Science.gov

Sample records for blast furnace stove

  1. 11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. NOTE DOWNCOMER ON LEFT AND DAMPERS ON CHIMNEYS. CA. 1906. SOURCE: MACINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  2. DETAIL VIEW OF THE STOVES WITH HOT BLAST MAIN. #2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THE STOVES WITH HOT BLAST MAIN. #2 BLAST FURNACE IS TO THE IMMEDIATE LEFT. VIEW FROM THE SOUTHWEST. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  3. GENERAL VIEW OF TURBOBLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TURBO-BLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND HOT BLAST STOVES (RIGHT). - Republic Iron & Steel Company, Youngstown Works, Haselton Blast Furnaces, West of Center Street Viaduct, along Mahoning River, Youngstown, Mahoning County, OH

  4. Looking east at blast furnace no. 5 between the hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at blast furnace no. 5 between the hot blast stoves (left) and the dustcatcher (right). - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  5. 116. View looking southeast at stoves 2124 showing hot blast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. View looking southeast at stoves 21-24 showing hot blast main to No. 2 Furnace leading off to the right and gas main running in front of stoves. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  6. VIEW FACING EAST, VIEW FROM RIVER OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FACING EAST, VIEW FROM RIVER OF BLAST FURNACE NO. 3. DORR THICKENER & ORE BRIDGE AT LEFT, HOT BLAST STOVES & DUST CATCHER CENTER, CAST HOUSE AT RIGHT. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  7. 3. DETAIL, 3/4 VIEW OF HOT BLAST STOVE ON TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL, 3/4 VIEW OF HOT BLAST STOVE ON TOP OF FURNACE SHOWING CAST-IRON RETORTS AND TURNED HEAD (WHERE RAW MATERIALS WERE LOADED INTO FURNACE). - Nassawango Iron Furnace, Furnace Road, 1.2 miles west of Maryland Route 12, Snow Hill, Worcester County, MD

  8. 15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. 2 IN LOWER CENTER OF PHOTO AT THE BASE OF HOT BLAST STOVES. HOIST HOUSE No. 2 IS ON THE LEFT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  10. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  11. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  12. 84. View looking east down areaway between hot blast stoves ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    84. View looking east down areaway between hot blast stoves 25 and 26 at left and Blowing Engine House on the right. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  13. GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE IN THE RIGHT; THE CENTRAL COMPLEX WITH STOVES IN THE CENTER. ELECTRICAL POWER HOUSE IS ON THE LEFT BEYOND THE CONVEYOR LIFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  14. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  15. Rebuilding and modernization of blast furnace B'' at Cockerill-Sambre Ougree

    SciTech Connect

    Neuville, J.; Lecomte, P.; Massin, J.P.; Drimmer, D. )

    1993-01-01

    Blown in for the first time in 1962, the B blast furnace of Cockerill-Sambre was relined for the fourth time in 1989. The furnace produced 8,649,000 tons during the last campaign (1980 - 1989). Gunning repairs were carried out in 1985 and 1987. The blast furnace was blow down on June 30 and the burden level was lowered to the tuyere level. Afterwards a salamander of 350 tons was cast in open ladles. The relining of the blast furnace was performed on schedule and the furnace was blown in on the 4th of December 1989. The paper describes the relining goals and the main modifications. The specifications of the blast furnace are listed. Then the paper describes the modifications to the following systems: the charging computer system; the cooling system; the refractory materials; the hot stoves; blast furnace gas system; instrumentation and regulation; the blast furnace computer system; the pollution control equipment; and the cast floor.

  16. Blast furnace injection symposium: Proceedings

    SciTech Connect

    1996-12-31

    These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

  17. Inland Steel's No. 7 blast furnace third reline

    SciTech Connect

    Lowrance, K.F. II ); Johansson, J.; Carter, W.L. )

    1994-09-01

    The background information, investigation and benchmarking that led to a decision by Inland Steel to partially reline No. 7 blast furnace is covered. This approach reduced actual downtime on the furnace and extended the current campaign. This alternative allowed for the rebalancing of the physical plant of No. 7 blast furnace. Areas of scope covered are hearth, stack, stoves, gas cleaning and furnace top. Included are highlights of the execution of the project including schedules, blowdown, salamander tap, quench, dig out/descale, scaffolding used and brick installation. A summary of the actual results of the work is presented along with information on production planned, blow-in and the first 20 days of production.

  18. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  19. Partial reline of Inland`s No. 7 blast furnace

    SciTech Connect

    Lowrance, K.F. II; Johansson, J.; Carter, W.L.

    1995-10-01

    The background for the decision to partially reline No. 7 blast furnace that would achieve the same results as a complete reline is discussed. This approach was designed to reduce actual downtime on the furnace at a critical production period. Areas of work included the hearth, stack, stoves, gas cleaning and furnace top. Highlights of the project execution were: schedules; blowdown; salamander tap; quench; dig out/descale; scaffolding used; and brick installation. The furnace was blown-in 29 days after the blowdown and producing in excess of 9,000 tons/day after 12 days of operation. Inland has adopted a new definition for establishing campaign life based on refractory wear that includes a hearth monitoring system.

  20. Looking southwest at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  1. Looking southeast at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  2. INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  3. 9. LOOKING NORTH AT TRESTLE, HOIST HOUSE No. 1, BLAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. LOOKING NORTH AT TRESTLE, HOIST HOUSE No. 1, BLAST FURNACE No. 1, AND HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  4. 35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE BOILER SHOP IS ON THE RIGHT, IN FRONT OF HOT BLAST STOVES. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  5. Existing and prospective blast-furnace conditions

    SciTech Connect

    I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk

    2009-07-15

    Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

  6. Refractories for lining blast furnaces

    SciTech Connect

    Fedoruk, R.M.; Baksheeva, V.S.; Karyakina, E.L.; Khmelenko, T.P.; Pitak, N.V.

    1986-01-01

    The authors develop and introduce a technology for the production of chamotte kaolin refractories with a porosity of not more than 12% and a mass proportion of not less than 42% A1/sub 2/O/sub 3/ on the basis of chamotte from high-grade Polozhe kaolin, and also additions to the batch of finely milled mullite-corundum chamotte. Using the new technology, a batch of goods designated ShPD-42 was produced for lining the shafts, bosh, and upper parts of blast furnaces of large capacity.

  7. 3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. 56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Blast furnace supervision and control system

    SciTech Connect

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  10. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

    NASA Astrophysics Data System (ADS)

    Wiklund, Carl-Mikael; Pettersson, Frank; Saxén, Henrik

    2013-04-01

    The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

  11. Quality of coal for blast furnace injection

    SciTech Connect

    Hutny, W.P.; Giroux, L.; MacPhee, J.A.; Price, J.T.

    1996-12-31

    CANMET Energy Technology Centre (CETC) has been involved in a research program to evaluate the suitability of various coals for blast furnace injection. The primary objectives of this program are to provide essential information on coal combustion in the blast furnace and to establish proper criteria for evaluating and selecting coals for blast furnace injection. The program comprises three parts. Parts one and two have been completed. To date, the program has encompassed both a theoretical assessment of cooling and coke replacement characteristics of coals using CETC`s computer model and an experimental determination of the combustibility of coals of different ranks and particle sizes as well as the influence of oxygen enrichment on burnout. The experimental part was conducted in CETC`s pilot-scale injection unit that simulates blast furnace blowpipe-tuyere conditions. Part three now being developed will incorporate results of experimental trials into a blast furnace raceway model in order to predict total combustibility of coals at different blast furnace operating conditions. This paper describes CETC`s facility and methodology of work, and presents and discusses results.

  12. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  13. Stove

    SciTech Connect

    Johnson, C. A.

    1983-12-13

    A stove is described in which the fuel is combusted within a primary combustion zone and the products of combustion are transported into a tertiary combustion zone surrounded by a container of water. A bundle of secondary combustion tubes connect the primary and tertiary combustion zones. The tertiary combustion and separation chamber termed a posatron completes the combustion and separates a portion of the creosote and other condensable materials from the combustion gases. The combustion gases are then conducted through small pipes immersed in the water bath to cool the combustion gases and complete the condensation of water, creosote and other unburned constituents. The water and creosote mixture flows into a creosote collection chamber and the products of combustion are either recycled to the combustion chamber or exhaused to the atmosphere. Heat is removed from the system by recirculating air or by hot water circulation.

  14. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  15. Blast furnace repairs, relines and modernizations

    SciTech Connect

    Carpenter, J.A.; Swanson, D.E; Chango, R.F. . Burns Harbor Div.)

    1994-09-01

    Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%/year while fuel rate decreased 1%/year. This presentation summarizes the early repairs, relines and improvements that have sustained and enhanced the furnace's performance. The fourth reline of both furnaces will be discussed in detail. As part of the 1991 reline of D furnace its lines were improved and modern penstocks installed. The bosh, tuyere jacket, hearth jacket and both cast floors were replaced. The furnace now has a larger hearth making it easier to control and, liquid level is no longer a problem when pulling the wind to shut down. The new cast floor with its increased trough length has much improved separation of slag from iron and lowered refractory consumption. Since the cast floors on D furnace were changed, there has been a reduction in accidents and absenteeism. This may be related to the change in work practices on the new cast floors. The 1994 reline of C furnace incorporates those improvements made on D furnace in 1991. In addition, C furnace will have high-density cooling which is expected to double its campaign from 6 to 12 years, without interim repairs.

  16. 1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. 4 FROM CRAWFORD STREET IN THE CITY OF DUQUESNE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. 13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE No. 1, AND HOIST HOUSE No. 1. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. 6. Photocopy of a drawing of the lead blast furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  19. 58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED No. 3 IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. 31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE STOCKING TRESTLE LOOKING EAST. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. 55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX WITH LADLE HOUSE AND IRON DESULPHERIZATION BUILDING ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG RUNNERS & GATES IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  3. VIEW LOOKING NORTHWEST WITH OPENHEARTH TO LEFT WITH BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHWEST WITH OPEN-HEARTH TO LEFT WITH BLAST FURNACE NO. 2 AND CAST HOUSE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  4. 70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE STOCKHOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSEUP, IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSE-UP, IRON NOTCH IN CENTER. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  6. 59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING NORTHEAST. THE LADLE HOUSE IS ON THE RIGHT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. Blast furnace injection developments in British Steel

    SciTech Connect

    Jukes, M.H.

    1996-12-31

    British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

  8. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent.

  9. VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) SHARING THE SAME CAST HOUSE WITH BLAST FURNACE NO. 1. ORE BRIDGE & BLOWER HOUSE TO RIGHT, HULETT CAR DUMPER IS IN LEFT FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  10. Carbon monoxide exposure in blast furnace workers.

    PubMed

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  11. Process control techniques for the Sidmar blast furnaces

    SciTech Connect

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  12. Blast Furnace Granulated Coal Injection

    SciTech Connect

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  13. 1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE CARRIE FURNACES, FROM THE TOP OF WATER TOWER. CARRIE FURNACES No. 6 AND No. 7 ARE ON THE LEFT, AND FURNACES No. 3 AND No. 4 ARE ON THE RIGHT. THE TOWN OF RANKIN IS IN THE BACKGROUND. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  14. EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE NO. 3 (JANE FURNACE)/ORE BRIDGE TO THE RIGHT, WITH SINTERING PLANT CONVEYORS & TRANSFER HOUSE IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  15. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect

    Chaubal, P.C.; Ranade, M.G.

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  16. 17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 LOOKING EAST. THE BUSTLE PIPE IS VISIBLE ACROSS THE CENTER OF THE IMAGE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. 5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, AND No. 6, WITH ORE YARD IN THE FOREGROUND. BUILDING ON THE LEFT IS THE CENTRAL BOILER HOUSE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. General view of blast furnace "A"; looking southeast; The building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace "A"; looking southeast; The building to the right is the crucible steel building - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  19. Blast furnace lining and cooling technology: experiences at Corus IJmuiden

    SciTech Connect

    Stokman, R.; van Stein Cellenfels, E.; van Laar, R.

    2004-11-01

    This article describes the blast furnace lining and cooling concept as originally developed and applied by Hoogovens (Corus IJmuiden). The technology has also been applied by Danieli Corus in all its blast furnace projects executed in the last 25 years. The technology has helped Corus increase its PCI rate to over 200 kg/thm. 4 refs., 13 figs., 1 tab.

  20. Blast-furnace performance with coal-dust injection

    SciTech Connect

    G.G. Vasyura

    2007-07-01

    For the blast furnace shop at OAO Alchevskii Metallurgicheskii Kombinat (AMK) the injection of pulverized fuel is promising. Preliminary steps toward its introduction are underway, including analytical research. In this context, blast furnace performance when using pulverized coal is calculated in this study.

  1. Mathematical model and software for control of commissioning blast furnace

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  2. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  3. Anomaly detection of blast furnace condition using tuyere cameras

    NASA Astrophysics Data System (ADS)

    Yamahira, Naoshi; Hirata, Takehide; Tsuda, Kazuro; Morikawa, Yasuyuki; Takata, Yousuke

    2016-09-01

    We present a method of anomaly detection using multivariate statistical process control(MSPC) to detect the abnormal behaviors of a blast furnace. Tuyere cameras attached circumferentially at the lower side of a blast furnace are used to monitor the inside of the furnace and this method extracts abnormal behaviors of intensities. It is confirmed that with our method, detecting timing is earlier than operators' notice. Besides, misalignment of cameras doesn't affect detecting performance, which is important property in actual use.

  4. Development of heat-transfer circuits in the blast furnace

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.

    2016-09-01

    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  5. 29. Blast furnace plant, looking southeast. The Machine Shop and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  6. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  7. Mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  8. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  9. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  10. Removal of phosphate from aqueous solution with blast furnace slag.

    PubMed

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  11. Mercury in dumped blast furnace sludge

    NASA Astrophysics Data System (ADS)

    Földi, Corinna

    2014-05-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. As these wastes often contain high contents of zinc, lead, cadmium, and arsenic, significant hazards to environmental surroundings may arise from former BFS sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations (coke, iron ores, and additives such as olivine, bauxite, ilmenite and gravels) revealed Hg contents from 0.015 to 0.093 mg kg-1. In comparison, the Hg content of BFS varied between 0.006 and 20.8 mg kg-1 with a median of 1.63 mg kg-1, which indicates enrichment with Hg. For one site with a larger sample set (n = 31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r = 0.695; n = 31; p < 0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r = 0.496; n = 27; p = 0.008) indicating varying hazard potentials of the different BFS. Consequently, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  12. No. 5 blast furnace 1995 reline and upgrade

    SciTech Connect

    Kakascik, T.F. Jr.

    1996-12-31

    The 1995 reline of No. 5 Blast Furnace is an undertaking which has never been approached in previous relines of any blast furnace in the history of Wheeling Pittsburgh Steel Corporation. The scope of the project is such that it represents a radical departure from W.P.S.C.`s traditional methods of ironmaking. The reline of No. 5 Blast Furnace is one of the largest capital improvements performed at W.P.S.C. Blast Furnaces. The improvements made at one single time are taking a furnace from 1960`s technology into the 21st century. With this in mind, employee training was one of the largest parts of the project. Training for the automated stockhouse, castfloor, new skip drive, new instrumentation, new castfloor equipment, hydraulics and overall furnace operation were an absolute necessity. The reline has laid the ground work to give the Corporation an efficient, higher productive, modern Blast Furnace which will place W.P.S.C. in the world class category in ironmaking well into the 21st century.

  13. Portland cement-blast furnace slag blends in oilwell cementing applications

    SciTech Connect

    Mueller, D.T.; DiLullo, G.; Hibbeler, J.

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  14. VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #2 BLAST FURNACE FROM THE EAST, SHOWING SKIP HOIST, DUST CATCHER AND STOCK BINS IN THE FOREGROUND. #2 CASTING SHED IS TO THE LEFT, HOT BLAST MAIN IS ON THE RIGHT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  15. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  16. Computer systems for controlling blast furnace operations at Rautaruukki

    SciTech Connect

    Inkala, P.; Karppinen, A.; Seppanen, M.

    1995-08-01

    Energy accounts for a significant portion of the total blast furnace production costs and, to minimize energy consumption, both technical and economical aspects have to be considered. Thus, considerable attention has been paid to blast furnace energy consumption and productivity. The most recent furnace relines were in 1985 and 1986. At that time, the furnaces were modernized and instrumentation was increased. After the relines, operation control and monitoring of the process is done by a basic automation systems (DCS`s and PLC`s) and a supervision system (process computer). The supervision system is the core of the control system combining reports, special displays, trends and mathematical models describing in-furnace phenomena. Low energy consumption together with high productivity and stable blast furnace operation have been achieved due to an improvement in raw materials quality and implementation of automation and computer systems to control blast furnace operation. Currently, the fuel rate is low and productivity is in excess of 3.0 tonnes/cu meter/day, which is one of the highest values achieved anywhere for long-term operation.

  17. EXTERIOR VIEW LOOKING WEST,BLAST FURNACE TO THE RIGHT, ORE YARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW LOOKING WEST,BLAST FURNACE TO THE RIGHT, ORE YARD TO THE CENTER, HEYL & PATTERSON CAR DUMPER TO THE LEFT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  18. Blow-down and blow-in of Inland`s No. 7 blast furnace

    SciTech Connect

    Ricketts, J.; Quisenberry, P.; Carter, W.

