, due to the use of the high-alumina-containing sinter, have already been reported. In order to clarify the mechanism of the harmful effect of alumina on the blast furnace operation, the behavior of the primary melt, which is formed in the sinter at the cohesive zone of the blast furnace, has been simulated by dripping slag through an iron or oxide funnel. The effects of basicity, Al{sub 2}O{sub 3}, and Fe{sub t}O contents in the five slag systems onmore » the dripping temperature and weight of slag remaining on the funnel have been discussed. It was found that the eutectic melt formed in the sinter would play an important role in the dripping behavior of the slag in the blast furnace through the fine porosity of the reduced iron and ore particles. Al{sub 2}O{sub 3} increased the weight of the slag remaining on the funnel, and its effect became very significant in the acidic and low-Fe{sub t}O-containing slag. It was estimated that the increase of the weight of the slag remaining on the funnel by Al{sub 2}O{sub 3} in the ore could result in a harmful effect on the permeability resistance and an indirect reduction rate of the sinter in the blast furnace.« less
Numerical Study of the Reduction Process in an Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng
2016-02-01
Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlers, O.K.; Grum, A.F.
1959-03-27
An amplification and clarification of the report Study of Blast Effects in Soil by M. A. Chaszeyka and F. B. Porzel of the Armour Research Foundation is presented. The basic thermodynamic relationships that are essential to the understanding of the Armour Report are given, and the more complex equations of the Armour Report are derived. (auth)
Fischer, Tatjana V; Folio, Les R; Backus, Christopher E; Bunger, Rolf
2012-01-01
Penetrating trauma is frequently encountered in forward deployed military combat hospitals. Abdominal blast injuries represent nearly 11% of combat injuries, and multiplanar computed tomography imaging is optimal for injury assessment and surgical planning. We describe a multiplanar approach to assessment of blast and ballistic injuries, which allows for more expeditious detection of missile tracts and damage caused along the path. Precise delineation of the trajectory path and localization of retained fragments enables time-saving and detailed evaluation of associated tissue and vascular injury. For consistent and reproducible documentation of fragment locations in the body, we propose a localization scheme based on Cartesian coordinates to report 3-dimensional locations of fragments and demonstrating the application in three cases of abdominal blast injury.
An RES-Based Model for Risk Assessment and Prediction of Backbreak in Bench Blasting
NASA Astrophysics Data System (ADS)
Faramarzi, F.; Ebrahimi Farsangi, M. A.; Mansouri, H.
2013-07-01
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation ( R 2) and root mean square error (RMSE) of the model were calculated ( R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
Wang, Chunlin; Lefkowitz, Elliot J
2004-10-28
Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters
Wang, Chunlin; Lefkowitz, Elliot J
2004-01-01
Background Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. Results We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Conclusions Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist. PMID:15511296
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Emissions from Basic Oxygen... A of this part. (a) Basic oxygen process furnace (BOPF) means any furnace with a refractory lining... additions into a vessel and introducing a high volume of oxygen-rich gas. Open hearth, blast, and...
NASA Astrophysics Data System (ADS)
Novianti, T.; Sadikin, M.; Widia, S.; Juniantito, V.; Arida, E. A.
2018-03-01
Development of unidentified specific gene is essential to analyze the availability these genes in biological process. Identification unidentified specific DNA of HIF 1α genes is important to analyze their contribution in tissue regeneration process in lizard tail (Hemidactylus platyurus). Bioinformatics and PCR techniques are relatively an easier method to identify an unidentified gene. The most widely used method is BLAST (Basic Local Alignment Sequence Tools) method for alignment the sequences from the other organism. BLAST technique is online software from website https://blast.ncbi.nlm.nih.gov/Blast.cgi that capable to generate the similar sequences from closest kinship to distant kindship. Gecko japonicus is a species that it has closest kinship with H. platyurus. Comparing HIF 1 α gene sequence of G. japonicus with the other species used multiple alignment methods from Mega7 software. Conserved base areas were identified using Clustal IX method. Primary DNA of HIF 1 α gene was design by Primer3 software. HIF 1α gene of lizard (H. platyurus) was successfully amplified using a real-time PCR machine by primary DNA that we had designed from Gecko japonicus. Identification unidentified gene of HIF 1a lizard has been done successfully with multiple alignment method. The study was conducted by analyzing during the growth of tail on day 1, 3, 5, 7, 10, 13 and 17 of lizard tail after autotomy. Process amplification of HIF 1α gene was described by CT value in real time PCR machine. HIF 1α expression of gene is quantified by Livak formula. Chi-square statistic test is 0.000 which means that there is a different expression of HIF 1 α gene in every growth day treatment.
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.
Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan
2015-10-01
Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.
Better protection from blasts without sacrificing situational awareness.
Killion, Mead C; Monroe, Tim; Drambarean, Viorel
2011-03-01
A large number of soldiers returning from war report hearing loss and/or tinnitus. Many deployed soldiers decline to wear their hearing protection devices (HPDs) because they feel that earplugs interfere with their ability to detect and localize the enemy and their friends. The detection problem is easily handled in electronic devices with low-noise microphones. The localization problem is not as easy. In this paper, the factors that reduce situational awareness--hearing loss and restricted bandwidth in HPD devices--are discussed in light of available data, followed by a review of the cues to localization. Two electronic blast plug earplugs with 16-kHz bandwidth are described. Both provide subjectively transparent sound with regard to sound quality and localization, i.e., they sound almost as if nothing is in the ears, while protecting the ears from blasts. Finally, two formal experiments are described which investigated localization performance compared to popular existing military HPDs and the open ear. The tested earplugs performed well regarding maintaining situational awareness. Detection-distance and acceptance studies are underway.
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
Sasser, Scott M; Sattin, Richard W; Hunt, Richard C; Krohmer, Jon
2006-01-01
Current trends in global terrorism mandate that emergency medical services, emergency medicine and other acute care clinicians have a basic understanding of the physics of explosions, the types of injuries that can result from an explosion, and current management for patients injured by explosions. High-order explosive detonations result in near instantaneous transformation of the explosive material into a highly pressurized gas, releasing energy at supersonic speeds. This results in the formation of a blast wave that travels out from the epicenter of the blast. Primary blast injuries are characterized by anatomical and physiological changes from the force generated by the blast wave impacting the body's surface, and affect primarily gas-containing structures (lungs, gastrointestinal tract, ears). "Blast lung" is a clinical diagnosis and is characterized as respiratory difficulty and hypoxia without obvious external injury to the chest. It may be complicated by pneumothoraces and air emboli and may be associated with multiple other injuries. Patients may present with a variety of symptoms, including dyspnea, chest pain, cough, and hemoptysis. Physical examination may reveal tachypnea, hypoxia, cyanosis, and decreased breath sounds. Chest radiography, computerized tomography, and arterial blood gases may assist with diagnosis and management; however, they should not delay diagnosis and emergency interventions in the patient exposed to a blast. High flow oxygen, airway management, tube thoracostomy in the setting of pneumothoraces, mechanical ventilation (when required) with permissive hypercapnia, and judicious fluid administration are essential components in the management of blast lung injury.
Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process
NASA Astrophysics Data System (ADS)
Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.
2018-06-01
A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.
Note: A table-top blast driven shock tube
NASA Astrophysics Data System (ADS)
Courtney, Michael W.; Courtney, Amy C.
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Localized coating removal using plastic media blasting
NASA Technical Reports Server (NTRS)
Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.
1988-01-01
Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.
A Mouse Model of Blast-Induced mild Traumatic Brain Injury
Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.
2011-01-01
Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269
Salzar, Robert S; Treichler, Derrick; Wardlaw, Andrew; Weiss, Greg; Goeller, Jacques
2017-04-15
The potential of blast-induced traumatic brain injury from the mechanism of localized cavitation of the cerebrospinal fluid (CSF) is investigated. While the mechanism and criteria for non-impact blast-induced traumatic brain injury is still unknown, this study demonstrates that local cavitation in the CSF layer of the cranial volume could contribute to these injuries. The cranial contents of three post-mortem human subject (PMHS) heads were replaced with both a normal saline solution and a ballistic gel mixture with a simulated CSF layer. Each were instrumented with multiple pressure transducers and placed inside identical shock tubes at two different research facilities. Sensor data indicates that cavitation may have occurred in the PMHS models at pressure levels below those for a 50% risk of blast lung injury. This study points to skull flexion, the result of the shock wave on the front of the skull leading to a negative pressure in the contrecoup, as a possible mechanism that contributes to the onset of cavitation. Based on observation of intracranial pressure transducer data from the PMHS model, cavitation onset is thought to occur from approximately a 140 kPa head-on incident blast.
Information modeling system for blast furnace control
NASA Astrophysics Data System (ADS)
Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.
2016-09-01
Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.
HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.
O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D
2015-04-01
The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Determination of Destress Blasting Effectiveness Using Seismic Source Parameters
NASA Astrophysics Data System (ADS)
Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.
2017-12-01
Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.
Neck blast disease influences grain yield and quality traits of aromatic rice.
Khan, Mohammad Ashik Iqbal; Bhuiyan, Md Rejwan; Hossain, Md Shahadat; Sen, Partha Pratim; Ara, Anjuman; Siddique, Md Abubakar; Ali, Md Ansar
2014-11-01
A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
How effective are DNA barcodes in the identification of African rainforest trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J
2013-01-01
DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.
How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.
2013-01-01
Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications. PMID:23565134
Concussive brain injury from explosive blast
de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P
2014-01-01
Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283
Blast vibration damage to water supply well - water quality and quantity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheson, G.M.; Miller, D.K.
1997-05-01
Possible impacts to the water quality and production capacity of ground water supply wells by blasting is a common cause of complaints for blasting contractors, mining companies, and local regulatory authorities. The major complaints of changes in well water quality include; turbidity; discolored water (red, brown, black, yellow and milky water), and nitrate and/or coliform contamination. The major complaints for changes in well water production capacity include: loss of quantity production, air in water and/or water lines, damage to pump, and damage to well screen or borehole. The review of research and common causes of these problems indicates that mostmore » of these complaints are not related to blasting and can be shown to be related to either environmental factors, poor well construction, or wells whose elements required repair or replacement prior to blasting. The paper reviews each of the complaints cited and provides the probable causes of the observed condition and discusses their relation to blasting.« less
Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit
2017-01-01
The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.
Primary blast-induced traumatic brain injury: lessons from lithotripsy
NASA Astrophysics Data System (ADS)
Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.
2017-11-01
Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.
Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.
1999-01-01
The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Morrissey, M. M.; Savage, W. Z.; Wieczorek, G. F.
1999-10-01
The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt% dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ˜220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (˜220 m/s versus ˜110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations.
Non-lethal sampling for the detection of Myxobolus cerebralis in asymptomatic rainbow trout
Schill, Bane; Waldrop, Thomas; Densmore, Christine; Blazer, Vicki
1999-01-01
We have described in previous reports (Schill et al., 1998) the development of a polymerase chain reaction (PCR) amplification of 18S ribosomal RNA for the detection of Myxozoan parasites. Oligonucleotide primers were developed by multiple alignment of Myxozoan sequence information and analysis by a custom-written computer program (PRIM). Candidate pairs of primer sequences were then analyzed for specificity by BLAST (Basic Local Alignment Search Tool). From these, a set of promising primers (MYXFWD and MYXREV) was chosen for further testing. These were chosen because they should direct detection of a number of Myxozoan species (Table 1). PCR using MXYFWD and MYXREV proved to be robust and relatively free of artifact products. Further, we were able to routinely detect Myxobolus cerebralis in fish tissues (Figure 1).
Cloning and expression of N-glycosylation-related glucosidase from Glaciozyma antarctica
NASA Astrophysics Data System (ADS)
Yajit, Noor Liana Mat; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Mackeen, Mukram Mohamed
2016-11-01
The need for functional oligosaccharides in various field is ever growing. The enzymatic approach for synthesis of oligosaccharides is advantageous over traditional chemical synthesis because of the regio- and stereo- selectivity that can be achieved without the need for protection chemistry. In this study, the α-glucosidase I protein sequence from Saccharomyces cerevisiae (UniProt database) was compared using Basic Local Alignment Search Tool (BLAST) with Glaciozyma antarctica genome database. Results showed 33% identity and an E-value of 1 × 10-125 for α-glucosidase I. The gene was amplified, cloned into the pPICZα C vector and used to transform Pichia pastoris X-33 cells. Soluble expression of α-Glucosidase I (˜91 kDa) was achieved at 28 °C with 1.0 % of methanol.
NASA Astrophysics Data System (ADS)
Chouhan, Lalit Singh; Raina, Avtar K.
2015-10-01
Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.
cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.
Zhang, Jing; Wang, Hao; Feng, Wu-Chun
2017-01-01
BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.
Moreno, Ana Beatriz; Martínez Del Pozo, Alvaro; San Segundo, Blanca
2006-10-01
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.
Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae
Ko, Kyung Dae; Bhardwaj, Gaurav; Hong, Yoojin; Chang, Gue Su; Kiselyov, Kirill
2009-01-01
Biochemical assessment of channel structure/function is incredibly challenging. Developing computational tools that provide these data would enable translational research, accelerating mechanistic experimentation for the bench scientist studying ion channels. Starting with the premise that protein sequence encodes information about structure, function and evolution (SF&E), we developed a unified framework for inferring SF&E from sequence information using a knowledge-based approach. The Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) provides phylogenetic profiles that can model, ab initio, SF&E relationships of biological sequences at the whole protein, single domain and single-amino acid level.1,2 In our recent paper,4 we have applied GDDA-BLAST analysis to study canonical TRP (TRPC) channels1 and empirically validated predicted lipid-binding and trafficking activities contained within the TRPC3 TRP_2 domain of unknown function. Overall, our in silico, in vitro, and in vivo experiments support a model in which TRPC3 has signal-sensing antennae which are adorned with lipid-binding, trafficking and calmodulin regulatory domains. In this Addendum, we correlate our functional domain analysis with the cryo-EM structure of TRPC3.3 In addition, we synthesize recent studies with our new findings to provide a refined model on the mechanism(s) of TRPC3 activation/deactivation. PMID:19704910
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
Model for small arms fire muzzle blast wave propagation in air
NASA Astrophysics Data System (ADS)
Aguilar, Juan R.; Desai, Sachi V.
2011-11-01
Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.
Detecting blast-induced infrasound in wind noise.
Howard, Wheeler B; Dillion, Kevin L; Shields, F Douglas
2010-03-01
Current efforts seek to monitor and investigate such naturally occurring events as volcanic eruptions, hurricanes, bolides entering the atmosphere, earthquakes, and tsunamis by the infrasound they generate. Often, detection of the infrasound signal is limited by the masking effect of wind noise. This paper describes the use of a distributed array to detect infrasound signals from four atmospheric detonations at White Sands Missile Range in New Mexico, USA in 2006. Three of the blasts occurred during times of low wind noise and were easily observed with array processing techniques. One blast was obscured by high wind conditions. The results of signal processing are presented that allowed localization of the blast-induced signals in the presence of wind noise in the array response.
Calabrese, Evan; Du, Fu; Garman, Robert H.; Johnson, G. Allan; Riccio, Cory; Tong, Lawrence C.
2014-01-01
Abstract Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but existing data suggest cumulative increases in brain damage with a second blast. MRI and, in particular, diffusion tensor imaging (DTI), have become important tools for assessing bTBI in both clinical and preclinical settings. Computational statistical methods such as voxelwise analysis have shown promise in localizing and quantifying bTBI throughout the brain. In this study, we use voxelwise analysis of DTI to quantify white matter injury in a rat model of repetitive primary blast exposure. Our results show a significant increase in microstructural damage with a second blast exposure, suggesting that primary bTBI may sensitize the brain to subsequent injury. PMID:24392843
Local Earthquake Tomography in the Eifel Region, Middle Europe
NASA Astrophysics Data System (ADS)
Gaensicke, H.
2001-12-01
The aim of the Eifel Plume project is to verify the existence of an assumed mantle plume responsible for the Tertiary and Quaternary volcanism in the Eifel region of midwest Germany. During a large passive and semi-active seismological experiment (November 1997 - June 1998) about 160 mobil broadband and short period stations were operated in addition to about 100 permanent stations in the area of interest. The stations registered teleseismic and local events. Local events are used to obtain a threedimensional tomographic model of seismic velocities in the crust. Since local earthquake tomography requires a large set of crustal travel paths, seismograms of local events recorded from July 1998 to June 2001 by permanent stations were added to the Eifel Plume data set. In addition to travel time corrections for the teleseismic tomography of the upper mantle, the new 3D velocity model should improve the precision for location of local events. From a total of 832 local seismic events, 172 were identified as tectonic earthquakes. The other events were either quarry blasts or shallow mine-induced seismic events. The locations of 60 quarry blasts are known and for 30 of them the firing time was measured during the field experiment. Since the origin time and location of these events are known with high precision, they are used to validate inverted velocity models. Station corrections from simultaneous 1D-inversion of local earthquake traveltimes and hypocenters are in good agreement with travel time residuals calculated from teleseismic rays. A strong azimuthal dependency of travel time residuals resulting from a 1D velocity model was found for quarry blasts with hypocenters in the volcanic field in the center of the Eifel. Simultaneous 3D-inversion calculations show strong heterogeneities in the upper crust and a negative anomaly for p-wave velocities in the lower crust. The latter either could indicate a low velocity zone close to the Moho or subsidence of the Moho. We present preliminary results obtained by simultaneous inversion of earthquake and velocity parameters constrained by known geological parameters and the controlled source information from calibrated quarry blasts.
Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang
2013-01-01
The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.
NASA Astrophysics Data System (ADS)
Zapata, Brian Jarvis
As military and diplomatic representatives of the United States are deployed throughout the world, they must frequently make use of local, existing facilities; it is inevitable that some of these will be load bearing unreinforced masonry (URM) structures. Although generally suitable for conventional design loads, load bearing URM presents a unique hazard, with respect to collapse, when exposed to blast loading. There is therefore a need to study the blast resistance of load bearing URM construction in order to better protect US citizens assigned to dangerous locales. To address this, the Department of Civil and Environmental Engineering at the University of North Carolina at Charlotte conducted three blast tests inside a decommissioned, coal-fired, power plant prior to its scheduled demolition. The power plant's walls were constructed of URM and provided an excellent opportunity to study the response of URM walls in-situ. Post-test analytical studies investigated the ability of existing blast load prediction methodologies to model the case of a cylindrical charge with a low height of burst. It was found that even for the relatively simple blast chamber geometries of these tests, simplified analysis methods predicted blast impulses with an average net error of 22%. The study suggested that existing simplified analysis methods would benefit from additional development to better predict blast loads from cylinders detonated near the ground's surface. A hydrocode, CTH, was also used to perform two and three-dimensional simulations of the blast events. In order to use the hydrocode, Jones Wilkins Lee (JWL) equation of state (EOS) coefficients were developed for the experiment's Unimax dynamite charges; a novel energy-scaling technique was developed which permits the derivation of new JWL coefficients from an existing coefficient set. The hydrocode simulations were able to simulate blast impulses with an average absolute error of 34.5%. Moreover, the hydrocode simulations provided highly resolved spatio-temporal blast loading data for subsequent structural simulations. Equivalent single-degree-of-freedom (ESDOF) structural response models were then used to predict the out-of-plane deflections of blast chamber walls. A new resistance function was developed which permits a URM wall to crack at any height; numerical methodologies were also developed to compute transformation factors required for use in the ESDOF method. When combined with the CTH derived blast loading predictions, the ESDOF models were able to predict out-of-plane deflections with reasonable accuracy. Further investigations were performed using finite element models constructed in LS-DYNA; the models used elastic elements combined with contacts possessing a tension/shear cutoff and the ability to simulate fracture energy release. Using the CTH predicted blast loads and carefully selected constitutive parameters, the LS-DYNA models were able to both qualitatively and quantitatively predict blast chamber wall deflections and damage patterns. Moreover, the finite element models suggested several modes of response which cannot be modeled by current ESDOF methods; the effect of these response modes on the accuracy of ESDOF predictions warrants further study.
Mathematical modeling of the burden distribution in the blast furnace shaft
NASA Astrophysics Data System (ADS)
Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan
2011-06-01
Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.
Valença-Barbosa, Carolina; Fernandes, Fabiano Araújo; Santos, Helena Lucia Carneiro; Sarquis, Otília; Harry, Myriam; Almeida, Carlos Eduardo; Lima, Marli Maria
2015-01-01
We used the gut contents of triatomines collected from rural areas of Ceará State, northeastern Brazil, to identify their putative hosts via vertebrate cytb gene sequencing. Successful direct sequencing was obtained for 48% of insects, comprising 50 Triatoma brasiliensis, 7 Triatoma pseudomaculata, and 1 Rhodnius nasutus. Basic local alignment search tool (BLAST) procedure revealed that domestic animals, such as chickens (Gallus gallus) and goats (Capra hircus), are the main food source, including in sylvatic environment. Native hosts were also detected in peridomestic environment such as reptiles (Tropidurus sp. and Iguana iguana) and the Galea spixii (Rodentia: Caviidae). The role of goats and Galea spixii in Chagas disease epidemiology calls for further studies, because these mammals likely link the sylvatic and domestic Trypanosoma cruzi cycles. PMID:26350453
Huang, Ming-Xiong; Nichols, Sharon; Baker, Dewleen G.; Robb, Ashley; Angeles, Annemarie; Yurgil, Kate A.; Drake, Angela; Levy, Michael; Song, Tao; McLay, Robert; Theilmann, Rebecca J.; Diwakar, Mithun; Risbrough, Victoria B.; Ji, Zhengwei; Huang, Charles W.; Chang, Douglas G.; Harrington, Deborah L.; Muzzatti, Laura; Canive, Jose M.; Christopher Edgar, J.; Chen, Yu-Han; Lee, Roland R.
2014-01-01
Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI. PMID:25009772
Wireless system for explosion detection in underground structures
NASA Astrophysics Data System (ADS)
Chikhradze, M.; Bochorishvili, N.; Akhvlediani, I.; Kukhalashvili, D.; Kalichava, I.; Mataradze, E.
2009-06-01
Considering the growing threat of terrorist or accidental explosions in underground stations, underground highway and railway sections improvement of system for protecting people from explosions appears urgent. Current automatic protective devices with blast identification module and blast damping absorbers of various designs as their basic elements cannot be considered effective. Analysis revealed that low reliability of blast detection and delayed generation of start signal for the activation of an absorber are the major disadvantages of protective devices. Besides the transmission of trigger signal to an energy absorber through cable communication reduces the reliability of the operation of protective device due to a possible damage of electric wiring under blast or mechanical attack. This paper presents the outcomes of the studies conducted to select accurate criteria for blast identification and to design wireless system of activation of defensive device. The results of testing of blast detection methods (seismic, EMP, optical, on overpressure) showed that the proposed method, which implies constant monitoring of overpressure in terms of its reliability and response speed, best meets the requirements. Proposed wireless system for explosions identification and activation of protective device consists of transmitter and receiver modules. Transmitter module contains sensor and microprocessor equipped with blast identification software. Receiver module produces activation signal for operation of absorber. Tests were performed in the underground experimental base of Mining Institute. The time between the moment of receiving signal by the sensor and activation of absorber - 640 microsecond; distance between transmitter and receiver in direct tunnel - at least 150m; in tunnel with 900 bending - 50m. This research is sponsored by NATO's Public Diplomacy Division in the framework of "Science for Peace".
NASA Astrophysics Data System (ADS)
Lavrov, V. V.; Spirin, N. A.
2016-09-01
Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.
The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice.
Liu, Qing; Yang, Jianyuan; Yan, Shijuan; Zhang, Shaohong; Zhao, Junliang; Wang, Wenjuan; Yang, Tifeng; Wang, Xiaofei; Mao, Xingxue; Dong, Jingfang; Zhu, Xiaoyuan; Liu, Bin
2016-11-01
This is the first report that GLP gene (OsGLP2-1) is involved in panicle blast and bacterial blight resistance in rice. In addition to its resistance to blast and bacterial blight, OsGLP2-1 has also been reported to co-localize with a QTLs for sheath blight resistance in rice. These suggest that the disease resistance provided by OsGLP2-1 is quantitative and broad spectrum. Its good resistance to these major diseases in rice makes it to be a promising target in rice breeding. Rice (Oryza sativa) blast caused by Magnaporthe oryzae and bacterial blight caused by Xanthomonas oryzae pv. oryzae are the two most destructive rice diseases worldwide. Germin-like protein (GLP) gene family is one of the important defense gene families which have been reported to be involved in disease resistance in plants. Although GLP proteins have been demonstrated to positively regulate leaf blast resistance in rice, their involvement in resistance to panicle blast and bacterial blight, has not been reported. In this study, we reported that one of the rice GLP genes, OsGLP2-1, was significantly induced by blast fungus. Overexpression of OsGLP2-1 quantitatively enhanced resistance to leaf blast, panicle blast and bacterial blight. The temporal and spatial expression analysis revealed that OsGLP2-1is highly expressed in leaves and panicles and sub-localized in the cell wall. Compared with empty vector transformed (control) plants, the OsGLP2-1 overexpressing plants exhibited higher levels of H 2 O 2 both before and after pathogen inoculation. Moreover, OsGLP2-1 was significantly induced by jasmonic acid (JA). Overexpression of OsGLP2-1 induced three well-characterized defense-related genes which are associated in JA-dependent pathway after pathogen infection. Higher endogenous level of JA was also identified in OsGLP2-1 overexpressing plants than in control plants both before and after pathogen inoculation. Together, these results suggest that OsGLP2-1 functions as a positive regulator to modulate disease resistance. Its good quantitative resistance to the two major diseases in rice makes it to be a promising target in rice breeding.
2010-08-31
not defined. Figure 5.9: Run 10-Schlieren image with only the laser-induced air-breakdown glow visible. (M=8.77, T∞=68.7 K , P∞=0.15 kPa...Run #13-Laser induced blast wave interaction with oblique shock. (M-5.95, T∞=263.7 K , P∞=5.62 kPa, Ep=196±20 J) ................ Error! Bookmark not...the air-breakdown geometry. (M-5.95, T∞=262.3 K , P∞=5.16 kPa, Ep=176±18 J)Error! Bookmark not defined. Figure 5.13: Run#16 - Laser induced blast
Chem I Supplement: Chemistry of Steel Making.
ERIC Educational Resources Information Center
Sellers, Neal
1980-01-01
Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Kamran, K.; Moutsanidis, G.; Benson, D. J.; Oñate, E.
2017-07-01
In this two-part paper we begin the development of a new class of methods for modeling fluid-structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a Meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.
Babu, B. Kalyana; Dinesh, Pandey; Agrawal, Pawan K.; Sood, S.; Chandrashekara, C.; Bhatt, Jagadish C.; Kumar, Anil
2014-01-01
The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R2) of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R2. The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R2. Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars. PMID:24915067
Babu, B Kalyana; Dinesh, Pandey; Agrawal, Pawan K; Sood, S; Chandrashekara, C; Bhatt, Jagadish C; Kumar, Anil
2014-01-01
The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R²) of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R². The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R². Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars.
A case of non-Hodgkin lymphoma in a patient with chronic myeloid leukemia.
Găman, Amelia Maria; Dobrea, Camelia; Rotaru, Ionela
2013-01-01
Chronic myeloid leukemia is a clonal expansion of hematopoietic progenitor cells characterized by exaggerated proliferation of granulocytic lineage, with chronic phase, accelerated phase and blast crisis. Accelerated phase and blast crisis may be associated with extramedulary disease. Extramedullary transformation of CML can be determined both in nodal and extranodal sites. Non-Hodgkin lymphoma is rare in chronic myeloid leukemia and may be misdiagnosed as an extramedullary lymphoid blast transformation; the majorities are T-cell lymphomas with an immature thymic phenotype, while peripheral B-cell lymphomas are rarer. We report the case of a 79-year-old woman carrier Ph+ chronic myeloid leukemia who developed at eight months of diagnosis an accelerated phase of CML associated simultaneous with a tumor of soft palate, which was initial considering an extramedullary disease. The patient was treated with specific chemotherapy for accelerated phase of CML (Cytosinarabinoside) + Anagrelide, and reversed to secondary chronic phase of CML, but soft palate tumor persists. The immunohistochemical findings of bone marrow trephine biopsy examination showed chronic phase of CML (negativity for immature cells such as CD34, Tdt) and the biopsy of soft palate tumor and immunohistochemical findings revealed a primitive non-Hodgkin lymphoma (NHL) with medium B-cells (CD20, CD79a positive) and excluding an extramedullary blast crisis (CD34 negative, Tdt negative). Cytogenetic analysis in tumor revealed absence of Philadelphia chromosome. The patient was treated with local radiotherapy for NHL, with a favorable evolution and Hydroxyurea 1 g/day for CML with hematological remission. A localized lymphoid neoplasm may be an extramedullary localized blast crisis of CML or a distinct malignancy, with distinguished therapy and prognosis. A correct diagnosis based on a complex investigation: immunohistochemistry, conventional cytogenetic analysis and fluorescence in situ hybridization (FISH), molecular analysis (Southern blot and RT-PCR) is necessary. Further studies are required to clarify the pathogenetic relationship between chronic myeloid leukemia and non-Hodgkin lymphomas.
Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory
2015-01-01
Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
26 CFR 1.48-1 - Definition of section 38 property.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., or slate; the construction of roads, bridges, or housing; the processing of meat, fish or other... commodity in a large mass prior to its consumption or utilization. Thus, if a facility is used to store... storage tanks, grain storage bins, silos, fractionating towers, blast furnaces, basic oxygen furnaces...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A
2013-03-11
The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.
NASA Astrophysics Data System (ADS)
Elangovan, Dharshini; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Allman, Sarah Ann; Mackeen, Mukram Mohamed
2016-11-01
The controlled synthesis of oligosaccharides is of growing interest due to the important roles of oligosaccharides in various biological processes. Enzymatic synthesis enables regio- and stereo-selective control during synthesis which still remains a challenge using total chemical synthesis. In this study, endoplasmic reticulum 1,2-α-mannosidase from Glaciozyma antractica was recombinantly expressed in Pichia pastoris. The gene sequence for ER mannosidase was obtained from the Glaciozyma antractica database. The BLAST (Basic Local Alignment Search Tool) results from bioinformatics screening showed that ER mannosidase had 41 % identity with the equivalent mannosidases from Sacchromyces cerevesiae. ER mannosidase from G. antartica was then cloned into the pPICZαC expression vector and used to transform in the host Pichia pastoris X33 cells. The ER mannosidase (MW˜58 kDa) was successfully expressed at 25 °C with 1.0 % methanol induction.
Elusive treatment for human rhinosporidiosis.
Janardhanan, Jeshina; Patole, Shalom; Varghese, Lalee; Rupa, V; Tirkey, Amit Jiwan; Varghese, George M
2016-07-01
The aim of this study was to clarify the contentious taxonomic classification of Rhinosporidium seeberi, the cause of human rhinosporidiosis, which may have treatment implications. PCR was used to amplify the internal transcribed spacer (ITS)-2 region from the genomic DNA of the aetiological agent obtained from a sample of human rhinosporidiosis lesions. The amplicon was sequenced and the organism identified using the Basic Local Alignment Search Tools (BLAST). Phylogenetic analysis revealed that the aetiological agent clustered along with the R. seeberi isolated from humans and also with Amphibiocystidium ranae from frogs. This organism is a member of the order Dermocystida in the class Mesomycetozoea. A patient with disseminated rhinosporidiosis did not respond to conventional therapy with dapsone and surgical excision, and treatment with amphotericin B also proved futile. An effective treatment for R. seeberi-a eukaryote belonging to the class Mesomycetozoea-is still elusive. Copyright © 2016. Published by Elsevier Ltd.
Data on the genome-wide identification of CNL R-genes in Setaria italica (L.) P. Beauv.
Andersen, Ethan J; Nepal, Madhav P
2017-08-01
We report data associated with the identification of 242 disease resistance genes (R-genes) in the genome of Setaria italica as presented in "Genetic diversity of disease resistance genes in foxtail millet ( Setaria italica L.)" (Andersen and Nepal, 2017) [1]. Our data describe the structure and evolution of the Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) R-genes in foxtail millet. The CNL genes were identified through rigorous extraction and analysis of recently available plant genome sequences using cutting-edge analytical software. Data visualization includes gene structure diagrams, chromosomal syntenic maps, a chromosomal density plot, and a maximum-likelihood phylogenetic tree comparing Sorghum bicolor , Panicum virgatum , Setaria italica , and Arabidopsis thaliana . Compilation of InterProScan annotations, Gene Ontology (GO) annotations, and Basic Local Alignment Search Tool (BLAST) results for the 242 R-genes identified in the foxtail millet genome are also included in tabular format.
Primary Blast Injury Criteria for Animal/Human TBI Models using Field Validated Shock Tubes
2017-09-01
differential pathological response, which depends on the local tissue composition, and the response is to insult depends upon the cell type. regions...Neuroinflammation A single blast induces cell-type dependent increase in NADPH oxidase isoforms We have performed characterization of the spatial variations and...uniformly distribute and affect the whole brain. However, pathophysiological outcomes (e.g., NOX changes) in response to bTBI depend on the differential
The multi-modal responses of a physical head model subjected to various blast exposure conditions
NASA Astrophysics Data System (ADS)
Ouellet, S.; Philippens, M.
2018-01-01
The local and global biomechanical response of the body to a blast wave is the first step of a sequence that leads to the development of stresses and strains which can exceed the tolerance of brain tissue. These stresses and strains may then lead to neuro-physical changes in the brain and contribute to initiate a cascade of events leading to injury. The specific biomechanical pathways by which the blast energy is transmitted through the head structure are, however, not clearly understood. Multiple transmission mechanisms have been proposed to explain the generation of brain stresses following the impingement of a blast wave on the head. With the use of a physical head model, the work presented here aims at demonstrating that the proposed transmission mechanisms are not mutually exclusive. They are part of a continuum of head responses where, depending on the exposure conditions, a given mechanism may or may not dominate. This article presents the joint analysis of previous blast test results generated with the brain injury protection evaluation device (BIPED) headform under four significantly different exposure conditions. The focus of the analysis is to demonstrate how the nature of the recorded response is highly dependent on the exposure characteristics and consequently, on the method used to reproduce blast exposure in a laboratory environment. The timing and magnitude of the variations in intra-cranial pressures (ICP) were analysed relative to the external pressure field in order to better understand the wave dynamics occurring within the brain structure of the headform. ICP waveforms were also analysed in terms of their energy spectral density to better identify the energy partitioning between the different modes of response. It is shown that the BIPED response is multi-modal and that the energy partitioning between its different modes of response is greatly influenced by exposure characteristics such as external peak overpressure, impulse, blast wave structure, and direction of propagation. Convincing evidence of stresses generated from local skull deformation is presented along with evidence of stress transmission through relative brain-to-skull motion. These findings suggest that research aimed at defining exposure thresholds should not focus on a single stress transmission mechanism or use experimental designs unrepresentative of realistic blast loading conditions that may favour a given mechanism over another.
Gao, Xiaoning; Li, Jie; Wang, Lili; Lin, Ji; Jin, Hongshi; Xu, Yihan; Wang, Nan; Zhao, Yu; Liu, Daihong; Yu, Li; Wang, Quanshun
2016-01-01
Patient: Male, 49 Final Diagnosis: T-lymphoid/myeloid bilineal blastic transformation of CML Symptoms: Rapidly enlarging mass in left neck Medication: — Clinical Procedure: Biopsy of the left submandibular lymph nodes Specialty: Hematology Objective: Rare co-existance of disease or pathology Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the Philadelphia chromosome generated by the reciprocal translocation t(9: 22)(q34;q11). CML is usually diagnosed in the chronic phase. Blast crisis represents an advanced phase of CML. Extramedullary blast crisis as the initial presentation of CML with bone marrow remaining in chronic phase is an unusual event. Further, extramedullary blast crisis with T lymphoid/myeloid bilineal phenotype as an initial presentation for CML is extremely unusual. Case Report: Here, we report the case of a 49-year-old male with rapidly enlarged submandibular lymph nodes. Biopsy specimen from the nodes revealed a characteristic appearance with morphologically and immunohistochemically distinct myeloblasts and T lymphoblasts co-localized in 2 adjacent regions, accompanied by chronic phase of the disease in bone marrow. The presence of the BCR/ABL1 fusion gene within both cellular populations in this case confirmed the extramedullary disease represented a localized T lymphoid/myeloid bilineal blastic transformation of CML. After 3 courses of combined chemotherapy plus tyrosine kinase inhibitor treatment, the mass was completely regressed with a 3-log decrease in BCR/ABL1 transcript from baseline. Five months after the diagnosis, the patient showed diminished vision, hand tremors, and weakness of lower extremities. Flow cytometric immunophenotyping of cerebrospinal fluid revealed the presence of myeloid blasts. An isolated central nervous system relapse of leukemia was identified. Following high-dose systemic and intrathecal chemotherapy, the patient continued to do well. Conclusions: The possibility of extramedullary blast crisis as an initial presentation in patients with CML should be considered. Further, an isolated central nervous system blast crisis should be considered if neurological symptoms evolve in patients who have shown a good response to therapy. PMID:27784881
He, Ji; Dai, Xinbin; Zhao, Xuechun
2007-02-09
BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at http://bioinfo.noble.org/plan/. The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users.
He, Ji; Dai, Xinbin; Zhao, Xuechun
2007-01-01
Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform-independent, easily configurable and capable of comprehensive expansion, and user-intuitive. PLAN is freely available to academic users at . The source code for local deployment is provided under free license. Full support on system utilization, installation, configuration and customization are provided to academic users. PMID:17291345
NASA Astrophysics Data System (ADS)
Yan, Peng; Lu, Wenbo; Zhang, Jing; Zou, Yujun; Chen, Ming
2017-04-01
Ground vibration, as the most critical public hazard of blasting, has received much attention from the community. Many countries established national standards to suppress vibration impact on structures, but a world-accepted blasting vibration criterion on human safety is still missing. In order to evaluate human response to the vibration from blasting excavation of a large-scale rock slope in China, this study aims to suggest a revised criterion. The vibration frequency was introduced to improve the existing single-factor (peak particle velocity) standard recommended by the United States Bureau of Mines (USBM). The feasibility of the new criterion was checked based on field vibration monitoring and investigation of human reactions. Moreover, the air overpressure or blast effects on human beings have also been discussed. The result indicates that the entire zone of influence can be divided into three subzones: severe-annoyance, light-annoyance and perception zone according to the revised safety standard. Both the construction company and local residents have provided positive comments on this influence degree assessment, which indicates that the presented criterion is suitable for evaluating human response to nearby blasts. Nevertheless, this specific criterion needs more field tests and verifications before it can be
Simplified modeling of blast waves from metalized heterogeneous explosives
NASA Astrophysics Data System (ADS)
Zarei, Z.; Frost, D. L.
2011-09-01
The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.
Lunar construction/mining equipment
NASA Technical Reports Server (NTRS)
Ozdemir, Levent
1990-01-01
For centuries, mining has utilized drill and blast as the primary method of rock excavation. Although this technique has undergone significant improvements, it still remains a cyclic, labor intensive operation with inherent safety hazards. Other drawbacks include damage to the surrounding ground, creation of blast vibrations, rough excavation walls resulting in increased ventilation requirements, and the lack of selective mining ability. Perhaps the most important shortcoming of drill and blast is that it is not conducive to full implementation of automation or robotics technologies. Numerous attempts have been made in the past to automate drill and blast operations to remove personnel from the hazardous work environment. Although most of the concepts devised look promising on paper, none of them was found workable on a sustained production basis. In particular, the problem of serious damage to equipment during the blasting cycle could not be resolved regardless of the amount of charge used in excavation. Since drill and blast is not capable of meeting the requirements of a fully automated rock fragmentation method, its role is bound to gradually decrease. Mechanical excavation, in contrast, is highly suitable to automation because it is a continuous process and does not involve any explosives. Many of the basic principles and trends controlling the design of an earth-based mechanical excavator will hold in an extraterrestrial environment such as on the lunar surface. However, the economic and physical limitations for transporting materials to space will require major rethinking of these machines. In concept, then, a lunar mechanical excavator will look and perform significantly different from one designed for use here on earth. This viewgraph presentation gives an overview of such mechanical excavator systems.
Bharathi, Kosaraju; Sreenath, H L
2017-07-01
Coffea canephora is the commonly cultivated coffee species in the world along with Coffea arabica . Different pests and pathogens affect the production and quality of the coffee. Jasmonic acid (JA) is a plant hormone which plays an important role in plants growth, development, and defense mechanisms, particularly against insect pests. The key enzymes involved in the production of JA are lipoxygenase, allene oxide synthase, allene oxide cyclase, and 12-oxo-phytodienoic reductase. There is no report on the genes involved in JA pathway in coffee plants. We made an attempt to identify and analyze the genes coding for these enzymes in C. canephora . First, protein sequences of jasmonate pathway genes from model plant Arabidopsis thaliana were identified in the National Center for Biotechnology Information (NCBI) database. These protein sequences were used to search the web-based database Coffee Genome Hub to identify homologous protein sequences in C. canephora genome using Basic Local Alignment Search Tool (BLAST). Homologous protein sequences for key genes were identified in the C. canephora genome database. Protein sequences of the top matches were in turn used to search in NCBI database using BLAST tool to confirm the identity of the selected proteins and to identify closely related genes in species. The protein sequences from C. canephora database and the top matches in NCBI were aligned, and phylogenetic trees were constructed using MEGA6 software and identified the genetic distance of the respective genes. The study identified the four key genes of JA pathway in C. canephora , confirming the conserved nature of the pathway in coffee. The study expected to be useful to further explore the defense mechanisms of coffee plants. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC, and OPR are identified in C. canephora (robusta coffee) by bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC and OPR were identified and analyzed in C. canephora (robusta coffee) by in silico approach. The study has confirmed the conserved nature of JA pathway in coffee; the findings are useful to further explore the defense mechanisms of coffee plants. Abbreviations used: C. canephora : Coffea canephora ; C. arabica : Coffea arabica ; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana : Arabidopsis thaliana ; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.
NASA Astrophysics Data System (ADS)
Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.
2015-09-01
Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.
Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.
Taylor, Paul A; Ford, Corey C
2009-06-01
The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Corey C.; Taylor, Paul Allen
The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less
Identification of Streptococcus mitis321A vaccine antigens based on reverse vaccinology
Zhang, Qiao; Lin, Kexiong; Wang, Changzheng; Xu, Zhi; Yang, Li; Ma, Qianli
2018-01-01
Streptococcus mitis (S. mitis) may transform into highly pathogenic bacteria. The aim of the present study was to identify potential antigen targets for designing an effective vaccine against the pathogenic S. mitis321A. The genome of S. mitis321A was sequenced using an Illumina Hiseq2000 instrument. Subsequently, Glimmer 3.02 and Tandem Repeat Finder (TRF) 4.04 were used to predict genes and tandem repeats, respectively, with DNA sequence function analysis using the Basic Local Alignment Search Tool (BLAST) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups of proteins (COG) databases. Putative gene antigen candidates were screened with BLAST ahead of phylogenetic tree analysis. The DNA sequence assembly size was 2,110,680 bp with 40.12% GC, 6 scaffolds and 9 contig. Consequently, 1,944 genes were predicted, and 119 TRF, 56 microsatellite DNA, 10 minisatellite DNA and 154 transposons were acquired. The predicted genes were associated with various pathways and functions concerning membrane transport and energy metabolism. Multiple putative genes encoding surface proteins, secreted proteins and virulence factors, as well as essential genes were determined. The majority of essential genes belonged to a phylogenetic lineage, while 321AGL000129 and 321AGL000299 were on the same branch. The current study provided useful information regarding the biological function of the S. mitis321A genome and recommends putative antigen candidates for developing a potent vaccine against S. mitis. PMID:29620181
Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Hamdan, Mohammad Razak; Othman, Ahmad Sofiman
2018-01-01
This study was conducted to determine the feasibility of using three plastid DNA regions ( matK , trnH - psbA , and rbcL ) as DNA barcodes to identify the medicinal plant Clinacanthus nutans . In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK , trnH - psbA , and rbcL , primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH - psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH - psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH - psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH - psbA is very effective at identifying C. nutans , as it performed well in discriminating species in Acanthaceae.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
2004-04-01
ingredients were freely b ought in the popular shops of chemicals. The following facts can serve as the evidence of wide use of mine -explosive...workshop rooms etc. The HE charges weight restrictions developed for conducting of blasting operations in open-cast mines and testing areas, are...Russian) 8. Silnikov M.V., Serdtsev N.I., Nelezin P.V. On the prospects of methods of explosion localization for the increase of safety of mine
Analysis of MINIE2013 Explosion Air-Blast Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnurr, Julie M.; Rodgers, Arthur J.; Kim, Keehoon
We report analysis of air-blast overpressure measurements from the MINIE2013 explosive experiments. The MINIE2013 experiment involved a series of nearly 70 near-surface (height-ofburst, HOB, ranging from -1 to +4 m) low-yield (W=2-20 kg TNT equivalent) chemical highexplosives tests that were recorded at local distances (230 m – 28.5 km). Many of the W and HOB combinations were repeated, allowing for quantification of the variability in air-blast features and corresponding yield estimates. We measured canonical signal features (peak overpressure, impulse per unit area, and positive pulse duration) from the air-blast data and compared these to existing air-blast models. Peak overpressure measurementsmore » showed good agreement with the models at close ranges but tended to attenuate more rapidly at longer range (~ 1 km), which is likely caused by upward refraction of acoustic waves due to a negative vertical gradient of sound speed. We estimated yields of the MINIE2013 explosions using the Integrated Yield Determination Tool (IYDT). Errors of the estimated yields were on average within 30% of the reported yields, and there were no significant differences in the accuracy of the IYDT predictions grouped by yield. IYDT estimates tend to be lower than ground truth yields, possibly because of reduced overpressure amplitudes by upward refraction. Finally, we report preliminary results on a development of a new parameterized air-blast waveform.« less
Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves
NASA Astrophysics Data System (ADS)
Howard, T. A.; Pizzo, V. J.
2016-06-01
Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.
Dixit, Shalabh; Huang, B Emma; Sta Cruz, Ma Teresa; Maturan, Paul T; Ontoy, Jhon Christian E; Kumar, Arvind
2014-01-01
The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast. A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait. Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population. This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.
NASA Astrophysics Data System (ADS)
Kalocsai, Lilla; Kiszely, Márta; Süle, Bálint; Győri, Erzsébet
2017-04-01
Due to the development of seismological network, increasing number of events have been detected in the last years in Hungary. However about 50% of these shocks were quarry blasts. Therefore decontamination of catalogue for revealing the reliable natural seismicity has become an important task. We have studied the events occurring in the surroundings of Mecsek Hills. The goal of our research was to find the best method to separate earthquakes and quarry blasts. In the first step we have studied the diurnal distributions of the events. Because of different focal mechanisms, the waveforms and amplitudes of arriving phases of earthquakes and quarry blasts are different. We have tested the most typical parameter, the P and S amplitude ratio, which is often used for separation. The waveform similarities have been analyzed using cross-correlation matrix and dendrograms. The earthquakes and the blasts of different quarries have been arranged into different clusters. We have computed spectrograms and because the blasts were carried out by delay-fired technology we have computed binary spectrograms too. Computation of binary spectra is a useful visualization method to recognize the delay-fired explosions, because it emphasizes the long-duration modulations of the spectra. It is made from the original spectra by application of a filter that replaces the spectral amplitudes with a binary code, which simply reflects the local spectral highs and lows. The modulations were present in most of the spectra of blasts and in contrast to the earthquakes, the modulations have been observable until the end of the spectrogram. We also have studied the scalloping and steepness of the spectra.
Continuum modeling of neuronal cell under blast loading
Jérusalem, Antoine; Dao, Ming
2012-01-01
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus ongoing to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progresses are also being made at the experimental and modeling levels to better characterize many of the cell functions such as differentiation, growth, migration and death, among others. The work presented here aims at bridging both efforts by proposing a continuum model of neuronal cell submitted to blast loading. In this approach, cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different material constitutive models are adequately chosen for each one. The material parameters are calibrated against published experimental work of cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete fluid-structure interaction computational framework. The results are compared to the nanoindentation simulation and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during its deformation under blast loading and potentially leading to cell damage. It suggests more particularly the localization of damage at the nucleus membrane similarly to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. As a conclusion, the proposed model ultimately provides a new three dimensional computational tool to evaluate intracellular damage during blast loading. PMID:22562014
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any... Production 327310 Portland cement manufacturing plants. CO2 Enhanced Oil and Gas Recovery 211 Oil and gas... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
..., blast furnaces, basic oxygen process furnace shops. Lead Production 331419 Primary lead smelting and.... Chapter 5, generally provides that rules may not take effect earlier than 30 days after they are published... behavior and prepare before the final rule takes effect. Because this final rule defers a reporting...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... Oxygen Furnaces AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule. SUMMARY: EPA is... carbon monoxide (CO) emissions from basic oxygen furnaces (BOFs) at steel mills in the State of Maryland... blast furnace and scrap metal which is heated with oxygen to produce molten metal. The molten metal is...
24 CFR 35.140 - Prohibited methods of paint removal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...
24 CFR 35.140 - Prohibited methods of paint removal.
Code of Federal Regulations, 2013 CFR
2013-04-01
... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...
24 CFR 35.140 - Prohibited methods of paint removal.
Code of Federal Regulations, 2012 CFR
2012-04-01
... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...
24 CFR 35.140 - Prohibited methods of paint removal.
Code of Federal Regulations, 2014 CFR
2014-04-01
... air (HEPA) local exhaust control. (c) Abrasive blasting or sandblasting without HEPA local exhaust control. (d) Heat guns operating above 1100 degrees Fahrenheit or charring the paint. (e) Dry sanding or dry scraping, except dry scraping in conjunction with heat guns or within 1.0 ft. (0.30 m.) of...
Díaz-Rodríguez, Jesus; Donaire-Barroso, David; Jowers, Michael J
2018-06-02
In this study, we report, through molecular identification, the first African records of a digenean trematode parasite of the genus Euryhelmis. We recovered metacercariae encysted in an anuran, the endemic Moroccan painted frog (Discoglossus scovazzi), and a vulnerable caudate, the North African fire salamander (Salamandra algira), from four localities in North Africa (Morocco). Our records go back to the past century and have been confirmed in successive fieldwork seasons thereafter. Metacercarial stages of these parasites require amphibians as the last intermediate host, but the exact identity of the primary hosts and predators of the infected animals in Africa remain unknown. Our searches with basic local alignment search tool (BLAST) from Genbank revealed that hosts were infected by parasites of Euryhelmis costaricensis, which showed almost the same genetic identity (with only one substitution) to previous reports from Costa Rica and Japan, suggesting a recent introduction in Morocco. We proceed to discuss the likely role of introduced mustelids as the potential definitive hosts of trematode adults. Under this assumption, we conclude that the infestation of Discoglossus scovazzi and Salamandra algira might pose a risk to these threatened species.
Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction
2012-01-01
Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool that designs target-specific PCR primers. Primer-BLAST offers flexible options to adjust the specificity threshold and other primer properties. This tool is publicly available at http://www.ncbi.nlm.nih.gov/tools/primer-blast. PMID:22708584
CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, T. A.; Pizzo, V. J., E-mail: howard@boulder.swri.edu
Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena.more » In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.« less
Kablammo: an interactive, web-based BLAST results visualizer.
Wintersinger, Jeff A; Wasmuth, James D
2015-04-15
Kablammo is a web-based application that produces interactive, vector-based visualizations of sequence alignments generated by BLAST. These visualizations can illustrate many features, including shared protein domains, chromosome structural modifications and genome misassembly. Kablammo can be used at http://kablammo.wasmuthlab.org. For a local installation, the source code and instructions are available under the MIT license at http://github.com/jwintersinger/kablammo. jeff@wintersinger.org. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead Production 331419 Primary... Act (APA), 5 U.S.C. Chapter 5, generally provides that rules may not take effect earlier than 30 days... adjust their behavior and prepare before the final rule takes effect. To employ the 5 U.S.C. 553(d)(3...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead... data or data that are less expensive to collect such as process data or material consumption data. For...)(1) Only annual anode consumption (No CEMS). F 98.66(f)(1) Only annual paste consumption (No CEMS). F...
Liao, Ai-Jun; Su, Qi; Wang, Xun; Zeng, Bin; Shi, Wei
2008-01-01
AIM: To isolate and analyze the DNA sequences which are methylated differentially between gastric cancer and normal gastric mucosa. METHODS: The differentially methylated DNA sequences between gastric cancer and normal gastric mucosa were isolated by methylation-sensitive representational difference analysis (MS-RDA). Similarities between the separated fragments and the human genomic DNA were analyzed with Basic Local Alignment Search Tool (BLAST). RESULTS: Three differentially methylated DNA sequences were obtained, two of which have been accepted by GenBank. The accession numbers are AY887106 and AY887107. AY887107 was highly similar to the 11th exon of LOC440683 (98%), 3’ end of LOC440887 (99%), and promoter and exon regions of DRD5 (94%). AY887106 was consistent (98%) with a CpG island in ribosomal RNA isolated from colorectal cancer by Minoru Toyota in 1999. CONCLUSION: The methylation degree is different between gastric cancer and normal gastric mucosa. The differentially methylated DNA sequences can be isolated effectively by MS-RDA. PMID:18322944
Amelia, Tan Suet May; Amirul, Al-Ashraf Abdullah; Bhubalan, Kesaven
2018-02-01
We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
Harper, John D I; Thuet, Jacques; Lechtreck, Karl F; Hardham, Adrienne R
2009-07-01
In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates (Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates (Perkinsus marinus), and two stramenopile subgroups, the oomycetes (Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms (Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores.
A High-Throughput Arabidopsis Reverse Genetics System
Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.
2002-01-01
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722
Molecular Detection of Rickettsia felis in Different Flea Species from Caldas, Colombia
Ramírez-Hernández, Alejandro; Montoya, Viviana; Martínez, Alejandra; Pérez, Jorge E.; Mercado, Marcela; de la Ossa, Alberto; Vélez, Carolina; Estrada, Gloria; Correa, Maria I.; Duque, Laura; Ariza, Juan S.; Henao, Cesar; Valbuena, Gustavo; Hidalgo, Marylin
2013-01-01
Rickettsioses caused by Rickettsia felis are an emergent global threat. Historically, the northern region of the province of Caldas in Colombia has reported murine typhus cases, and recently, serological studies confirmed high seroprevalence for both R. felis and R. typhi. In the present study, fleas from seven municipalities were collected from dogs, cats, and mice. DNA was extracted and amplified by polymerase chain reaction (PCR) to identify gltA, ompB, and 17kD genes. Positive samples were sequenced to identify the species of Rickettsia. Of 1,341 fleas, Ctenocephalides felis was the most prevalent (76.7%). Positive PCR results in the three genes were evidenced in C. felis (minimum infection rates; 5.3%), C. canis (9.2%), and Pulex irritans (10.0%). Basic Local Alignment Search Tool (BLAST) analyses of sequences showed high identity values (> 98%) with R. felis, and all were highly related by phylogenetic analyses. This work shows the first detection of R. felis in fleas collected from animals in Colombia. PMID:23878183
Molecular Identification of Fungal Contamination in Date Palm Tissue Cultures.
Abass, Mohammed H
2017-01-01
Fungal contamination of in vitro cultures of date palm (Phoenix dactylifera L.) is the major constraint to their initiation and maintenance. Different molecular approaches have been applied successfully to analyze both inter- and intraspecific variation among fungal species as well as determine their identity. This chapter describes step-by-step procedures of molecular identification of fungal contaminants by internal transcribed spacer (ITS) products of the most common fungal contaminants of date palm tissue culture. To begin with, samples of genera Alternaria, Aspergillus, Cladosporium, Epicoccum, and Penicillium were collected to isolate each fungal genus and extraction of genomic DNA. Polymerase chain reactions were accomplished by ITS primers (ITS1 and ITS4) for each fungal contaminant as well as for sequencing. Subsequently, they are analyzed by Basic Local Alignment Search Tool (BLAST) search of ITS sequence to reveal the identity of each individual fungal contaminant species. The molecular identification herein is a rapid and reliable procedure to identify date palm fungal contaminants which is very important in their control and treatment.
Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.
Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D
2014-09-12
A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.
Herold, Volker; Herz, Stefan; Winter, Patrick; Gutjahr, Fabian Tobias; Andelovic, Kristina; Bauer, Wolfgang Rudolf; Jakob, Peter Michael
2017-10-16
Local aortic pulse wave velocity (PWV) is a measure for vascular stiffness and has a predictive value for cardiovascular events. Ultra high field CMR scanners allow the quantification of local PWV in mice, however these systems are yet unable to monitor the distribution of local elasticities. In the present study we provide a new accelerated method to quantify local aortic PWV in mice with phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) at 17.6 T. Based on a k-t BLAST (Broad-use Linear Acquisition Speed-up Technique) undersampling scheme, total measurement time could be reduced by a factor of 6. The fast data acquisition enables to quantify the local PWV at several locations along the aortic blood vessel based on the evaluation of local temporal changes in blood flow and vessel cross sectional area. To speed up post processing and to eliminate operator bias, we introduce a new semi-automatic segmentation algorithm to quantify cross-sectional areas of the aortic vessel. The new methods were applied in 10 eight-month-old mice (4 C57BL/6J-mice and 6 ApoE (-/-) -mice) at 12 adjacent locations along the abdominal aorta. Accelerated data acquisition and semi-automatic post-processing delivered reliable measures for the local PWV, similiar to those obtained with full data sampling and manual segmentation. No statistically significant differences of the mean values could be detected for the different measurement approaches. Mean PWV values were elevated for the ApoE (-/-) -group compared to the C57BL/6J-group (3.5 ± 0.7 m/s vs. 2.2 ± 0.4 m/s, p < 0.01). A more heterogeneous PWV-distribution in the ApoE (-/-) -animals could be observed compared to the C57BL/6J-mice, representing the local character of lesion development in atherosclerosis. In the present work, we showed that k-t BLAST PC-MRI enables the measurement of the local PWV distribution in the mouse aorta. The semi-automatic segmentation method based on PC-CMR data allowed rapid determination of local PWV. The findings of this study demonstrate the ability of the proposed methods to non-invasively quantify the spatial variations in local PWV along the aorta of ApoE (-/-) -mice as a relevant model of atherosclerosis.
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... local authorities for over-the-road use. Facilities other than magazines used to store blasting agents... or other appropriate warning signs that indicate the contents and are visible from each approach. ...
Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.
Machemer, Steven D
2004-01-15
Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.
High resolution seismic tomography imaging of Ireland with quarry blast data
NASA Astrophysics Data System (ADS)
Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.
2017-12-01
Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, W C; King, M J; Blackman, E G
In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cmmore » from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).« less
The Balloon-borne Large Aperture Submillimeter Telescope: BLAST
NASA Astrophysics Data System (ADS)
Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.
2009-01-01
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.
The physical basis of explosion and blast injury processes.
Proud, W G
2013-03-01
Energetic materials are widely used in civilian and military applications, such as quarrying and mining, flares, and in munitions. Recent conflicts have involved the widespread use of improvised explosive devices to attack military, civilians and infrastructure. This article gives a basic overview of explosive technology and the underlying physical processes that produce the injuries encountered. In particular aspects relevant to primary and secondary injuries are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.H. Feng; X.X. Zhang; M.L. Wu
The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory andmore » average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.« less
Numerical and Experimental Case Study of Blasting Works Effect
NASA Astrophysics Data System (ADS)
Papán, Daniel; Valašková, Veronika; Drusa, Marian
2016-10-01
This article introduces the theoretical and experimental case study of dynamic monitoring of the geological environment above constructed highway tunnel. The monitored structure is in this case a very important water supply pipeline, which crosses the tunnel and was made from steel tubes with a diameter of 800 mm. The basic dynamic parameters had been monitored during blasting works, and were compared with the FEM (Finite Element Method) calculations and checked by the Slovak standard limits. A calibrated FEM model based on the experimental measurement data results was created and used in order to receive more realistic results in further predictions, time and space extrapolations. This case study was required and demanded by the general contractor company and also by the owner of water pipeline, and it was an answer of public safety evaluation of risks during tunnel construction.
Stress Wave Interaction Between Two Adjacent Blast Holes
NASA Astrophysics Data System (ADS)
Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali
2016-05-01
Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.
NASA Astrophysics Data System (ADS)
Saravanan, R.; Udhayakumar, T.; Dinesh, S.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
Construction of pavements uses various filling materials and due to the cost factor, the local soil is used for pavement construction. The strength of the soil is improved by stabilisation. This stabilisation increases the load bearing capacities of soil for heavy wheeled vehicle traffic. GGBS, silica fume, rice husk are the basic waste materials used as a waste material, which improves the quality of soil and reduces the cost of pavements. In this study, a detailed investigation is made on the Ground Granulated Blast-furnace Slag (GGBS), activated by lime, in the stabilisation of low bearing capacity sand and clay soils collected from Thanjavur district (Budalur, Sengipatti, Vallam and Palliahgraharam villages). The tests are carried out as per Indian Standards. The test procedures separated into two phases, namely Stage-I and Stage-II. In Stage-I the soil tests include soil type, particle size distribution, soil index properties, standard proctor tests, shear tests and CBR test. In Stage-II the soil tests include shear tests and CBR test for the suitable required proportions of GGBS along with lime in the collected soil samples. The test results from stage-I and stage-II are compared and from the study, it is inferred that the application of GGBS is a useful material for soil stabilisation.
Prospective Molecular Characterization of Burn Wound Colonization: Novel Tools and Analysis
2014-02-01
from patients with endocarditis and wound/soft tissue infections, have been sequenced and an initial analysis performed. Finally, enrollment in the...Price LB. Analysis of S. aureus isolates from endocarditis and skin/soft tissue infections A strict blast search was performed on the S. aureus...targets differentiating the cellulitis and endocarditis isolates. This was followed with a basic Pearson’s Chi-squared test with Yates’ continuity
Basic Research on Seismic and Infrasonic Monitoring of the European Arctic
2010-09-01
efficient high-frequency seismic energy propagation characteristics of the Barents Sea area. Seismic and infrasound signals at ARCES have recently been...detected since June 2006 have been associated with infrasound detections at ARCES and at stations of the infrasound networks of Sweden, Finland, and...efficient generators of infrasound than the military munitions explosions at Hukkakero, the blasts occur throughout the year and so will sample a far
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, G.J.; Zmierski, M.L.
1994-09-01
US Steel Iron Producing Div. consists of four operating blast furnaces ranging in process control capabilities from 1950's and 1960's era hardware to state of the art technology. The oldest control system consists of a large number of panels containing numerous relays, indicating lights, selector switches, push buttons, analog controllers, strip chart recorders and annunciators. In contrast, the state of the art control system utilizes remote I/O, two sets of redundant PLC's, redundant charge director computer, redundant distributed control system, high resolution video-graphic display system and supervisory computer for real-time data acquisition. Process data are collected and archived on twomore » DEC VAX computers, one for No. 13 blast furnace and the other for the three south end furnaces. Historical trending, data analysis and reporting are available to iron producing personnel through terminals and PC's connected directly to the systems, dial-up modems and various network configurations. These two machines are part of the iron producing network which allows them to pass and receive information from each other as well as numerous other sources throughout the division. This configuration allows personnel to access most pertinent furnace information from a single source. The basic objective of the control systems is to charge raw materials to the top of the furnace at aim weights and sequence, while maintaining blast conditions at the bottom of the furnace at required temperature, pressure and composition. Control changes by the operators are primarily supervisory based on review of system generated plots and tables.« less
Stanford Center for Military Photomedicine
2014-09-08
cochlear implants after blast injury. A.2. WOUND HEALING. We have used several in vivo and in vitro models of wound healing to study the basic cell and...clinical information we will obtain has the potential to fundamentally alter the diagnosis and treatment of human cochlear pathology. Our microscope...of live guinea pigs, and have shown that FME can resolve cochlear structures in live subjects in a manner far superior to that of any other existing
NASA Astrophysics Data System (ADS)
Ismatkhodzhaev, S. K.; Kuzishchin, V. F.
2017-05-01
An automatic control system to control the thermal load (ACS) in a drum-type boiler under random fluctuations in the blast-furnace and coke-oven gas consumption rates and to control action on the natural gas consumption is considered. The system provides for use of a compensator by the basic disturbance, the blast-furnace gas consumption rate. To enhance the performance of the system, it is proposed to use more accurate mathematical second-order delay models of the channels of the object under control in combination with calculation by frequency methods of the controller parameters as well as determination of the structure and parameters of the compensator considering the statistical characteristics of the disturbances and using simulation. The statistical characteristics of the random blast-furnace gas consumption signal based on experimental data are provided. The random signal is presented in the form of the low-frequency (LF) and high-frequency (HF) components. The models of the correlation functions and spectral densities are developed. The article presents the results of calculating the optimal settings of the control loop with the controlled variable in the form of the "heat" signal with the restricted frequency variation index using three variants of the control performance criteria, viz., the linear and quadratic integral indices under step disturbance and the control error variance under random disturbance by the blastfurnace gas consumption rate. It is recommended to select a compensator designed in the form of series connection of two parts, one of which corresponds to the operator inverse to the transfer function of the PI controller, i.e., in the form of a really differentiating element. This facilitates the realization of the second part of the compensator by the invariance condition similar to transmitting the compensating signal to the object input. The results of simulation under random disturbance by the blast-furnace gas consumption are reported. Recommendations are made on the structure and parameters of the shaping filters for modeling the LF and HF components of the random signal. The results of the research may find applications in the systems to control the thermal processes with compensation of basic disturbances, in particular, in boilers for combustion of accompanying gases.
Adao, Davin Edric V.; Dela Serna, Ace O.; Belleza, Maria Luz B.; Bolo, Nicole R.; Rivera, Windell L.
2016-10-01
Blastocystis sp. is a commonly reported enteric protistan parasite in faecal specimens with a worldwide distribution afflicting both humans and a wide range of animals. The aim of this study is to characterize the subtypes (STs) of Blastocystis sp. isolates from asymptomatic individuals in an urban community in Pateros, Metro Manila, Philippines. The 600-bp small subunit ribosomal RNA (SSU rRNA) barcoding region of Blastocystis sp. isolates was amplified and sequenced using the primers RD5 and BhRDr. Subtypes were identified by uploading the sequences onto the Basic Local Alignment and Search Tool (BLAST) websites, the Blastocystis Subtype (18S) and Sequence Typing (MLST) Database and by construction of a phylogenetic tree. Twenty-nine (29) out of 35 individuals were detected positive for Blastocystis sp. ST3 is the most common among the three STs detected (65.5%), followed by ST1 (31.0%) and ST4 (3.44%). This study showed that DNA barcoding can serve as a helpful tool to investigate the diversity of Blastocystis sp. in the Philippines.
Vineetha, P G; Tomar, S; Saxena, V K; Susan, C; Sandeep, S; Adil, K; Mukesh, K
2016-08-01
A total of 32 Lactobacillus isolates, 8 each from the crop (LGFCP1-LGFCP8), proventriculus (LGFP9-LGFP16), ileum (LGFI17-LGFI24) and caeca (LGFCM25-LGFCM32) were isolated from 25 adult guinea fowl (Pearl variety), 22-28 weeks of age, and characterised morphologically, physiologically, biochemically and by molecular methods. Isolates were screened for their probiotic quality using range of in vitro tests: aggregation test, cell surface hydrophobicity, resistance to bile salts and acidic conditions, enzymatic tests and coaggregation and antagonistic test. Based on in vitro test results and a novel scoring method, the two best isolates were selected and partial 16S rRNA sequencing was done. BLAST (Basic Local Alignment Search Tool) analysis of sequence of isolate LGFCP4 showed 99% genetic identity with Lactobacillus plantarum and LGFP16 with Lactobacillus reuteri. The study shows that these two microbial agents may be suitable as potential probiotic candidates in guinea fowl, as well as in a feed supplement for other poultry species.
Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.
2016-01-01
Rice blast is caused by Magnaporthe oryzae, which is the most destructive fungal pathogen affecting rice growing regions worldwide. The rice blast resistance gene Pib confers broad-spectrum resistance against Southeast Asian M. oryzae races. We investigated the allelic diversity of Pib in rice germplasm originating from 12 major rice growing countries. Twenty-five new Pib alleles were identified that have unique single nucleotide polymorphisms (SNPs), insertions and/or deletions, in addition to the polymorphic nucleotides that are shared between the different alleles. These partially or completely shared polymorphic nucleotides indicate frequent sequence exchange events between the Pib alleles. In some of the new Pib alleles, nucleotide diversity is high in the LRR domain, whereas, in others it is distributed among the NB-ARC and LRR domains. Most of the polymorphic amino acids in LRR and NB-ARC2 domains are predicted as solvent-exposed. Several of the alleles and the unique SNPs are country specific, suggesting a diversifying selection of alleles in various geographical locations in response to the locally prevalent M. oryzae population. Together, the new Pib alleles are an important genetic resource for rice blast resistance breeding programs and provide new information on rice-M. oryzae interactions at the molecular level. PMID:27446145
Shooter position estimation with muzzle blast and shockwave measurements from separate locations
NASA Astrophysics Data System (ADS)
Grasing, David
2016-05-01
There are two acoustical events associated with small arms fire: the muzzle blast (created by bullets being expelled from the barrel of the weapon), and the shockwave (created by bullets which exceed the speed of sound). Assuming the ballistics of a round are known, the times and directions of arrival of the acoustic events furnish sufficient information to determine the origin of the shot. Existing methods tacitly assume that it is a single sensor which makes measurements of the times and direction of arrival. If the sensor is located past the point where the bullet goes transonic or if the sensor is far off the axis of the shot line a single sensor localization become highly inaccurate due to the ill-conditioning of the localization problem. In this paper, a more general approach is taken which allows for localizations from measurements made at separate locations. There are considerable advantages to this approach, the most noteworthy of which is the improvement in localization accuracy due to the improvement in the conditioning of the problem. Additional benefits include: the potential to locate in cases where a single sensor has insufficient information, furnishing high quality initialization to data fusion algorithms, and the potential to identify the round from a set of possible rounds.
Yan, Xia; Li, Ya; Yue, Xiaofeng; Wang, Congcong; Que, Yawei; Kong, Dandan; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2011-01-01
The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus. PMID:22144889
NASA Astrophysics Data System (ADS)
Ataeva, G.; Gitterman, Y.; Shapira, A.
2017-01-01
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md = 1.4-3.4, which occurred at distances up to 250 km during 2001-2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune's source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217-226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.
Das, Alok; Soubam, D; Singh, P K; Thakur, S; Singh, N K; Sharma, T R
2012-06-01
The dominant rice blast resistance gene, Pi54 confers resistance to Magnaporthe oryzae in different parts of India. In our effort to identify more effective forms of this gene, we isolated an orthologue of Pi54 named as Pi54rh from the blast-resistant wild species of rice, Oryza rhizomatis, using allele mining approach and validated by complementation. The Pi54rh belongs to CC-NBS-LRR family of disease resistance genes with a unique Zinc finger (C(3)H type) domain. The 1,447 bp Pi54rh transcript comprises of 101 bp 5'-UTR, 1,083 bp coding region and 263 bp 3'-UTR, driven by pathogen inducible promoter. We showed the extracellular localization of Pi54rh protein and the presence of glycosylation, myristoylation and phosphorylation sites which implicates its role in signal transduction process. This is in contrast to other blast resistance genes that are predicted to be intracellular NBS-LRR-type resistance proteins. The Pi54rh was found to express constitutively at basal level in the leaves, but upregulates 3.8-fold at 96 h post-inoculation with the pathogen. Functional validation of cloned Pi54rh gene using complementation test showed high degree of resistance to seven isolates of M. oryzae collected from different geographical locations of India. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54rh cloned from wild species of rice provides broad spectrum resistance to M. oryzae hence can be used in rice improvement breeding programme.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array
NASA Astrophysics Data System (ADS)
Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin
2013-04-01
Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.
Paired Straight Hearth Furnace - Transformational Ironmaking Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Kao; Debski, Paul
2014-11-19
The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitablemore » as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.« less
Performance on Tests of Central Auditory Processing by Individuals Exposed to High-Intensity Blasts
2012-07-01
percent (gap detected on at least four of the six presentations), with all longer durations receiving a score greater than 50 percent. Binaural ...Processing and Sound Localization Temporal precision of neural firing is also involved in binaural processing and localization of sound in space. The...Masking Level Difference (MLD) test evaluates the integrity of the earliest sites of binaural comparison and sensitivity to interaural phase in the
Using Gunshot Detection Systems to Fight Explosive Fishing Practices
NASA Astrophysics Data System (ADS)
Showen, R. L.; Dunson, J. C.; Woodman, G.; Christopher, S.; Wilson, S.
2015-12-01
Blast fishing (using explosives to catch fish) causes extensive damage to coral reefs, especially in the Coral Triangle in Southeast Asia. Subsistence fishermen and larger consortiums, often with criminal links, throw an explosive into a school of fish, killing all sea life within range. This unsustainable practice is becoming more prevalent, and threatens the protein supply of as many as a billion people. Ending blast fishing will require combined technical and societal methods aimed at both deterring the practice, and catching those responsible. Our work aims to significantly improve enforcement. We are re-purposing SST's ShotSpotter gunshot detection system, (trusted and valued by police around the world), substituting hydrophones for the present microphones. Using multilateration and trained human reviewers, the system can give prompt blast alerts, location data, and acoustic waveforms to law enforcement officials. We hope to establish a prototype system in Malaysia in 2015, and have already secured governmental approvals for installation and tests with local law enforcement. The Scubazoo media firm in Malaysia is working with resorts, dive operations, and celebrity sponsors, and is planning to produce videos to illustrate the severity of the problem to both governments and the public. Because there is little hard data concerning the prevalence of blast fishing in either marine protected areas or open waters, the system can also indicate to the world the actual blast rates and patterns of use. The Teng Hoi environmental NGO in Hong Kong showed in 2004 that acoustic waves from typical bombs propagate on the order of 20 km, so an underwater locator system with a small number of sensors can feasibly cover a sizable coral region. Our present plans are to mount sensors on piers, buoys, and boats, but if possible we would also like to integrate with other existing acoustic arrays to strengthen the fight against blast fishing.
Jeung, J U; Kim, B R; Cho, Y C; Han, S S; Moon, H P; Lee, Y T; Jena, K K
2007-11-01
Rice blast disease caused by Magnaporthe grisea is a continuous threat to stable rice production worldwide. In a modernized agricultural system, the development of varieties with broad-spectrum and durable resistance to blast disease is essential for increased rice production and sustainability. In this study, a new gene is identified in the introgression line IR65482-4-136-2-2 that has inherited the resistance gene from an EE genome wild Oryza species, O. australiensis (Acc. 100882). Genetic and molecular analysis localized a major resistance gene, Pi40(t), on the short arm of chromosome 6, where four blast resistance genes (Piz, Piz-5, Piz-t, and Pi9) were also identified, flanked by the markers S2539 and RM3330. Through e-Landing, 14 BAC/PAC clones within the 1.81-Mb equivalent virtual contig were identified on Rice Pseudomolecule3. Highly stringent primer sets designed for 6 NBS-LRR motifs located within PAC clone P0649C11 facilitated high-resolution mapping of the new resistance gene, Pi40(t). Following association analysis and detailed haplotyping approaches, a DNA marker, 9871.T7E2b, was identified to be linked to the Pi40(t) gene at the 70 Kb chromosomal region, and differentiated the Pi40(t) gene from the LTH monogenic differential lines possessing genes Piz, Piz-5, Piz-t, and Pi-9. Pi40(t) was validated using the most virulent isolates of Korea as well as the Philippines, suggesting a broad spectrum for the resistance gene. Marker-assisted selection (MAS) and pathotyping of BC progenies having two japonica cultivar genetic backgrounds further supported the potential of the resistance gene in rice breeding. Our study based on new gene identification strategies provides insight into novel genetic resources for blast resistance as well as future studies on cloning and functional analysis of a blast resistance gene useful for rice improvement.
Zeng, Xiao-Fang; Li, Lei; Li, Jian-Rong; Zhao, De-Gang
2016-01-01
To produce new rice blast- and herbicide-resistant transgenic rice lines, the McCHIT1 gene encoding the class I chitinase from Momordica charantia and the herbicide resistance gene PAT were introduced into Lailong (Oryza sativa L. ssp. Japonica), a glutinous local rice variety from Guizhou Province, People's Republic of China. Transgenic lines were identified by ß-glucuronidase (GUS) histochemical staining, PCR, and Southern blot analyses. Agronomic traits, resistance to rice blast and herbicide, chitinase activities, and transcript levels of McCHIT1 were assessed in the T2 progeny of three transgenic lines (L1, L8, and L10). The results showed that the introduction of McCHIT1-PAT into Lailong significantly enhanced herbicide and blast resistance. After infection with the blast fungus Magnaporthe oryzae, all of the T2 progeny exhibited less severe lesion symptoms than those of wild type. The disease indices were 100% for wild type, 65.66% for T2 transgenic line L1, 59.69% for T2 transgenic line L8, and 79.80% for T2 transgenic line L10. Transgenic lines expressing McCHIT1-PAT did not show a significant difference from wild type in terms of malondialdehyde (MDA) content, polyphenol oxidase (PPO) activity, and superoxide dismutase (SOD) activity in the leaves. However, after inoculation with M. oryzae, transgenic plants showed significantly higher SOD and PPO activities and lower MDA contents in leaves, compared with those in wild-type leaves. The transgenic and the wild-type plants did not show significant differences in grain yield parameters including plant height, panicles per plant, seeds per panicle, and 1000-grain weight. Therefore, the transgenic plants showed increased herbicide and blast resistance, with no yield penalty. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Worley, K C; Wiese, B A; Smith, R F
1995-09-01
BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).
Miah, Gous; Rafii, Mohd Y; Ismail, Mohd R; Puteh, Adam B; Rahim, Harun A; Latif, Mohammad A
2015-02-01
Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Plasma Sheet Source and Loss Processes
NASA Technical Reports Server (NTRS)
Lennartsson, O. W.
2000-01-01
Data from the TIMAS ion mass spectrometer on the Polar satellite, covering 15 ev/e to 33 keV/e in energy and essentially 4(pi) in view angles, are used to investigate the properties of earthward (sunward) field-aligned flows of ions, especially protons, in the plasma sheet-lobe transition region near local midnight. A total of 142 crossings of this region are analyzed at 12-sec time resolution, all in the northern hemisphere, at R(SM) approx. 4 - 7 R(sub E), and most (106) in the poleward (sunward) direction. Earthward proton flows are prominent in this transition region (greater than 50% of the time), typically appearing as sudden "blasts" with the most energetic protons (approx. 33 keV) arriving first with weak flux, followed by protons of decreasing energy and increasing flux until either: (1) a new "blast" appears, (2) the flux ends at a sharp boundary, or (3) the flux fades away within a few minutes as the mean energy drops to a few keV. Frequent step-like changes (less than 12 sec) of the flux suggest that perpendicular gradients on the scale of proton gyroradii are common. Peak flux is similar to central plasma sheet proton flux (10(exp 5) - 10(exp 6)/[cq cm sr sec keV/e] and usually occurs at E approx. 4 - 12 keV. Only the initial phase of each "blast" (approx. 1 min) displays pronounced field-alignment of the proton velocity distribution, consistent with the time-of-flight separation of a more or less isotropic source distribution with df/d(nu) less than 0. The dispersive signatures are often consistent with a source at R(SM) less than or equal to 30 R(sub E). No systematic latitudinal velocity dispersion is found, implying that the equatorial plasma source is itself convecting. In short, the proton "blasts" appear as sudden local expansions of central plasma sheet particles along reconfigured ("dipolarized") magnetic field lines.
Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila
2018-05-07
Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.
NASA Astrophysics Data System (ADS)
Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.
2015-01-01
Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.
Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long
2013-01-01
The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814
Unions Striking Back at Bills to Curb Labor
ERIC Educational Resources Information Center
Sawchuk, Stephen
2011-01-01
Besieged by state proposals to eviscerate collective bargaining, eliminate teacher tenure, and make it harder to collect dues, teachers' unions are fighting back. Lawsuits supported by local union affiliates have for now blocked anti-union legislation in Alabama and Wisconsin. E-mail "blasts," phone banks, and rallies are also among the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii
The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.
BiDiBlast: comparative genomics pipeline for the PC.
de Almeida, João M G C F
2010-06-01
Bi-directional BLAST is a simple approach to detect, annotate, and analyze candidate orthologous or paralogous sequences in a single go. This procedure is usually confined to the realm of customized Perl scripts, usually tuned for UNIX-like environments. Porting those scripts to other operating systems involves refactoring them, and also the installation of the Perl programming environment with the required libraries. To overcome these limitations, a data pipeline was implemented in Java. This application submits two batches of sequences to local versions of the NCBI BLAST tool, manages result lists, and refines both bi-directional and simple hits. GO Slim terms are attached to hits, several statistics are derived, and molecular evolution rates are estimated through PAML. The results are written to a set of delimited text tables intended for further analysis. The provided graphic user interface allows a friendly interaction with this application, which is documented and available to download at http://moodle.fct.unl.pt/course/view.php?id=2079 or https://sourceforge.net/projects/bidiblast/ under the GNU GPL license. Copyright 2010 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.
29 CFR 1926.909 - Firing the blast.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...
29 CFR 1926.909 - Firing the blast.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...
29 CFR 1926.909 - Firing the blast.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...
29 CFR 1926.909 - Firing the blast.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...
29 CFR 1926.909 - Firing the blast.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Firing the blast. (a) A code of blasting signals equivalent to Table U-1, shall be posted on one or more... blasts 5 minutes prior to blast signal. Blast Signal—A series of short blasts 1 minute prior to the shot...
CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing.
Tristão Ramos, Ravi José; de Azevedo Martins, Allan Cézar; da Silva Delgado, Gabrielle; Ionescu, Crina-Maria; Ürményi, Turán Peter; Silva, Rosane; Koca, Jaroslav
2017-11-15
CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. jkoca@ceitec.cz. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Human Injury Criteria for Underwater Blasts
2014-09-08
discomfort/pain; OR localized rigidity; NO general rigidity Contusion or hematoma without devascularization; OR partial-thickness laceration without...airway); OR hematoma (nonexpanding intraparenchymal) 4 Severe Severe symptoms, treatable by modern medical practice, possible recovery or fatality...Laceration (major airway leak); OR hematoma (expanding hematoma ); OR vascular (primary branch intrapulmonary vessel disruption) 5 Critical Severe
Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery
NASA Astrophysics Data System (ADS)
Esfahani, Shaghayegh
Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.
Analysis of the autonomous problem about coupled active non-Newtonian multi-seepage in sparse medium
NASA Astrophysics Data System (ADS)
Deng, Shuxian; Li, Hongen
2017-10-01
The flow field of non-Newtonian fluid in sparse medium was analyzed by computational fluid dynamics (CFD) method. The results show that the axial velocity and radial velocity of the non-Newtonian fluid are larger than those of the Newtonian fluid due to the coupling of the viscosity of the non-Newtonian fluid and the shear rate, and the tangential velocity is less than that of the Newtonian fluid. These differences lead to the difference in the sparse medium Non-Newtonian fluids are of a special nature. The influence of the weight function on the global existence and blasting of the problem is discussed by analyzing the non-Newtonian percolation equation with nonlocal and weighted non-local Dirichlet boundary conditions. According to the non-Newtonian percolation equation, we define the weak solution of the problem and expound the local existence of the weak solution. Then we construct the test function and prove the weak comparison principle by using the Grown well inequality. The overall existence and blasting are analyzed by constructing the upper and lower solutions.
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Han, Junping; Huang, Yayan; Ye, Jing; Xiao, Meitian
2015-09-04
To screen and identify a bacterium capable of converting agar to neoagaro oligosaccharides. We took samples of porphyra haitanensis and nearby seawater, and then used the medium containing 1 per thousand agar to enrich the target bacteria. The target isolates were obtained by dilution-plate method, of which crude enzymes were further obtained by liquid culture. We adopted DNS method to determine the target bacteria which can convert agar to neoagaro oligosaccharides. The phylogenetics was identified by analyzing 16S rDNA sequence and combining the strain's morphological and bacterial colonial physiological biochemical characteristics. We isolated a gram-negative bacterial strain HJPHYXJ-1 capable of transforming agar to neoagaro oligosaccharides. Basic Local Alignment Search Tool (BLAST) search of HJPHYXJ-1's 16S rDNA sequence on GenBank suggested that the similarity between this strain and Vibrio natriegens reached 99% . In addition, the morphological and physiological biochemical characteristics of HJPHYXJ-1 also showed highly similarity to Vibrio natriegens. So we identified HJPHYXJ-1 as Vibrio natriegens. The results of HPLC suggested that the metabolite of enzymatic degradation was neoagaro oligosaccharides. HJPHYXJ-1 or the new isolate of Vibrio natriegens was capable of converting agar to neoagaro oligosaccharides.
McKay, Brian J; Bir, Cynthia A
2009-11-01
Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.
Computer assisted blast design and assessment tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, A.R.; Kleine, T.H.; Forsyth, W.W.
1995-12-31
In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing;more » evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.« less
Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard
2015-03-15
Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.
Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard
2015-01-01
Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910
NASA Astrophysics Data System (ADS)
Fernandes, Rigel P.; Ramos, António L. L.; Apolinário, José A.
2017-05-01
Shooter localization systems have been subject of a growing attention lately owing to its wide span of possible applications, e.g., civil protection, law enforcement, and support to soldiers in missions where snipers might pose a serious threat. These devices are based on the processing of electromagnetic or acoustic signatures associated with the firing of a gun. This work is concerned with the latter, where the shooter's position can be obtained based on the estimation of the direction-of-arrival (DoA) of the acoustic components of a gunshot signal (muzzle blast and shock wave). A major limitation of current commercially available acoustic sniper localization systems is the impossibility of finding the shooter's position when one of these acoustic signatures is not detected. This is very likely to occur in real-life situations, especially when the microphones are not in the field of view of the shockwave or when the presence of obstacles like buildings can prevent a direct-path to sensors. This work addresses the problem of DoA estimation of the muzzle blast using a planar array of sensors deployed in a drone. Results supported by actual gunshot data from a realistic setup are very promising and pave the way for the development of enhanced sniper localization systems featuring two main advantages over stationary ones: (1) wider surveillance area; and (2) increased likelihood of a direct-path detection of at least one of the gunshot signals, thereby adding robustness and reliability to the system.
Aid to planning the marketing of mining area boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, R.H. Jr.
Reducing trespass, legal costs, and timber and wildlife poaching and increasing control, safety, and security are key reasons why mine land boundaries need to be marked. Accidents may be reduced, especially when associated with blast area boundaries, and in some cases increased income may be gained from hunting and recreational fees on well-marked areas. A BASIC computer program for an IBM-PC has been developed that requires minimum inputs to estimate boundary marking costs. This paper describes the rationale for the program and shows representative outputs. 3 references, 3 tables.
miBLAST: scalable evaluation of a batch of nucleotide sequence queries with BLAST
Kim, You Jung; Boyd, Andrew; Athey, Brian D.; Patel, Jignesh M.