    1995-12-01

    After extensive and detailed planning, a mini-reline of the 13.7 meter No. 7 Blast Furnace was executed in November 1993. The furnace lining had 18 million metric tons of production and the bosh, belly and lower stack lining were being maintained through a scheduled grouting practice. The mini-reline was planned for 33 days and the reline work included (a) replacing the bosh, belly and lower stack alumina lining with graphite brick, (b) gunning the middle and upper stack, (c) rebuilding the furnace top, stove burners and tapholes and (d) minor repairs to other auxiliary equipment. During this 33 day reline period the two 8 meter furnaces could only produce 40% of the normal production requirement, therefore the blow-down, quench, salamander tap and blow-in activities were critical to meeting the planned schedule. The planning of these activities was started in the spring of 1993 and included review of Inland`s past blow-down and blow-in performance as well as bench marking the performance of other large blast furnaces in North America, Japan and Europe. The development of the 1993 procedures focused on opportunities to accelerate the blow-down, quench, salamander tap and blow-in as well as having a clean hearth and stack which could also save time during the demolition phase of the reline. Any time that could be saved in these activities directly translated to an early start-up and more plantwide production. This paper will cover the successful planning and implementation of these activities which resulted in a 2 day reduction in the reline schedule, an accelerated production curve and an earlier than planned use of PCI during blow-in.

  19. Raceway control with oxygen, steam and coal for stable blast furnace operation

    SciTech Connect

    Chatterjee, L.M.

    1996-12-31

    Tata Steel operates seven blast furnaces at its Jamshedpur works. Coal injection was introduced in the three larger furnaces starting in 1991, and coal tar injection was commissioned in the A blast furnace in June, 1996. Presently, a coal injection level of 130 kg/thm has been achieved at G blast furnace, which is the newest and the largest among all blast furnaces at Tata Steel. The paper discusses the operational features of the blast furnaces at Tata Steel, practical limits of fuel injection, the philosophy of the control of raceway conditions, and experience with fuel injection at Tata Steel.

  20. Blast furnace coal injection at Scunthorpe Works, British Steel plc

    SciTech Connect

    Matheau-Raven, D.

    1996-12-31

    Granulator coal injection has been practiced since 1982 at Scunthorpe Works, British Steel plc. The Works is world famous for its four Queens of Ironmaking, named Victoria, Anne, Bess and Mary. These four blast furnaces are capable of producing 4.1 million tonnes of hot metal per annum. The coal injection system was a joint development venture between British Steel and a local based company call Clyde Pneumatic Conveyors. After 14 years of operation and regulator use, Scunthorpe`s coal injection rates have risen to become among the highest in the world. Total coal injected stands at around 4 million tonnes and coal injection rates of greater than 200 kg/thm have been achieved. The furnace operation has remained smooth throughout and there have been no measurable detrimental effects upon the blast furnace performance. In fact quite the opposite with several benefits. This paper briefly describes the furnaces and the coal injection equipment. Operating results for a full twelve months are given and discussed as are aspects of the blast furnace operating practice enabling these injection rates to be achieved. In financial terms savings totaling around 14 million pounds sterling per annum have been realized through the use of blast furnace coal injection.

  1. COM rated a viable substitute for oil in blast furnaces. [Coal/oil slurries

    SciTech Connect

    Schwieger, B.

    1982-08-01

    Three papers presented at a recent US conference indicate that coal-oil mixture may be an economical fuel for blast furnaces. The experience of Republic Steel Corp. who have carried out a full-scale blast furnace trial is recounted. It was found that blast furnace performance was not affected by the change from No. 6 fuel oil to COM.

  2. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  3. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    PubMed

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  4. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  5. A dynamic simulation of a lead blast furnace

    NASA Astrophysics Data System (ADS)

    Chao, John T.

    1981-06-01

    A dynamic model has been developed to simulate the operation of the stack zone of a lead blast furnace. The mathematical formulation of the governing equations of change leads to a system of 2nd order partial differential equations, which is solved by finite difference methods. A reduction model of ash-layer diffusion controlled mechanism, which allows the stepwise reduction to the lowest oxide or metal thermodynamically possible for the local gas composition within the sinter, is employed in this model. The surface reaction and the internal diffusion in the porous solid particles are taken into account in the coke gasification reaction. The profiles of the temperatures of gases and solids, solid compositions, and gas compositions and pressure in both radial and axial directions are predicted by the model. The results provide a good representation of the experimental data obtained for the blast furnace at Brunswick Mining and Smelting Corp., Ltd., New Brunswick, Canada and also of the less extensive data available for the Cominco blast furnace at Trail, British Columbia, Canada. In addition to the modelling of the stack, a mass and energy balance for the bosh zone is also included in the present calculation. The improvement of coke efficiency due to oxygen enrichment in the blast air for the Brunswick Furnace were interpreted semiquantitatively. The effect of sinter size distribution on the furnace performance has also been studied.

  6. Trial injection of prereduced fine ore through blast furnace tuyere

    SciTech Connect

    Okuno, Yoshio; Yamaguchi, Kazuyoshi; Takamoto, Yasushi; Kunitomo, Kazuya

    1996-12-31

    There is a growing demand for greatly raising the productivity of hot metal which is produced with low cost at the existing blast furnace because large investments for installing a new blast furnace is required nowadays. In this connection, the injection of fine ore through the blast furnace tuyere is available as one of the techniques meeting the demand. There was a case where an attempt had ever been made to inject crude fine ore even in the past. In this case, it was aimed primarily at reducing Si content of hot metal. However, this was not put to practical use by the reason that the lower part of blast furnace was sensitively affected by heat fluctuation resulted from the endothermic reduction reaction of injected crude fine ore. The increase of heat fluctuation gave difficulty in maintenance of stable operation of the furnace. This presentation devotes discussions on the effect of injection of prereduced fine ore and some technical questions to be worked out for injection.

  7. 13. Blast furnace plant embraces the east bank of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Blast furnace plant embraces the east bank of the Cuyahoga River. Plant was established in 1881 by the Cleveland Rolling Mill Co. It was absorbed by the American Steel and Wire Co. in 1899 and, two years later, by the U.S. Steel Corp., which closed it in 1978. View looking north. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  8. Experiences with computer systems in blast furnace operation control at Rautaruukki

    SciTech Connect

    Inkala, P.; Karppinen, A. . Raahe Steel Works); Seppanen, M. )

    1994-09-01

    Low energy consumption, together with high productivity and stable blast furnace operation, has been achieved at Rautaruukki's Raahe Steel Works as a result of the efficient use of computer technology in process control and improvements in raw materials quality. The blast furnace supervision system is designed to support the decision-making in medium and long-term process control. The information presenting the blast furnace operation phenomena is grouped so that little time is needed to obtain the current state of the process. Due to the complexity of the blast furnace process, an expert system to guide and diagnose the short and medium-term blast furnace operation has been developed.

  9. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Huang, Xing; Qian, Wei

    2017-01-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  10. Coke mineral transformations in the experimental blast furnace

    SciTech Connect

    Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla

    2008-09-15

    Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

  11. Coke quality for blast furnaces with coal-dust fuel

    SciTech Connect

    Y.A. Zolotukhin; N.S. Andreichikov

    2009-07-01

    Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

  12. INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND MACHINERY AND ARTIFACTS INCLUDING A STEAM ENGINE HUB MADE AT THE BRIERFIELD ROLLING MILL (INSCRIBED C.C. HUCKABEE AND DATED 1863) AND OTHER STEAM ENGINES. - Iron & Steel Museum of Alabama, 12632 Confederate Pkwy., Bucksville, Tuscaloosa County, AL

  13. CLOSEUP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED CAST HOUSE LIES IN BETWEEN TWO SKIP INCLINES. HIP ROOF AT RIGHT COVERS BLOWING ENGINE HOUSE. VIEW FACING NORTH. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  14. VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH SKIP HOIST AND DUST CATCHER. STOCK BINS FOR RAW MATERIALS ARE IN THE FOREGROUND, THE #2 CASTING SHED BEYOND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  15. VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH SKIP HOIST, DUST CATCHER AND STOCK BINS FOR RAW MATERIALS IN THE FOREGROUND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  16. Blast furnaces make way for new steel technology

    SciTech Connect

    Ondrey, G.; Parkinson, G.; Moore, S.

    1995-03-01

    Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

  17. Thermal Spray Coatings for Blast Furnace Tuyere Application

    NASA Astrophysics Data System (ADS)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  18. Modelling the combustion of charcoal in a model blast furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Shiozawa, Tomo; Yu, Aibing; Austin, Peter

    2013-07-01

    The pulverized charcoal (PCH) combustion in ironmaking blast furnaces is abstracting remarkable attention due to various benefits such as lowering CO2 emission. In this study, a three-dimensional CFD model is used to simulate the flow and thermo-chemical behaviours in this process. The model is validated against the experimental results from a pilot-scale combustion test rig for a range of conditions. The typical flow and thermo-chemical phenomena is simulated. The effect of charcoal type, i.e. VM content is examined, showing that the burnout increases with VM content in a linear relationship. This model provides an effective way for designing and optimizing PCH operation in blast furnace practice.

  19. Monitoring the condition of the slag crust in blast furnaces

    SciTech Connect

    Chernov, N.N.; Marder, B.F.; Demidenko, T.V.; Riznitskii, I.G.; Safina, L.A.; Dyshlevich, I.I.; Tkach, A.Ya.

    1988-05-01

    Studies conducted at the Krivorozhstal' combine blast furnaces have shown that fusion of the crust can be established from the change in the total content of alkali metals in the slag. After the furnaces were blown out for repairs the remaining lining and crust were inspected. It was found that the lining of the uncooled part of the stock remained in relatively good shape with the greatest amount of lining wear seen between the second row of stack coolers and bosh coolers. The composition and structure of the slag crust for different regions of the furnaces were analyzed and various physicochemical properties leading to crust formation and behavior were assessed. It was concluded that the systematic determination of the fraction of K/sub 2/O in the alkali compounds in the furnace slag will permit monitoring of the conditions of the slag crust in the furnace and, in the event of the onset of its collapse, will enable measures to be taken to stabilize the heating of the furnace.

  20. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    NASA Astrophysics Data System (ADS)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-08-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  1. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  2. Theoretical and experimental foundations for preparing coke for blast-furnace smelting

    SciTech Connect

    A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin

    2009-05-15

    This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

  3. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    PubMed

    Zannini, D; Valente, T; Rotunno, R; Giusto, R

    1977-01-01

    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages.

  4. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces.

    PubMed

    Chen, Wei-Hsin; Du, Shan-Wen; Tsai, Chien-Hsiung; Wang, Zhen-Yu

    2012-05-01

    Torrefaction and burning characteristics of bamboo, oil palm, rice husk, bagasse, and Madagascar almond were studied and compared with a high-volatile bituminous coal using a drop tube furnace to evaluate the potential of biomass consumed in blast furnaces. Torrefaction at 250 and 300°C for 1h duration was carried out. Analysis using the ash tracer method indicated that the extent of atomic carbon reduction in the biomasses was less than that of atomic hydrogen and oxygen. Torrefaction also lowered the sulfur content in bamboo and oil palm over 33%. An examination of the R-factor and burnout of the samples suggests that more volatiles were released and a higher burnout was achieved with raw and torrefied biomasses at 250°C than at 300°C; however, torrefaction at 300°C is a feasible operating condition to transform biomass into a solid fuel resembling a high-volatile bituminous coal used for blast furnaces.

  5. Marble-type glass based on blast furnace slag

    SciTech Connect

    Sarkisov, P.D.; Smirnov, V.G.; Trifonova, T.E.; Sergeev, Yu.N.

    1987-01-01

    This paper discusses the recovery and use of blast furnace wastes as coloring agents in the manufacture of imitation marble glass. The slags consist of a series of metal oxides each of which is tested for the color it generates when reacted and annealed with the molten glass. Comparative tests were also run against non-waste coloring agents and it was found that the waste-derived colorants were equal or superior both in process behavior and in generating the appropriate optical properties in the finished glass.

  6. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  7. Opportunities for natural gas in the dehumidification of blast furnace wind. Topical report

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Loreth, M.J.; Stevens, G.S.

    1996-06-01

    An economic evaluation is presented of a technology aimed to remove moisture from the blast in blast furnaces in order to decrease coke consumption and provide savings in the amount of steam and oxygen injected. Operators can obtain savings from $0.5 to more than $2.5 per ton simply by reducing blast moisture to seasonal average maxima.

  8. Preparation of Ceramic-Bonded Carbon Block for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2014-01-01

    Traditional carbon blocks for blast furnaces are mainly produced with electrically calcined anthracite owing to its good hot metal corrosion resistance. However, this kind of material shows low thermal conductivity and does not meet the demands for cooling of the hearth and the bottom of blast furnaces. In this article, a new kind of a high-performance carbon block has been prepared via ceramic-bonded carbon (CBC) technology in a coke bed at 1673 K (1400 °C) using artificial graphite aggregate, alumina, metallic aluminum, and silicon powders as starting materials. The results showed that artificial graphite aggregates were strongly bonded by the three-dimensional network of ceramic phases in carbon blocks. In this case, the good resistance of the CBC blocks against erosion/corrosion by the hot metal is provided by the ceramic matrix and the high thermal conductivity by the graphite aggregates. The microstructure of this carbon block resembles that of CBC composites with a mean pore size of less than 0.1 μm, and up to 90 pct of the porosity shows a pore size <1 μm. Its thermal conductivity is higher than 30 W · m-1 · K-1 [293 K (20 °C)]. Meanwhile, its hot metal corrosion resistance is better than that of traditional carbon blocks.

  9. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih

    2016-03-01

    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  10. Optimization of ferrous burden high temperature properties to meet blast furnace requirements in British Steel

    SciTech Connect

    Bergstrand, R.

    1996-12-31

    The high temperature properties of ferrous burden materials have long been an important consideration in the operation of British Steel blast furnaces. Previous research presented at this conference has shown that the behavior of materials in the lower stack and bosh can have a significant effect on furnace permeability and stability of operation. However, with increasing levels of hydrocarbon injection via the tuyeres, the reduction conditions inside British Steel blast furnaces have significantly altered over recent years. This paper focuses on the further work that has been undertaken to study the effect on ferrous burden high temperatures properties of the widely differing reduction regimes which can be experienced in today`s blast furnaces. The implications of the findings, and how they have been used in optimizing blast furnace operation and burden quality, are discussed.

  11. Cold blast furnace syndrome: a new source of toxic inhalation by nitrogen oxides

    PubMed Central

    Tague, I; Llewellin, P; Burton, K; Buchan, R; Yates, D

    2004-01-01

    Methods: Fourteen workers developed acute respiratory symptoms shortly after exposure to "air blast" from blast furnace tuyeres. These included chest tightness, dyspnoea, rigors, and diaphoresis. Chest radiographs showed pulmonary infiltrates, and lung function a restrictive abnormality. This report includes a description of clinical features of the affected workers and elucidation of the probable cause of the outbreak. Results: Clinical features and occupational hygiene measurements suggested the most likely cause was inhalation of nitrogen oxides at high pressure and temperature. While the task could not be eliminated, engineering controls were implemented to control the hazard. No further cases have occurred. Conclusions: "Cold blast furnace syndrome" represents a previously undescribed hazard of blast furnace work, probably due to inhalation of nitrogen oxides. It should be considered in the differential diagnosis of acute toxic inhalational injuries in blast furnace workers. PMID:15090669

  12. Hydration and temperature development of concrete made with blast-furnace slag cement

    SciTech Connect

    Schutter, G. de

    1999-01-01

    In Europe, massive concrete elements often are made with blast-furnace slag cements. To better deal with the problem of early-age thermal cracking in these cases, a new hydration model for blast-furnace slag cements is developed, which is based on isothermal and adiabatic hydration tests. In the hydration model, the heat production rate is calculated as a function of the degree of hydration and the temperature. The accuracy of temperature simulations using this new hydration model is evaluated by tests on hardening massive concrete cylinders made with blast-furnace slag cement.

  13. Coal grinding by roller grinding mills for pulverized coal injection in blast furnaces

    SciTech Connect

    Kasseck, K.; Salewski, G.

    1995-10-01

    Roller grinding mills are increasingly being used for producing the pulverized coal required for injection into blast furnaces, an accepted technology worldwide for lowering coke consumption in blast furnaces. Coal is currently being injected into blast furnaces at the rate of 80 to 200 kg/tonne of hot metal which results in a coke savings of 72 to 180 kg/tonne of hot metal. The pulverized coal for coal injection is produced in coal grinding and drying plants currently having a capacity from 15 to 240 tonnes/hr. The grinding plant with Loesche roller grinding mills at the Ilva steelworks, Taranto, Italy, that is described, illustrates design concepts and operation.

  14. Coal-oil mixture combustion program: injection into a blast furnace

    SciTech Connect

    Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

    1982-04-30

    A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

  15. Importance of coal properties in selecting coals for blast furnace injection

    SciTech Connect

    Hutny, W.P.; Giroux, L.; Macphee, J.A.; Price, J.T.

    1996-12-31

    The CANMET Energy Technology Centre (CETC), in cooperation with the Department of Energy of the Province of Alberta and the Canadian Carbonization Research Association (CCRA), has completed a program on the evaluation of Canadian and foreign coals for blast furnace injection. The program consisted of two parts: (1) theoretical assessment of cooling and coke replacement characteristics of coals using CETC`s computer model and (2) experimental determination of the combustibility of coals of different ranks and particle size as well as the influence of oxygen enrichment on burnout. The experimental part was conducted in a pilot-scale injection unit designed and built at CANMET that simulates blast furnace blowpipe-tuyere conditions. This paper describes the facility and methodology of work. It also discusses results. The prime objectives of this study were to provide essential information on coal combustion in the blast furnace and establish proper criteria for evaluating and selecting coals for blast furnace injection.

  16. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect

    Unknown

    1999-10-01

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  17. Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces

    SciTech Connect

    Boone, A.G.; Jimenez, G.; Castillo, J.

    1997-12-31

    Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

  18. Investigation of Portland Blast-Furnace Slag Cements. Report 2. Supplementary Data

    DTIC Science & Technology

    significantly less for steel in this concrete than for steel in type II portland cement concrete. Bond-to-steel tests indicated similar relations for both blast-furnace slag and type II portland cements.

  19. Sorption and desorption of iron-cyanide complexes in deposited blast furnace sludge.

    PubMed

    Rennert, Thilo; Mansfeldt, Tim

    2002-11-01

    Blast furnace sludge is a waste originating from pig iron production and contains small amounts of iron-cyanide complexes. Leaching of iron-cyanide complexes from deposited blast furnace sludge into the ground water seems to be possible in principle. We investigated the sorption of the iron-cyanide complexes ferrocyanide, [FeII(CN)6](4-), and ferricyanide, [FeIII(CN)6](3-), in 22 samples of deposited blast furnace sludge in batch experiments. Subsequently, desorption of iron-cyanide complexes was investigated using 1 M NaCl. Sorption in five samples was evaluated with Langmuir isotherms. The blast furnace sludge samples were neutral to slightly alkaline (pH 7.6-9) and consisted of X-ray amorphous compounds and crystalline Fe oxides primarily. X-ray amorphous compounds are assumed to comprise coke-bound C and amorphous Fe, Zn, and Al oxides. The experiments that were evaluated with Langmuir isotherms indicated that the extent of ferricyanide sorption was higher than that of ferrocyanide sorption. Saturation of blast furnace sludge with iron-cyanide complexes was achieved. Sorption of iron-cyanide complexes in 22 blast furnace sludge samples at one initial concentration showed that 12 samples sorbed more ferrocyanide than ferricyanide. The extent of sorption largely differed between 0.07 and 2.76 Micromol [Fe(CN)6] m(-2) and was governed by coke-bound C. Ferricyanide sorption was negatively influenced by crystalline Fe oxides additionally. Only small amounts of iron-cyanide complexes sorbed in blast furnace sludge were desorbed by 1 M NaCl (ferrocyanide, 3.2%; ferricyanide, 1.1%, given as median). This indicated strong interactions of iron-cyanide complexes in blast furnace sludge. The mobility of iron-cyanide complexes in deposited blast furnace sludge and consequently contamination of the seepage and ground water was designated as low, because (i) deposited blast furnace sludge is able to sorb iron-cyanide complexes strongly, (ii) the solubility of the iron

  20. Nuclear techniques for the inspection of blast furnaces

    NASA Astrophysics Data System (ADS)

    Schweitzer, J. S.; Lanza, R. C.

    1999-06-01

    Carbon hearth wall failures in blast furnaces create safety risks and require a large expense to repair. To avoid failures they are replaced early, incurring costs in wasted hearth wall use. Two non-invasive measurements provide realtime analysis of wall integrity. The two major failure modes are erosion of carbon thickness and iron-filled cracks in the bricks. Measurements of backscattered gamma-ray spectra and thermal neutron decay rate can identify both phenomena. Gamma-ray spectra from a compact Linac beam primarily respond to average carbon thickness. Neutron decay time, using a pulsed neutron source, is sensitive to iron in the carbon volume. Each measurement is sensitive to the other failure made, but the combination permits each phenomenon to be resolved. These techniques can detect a high atomic number and thermal neutron absorption cross section material behind one of low atomic number and thermal neutron absorption cross section.

  1. Greener durable concretes through geopolymerisation of blast furnace slag

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  2. Blast furnace slags as sorbents of phosphate from water solutions.

    PubMed

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj

    2005-05-01

    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  3. Waste Heat Recovery from Blast Furnace Slag by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Qin, Yuelin; Lv, Xuewei; Bai, Chenguang; Qiu, Guibao; Chen, Pan

    2012-08-01

    Blast furnace (BF) slag, which is the main byproduct in the ironmaking process, contains large amounts of sensible heat. To recover the heat, a new waste heat-recovery system—granulating molten BF slag by rotary multinozzles cup atomizer and pyrolyzing printed circuited board with obtained hot BF slag particle—was proposed in this study. The feasibility of the waste heat-recovery system was verified by dry granulation and pyrolyzation experiments. The energy of hot BF slag could be converted to chemical energy through the pyrolysis reaction, and a large amount of combustible gas like CO, H2, C m H n , and CH4 can be generated during the process.

  4. Radial gas flow in the upper shaft and its influence on blast furnace performance

    SciTech Connect

    Beppler, E.; Kowalski, W.; Langner, K.; Wachsmuth, H.

    1996-12-31

    Knowledge of and control of gas flow in the upper shaft and over the blast furnace radius is an important factor for constant optimization of blast furnace performance in terms of fuel consumption and productivity. Radial gas flow in the blast furnace is generally controlled by the radial distribution of burden and coke. However, there are other influencing variables which determine radial gas flow, in particular central gas flow: (a) Increased sinter degradation displaces the cohesive zone downwards, constricting the gas flow between the dead man and the cohesive zone. This hinders central gas flow. (b) Lower coke strengths also lead to deterioration in gas flow between the dead man and the cohesive zone and hence to decline in central gas flow. (c) Decreasing coke layers in the blast furnace hinder central gas flow. (d) Increasing coal injection rates produce higher coke degradation in the blast furnace and hence also hinder central gas flow. (e) High coal rates and lower CSR values lead to shortening of combustion zone, which hinders the gas flow to the blast furnace center. (f) Finally, increasing hot metal-slag levels divert the gas to the outside. As the significance of the question of the central gas flow is growing,and because radial gas flow at Thyssen Stahl AG can only be measured sporadically with an in-burden probe, an inclined probe (inclination 35{degree}) just above the stock line was developed for simultaneous temperature measurement and gas sampling at 9 points along the radius.

  5. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  6. [Study on quantificational analysis method for the non-crystalline content in blast furnace slag].

    PubMed

    Yan, Ding-Liu; Guo, Pei-Min; Qi, Yuan-Hong; Zhang, Chun-Xia; Wang, Hai-Feng; Dai, Xiao-Tian

    2008-02-01

    Quantificational analysis method for the non-crystalline and crystalline contents in blast furnace slag was studied by means of X-ray diffraction. The process of quantificational analysis method includes standard samples preparation, samples preparation, X-ray diffraction measurement and data treatment. The data treatment includes integration areas of non-crystalline curve and crystalline peaks in certain diffraction angle range, linear fitting and quantificational coefficient determination. The preparation methods of standard samples for X-ray diffraction of blast furnace slag were proposed, including 100% crystalline sample and 100% non-crystalline sample. The 100% crystalline sample can be obtained by heating blast furnace slag for 12 h at 1 000-1 200 degrees C, and the 100% non-crystalline sample can be obtained by quenching the molten slag with enough water. The X-ray diffraction method of quantificational analysis of non-crystalline content in blast furnace slag was proposed with the 100% non-crystalline and 100% crystalline standard samples, and the quantificational coefficient can be obtained by linear regression on the integration areas of non-crystalline curve and crystalline peaks of X-ray diffraction in the 2-theta range 20 degrees-40 degrees. This method is suitable for the blast furnace slag with the non-crystalline content over 80%. The non-crystalline and crystalline contents of original blast furnace slag are obtained by combining the X-ray diffraction results and mathematical treatment, and this method is suitable for the blast furnace slag with the non-crystalline content over 90%, whose process includes preparing the 100% crystalline standard sample by heating blast furnace slag for 12 h at 1000-1200 degrees C, samples preparation with the 0.02 interval in the 0-0.1 mass ratio range of 100% crystalline to original slag, X-ray diffraction measurement of the samples prepared and data treatment using iterative linear regression. The

  7. On the Use of Pre-reduced Feed in the Blast Furnace Process

    NASA Astrophysics Data System (ADS)

    Gibson, Jorge L.

    In the iron and steel industry, the partial replacement of coke with natural gas as a fuel for blast furnace ironmaking provides opportunities to blast furnace operators, in a context where natural gas is relatively cheap, to reduce greenhouse gas emissions and production costs. Direct injection of natural gas through the blast furnace tuyeres is limited by thermal constraints, seen by changes in the temperature of the top gas and the raceway adiabatic flame temperature parameter. Metallic iron has been used as burden material in the blast furnace process as a means to lower coke rate and increase productivity. The main "direct reduction processes" produce metallic iron by gaseous reduction using natural gas as feedstock. It is possible to partially circumvent the limitations of tuyere injection by pre-reducing part of the iron ore burden through one of these processes. This work focuses on the advantages and limitations of introducing direct reduced iron (DRI) of varying levels of metallization into the blast furnace to increase the use of natural gas in ironmaking. Process modeling has been used to evaluate this; parameters for the models and process constraints are analyzed through laboratory testing of the properties of reduced blast furnace feed materials. Experiments were performed to obtain kinetics for the gaseous reduction of iron ores and for the water-gas shift reaction at the relevant temperatures for the shaft furnace process. The re-oxidation kinetics of DRI in the upper shaft of the blast furnace by water vapor, and the strength of partially reduced iron ore pellets, were also analyzed. Results from the shaft furnace model show that there is no clear benefit to producing DRI of low metallization in this process, because of the existence of a chemical reserve zone, where the gases are at equilibrium with the solid iron oxide. Blast furnace modeling shows that metallic iron in the burden produces some thermal constraints in the blast furnace, and

  8. A new approach to oxygen enriched high temperature blast generation

    SciTech Connect

    Queille, P.H.; Macauley, D.

    1996-12-31

    When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

  9. Evaluation on chemical stability of lead blast furnace (LBF) and imperial smelting furnace (ISF) slags.

    PubMed

    Yin, Nang-Htay; Sivry, Yann; Guyot, François; Lens, Piet N L; van Hullebusch, Eric D

    2016-09-15

    The leaching behavior of Pb and Zn from lead blast furnace (LBF) and imperial smelting furnace (ISF) slags sampled in the North of France was studied as a function of pHs and under two atmospheres (open air and nitrogen). The leaching of major elements from the slags was monitored as a function of pH (4, 5.5, 7, 8.5 and 10) under both atmospheres for different slag-water interaction times (1 day and 9 days). The leaching results were coupled with a geochemical model; Visual MINTEQ version 3.0, and a detailed morphological and mineralogical analysis was performed on the leached slags by scanning and transmission electron microscopy (SEM and TEM). Significant amounts of Ca, Fe and Zn were released under acidic conditions (pH 4) with a decrease towards the neutral to alkaline conditions (pH 7 and 10) for both LBF and ISF slags. On the other hand, Fe leachability was limited at neutral to alkaline pH for both slags. The concentrations of all elements increased gradually after 216 h compared to initial 24 h of leaching period. The presence of oxygen under open-air atmosphere not only enhanced oxidative weathering but also encouraged formation of secondary oxide and carbonate phases. Formation of carbonates and clay minerals was suggested by Visual MINTEQ which was further confirmed by SEM & TEM. The hydration and partial dissolution of hardystonite, as well as the destabilization of amorphous glassy matrix mainly contributed to the release of major elements, whereas the spinel related oxides were resistant against pH changes and atmospheres within the time frame concerned for both LBF and ISF slags. The total amount of Pb leached out at pH 7 under both atmospheres suggested that both LBF and ISF slags are prone to weathering even at neutral environmental conditions.

  10. Sequential extraction of inorganic mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Andrée, Corlin-Anna; Mansfeldt, Tim

    2015-10-01

    Blast furnace sludge (BFS) is an industrial waste with elevated mercury (Hg) contents due to the enrichment during the production process of pig iron. To investigate the potential pollution status of dumped BFS, 14 samples with total Hg contents ranging from 3.91 to 20.8 mg kg(-1) from five different locations in Europe were sequentially extracted. Extracts used included demineralized water (fraction 1, F1), 0.1 mol L(-1) CH3COOH + 0.01 mol L(-1) HCl (F2), 1 mol L(-1) KOH (F3), 7.9 mol L(-1) HNO3 (F4), and aqua regia (F5). The total recovery ranged from 72.3 to 114 %, indicating that the procedure was reliable when adapted to this industrial waste. Mercury mainly resided in the fraction of "elemental" Hg (48.5-98.8 %) rather being present as slightly soluble Hg species associated with sludge particles. Minor amounts were found as mercuric sulfide (F5; 0.725-37.3 %) and Hg in crystalline metal ores and silicates (F6; 2.21-15.1 %). The ecotoxically relevant fractions (F1 and F2) were not of significance (F1,

  11. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  12. Preparation of calcium silicate absorbent from iron blast furnace slag.

    PubMed

    Brodnax, L F; Rochelle, G T

    2000-09-01

    Calcium silicate hydrate (CSH) solids were prepared from hydrated lime and iron blast furnace slag in an aqueous agitated slurry at 92 degrees C. While it was hoped a minimal lime/slag ratio could be used to create near-amorphous CSH, the surface area of the product improved by increasing the lime/slag weight ratio to 2. The addition of gypsum to the lime/slag system dramatically improved the formation of surface area, creating solids with 139 m2/g after 30 hr of reaction when only a minimal amount of lime was present. The SO2 reactivity of solids prepared with gypsum greatly exceeded that of hydrated lime, achieving greater than 70-80% conversion of the alkalinity after 1 hr of reaction with SO2. The use of CaCl2 as an additive to the lime/slag system, in lieu of gypsum, also produced high-surface-area solids, 115 m2/g after 21 hr of reaction. However, the SO2 reactivity of these sorbents was relatively low given the high surface area. This emphasized that the correlation between surface area and SO2 reactivity was highly dependent on the solid phase, which was subsequently dependent on slurry composition.

  13. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  14. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    SciTech Connect

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  15. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  16. Multiscale dynamic analysis of blast furnace system based on intensive signal processing.

    PubMed

    Chu, Yanxu; Gao, Chuanhou; Liu, Xiangguan

    2010-09-01

    In this paper, the Hilbert-Huang transform method and time delay embedding method are applied to multiscale dynamic analysis on the time series of silicon content in hot metal collected from a medium-sized blast furnace with the inner volume of 2500 m3. The results provide clear evidence of multiscale features in blast furnace ironmaking process. Ten intrinsic mode functions (IMFs) are decomposed from the silicon content time series; the presence of noninteger fractal dimension, positive finite Kolmogorov entropy, and positive finite maximum Lyapunov exponent are found in some IMF components. In addition, the coupling of subscale structures of blast furnace system is studied using the dimension of interaction dynamics and a robust algorithm for detecting interdependence. It is found that IMF(3) is the main driver in the coupling system IMF(2) and IMF(3) while for the coupling system IMF(3) and IMF(4) neither subsystem can act as the driver. All these provide a guideline for studying blast furnace ironmaking process with multiscale theory and methods, and may open way for more candidate tools to model and control blast furnace system in the future.

  17. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  18. Gas-powder flow in blast furnace with different shapes of cohesive zone

    SciTech Connect

    Dong, X.F.; Pinson, D.; Zhang, S.J.; Yu, A.B.; Zulli, P.

    2006-11-15

    With high PCI rate operations, a large quantity of unburned coal/char fines will flow together with the gas into the blast furnace. Under some operating conditions, the holdup of fines results in deterioration of furnace permeability and lower production efficiency. Therefore, it is important to understand the behaviour of powder (unburnt coal/char) inside the blast furnace when operating with different cohesive zone (CZ) shapes. This work is mainly concerned with the effect of cohesive zone shape on the powder flow and accumulation in a blast furnace. A model is presented which is capable of simulating a clear and stable accumulation region in the lower central region of the furnace. The results indicate that powder is likely to accumulate at the lower part of W-shaped CZs and the upper part of V- and inverse V-shaped CZs. For the same CZ shape, a thick cohesive layer can result in a large pressure drop while the resistance of narrow cohesive layers to gas-powder flow is found to be relatively small. Implications of the findings to blast furnace operation are also discussed.

  19. On-line ultrasonic system for measuring thickness of the copper stave in the blast furnace

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Woo; Kim, Dohoon

    2012-05-01

    The blast furnace is used make molten iron from sintered ore and the cokes in the steel industry. Recently, the copper stave cooling system placed on inner face of the blast furnace body to protect the steel shell from heat. In the high temperature environment, the wear between the stave and the material makes the cooling stave thinning by the downward movement of the materials in the blast furnace. It was impossible to access the copper stave with the ultrasonic sensor for measuring thickness because the copper stave is covered with the steel shell and there is backing refractory between the stave and the steel shell. The unique ultrasonic sensor which can approach the cooling stave through the cooling line was developed to measure thickness. The thickness can be measured with portable ultrasonic thickness sensor and can be monitored continuously with embedded sensors.