2005-01-01
A common task in many modern bioinformatics applications is to match a set of nucleotide query sequences against a large sequence dataset. Exis-ting tools, such as BLAST, are designed to evaluate a single query at a time and can be unacceptably slow when the number of sequences in the query set is large. In this paper, we present a new algorithm, called miBLAST, that evaluates such batch workloads efficiently. At the core, miBLAST employs a q-gram filtering and an index join for efficiently detecting similarity between the query sequences and database sequences. This set-oriented technique, which indexes both the query and the database sets, results in substantial performance improvements over existing methods. Our results show that miBLAST is significantly faster than BLAST in many cases. For example, miBLAST aligned 247 965 oligonucleotide sequences in the Affymetrix probe set against the Human UniGene in 1.26 days, compared with 27.27 days with BLAST (an improvement by a factor of 22). The relative performance of miBLAST increases for larger word sizes; however, it decreases for longer queries. miBLAST employs the familiar BLAST statistical model and output format, guaranteeing the same accuracy as BLAST and facilitating a seamless transition for existing BLAST users. PMID:16061938
Wireless device for activation of an underground shock wave absorber
NASA Astrophysics Data System (ADS)
Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.
2011-10-01
The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.
Using Technology for Effective Communication among Schools, Parents, and the Community
ERIC Educational Resources Information Center
Bavuso, Paul
2016-01-01
There was a time when community members would talk with one another at the local grocery store, church, or ice cream parlor. However, in today's society, social media such as e-mail blasts and websites, along with blogs, Facebook, Instagram, Twitter, Google Plus, Pinterest, and YouTube have replaced communication that was once commonplace in…
Code of Federal Regulations, 2010 CFR
2010-04-01
... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...
Code of Federal Regulations, 2011 CFR
2011-04-01
... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...
Code of Federal Regulations, 2012 CFR
2012-04-01
... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...
Code of Federal Regulations, 2013 CFR
2013-04-01
... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...
Code of Federal Regulations, 2014 CFR
2014-04-01
... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...
High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy
NASA Astrophysics Data System (ADS)
Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.
2017-05-01
Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.
Song, Hailong; Cui, Jiankun; Simonyi, Agnes; Johnson, Catherine E; Hubler, Graham K; DePalma, Ralph G; Gu, Zezong
2018-03-15
Blast exposures are associated with traumatic brain injury (TBI) and blast-induced TBIs are common injuries affecting military personnel. Department of Defense and Veterans Administration (DoD/VA) reports for TBI indicated that the vast majority (82.3%) has been mild TBI (mTBI)/concussion. mTBI and associated posttraumatic stress disorders (PTSD) have been called "the invisible injury" of the current conflicts in Iraq and Afghanistan. These injuries induce varying degrees of neuropathological alterations and, in some cases, chronic cognitive, behavioral and neurological disorders. Appropriate animal models of blast-induced TBI will not only assist the understanding of physical characteristics of the blast, but also help to address the potential mechanisms. This report provides a brief overview of physical principles of blast, injury mechanisms related to blast exposure, current blast animal models, and the neurological behavioral and neuropathological findings related to blast injury in experimental settings. We describe relationships between blast peak pressures and the observed injuries. We also report preliminary use of a highly reproducible and intensity-graded blast murine model carried out in open-field with explosives, and describe physical and pathological findings in this experimental model. Our results indicate close relationships between blast intensities and neuropathology and behavioral deficits, particularly at low level blast intensities relevant to mTBI. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Workman, J.L.; Thompson, J.
1991-01-01
The study has examined the feasibility of blasting for mitigating various abandoned mine land features on AML sites. The investigation included extensive field trial blasts at sites in North Dakota and Montana. A blasting technique was used that was based on spherical cratering concepts. At the Beulah, North Dakota site thirteen individual vertical openings (sinkholes) were blasted with the intent to fill the voids. The blasts were designed to displace material laterally into the void. Good success was had in filling the sinkholes. At the White site in Montana erratic underground rooms with no available documentation were collapsed. An aditmore » leading into the mine was also blasted. Both individual room blasting and area pattern blasting were studied. A total of eight blasts were fired on the one acre area. Exploration requirements and costs were found to be extensive.« less
2014-01-01
were as follows: Blast TBI: Suicide drug overdose – blast years prior Ruptured aneurysm – blast years prior intraventricular hemorrhage...drug overdose Suicide blunt trauma - fall Cancer Cardiac Arrest Tissue fixation was highly variable because cases were obtained from 4 different...blast years prior Civilian Blast DOA Non-blast TBI: MVA – DOA MVA – DOS Suicide – NFL – GSW to chest Cardiac Arrest – NFL Controls: Suicide
Fragment Size Distribution of Blasted Rock Mass
NASA Astrophysics Data System (ADS)
Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris
2017-12-01
Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.
Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.
2013-01-01
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173
Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C
2012-05-16
Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.
What is that mysterious booming sound?
Hill, David P.
2011-01-01
The residents of coastal North Carolina are occasionally treated to sequences of booming sounds of unknown origin. The sounds are often energetic enough to rattle windows and doors. A recent sequence occurred in early January 2011 during clear weather with no evidence of local thunder storms. Queries by a local reporter (Colin Hackman of the NBC affiliate WETC in Wilmington, North Carolina, personal communication 2011) seemed to eliminate common anthropogenic sources such as sonic booms or quarry blasts. So the commonly asked question, “What's making these booming sounds?” remained (and remains) unanswered.
On the Propagation and Interaction of Spherical Blast Waves
NASA Technical Reports Server (NTRS)
Kandula, Max; Freeman, Robert
2007-01-01
The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.
Atmospheric emission of NOx from mining explosives: A critical review
NASA Astrophysics Data System (ADS)
Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor
2017-10-01
High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems, identifying possible future developments and their impacts on the environment with emphasis on local and workplace loads.
Addressing the burden of post-conflict surgical disease - strategies from the North Caucasus.
Lunze, Karsten; Lunze, Fatima I
2011-01-01
The 2004 terror attack on a school in Beslan, North Caucasus, with more than 1300 children and their families taken hostage and 334 people killed, ended after extreme violence. Following the disaster, many survivors with blast ear injuries developed complications because no microsurgery services were available in the region. Here, we present our strategies in North Ossetia to strengthen subspecialty surgical care in a region of instable security conditions. Disaster modifies disease burden in an environment of conflict-related health-care limitations. We built on available secondary care and partnered international with local stakeholders to reach and treat victims of a humanitarian disaster. A strategy of mutual commitment resulted in treatment of all consenting Beslan victims with blast trauma sequelae and of non disaster-related patients. Credible, sustained partnerships and needs assessments beyond the immediate phases after a disaster are essential to facilitate a meaningful transition from humanitarian aid to capacity building exceeding existing insufficient standards. Psychosocial impacts of disaster might constitute a barrier to care and need to be assessed when responding to the burden of surgical disease in conflict or post-conflict settings. Involving local citizen groups in the planning process can be useful to identify and access vulnerable populations. Integration of our strategy into broader efforts might strengthen the local health system through management and leadership.
Leveraging Long-term Seismic Catalogs for Automated Real-time Event Classification
NASA Astrophysics Data System (ADS)
Linville, L.; Draelos, T.; Pankow, K. L.; Young, C. J.; Alvarez, S.
2017-12-01
We investigate the use of labeled event types available through reviewed seismic catalogs to produce automated event labels on new incoming data from the crustal region spanned by the cataloged events. Using events cataloged by the University of Utah Seismograph Stations between October, 2012 and June, 2017, we calculate the spectrogram for a time window that spans the duration of each event as seen on individual stations, resulting in 110k event spectrograms (50% local earthquakes examples, 50% quarry blasts examples). Using 80% of the randomized example events ( 90k), a classifier is trained to distinguish between local earthquakes and quarry blasts. We explore variations of deep learning classifiers, incorporating elements of convolutional and recurrent neural networks. Using a single-layer Long Short Term Memory recurrent neural network, we achieve 92% accuracy on the classification task on the remaining 20K test examples. Leveraging the decisions from a group of stations that detected the same event by using the median of all classifications in the group increases the model accuracy to 96%. Additional data with equivalent processing from 500 more recently cataloged events (July, 2017), achieves the same accuracy as our test data on both single-station examples and multi-station medians, suggesting that the model can maintain accurate and stable classification rates on real-time automated events local to the University of Utah Seismograph Stations, with potentially minimal levels of re-training through time.
Xie, Dan; Li, Ao; Wang, Minghui; Fan, Zhewen; Feng, Huanqing
2005-01-01
Subcellular location of a protein is one of the key functional characters as proteins must be localized correctly at the subcellular level to have normal biological function. In this paper, a novel method named LOCSVMPSI has been introduced, which is based on the support vector machine (SVM) and the position-specific scoring matrix generated from profiles of PSI-BLAST. With a jackknife test on the RH2427 data set, LOCSVMPSI achieved a high overall prediction accuracy of 90.2%, which is higher than the prediction results by SubLoc and ESLpred on this data set. In addition, prediction performance of LOCSVMPSI was evaluated with 5-fold cross validation test on the PK7579 data set and the prediction results were consistently better than the previous method based on several SVMs using composition of both amino acids and amino acid pairs. Further test on the SWISSPROT new-unique data set showed that LOCSVMPSI also performed better than some widely used prediction methods, such as PSORTII, TargetP and LOCnet. All these results indicate that LOCSVMPSI is a powerful tool for the prediction of eukaryotic protein subcellular localization. An online web server (current version is 1.3) based on this method has been developed and is freely available to both academic and commercial users, which can be accessed by at . PMID:15980436
Hyzy, Sharon L; Cheng, Alice; Cohen, David J; Yatzkaier, Gustavo; Whitehead, Alexander J; Clohessy, Ryan M; Gittens, Rolando A; Boyan, Barbara D; Schwartz, Zvi
2016-08-01
The purpose of this study was to compare the biological effects in vivo of hierarchical surface roughness on laser sintered titanium-aluminum-vanadium (Ti-6Al-4V) implants to those of conventionally machined implants on osteoblast response in vitro and osseointegration. Laser sintered disks were fabricated to have micro-/nano-roughness and wettability. Control disks were computer numerical control (CNC) milled and then polished to be smooth (CNC-M). Laser sintered disks were polished smooth (LST-M), grit blasted (LST-B), or blasted and acid etched (LST-BE). LST-BE implants or implants manufactured by CNC milling and grit blasted (CNC-B) were implanted in the femurs of male New Zealand white rabbits. Most osteoblast differentiation markers and local factors were enhanced on rough LST-B and LST-BE surfaces in comparison to smooth CNC-M or LST-M surfaces for MG63 and normal human osteoblast cells. To determine if LST-BE implants were osteogenic in vivo, we compared them to implant surfaces used clinically. LST-BE implants had a unique surface with combined micro-/nano-roughness and higher wettability than conventional CNC-B implants. Histomorphometric analysis demonstrated a significant improvement in cortical bone-implant contact of LST-BE implants compared to CNC-B implants after 3 and 6 weeks. However, mechanical testing revealed no differences between implant pullout forces at those time points. LST surfaces enhanced osteoblast differentiation and production of local factors in vitro and improved the osseointegration process in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2086-2098, 2016. © 2016 Wiley Periodicals, Inc.
Brain Vulnerability to Repeated Blast Overpressure and Polytrauma
2015-10-01
characterization of the mouse model of repeated blast also found no cumula- tive effect of repeated blast on cortical levels of reactive oxygen species [39]. C...overpressure in rats to investigate the cumulative effects of multiple blast exposures on neurologic status, neurobehavioral function, and brain...preclinical model of blast overpressure in rats to investigate the cumulative effects of multiple blast exposures using neurological, neurochemical
Civilian blast-related burn injuries
Patel, J.N.; Tan, A.; Dziewulski, P.
2016-01-01
Summary There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit’s burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit. PMID:27857651
Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram
2013-03-01
Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.
Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts
NASA Astrophysics Data System (ADS)
Sainoki, Atsushi; Mitri, Hani S.
2016-01-01
Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can be applied to other mines where faults are found in the vicinity of stopes.
Huang, Mingxiong; Risling, Mårten; Baker, Dewleen G
2016-01-01
Pervasive use of improvised explosive devices (IEDs), rocket-propelled grenades, and land mines in the recent conflicts in Iraq and Afghanistan has brought traumatic brain injury (TBI) and its impact on health outcomes into public awareness. Blast injuries have been deemed signature wounds of these wars. War-related TBI is not new, having become prevalent during WWI and remaining medically relevant in WWII and beyond. Medicine's past attempts to accurately diagnose and disentangle the pathophysiology of war-related TBI parallels current lines of inquiry and highlights limitations in methodology and attribution of symptom etiology, be it organic, psychological, or behavioral. New approaches and biomarkers are needed. Serological biomarkers and biomarkers of injury obtained with imaging techniques represent cornerstones in the translation between experimental data and clinical observations. Experimental models for blast related TBI and PTSD can generate critical data on injury threshold, for example for white matter injury from acceleration. Carefully verified and validated models can be evaluated with gene expression arrays and proteomics to identify new candidates for serological biomarkers. Such models can also be analyzed with diffusion MRI and microscopy in order to identify criteria for detection of diffuse white matter injuries, such as DAI (diffuse axonal injury). The experimental models can also be analyzed with focus on injury outcome in brain stem regions, such as locus coeruleus or nucleus raphe magnus that can be involved in response to anxiety changes. Mild (and some moderate) TBI can be difficult to diagnose because the injuries are often not detectable on conventional MRI or CT. There is accumulating evidence that injured brain tissues in TBI patients generate abnormal low-frequency magnetic activity (ALFMA, peaked at 1-4Hz) that can be measured and localized by magnetoencephalography (MEG). MEG imaging detects TBI abnormalities at the rates of 87% for the mild TBI, group (blast-induced plus non-blast causes) and 100% for the moderate group. Among the mild TBI patients, the rates of abnormalities are 96% and 77% for the blast and non-blast TBI groups, respectively. There is emerging evidence based on fMRI and MEG studies showing hyper-activity in the amygdala and hypo-activity in pre-frontal cortex in individuals with PTSD. MEG signal may serve as a sensitive imaging marker for mTBI, distinguishable from abnormalities generated in association with PTSD. More work is needed to fully describe physiological mechanisms of post-concussive symptoms. Published by Elsevier Ltd.
Por, Elaine D.; Choi, Jae-Hyek; Lund, Brian J.
2016-01-01
ABSTRACT Background: Blast-related ocular injuries sustained by military personnel have led to rigorous efforts to elucidate the effects of blast exposure on neurosensory function. Recent studies have provided some insight into cognitive and visual deficits sustained following blast exposure; however, limited data are available on the effects of blast on pain and inflammatory processes. Investigation of these secondary effects of blast exposure is necessary to fully comprehend the complex pathophysiology of blast-related injuries. The overall purpose of this study is to determine the effects of single and repeated blast exposure on pain and inflammatory mediators in ocular tissues. Methods: A compressed air shock tube was used to deliver a single or repeated blast (68.0 ± 2.7 kPa) to anesthetized rats daily for 5 days. Immunohistochemistry was performed on ocular tissues to determine the expression of the transient receptor potential vanilloid 1 (TRPV1) channel, calcitonin gene-related peptide (CGRP), substance P (SP), and endothelin-1 (ET-1) following single and repeated blast exposure. Neutrophil infiltration and myeloperoxidase (MPO) expression were also assessed in blast tissues via immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) analysis, respectively. Results: TRPV1 expression was increased in rat corneas exposed to both single and repeated blast. Increased secretion of CGRP, SP, and ET-1 was also detected in rat corneas as compared to control. Moreover, repeated blast exposure resulted in neutrophil infiltration in the cornea and stromal layer as compared to control animals. Conclusion: Single and repeated blast exposure resulted in increased expression of TRPV1, CGRP, SP, and ET-1 as well as neutrophil infiltration. Collectively, these findings provide novel insight into the activation of pain and inflammation signaling mediators following blast exposure. PMID:27049881
NOBLAST and JAMBLAST: New Options for BLAST and a Java Application Manager for BLAST results.
Lagnel, Jacques; Tsigenopoulos, Costas S; Iliopoulos, Ioannis
2009-03-15
NOBLAST (New Options for BLAST) is an open source program that provides a new user-friendly tabular output format for various NCBI BLAST programs (Blastn, Blastp, Blastx, Tblastn, Tblastx, Mega BLAST and Psi BLAST) without any use of a parser and provides E-value correction in case of use of segmented BLAST database. JAMBLAST using the NOBLAST output allows the user to manage, view and filter the BLAST hits using a number of selection criteria. A distribution package of NOBLAST and JAMBLAST including detailed installation procedure is freely available from http://sourceforge.net/projects/JAMBLAST/ and http://sourceforge.net/projects/NOBLAST. Supplementary data are available at Bioinformatics online.
Tanweer, Fatah A.; Rafii, Mohd Y.; Sijam, Kamaruzaman; Rahim, Harun A.; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A.
2015-01-01
Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013
A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury
Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.
2011-01-01
Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431
Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?
Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.
2014-01-01
High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system. PMID:25566175
A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W
2011-01-01
Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.
30 CFR 780.13 - Operation plan: Blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.13 Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed...
30 CFR 77.1910 - Explosives and blasting; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting; general. 77.1910... COAL MINES Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a) Light and power circuits shall be disconnected or removed from the blasting area before charging and blasting. (b) All...
29 CFR 1926.914 - Definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including but not limited to trucks, trailers, rail cars, barges, and vessels. (i) Detonating cord—A... caps, electric blasting caps, delay electric blasting caps, and nonelectric delay blasting caps. (k) Electric blasting cap—A blasting cap designed for and capable of detonation by means of an electric current...
Utilization of Seismic and Infrasound Signals for Characterizing Mining Explosions
2001-10-01
different types of mining operations exist, ranging from surface coal cast blasting to hard rock fragmentation blasting in porphyry copper mines. The study...both seismic and infrasound signals. The seismic coupling of large-scale cast blasts in Wyoming, copper fragmentation blasts in Arizona and New Mexico...mining explosions from the copper fragmentation blasts in SE Arizona were observed at Los Alamos. Detected events were among the largest of the blasts
Quantitative electroencephalography in a swine model of blast-induced brain injury.
Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I
2017-01-01
Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.
Burke, Teresa A.; Doyle Brackley, Allison; Jeske, Nathaniel A.; Cleland, Jeffery M.; Lund, Brian J.
2017-01-01
Blast-associated sensory and cognitive trauma sustained by military service members is an area of extensively studied research. Recent studies in our laboratory have revealed that low-level blast exposure increased expression of transient receptor potential vanilloid 1 (TRPV1) and endothelin-1 (ET-1), proteins well characterized for their role in mediating pain transmission, in the cornea. Determining the functional consequences of these alterations in protein expression is critical to understanding blast-related sensory trauma. Thus, the purpose of this study was to examine TRPV1 and ET-1 expression in ocular associated sensory tissues following primary and tertiary blast. A rodent model of blast injury was used in which anesthetized animals, unrestrained or restrained, received a single or repeat blast (73.8 ± 5.5 kPa) from a compressed air shock tube once or daily for five consecutive days, respectively. Behavioral and functional analyses were conducted to assess blast effects on nocifensive behavior and TRPV1 activity. Immunohistochemistry and Western Blot were also performed with trigeminal ganglia (TG) to determine TRPV1, ET-1 and glial fibrillary associated protein (GFAP) expression following blast. Increased TRPV1, ET-1 and GFAP were detected in the TG of animals exposed to repeat blast. Increased nocifensive responses were also observed in animals exposed to repeat, tertiary blast as compared to single blast and control. Moreover, decreased TRPV1 desensitization was observed in TG neurons exposed to repeat blast. Repeat, tertiary blast resulted in increased TRPV1, ET-1 and GFAP expression in the TG, enhanced nociception and decreased TRPV1 desensitization. PMID:28797041
22 CFR 121.11 - Military demolition blocks and blasting caps.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Military demolition blocks and blasting caps... blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not include the following articles: (a) Electric squibs. (b) No. 6 and No. 8 blasting caps, including electric...
30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...
30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...
30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...
30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...
30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...
30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...
30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...
30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...
30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...
30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...
29 CFR 1926.905 - Loading of explosives or blasting agents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Loading of explosives or blasting agents. 1926.905 Section... Explosives § 1926.905 Loading of explosives or blasting agents. (a) Procedures that permit safe and efficient... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left...
Tsao, Jack W
2012-10-24
In their recent paper, Goldstein et al. show murine brain tau neuropathology after explosive blast with head rotation but do not present additional evidence that would delineate whether this neuropathology was principally caused by blast exposure alone or by blast exposure plus head rotational injury.
Kirkman, E.; Watts, S.; Cooper, G.
2011-01-01
Blast injuries are an increasing problem in both military and civilian practice. Primary blast injury to the lungs (blast lung) is found in a clinically significant proportion of casualties from explosions even in an open environment, and in a high proportion of severely injured casualties following explosions in confined spaces. Blast casualties also commonly suffer secondary and tertiary blast injuries resulting in significant blood loss. The presence of hypoxaemia owing to blast lung complicates the process of fluid resuscitation. Consequently, prolonged hypotensive resuscitation was found to be incompatible with survival after combined blast lung and haemorrhage. This article describes studies addressing new forward resuscitation strategies involving a hybrid blood pressure profile (initially hypotensive followed later by normotensive resuscitation) and the use of supplemental oxygen to increase survival and reduce physiological deterioration during prolonged resuscitation. Surprisingly, hypertonic saline dextran was found to be inferior to normal saline after combined blast injury and haemorrhage. New strategies have therefore been developed to address the needs of blast-injured casualties and are likely to be particularly useful under circumstances of enforced delayed evacuation to surgical care. PMID:21149352
Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan
2013-10-11
Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.
2006-08-01
You have cut off the Soldier’s smoldering clothing and uncovered the burn . What is the next step? O a. Apply first aid cream or ointments to the...apply a wet field dressing or mud over the phosphorus to exclude air. You would never break the blisters or apply an ointment or grease over burns ...center lane; keep vehicle gunner in defilade, not exposed to lED blast "* Keep ballistic glass up; non-ballistic glass down "* Use mylar film or tape
Development and application of free pretreatment container steel
NASA Astrophysics Data System (ADS)
Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.
2017-12-01
Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.
NASA Astrophysics Data System (ADS)
Ribeiro, Juliano G. C.; Serrenho, Felipe G.; Apolinário, José A.; Ramos, António L. L.
2018-04-01
Spotting a shooter from a drone has been the subject of great interest lately due to its many applications in the fields of defense and security and law enforcement. Using a drone can be an effective way to detect potential threats in many real-life scenarios. Nevertheless, acoustic signals recorded from a drone usually exhibit a very low SNR, mainly due to the distance to the source and the proximity of the sensors to the propellers. This is a serious limiting factor and, therefore, the use of signal enhancement techniques is required. This work addresses the problem of determining the Direction-of-Arrival (DoA) of the muzzle blast, captured using a planar microphone array mounted on a commercial DJI PHANTOM 4 drone in flight. This new shooter localization method that relies solely on detecting and estimating the DoA of the muzzle blast. However, the typical low SNR in this scenario requires the use of preprocessing techniques, such as signal clipping and median filtering, to enhance the signal of interest (muzzle blast). In addition, we employ a recently introduced improved data selection DoA estimation method suitable for gunshot signals recorded from a low to medium altitude mobile aerial platform. Positive results achieved indicate that this approach is effective and of practical interest.
RELATIONSHIP OF GERMINAL CENTERS IN LYMPHOID TISSUE TO IMMUNOLOGICAL MEMORY
Wakefield, J. D.; Thorbecke, G. J.
1968-01-01
The fate, proliferation, and developmental potentialities of cell suspensions made from white pulp containing large germinal centers have been studied in the mouse by transfer of cells labeled with thymidine-3H to lethally irradiated, syngeneic recipients. Radioautographic analyses were made using both smears and sections of a variety of tissues. Thymidine-3H-labeling patterns of white pulp showed that, initially, labeling occurred in a majority of blast and "intermediate cells" but in very few or no small lymphocytes. After intravenous transfer, most of the labeled cells localized in the lymphoid tissues of spleen, lymph nodes, and Peyer's patches. Few cells migrated to the thymus, lung, liver, and intestinal mucosa. Both after intravenous and after intraperitoneal transfer there was a rapid increase in the incidence of labeled small lymphocytes and a decrease of labeled blasts and intermediate cells. This was accompanied by an increase in the grain count of the small lymphocytes and a progressive decrease in the grain counts of the blast cells. Exposure of nonlabeled donor cells to thymidine-3H at various time intervals after transfer indicated that dividing cells were present early after transfer but that their incidence progressively decreased. Between 24 and 48 hr, very little cell division was detectable. PMID:5662013
Human Injury Criteria for Underwater Blasts
Lance, Rachel M.; Capehart, Bruce; Kadro, Omar; Bass, Cameron R.
2015-01-01
Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655
Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast
2010-09-01
may be injured by m ore than one of these mechanisms in any given event. Primary blast in juries ( PBI ) are exclusively caused by the blast...overpressure. A PBI usually affects air-containing organs such as t he lung, ears and gastrointestinal tract. Secon dary blast injuries are caused by...orientation on blast injuries predicted in human and sheep models. From th is study, it is predicted that the greatest reduction in lung PBI may be
Evaluation of the Effectiveness of Wet Blast Cleaning Methods of Surface Preparation
1985-06-01
for Air Abrasive Wet Blast: Complete System Water Abrasive Mixing Chamber in Slurry Blast Unit Schematic of unit Control Unit Slurry Blast — Air/Water...this discussion we present some general. user guidelines regarding what to look for in con- sidering the use or purchase of wet blasting equipment...These units use compressed air as the medium to propel the eroding material. They differ from air abrasive wet blast units in that the abrasive is mixed
Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul Allen; Ford, Corey C.
U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.
Reconstruction of improvised explosive device blast loading to personnel in the open
NASA Astrophysics Data System (ADS)
Wiri, Suthee; Needham, Charles
2016-05-01
Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.
Current advance methods for the identification of blast resistance genes in rice.
Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A
2015-05-01
Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhagwat, Vaibhab Pramod; Dey, Kaushik
2016-04-01
Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn-cut blast design. The possible step by step approach to establish a vibration predictor equation is also proposed.
Role of the Tel Aviv-Jaffa municipal workers in the treatment of survivors of missile blasts.
Silverberg, D S; Sofer, E
1991-01-01
Of the nine missiles that landed on the city of Tel Aviv-Jaffa during the Persian Gulf war, three fell in heavily populated areas. As a result 192 people were sent to hospital and 1,663 (520 families) were left homeless. These were seen and evaluated near the site of the blast by a municipal multidisciplinary team and then sent to one of 15 hotels in and outside the city. There they were treated for acute post-traumatic stress disorder by a municipal health care team (general physicians, nurses, social workers and psychologists) and by psychiatrists from a local sick fund. Many acute and chronic medical problems, including attempted suicide, were also encountered. Community outreach programs aimed at high risk groups and several telephone counselling services were also instituted. We believe that it is crucial to train and provide a multidisciplinary team for handling the survivors of major disasters.
Korinsak, Siripar; Tangphatsornruang, Sithichoke; Pootakham, Wirulda; Wanchana, Samart; Plabpla, Anucha; Jantasuriyarat, Chatchawan; Patarapuwadol, Sujin; Vanavichit, Apichart; Toojinda, Theerayut
2018-05-15
Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Balázs, Mercedesz; Martin, Flavius; Zhou, Tong; Kearney, John
2002-09-01
Marginal zone (MZ) and B1 B lymphocytes participate jointly in the early immune response against T-independent (TI) particulate antigens. Here we show that blood-derived neutrophil granulocytes and CD11c(lo) immature dendritic cells (DC) are the primary cells that efficiently capture and transport particulate bacteria to the spleen. In a systemic infection, CD11c(lo) DC, but not neutrophils, provide critical survival signals, which can be inhibited by TACI-Fc, to antigen-specific MZ B cells and promote their differentiation into IgM-secreting plasmablasts. In a local TI response, peritoneal cavity macrophages provide similar support to B1 B-derived Ag-specific blasts. In the absence of soluble TACI ligands, Ag-activated MZ- and B1-derived blasts lack survival signals and undergo apoptosis, resulting in severely impaired antibody responses.
USDA-ARS?s Scientific Manuscript database
Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait locus (QTLs) were in...
Blast and Fragment Protective Sandwich Panel Concepts for Stainless Steel Monohull Designs
2008-10-21
to draw broader conclusions. 8. Concluding remarks The resistance of metallic sandwich panels to localized spherical impulsive sources has been...hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the data needed, and...applications and ship hull blister attachments. Technical Approach The approach used in this research program exploited progress made in metallic
30 CFR 56.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...
30 CFR 56.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...
30 CFR 56.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...
30 CFR 56.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...
30 CFR 56.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...
Color changing photonic crystals detect blast exposure
Cullen, D. Kacy; Xu, Yongan; Reneer, Dexter V.; Browne, Kevin D.; Geddes, James W.; Yang, Shu; Smith, Douglas H.
2010-01-01
Blast-induced traumatic brain injury (bTBI) is the “signature wound” of the current wars in Iraq and Afghanistan. However, with no objective information of relative blast exposure, warfighters with bTBI may not receive appropriate medical care and are at risk of being returned to the battlefield. Accordingly, we have created a colorimetric blast injury dosimeter (BID) that exploits material failure of photonic crystals to detect blast exposure. Appearing like a colored sticker, the BID is fabricated in photosensitive polymers via multi-beam interference lithography. Although very stable in the presence of heat, cold or physical impact, sculpted micro- and nano-structures of the BID are physically altered in a precise manner by blast exposure, resulting in color changes that correspond with blast intensity. This approach offers a lightweight, power-free sensor that can be readily interpreted by the naked eye. Importantly, with future refinement this technology may be deployed to identify soldiers exposed to blast at levels suggested to be supra-threshold for non-impact blast-induced mild TBI. PMID:21040795
Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch-Aguilar, T; Najjar, F; Szymanski, E
2011-03-24
A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target responsemore » description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.« less
Blast optimization for improved dragline productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphreys, M.; Baldwin, G.