  20. Blast furnace granular coal injection project. Annual report, January--December 1993

    SciTech Connect

    Not Available

    1994-06-01

    This initial annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. This installation will be the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase 2) began in August 1993. Construction is expected to complete in the first quarter of 1995 which will be followed by the demonstration test program (Phase 3). Progress is described.

  1. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  2. Automated information system for analysis and prediction of production situations in blast furnace plant

    NASA Astrophysics Data System (ADS)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  3. Comparison of CO2 emission between COREX and blast furnace iron-making system.

    PubMed

    Hu, Changqing; Han, Xiaowei; Li, Zhihong; Zhang, Chunxia

    2009-01-01

    Steel works faced increasing demand to minimize the emission of GHGs. The CO2 emissions of COREX and blast furnace iron-making system were compared. It is point out that COREX contribute little to CO2 emission reduction. Comparing to conventional blast furnace iron-making system, direct CO2 emissions of COREX is higher. Considering the credits of export gases for power generation, the total CO2 emission of COREX have advantages only when the COREX is joined with high-efficiency generating units which efficiency is greater than 45% and CO2 emission factor of the grid is higher than 0.9 kgCO2/kWh.

  4. The startup of coal injection on Bethlehem Steel`s Burns Harbor blast furnaces

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Durko, D.P.; Dwelly, M.J.

    1996-12-31

    Despite the simplicity of operation and the excellent results from natural gas injection at Bethlehem Steel, there were concerns about future supply and price stability. Furthermore, the maximum projected gas rates still required coke consumption in excess of Burns Harbor`s coke production capacity. Thus in 1990 Bethlehem Steel entered into an agreement to participate in the DOE Clean Coal Technology demonstration project by installing a granular coal injection facility at Burns Harbor. This agreement called for a facility to be constructed which was capable of processing and injecting a wide range of coal types in either granular or pulverized form. Tests were to be conducted to assess the effects of a range of coal properties, coal sizing, and injection rates on a number of key blast furnace parameters. During all the transitioning from natural gas injection to coal injection and subsequent tests it was essential that the blast furnaces maintain their historic operating performance in support of the Burns Harbor Division`s product market requirements. Unlike many coal injection facilities, the Burns Harbor installation is owned by Bethlehem Steel and the operation and maintenance from raw coal unloading through the tuyeres is the responsibility of the Blast Furnace Department. As the authors will discuss, the start-up of this major installation involved significant challenges, the most critical of which was maintaining historically high blast furnace operating standards while commissioning a new facility and adapting the furnace process to coal injection.

  5. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  6. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trial 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993. Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test orI C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  7. Gazification of coal dust particles in the blast furnace tuyere apparatus

    NASA Astrophysics Data System (ADS)

    Shvydky, V. S.; Yaroshenko, Yu G.; Spirin, N. A.; Lavrov, V. V.

    2016-09-01

    The mathematical statement of the problem on gasification of coal dust particles in the blast-furnace tuyere apparatus is given, which includes the motion equation of a variable mass particle, heat equation of a particle and the heat-balance equation of the blast flow. The results of calculations are obtained by using mathematical software packages (Mathcad, Maple). Relatively weak effect of the volatiles combustion process on the thermal state of the tuyere zone is shown.

  8. Ultra-high injection of natural gas to increase blast furnace production: A white paper. Topical report, November 1994

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.K.

    1994-11-01

    Analysis of the possibility and the economic justification of improvements in blast furnace productivity through the use of natural gas injection at high rates are presented. The paper describes the effects of blast enrichment accompanied by natural gas fuel injection on the thermal profile and hydrodynamic parameters in a blast furnace. This technique promises significant increases in productivity with no loss of flexibility or operational stability. The hydrogen content of the supplemental fuel plays a key role in determining both the coke replacement rate and the extent to which the furnace thermal profile is altered. Obtaining the maximum benefits from blast enrichment and supplemental fuel injection will require the development of new techniques to set aim values. For a given production rate, efficient utilization of hydrogen in the blast furnace stack is more cost-effective than the reduction of iron ore by an external process to produce reduced iron feeds.

  9. Blast-furnace ironmaking -- Existing capital and continued improvements are a winning formula for a bright future

    SciTech Connect

    Oshnock, T.W.; Colinear, J.A.

    1995-12-01

    Throughout the years the blast-furnace process has been improved upon significantly. Increases to the hot-blast temperature, improvements to the physical, chemical, and metallurgical properties of coke and burden materials, the use of more fuel injectants, and improvements to the design of the furnace facilities have led to significant decreases in furnace coke rate, increases in productivity, and increases in furnace campaign life. As a result, many of the alternative cokeless reduction processes have not replaced blast-furnace hot-metal production in North America. In the future, these continued blast-furnace improvements will potentially result in coke rates decreasing to 400 pounds per net ton of hot metal (lb/NTHM) as more pulverized coal is injected. These improvements, coupled with the fact that existing blast furnaces and coke plants can be refurbished for approximately $110 per annual ton of hot metal [$100 per annual net ton of hot metal (NTHM)], will result in extending the life of the North American blast furnaces well into the twenty-first century.

  10. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  11. Simultaneous Measurements of Temperature and Iron-Slag Ratio at Taphole of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Shinotake, A.; Nakashima, M.; Omoto, N.

    2014-07-01

    As the initial process in an integrated steel-making plant, molten iron is produced in a blast furnace. The molten iron has a temperature between 1700 K and 1900 K. The outflow stream discharged from a taphole comprises the molten iron and slag (which is a mixture of molten oxides). Monitoring of the stream temperature is important because it has information on the thermal condition inside the blast furnace. A newly developed simultaneous measurement technique for temperature and iron-slag ratio is reported. A monochromatic CCD camera with a short exposure time is used to obtain a thermal image of the rapidly moving stream. The thermal image has a marble-like pattern caused by the physical separation of the iron and slag and their different optical properties. Iron thermometry is realized by automatically detecting the peak of the iron gray-level distribution on a histogram. Meanwhile, the thermal radiance of the semitransparent slag varies as a function of the thickness. The slag temperature is calculated from the maximum gray level, presuming that the emissivity of the slag is constant at a thick slag part. The slag ratio is measured by counting the number of pixels on the histogram. A field test was carried out at an operating blast furnace. The iron temperature, slag temperature, and slag ratio were successfully measured. This multiple image measurement is expected to be the new information source for stable blast furnace operation.

  12. Data-driven modeling based on volterra series for multidimensional blast furnace system.

    PubMed

    Gao, Chuanhou; Jian, Ling; Liu, Xueyi; Chen, Jiming; Sun, Youxian

    2011-12-01

    The multidimensional blast furnace system is one of the most complex industrial systems and, as such, there are still many unsolved theoretical and experimental difficulties, such as silicon prediction and blast furnace automation. For this reason, this paper is concerned with developing data-driven models based on the Volterra series for this complex system. Three kinds of different low-order Volterra filters are designed to predict the hot metal silicon content collected from a pint-sized blast furnace, in which a sliding window technique is used to update the filter kernels timely. The predictive results indicate that the linear Volterra predictor can describe the evolvement of the studied silicon sequence effectively with the high percentage of hitting the target, very low root mean square error and satisfactory confidence level about the reliability of the future prediction. These advantages and the low computational complexity reveal that the sliding-window linear Volterra filter is full of potential for multidimensional blast furnace system. Also, the lack of the constructed Volterra models is analyzed and the possible direction of future investigation is pointed out.

  13. Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits.

    PubMed

    Mansfeldt, T; Dohrmann, R

    2001-01-01

    During blast furnace operation, a cyanide-containing muddy waste referred to as blast furnace sludge is generated in large amounts. In Germany it was and is still common practice to pump this sludge into surface deposits. Depending on species, cyanide has very different toxicity. To this day there is no information about the type of cyanide occurring in blast furnace sludge deposits. In order to identify the type of cyanide we investigated by means of wet chemical and powder X-ray diffraction analyses 37 samples of three blast furnace deposits. Wet chemical results indicate that both the extremely toxic free cyanide (HCN and CN ) and toxic weak metal-cyanide complexes, for example [Zn(CN)4]2-, are not present in the sludge. By powder X-ray diffraction we identified the crystalline cyanide-containing compound potassium zinc hexacyanoferrate(II) nonahydrate, K2Zn3[Fe(CN)6]2 x 9H2O, as the cyanide-bearing compound. Our study is the first that identifies potassium zinc hexacyanoferrate(II) nonahydrate in the environment. As the iron-cyanide complex [Fe(CN)6] is not acutely toxic, any direct hazard comes from cyanide occurring in the investigated wastes. Under the predominant pH milieu of the sludge (pH about 8) the solubility of potassium zinc hexacyanoferrate(II) nonahydrate is low, thus minimizing the mobility of cyanide.

  14. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect

    1995-03-01

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  15. Simplified simulation of the transient behavior of temperatures in the upper shaft of the blast furnace

    SciTech Connect

    Saxen, H.

    1998-06-01

    The blast furnace is the principal process in the world for production of iron for primary steelmaking. The furnace acts as a huge countercurrent heat exchange and chemical reactor with complicated heat and mass transfer phenomena and chemical reactions. The flows of burden and gas in the blast furnace shaft strongly affect the fuel economy of the process. An optimal gas flow distribution, which is obtained by controlling the burden distribution, leads to a high utilization degree of the reducing gas, smooth burden descent, and little wear of the furnace lining. Here, a one-dimensional dynamic model of the upper part of the blast furnace shaft is applied to study the evolution of gas and burden temperatures, mainly in order to shed light on the transient phenomena after charging dumps of burden. The effects of irregularities in the burden descent and charging are also studied briefly. The simulations demonstrate that the temperatures of the burden layers in the lower part of the simulated region assume a quasi-steady state, indicating that the changes in the top gas temperature experienced immediately after a dump of burden arise primarily because of heat transfer between the gas and the dump. These results support the idea that such temporary changes can be interpreted in terms of distribution of the dumps on the burden surface.

  16. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  17. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    NASA Astrophysics Data System (ADS)

    Dosmukhamedov, Nurlan; Kaplan, Valery

    2017-02-01

    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  18. Blast furnace granular and reclaimed coal injection current practices and possibilities

    SciTech Connect

    Snowdon, B.

    1996-12-31

    Coals of various sizes and types have been successfully injected into blast furnaces for many years. In excess of 4m tonnes of granular coal of 100% less than 5mm have been injected at British Steels Scunthorpe works since 1984. Since late 1994 Bethlehem Steel have also been injecting granular coal into furnace C and D, and more recently US Steels Fairfield works have been using the Clyde design of coal injection system to inject granular coal derived from a fluid bed drier cyclone classifier and shipped to the plant in PD railcars. Each of these sites have one thing in common, a design of pneumatic conveying system which is ideally matched to the growing trend to inject a variety of coal types and other materials into the blast furnace. This paper will describe the system design and discuss the problems associated with some of the materials considered for injection.

  19. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  20. Efficient Removal of Arsenic and Antimony During Blast Furnace Smelting of Lead-Containing Materials

    NASA Astrophysics Data System (ADS)

    Dosmukhamedov, Nurlan; Kaplan, Valery

    2016-10-01

    The efficient removal of impurities, As and Sb, from recycled lead-containing materials is a key issue in the selection of the appropriate smelting technology for projects involving metal reuse. Volatilization of impurities such as As and Sb should occur as early as possible in the process, and preferably within the smelting furnace, so that they do not contaminate the industrial environment nor interfere with the operation of downstream equipment. Using of copper-zinc concentrates in the blast furnace process for recycling lead-containing materials achieves: (1) high copper extraction to matte; (2) high lead extraction to lead bullion; and (3) high zinc extraction to slag, while at the same time producing a more efficient volatilization of As and Sb. Based on both laboratory and industrial data and thermodynamic considerations, the advantages of this blast furnace process for the treatment of recycled lead-containing materials are discussed.

  1. Using coal-dust fuel in Ukrainian and Russian blast furnaces

    SciTech Connect

    A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin

    2008-02-15

    Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

  2. Chemical and mineralogical characterization of blast-furnace sludge from an abandoned landfill.

    PubMed

    Mansfeldt, Tim; Dohrmann, Reiner

    2004-11-15

    Blast-furnace sludge is generated during the production of pig iron and is disposed of in the environment in large surface landfills. We investigated blast-furnace sludge samples of an abandoned landfill in order to determine its chemical and mineralogical nature and to evaluate some environmental hazards that may arise from this industrial waste. The mineralogical inventory, which was quantified by Rietveld refinement of XRD analyses using the fundamental-parameter approach, revealed that blast-furnace sludge is dominated by X-ray amorphous substances (with a mean of 590 g kg(-1)) including coke and (hydr)oxides of Fe, Si, Al, Zn, and Pb. Calcite (CaCO3) (136 g kg(-1)), dolomite (Ca,Mg[CO3]2) (14 g kg(-1)), quartz (SiO2) (55 g kg(-1)), kaolinite (Al2[OH]4Si2O5) (40 g kg(-1)), graphite (C) (27 g kg(-1)), and chemically not specified layered double hydroxides (28 g kg(-1)) were identified in almost all samples. Iron is present as magnetite (Fe3O4) (34 g kg(-1)), hematite (Fe2O3) (38 g kg(-1)), wuestite (FeO) (20 g kg(-1)) and alpha-iron (Fe0) (6 g kg(-1)). Chemically, blast-furnace sludge is dominated by C (190 g kg(-1)) and Fe (158 g kg(-1)) reflecting the process of pig-iron production. On the basis of total contents, environmentally problematic metals (including As) are Zn (32.6 g kg(-1)), Pb (10.3 g kg(-1)), Cd (81 mg kg(-1)), and As (129 mg kg(-1)). As the forested landfill is used by residents for leisure activities, the exposure assessment by pathway oral uptake of blast-furnace sludge particles by humans has to be critically evaluated, particularly as significant proportions of metals are acid-soluble. However, under the prevailing slightly alkaline pH values of the sludge (pH 7.6-9.2), the solubility of the metals is very low as indicated by low pore water concentrations. Currently, groundwater monitoring should be focused mainly on F- since the F- concentrations in the pore water of blast-furnace sludge are at high level (2.65-24.1 mg of F- L(-1)).

  3. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  4. Thermal-destruction products of coal in the blast-furnace gas-purification system

    SciTech Connect

    A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev

    2008-10-15

    The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

  5. Mathematical modeling of the burden distribution in the blast furnace shaft

    NASA Astrophysics Data System (ADS)

    Park, Jong-In; Jung, Hun-Je; Jo, Min-Kyu; Oh, Han-Sang; Han, Jeong-Whan

    2011-06-01

    Process efficiency in the blast furnace is influenced by the gas flow pattern, which is dictated by the burden profile. Therefore, it is important to control the burden distribution so as to achieve reasonable gas flow in the blast furnace operation. Additionally, the charging pattern selection is important as it affects the burden trajectory and stock profile. For analysis of the burden distribution, a new analysis model was developed by use of the spreadsheet program, Microsoft® Office Excel, based on visual basic. This model is composed of the falling burden trajectory and a stock model. The burden trajectory is determined by the burden type, batch weight, rotating velocity of the chute, tilting angle, and friction coefficient. After falling, stock lines are formed by the angle of repose, which is affected by the burden trajectory and the falling velocity. The mathematical formulas for developing this model were modified by a scaled model experiment and DEM simulation.

  6. Mechanism Research on Melting Loss of Coppery Tuyere Small Sleeve in Blast Furnace

    NASA Astrophysics Data System (ADS)

    Chai, Yi-Fan; Zhang, Jian-Liang; Ning, Xiao-Jun; Wei, Guang-Yun; Chen, Yu-Ting

    2016-01-01

    The tuyere small sleeve in blast furnace works under poor conditions. The abnormal damage of it will severely affect the performance of the blast furnace, thus it should be replaced during the damping down period. So it is of great significance that we study and reduce the burnout of tuyere small sleeve. Melting loss is one case of its burnout. This paper studied the reasons of tuyere small sleeve's melting loss, through computational simulation and microscopic analysis of the melting section. The research shows that the temperature of coppery tuyere small sleeve is well distributed when there is no limescale in the lumen, and the temperature increases with the thickness of limescale. In addition, the interruption of circulating water does great harm to the tuyere small sleeve. The melting loss of tuyere small sleeve is caused by iron-slag erosion, with the occurrence of the melt metallurgical bonding and diffusion metallurgical combination.

  7. AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace

    SciTech Connect

    Michael F. Riley

    2002-10-21

    Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and

  8. Desulphurization and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge

    SciTech Connect

    Li, S.L.; Feng, Q.B.; Li, L.; Xie, C.L.; Zhen, L.P.

    2009-03-15

    Laboratory tests were conducted for removal of SO{sub 2} from simulated flue gas and simultaneous treatment of wastewater from blast furnace by pulsed corona discharge. Tests were conducted for the flue gas flow from 12 to 18 Nm{sup 3}/h, the simulated gas temperature from 80 to 120 {sup o}C, the inlet flux of wastewater from 33 to 57 L/h, applied voltage from 0 to 27 kV, and SO{sub 2} initial concentration was about 1,430 mg/m{sup 3}. Results showed that wastewater from blast furnace has an excellent ability of desulphurization (about 90%) and pulsed corona discharge can enhance the desulphurization efficiency. Meanwhile, it was observed that the SO{sub 2} removal ratio decreased along with increased cycle index, while it increased as the flux of flue gas was reduced, and increased when the flux of wastewater from blast furnace was increased. In addition, results demonstrated that the content of sulfate radical produced in wastewater increase with an increment of applied pulsed voltage, cycle index, or the flux of flue gas. Furthermore, the results indicated that the higher the inlet content of cyanide the better removal effect of it, and the removal rate can reach 99.9% with a residence time of 2.1 s in the pulsed corona zone during the desulphurization process when the inlet content was higher, whereas there was almost no removal effect when the inlet content was lower. This research may attain the objective of waste control, and can provide a new way to remove SO{sub 2} from flue gas and simultaneously degrade wastewater from blast furnace for integrated steel plants.

  9. The Iron Blast Furnace: A Study in Chemical Thermodynamics.

    ERIC Educational Resources Information Center

    Treptow, Richard S.; Jean, Luckner

    1998-01-01

    Discusses the furnace from a chemical thermodynamics perspective. Examines the enthalpy, entropy, and free energy change for each reaction of importance. These properties are interpreted on the molecular level then used to deduce the conditions necessary for each reaction to occur in its intended direction. Chemical kinetics is also discussed.…

  10. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag.

    PubMed

    Oguz, Ensar

    2005-01-01

    The kinetics of adsorption of PO(3-)(4) by blast furnace slag were found to be fast, reaching equilibrium in 20 min and following a pseudo-second-order rate equation. The adsorption behavior of PO(3-)(4) on blast furnace slag has been studied as a function of the solution agitation speed, pH, and temperature. Results have been analyzed by Freundlich, Langmuir, BET, and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption, 10.31 kJ mol(-1), was calculated from the D-R adsorption isotherm. The rate constants were calculated for 293, 298, 303, and 308 K using a pseudo-second-order rate equation and the activation energy (E(a)) was derived using the Arrhenius equation. Thermodynamic parameters such as DeltaH(0), DeltaS(0), and DeltaG(0) were calculated from the slope and intercept of linear plot of lnK(D) against 1/T. The DeltaH(0) and DeltaG(0) values of PO(3-)(4) adsorption on the blast furnace slag show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of PO(3-)(4) adsorption is favored at high temperatures.

  11. Classification and the case matching algorithm of the blast furnace burden surface

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Zhang, Sen; Yin, Yixin; Shao, Lizhen

    2017-03-01

    The relationship between the burden surface and the gas flow in blast furnace was studied in this paper using the improving k-means algorithm and graded case based matching method. An improved k-means classification algorithm was proposed based on the evaluation of effectiveness index to study the relationship between the burden surface and the gas flow in blast furnace from historical data, which proved the proposed algorithm has high accuracy according to the experimental data and different standard data sets. The paper also proposed a matching algorithm on the basis of the above clustering algorithm to obtain the most matched historical burden surface with the current burden surface. At last, compared with both of the improved grey similarity matching algorithm and Euclidean nearest neighbor matching algorithm, the results showed that the proposed method has higher efficiency and matching accuracy, and it is more suitable for the research of the relationship between burden surface and gas flow to assist the monitoring of the blast furnace to control burden surface.

  12. Blast Furnace Granular Coal Injection Projection. Annual Report, Jan 1 - Dec 31, 1997

    SciTech Connect

    1998-04-01

    This 1997 annual report describes the Blast Furnace Granular Coal Injection project being implemented at the Burns Harbor Plant of Bethlehem Steel Corporation. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. This installation is the first in the United States to use British Steel technology1*2 that uses granular coal to provide a portion of the fuel requirements of blast furnaces. The project will demonstrate/assess a broad range of technical and economic issues associated with the use of coal for injection into blast furnaces. To achieve the progmm objectives, the demonstration project is divided into the following three Phases: Phase I - Design Phase II - Construction Phase III - Operation Preliminary Design (Phase 1) began in 1991 with detailed design commencing in 1993. Construction at the Burns Harbor Plant (Phase II) began in August 1993 and was completed at the end of 1994. The demonstration test program (Phase III) started in the fourth quarter of 1995.

  13. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  14. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

  15. Numerical Study of the Gas Distribution in an Oxygen Blast Furnace. Part 2: Effects of the Design and Operating Parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2015-09-01

    Gas distribution plays a significant role in an oxygen blast furnace. The uneven distribution of recycling gas from the shaft tuyere has been shown to affect the heat distribution and energy utilization in an oxygen blast furnace. Therefore, the optimal design and operating parameters beneficial to the gas distribution in an oxygen blast furnace should be determined. In total, three parameters and 22 different conditions in an oxygen blast furnace multifluid model were considered. The gas and heat distributions in an oxygen blast furnace under different conditions were simulated and compared. The study revealed that when the height of shaft tuyere decreased from 7.8 m to 3.8 m, the difference in top gas CO concentration between the center and edge decreased by 11.6%. When the recycling gas temperature increased from 1123 K to 1473 K, the difference in the top gas CO concentration between the center and edge decreased by 3.9%. As the allocation ratio increased from 0.90 to 1.94, the difference in the top gas CO concentration between the center and edge decreased by 3.0%. Considering both gas and heat distributions, a shaft tuyere height of 3.8 m to 4.8 m, a recycling gas temperature of 1473 K and an allocation ratio of 1.94 are recommended in practice under the conditions of this study.

  16. Variation in coke properties within the blast-furnace shop

    SciTech Connect

    E.N. Stepanov; I.I. Mel'nikov; V.P. Gridasov; A.A. Stepanova

    2009-04-15

    In active production at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK), samples of melt materials were taken during shutdown and during planned repairs at furnaces 1 and 8. In particular, coke was taken from the tuyere zone at different distances from the tuyere tip. The mass of the point samples was 2-15 kg, depending on the sampling zone. The material extracted from each zone underwent magnetic separation and screening by size class. The resulting coke sample was averaged out and divided into parts: one for determining the granulometric composition and mechanical strength; and the other for technical analysis and determination of the physicochemical properties of the coke.

  17. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    SciTech Connect

    Crelling, J.C.

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  18. Production and blast-furnace smelting of boron-alloyed iron-ore pellets

    SciTech Connect

    A.A. Akberdin; A.S. Kim

    2008-08-15

    Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

  19. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  20. Modeling of Internal State and Performance of an Ironmaking Blast Furnace: Slot vs Sector Geometries

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2016-04-01

    Mathematical modeling is a cost-effective method to understand internal state and predict performance of ironmaking blast furnace (BF) for improving productivity and maintaining stability. In the past studies, both slot and sector geometries were used for BF modeling. In this paper, a mathematical model is described for simulating the complex behaviors of solid, gas and liquid multiphase flow, heat and mass transfers, and chemical reactions in a BF. Then the model is used to compare different model configurations, viz. slot and sector geometries by investigating their effects on predicted behaviors, in terms of two aspects: (i) internal state including cohesive zone, velocity, temperature, components concentration, reduction degree, gas utilization, and (ii) performance indicators including liquid output at the bottom and gas utilization rate at the furnace top. The comparisons show that on one hand, predictions of internal state of the furnace such as fluid flow and thermo-chemical phenomena using the slot and sector geometries are qualitatively comparable but quantitatively different. Both sector and slot geometries give a similar cohesive zone shape but the sector geometry gives a higher cohesive zone near the wall and faster reduction. On the other hand, the two geometries can produce similar performance indicators including gas utilization at the furnace top and liquid output at the bottom. Such a study is useful in selecting geometry for numerically examining BF operation with respect to different needs.

  1. Effects of Carbo-Nitridation Process of Ti-Bearing Blast Furnace Slag on Iron Content

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Zhang, X. M.; Xu, Y.

    In order to prepare corrosion-resistant refractory material, experiment chooses Ti-bearing Blast Furnace Slag as raw materials which were treated by the method of carbo-nitridation. Finally, the corrosion resistance properties of the material can be improved by this method. The carbo-nitridation process affects the iron content of the slag in the study, which have a beneficial effect on the synthesis of Ti (C. N). The results indicated that the iron content of the slag significantly increased in process of Ti (C. N) synthesis: and the iron content of slag showed an upward trend with the increase of holding time.

  2. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential.

  3. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.

    PubMed

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

    2014-07-15

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings.

  4. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    NASA Astrophysics Data System (ADS)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  5. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    NASA Astrophysics Data System (ADS)

    Mohanty, M. K.; Mishra, S.; Mishra, B.; Sarkar, S.; Samal, S. K.

    2016-02-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results.

  6. Sulphate removal over barium-modified blast-furnace-slag geopolymer.

    PubMed

    Runtti, Hanna; Luukkonen, Tero; Niskanen, Mikko; Tuomikoski, Sari; Kangas, Teija; Tynjälä, Pekka; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-11-05

    Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents.

  7. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    NASA Astrophysics Data System (ADS)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  8. Chromium stabilization chemistry of paint removal wastes in Portland cement and blast furnace slag

    SciTech Connect

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1995-12-31

    The use of cement based systems for solidification and stabilization of hazardous wastes has been proposed. The stabilization of Cr contaminated paint removal wastes in ordinary Portland cement and in a Portland cement and blast furnace slag matrix was investigated. A loading by volume of 75% waste and 25% cement (or cement + slag) was used. The expression of pore solution was utilized to determine the chemical environment encountered by the waste species in the cement matrix. The highly alkaline conditions of ordinary Portland cement determined the stability of the metal species, with Cr being highly soluble. The replacement of 25% of the Portland cement by blast furnace slag was found to decrease the [OH-] of the pore solution resulting in a decrease of the Cr concentration. For cement wastes forms hydrated for 28 days, the Cr concentration decreased in the expressed pore solution. During the TCLP tests the cement waste form and extraction solution were found to react, changing the chemistry of the extraction solution. The expression of pore solution was found to give a direct measure of the chemistry of the waste species in the cement matrix. This avoids the reaction of the TCLP extraction solution with the cement matrix which changes the solubility of the hazardous metals. 15 refs., 4 figs., 6 tabs.

  9. Nonfibrous mineralogical analysis of bronchoalveolar lavage fluid from blast-furnace workers.

    PubMed

    Corhay, J L; Bury, T; Delavignette, J P; Baharloo, F; Radermecker, M; Hereng, P; Fransolet, A M; Weber, G; Roelandts, I

    1995-01-01

    Steelworkers are exposed to many pollutants, and they are at risk for developing lung cancer. We demonstrated previously that steelworkers may be subject to an occult exposure to amphiboles in the plant environment. In the current study, we further analyzed bronchoalveolar lavage fluid of steelworkers by measuring intramacrophagic trace-metal content and nonfibrous mineral particles, using the particle-induced x-ray emission method and electron microscopy, respectively. Forty-seven blast-furnace workers and 45 healthy white-collar workers volunteered for this study. Significantly increased levels of iron, titanium, zinc, and bromine were found in the steelworkers, and levels of lead, chromium, arsenic, and strontium tended to increase in the macrophages and bronchoalveolar lavage fluid of the steelworkers. Nonfibrous particles, including illite, kaolinite, talc, chlorite, amorphous silica, quartz, iron (compounds), and titanium hydroxide, were found in both groups, but the particle number per ml bronchoalveolar lavage fluid (particularly iron hydroxides and silicates) was more pronounced in blast-furnace workers. These elements and particles may act synergistically with other occupational carcinogens and cigarette smoke, the result of which may be an increased incidence of lung cancer in the ironsteel industry.

  10. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  11. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  12. Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway

    SciTech Connect

    Shen, Y.S.; Maldonado, D.; Guo, B.Y.; Yu, A.B.; Austin, P.; Zulli, P.

    2009-12-15

    In this work, a numerical model is used to study the flow and coal combustion along the coal plume in a large-scale setting simulating the lance-blowpipe-tuyere-raceway region of a blast furnace. The model formulation is validated against the measurements in terms of burnout for both low and high volatile coals. The typical phenomena related to coal combustion along the coal plume are simulated and analyzed. The effects of some operational parameters on combustion behavior are also investigated. The results indicate that oxygen as a cooling gas gives a higher coal burnout than methane and air. The underlying mechanism of coal combustion is explored. It is shown that under the conditions examined, coal burnout strongly depends on the availability of oxygen and residence time. Moreover, the influences of two related issues, i.e. the treatment of volatile matter (VM) and geometric setting in modeling, are investigated. The results show that the predictions of final burnouts using three different VM treatments are just slightly different, but all comparable to the measurements. However, the influence of the geometric setting is not negligible when numerically examining the combustion of pulverized coal under blast furnace conditions.

  13. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  14. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  15. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  16. CFD study of ejector flow behavior in a blast furnace gas galvanizing plant

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Mereu, Riccardo; Inzoli, Fabio

    2015-02-01

    In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models ( k-ω SST and k-ɛ Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.

  17. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    SciTech Connect

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B.

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  18. Alkali-silicate admixture for cement composites incorporating pozzolan or blast furnace slag

    SciTech Connect

    Zivica, V. . Inst. of construction and Architecture)

    1993-09-01

    This research was devoted to the study of the influence of the developed alkali-silicate admixture (AS admixture) on mortar properties. The obtained results shown that the admixture significantly increased the strength of the mortars made from portland cement (PC) and silica fume (SF) or blast furnace slag (SL). For example after 24 h hardening of mortar (30% SF + 70% PC), with the admixture, reached value of compression strength 18,7 MPa opposite to the value of 5.6 MPa of control mortar (100% PC). The same accelerating effect of AS admixture was observed also with mortar incorporating slag and with slag mortar (100% SL). Further results show that the mortars with AS admixture had an increased content of hydration products and substantially more dense pore structure than mortars of the same composition, but without the admixture.

  19. Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Zhang, Li; Li, Yuhai; Li, Xin

    2016-09-01

    The aim of the present work is to elucidate crystallization and growing process of rutile crystals in Ti-bearing blast furnace slag. The samples were taken from the liquid slag and quenched at once at elevated temperatures in order to analyze phase transaction of titanium and grain size of rutile crystals. Crystallization and growing kinetics of rutile crystals under elevated temperature conditions were calculated, and the crystallization process of rutile crystals under isothermal conditions was expressed by Avrami equation. The effects of experimental parameters, such as experimental temperatures, SiO2 addition, cooling rate, crystal seed addition and oxygen flow, were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the optimal conditions for rutile crystals to grow up were obtained. Distribution and movement state of rutile crystals in the slag were analyzed.

  20. Method of manufacture of blast furnace cokes containing substantial amounts of low grade coals

    SciTech Connect

    Kubo, K.; Takahashi, H.; Tsuyuguchi, M.

    1982-03-09

    Blast furnace coke containing low grade coal in a high blending ratio is manufactured by a method which comprises blending not less than 60% of a blended coal having an adjusted total moisture content of not more than 4% with not more than 40% of briquettes and carbonizing the resultant mixture. The blended coal consists essentially of not less than 80% of coking coal and not more than 20% of low grade coal. When coking coal of a kind which has its coking property segregated according to its grain size distribution is pulverized and classified by sifting and the portion of fine particles is used as mixed with the coking coal, the blending ratio of the low grade coal in the blended coal can be increased to up to 35%. The briquettes consist essentially of not less than 10% of coking coal and not more than 90% of low grade coal.

  1. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    SciTech Connect

    Kovtun, Maxim Kearsley, Elsabe P. Shekhovtsova, Julia

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  2. Chloride leaching from air pollution control residues solidified using ground granulated blast furnace slag.

    PubMed

    Lampris, Christos; Stegemann, Julia A; Cheeseman, Christopher R

    2008-11-01

    Ground granulated blast furnace slag (ggbs) has been used to solidify air pollution control (APC) residues obtained from a major UK energy-from-waste plant. Samples were prepared with ggbs additions between 10 and 50 wt% of total dry mass and water/solids ratios between 0.35 and 0.80. Consistence, setting time, compressive strength and leaching characteristics have been investigated. Results indicated that the highly alkaline nature of APC residues due to the presence of free lime can be used to activate ggbs hydration reactions. Increasing ggbs additions and reducing the water content resulted in increased compressive strengths, with 50 wt% ggbs samples having average 28 d strengths of 20.6 MPa. Leaching tests indicate low physical encapsulation and minimal chemical fixation of chloride in ggbs solidified APC residues. The results suggest that more than 50 wt% ggbs additions would be required to treat APC residues to meet the current waste acceptance criteria limits for chloride.

  3. Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model

    NASA Astrophysics Data System (ADS)

    Kashani, Alireza; Provis, John L.; van Deventer, Jannie S. J.

    2013-06-01

    Ground granulated blast furnace slag is widely combined with Portland cement as a supplementary material, and is also used in alkali-activated binders (geopolymers) and in supersulfated cements, which are potential replacements for Portland cement with significantly reduced carbon dioxide emissions. The rheology of a cementitious material is important in terms of its influence on workability, especially in self leveling concretes. The current research investigates the effects of different particle size distributions of slag particles on paste rheology. Rheological measurements results show a direct relationship between the modal particle size and the yield stress of the paste. An empirical model is introduced to calculate the yield stress value of each paste based on the particle size distribution, and applied to a range of systems at single water to solids ratio. The model gives a very good match with the experimental data.

  4. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption.