1994-12-31
A project aimed at blast optimization for large open pit coal mines is utilizing blast monitoring and analysis techniques, advanced dragline monitoring equipment, and blast simulation software, to assess the major controlling factors affecting both blast performance and subsequent dragline productivity. This has involved collaborative work between the explosives supplier, mine operator, monitoring equipment manufacturer, and a mining research organization. The results from trial blasts and subsequently monitored dragline production have yielded promising results and continuing studies are being conducted as part of a blast optimization program. It should be stressed that the optimization of blasting practices for improved draglinemore » productivity is a site specific task, achieved through controlled and closely monitored procedures. The benefits achieved at one location can not be simply transferred to another minesite unless similar improvement strategies are first implemented.« less
NASA Astrophysics Data System (ADS)
Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges
2017-01-01
The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.
Alkahest NuclearBLAST : a user-friendly BLAST management and analysis system
Diener, Stephen E; Houfek, Thomas D; Kalat, Sam E; Windham, DE; Burke, Mark; Opperman, Charles; Dean, Ralph A
2005-01-01
Background - Sequencing of EST and BAC end datasets is no longer limited to large research groups. Drops in per-base pricing have made high throughput sequencing accessible to individual investigators. However, there are few options available which provide a free and user-friendly solution to the BLAST result storage and data mining needs of biologists. Results - Here we describe NuclearBLAST, a batch BLAST analysis, storage and management system designed for the biologist. It is a wrapper for NCBI BLAST which provides a user-friendly web interface which includes a request wizard and the ability to view and mine the results. All BLAST results are stored in a MySQL database which allows for more advanced data-mining through supplied command-line utilities or direct database access. NuclearBLAST can be installed on a single machine or clustered amongst a number of machines to improve analysis throughput. NuclearBLAST provides a platform which eases data-mining of multiple BLAST results. With the supplied scripts, the program can export data into a spreadsheet-friendly format, automatically assign Gene Ontology terms to sequences and provide bi-directional best hits between two datasets. Users with SQL experience can use the database to ask even more complex questions and extract any subset of data they require. Conclusion - This tool provides a user-friendly interface for requesting, viewing and mining of BLAST results which makes the management and data-mining of large sets of BLAST analyses tractable to biologists. PMID:15958161
NASA Astrophysics Data System (ADS)
Sharma, Suresh Kumar; Rai, Piyush
2016-04-01
This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.
Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunzelle, J. S.; Wu, R.; Korolev, S. V.
2004-12-01
Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less
Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics
Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.
2017-01-01
Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095
Improvements in the Protein Identifier Cross-Reference service.
Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A
2012-07-01
The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.
Xi, Bing-Wen; Oros, Mikuláš; Chen, Kai; Xie, Jun
2018-02-01
A new monozoic cestode, Parabreviscolex niepini n. gen. and n. sp. (Cestoda: Caryophyllidea), is described from the type-host Schizopygopsis younghusbandi Regan, 1905 (Cyprinidae: Schizothoracinae) and Schizothorax waltoni Regan, 1905 (Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, the upper tributary of the Brahmaputra River on the Tibetan Plateau. The new genus is placed in the Capingentidae because the vitellarium is situated partly in the medullary and cortical parenchyma, i.e., neither completely external nor internal to inner longitudinal muscles. Parabreviscolex n. gen. is characterized by possessing an afossate and cuneiform scolex; numerous vitelline follicles and testes present immediately after the scolex, and spread backward near the cirrus sac; the uterus does not loop anterior to the cirrus sac; genital pores separate, opening to the common genital atrium; the pre-ovarian vitelline follicles lateral and median, post-ovarian vitelline follicles present; ovary H-shaped, compact, and ovarian arms long, anteriorly reaching the cirrus sac. Homology search by the basic local alignment search tool (BLAST) showed that the partial 18S rDNA and complete mtDNA cox-1 sequences obtained in this report were not consistent with any sequences available in GenBank, and molecular phylogenetic analyses revealed Parabreviscolex formed a separated long branch within the caryophyllideans from cyprinids.
Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang
Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah
2016-01-01
Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679
Xia, Minghui; Qi, Qingguo
2013-01-01
We used denaturing gradient gel electrophoresis (DGGE) to compare bacterial profiles in periodontium and root canals of teeth with combined periodontal-endodontic lesions. Samples of dental plaque and necrotic pulp were collected from thirteen extracted teeth with advanced periodontitis. Genomic DNA was extracted for polymerase chain reaction (PCR) analysis using universal bacterial primers. The PCR products were then loaded onto DGGE gels to obtain fractionated bands. Characteristic DGGE bands were excised and DNA was cloned and sequenced. The number of bands, which indicates the number of bacterial species, was compared between dental plaques and necrotic pulp tissues from the same tooth. Although the difference was statistically significant (P < 0.01), there was no positive correlation; similarity (Dice coefficient) was 13.1% to 62.5%. Some bacteria species were present in both the periodontal pockets and root canals of the same tooth; however, periodontal bacteria did not always invade the root canals, and some bacteria in root canals were not present in periodontal pockets of the same tooth. In some teeth, unique bacteria in root canals had not passed from periodontal pockets. A basic local alignment search tool (BLAST) sequence search in Genbank indicated that new bacteria species were present in periodontal pockets and root canals. Their characteristics must thus be further analyzed.
Transcriptomic analysis of the autophagy machinery in crustaceans.
Suwansa-Ard, Saowaros; Kankuan, Wilairat; Thongbuakaew, Tipsuda; Saetan, Jirawat; Kornthong, Napamanee; Kruangkum, Thanapong; Khornchatri, Kanjana; Cummins, Scott F; Isidoro, Ciro; Sobhon, Prasert
2016-08-09
The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.
Innovative Composite Structure Design for Blast Protection
2007-01-01
2007-01-0483 Innovative Composite Structure Design for Blast Protection Dongying Jiang, Yuanyuan Liu MKP Structural Design Associates, Inc...protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major...numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and
Vascular and Inflammatory Factors in the Pathophysiology of Blast-Induced Brain Injury
Elder, Gregory A.; Gama Sosa, Miguel A.; De Gasperi, Rita; Stone, James Radford; Dickstein, Dara L.; Haghighi, Fatemeh; Hof, Patrick R.; Ahlers, Stephen T.
2015-01-01
Blast-related traumatic brain injury (TBI) has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the central nervous system, evidence supports a role for a thoracically mediated effect of blast; whereby, pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI. PMID:25852632
Yousuf, Kamal Muhammad; Khan, Fahad Hanif
2016-06-01
Due to recent war situation in neighboring country we have witnessed large number of victims with post-traumatic false (pseudo) aneurysms of head and neck in roadside bomb blast victims in Pakistan. Thus through this observational retrospective study we aim to share our experience of managing these patients. 5 years patients' case records, from June 2008-June 2013, were reviewed from the hospital's records. 14 cases of roadside bomb blast victims, developing false aneurysms of major or minor vessels of head and neck, were studied. We excluded the post-traumatic pseudoaneurysms involving other sites and vessels of the body. We observed the mechanism, the duration of presentation, symptoms/signs, vessels involved, complications and the management done. All 14 cases presented with a localized pulsatile swelling with tenderness in the course of a known artery and with an overlying entry site wound from bomb blast sharp nails. Men were affected more as compared to women. All (14) cases had 2-12 weeks of duration between the injury and presentation. Temporal artery (4) was involved in most cases followed by common carotid artery (3). Open surgery was treatment of choice in 12 (85.7%) of cases; however 2 (14.3%) patients had endovascular intervention to correct the pathology. Post-operatively all patients recovered completely, without any major or minor complications. Surgical intervention remains the management of choice for post-traumatic false aneurysms of head and neck in Pakistan. Despite the benefits of endovascular procedures, improvements must be weighed against the added costs on the patients. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Impact and Blast Resistance of Sandwich Plates
NASA Astrophysics Data System (ADS)
Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.
Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.
NASA Astrophysics Data System (ADS)
Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Xu, Jian
TiO2 has been approved as a viscosity-decreasing agent in blast furnace slag under inert atmosphere both by experimental and structure calculation. However, the validity of the above conclusion in a much bigger zone in CaO-SiO2-Al2O3-MgO phase diagram has not approved. The viscosity of slag dependent on the TiO2 content and basicity were measured in the present work. It was found that the viscosity and viscous activation energy decrease with increasing TiO2 content and basicity at a reasonable range, indicating TiO2 behaved as a viscosity-decreasing agent by depolymerizing the silicate network structure when its less than 50wt. %. The liquidity of the slag can be improved when TiO2 content less than 50wt. % and basicity from 0.5 to 1.1. The free running temperature increase at TiO2 content from 10wt.% to 30wt. %. The results of calculation does not agree well with the experimental values at a high basicity of 1.3 with TiO2 content from 20wt.% to 30wt.% and the lower basicity of 0.5 with TiO2 content more than 50wt.%.
Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.
1985-01-01
This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively. ?? 1985.
NASA Astrophysics Data System (ADS)
Cevizci, Halim
2014-10-01
In this study, the plaster stemming application for blasting at a basalt quarry is studied. Drill cuttings are generally used in open pits and quarries as the most common stemming material since these are most readily available at blast sites. However, dry drill cuttings eject very easily from blastholes without offering much resistance to blast energy. The plaster stemming method has been found to be better than the drill cuttings stemming method due to increased confinement inside the hole and better utilization of blast explosive energy in the rock. The main advantage of the new stemming method is the reduction in the cost of blasting. At a basalt quarry, blasting costs per unit volume of rock were reduced to 15% by increasing burden and spacing distances. In addition, better fragmentation was obtained by using the plaster stemming method. Blast trials showed that plaster stemming produced finer material. In the same blast tests, +30 cm size fragments were reduced to 47.3% of the total, compared to 32.6% in the conventional method of drill cuttings stemming. With this method of stemming, vibration and air shock values increased slightly due to more blast energy being available for rock breakage but generally these increased values were small and stayed under the permitted limit for blast damage criteria unless measuring distance is too close.
Otologic blast injuries due to the Kenya embassy bombing.
Helling, Eric Robert
2004-11-01
Otologic injuries are frequently associated with large blasts. On August 7, 1998, a large truck bomb exploded next to the U.S. Embassy in Nairobi, Kenya. Initial patient findings and care are reviewed. Five months later, an otologic screening and care mission was then sent to comprehensively screen all remaining blast victims on site in Nairobi and to determine degree of persistent injury. Surgical care appropriate for an outpatient environment was provided. Five of 14 tympanic membranes without intervention failed to heal, while 3 of 3 with previous intervention had. Blast injury severity did not correlate to distance from blast epicenter. This may be due to channeling of the blast through the embassy building and an unpredictable pattern of blast overpressure within the building. It is recommended that comprehensive otologic screening be performed after blast events to identify occult injuries and improve outcomes. Early intervention for tympanic membrane perforation (suctioning, eversion of perforations, and paper patch) is recommended.
NASA Astrophysics Data System (ADS)
Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.
2017-08-01
Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.
USDA-ARS?s Scientific Manuscript database
Rice blast is a recurring and devastating disease in the USA and worldwide. In the USA, the blast-resistance (R) genes found in a tropical japonica cultivar, Katy, reduce blast damages from 1990 to present. The cultivar is still used as a principal donor of blast R genes in developing numerous elit...
Nilsson, R Henrik; Kristiansson, Erik; Ryberg, Martin; Larsson, Karl-Henrik
2005-07-18
During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases exponentially, only a minuscule fraction of all organisms have been sequenced, leaving taxon sampling a momentous problem for sequence-based taxonomic identification. When querying GenBank with a set of unidentified sequences, a considerable proportion typically lack fully identified matches, forming an ever-mounting pile of sequences that the researcher will have to monitor manually in the hope that new, clarifying sequences have been submitted by other researchers. To alleviate these concerns, a project to automatically monitor select unidentified sequences in GenBank for taxonomic progress through repeated local BLAST searches was initiated. Mycorrhizal fungi--a field where species identification often is prohibitively complex--and the much used ITS locus were chosen as test bed. A Perl script package called emerencia is presented. On a regular basis, it downloads select sequences from GenBank, separates the identified sequences from those insufficiently identified, and performs BLAST searches between these two datasets, storing all results in an SQL database. On the accompanying web-service http://emerencia.math.chalmers.se, users can monitor the taxonomic progress of insufficiently identified sequences over time, either through active searches or by signing up for e-mail notification upon disclosure of better matches. Other search categories, such as listing all insufficiently identified sequences (and their present best fully identified matches) publication-wise, are also available. The ever-increasing use of DNA sequences for identification purposes largely falls back on the assumption that public sequence databases contain a thorough sampling of taxonomically well-annotated sequences. Taxonomy, held by some to be an old-fashioned trade, has accordingly never been more important. emerencia does not automate the taxonomic process, but it does allow researchers to focus their efforts elsewhere than countless manual BLAST runs and arduous sieving of BLAST hit lists. The emerencia system is available on an open source basis for local installation with any organism and gene group as targets.
Shumak, K H; Baker, M A; Taub, R N; Coleman, M S
1980-11-01
Blast cells were obtained from 17 patients with acute undifferentiated leukemia and 13 patients with chronic myelogenous leukemia in blast crisis. The blasts were tested with anti-i serum in cytotoxicity tests and with antisera to myeloblastic leukemia-associated antigens in immunofluorescence tests. The terminal deoxynucleotidyl transferase (TDT) content of the blasts was also measured. Lymphoblasts react strongly with anti-i, do not react with anti-myeloblast serum, and have high levels of TDT; myeloblasts react weakly with anti-i, do not react with anti-myeloblast serum, and have very low levels of TDT. Of the 17 patients with acute undifferentiated leukemia, there were six with blasts which reacted like lymphoblasts, six with blasts which reacted like myeloblasts, and five with blasts bearing different combinations of these lymphoblastic and myeloblastic markers. Eight of the 11 patients with lymphoblastic or mixed lymphoblastic-myeloblastic markers, but only one of the six with myeloblastic markers, achieved complete or partial remission in response to therapy. Thus, in acute undifferentiated leukemia, classification of blasts with these markers may be of prognostic value. Of the 13 patients with chronic myelogenous leukemia in blast crises, the markers were concordant (for myeloblasts) in only two cases. Three of the 13 patients had TDT-positive blasts, but the reactions of these cells with anti-i and with anti-myeloblast serum differed from those seen with lymphoblasts from patients with acute lymphoblastic leukemia. Although the cell involved in "lymphoid" blast crisis of chronic myelogenous leukemia is similar in many respects to that involved in acute lymphoblastic leukemia, these cells are not identical.
Rodent model of direct cranial blast injury.
Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc
2011-10-01
Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.
Assessment of the Effect of Blast Hole Diameter on the Number of Oversize Boulders Using ANN Model
NASA Astrophysics Data System (ADS)
Dhekne, Prakash; Pradhan, Manoj; Jade, Ravi Krishnarao
2016-04-01
Now-a-days, blasts are planned using large diameter blast holes. The loading density (kg/m) and subsequently the energy available for the breakage of the rockmass increase with the diameter. The in-hole velocity of detonation (VoD) of non-ideal explosive also boosts up with the increase in diameter till the optimum diameter is reached. The increase in the energy content and in-hole VoD cause a sizable effect on the rock fragmentation. The effect can be assessed by counting the number of oversize boulders. This paper explains as to how the technique of artificial neural network modeling was used to predict the number of oversize boulders resulting from ANFO and SME blasts with blast holes of different diameters. The results from ANFO blasts indicated that there was no significant variation in the number of oversize boulders with the diameter whereas a perceptible variation was noticed in case of SME blasts with the change in the diameter. The change in the number of oversize boulders in ANFO blasts was negligible because mean energy factor remained almost same even when the diameter of the blast holes was altered. The decrease in the number of oversize boulders in SME blasts was on account of increase in mean energy factor when the blast hole diameter was increased. The increase in the in-hole VoD due to increase in the diameter of the hole was not found to have an effect on the generation of oversize boulders as this increase was not substantial both in SME and ANFO blasts.
NASA Astrophysics Data System (ADS)
Lonergan, Jeffrey M.
1992-04-01
As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.
Spectral properties of blast-wave models of gamma-ray burst sources
NASA Technical Reports Server (NTRS)
Meszaros, P.; Rees, M. J.; Papathanassiou, H.
1994-01-01
We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.
NASA Astrophysics Data System (ADS)
Ma, Naiyang
High zinc concentration in basic oxygen furnace (BOF) steelmaking offgas (OG) cleaning system solid wastes is one of the main barriers for recycling of the solid wastes in sintering — blast furnace ironmaking process. One of the possible solutions is to utilize zinc-free scrap in BOF steelmaking so that the BOF OG solid wastes will not be contaminated with zinc and can be recycled through sintering — blast furnace ironmaking. This paper describes a model for helping to decide whether to use zinc-free scrap in a BOF process. A model computing marginal price increment of zinc-free scrap is developed. The marginal price increment is proportional to value change of the BOF OG solid wastes after and before using zinc-free scrap, to ratio of BOF solid waste rate to purchased galvanized scrap rate, and to price of galvanized scrap. Due to the variations of consumption rate of purchased galvanized scrap and home galvanized scrap, iron ore price, landfill cost, and price of purchased galvanized scrap, using zinc-free scrap in a BOF process might be economically feasible for some ironmaking and steelmaking plants or in some particular market circumstances.
Computational modeling of blast exposure associated with recoilless weapons combat training
NASA Astrophysics Data System (ADS)
Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.
2017-11-01
Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not wearing blast gauges themselves. By accurately understanding the blast exposure and its variations across an individual, more meaningful correlations with physiologic response including potential TBI spectrum physiology associated with sub-concussive blast exposure can be established. As blast injury thresholds become better defined, results from these reconstructions can provide important insights into approaches for reducing possible risk of injury to personnel operating shoulder-launched weapons.
Dynamic response analysis of surrounding rock under the continuous blasting seismic wave
NASA Astrophysics Data System (ADS)
Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.
2017-10-01
The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.
Bomb blast mass casualty incidents: initial triage and management of injuries.
Goh, S H
2009-01-01
Bomb blast injuries are no longer confined to battlefields. With the ever present threat of terrorism, we should always be prepared for bomb blasts. Bomb blast injuries tend to affect air-containing organs more, as the blast wave tends to exert a shearing force on air-tissue interfaces. Commonly-injured organs include the tympanic membranes, the sinuses, the lungs and the bowel. Of these, blast lung injury is the most challenging to treat. The clinical picture is a mix of acute respiratory distress syndrome and air embolism, and the institution of positive pressure ventilation in the presence of low venous pressures could cause systemic arterial air embolism. The presence of a tympanic membrane perforation is not a reliable indicator of the presence of a blast injury in the other air-containing organs elsewhere. Radiological imaging of the head, chest and abdomen help with the early identification of blast lung injury, head injury, abdominal injury, eye and sinus injuries, as well as any penetration by foreign bodies. In addition, it must be borne in mind that bomb blasts could also be used to disperse radiological and chemical agents.
NASA Astrophysics Data System (ADS)
Kazakova, E. I.; Medvedev, A. N.; Kolomytseva, A. O.; Demina, M. I.
2017-11-01
The paper presents a mathematical model of blasting schemes management in presence of random disturbances. Based on the lemmas and theorems proved, a control functional is formulated, which is stable. A universal classification of blasting schemes is developed. The main classification attributes are suggested: the orientation in plan the charging wells rows relatively the block of rocks; the presence of cuts in the blasting schemes; the separation of the wells series onto elements; the sequence of the blasting. The periodic regularity of transition from one Short-delayed scheme of blasting to another is proved.
Blast pulmonaire primaire chez le brûlé. a propos d’un cas et revue de la littérature
Siah, S.; Emane, A.; Bertin-Maghit, M.
2016-01-01
Summary Le blast est à l’origine de lésions spécifiques pour lesquelles une prise en charge spécialisée est nécessaire. Après une explosion on peut observer des lésions de blast primaire, liées à l’onde de choc, secondaire par polycriblage et tertiaire par projection du patient. Les blasts secondaire et tertiaire sont plus fréquents que le blast primaire et peuvent entraîner un polytraumatisme. Dans 5% des cas, on retrouve des brûlures pouvant faire partie du blast quaternaire, qui regroupe toutes les lésions d’autres mécanismes que ceux précités. La prise en charge des lésions secondaires et tertiaires de blast est comparable à celle des traumatisés graves. Le blast pulmonaire primaire aggrave le pronostic des blessés les plus graves mais impose rarement une prise en charge spécifique. La connaissance des particularités physiopathologiques et lésionnelles permet de mieux traiter les blastés et brûlés graves survivants. Nous rapportons une observation de blast pulmonaire primaire chez un brûlé. PMID:28149247
Reduction of optically observed artillery blast wave trajectories using low dimensionality models
NASA Astrophysics Data System (ADS)
Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.
2011-05-01
Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.
Erickson, Jay C
2011-06-01
he effectiveness of medical therapies for chronic post-traumatic headaches (PTHs) attributable to mild head trauma in military troops has not been established. To determine the treatment outcomes of acute and prophylactic medical therapies prescribed for chronic PTHs after mild head trauma in US Army soldiers. A retrospective cohort study was conducted with 100 soldiers undergoing treatment for chronic PTH at a single US Army neurology clinic. Headache frequency and Migraine Disability Assessment (MIDAS) scores were determined at the initial clinic visit and then again by phone 3 months after starting headache prophylactic medication. Response rates of headache abortive medications were also determined. Treatment outcomes were compared between subjects with blast-related PTH and non-blast PTH. Ninety-nine of 100 subjects were male. Seventy-seven of 100 subjects had blast PTH and 23/100 subjects had non-blast PTH. Headache characteristics were similar for blast PTH and non-blast PTH with 96% and 95%, respectively, resembling migraine. Headache frequency among all PTH subjects decreased from 17.1 days/month at baseline to 14.5 days/month at follow-up (P = .009). Headache frequency decreased by 41% among non-blast PTH compared to 9% among blast PTH. Fifty-seven percent of non-blast PTH subjects had a 50% or greater decline in headache frequency compared to 29% of blast PTH subjects (P =.023). A significant decline in headache frequency occurred in subjects treated with topiramate (n = 29, -23%, P = .02) but not among those treated with a low-dose tricyclic antidepressant (n = 48, -12%, P = .23). Seventy percent of PTH subjects who used a triptan class medication experienced reliable headache relief within 2 hours compared to 42% of subjects using other headache abortive medications (P = .01). Triptan medications were effective for both blast PTH and non-blast PTH (66% response rate vs 86% response rate, respectively; P = .20). Headache-related disability, as measured by mean MIDAS scores, declined by 57% among all PTH subjects with no significant difference between blast PTH (-56%) and non-blast PTH (-61%). Triptan class medications are usually effective for aborting headaches in military troops with chronic PTH attributed to a concussion from a blast injury or non-blast injury. Topiramate appears to be an effective headache prophylactic therapy in military troops with chronic PTH, whereas low doses of tricyclic antidepressants appear to have little efficacy. Chronic PTH triggered by a blast injury may be less responsive to commonly prescribed headache prophylactic medications compared to non-blast PTH. These conclusions require validation by prospective, controlled clinical trials. © 2011 American Headache Society.
Impact of Hearing Aid Technology on Outcomes in Daily Life III: Localization.
Johnson, Jani A; Xu, Jingjing; Cox, Robyn M
Compared to basic-feature hearing aids, premium-feature hearing aids have more advanced technologies and sophisticated features. The objective of this study was to explore the difference between premium-feature and basic-feature hearing aids in horizontal sound localization in both laboratory and daily life environments. We hypothesized that premium-feature hearing aids would yield better localization performance than basic-feature hearing aids. Exemplars of premium-feature and basic-feature hearing aids from two major manufacturers were evaluated. Forty-five older adults (mean age 70.3 years) with essentially symmetrical mild to moderate sensorineural hearing loss were bilaterally fitted with each of the four pairs of hearing aids. Each pair of hearing aids was worn during a 4-week field trial and then evaluated using laboratory localization tests and a standardized questionnaire. Laboratory localization tests were conducted in a sound-treated room with a 360°, 24-loudspeaker array. Test stimuli were high frequency and low frequency filtered short sentences. The localization test in quiet was designed to assess the accuracy of front/back localization, while the localization test in noise was designed to assess the accuracy of locating sound sources throughout a 360° azimuth in the horizontal plane. Laboratory data showed that unaided localization was not significantly different from aided localization when all hearing aids were combined. Questionnaire data showed that aided localization was significantly better than unaided localization in everyday situations. Regarding the difference between premium-feature and basic-feature hearing aids, laboratory data showed that, overall, the premium-feature hearing aids yielded more accurate localization than the basic-feature hearing aids when high-frequency stimuli were used, and the listening environment was quiet. Otherwise, the premium-feature and basic-feature hearing aids yielded essentially the same performance in other laboratory tests and in daily life. The findings were consistent for both manufacturers. Laboratory tests for two of six major manufacturers showed that premium-feature hearing aids yielded better localization performance than basic-feature hearing aids in one out of four laboratory conditions. There was no difference between the two feature levels in self-reported everyday localization. Effectiveness research with different hearing aid technologies is necessary, and more research with other manufacturers' products is needed. Furthermore, these results confirm previous observations that research findings in laboratory conditions might not translate to everyday life.
Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model
NASA Astrophysics Data System (ADS)
Morin, Mario A.; Ficarazzo, Francesco
2006-04-01
Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.
Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T
2014-01-01
The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.
Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.
Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H
2016-01-01
Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries. ©RSNA, 2016.
NASA Astrophysics Data System (ADS)
Dionne, J. P.; Levine, J.; Makris, A.
2018-01-01
To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.
Robert B. Hawman
2008-01-01
Migration of wide-angle reflections generated by quarry blasts suggests that crustal thickness increases from 38 km beneath the Carolina Terrane to 47â51 km along the southeastern flank of the Blue Ridge. The migration algorithm, developed for generating single-fold images from explosions and earthquakes recorded with isolated, short-aperture arrays, uses the localized...
Code of Federal Regulations, 2010 CFR
2010-10-01
... (Class B telephone companies); Basic area revenue-Account 5001 (Class A telephone companies). 36.212..., REVENUES, EXPENSES, TAXES AND RESERVES FOR TELECOMMUNICATIONS COMPANIES 1 Operating Revenues and Certain... companies); Basic area revenue—Account 5001 (Class A telephone companies). (a) Local private line revenues...
Development of a Continuous Drill and Blast Tunneling Concept, Phase II
DOT National Transportation Integrated Search
1974-05-01
A spiral drilling pattern is described which offers high efficiency drill and blast tunnelling via frequent small blasts rather than occasional large blasts. Design work is presented for a machine which would stay at the face to provide essentially c...
Local earthquake tomography of Scotland
NASA Astrophysics Data System (ADS)
Luckett, Richard; Baptie, Brian
2015-03-01
Scotland is a relatively aseismic region for the use of local earthquake tomography, but 40 yr of earthquakes recorded by a good and growing network make it possible. A careful selection is made from the earthquakes located by the British Geological Survey (BGS) over the last four decades to provide a data set maximising arrival time accuracy and ray path coverage of Scotland. A large number of 1-D velocity models with different layer geometries are considered and differentiated by employing quarry blasts as ground-truth events. Then, SIMULPS14 is used to produce a robust 3-D tomographic P-wave velocity model for Scotland. In areas of high resolution the model shows good agreement with previously published interpretations of seismic refraction and reflection experiments. However, the model shows relatively little lateral variation in seismic velocity except at shallow depths, where sedimentary basins such as the Midland Valley are apparent. At greater depths, higher velocities in the northwest parts of the model suggest that the thickness of crust increases towards the south and east. This observation is also in agreement with previous studies. Quarry blasts used as ground truth events and relocated with the preferred 3-D model are shown to be markedly more accurate than when located with the existing BGS 1-D velocity model.
Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z.; Whidden, Melissa A.; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K. W.
2013-01-01
Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved. PMID:24312074
Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K W
2013-11-21
Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2000-01-01
We have investigated whether the development of segmental repeats is autonomous in the embryo of the leech Helobdella robusta. The segmental tissues of the germinal band arise from progeny of five stem cells called teloblasts. Asymmetric divisions of the teloblasts form chains of segment founder cells (called primary blast cells) that divide in a stereotypical manner to produce differentiated descendants. Using two distinct techniques, we have looked for potential interactions between neighboring blast cell clones along the anterior-posterior axis. In one technique, we prevented the birth of primary blast cells by injection of DNase I into the teloblast, thereby depriving the last blast cell produced before the ablation of its normal posterior neighbors. We also ablated single blast cells with a laser microbeam, which allowed us to assess potential signals acting on either more anterior or more posterior primary blast cell clones. Our results suggest that interactions along the anterior-posterior axis between neighboring primary blast cell clones are not required for development of normal segmental organization within the blast cell clone. We also examined the possibility that blast cells receive redundant signals from both anterior and posterior neighboring clones and that either is sufficient for normal development. Using double blast cell laser ablations to isolate a primary blast cell clone by removal of both its anterior and its posterior neighbor, we found that the isolated clone still develops normally. These results reveal that the fundamental segmental repeat in the leech embryo, the primary blast cell clone, can develop normally in the apparent absence of signals from adjacent repeats along the anterior-posterior axis.
Bowen, Lauren N; Moore, David F; Okun, Michael S
2016-03-01
Given the recent interest in blast injury spurred by returning soldiers from overseas conflicts, we sought to research the early historical descriptions of blast injuries and their treatments. Consideration was given to specific descriptions of survivors of closed head injury and their treatment. A review of the medical and nonmedical literature was undertaken, with particular emphasis on pre-1800 descriptions of volcanic eruptions and mining accidents. Compilations of accounts of the Etna eruptions dating from 126 BC were translated into English, and early mining texts from the 1600s and 1700s were reviewed. Accumulations of flammable gases were recorded in many medieval sources and this knowledge of toxic gas which could lead to blast injury was known in the mining community by 1316. No direct attribution of injuries to blast forces was present in the historical record examined before the 1300s, although mining accounts in the 1600s detail deaths due to blast. No specific descriptions of survivors of a closed head injury were found in the mining and volcanic eruption literature. Descriptions and warnings of blast forces were commonly written about in the medieval and Renaissance mining communities. Personal narratives as early as 1316 recognize the traumatic effects of blast injury. No mining or volcanic blast descriptions before 1800 detailed severe closed head injury survivors, suggesting greater mortality than morbidity from blast injury in the premodern era. This review also uncovered that there was no historical treatment or remedy recommended to survivors of blast injury. Blast explosions resulting in injury or death were frequently described, although in simplistic terminology.
UGV Control Interoperability Profile (IOP), Version 0
2011-12-21
task or function associated with the ID (e.g. “select asset gear” and “switch between local and zulu time display”). Category Provides a high...CTRL- Basic Status-2 view Zulu date and time in Date-Time-Group (DTG) format Basic Status S SWP Icon (text) CTRL- Basic Status-3 switch...between local and zulu time display Basic Status C SW1 CTRL- Basic Status-4 view unique identifier/call sign for each asset Basic Status S
Self injury of extremities leading to amputation while handling local bomb.
Bhadani, Umesh Kumar
2013-05-01
Self injury while making material which has a tendency to blast is dangerous- whether it is fire cracker or local bomb. Some villagers living nearby forest make bomb to scare wild animals to protect their pet animals. A 22-year old girl while making this kind of local bomb, got injured badly. The injury was sustained while making bomb in a sitting position with face down as it is evident form type of injury. There was lacerated injury of both hands leading to amputation of both hands above wrists. Lacerated injury was present on medial sides of both thighs and gun powder marks on face. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
2016-11-01
ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were
Miller, Kelly J.; Lange, Rael T.; Cooper, Douglas B.; Tate, David F.; Bailie, Jason; Brickell, Tracey A.; French, Louis M.; Asmussen, Sarah; Kennedy, Jan E.
2014-01-01
Abstract Explosive devices have been the most frequent cause of traumatic brain injury (TBI) among deployed contemporary U.S. service members. The purpose of this study was to examine the influence of previous cumulative blast exposures (that did or did not result in TBI) on later post-concussion and post-traumatic symptom reporting after sustaining a mild TBI (MTBI). Participants were 573 service members who sustained MTBI divided into four groups by number of blast exposures (1, 2, 3, and 4–10) and a nonblast control group. Post-concussion symptoms were measured using the Neurobehavioral Symptom Inventory (NSI) and post-traumatic stress disorder (PTSD) symptoms using the Post-traumatic Checklist-Civilian version (PCL-C). Results show groups significantly differed on total NSI scores (p<0.001), where symptom endorsement increased as number of reported blast exposures increased. Total NSI scores were significantly higher for the 3– and 4–10 blast groups compared with the 1- and 2-blast groups with effect sizes ranging from small to moderate (d=0.31 to 0.63). After controlling for PTSD symptoms using the PCL-C total score, NSI total score differences remained between the 4–10-blast group and the 1- and 2-blast groups, but were less pronounced (d=0.35 and d=0.24, respectively). Analyses of NSI subscale scores using PCL-C scores as a covariate revealed significant between-blast group differences on cognitive, sensory, and somatic, but not affective symptoms. Regression analyses revealed that cumulative blast exposures accounted for a small but significant amount of the variance in total NSI scores (4.8%; p=0.009) and total PCL-C scores (2.3%; p<0.001). Among service members exposed to blast, post-concussion symptom reporting increased as a function of cumulative blast exposures. Future research will need to determine the relationship between cumulative blast exposures, symptom reporting, and neuropathological changes. PMID:25036531
Calvo, Xavier; Arenillas, Leonor; Luño, Elisa; Senent, Leonor; Arnan, Montserrat; Ramos, Fernando; Ardanaz, María Teresa; Pedro, Carme; Tormo, Mar; Montoro, Julia; Díez-Campelo, María; Arrizabalaga, Beatriz; Xicoy, Blanca; Bonanad, Santiago; Jerez, Andrés; Nomdedeu, Benet; Ferrer, Ana; Sanz, Guillermo F; Florensa, Lourdes
2016-12-01
Erythroleukemia was considered an acute myeloid leukemia in the 2008 World Health Organization (WHO) classification and is defined by the presence of ≥50% bone marrow erythroblasts, having <20% bone marrow blasts from total nucleated cells but ≥20% bone marrow myeloblasts from nonerythroid cells. Erythroleukemia shares clinicopathologic features with myelodysplastic syndromes, especially with erythroid-predominant myelodysplastic syndromes (≥50% bone marrow erythroblasts). The upcoming WHO revision proposes to eliminate the nonerythroid blast cell count rule and to move erythroleukemia patients into the appropriate myelodysplastic syndrome category on the basis of the absolute blast cell count. We conducted a retrospective study of patients with de novo erythroleukemia and compared their clinico-biological features and outcome with those of de novo myelodysplastic syndromes, focusing on erythroid-predominant myelodysplastic syndromes. Median overall survival of 405 erythroid-predominant myelodysplastic syndromes without excess blasts was significantly longer than that observed in 57 erythroid-predominant refractory anemias with excess blasts-1 and in 59 erythroleukemias, but no significant difference was observed between erythroid-predominant refractory anemias with excess blasts-1 and erythroleukemias. In this subset of patients with ≥50% bone marrow erythroblasts and excess blasts, the presence of a high-risk karyotype defined by the International Prognostic Scoring System or by the Revised International Prognostic Scoring System was the main prognostic factor. In the same way, the survival of 459 refractory anemias with excess blasts-2, independently of having ≥20% bone marrow blasts from nonerythroid cells or not, was almost identical to the observed in 59 erythroleukemias. Interestingly, 11 low-blast count erythroleukemias with 5 to <10% bone marrow blasts from total nucleated cells showed similar survival than the rest of erythroleukemias. Our data suggest that de novo erythroleukemia is in the spectrum of myelodysplastic syndromes with excess blasts and support its inclusion into future classifications of myelodysplastic syndromes.
Blast injury from explosive munitions.
Cernak, I; Savic, J; Ignjatovic, D; Jevtic, M
1999-07-01
To evaluate the effect of blast in common war injuries. One thousand three hundred and three patients injured by explosive munitions and demonstrating extremity wounds without other penetrating injuries were admitted to the Military Medical Academy in Belgrade between 1991 and 1994. Of these, 665 patients (51%) had symptoms and physical signs that were compatible with the clinical diagnosis of primary blast injury, whereas the remaining 658 patients did not. Random sampling of 65 patients in the blast group during the early posttraumatic period showed statistically significant elevations in blood thromboxane A2 (TxA2), prostacyclin (PGI2), and sulfidopeptide leukotrienes compared with the random sample of 62 patients in the nonblast group. This difference could not be accounted for by differing injury severity between the groups, because the severity of wounds as measured by both the Injury Severity Score and the Red Cross Wound Classification was similar in both groups. Amongst blast patients, 200 patients (30%) had long-term (1 year) symptoms and signs reflecting central nervous system disorders. These symptoms and signs were only sporadically found in 4% of the nonblast patients. These findings indicate that primary blast injury is more common in war injuries than previously thought and that of those affected by blast, a surprisingly high proportion retain long-term neurologic disability. The elevation in eicosanoids could be used to confirm and monitor blast injury. In relation to the immediate management of patients injured by explosive weapons, it follows that particular attention should be paid to the presence and/or development of blast injury. Our findings indicate that blast is more common in war injuries than previously thought. Eicosanoid changes after blast injury suggest that blast injury causes a major physiologic stress. A variety of effects on the central nervous system suggest that blast injury could be responsible for some aspects of what is now considered to be the posttraumatic stress disorder.
Arenillas, Leonor; Calvo, Xavier; Luño, Elisa; Senent, Leonor; Alonso, Esther; Ramos, Fernando; Ardanaz, María Teresa; Pedro, Carme; Tormo, Mar; Marco, Víctor; Montoro, Julia; Díez-Campelo, María; Brunet, Salut; Arrizabalaga, Beatriz; Xicoy, Blanca; Andreu, Rafael; Bonanad, Santiago; Jerez, Andrés; Nomdedeu, Benet; Ferrer, Ana; Sanz, Guillermo F; Florensa, Lourdes
2016-09-20
WHO classification of myeloid malignancies is based mainly on the percentage of bone marrow (BM) blasts. This is considered from total nucleated cells (TNCs), unless there is erythroid-hyperplasia (erythroblasts ≥ 50%), calculated from nonerythroid cells (NECs). In these instances, when BM blasts are ≥ 20%, the disorder is classified as erythroleukemia, and when BM blasts are < 20%, as myelodysplastic syndrome (MDS). In the latter, the percentage of blasts is considered from TNCs. We assessed the percentage of BM blasts from TNCs and NECs in 3,692 patients with MDS from the Grupo Español de Síndromes Mielodisplásicos, 465 patients with erythroid hyperplasia (MDS-E) and 3,227 patients without erythroid hyperplasia. We evaluated the relevance of both quantifications on classification and prognostication. By enumerating blasts systematically from NECs, 22% of patients with MDS-E and 12% with MDS from the whole series diagnosed within WHO categories with < 5% BM blasts, were reclassified into higher-risk categories and showed a poorer overall survival than did those who remained in initial categories (P = .006 and P = .001, respectively). Following WHO recommendations, refractory anemia with excess blasts (RAEB)-2 diagnosis is not possible in MDS-E, as patients with 10% to < 20% BM blasts from TNCs fulfill erythroleukemia criteria; however, by considering blasts from NECs, 72 patients were recoded as RAEB-2 and showed an inferior overall survival than did patients with RAEB-1 without erythroid hyperplasia. Recalculating the International Prognostic Scoring System by enumerating blasts from NECs in MDS-E and in the overall MDS population reclassified approximately 9% of lower-risk patients into higher-risk categories, which indicated the survival expected for higher-risk patients. Regardless of the presence of erythroid hyperplasia, calculating the percentage of BM blasts from NECs improves prognostic assessment of MDS. This fact should be considered in future WHO classification reviews. © 2016 by American Society of Clinical Oncology.
DiNardo, Courtney D.; Garcia-Manero, Guillermo; Pierce, Sherry; Nazha, Aziz; Bueso-Ramos, Carlos; Jabbour, Elias; Ravandi, Farhad; Cortes, Jorge; Kantarjian, Hagop
2017-01-01
Acute myeloid leukemia (AML) is defined as ≥20% myeloblasts, representing a change from original guidelines where ≤30% blasts were considered as myelodysplastic syndromes (MDS), and 20–29% blasts classified as refractory anemia with excess blasts in transformation (RAEB-T). Whether the diagnostic bone marrow blast percentage has current value with regards to patient prognostication or identification of optimal treatment strategies is unclear. We retrospectively studied 1652 treatment-naïve adults with MDS or AML and ≥10% blasts from January 2000 to April 2014. Patients with 20–29% blasts were more similar to MDS patients in terms of advanced age, increased frequency of poor-risk cytogenetics, lower WBC count, and less frequent NPM1 and FLT3-ITD mutations. Median overall survival of MDS and RAEB-T were similar, 16.0 and 16.0 months, compared to 13.5 months for AML with ≥30% blasts (P =0.045). Multivariate analysis showed inferior survival with increased age (HR 1.81 age 60–69, HR 2.68 age ≥70, P < 0.0005); poor-risk cytogenetics (HR 2.25, P < 0.0005); therapy-related disease (HR 1.44, P < 0.0005); and markers of proliferative disease including WBC ≥25 × 109/L (HR 1.35, P = 0.0003), elevated LDH count (HR 1.24, P =0.0015), and peripheral blasts (HR 1.25, P =0.004). Among younger patients (≤60 years), intensive AML-type therapy resulted in similar outcomes regardless of blast percentage, suggesting this to be optimal therapy in this context. Among older patients (≥70 years), patients with 20–29% blasts had similar outcomes to patients with <20% blasts, and better than those with ≥30% blasts. In addition, among older patients, epigenetic therapy provided at least equivalent outcome to intensive chemotherapy. PMID:26799610
DiNardo, Courtney D; Garcia-Manero, Guillermo; Pierce, Sherry; Nazha, Aziz; Bueso-Ramos, Carlos; Jabbour, Elias; Ravandi, Farhad; Cortes, Jorge; Kantarjian, Hagop
2016-02-01
Acute myeloid leukemia (AML) is defined as ≥20% myeloblasts, representing a change from original guidelines where ≤30% blasts were considered as myelodysplastic syndromes (MDS), and 20-29% blasts classified as refractory anemia with excess blasts in transformation (RAEB-T). Whether the diagnostic bone marrow blast percentage has current value with regards to patient prognostication or identification of optimal treatment strategies is unclear. We retrospectively studied 1652 treatment-naïve adults with MDS or AML and ≥10% blasts from January 2000 to April 2014. Patients with 20-29% blasts were more similar to MDS patients in terms of advanced age, increased frequency of poor-risk cytogenetics, lower WBC count, and less frequent NPM1 and FLT3-ITD mutations. Median overall survival of MDS and RAEB-T were similar, 16.0 and 16.0 months, compared to 13.5 months for AML with ≥30% blasts (P = 0.045). Multivariate analysis showed inferior survival with increased age (HR 1.81 age 60-69, HR 2.68 age ≥70, P < 0.0005); poor-risk cytogenetics (HR 2.25, P < 0.0005); therapy-related disease (HR 1.44, P < 0.0005); and markers of proliferative disease including WBC ≥25 × 10(9) /L (HR 1.35, P = 0.0003), elevated LDH count (HR 1.24, P = 0.0015), and peripheral blasts (HR 1.25, P = 0.004). Among younger patients (≤60 years), intensive AML-type therapy resulted in similar outcomes regardless of blast percentage, suggesting this to be optimal therapy in this context. Among older patients (≥70 years), patients with 20-29% blasts had similar outcomes to patients with <20% blasts, and better than those with ≥30% blasts. In addition, among older patients, epigenetic therapy provided at least equivalent outcome to intensive chemotherapy. © 2015 Wiley Periodicals, Inc.
Supersonic projectile models for asynchronous shooter localization
NASA Astrophysics Data System (ADS)
Kozick, Richard J.; Whipps, Gene T.; Ash, Joshua N.
2011-06-01
In this work we consider the localization of a gunshot using a distributed sensor network measuring time differences of arrival between a firearm's muzzle blast and the shockwave induced by a supersonic bullet. This so-called MB-SW approach is desirable because time synchronization is not required between the sensors, however it suffers from increased computational complexity and requires knowledge of the bullet's velocity at all points along its trajectory. While the actual velocity profile of a particular gunshot is unknown, one may use a parameterized model for the velocity profile and simultaneously fit the model and localize the shooter. In this paper we study efficient solutions for the localization problem and identify deceleration models that trade off localization accuracy and computational complexity. We also develop a statistical analysis that includes bias due to mismatch between the true and actual deceleration models and covariance due to additive noise.
Results of tests of MTA-2 TPS on the SRB hold-down bolt blast container
NASA Technical Reports Server (NTRS)
Dean, W. G.
1982-01-01
The four solid rocket booster (SRB) hold-down posts are fastened to the mobile launch platform (MLP) with four large nuts. At liftoff the nuts are split with explosive changes to release the SRB/Shuttle. A blast container is placed over the nuts to protect the vehicle from flying debris. The blast container is a reusable part and has to be protected from aerodynamic heating during flight. The thermal protection system (TPS) used to protect these blast containers is cork. Fitting the flat cork sheet to this hemispherical shaped blast container is both time consuming and expensive. Another problem is removing the charred cork and epoxy glue from the blast containers. Replacements of this cork with another TPS material such as MTA-2 was examined. Heating rates along the centerline of the forward facing areas of the blast container were determined. The feasibility of using 1/2 in. MTA-2 on the SRB blast containers for protection from ascent, plume impingement and reentry heating is demonstrated.
King, Michael J.; Sanchez, Roberto J.; Moss, William C.
2013-03-19
A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.
NASA Astrophysics Data System (ADS)
Gitterman, Y.; Hofstetter, R.
2014-03-01
Three large-scale on-surface explosions were conducted by the Geophysical Institute of Israel (GII) at the Sayarim Military Range, Negev desert, Israel: about 82 tons of strong high explosives in August 2009, and two explosions of about 10 and 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources, monitored by extensive observations, for calibration of International Monitoring System (IMS) infrasound stations in Europe, Middle East and Asia. In all shots, the explosives were assembled like a pyramid/hemisphere on dry desert alluvium, with a complicated explosion design, different from the ideal homogenous hemisphere used in similar experiments in the past. Strong boosters and an upward charge detonation scheme were applied to provide more energy radiated to the atmosphere. Under these conditions the evaluation of the actual explosion yield, an important source parameter, is crucial for the GT0 calibration experiment. Audio-visual, air-shock and acoustic records were utilized for interpretation of observed unique blast effects, and for determination of blast wave parameters suited for yield estimation and the associated relationships. High-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. The yield estimators, based on empirical scaled relations for well-known basic air-blast parameters—the peak pressure, impulse and positive phase duration, as well as on the crater dimensions and seismic magnitudes, were analyzed. A novel empirical scaled relationship for the little-known secondary shock delay was developed, consistent for broad ranges of ANFO charges and distances, which facilitates using this stable and reliable air-blast parameter as a new potential yield estimator. The delay data of the 2009 shot with IMI explosives, characterized by much higher detonation velocity, are clearly separated from ANFO data, thus indicating a dependence on explosive type. This unique dual Sayarim explosion experiment (August 2009/January 2011), with the strongest GT0 sources since the establishment of the IMS network, clearly demonstrated the most favorable westward/eastward infrasound propagation up to 3,400/6,250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere.
Effects of geometry on blast-induced loadings
NASA Astrophysics Data System (ADS)
Moore, Christopher Dyer
Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.
Predictive control of thermal state of blast furnace
NASA Astrophysics Data System (ADS)
Barbasova, T. A.; Filimonova, A. A.
2018-05-01
The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Items § 3201.78 Blast media. (a) Definition. Abrasive particles sprayed forcefully to clean, remove... qualifying biobased blast media. By that date, Federal agencies that have the responsibility for drafting or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Blast media. 3201.78 Section 3201.78 Agriculture... Items § 3201.78 Blast media. (a) Definition. Abrasive particles sprayed forcefully to clean, remove... qualifying biobased blast media. By that date, Federal agencies that have the responsibility for drafting or...
Temporal Progression of Visual Injury from Blast Exposure
2013-09-01
carprofen one day before the blast for pain management. A baseline of vision functionality is established before the blast using the metrics...returned to the animal facility. While animals do not show signs of pain following the blast exposure, carprofen is administered the next day as a
Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P
2016-08-01
No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid condition assessment of structural condition after a blast using state-space identification
NASA Astrophysics Data System (ADS)
Eskew, Edward; Jang, Shinae
2015-04-01
After a blast event, it is important to quickly quantify the structural damage for emergency operations. In order improve the speed, accuracy, and efficiency of condition assessments after a blast, the authors have previously performed work to develop a methodology for rapid assessment of the structural condition of a building after a blast. The method involved determining a post-event equivalent stiffness matrix using vibration measurements and a finite element (FE) model. A structural model was built for the damaged structure based on the equivalent stiffness, and inter-story drifts from the blast are determined using numerical simulations, with forces determined from the blast parameters. The inter-story drifts are then compared to blast design conditions to assess the structures damage. This method still involved engineering judgment in terms of determining significant frequencies, which can lead to error, especially with noisy measurements. In an effort to improve accuracy and automate the process, this paper will look into a similar method of rapid condition assessment using subspace state-space identification. The accuracy of the method will be tested using a benchmark structural model, as well as experimental testing. The blast damage assessments will be validated using pressure-impulse (P-I) diagrams, which present the condition limits across blast parameters. Comparisons between P-I diagrams generated using the true system parameters and equivalent parameters will show the accuracy of the rapid condition based blast assessments.
Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma.
Mammadova, Najiba; Ghaisas, Shivani; Zenitsky, Gary; Sakaguchi, Donald S; Kanthasamy, Anumantha G; Greenlee, Justin J; West Greenlee, M Heather
2017-07-01
Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. We assessed retinal tissues using immunofluorescence for glial fibrillary acidic protein, microglia-specific proteins Iba1 and CD68, and phosphorylated tau (AT-270 pThr181 and AT-180 pThr231). Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2012-08-15
The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less
Attenuation of blast pressure behind ballistic protective vests.
Wood, Garrett W; Panzer, Matthew B; Shridharani, Jay K; Matthews, Kyle A; Capehart, Bruce P; Myers, Barry S; Bass, Cameron R
2013-02-01
Clinical studies increasingly report brain injury and not pulmonary injury following blast exposures, despite the increased frequency of exposure to explosive devices. The goal of this study was to determine the effect of personal body armour use on the potential for primary blast injury and to determine the risk of brain and pulmonary injury following a blast and its impact on the clinical care of patients with a history of blast exposure. A shock tube was used to generate blast overpressures on soft ballistic protective vests (NIJ Level-2) and hard protective vests (NIJ Level-4) while overpressure was recorded behind the vest. Both types of vest were found to significantly decrease pulmonary injury risk following a blast for a wide range of conditions. At the highest tested blast overpressure, the soft vest decreased the behind armour overpressure by a factor of 14.2, and the hard vest decreased behind armour overpressure by a factor of 56.8. Addition of body armour increased the 50th percentile pulmonary death tolerance of both vests to higher levels than the 50th percentile for brain injury. These results suggest that ballistic protective body armour vests, especially hard body armour plates, provide substantial chest protection in primary blasts and explain the increased frequency of head injuries, without the presence of pulmonary injuries, in protected subjects reporting a history of blast exposure. These results suggest increased clinical suspicion for mild to severe brain injury is warranted in persons wearing body armour exposed to a blast with or without pulmonary injury.
An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.
Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl
2014-10-28
Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.
Yang, Cheng D.; Dang, Xie; Zheng, Hua W.; Chen, Xiao F.; Lin, Xiao L.; Zhang, Dong M.; Abubakar, Yakubu S.; Chen, Xin; Lu, Guodong; Wang, Zonghua; Li, Guangpu; Zhou, Jie
2017-01-01
The rice blast fungus, Magnaporthe oryzae, infects many economically important cereal crops, particularly rice. It has emerged as an important model organism for studying the growth, development, and pathogenesis of filamentous fungi. RabGTPases are important molecular switches in regulation of intracellular membrane trafficking in all eukaryotes. MoRab5A and MoRab5B are Rab5 homologs in M. oryzae, but their functions in the fungal development and pathogenicity are unknown. In this study, we have employed a genetic approach and demonstrated that both MoRab5A and MoRab5B are crucial for vegetative growth and development, conidiogenesis, melanin synthesis, vacuole fusion, endocytosis, sexual reproduction, and plant pathogenesis in M. oryzae. Moreover, both MoRab5A and MoRab5B show similar localization in hyphae and conidia. To further investigate possible functional redundancy between MoRab5A and MoRab5B, we overexpressed MoRAB5A and MoRAB5B, respectively, in MoRab5B:RNAi and MoRab5A:RNAi strains, but neither could rescue each other’s defects caused by the RNAi. Taken together, we conclude that both MoRab5A and MoRab5B are necessary for the development and pathogenesis of the rice blast fungus, while they may function independently. PMID:28529514
MRSI of the Medial Temporal Lobe at 7T in Explosive Blast Mild Traumatic Brain Injury
Hetherington, HP; Hamid, H; Kulas, J; Ling, G; Bandak, F; de Lanerolle, NC; Pan, JW
2013-01-01
Purpose Up to 19% of veterans returning from the wars in Iraq and Afghanistan have a history of mild traumatic brain injury (mTBI) with 70% associated with blast exposure. Tragically, 20–50% of this group reports persistent symptoms, including memory loss. Unfortunately, routine clinical imaging is typically normal, making diagnosis and clinical management difficult. The goal of this work was to develop methods to acquire hippocampal MRSI at 7T and evaluate their sensitivity to detect injury in veterans with mTBI. Methods At 7T, hippocampal MRSI measurements are limited by: 1) poor B0 homogeneity; 2) insufficient B1+ strength and homogeneity; and 3) chemical shift dispersion artifacts. To overcome these limitations we: 1) used 3rd degree B0 shimming; 2) an inductively decoupled transceiver array with RF shimming and 3) a volume localized single slice sequence using RF shimming based outer volume suppression. Results In 20 controls and 25 veterans with mTBI due to blast exposure with memory impairment, hippocampal NAA/Cho (P<0.001) and NAA/Cr (P<0.001) were decreased in comparison to control subjects. Conclusion With the appropriate methods robust spectroscopic imaging of the hippocampus can be carried out at 7T. MRSI at 7T can detect hippocampal injury in veterans with mild traumatic brain injury. PMID:23918077
Lasting retinal injury in a mouse model of blast-induced trauma
USDA-ARS?s Scientific Manuscript database
Traumatic brain injury (TBI) due to blast exposure is currently the most prevalent of war injuries. While secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure has been reported among survivors of explosions, but with limited understanding of the resulti...
BLAST FURNACE CAST HOUSE EMISSION CONTROL TECHNOLOGY ASSESSMENT
The study describes the state-of-the-art of controlling fumes escaping from blast furnace cast houses. Background information is based on: a study of existing literature; visits to blast furnaces in the U.S., Japan, and Europe; meetings with an ad hoc group of experienced blast f...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dangerous. Blasting cap leg wires shall be kept short-circuited (shunted) until they are connected into the..., in accordance with the manufacturer's recommendations. (f) Connecting wires and lead wires shall be... manufacturer of the electric blasting caps used. (o) The number of electric blasting caps connected to a...
Belousov, Alexander; Voight, Barry; Belousova, Marina
2007-01-01
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.
Bhadauria, Vijai; Banniza, Sabine; Vandenberg, Albert; Selvaraj, Gopalan; Wei, Yangdou
2012-01-01
The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1) in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD+)+pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD+ in peroxisomes. Therefore, it may provide a means to maintain redox homeostasis in appressoria. PMID:22558413
47 CFR 32.5000 - Basic local service revenue.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Basic local service revenue. 32.5000 Section 32.5000 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5000 Basic...
47 CFR 32.5000 - Basic local service revenue.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Basic local service revenue. 32.5000 Section 32.5000 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5000 Basic...
47 CFR 32.5000 - Basic local service revenue.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Basic local service revenue. 32.5000 Section 32.5000 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5000 Basic...
Control technology for crystalline silica exposures in construction: wet abrasive blasting.
Golla, Vijay; Heitbrink, William
2004-03-01
This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.
Application of Carbon Composite Bricks for Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin
Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.
NASA Astrophysics Data System (ADS)
Phillips, Michael G.
Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.
Cold blast furnace syndrome: a new source of toxic inhalation by nitrogen oxides.
Tague, I; Llewellin, P; Burton, K; Buchan, R; Yates, D H
2004-05-01
To describe a new toxic inhalation syndrome in blast furnace workers. Fourteen workers developed acute respiratory symptoms shortly after exposure to "air blast" from blast furnace tuyeres. These included chest tightness, dyspnoea, rigors, and diaphoresis. Chest radiographs showed pulmonary infiltrates, and lung function a restrictive abnormality. This report includes a description of clinical features of the affected workers and elucidation of the probable cause of the outbreak. Clinical features and occupational hygiene measurements suggested the most likely cause was inhalation of nitrogen oxides at high pressure and temperature. While the task could not be eliminated, engineering controls were implemented to control the hazard. No further cases have occurred. "Cold blast furnace syndrome" represents a previously undescribed hazard of blast furnace work, probably due to inhalation of nitrogen oxides. It should be considered in the differential diagnosis of acute toxic inhalational injuries in blast furnace workers.
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2013 CFR
2013-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2014 CFR
2014-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2012 CFR
2012-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2011 CFR
2011-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... Partially Exclusive Licensing of U.S. Provisional Patent Application Concerning Blast Wave Sensor AGENCY... ``Blast Wave Sensor,'' filed January 4, 2010. The United States Government, as represented by the... wave sensors and their use to detect blast induced pressure changes, and, in particular, a blast wave...
33 CFR 83.35 - Sound signals in restricted visibility (Rule 35).
Code of Federal Regulations, 2013 CFR
2013-07-01
... more than 2 minutes two prolonged blasts in succession with an interval of about 2 seconds between them... than 2 minutes, three blasts in succession; namely, one prolonged followed by two short blasts. (d..., shall at intervals of not more than 2 minutes sound four blasts in succession; namely, one prolonged...