    PubMed

    Tsutsumi, Takuma; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Miyake, Michihiro

    2014-02-15

    Al-substituted 11Å-tobermorite was formed by alkaline hydrothermal treatment of blast furnace slag with sodium silicate added at 180°C for 2-48 h. Effects of the hydrothermal treatment time were characterized by XRD, SEM, and isothermal adsorption of N2. Sorption characteristics of the obtained samples were examined for Cs(+) and Sr(2+). The sample obtained by hydrothermal treatment for 48 h (HT-48 h) consisted of calcium silicate hydrate (C-S-H), and Al-substituted 11Å-tobermorite. The HT-48 h showed the highest performance for Cs(+) and Sr(2+) selectivity in the presence of Na(+). The interlayer Na(+) of Al-substituted 11Å-tobermorite and surface Ca(2+) played an important role in selective Cs(+) and Sr(2+).

  5. Improvement of the Blast Furnace Viscosity Prediction Model Based on Discrete Points Data

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Zhu, Mengyi; Li, Xinyu; Guo, Jian; Du, Shen; Zhang, Jianliang

    2015-02-01

    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace slag. An improved model for viscosity prediction based on the Chou model was presented in this article. The updated model has optimized the selection strategy of distance algorithm and negative weights at the reference points. Therefore, the extensionality prediction disadvantage in the original model was ameliorated by this approach. The model prediction was compared with viscosity data of slags of compositions typical to BF operations obtained from a domestic steel plant. The results show that the approach can predict the viscosity with average error of 9.23 pct and mean standard deviation of 0.046 Pa s.

  6. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste.

    PubMed

    Guerrero, A; Goñi, S

    2002-01-01

    The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.

  7. Characteristics of blast furnace slag leachate produced under reduced and oxidized conditions.

    PubMed

    Schwab, A P; Hickey, J; Hunter, J; Banks, M K

    2006-01-01

    A laboratory study was conducted to determine the environmental conditions necessary to reproduce leachates observed emerging from blast furnace slag acting as the foundation of highways in northwest Indiana. The leachates in the field are often highly alkaline with a pungent sulfur odor, a distinct green or milky-white in color, and sulfate concentrations exceeding 2,000 mg/L. Slag was equilibrated in the laboratory under both oxidized and anoxic environments and at various slag:water ratios. Constant anoxic conditions were required to produce to green colors in the slag, but high sulfate concentrations were observed only when the suspensions were fully oxidized. Leachate from the study site appears to form as a result of a series of complex chemical reactions including fluctuating oxidized and reduced conditions.

  8. Blast furnace residues for arsenic removal from mining-contaminated groundwater.

    PubMed

    Carrillo-Pedroza, Fco Raúl; Soria-Aguilar, Ma de Jesús; Martínez-Luevanos, Antonia; Narvaez-García, Víctor

    2014-01-01

    In this work, blast furnace (BF) residues were well characterized and then evaluated as an adsorbent material for arsenic removal from a mining-contaminated groundwater. The adsorption process was analysed using the theories of Freundlich and Langmuir. BF residues were found to be an effective sorbent for As (V) ions. The modelling of adsorption isotherms by empirical models shows that arsenate adsorption is fitted by the Langmuir model, suggesting a monolayer adsorption of arsenic onto adsorbents. Arsenate adsorption onto BF residue is explained by the charge density surface affinity and by the formation of Fe (II) and Fe (III) corrosion products onto BF residue particles. The results indicate that BF residues represent an attractive low-cost absorbent option for the removal of arsenic in wastewater treatment.

  9. Characterization of tuyere-level core-drill coke samples from blast furnace operation

    SciTech Connect

    S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti

    2007-12-15

    A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

  10. Solidification of arsenic and heavy metal containing tailings using cement and blast furnace slag.

    PubMed

    Kim, Jung-Wook; Jung, Myung Chae

    2011-01-01

    The objective of this study is to examine the solidification of toxic elements in tailings by the use of cement and blast furnace slag. Tailings samples were taken at an Au-Ag mine in Korea. To examine the best mixing ratio of tailings and the mixture of ordinary Portland cement (OPC) and blast furnace slag (SG) of 5:5, 6:6, 7:3, and 8:2, the 7:3 ratio of tailings and OPC+SG was adapted. In addition, the mixing ratios of water and OPC + SG were applied to 10, 20, and 30 wt%. After 7, 14, and 28 days' curing, the UCS test was undertaken. A relatively high strength of solidified material (137.2 kg cm⁻² in average of 3 samples) at 28 days' curing was found in 20 wt% of water content (WC). This study also examined the leachability of arsenic and heavy metals (Cd, Cu, Pb, and Zn) under the Korean Standard Leaching Test, and it showed that the reductions in leachabilities of As and heavy metals of solidified samples were ranged from 76 to 99%. Thus, all the solidified samples were within the guidelines for special and hazardous waste materials by the Waste Management Act in Korea. In addition, the result of freeze-thaw cycle test of the materials indicated that the durability of the materials was sufficient. In conclusion, solidification using a 7:3 mixing ratio of tailings and a 1:1 mixture of OPC + SG with 20% of WC is one of the best methods for the remediation of arsenic and heavy metals in tailings and other contaminated materials.

  11. Control of sinter quality for blast furnaces of SAIL through characterization of high temperature properties

    SciTech Connect

    Mishra, U.N.; Thakur, B.; Mediratta, S.R.

    1996-12-31

    Quality of blast furnace (BF) burden materials and their performance inside the furnace have attracted increased importance worldwide. High productivity, low fuel rate and stable operation of BF can be achieved by suitably controlling the quality of input materials particularly that of sinter which is the main constituent of the burden. Reduction Degradation Index (RDI), Reducibility Index (RI) and Softening-melting characteristics are some of the quality indicators of sinter. The effect of chemical composition of sinter in the ranges of CaO/SiO{sub 2} 1.4--2.0, FeO 4.0--8.0, Al{sub 2}O{sub 3} 1.3--2.0 and MgO 1.2--2.0 on the above mentioned properties have been reported in literature. Due to the peculiarity of Indian raw materials, i.e., high ash content of coke and high Al{sub 2}O{sub 3} content of iron ore, the sinter composition varies over a wide range of CaO/SiO{sub 2} 2.0--2.5, FeO 8--11%, Al{sub 2}O{sub 3} 2--4% and MgO 2--5% in different plants of SAIL. This paper discusses the effect of above constituents in higher ranges as compared to earlier study on RDI, RI and Softening-melting properties so that sinter composition can be optimized for achieving desirable properties for better BF performance.

  12. Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength

    SciTech Connect

    Stanislav S. Gornostayev; Jouko J. Haerkki

    2006-12-15

    Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

  13. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.

    PubMed

    Nehrenheim, Emma; Waara, Sylvia; Johansson Westholm, Lena

    2008-03-01

    Treatment of landfill leachate using blast furnace slag and pine bark as reactive sorbents was studied in an in situ column experiment at the Lilla Nyby landfill site in Eskilstuna, Sweden. The columns were filled with approximately 101 of each sorbent and leachate was supplied at three different flow rates during a period of 4 months. Samples of inflow and outflow were collected three times a week and were analyzed for physical and chemical parameters, including concentrations of some metals, and toxicity. It was found that pine bark removed metals more efficiently than did the blast furnace slags; that Zn was most efficiently retained in the filters and that both retention time and initial concentration played an important role in the sorption process. It was also observed that the pine bark column did not release COD. No toxicity of the untreated or the treated leachate was found with the test organisms and test responses used.

  14. An example of alkalization of SiO{sub 2} in a blast furnace coke

    SciTech Connect

    S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki

    2007-09-15

    Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

  15. Preparation of glass-forming materials from granulated blast furnace slag

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  16. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  17. Durability of traditional plasters with respect to blast furnace slag-based plaster

    SciTech Connect

    Cerulli, T.; Pistolesi, C.; Maltese, C.; Salvioni, D

    2003-09-01

    Blast furnace slag is a residue of steel production. It is a latent hydraulic binder and is normally used to improve the durability of concrete and mortars. Slag could be also used as rendering mortar for masonry and old buildings. Today, cement and hydraulic lime are the most popular hydraulic binders used to make plasters. They are characterised by a low durability when exposed to the action of chemical and physical agents. The aim of this study was to provide a comparison between the physical-mechanical properties of some renders made with ordinary Portland cement, hydraulic lime, or slag. Furthermore, an investigation was carried out to analyse mortar resistance to several aggressive conditions like acid attack, freezing and thawing cycles, abrasion, sulphate aggression, cycles in ultraviolet screening device, and salt diffusion. The specimens, after chemical attack, have been characterised from the chemical-physical [specific surface according to the BET (Brunauer-Emmet-Teller) method], crystal-chemical (X-ray diffraction, XRD), and morphological (scanning electron microscopy, SEM) points of view.

  18. Formation mechanism of the protective layer in a blast furnace hearth

    NASA Astrophysics Data System (ADS)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng

    2015-10-01

    A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.

  19. Effect of Carbon Aggregates on the Properties of Carbon Refractories for a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Chen, Xilai; Li, Yawei; Li, Yuanbing; Sang, Shaobai; Zhao, Lei; Li, Shujing; Jin, Shengli; Ge, Shan

    2010-04-01

    The effect of carbon aggregates on the carbon refractory properties for a blast furnace was studied with X-ray diffraction (XRD), scanning electron microscopy (SEM), an energy-dispersive X-ray, mercury porosimetry, a resistivity instrument, and a laser thermal conductivity meter. The results showed that the microporous structure of a sample was determined by the amount of β-SiC whiskers. The thermal conductivity was controlled by the thermal conductivity of the corresponding carbon aggregate, and the alkali and molten-iron attack was decided mainly by the pore and the graphitization degree of aggregate, respectively. For samples using calcined anthracites as aggregates, the microporous structure became worse, the thermal conductivity increased, and the molten-iron as well as the alkali attack became more severe with an increase in the anthracite calcining temperature. For all samples, microcrystalline graphite possessed the best microporous structure and the least alkali and molten-iron attack, whereas the graphite electrode scraps had the highest thermal conductivity and the most severe alkali and molten-iron attack.

  20. Phase Development of NaOH Activated Blast Furnace Slag Geopolymers Cured at 90° C

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; MacKenzie, K. J. D.; Bigley, C.; Ryan, M. J.; Brown, I. W. M.

    2009-07-01

    Geopolymers were synthesized from blast furnace slag activated with different levels of NaOH and cured at 90° C. The crystalline and amorphous phases of the resulting geopolymers were characterized by XRD quantitative analysis, and 29Si and 27Al MAS NMR. Amorphous species are predominant in materials at all NaOH levels. In the amorphous phase, aluminium substituted silicate species (Q2(1Al)) dominated among the species of Q0, Q1, Q2(1Al) and Q2 (where Qn(mAl) denotes a silicate tetrahedron [SiO4] with n bridging oxygen atoms and m adjacent tetrahedra substituted with an aluminate tetrahedron [AlO4]). In addition, it was also found that 4-fold coordination aluminium [AlO4] species (27Al chemical shift 66.1 ppm) in low NaOH containing materials differs from the species (27Al chemical shift 74.3 ppm) in high NaOH containing materials.

  1. Phase Development of NaOH Activated Blast Furnace Slag Geopolymers Cured at 90 deg. C

    SciTech Connect

    Zhang Bo; Bigley, C.; Ryan, M. J.; MacKenzie, K. J. D.; Brown, I. W. M.

    2009-07-23

    Geopolymers were synthesized from blast furnace slag activated with different levels of NaOH and cured at 90 deg. C. The crystalline and amorphous phases of the resulting geopolymers were characterized by XRD quantitative analysis, and {sup 29}Si and {sup 27}Al MAS NMR. Amorphous species are predominant in materials at all NaOH levels. In the amorphous phase, aluminium substituted silicate species (Q{sup 2}(1Al)) dominated among the species of Q{sup 0}, Q{sup 1}, Q{sup 2}(1Al) and Q{sup 2}(where Q{sup n}(mAl) denotes a silicate tetrahedron [SiO{sub 4}] with n bridging oxygen atoms and m adjacent tetrahedra substituted with an aluminate tetrahedron [AlO{sub 4}]). In addition, it was also found that 4-fold coordination aluminium [AlO{sub 4}] species ({sup 27}Al chemical shift 66.1 ppm) in low NaOH containing materials differs from the species ({sup 27}Al chemical shift 74.3 ppm) in high NaOH containing materials.

  2. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    SciTech Connect

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  3. The chaotic characteristic of the carbon-monoxide utilization ratio in the blast furnace.

    PubMed

    Xiao, Dengfeng; An, Jianqi; He, Yong; Wu, Min

    2017-03-20

    In this paper, carbon monoxide utilization ratio (CMUR) is served as a real-time index to evaluate the energy consumption of blast furnace (BF), and the chaotic analysis method is also presented to study the characteristic of CMUR. Firstly, the time series data measured from two representative BFs are adopted as the sample to investigate the characteristics of CMUR. Secondly, the phase space model of CMUR is reconstructed, and two key related parameters of the model are derived as well. Finally, the value of the chaotic attractor's saturated correlative dimensions in the reconstructed phase space of CMUR is obtained. The result shows that the sample time series of these two BFs have chaos property. Furthermore, the development process of CMUR is also proved to be the chaotic process. It provides a solid foundation for us to further study the chaotic predication and control of CMUR, which helps us to better master the variational tendency of CMUR and provides the effective operation guidance for the BF on the spot to reduce the energy consumption in BF.

  4. Sulfur speciation in untreated and alkali treated ground-granulated blast furnace slag.

    PubMed

    Arail, Yuji; Powell, Brian A; Kaplan, Daniel I

    2017-07-01

    Reduced sulfur species in ground-granulated blast furnace slag (GGBFS) play an important role in immobilizing radionuclide contaminants in caustic cement-GGBFS mixtures via reductive precipitation reaction. However, sulfur (S) speciation and its stability in GGBFS have not been clearly understood. In this study, S speciation of GGBSF in alkaline radionuclide liquid waste simulant solutions was investigated using S K-edge X-ray absorption near edge structure spectroscopy (XANES) and powder X-ray diffraction (XRD) measurements. Although S mineralogy was not detectable by XRD due to the amorphous nature in GGBFS, XANES analysis revealed that GGBSF contained high concentration of sulfoxide (~57%), followed by S(0) (~37%), sulfate (~3.81%), and sulfonate (~2.33%). When GGBFS was reacted with anoxic or oxygenated alkali solutions, it retained most of sulfoxide with some changes in the fraction of elemental S, sulfonate and sulfate, indicating the involvement of reduced S species in the reductive precipitation of radionuclides. This study shows the presence of intermediate S valence species in GGBFS.

  5. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    SciTech Connect

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C.

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  6. Mechanisms of hydrogen sulfide removal by ground granulated blast furnace slag amended soil.

    PubMed

    Xie, Mengyao; Leung, Anthony Kwan; Ng, Charles Wang Wai

    2017-05-01

    Ground granulated blast furnace slag (GGBS) amended soil has been found able to remove gaseous hydrogen sulfide (H2S). However, how H2S is removed by GGBS amended soil and why GGBS amended soil can be regenerated to remove H2S are not fully understood. In this study, laboratory column tests together with chemical analysis were conducted to investigate and reveal the mechanisms of H2S removal process in GGBS amended soil. Sulfur products formed on the surface of soil particle and in pore water were quantified. The test results reveal that the reaction between H2S and GGBS amended soil was a combined process of oxidation and acid-base reaction. The principal mechanism to remove H2S in GGBS amended soil was through the formation of acid volatile sulfide (AVS), elemental sulfur and thiosulfate. Soil pH value decreased gradually during regeneration and reuse cycles. It is found that the AVS plays a significant role in H2S removal during regeneration and reuse cycles. Adding GGBS increased the production of AVS and at the same time suppressed the formation of elemental sulfur. This mechanism is found to be more prominent when the soil water content is higher, leading to increased removal capacity.

  7. Characterization of dust from blast furnace cast house de-dusting.

    PubMed

    Lanzerstorfer, Christof

    2016-12-14

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  8. Phosphorus retention capacity of iron-ore and blast furnace slag in subsurface flow constructed wetlands.

    PubMed

    Grüneberg, B; Kern, J

    2001-01-01

    The suitability of iron-ore and blast furnace slag for subsurface flow (SSF) constructed wetlands was studied over a period of four months. Dairy farm wastewater (TP 45 mg l(-1)) was percolated through buckets planted with reed (volume 9.1 l; hydraulic load 151 m(-2) d(-1)). One group of buckets was kept under aerobic conditions and the other group under anaerobic conditions, monitored by continuous redox potential measurements. Even at high mass loading rates of 0.65 g P m(-1) d(-1) the slag provided 98% removal efficiency and showed no decrease in performance with time. However, phosphorus fractionation data indicate that the high phosphorus retention capacity under aerobic conditions is to a great extent attributable to unstable sorption onto calcium compounds (NH4Cl-P). Phosphorus sorption of both the slag (200 microg P g(-1)) and the iron-ore (140 microg P g(-1)) was promoted by predominantly anaerobic conditions due to continuous formation of amorphous ferrous hydroxides. None of the substrates had adverse affects on reed growth.

  9. Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag.

    PubMed

    Uğur, F A; Turhan, S; Sahan, H; Sahan, M; Gören, E; Gezer, F; Yeğingil, Z

    2013-01-01

    The activity level and possible radiological impacts of naturally occurring radionuclides on the health of workers and members of the public, as a result of utilisation of blast furnace slag (BFS) samples as a substitute for aggregate in road construction were investigated by using a gamma-ray spectrometer and potential exposure scenarios given in Radiation Protection 122. The mean activity concentrations of the (226)Ra, (232)Th and (40)K in BFS samples were found to be 152.4, 54.9 and 183.1 Bq kg(-1), respectively. These values are compared with typical values measured in BFS samples from the European Union countries, which are 270, 70 and 240 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The values of radium equivalent activity index calculated for BFS samples were within the recommended safety limits. The highest total annual effective doses evaluated as 0.9 and 0.4 mSv y(-1) for members of the public and workers, respectively, were lower than the annual limit of 1 mSv y(-1).

  10. Stabilization of chloro-organics using organophilic bentonite in a cement-blast furnace slag matrix.

    PubMed

    Cioffi, R; Maffucci, L; Santoro, L; Glasser, F P

    2001-01-01

    The application of cement-based stabilisation/solidification treatment to organic-containing wastes is made difficult by the adverse effect of organics on cement hydration. The use of organophilic clays as pre-solidification adsorbents of the organic compounds can reduce this problem because of the high adsorption power of these clays and their compatibility with the cementitious matrix. This work presents an investigation of the effect on hydration kinetics, physico-mechanical properties and leaching behaviour of cement-based solidified waste forms containing 2-chlorophenol and 1-chloronapthalene adsorbed on organophilic bentonites. These were prepared by cation exchange with benzyldimethyloctadecylammonium chloride and trimethyloctadecylammonium chloride. The binder was a 30% pozzolanic cement, 70% granulated blast furnace slag mixture. Several binder-to-bentonite ratios and different concentrations of the organics on the bentonite were used. Kinetics of hydration were studied by measurement of chemically bound water and by means of thermal and calorimetric analyses. Microstructure and other physico-mechanical properties of the solidified forms were studied by means of mercury intrusion porosimetry, scanning electron microscopy and unconfined compressive strength measurement. Leaching was checked by two different leaching tests: one dynamic, on monolithic samples, and the other static, on powdered samples. This study indicates that the incorporation of the organic-loaded bentonite in the binder matrix causes modifications in the hardened samples by altering cement hydration. The effects of the two organic contaminants are differentiated.

  11. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.

    PubMed

    Asaoka, Satoshi; Yamamoto, Tamiji

    2010-04-01

    There is an urgent need to control nutrient release fluxes from organically-enriched sediments into overlying waters to alleviate the effects of eutrophication. This study aims to characterize blast furnace slag (BFS) and evaluate its remediation performance on organically-enriched sediments in terms of suppressing nutrient fluxes and reducing acid volatile sulfide. BFS was mainly composed of inorganic substances such as CaO, SiO(2), Al(2)O(3) and MgO in amorphous crystal phase. Container experiments showed that the phosphate concentration in the overlying water, its releasing flux from sediment and AVS of the sediment decreased by 17-23%, 39% and 16% compared to the control without BFS, respectively. The loss on ignition was significantly decreased by 3.6-11% compared to the control. Thus, the application of BFS to organically-enriched sediment has a suppressive role on organic matter, AVS concentration and phosphate releasing flux from sediments and therefore, is a good candidate as an effective environmental remediation agent.

  12. Iron blast furnace slag/hydrated lime sorbents for flue gas desulfurization.

    PubMed

    Liu, Chiung-Fang; Shih, Shin-Min

    2004-08-15

    Sorbents prepared from iron blast furnace slag (BFS) and hydrated lime (HL) through the hydration process have been studied with the aim to evaluate their reactivities toward SO2 under the conditions prevailing in dry or semidry flue gas desulfurization processes. The BFS/HL sorbents, having large surface areas and pore volumes due to the formation of products of hydration, were highly reactive toward SO2, as compared with hydrated lime alone (0.24 in Ca utilization). The sorbent reactivity increased as the slurrying temperature and time increased and as the particle size of BFS decreased; the effects of the liquid/solid ratio and the sorbent drying conditions were negligible. The structural properties and the reactivity of sorbent were markedly affected by the BFS/HL ratio; the sorbent with 30/70 ratio had the highest 1 h utilization of Ca, 0.70, and SO2 capture, 0.45 g SO2/g sorbent. The reactivity of a sorbent was related to its initial specific surface area (Sg0) and molar content of Ca (M(-1)); the 1 h utilization of Ca increased almost linearly with increasing Sg0/M. The results of this study are useful to the preparation of BFS/HL sorbents with high reactivity for use in the dry and semidry processes to remove SO2 from the flue gas.

  13. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.

    PubMed

    Ozkan, Omer; Yüksel, Isa; Muratoğlu, Ozgür

    2007-01-01

    Coal bottom ash (CBA) and fly ash (FA) are by-products of thermal power plants. Granulated blast-furnace slag (GBFS) is developed during iron production in iron and steel plants. This research was conducted to evaluate the compressive strength property and some durability characteristics of concrete incorporating FA, CBA, and GBFS. FA is used as an effective partial cement replacement; CBA and GBFS are used as partial replacement for fine aggregate without grinding. Water absorption capacity, unit weight and compressive strengths in 7, 28, and 90-day ages were assessed experimentally. For these experiments, concrete specimens were produced in the laboratory in appropriate shapes. The samples are divided into two main categories: M1, which incorporated CBA and GBFS; and M2, which incorporated FA, CBA, and GBFS. Remarkable decreases are observed in compressive strength and water absorption capacity of the concrete; bulk density of the concrete is also decreased. It can be concluded that if the content of CBA and GBFS is limited to a reasonable amount, the small decreases in strength can be accepted for low strength concrete works.

  14. Evaluation of blast furnace slag as basal media for eelgrass bed.

    PubMed

    Hizon-Fradejas, Amelia B; Nakano, Yoichi; Nakai, Satoshi; Nishijima, Wataru; Okada, Mitsumasa

    2009-07-30

    Two types of blast furnace slag (BFS), granulated (GS) and air-cooled slag (ACS), were evaluated as basal media for eelgrass bed. Evaluation was done by comparing BFS samples with natural eelgrass sediment (NES) in terms of some physico-chemical characteristics and then, investigating growth of eelgrass both in BFS and NES. In terms of particle size, both BFS samples were within the range acceptable for growing eelgrass. However, compared with NES, low silt-clay content for ACS and lack of organic matter content for both BFS samples were found. Growth experiment showed that eelgrass can grow in both types of BFS, although growth rates in BFS samples shown by leaf elongation were slower than that in NES. The possible reasons for stunted growth in BFS were assumed to be lack of organic matter and release of some possible toxins from BFS. Reduction of sulfide content of BFS samples did not result to enhanced growth; though sulfide release was eliminated, release of Zn was greater than before treatment and concentration of that reached to alarming amounts.

  15. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.

    PubMed

    Shen, Lazhen; Qiao, Yongsheng; Guo, Yong; Tan, Junru

    2010-05-15

    Blast furnace (BF) flue dust is one of pollutants emitted by iron and steel plants. The recycling of BF flue dust can not only reduce pollution but also bring social and environmental benefits. In this study, leaching technique was employed to the treatment of BF flue dust at first. A mixed solution of ferrous and ferric sulfate was obtained and used as raw material to prepare nanometer-sized black iron oxide pigment (Fe(3)O(4), magnetite) with NaOH as precipitant. The optimal technological conditions including total iron ion concentration, Fe(3+)/Fe(2+) mole ratio, precipitant concentration and reaction temperature were studied and discussed carefully. The spectral reflectance and oil absorption were used as major parameters to evaluate performance of pigment. Furthermore, Fe(3)O(4) particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Under optimized conditions obtained pigment has low average spectral reflectance (<4%), good oil absorption ( approximately 23%), high black intensity, and narrow size distribution 60-70 nm.

  16. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    NASA Astrophysics Data System (ADS)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  17. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  18. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel.

  19. Trace metals related to historical iron smelting at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.

  20. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  1. Characteristics and settling behaviour of particles from blast furnace flue gas washing.

    PubMed

    Kiventerä, Jenni; Leiviskä, Tiina; Keski-Ruismäki, Kirsi; Tanskanen, Juha

    2016-05-01

    A lot of particles from iron-making are removed with blast furnace off-gas and routed to the gas cleaning system. As water is used for cleaning the gas, the produced wash water contains a large amount of particles such as valuable Fe and C. However, the presence of zinc prevents recycling. In addition, the high amount of calcium results in uncontrolled scaling. Therefore, the properties of the wash water from scrubber and sludge, from the Finnish metal industry (SSAB Raahe), were evaluated in this study. Size fractionation of wash water revealed that Fe, Zn, Al, Mn, V, Cr and Cd appeared mainly in the larger fractions (>1.2 μm) and Na, Mg, Si, Ni, K, Cu and As appeared mainly in the smaller fractions (<1.2 μm) or in dissolved form. Calcium was found both in the larger fractions and dissolved (∼60 mg/L). Most of the particles in wash water were included in the 1.2-10 μm particle size and were settled effectively. However, a clear benefit was observed when using a chemical to enhance particle settling. In comparison to 2.5 h of settling without chemical, the turbidity was further decreased by about 94%, iron 85% and zinc 50%. Coagulation-flocculation experiments indicated that both low and high molecular weight cationic polymers could provide excellent purification results in terms of turbidity. Calcium should be removed by other methods. The particles in sludge were mostly in the 2-4 μm or 10-20 μm fractions. Further sludge settling resulted in high solids removal.

  2. Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application.

    PubMed

    Asuman Korkusuz, E; Beklioğlu, Meryem; Demirer, Göksel N

    2007-08-01

    Research was conducted at Middle East Technical University (METU), Ankara, Turkey in 2000 to determine whether a reed bed filled with an economical Turkish fill media that has high phosphorus (P) sorption capacity, could be implemented and operated successfully under field conditions. In batch-scale P-sorption experiments, the P-sorption capacity of the blast furnace granulated slag (BFGS) of KARDEMIR Iron and Steel Ltd., Co., Turkey, was found to be higher compared to other candidate filter materials due to its higher Ca content and porous structure. In this regard, a vertical subsurface flow constructed wetland (CW) (30 m(2)), planted with Phragmites australis was implemented at METU to treat primarily treated domestic wastewater, at a hydraulic rate of 100 mm d(-1), intermittently. The layers of the filtration media constituted of sand, BFGS, and gravel. According to the first year monitoring study, average influent and effluent total phosphorus (TP) concentrations were 6.61+/-1.78 mg L(-1) and 3.18+/-1.82 mg L(-1); respectively. After 12 months, slag samples were taken from the reed bed and P-extraction experiments were performed to elucidate the dominant P-retention mechanisms. Main pools for P-retention were the loosely-bounded and Ca-bounded P due to the material's basic conditions (average pH>7.7) and higher Ca content. This study indicated the potential use of the slag reed bed with higher P-removal capacity for secondary and tertiary treatment under the field conditions. However, the P-sorption isotherms obtained under the laboratory conditions could not be used favorably to determine the longevity of the reed bed in terms of P-retention.

  3. [Emission characteristics of PM2.5 from blast furnace iron making].

    PubMed

    Fan, Zhen-zhen; Zhao, Ya-li; Zhao, Hao-ning; Liang, Xing-yin; Sun, Jing-wen; Wang, Bao-gui; Wang, Ya-jun

    2014-09-01

    Electrical low pressure impactor (ELPI) was used to online analyze the PM2.5 particle size and mass concentration distribution in the trapping field and ore tank of blast furnace iron-making plant. Results showed that the grain number concentration of PM2.5 in trapping field after dust removal was in the range of 10(5)-10(6)cm-3 , and the particle size was mainly below 0. 1 μm. While the grain number concentration of the PM2.5 in ore tank after dust removal was in the range of 10(4)-10(5) cm-3, the particle size was mainly below 1.0 μm, and the mass concentration distribution showed a single peak. The micro-morphology of PM2.5 monomer was mainly divided into two categories, spherical particles and irregular aggregates. Chemical composition analysis indicated that the concentrations of water soluble SO(2-)(4) , K+ , Ca2+ were higher than other ions in PM2.5, with the percentage of 10. 32% -28.55% , 10. 36% -12. 15% , 3.97% -15. 4% , respectively. The major elements was Fe, Si, Al, with 16. 8% -31. 62% , 2. 24% -8.76% , 1.24% -5. 89% of total mass, respectively; organic carbon and elementary carbon were 2. 7% -4. 6% and 0. 8% -1. 3% , respectively. The emission factors of PM2.5 in trapping field and in ore tank after dust removal were ranged from 0.045 to 0.085 kg t(-1) and 0.042 to 0.071 kg t-1, respectively.

  4. Solid-Fuel Stove Testing

    DTIC Science & Technology

    2009-11-17

    Boiling Test) Protocol – Stove cold, 5L water heated to boil , high power – Stove hot, 5L water heated to boil , high power – Stove hot, 5L water maintained...Research Center, using a standard test protocol Methodology • Tested 14 stove /fuel combinations for performance and emissions • Used WBT ( Water ...rocket stove Time to Boil 0 10 20 30 40 50 60 3-S ton e, fir 3-S ton e, oa k VIT A, fir VIT

  5. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.

    PubMed

    Asaoka, Satoshi; Okamura, Hideo; Kim, Kyunghoi; Hatanaka, Yuzuru; Nakamoto, Kenji; Hino, Kazutoshi; Oikawa, Takahito; Hayakawa, Shinjiro; Okuda, Tetsuji

    2017-02-01

    Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L(-1) of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L(-1), the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm(-2) when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.

  6. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    PubMed

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo

    2012-01-01

    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  7. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  8. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  9. Numerical Investigation of the Inner Profiles of Ironmaking Blast Furnaces: Effect of Throat-to-Belly Diameter Ratio

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyang; Kuang, Shibo; Yan, Dingliu; Qi, Yuanhong; Yu, Aibing

    2017-02-01

    The inner profile of iron making blast furnace (BF) is of significant importance to reactor performance. However, its determination lacks any sound theoretical and empirical base. This paper presents a numerical study of the multiphase flow and thermochemical behaviors inside BFs with different inner profiles by a multi-fluid process model. The validity of the model is first confirmed by various applications. It is then used to study the effect of throat-to-belly diameter ratio ( R D) with respect to productivity, burden distribution pattern, and softening-melting temperature of ferrous materials. The results show that when R D increases, the fuel rate increases at relatively low productivities; however, it initially decreases to a minimum and then increases at relatively high productivities. This performance against R D to some degree varies with either burden distribution pattern or softening-melting temperature of ferrous materials. Optimum R D can be identified with relatively small coke rate and minimum fluctuations of global performance and in-furnace states. The analysis of the in-furnace states reveals that the flow and thermochemical behaviors above the cohesive zone are drastically deteriorated with increasing productivity for BFs with relatively small R D , leading to different variation trends of fuel rate.

  10. Simulation of blast-furnace tuyere and raceway conditions in a wire mesh reactor: extents of combustion and gasification

    SciTech Connect

    Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti

    2007-08-15

    A wire mesh reactor has been modified to investigate reactions of coal particles in the tuyeres and raceways of blast furnaces. At temperatures above 1000{sup o}C, pyrolysis reactions are completed within 1 s. The release of organic volatiles is probably completed by 1500{sup o}C, but the volatile yield shows a small increase up to 2000{sup o}C. The additional weight loss at the higher temperature may be due to weight loss from inorganic material. The residence time in the raceway is typically 20 ms, so it is likely that pyrolysis of the coal will continue throughout the passage along the raceway and into the base of the furnace shaft. Combustion reactions were investigated using a trapped air injection system, which admitted a short pulse of air into the wire mesh reactor sweep gas stream. In these experiments, the temperature and partial pressure of O{sub 2} were limited by the oxidation of the molybdenum mesh. However, the tests have provided valid insight into the extent of this reaction at conditions close to those experienced in the raceway. Extents of combustion of the char were low (mostly, less than 5%, daf basis). The work indicates that the extent of this reaction is limited in the raceway by the low residence time and by the effect of released volatiles, which scavenge the O{sub 2} and prevent access to the char. CO{sub 2} gasification has also been studied and high conversions achieved within a residence time of 5-10 s. The latter residence time is far longer than that in the raceway and more typical of small particles travelling upward in the furnace shaft. The results indicate that this reaction is capable of destroying most of the char. However, the extent of the gasification reaction appears limited by the decrease in temperature as the material moves up through the furnace. 44 refs., 12 figs., 6 tabs.

  11. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  12. Effect of the content of the crystalline and vitreous phases of blast-furnace slags on their properties

    SciTech Connect

    Gindis, Ya.P.

    1987-10-01

    Studies carried out on the hydrochannel granulation plant with a variety of blast-furnace slag from the southern Ukraine determined that, depending on their cooling conditions, it was possible to obtain materials with differing contents of the crystalline and glassy phases which have different porosities. These studies showed that, depending on the changes in these features, ordinary (solid) or porous granulated slag or slag pumice with different properties was obtained. The dependence of the hydraulic activity of the materials obtained (and cements based on them) on the cooling conditions of the melts (specific flow rates of water) has been shown to have an extremum and a maximum. The maximum value of the hydraulic activity has been determined to correspond to granulated slag which has a porous structure and contains 6-26% crystalline phase (mainly melilite), while the remainder consists of amorphous and devitrified glass, the content of the latter being of the order of 20-40%.