33 CFR 83.35 - Sound signals in restricted visibility (Rule 35).
Code of Federal Regulations, 2014 CFR
2014-07-01
... more than 2 minutes two prolonged blasts in succession with an interval of about 2 seconds between them... than 2 minutes, three blasts in succession; namely, one prolonged followed by two short blasts. (d..., shall at intervals of not more than 2 minutes sound four blasts in succession; namely, one prolonged...
33 CFR 83.35 - Sound signals in restricted visibility (Rule 35).
Code of Federal Regulations, 2012 CFR
2012-07-01
... more than 2 minutes two prolonged blasts in succession with an interval of about 2 seconds between them... than 2 minutes, three blasts in succession; namely, one prolonged followed by two short blasts. (d..., shall at intervals of not more than 2 minutes sound four blasts in succession; namely, one prolonged...
33 CFR 83.35 - Sound signals in restricted visibility (Rule 35).
Code of Federal Regulations, 2011 CFR
2011-07-01
... more than 2 minutes two prolonged blasts in succession with an interval of about 2 seconds between them... than 2 minutes, three blasts in succession; namely, one prolonged followed by two short blasts. (d..., shall at intervals of not more than 2 minutes sound four blasts in succession; namely, one prolonged...
USDA-ARS?s Scientific Manuscript database
Characterization of molecular identity and pathogenicity of the rice blast fungus benefits the deployment of effective blast resistance (R) genes. In order to identify blast resistance genes in rice producing areas where most of the hybrid rice is grown in Hunan province, 182 M. oryzae strains were ...
Identification of blast resistance genes for managing rice blast disease
USDA-ARS?s Scientific Manuscript database
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...
Blast-induced tinnitus and hyperactivity in the auditory cortex of rats.
Luo, Hao; Pace, Edward; Zhang, Jinsheng
2017-01-06
Blast exposure can cause tinnitus and hearing impairment by damaging the auditory periphery and direct impact to the brain, which trigger neural plasticity in both auditory and non-auditory centers. However, the underlying neurophysiological mechanisms of blast-induced tinnitus are still unknown. In this study, we induced tinnitus in rats using blast exposure and investigated changes in spontaneous firing and bursting activity in the auditory cortex (AC) at one day, one month, and three months after blast exposure. Our results showed that spontaneous activity in the tinnitus-positive group began changing at one month after blast exposure, and manifested as robust hyperactivity at all frequency regions at three months after exposure. We also observed an increased bursting rate in the low-frequency region at one month after blast exposure and in all frequency regions at three months after exposure. Taken together, spontaneous firing and bursting activity in the AC played an important role in blast-induced chronic tinnitus as opposed to acute tinnitus, thus favoring a bottom-up mechanism. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Blast investigation by fast multispectral radiometric analysis
NASA Astrophysics Data System (ADS)
Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.
2011-06-01
Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.
Honda, Yuko; Tsuchida, Masahiro; Zaike, Yuji; Masunaga, Atsuko; Yoshimi, Ayami; Kojima, Seiji; Ito, Masafumi; Kikuchi, Akira; Nakahata, Tatsutoshi; Manabe, Atsushi
2014-06-01
Juvenile myelomonocytic leukaemia (JMML) is a rare haematopoietic stem cell disease of early childhood, which can progress to blast crisis in some children. A total of 153 children diagnosed with JMML were reported to the Myelodysplastic Syndrome Committee in Japan between 1989 and 2007; 15 of them (9·8%) had 20% or more blasts in the bone marrow (blast crisis) during the disease course. Blast crisis occurred during observation without therapy (n = 3) or with oral 6-mercaptopurine treatment (n = 9) and in relapse after haematopoietic stem cell transplantation (HSCT; n = 3). Six patients had a complex karyotype (5 including monosomy 7) and an additional three patients had isolated monosomy 7 at blast crisis. Seven patients received HSCT after blast crisis and four of them achieved remission. Eleven out of the 15 patients died; the cause of death was disease progression in 10 patients and transplant-related complication in one patient. In summary, patients with blast crisis have poor prognosis and can be cured only by HSCT. The emergence of monosomy 7 and complex karyotype may be characteristic of blast crisis in a substantial subset of children. © 2014 John Wiley & Sons Ltd.
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Computational modeling of human head under blast in confined and open spaces: primary blast injury.
Rezaei, A; Salimi Jazi, M; Karami, G
2014-01-01
In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kozlovskaya, E.; Usoltseva, O.; Konstantinovskaya, N.
2012-04-01
The region of Tornio river (22-26 deg E and 66.5-69 deg N) is very interesting for seismological studies because it is crossed by systems of tectonic faults spreading in two different directions. 56 local earthquakes originated from this region were recorded by the POLENET/LAPNET temporary array from May, 2007 to May, 2009. Hypocenter depths of earthquakes are in the range of 1-35 km and their magnitudes vary from 0.8 to 2.2. For events detection we used the bulletin of the Institute of Seismology (Helsinki university) and Norway Global Beam Forming bulletin, compiled on the base of automatic detection of events, using the data of Noress, Arcess, Finess, SPA, HFS, APA arrays. In addition to local earthquakes, the array recorded 364 blasts from this region during the POLENET/LAPNET observation period. The events were relocated using manually measured travel times of refracted P waves from events at local distances (less than 200 km) and the 1-D velocity model along the wide-angle reflection and refraction HUKKA profile. The epicenters of relocated events show good correlation with known faults in the region. For each earthquake we constructed travel-time curves with reduction velocity of 8 km/s and compared them with the theoretical travel-time curves, in order to avoid phase misinterpretation. We found out that the largest reduction of travel time residuals during relocation was reached for deep earthquakes, due to more precise depth determination. The other aim of our study was to estimate what part of travel time residuals is not connected with the reference 1D velocity model and accuracy of location, but is rather due to 3-D heterogeneities in the crust. We also analyzed the amplitude characteristics of P-wave arrivals from different layers in the crust and upper mantle and also compared spectrograms of deep earthquakes, shallow earthquakes and blasts.
Blast/Fire Interactions. Program Information
1978-10-01
for shelter identification and for emergency food and medical stockpiles. This vigorous effort was largely completed by the end of 1963. On April 1...transportation, food supplies, etc.) can be exercised and tested to some degree. (The need for local’or regional autonomy is less in the peacetimeS...Corporation 7125 Saltsburg Road P.O Box 235 Pittsburgh, PA 15235 Buffalo, New York 14221i • Dr. Franch • E. Fendell National Fire Protection Association
Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M
2013-05-15
To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.
Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.
Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert
2018-04-15
The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.
BLAST BIOLOGY. Technical Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, C.S.; Richmond, D.R.
1959-09-18
Experimental data regarding the biologic consequences of exposure to several environmental variations associated with actual and simulated explosive detonations were reviewed. Blast biology is discussed relative to primary, secondary, tentiary, and miscellaneous blast effects as those attributable, respectively, to variations in environmental pressure, trauma from blast-produced missiles (both penetrating and nonpenetrating), the consequences of physical displacement of biological targets by blast-produced winds, and hazards due to ground shock, dust, and thermal phenomena not caused by thermal radiation per se. Primary blast effects were considered, noting physical-biophysical factors contributing to the observed pathophysiology. A simple hydrostatic model was utilized diagrammatically inmore » pointing out possible etiologic mechanisms. The gross biologic response to single. "fast"-rising overpressures were described as was the tolerance of mice, rats, guinea pigs. and rabbits to "long"-duration pressure pulses rising "rapidly" in single and double steps. Data regarding biological response to "slowly" rising over-pressures of "long" duration are discussed. Attention was called to the similarities under certain circumstances between thoracic trauma from nonpenetrating missiles and that noted from air blast. The association between air emboli, increase in lung weight (hemorrhage and edema), and mortality was discussed. Data relevant to the clinical symptoms and therapy of blast injury are presented. The relation of blast hazards to nuclear explosions was assessed and one approach to predicting the maximal potential casualties from blast phenomena is presented making use of arbitrary and tentative criteria. (auth)« less
Mechanisms of Hearing Loss after Blast Injury to the Ear
Cho, Sung-Il; Gao, Simon S.; Xia, Anping; Wang, Rosalie; Salles, Felipe T.; Raphael, Patrick D.; Abaya, Homer; Wachtel, Jacqueline; Baek, Jongmin; Jacobs, David; Rasband, Matthew N.; Oghalai, John S.
2013-01-01
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction. PMID:23840874
NASA Astrophysics Data System (ADS)
Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.
2018-01-01
Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.
Nalley, Lawton; Tsiboe, Francis; Durand-Morat, Alvaro; Shew, Aaron; Thoma, Greg
2016-01-01
Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.
Song, Hailong; Konan, Landry M; Cui, Jiankun; Johnson, Catherine E; Langenderfer, Martin; Grant, DeAna; Ndam, Tina; Simonyi, Agnes; White, Tommi; Demirci, Utkan; Mott, David R; Schwer, Doug; Hubler, Graham K; Cernak, Ibolja; DePalma, Ralph G; Gu, Zezong
2018-07-16
Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10 -3 ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe
Kallakuri, Srinivasu; Desai, Alok; Feng, Ke; Tummala, Sharvani; Saif, Tal; Chen, Chaoyang; Zhang, Liying; Cavanaugh, John M.; King, Albert I.
2017-01-01
With the rapid increase in the number of blast induced traumatic brain injuries and associated neuropsychological consequences in veterans returning from the operations in Iraq and Afghanistan, the need to better understand the neuropathological sequelae following exposure to an open field blast exposure is still critical. Although a large body of experimental studies have attempted to address these pathological changes using shock tube models of blast injury, studies directed at understanding changes in a gyrencephalic brain exposed to a true open field blast are limited and thus forms the focus of this study. Anesthetized, male Yucatan swine were subjected to forward facing medium blast overpressure (peak side on overpressure 224–332 kPa; n = 7) or high blast overpressure (peak side on overpressure 350–403 kPa; n = 5) by detonating 3.6 kg of composition-4 charge. Sham animals (n = 5) were subjected to all the conditions without blast exposure. After a 3-day survival period, the brain was harvested and sections from the frontal lobes were processed for histological assessment of neuronal injury and glial reactivity changes. Significant neuronal injury in the form of beta amyloid precursor protein immunoreactive zones in the gray and white matter was observed in the frontal lobe sections from both the blast exposure groups. A significant increase in the number of astrocytes and microglia was also observed in the blast exposed sections compared to sham sections. We postulate that the observed acute injury changes may progress to chronic periods after blast and may contribute to short and long-term neuronal degeneration and glial mediated inflammation. PMID:28107370
2016-01-01
Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally—the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world’s population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production. PMID:27907101
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.
2018-04-01
The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.
2018-05-01
The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.
Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse
NASA Astrophysics Data System (ADS)
Eslami, Majid; Goshtasbi, Kamran
2018-04-01
One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.
Sharma, Parichit; Mantri, Shrikant S
2014-01-01
The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis.
Sharma, Parichit; Mantri, Shrikant S.
2014-01-01
The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis. PMID:24979410
Military blast exposure, ageing and white matter integrity
Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.
2015-01-01
Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here. PMID:26033970
Low Level Primary Blast Injury in Rodent Brain
Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia
2011-01-01
The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID:21541261
Sundaramurthy, Aravind; Chandra, Namas
2014-01-01
Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701
Mac Donald, Christine L; Johnson, Ann M; Wierzechowski, Linda; Kassner, Elizabeth; Stewart, Theresa; Nelson, Elliot C; Werner, Nicole J; Zonies, David; Oh, John; Fang, Raymond; Brody, David L
2014-08-01
Blast injury has been identified as the signature injury in the conflicts in Iraq and Afghanistan. However it remains to be determined whether fundamental differences may exist between blast-related traumatic brain injury (TBI) and TBI due to other mechanisms. To determine similarities and differences between clinical outcomes in US military personnel with blast-related vs. non-blast-related concussive TBI and to identify the specific domains of impairment that best correlate with overall disability. Prospective cohort study involving active duty US Military personnel evacuated from Iraq or Afghanistan to Landstuhl Regional Medical Center, in Landstuhl, Germany. Four groups of participants were enrolled from 2010 to 2013: (1) blast plus impact complex TBI (n=53), (2) non-blast related TBI with injury due to other mechanisms (n=29), (3) blast-exposed controls evacuated for other medical reasons (n=27) (4) non-blast-exposed controls evacuated for other medical reasons (n=69). All patients with TBI met Department of Defense criteria for concussive (mild) TBI. The study participants were evaluated 6-12 months after injury at Washington University in St Louis. In total, 255 subjects were enrolled in the study, and 183 participated in follow-up evaluations, 5 of whom were disqualified. In-person clinical examinations included evaluation for overall disability, a standardized neurological exam, headache questionnaires, neuropsychological test battery, combat exposure and alcohol use surveys, and structured interview evaluations for post-traumatic stress disorder (PTSD) and depression. Global outcomes, headache severity, neuropsychological performance, and surprisingly even PTSD severity and depression were indistinguishable between the two TBI groups, independent of mechanism of injury. Both TBI groups had higher rates of moderate to severe overall disability than the respective control groups: 41/53 (77%) of blast plus impact TBI and 23/29 (79%) of nonblast TBI vs. 16/27 (59%) of blast-exposed controls and 28/69 (41%) of non-blast-exposed controls. In addition, blast-exposed controls had worse headaches and more severe PTSD than non-blast-exposed controls. Self-reported combat exposure intensity was higher in the blast plus impact TBI group than in nonblast TBI group and was higher in blast-exposed controls than in non-blast-exposed controls. However, combat exposure intensity did not correlate with PTSD severity in the TBI groups, but a modest positive correlation was observed in the controls. Overall outcomes were most strongly correlated with depression, headache severity, and number of abnormalities on neuropsychological testing. However a substantial fraction of the variance in overall outcome was not explained by any of the assessed measures. One potential interpretation of these results is that TBI itself, independent of injury mechanism and combat exposure intensity, is a primary driver of adverse outcomes. Many other important factors may be as yet unmeasured, and adverse outcomes following war-time injuries are difficult to fully explain. clinicaltrials.gov Identifier: NCT01313130.
Detecting and characterizing coal mine related seismicity in the Western U.S. using subspace methods
NASA Astrophysics Data System (ADS)
Chambers, Derrick J. A.; Koper, Keith D.; Pankow, Kristine L.; McCarter, Michael K.
2015-11-01
We present an approach for subspace detection of small seismic events that includes methods for estimating magnitudes and associating detections from multiple stations into unique events. The process is used to identify mining related seismicity from a surface coal mine and an underground coal mining district, both located in the Western U.S. Using a blasting log and a locally derived seismic catalogue as ground truth, we assess detector performance in terms of verified detections, false positives and failed detections. We are able to correctly identify over 95 per cent of the surface coal mine blasts and about 33 per cent of the events from the underground mining district, while keeping the number of potential false positives relatively low by requiring all detections to occur on two stations. We find that most of the potential false detections for the underground coal district are genuine events missed by the local seismic network, demonstrating the usefulness of regional subspace detectors in augmenting local catalogues. We note a trade-off in detection performance between stations at smaller source-receiver distances, which have increased signal-to-noise ratio, and stations at larger distances, which have greater waveform similarity. We also explore the increased detection capabilities of a single higher dimension subspace detector, compared to multiple lower dimension detectors, in identifying events that can be described as linear combinations of training events. We find, in our data set, that such an advantage can be significant, justifying the use of a subspace detection scheme over conventional correlation methods.
Zou, Lingyun; Wang, Zhengzhi; Huang, Jiaomin
2007-12-01
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and 1st-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy.
30 CFR 57.22605 - Blasting from the surface (V-A mines).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...
30 CFR 57.22605 - Blasting from the surface (V-A mines).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...
30 CFR 57.22605 - Blasting from the surface (V-A mines).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...
30 CFR 57.22605 - Blasting from the surface (V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...
30 CFR 57.22605 - Blasting from the surface (V-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...
USDA-ARS?s Scientific Manuscript database
Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...
Cerebrovascular Injury in Blast Loading
2010-01-01
TITLE: Cerebrovascular injury in blast loading PRINCIPAL INVESTIGATOR: Kenneth L. Monson, PhD...SUBTITLE Cerebrovascular injury in blast loading 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6...and pH control. 15. SUBJECT TERMS Blast brain injury; cerebrovascular injury and dysfunction; shock tube 16. SECURITY CLASSIFICATION OF: 17
Tisdall, Martin; Petzold, Axel
2012-10-24
In a case study, the authors report an increase in phosphorylated neurofilament heavy chain, a marker of neuroaxonal damage, in the plasma of a blast-exposed patient immediately after injury. They suggest that this phosphoprotein may be a useful body fluid indicator of acute blast traumatic brain injury.
[Indirect blast rupture of the pancreas with a primary unperforated blast injury of the duodenum].
Ignjatović, Dragan; Ignjatović, Mile; Jevtić, Miodrag
2006-02-01
To present a patient with an indirect blast rupture of the head of pancreas, as well as with a blast contusion of the duodenum following abdominal gunshot injury. A patient with the abdominal gunshot injury was submitted to the management of the injury of the liver, gaster and the right kidney in the field hospital. The revealed rupture of the head of the pancreas and the contusion of the duodenum were managed applying the method of Whipple. Indirect blast injuries require extensive surgical interventions, especially under war conditions.
NCBI BLAST+ integrated into Galaxy.
Cock, Peter J A; Chilton, John M; Grüning, Björn; Johnson, James E; Soranzo, Nicola
2015-01-01
The NCBI BLAST suite has become ubiquitous in modern molecular biology and is used for small tasks such as checking capillary sequencing results of single PCR products, genome annotation or even larger scale pan-genome analyses. For early adopters of the Galaxy web-based biomedical data analysis platform, integrating BLAST into Galaxy was a natural step for sequence comparison workflows. The command line NCBI BLAST+ tool suite was wrapped for use within Galaxy. Appropriate datatypes were defined as needed. The integration of the BLAST+ tool suite into Galaxy has the goal of making common BLAST tasks easy and advanced tasks possible. This project is an informal international collaborative effort, and is deployed and used on Galaxy servers worldwide. Several examples of applications are described here.
Waveform inversion of acoustic waves for explosion yield estimation
Kim, K.; Rodgers, A. J.
2016-07-08
We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less
SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.
Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo
2017-01-01
Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.
Waveform inversion of acoustic waves for explosion yield estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Rodgers, A. J.
We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less
galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.
Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M
2004-06-12
The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se
Droplet Breakup Mechanisms in Air-blast Atomizers
NASA Astrophysics Data System (ADS)
Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly
2011-11-01
Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.
Modeling of weak blast wave propagation in the lung.
D'yachenko, A I; Manyuhina, O V
2006-01-01
Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.
Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou
2014-07-01
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.
Blast shock wave mitigation using the hydraulic energy redirection and release technology.
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.
Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology
Chen, Yun; Huang, Wei; Constantini, Shlomi
2012-01-01
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740
Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.
2013-01-01
Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426
Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model
Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.
2018-01-01
Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980
Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay
2014-07-01
An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death.
[Confined blasting in microexplosion cystolithotripsy].
Uchida, M
1989-03-01
This paper is the 12th report in a series of studies on the application of microexplosion to medicine and biology. Microexplosion lithotripsy is a newly developed technique in our clinic to crush urinary stones with small quantities of explosives. A systematic research project has been performed since the first report of microexplosion lithotripsy in 1977. As a result, microexplosion was successfully applied to the destruction of bladder stones in 130 cases from 1981 to 1988. In blasting to crush rocks in industrial works, two kinds of blasting are available: external charge blasting and confined blasting. The detonation power of the latter is 10 to 50 times larger than that of the former. A detruction test using several kinds of spherical form model calculus and lead azide explosive was performed. The formula to calculate the suitable explosive dose was determined experimentally as shown below. (formula; see text) Thus the theory in general industrial blasting with massive explosives was proved to be effective also in microexplosion with small explosives. An original electric drill system was developed to make a hole in stones for confined blasting. 60 cases, including 2 cases of giant bladder stones over 100 g in weight, were successfully treated by confined blasting using this system without any complication. We consider that any bladder stones, however big or however many, can be treated by microexplosion lithotripsy with confined blasting.
Blast-Induced Color Change in Photonic Crystals Corresponds with Brain Pathology
Cullen, D. Kacy; Browne, Kevin D.; Xu, Yongan; Adeeb, Saleena; Wolf, John A.; McCarron, Richard M.; Yang, Shu; Chavko, Mikulas
2011-01-01
Abstract A high incidence of blast exposure is a 21st century reality in counter-insurgency warfare. However, thresholds for closed-head blast-induced traumatic brain injury (bTBI) remain unknown. Moreover, without objective information about relative blast exposure, warfighters with bTBI may not receive appropriate medical care and may remain in harm's way. Accordingly, we have engineered a blast injury dosimeter (BID) using a photonic crystalline material that changes color following blast exposure. The photonic crystals are fabricated using SU-8 via multi-beam interference laser lithography. The final BID is similar in appearance to an array of small colored stickers that may be affixed to uniforms or helmets in multiple locations. Although durable under normal conditions, the photonic crystalline micro- and nano-structure are precisely altered by blast to create a color change. These BIDs were evaluated using a rat model of bTBI, for which blast shockwave exposure was generated via a compressed air-driven shock tube. With prototype BID arrays affixed to the animals, we found that BID color changes corresponded with subtle brain pathologies, including neuronal degeneration and reactive astrocytosis. These subtle changes were most notable in the dentate gyrus of the hippocampus, cerebral cortex, and cerebellum. These data demonstrate the feasibility of using a materials-based, power-free colorimetric BID as the first self-contained blast sensor calibrated to correspond with brain pathology. PMID:22082449
30 CFR 57.22608 - Secondary blasting (I-A, II-A, and V-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Secondary blasting (I-A, II-A, and V-A mines). 57.22608 Section 57.22608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... blasting (I-A, II-A, and V-A mines). Prior to secondary blasting, tests for methane shall be made in the...
30 CFR 57.22608 - Secondary blasting (I-A, II-A, and V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting (I-A, II-A, and V-A mines). 57.22608 Section 57.22608 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... blasting (I-A, II-A, and V-A mines). Prior to secondary blasting, tests for methane shall be made in the...
Use of polyclonal anti-myeloperoxidase antibody in myeloid lineage determination.
Karnik, M P; Nair, C N; Zingde, S M; Gothoskar, B P; Zachariah, L; Barbhaya, S; Advani, S H
1994-12-01
This study reports the production of a rabbit polyclonal antibody to myeloperoxidase (MPO) and its use in ascertaining the myeloid lineage of blasts in leukaemia. Comparison of the immunocytochemical stain using the anti-MPO antibody with the routine cytochemical methodology showed that the former was more sensitive. In all subtypes of acute myeloid leukaemia (AML; 72 patients, M1-M6) greater number of MPO positive blast cells were observed by immunocytochemistry, the highest being in the promyelocytic leukaemia. It was also extremely specific for cells of the myeloid lineage as it did not react with blasts from acute lymphoblastic (50 patients) and megakaryoblastic leukaemias (1 patient). In addition, it proved most useful for the lineage determination of blasts from patients with undifferentiated acute leukaemias (AUL) and those with chronic myeloid leukaemia in blast crisis (CML-BC). Out of 8 patients of AULs, 6 were classified as acute myeloblastic leukaemia due to their reactivity to the anti-MPO antibody. Similarly, out of 12 patients of chronic myeloid leukaemia in blast crisis, blasts from 8 showed reactivity to this antibody and thus could be identified as belonging to the myeloid lineage and/or of the mixed blast crisis type.
NASA Astrophysics Data System (ADS)
Codina, R.; Ambrosini, D.
2018-03-01
For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.
Simulating maar-diatreme volcanic systems in bench-scale experiments
NASA Astrophysics Data System (ADS)
Andrews, R. G.; White, J. D. L.; Dürig, T.; Zimanowski, B.
2015-12-01
Maar-diatreme eruptions are incompletely understood, and explanations for the processes involved in them have been debated for decades. This study extends bench-scale analogue experiments previously conducted on maar-diatreme systems and attempts to scale the results up to both field-scale experimentation and natural volcanic systems in order to produce a reconstructive toolkit for maar volcanoes. These experimental runs produced via multiple mechanisms complex deposits that match many features seen in natural maar-diatreme deposits. The runs include deeper single blasts, series of descending discrete blasts, and series of ascending blasts. Debris-jet inception and diatreme formation are indicated by this study to involve multiple types of granular fountains within diatreme deposits produced under varying initial conditions. The individual energies of blasts in multiple-blast series are not possible to infer from the final deposits. The depositional record of blast sequences can be ascertained from the proportion of fallback sedimentation versus maar ejecta rim material, the final crater size and the degree of overturning or slumping of accessory strata. Quantitatively, deeper blasts involve a roughly equal partitioning of energy into crater excavation energy versus mass movement of juvenile material, whereas shallower blasts expend a much greater proportion of energy in crater excavation.
Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.
Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam
2015-11-01
Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.
Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill
NASA Astrophysics Data System (ADS)
Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.
2018-05-01
Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.
Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill
NASA Astrophysics Data System (ADS)
Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.
2018-02-01
Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.
Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process
NASA Astrophysics Data System (ADS)
Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin
2016-05-01
Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.
Grit blasting and the marginal accuracy of two ceramic veneer systems--a pilot study.
Lim, C; Ironside, J G
1997-04-01
Margins of ceramic restorations can be damaged during removal of investment materials with grit blasting and result in relatively large marginal discrepancies and excessive marginal discrepancies with greater exposure of cement to the oral environment. Subsequent dissolution of cement can encourage plaque retention, dental caries, and periodontal problems. This study compared marginal adaptation of ceramic veneers created by the refractory die technique (R), Dicor glass ceramic technique (D), and effects of grit blasting on their margins. Two groups of ceramic veneers were constructed for each system, one without grit blasting (R g and D g) and one with grit blasting (R+g and D+g). Statistical analyses revealed that grit blasting had a greater effect in reducing marginal accuracy for Dicor ceramic veneers compared with refractory die ceramic veneers.
NASA Astrophysics Data System (ADS)
Carson, Robert Andrew
One of the primary aspects of the research and development work carried out at Benet Laboratories is the Soldier. Maintenance of their health in the field is the first priority while the second priority is the enhancement of their performance. Therefore, a new concept for a weapon system that targets these two priorities is highly desirable. This is the case with a new concept that can reduce the peak overpressure without the use of a muzzle device for a muzzle loaded cannon system. Such a novel concept was developed in this thesis through the application of propellant leak into the precursor region, i.e., when the projectile is still in the bore. A 3D hydrocode (ALE3D) was employed to predict the blast overpressure for the baseline and propellant leak configurations. However, a 3D hydrocode is computationally very expensive to predict peak overpressure in the far-field and an efficient method to predict peak overpressure in the far-field is of significance. Therefore, scaling laws for primary blast peak overpressure were also developed in this thesis. Initially, two propellant leak concepts were examined. A bulge leak method and a channel leak method, which were compared to the baseline configuration. The initial channel leak configuration (referred to as CLM-1) significantly reduced the exit pressure ratio during projectile ejection, and thereby, resulted in a weaker blast. This in-turn substantially attenuated the peak overpressure to the rear of the muzzle without the aid of a muzzle device while having a marginal loss in the projectile exit velocity. For CLM-1, at one monitored location with the largest peak overpressure, a reduction of about 38% in peak overpressure was observed as compared to the baseline case. In order to compare different leak configurations, a performance metric was defined by comparing the ratio of peak overpressure and projectile exit velocity for a leak configuration to that for the baseline configuration. This metric was referred to as the Figure of Merit (FoM) and defined for any probe location. An average FoM was also defined based on the average of local FoM over different locations/probes. The greater the FoM is above zero, the better the configuration. The average FoM for the CLM-1 configuration was 0.221. In addition to FoM, shock structure and strength were also analyzed for the bulge and channel configurations at both the precursor and blast stages. With the success of the CLM-1 configuration, we then performed a parametric study of the channel leak geometry and examined the effect of different geometric parameters on peak overpressure attenuation. The idea was to further improve the performance of the channel leak method. We divided our parametric study into five groups (i.e., A through E), referred to as CLM-A through CLM-E configurations. The focus in these five groups was on geometric parameters that were expected to be the most influential or relevant. Three relevant geometric parameters were considered in this work. In groups A and B, we focused on channel leak volume. Group C analyzed the effect of channel length while groups D and E investigated the effect of aspect ratio. The five groups were ordered in this way because we anticipated the total leak volume to be the most influential parameter, then the channel length which was followed by the aspect ratio. The total leak volume of 7.5% resulted in a relatively high average FoM. On the other hand, the use of channels with a shorter length was found to be detrimental while a lower value of aspect ratio was beneficial. Three leak configurations of CLM-A1, CLM-E1 and CLM-E2 provided excellent peak overpressure attenuation (i.e., above 45% and up to 63%). Each led to an average FoM above 0.5 while CLM-E configurations resulted in lower local FoM for probes near the muzzle and higher FoM for probes farther from the muzzle, and thus, a higher variation of FoM over the probes. The average FoM based on the far-field probes was about 0.575 and 0.560 for CLM-E1 and CLM-E2, respectively, and 0.520 for CLM-A1. Blast structure and strength were also analyzed for these three configurations. In the last part of this thesis, we focused on the baseline and CLM-A1 configurations in order to develop scaling laws for the primary blast peak overpressure. Two different power-law scaling techniques were considered. In the first power-law, scaling parameters were defined from the muzzle center. The second power-law scaling was defined based on the blast center. The muzzle center based power-law has been used in the past while the blast center based power-law is a newly developed scaling law in this thesis. For the baseline configuration, both scaling laws performed well and for many locations absolute difference was below 10%. For the CLM-A1 configuration, blast center based power-law predictions were better than those from the muzzle center based power-law and showed a better overall correlation with the ALE3D predictions.
13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH ...
13. BUILDING NO. 621, INTERIOR, TOP OF BLASTING TUB UNDERNEATH SAWDUST HOPPER. BLASTING TUB HAS DOUBLE WALLS OF 3/4' THICK STEEL ARMOR PLATE. CHARGE TO BE TESTED IS BURIED IN SAWDUST WITH FLAME RESISTANT CHEMICALS. ELEVATOR BEHIND TUB CARRIES SAWDUST BACK TO TOP OF SAWDUST HOPPER AFTER TEST IS COMPLETED AND SAWDUST IN BLASTING TUB HAS BEEN SIFTED FOR SHELL FRAGMENTS. LOUVERS IN WALLS ARE HINGED FREELY SO THEY OPEN TO RELIEVE BLAST PRESSURE DURING A TEST. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
1986-06-01
Flash 3. (342 g) Electrically Comp Actuated By Blasting Machine or Battery 5/ 8 STD 37524 Simulator, Projectile M1lSA2 0.30 7549246 MIL-S-10058 Hand...8799710 Blastin Comp (0.07 oz) Blasting (Whistle) Fuze Fuze 8-14 Frictio Friction (Burst) ’ l3AI M3A1 721 Igniter 8833721 Igniter last 5-10 8799714...8799715 iBlasti Blasting Sec FuzeN Fuze M3A1 •721 Igniter 8833721 Igniter Inst 6-10 8799714 879971 Blast Blasting See Fuze Puze N13A1 587 FrictLi 8848587
Mechanical and histological characterization of trachea tissue subjected to blast-type pressures
NASA Astrophysics Data System (ADS)
Butler, B. J.; Bo, C.; Tucker, A. W.; Jardine, A. P.; Proud, W. G.; Williams, A.; Brown, K. A.
2014-05-01
Injuries to the respiratory system can be a component of polytrauma in blast-loading injuries. Tissues located at air-liquid interfaces, including such tissues in the respiratory system, are particularly vulnerable to damage by blast overpressures. There is a lack of information about the mechanical and cellular responses that contribute to the damage of this class of tissues subjected to the high strain rates associated with blast loading. Here, we describe the results of dynamic blast-like pressure loading tests at high strain rates on freshly harvested ex vivo trachea tissue specimens.
On the Interaction and Coalescence if Spherical Blast Waves
NASA Technical Reports Server (NTRS)
Kandula, Max; Freeman, Robert J.
2005-01-01
The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.
Electronic firing systems and methods for firing a device
Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID
2012-04-24
An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.
Local Responses to Global Problems: A Key to Meeting Basic Human Needs. Worldwatch Paper 17.
ERIC Educational Resources Information Center
Stokes, Bruce
The booklet maintains that the key to meeting basic human needs is the participation of individuals and communities in local problem solving. Some of the most important achievements in providing food, upgrading housing, improving human health, and tapping new energy sources, comes through local self-help projects. Proponents of local efforts at…
Jiao, Bo; Ren, Zhi-Hong; Liu, Ping; Chen, Li-Juan; Shi, Jing-Yi; Dong, Ying; Ablain, Julien; Shi, Lin; Gao, Li; Hu, Jun-Pei; Ren, Rui-Bao; de Thé, Hugues; Chen, Zhu; Chen, Sai-Juan
2013-01-01
The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3′, 5′-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients. PMID:23382200
Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing
Hasan, Nur A.; Young, Brian A.; Minard-Smith, Angela T.; Saeed, Kelly; Li, Huai; Heizer, Esley M.; McMillan, Nancy J.; Isom, Richard; Abdullah, Abdul Shakur; Bornman, Daniel M.; Faith, Seth A.; Choi, Seon Young; Dickens, Michael L.; Cebula, Thomas A.; Colwell, Rita R.
2014-01-01
Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS) is now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy, showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma proteobacteria. Basic Local Alignment Search Tool (BLASTn) analysis in parallel, reported ca. five times more species than those actually comprising the in silico sample. Both GENIUSand BLAST analyses of saliva samples identified major genera comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate system for identification and quantification of bacterial species and/or strains in metagenomic samples. PMID:24846174
Preveena, Jagadesan; Bhore, Subhash J
2013-01-01
In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.
Adam, Alexander; Deimel, Stephan; Pardo-Medina, Javier; García-Martínez, Jorge; Konte, Tilen; Limón, M. Carmen; Avalos, Javier
2018-01-01
Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus. PMID:29324661
Predicting the host of influenza viruses based on the word vector.
Xu, Beibei; Tan, Zhiying; Li, Kenli; Jiang, Taijiao; Peng, Yousong
2017-01-01
Newly emerging influenza viruses continue to threaten public health. A rapid determination of the host range of newly discovered influenza viruses would assist in early assessment of their risk. Here, we attempted to predict the host of influenza viruses using the Support Vector Machine (SVM) classifier based on the word vector, a new representation and feature extraction method for biological sequences. The results show that the length of the word within the word vector, the sequence type (DNA or protein) and the species from which the sequences were derived for generating the word vector all influence the performance of models in predicting the host of influenza viruses. In nearly all cases, the models built on the surface proteins hemagglutinin (HA) and neuraminidase (NA) (or their genes) produced better results than internal influenza proteins (or their genes). The best performance was achieved when the model was built on the HA gene based on word vectors (words of three-letters long) generated from DNA sequences of the influenza virus. This results in accuracies of 99.7% for avian, 96.9% for human and 90.6% for swine influenza viruses. Compared to the method of sequence homology best-hit searches using the Basic Local Alignment Search Tool (BLAST), the word vector-based models still need further improvements in predicting the host of influenza A viruses.
Designing probe from E6 genome region of human Papillomavirus 16 for sensing applications.
Parmin, Nor Azizah; Hashim, Uda; Gopinath, Subash C B
2018-02-01
Human Papillomavirus (HPV) is a standout amongst the most commonly reported over 100 types, among them genotypes 16, 18, 31 and 45 are the high-risk HPV. Herein, we designed the oligonucleotide probe for the detection of predominant HPV type 16 for the sensing applications. Conserved amino acid sequences within E6 region of the open reading frame in the HPV genome was used as the basis to design oligonucleotide probe to detect cervical cancer. Analyses of E6 amino acid sequences from the high-risk HPVs were done to check the percentage of similarity and consensus regions that cause different cancers, including cervical cancer. Basic local alignment search tools (BLAST) have given extra statistical parameters, for example, desire values (E-values) and score bits. The probe, 'GGG GTC GGT GGA CCG GTC GAT GTA' was designed with 66.7% GC content. This oligonucleotide probe is designed with the length of 24 mer, GC percent is between 40 and 70, and the melting point (Tm) is above 50°C. The probe needed an acceptable length between 22 and 31 mer. The choice of region is identified here can be used as a probe, has implications for HPV detection techniques in biosensor especially for clinical determination of cervical cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Material-Model-Based Determination of the Shock-Hugoniot Relations in Nanosegregated Polyurea
NASA Astrophysics Data System (ADS)
Grujicic, Mica; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.
2014-02-01
Previous experimental investigations reported in the open literature have indicated that applying polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles, and laboratory/field test-plates, as well as the blast-mitigation capacity of combat helmets. The protective role of polyurea coatings/linings has been linked to polyurea microstructure, which consists of discrete hard-domains distributed randomly within a compliant/soft matrix. When this protective role is investigated computationally, the availability of reliable, high-fidelity constitutive models for polyurea is vitally important. In the present work, a comprehensive overview and a critical assessment of a polyurea material constitutive model, recently proposed by Shim and Mohr (Int J Plast 27:868-886, 2011), are carried out. The review revealed that this model can accurately account for the experimentally measured uniaxial-stress versus strain data obtained under monotonic and multistep compressive loading/unloading conditions, as well as under stress relaxation conditions. On the other hand, by combining analytical and finite-element procedures with the material model in order to define the basic shock-Hugoniot relations for this material, it was found that the computed shock-Hugoniot relations differ significantly from their experimental counterparts. Potential reasons for the disagreement between the computed and experimental shock-Hugoniot relations are identified.
Alkali-activated concrete with Serbian fly ash and its radiological impact.
Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena
2017-03-01
The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of 40 K, 226 Ra and 232 Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.
2016-03-01
to the systemic and perhaps local antimicrobial therapies geared towards decreasing bioburden in combat wounds. 6 Using our blast-related HO...Farms, Germantown, New York; 400 g to 510 g) that were housed in clean plastic cages on a 12-hour light/dark cycle with access to food (standard chow...inflammatory neuro- peptides . For example, substance-P, acting through the neu- rokinin-1 receptor (NK1), and calcitonin gene-related peptide (CGRP) result
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.L.; Gross, D.; Pearson, D.C.
In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic,more » videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.« less
30 CFR 57.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...
30 CFR 57.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...
30 CFR 57.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...
30 CFR 57.6605 - Isolation of blasting circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be protected...
USDA-ARS?s Scientific Manuscript database
Quantitative trait loci (QTL) in rice play important roles in controlling rice blast disease. In the present study, 10 field isolates of the races IA1, IB1, IB17, and IC1 of U.S. rice blast fungus Magnaporthe oryzae collected in 1996 and 2009 were used to identify blast resistance QTL with a recombi...
Chemical Initiation of FAE Clouds
1980-11-01
iadlded significant FAE blasts when performed in open air, no blasl when performed in an atmosphere of nitrogen, and a very strong blast when per...miniature experiments produced well-measurable blast pressures which were considerably larger when the ambient atmosphere was air instead of nitrogen, and...very much larger when the ambient atmosphere was oxygen. It was thus demonstrated that the blast wave is reinforced by release of combustion energy
2010-12-01
Simulation of Free -Field Blast ........................................................................45 27. (a) Peak Incident Pressure and (b...several types of problems involving blast propagation. Mastin et al. (1995) compared CTH simulations to free -field incident pressure as predicted by...a measure of accuracy and efficiency. To provide this direct comparison, a series of 2D-axisymmetric free -field air blast simulations were
Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Budde, Matthew D.; Pintar, Frank A.; Tarima, Sergey; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra
2015-01-01
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure. PMID:25729377
Dietary Zinc Modulates Matrix Metalloproteinases in Traumatic Brain Injury.
Scrimgeour, Angus; Carrigan, Christopher; Condlin, Michelle Lynn; Urso, Maria L; van den Berg, Roland M; van Helden, Herman P M; Montain, Scott J; Joosen, Marloes J A
2018-05-18
Animal models of mild traumatic brain injury (mTBI) provide opportunity to examine the extent to which dietary interventions can be used to improve recovery after injury. Animal studies also suggest that matrix metalloproteinases (MMPs) play a role in tissue remodeling post-TBI. Because dietary zinc (Zn) improved recovery in non-blast mTBI models, and the MMPs are Zn-requiring enzymes, we evaluated the effects of low- and adequate Zn diets on MMP expression and behavioral responses, following exposure to a single blast. MMP mRNA expression in soleus muscle and frontal cortex tissues were quantified at 48h and 14d post-blast. In muscle, blast resulted in significant upregulation of MT-MMP, MMP-2, TIMP-1 and TIMP-2 at 48h post-injury in rats consuming adequate Zn diets (AdZn). At 14d post-blast, there were no blast- or dietary-effects observed on MMP levels in muscle, supporting the existence of a Zn-responsive, functional repair and remodeling mechanism. In contrast, blast resulted in a significant down-regulation of MT-MMP, TIMP-1 and TIMP-2, and a significant up-regulation of MMP-3 levels at 48h post-injury in cortex tissue; while at 14d post-blast, MT-MMP, MMP-2 and TIMP-2 were all down-regulated in response to blast, independent of diet, and TIMP-1 were significantly increased in rats fed AdZn diets despite the absence of elevated MMPs. Because the blast injuries occurred while animals were under general anesthesia, the increased immobility observed post-injury in rats consuming LoZn diets, suggest that blast mTBI can, in the absence of any psychological stressor, induce PTSD-related traits that are chronic, but responsive to diet. Taken together, our results support a relationship between marginally Zn-deficient status and a compromised regenerative response post-injury in muscle, likely through the MMP pathway. However, in neuronal tissue changes in MMP/TIMP levels following blast indicate a variable response to marginally Zn-deficient diets that may help explain compromised repair mechanism(s) previously associated with the systemic hypozincemia that develops in patients with TBI.
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.
2018-05-01
Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.
Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L.; Pait, Morgan C.; Almeida, Michael F.; Ghukasyan, Vladimir V.; Bahr, Ben A.
2017-01-01
Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37 °C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15 cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1–3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1–2 days later, slices that received two consecutive RDX blasts 4 min apart exhibited a 26–40% reduction in GluR1, and the receptor subunit was further reduced by 64–72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72 h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology. PMID:27720798
Zhang, Liying; Makwana, Rahul; Sharma, Sumit
2013-01-01
Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591
NASA Astrophysics Data System (ADS)
Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.
2018-04-01
Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.
Sensory coding and cognitive processing of sound in Veterans with blast exposure
Bressler, Scott; Goldberg, Hannah; Shinn-Cunningham, Barbara
2017-01-01
Recent anecdotal reports from VA audiology clinics as well as a few published studies have identified a sub-population of Service Members seeking treatment for problems communicating in everyday, noisy listening environments despite having normal to near-normal hearing thresholds. Because of their increased risk of exposure to dangerous levels of prolonged noise and transient explosive blast events, communication problems in these soldiers could be due to either hearing loss (traditional or “hidden”) in the auditory sensory periphery or from blast-induced injury to cortical networks associated with attention. We found that out of the 14 blast-exposed Service Members recruited for this study, 12 had hearing thresholds in the normal to near-normal range. A majority of these participants reported having problems specifically related to failures with selective attention. Envelope following responses (EFRs) measuring neural coding fidelity of the auditory brainstem to suprathreshold sounds were similar between blast-exposed and non-blast controls. Blast-exposed subjects performed substantially worse than non-blast controls in an auditory selective attention task in which listeners classified the melodic contour (rising, falling, or “zig-zagging”) of one of three simultaneous, competing tone sequences. Salient pitch and spatial differences made for easy segregation of the three concurrent melodies. Poor performance in the blast-exposed subjects was associated with weaker evoked response potentials (ERPs) in frontal EEG channels, as well as a failure of attention to enhance the neural responses evoked by a sequence when it was the target compared to when it was a distractor. These results suggest that communication problems in these listeners cannot be explained by compromised sensory representations in the auditory periphery, but rather point to lingering blast-induced damage to cortical networks implicated in the control of attention. Because all study participants also suffered from post-traumatic disorder (PTSD), follow-up studies are required to tease apart the contributions of PTSD and blast-induced injury on cognitive performance. PMID:27815131
Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L
2016-02-01
Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.
Heldt, Scott A.; Elberger, Andrea J.; Deng, Yunping; Guley, Natalie H.; Del Mar, Nobel; Rogers, Joshua; Choi, Gy Won; Ferrell, Jessica; Rex, Tonia S.; Honig, Marcia G.; Reiner, Anton
2014-01-01
Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25–40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50–60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2–8 weeks after blast, 50–60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3–8 weeks after blast. Thus, the TBI caused by single 50–60 psi blasts in mice exhibits the minimal neuronal loss coupled to “diffuse” axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI. PMID:24478749
30 CFR 77.1304 - Blasting agents; special provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...
30 CFR 77.1304 - Blasting agents; special provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...
30 CFR 77.1304 - Blasting agents; special provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored in... Sensitized Ammonium Nitrate Blasting Agents,” or subsequent revisions. (b) Where pneumatic loading is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.S.; Wang, C.; Minkin, S.
The blast cells in acute myeloblastic leukemia (AML) respond to many of the same regulatory mechanisms that control normal hemopoiesis. These include the growth factors that bind to membrane receptors and steroid hormones or vitamins that have intracellular receptors. The authors report the effects in culture of the steroid glucocorticoid hydrocortisone on freshly explanted AML blasts from patients and on two continuous AML cell lines. Only small changes in clonogenic cell numbers in suspension cultures were seen in the presence of hydrocortisone. The most striking effect of the hormone was on the sensitivity of blasts cells to cytosine arabinoside (ara-C).more » In contrast to the response of AML blast cells to retinoic acid, a ligand for intracellular steroid receptors that sensitizes some blast populations to ara-C, hydrocortisone reduced the toxic effects of the drug. The protective action of hydrocortisone was not mediated through the cell cycle since exposure of blasts to hydrocortisone did not affect the percentage of cells in DNA synthesis as measured with the tritiated thymidine (3HTdR) suicide technique. The hydrocortisone effect could be demonstrated using a pulse (20 min) exposure protocol. Blasts pulsed with increasing specific activities of 3HTdR showed the usual response pattern with an initial loss in plating efficiency to about 50% of control, followed by a plateau, regardless of whether the cells had been exposed to hydrocortisone. Control blasts exposed to increasing ara-C concentrations gave very similar dose-response curves; in striking contrast, blast cells cultured in hydrocortisone, then pulsed with ara-C did not lose colony-forming ability even though the same population was sensitive to 3HTdR.« less
Modelling and Testing of Blast Effect On the Structures
NASA Astrophysics Data System (ADS)
Figuli, Lucia; Jangl, Štefan; Papán, Daniel
2016-10-01
As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.
Large scale germplasm screening for identification of novel rice blast resistance sources
Vasudevan, Kumar; Vera Cruz, Casiana M.; Gruissem, Wilhelm; Bhullar, Navreet K.
2014-01-01
Rice is a major cereal crop that contributes significantly to global food security. Biotic stresses, including the rice blast fungus, cause severe yield losses that significantly impair rice production worldwide. The rapid genetic evolution of the fungus often overcomes the resistance conferred by major genes after a few years of intensive agricultural use. Therefore, resistance breeding requires continuous efforts of enriching the reservoir of resistance genes/alleles to effectively tackle the disease. Seed banks represent a rich stock of genetic diversity, however, they are still under-explored for identifying novel genes and/or their functional alleles. We conducted a large-scale screen for new rice blast resistance sources in 4246 geographically diverse rice accessions originating from 13 major rice-growing countries. The accessions were selected from a total collection of over 120,000 accessions based on their annotated rice blast resistance information in the International Rice Genebank. A two-step resistance screening protocol was used involving natural infection in a rice uniform blast nursery and subsequent artificial infections with five single rice blast isolates. The nursery-resistant accessions showed varied disease responses when infected with single isolates, suggesting the presence of diverse resistance genes/alleles in this accession collection. In addition, 289 accessions showed broad-spectrum resistance against all five single rice blast isolates. The selected resistant accessions were genotyped for the presence of the Pi2 resistance gene, thereby identifying potential accessions for isolation of allelic variants of this blast resistance gene. Together, the accession collection with broad spectrum and isolate specific blast resistance represent the core material for isolation of previously unknown blast resistance genes and/or their allelic variants that can be deployed in rice breeding programs. PMID:25324853
Compressive strength after blast of sandwich composite materials
Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.
2014-01-01
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494
NASA Astrophysics Data System (ADS)
Liang, Qingguo; Li, Jie; Li, Dewu; Ou, Erfeng
2013-01-01
The vibrations of existing service tunnels induced by blast-excavation of adjacent tunnels have attracted much attention from both academics and engineers during recent decades in China. The blasting vibration velocity (BVV) is the most widely used controlling index for in situ monitoring and safety assessment of existing lining structures. Although numerous in situ tests and simulations had been carried out to investigate blast-induced vibrations of existing tunnels due to excavation of new tunnels (mostly by bench excavation method), research on the overall dynamical response of existing service tunnels in terms of not only BVV but also stress/strain seemed limited for new tunnels excavated by the full-section blasting method. In this paper, the impacts of blast-induced vibrations from a new tunnel on an existing railway tunnel in Xinjiang, China were comprehensively investigated by using laboratory tests, in situ monitoring and numerical simulations. The measured data from laboratory tests and in situ monitoring were used to determine the parameters needed for numerical simulations, and were compared with the calculated results. Based on the results from in situ monitoring and numerical simulations, which were consistent with each other, the original blasting design and corresponding parameters were adjusted to reduce the maximum BVV, which proved to be effective and safe. The effect of both the static stress before blasting vibrations and the dynamic stress induced by blasting on the total stresses in the existing tunnel lining is also discussed. The methods and related results presented could be applied in projects with similar ground and distance between old and new tunnels if the new tunnel is to be excavated by the full-section blasting method.
ERIC Educational Resources Information Center
Kentucky State Dept. of Education, Frankfort.
This document is a statement of the basic music skills that Kentucky students should develop. This skills list does not replace any locally developed curriculum. It is intended as a guide for local school districts in Kentucky in their development of a detailed K-12 curriculum. The skills presented are considered basic to a sound education program…
Han, Kihwan; Mac Donald, Christine L.; Johnson, Ann M.; Barnes, Yolanda; Wierzechowski, Linda; Zonies, David; Oh, John; Flaherty, Stephen; Fang, Raymond; Raichle, Marcus E.; Brody, David L.
2013-01-01
Blast-related traumatic brain injury (TBI) has been one of the “signature injuries” of the wars in Iraq and Afghanistan. However, neuroimaging studies in concussive ‘mild’ blast-related TBI have been challenging due to the absence of abnormalities in computed tomography or conventional magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms. The goal of this study was to address these challenges utilizing single-subject, module-based graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20 minutes of resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects underwent an initial scan within 90 days post-injury and 65 subjects underwent a follow-up scan 6 to 12 months later. A second independent cohort of 40 U.S. military personnel with concussive blast-related TBI patients served as a validation dataset. The second independent cohort underwent an initial scan within 30 days post-injury. 75% of scans were of good quality, with exclusions primarily due to excessive subject motion. Network analysis of the subset of these subjects in the first cohort with good quality scans revealed spatially localized reductions in participation coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls at the time of the initial scan. These group differences were less prominent on the follow-up scans. The 15 brain areas with the most prominent reductions in participation coefficient were next used as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than would be expected by chance (27/47 versus 2/47 expected, p < 0.0001) had 3 or more brain regions with abnormally low between-module connectivity relative to the controls on the initial scans. On the follow-up scans, more subjects than expected by chance (5/37, p = 0.044) but fewer subjects than on the initial scans had 3 or more brain regions with abnormally low between-module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters provided a partial replication; again more subjects than expected by chance (8/31, p = 0.006) had 3 or more brain regions with abnormally low between-module connectivity on the initial scans, but the numbers were not significant (2/27, p = 0.276) on the follow-up scans. A single-subject, multivariate analysis by probabilistic principal component analysis of the between-module connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31 patients were found to be abnormal in identical multivariate analysis with no free parameters. Again, there were not substantial differences on the follow-up scans. Taken together, these results indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides potentially useful information for concussive blast-related TBI if high quality scans can be obtained. The underlying biological mechanisms and consequences of disrupted between-module connectivity are unknown, thus further studies are required. PMID:23968735
33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).
Code of Federal Regulations, 2013 CFR
2013-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1083 Duluth... blast followed by two short blasts and for the Wisconsin Draw is two prolonged blasts followed by two...
33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).
Code of Federal Regulations, 2014 CFR
2014-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1083 Duluth... blast followed by two short blasts and for the Wisconsin Draw is two prolonged blasts followed by two...
33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).
Code of Federal Regulations, 2012 CFR
2012-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1083 Duluth... blast followed by two short blasts and for the Wisconsin Draw is two prolonged blasts followed by two...
33 CFR 117.1083 - Duluth-Superior Harbor (St. Louis River).
Code of Federal Regulations, 2011 CFR
2011-07-01
... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1083 Duluth... blast followed by two short blasts and for the Wisconsin Draw is two prolonged blasts followed by two...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
29 CFR 1926.912 - Underwater blasting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...
Internal ballistics of the detonation products of a blast-hole charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangush, S.K.; Garbunov, V.A.
1986-07-01
The authors investigate the gasdynamic flow of the detonation products of a blast-hole charge (the expansion of the detonation products in the blast hole and the gas outflow and propagation of shock airwaves into the face space). The problem is solved by means of a numerical program for integration of partial differential equations of one-dimensional gas-dynamics. A numerical model of the internal ballistics of a blast-hole charge is presented. In addition to the variation of the thermodynamic parameters in the blast hole, the formation of the shock wave in the face space is shown, which is the source of gasmore » ignition. Further development of the numerical model of the action of blast-hole charges is planned which will involve an analysis of a number of applied problems.« less
Paint removal activities in Canada
NASA Astrophysics Data System (ADS)
Foster, Terry
1993-03-01
Paint removal activities currently under way in Canada include: research and development of laser paint stripping; development and commercialization of a new blasting medium based on wheat starch; commercialization of a new blasting medium and process using crystalline ice blasting for paint removal and surface cleaning; and the development of automated and robotic systems for paint stripping applications. A specification for plastic media blasting (PMB) of aircraft and aircraft components is currently being drafted by NDHQ for use by the Canadian Armed Forces (CAF) and contractors involved in coating removal for the CAF. Defense Research Establishment Pacific (DREP) is studying the effects of various blast media on coating removal rates, and minimizing the possibility of damage to substrates other than aluminum such as graphite epoxy composite and Kevlar. The effects of plastic media blasting on liquid penetrant detection of fatigue cracks is also under investigation.
Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y
1992-05-01
We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.
Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.
Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A
2014-02-24
We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.
A Homogenization Approach for Design and Simulation of Blast Resistant Composites
NASA Astrophysics Data System (ADS)
Sheyka, Michael
Structural composites have been used in aerospace and structural engineering due to their high strength to weight ratio. Composite laminates have been successfully and extensively used in blast mitigation. This dissertation examines the use of the homogenization approach to design and simulate blast resistant composites. Three case studies are performed to examine the usefulness of different methods that may be used in designing and optimizing composite plates for blast resistance. The first case study utilizes a single degree of freedom system to simulate the blast and a reliability based approach. The first case study examines homogeneous plates and the optimal stacking sequence and plate thicknesses are determined. The second and third case studies use the homogenization method to calculate the properties of composite unit cell made of two different materials. The methods are integrated with dynamic simulation environments and advanced optimization algorithms. The second case study is 2-D and uses an implicit blast simulation, while the third case study is 3-D and simulates blast using the explicit blast method. Both case studies 2 and 3 rely on multi-objective genetic algorithms for the optimization process. Pareto optimal solutions are determined in case studies 2 and 3. Case study 3 is an integrative method for determining optimal stacking sequence, microstructure and plate thicknesses. The validity of the different methods such as homogenization, reliability, explicit blast modeling and multi-objective genetic algorithms are discussed. Possible extension of the methods to include strain rate effects and parallel computation is also examined.
Popivanov, Georgi; Mutafchiyski, V M; Belokonski, E I; Parashkevov, A B; Koutin, G L
2014-03-01
The world remains plagued by wars and terrorist attacks, and improvised explosive devices (IED) are the main weapons of our current enemies, causing almost two-thirds of all combat injuries. We wished to analyse the pattern of blast trauma on the modern battlefield and to compare it with combat gunshot injuries. Analysis of a consecutive series of combat trauma patients presenting to two Bulgarian combat surgical teams in Afghanistan over 11 months. Demographics, injury patterns and Injury Severity Scores (ISS) were compared between blast and gunshot-injured casualties using Fisher's Exact Test. The blast victims had significantly higher median ISS (20.54 vs 9.23) and higher proportion of ISS>16 (60% vs 33.92%, p=0.008) than gunshot cases. They also had more frequent involvement of three or more body regions (47.22% vs 3.58%, p<0.0001). A significantly higher frequency of head (27.27% vs 3.57%), facial (20% vs 0%) and extremities injuries (85.45% vs 42.86%) and burns (12.72% vs 0%) was noted among the victims of explosion (p<0.0001). Based on clinical examination and diagnostic imaging, primary blast injury was identified in 24/55 (43.6%), secondary blast injury in 37 blast cases (67.3%), tertiary in 15 (27.3%) and quaternary blast injury (all burns) in seven (12.72%). Our results corroborate the 'multidimensional' injury pattern of blast trauma. The complexity of the blast trauma demands a good knowledge and a special training of the military surgeons and hospital personnel before deployment.
Investigations of primary blast-induced traumatic brain injury
NASA Astrophysics Data System (ADS)
Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.
2018-01-01
The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.
Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP
2010-07-01
1 BLAST DESIGN OF REINFORCED CONCRETE AND MASONRY COMPONENTS RETROFITTED WITH FRP Marlon L. Bazan, Ph.D. and Charles J. Oswald, P.E., Ph.D...as an alternative to traditional methods for strengthening and retrofitting concrete and masonry structures to resist blast loads. The development...and experimental validation of a methodology for modeling the response of blast loaded concrete and masonry structural components retrofitted with FRP
The Pre-Blast Concept for use on Armour Materials
2016-02-01
to improve blast resistance Repeated blast test results (up to 7 times) of candidate armour materials showed that the greatest deformation...may be used to increase blast resistance of steels. To test this, the ‘pre-blast’ concept test program includes hardening of materials by sheet charge...steels with hardness 450 HV or higher (up to 650 HV). In general, the improvement in deformation resistance is associated with increases in