  13. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  14. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag.

    PubMed

    Chartier, D; Muzeau, B; Stefan, L; Sanchez-Canet, J; Monguillon, C

    2017-03-15

    Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  15. Dynamic Regional Viscosity Prediction Model of Blast Furnace Slag Based on the Partial Least-Squares Regression

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Zhu, Mengyi; Yan, Bingji; Deng, Shichan; Li, Xinyu; Liu, Feng

    2017-02-01

    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace (BF) slag. A model for viscosity prediction based on the partial least-squares regression of varietal quantity reference points is presented in this article. The present model proposes a dynamic regional algorithm for reference point selection. The study applied the partial least-squares regression to establish the dynamic regional viscosity prediction model on the basis of limited discrete points data. Then an actual prediction was carried out with a large amount of viscosity data of real and synthesized BF slags that was obtained from a certain steel plant in China. The results show that this advanced method turns out to be satisfactory in the viscosity prediction of BF slags with a low averaging error and mean value deviation.

  16. [Evaluation of the migration of contaminants from building materials produced on the base of blast-furnace slags].

    PubMed

    Pugin, K G; Vaysman, Ya I

    2014-01-01

    There is experimentally established the change of the migratory activity of pollutants from building materials produced from blast furnace slag throughout their life cycle in the form of a nonlinear wave-like nature as there are appeared newly opened surfaces of a contact with aggressive waters in the process of gradual crushing of materials as a result of destructive mechanical effects on him and corrosive waters with varying pH values. There are established regularities of the migration activity ofpollutants (on the example of heavy metals) as directly dependent on the newly opening surface of the contact of the material with water having a various pH value. There is shown an expediency of introduction of alterations in the procedure for sanitary hygienic assessment of building materials with the addition of industrial waste (Methodical Instructions 2.1.674-97), allowing to take into account the migration of contaminants from them throughout the life cycle.

  17. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  18. Dynamic Regional Viscosity Prediction Model of Blast Furnace Slag Based on the Partial Least-Squares Regression

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Zhu, Mengyi; Yan, Bingji; Deng, Shichan; Li, Xinyu; Liu, Feng

    2016-11-01

    Viscosity is considered to be a significant indicator of the metallurgical property of blast furnace (BF) slag. A model for viscosity prediction based on the partial least-squares regression of varietal quantity reference points is presented in this article. The present model proposes a dynamic regional algorithm for reference point selection. The study applied the partial least-squares regression to establish the dynamic regional viscosity prediction model on the basis of limited discrete points data. Then an actual prediction was carried out with a large amount of viscosity data of real and synthesized BF slags that was obtained from a certain steel plant in China. The results show that this advanced method turns out to be satisfactory in the viscosity prediction of BF slags with a low averaging error and mean value deviation.

  19. Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution.

    PubMed

    Gao, Hongyu; Song, Zhenzhen; Zhang, Weijun; Yang, Xiaofang; Wang, Xuan; Wang, Dongsheng

    2017-03-01

    Water quenching blast furnace slag (WQBFS) is widely produced in the blast furnace iron making process. It is mainly composed of CaO, MgO, Al2O3, and SiO2 with low contents of other metal elements such as Fe, Mn, Ti, K and Na. In this study, WQBFS was treated with grinding, hydrochloric acid acidification, filtration, filtrate extraction by alkali liquor and a hydration reaction. Then BFS micropowder (BFSMP), BFS acidified solid (BFSAS) and BFS acid-alkali precipitate (BFSAP) were obtained, which were characterized by X-ray diffraction, scanning electron microscopy, X-ray fluorescence and Brunauer-Emmet-Teller (BET) specific surface area. The decoloration efficiency for Methyl Orange (MO) was used to evaluate the adsorptive ability of the three absorbents. The effects of adsorptive reaction conditions (pH and temperature of solution, reaction time, sorbent dosage and initial concentration) on MO removal were also investigated in detail. The results indicated that BFSAP performed better in MO removal than the other two absorbents. When the pH value of MO solutions was in the range 3.0-13.0, the degradation efficiency of a solution with initial MO concentration of 25mg/L reached 99.97% for a reaction time of 25min at 25°C. The maximum adsorption capacity of BFSAP for MO was 167mg/g. Based on optimized experiments, the results conformed with the Langmuir adsorption isotherm and pseudo-second-order kinetics. Among inorganic anions, SO4(2-) and PO4(3-) had significant inhibitory effects on MO removal in BFSAP treatment due to ion-exchange adsorption.

  20. MnOx-CeO2 catalysts supported by Ti-Bearing Blast Furnace Slag for selective catalytic reduction of NO with NH3 at low temperature.

    PubMed

    Xu, Yifan; Liu, Rong; Ye, Fei; Jia, Feng; Ji, Lingchen

    2017-03-13

    A series of MnOx-CeO2 catalysts supported by Ti-bearing blast furnace slag were prepared by wet impregnation and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. The slag-based catalyst exhibited high deNOx activity and wide effective temperature range. Under the condition of NO=500ppm, NH3=500ppm, O2:7-8vol% and total flow rate=1600 ml/min, the Mn-Ce/Slag catalyst exhibited a NO conversion higher than 95% in the range of 180-260 °C. The activity of Mn/Slag catalysts was greatly enhanced with the addition of CeO2. The results indicated that Ti-bearing blast furnace slag had suitable phase composition as good support of SCR catalyst.

  1. A Novel Conversion Process for Waste Slag: The Preparation of Aluminosilicate Glass with Evaluation of the Dielectric Properties from Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Huang, Sanxi; Liu, Hongting; Wu, Fengnian; Chang, Ziyuan; Yue, Yunlong

    2015-11-01

    In this paper, aluminosilicate glass was prepared from blast furnace slag and quartz sand. Fourier transform infrared, differential scanning calorimetry and density measurements were carried out to investigate the effects of SiO2 on the aluminosilicate glass network rigidity. The results indicate that glass structure would be enhanced if more SiO2 was introduced into the glass system. Meanwhile, both the glass transition temperature ( T g) and the glass crystallization temperature ( T c) increase slightly; the increase in density of the glass being further evidence of the enhancement in glass network rigidity. Dielectric measurements show that the dielectric constant and dielectric loss decrease with more SiO2. The properties of the prepared aluminosilicate glasses are comparable to those of E glass, indicating that blast furnace slags are suitable for producing aluminosilicate glass with low dielectric constant and dielectric loss.

  2. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    PubMed

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry.

  3. Wood-burning stove

    SciTech Connect

    Squires, W.

    1983-09-06

    A wood-burning stove includes side walls joined together in an airtight manner to form a firebox and a heat chamber thereabove. The firebox contains upstanding rails to support wood logs for combustion. Streams of heated air are discharged from a manifold that extends from rail-to-rail outwardly from one terminal end of each rail between opposite side walls of the stove. A plate is adjusted to control the flow of air into the manifold. An access door has openings in a spacer side wall for supplying air as desired to the firebox. The spacer walls of the door support a glass panel at an outwardly spaced location from a deflector to prevent deposits of creosote and other materials on the glass.

  4. 38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. 8 sisters and powerhouse, pulverizer building for powerhouse, coal conveyor, blast stoves, "A" furnace, stoves, "B" furnace, stoves, "C" furnace, bottle cars. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  5. Two-way Valorization of Blast Furnace Slag: Synthesis of Precipitated Calcium Carbonate and Zeolitic Heavy Metal Adsorbent.

    PubMed

    Georgakopoulos, Evangelos; Santos, Rafael M; Chiang, Yi Wai; Manovic, Vasilije

    2017-02-21

    The aim of this work is to present a zero-waste process for storing CO2 in a stable and benign mineral form while producing zeolitic minerals with sufficient heavy metal adsorption capacity. To this end, blast furnace slag, a residue from iron-making, is utilized as the starting material. Calcium is selectively extracted from the slag by leaching with acetic acid (2 M CH3COOH) as the extraction agent. The filtered leachate is subsequently physico-chemically purified and then carbonated to form precipitated calcium carbonate (PCC) of high purity (<2 wt% non-calcium impurities, according to ICP-MS analysis). Sodium hydroxide is added to neutralize the regenerated acetate. The morphological properties of the resulting calcitic PCC are tuned for its potential application as a filler in papermaking. In parallel, the residual solids from the extraction stage are subjected to hydrothermal conversion in a caustic solution (2 M NaOH) that leads to the predominant formation of a particular zeolitic mineral phase (detected by XRD), namely analcime (NaAlSi2O6∙H2O). Based on its ability to adsorb Ni(2+), as reported from batch adsorption experiments and ICP-OES analysis, this product can potentially be used in wastewater treatment or for environmental remediation applications.

  6. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    PubMed

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement.

  7. Investigative monitoring within the European Water Framework Directive: a coastal blast furnace slag disposal, as an example.

    PubMed

    Borja, Angel; Tueros, Itziar; Belzunce, Ma Jesús; Galparsoro, Ibon; Garmendia, Joxe Mikel; Revilla, Marta; Solaun, Oihana; Valencia, Victoriano

    2008-04-01

    The European Water Framework Directive (WFD) establishes a framework for the protection of estuarine and coastal waters, with the most important objective being to achieve 'good ecological status' for all waters, by 2015. Hence, Member States are establishing programmes for the monitoring of water quality status, through the assessment of ecological and chemical elements. These monitoring programmes can be of three types: surveillance monitoring; operational monitoring (both undertaken on a routine basis); and investigative monitoring (carried out where the reason of any exceedance for ecological and chemical status is unknown). Until now, nothing has been developed in relation to investigative monitoring and no clear guidance exists for this type of monitoring, as it must be tackled on a 'case-by-case' basis. Consequently, the present study uses slag disposal from a blast furnace, into a coastal area, as a case-study in the implementation of investigative monitoring, according to the WFD. In order to investigate the potential threat of such slags, this contribution includes: a geophysical study, to determine the extent of the disposal area; sediment analysis; a chemical metal analysis; and an ecotoxicological study (including a Microtox test and an amphipod bioassay). The results show that metal concentrations are several times above the background concentration. However, only one of the stations showed toxicity after acute toxicological tests, with the benthic communities being in a good status. The approaches used here show that contaminants are not bioavailable and that no management actions are required with the slags.

  8. Preparation of a new sorbent with hydrated lime and blast furnace slag for phosphorus removal from aqueous solution.

    PubMed

    Gong, Guozhuo; Ye, Shufeng; Tian, Yajun; Wang, Qi; Ni, Jiandi; Chen, Yunfa

    2009-07-30

    The removal of dissolvable inorganic phosphate (H(2)PO(4)(-)) by sorbents prepared from hydrated lime (HL) and blast furnace slag (BFS) was fundamentally studied by an orthogonal experiment design. Based on statistic analysis, it is revealed that the weight ratio of BFS/HL is the most significant variable, and an optimized preparation condition is figured out. With the increase of HL content, the adsorption capacity increases, suggesting that the HL plays the important role in the removal process in the gross. However, in the lower HL content, it is interesting that the adsorption capacity of as-prepared sorbents exceed the sum of the capacities of the same ratio of BFS and HL. The further analysis indicate the excess capacities linearly depend on the specific surface area of sorbents, suggesting that the removal of H(2)PO(4)(-) is closely related with the microstructure of sorbents in the lower HL content, according to the characterization with SEM, XRD and pore analysis. Additionally, an adsorption model and kinetic are discussed in this paper.

  9. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    NASA Astrophysics Data System (ADS)

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang

    2016-02-01

    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  10. Simulation of primary-slag melting behavior in the cohesive zone of a blast furnace, considering the effect of Al{sub 2}O{sub 3}, Fe{sub t}O, and basicity in the sinter ore

    SciTech Connect

    Hino, Mitsutaka; Nagasaka, Tetsuya; Katsumata, Akitoshi; Higuchi, Kenichi; Yamaguchi, Kazuyoshi; Kon-No, Norimitsu

    1999-08-01

    The alumina content in the iron ore imported to Japan is increasing year by year, and some problems in blast furnace operation, due to the use of the high-alumina-containing sinter, have already been reported. In order to clarify the mechanism of the harmful effect of alumina on the blast furnace operation, the behavior of the primary melt, which is formed in the sinter at the cohesive zone of the blast furnace, has been simulated by dripping slag through an iron or oxide funnel. The effects of basicity, Al{sub 2}O{sub 3}, and Fe{sub t}O contents in the five slag systems on the dripping temperature and weight of slag remaining on the funnel have been discussed. It was found that the eutectic melt formed in the sinter would play an important role in the dripping behavior of the slag in the blast furnace through the fine porosity of the reduced iron and ore particles. Al{sub 2}O{sub 3} increased the weight of the slag remaining on the funnel, and its effect became very significant in the acidic and low-Fe{sub t}O-containing slag. It was estimated that the increase of the weight of the slag remaining on the funnel by Al{sub 2}O{sub 3} in the ore could result in a harmful effect on the permeability resistance and an indirect reduction rate of the sinter in the blast furnace.

  11. Quantitative metrics of stove adoption using Stove Use Monitors (SUMs)

    PubMed Central

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Walker, Joan L.; Smith, Kirk R.

    2014-01-01

    The sustained use of cookstoves that are introduced to reduce fuel use or air pollution needs to be objectively monitored to verify the sustainability of these benefits. Quantifying stove adoption requires affordable tools, scalable methods and validated metrics of usage. We quantified the longitudinal patterns of chimney-stove use of 80 households in rural Guatemala, monitored with Stove Use Monitors (SUMs) during 32 months. We counted daily meals and days in use at each monitoring period and defined metrics like the percent stove-days in use (the fraction of days in use from all stoves and days monitored). Using robust Poisson regressions we detected small seasonal variations in stove usage, with peaks in the warm-dry season at 92% stove-days (95%CI: 87%,97%) and 2.56 average daily meals (95%CI: 2.40,2.74). With respect to these values, the percent stove-days in use decreased by 3% and 4% during the warm-rainy and cold-dry periods respectively, and the daily meals by 5% and 12% respectively. Cookstove age and household size at baseline did not affect usage. Qualitative indicators of use from recall questionnaires were consistent with SUMs measurements, indicating stable sustained use and questionnaire accuracy. These results reflect optimum conditions for cookstove adoption and for monitoring in this project, which may not occur in disseminations undertaken elsewhere. The SUMs measurements suggests that 90% stove-days is a more realistic best-case for sustained use than the 100% often assumed. Half of sample reported continued use of open-cookfires, highlighting the critical need to verify reduction of open-fire practices in stove disseminations. PMID:25258474

  12. Quantitative metrics of stove adoption using Stove Use Monitors (SUMs).

    PubMed

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Walker, Joan L; Smith, Kirk R

    2013-10-01

    The sustained use of cookstoves that are introduced to reduce fuel use or air pollution needs to be objectively monitored to verify the sustainability of these benefits. Quantifying stove adoption requires affordable tools, scalable methods and validated metrics of usage. We quantified the longitudinal patterns of chimney-stove use of 80 households in rural Guatemala, monitored with Stove Use Monitors (SUMs) during 32 months. We counted daily meals and days in use at each monitoring period and defined metrics like the percent stove-days in use (the fraction of days in use from all stoves and days monitored). Using robust Poisson regressions we detected small seasonal variations in stove usage, with peaks in the warm-dry season at 92% stove-days (95%CI: 87%,97%) and 2.56 average daily meals (95%CI: 2.40,2.74). With respect to these values, the percent stove-days in use decreased by 3% and 4% during the warm-rainy and cold-dry periods respectively, and the daily meals by 5% and 12% respectively. Cookstove age and household size at baseline did not affect usage. Qualitative indicators of use from recall questionnaires were consistent with SUMs measurements, indicating stable sustained use and questionnaire accuracy. These results reflect optimum conditions for cookstove adoption and for monitoring in this project, which may not occur in disseminations undertaken elsewhere. The SUMs measurements suggests that 90% stove-days is a more realistic best-case for sustained use than the 100% often assumed. Half of sample reported continued use of open-cookfires, highlighting the critical need to verify reduction of open-fire practices in stove disseminations.

  13. Mathematical model of layered metallurgical furnaces and units

    NASA Astrophysics Data System (ADS)

    Shvydkiy, V. S.; Spirin, N. A.; Lavrov, V. V.

    2016-09-01

    The basic approaches to mathematical modeling of the layered steel furnaces and units are considered. It is noted that the particular importance have the knowledge about the mechanisms and physical nature of processes of the charge column movement and the gas flow in the moving layer, as well as regularities of development of heat- and mass-transfer in them. The statement and mathematical description of the problem solution targeting the potential gas flow in the layered unit of an arbitrary profile are presented. On the basis of the proposed mathematical model the software implementation of information-modeling system of BF gas dynamics is carried out. The results of the computer modeling of BF non-isothermal gas dynamics with regard to the cohesion zone, gas dynamics of the combustion zone and calculation of hot-blast stoves are provided

  14. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  15. Strength, leachability and microstructure characterisation of Na2SiO3-activated ground granulated blast-furnace slag solidified MSWI fly ash.

    PubMed

    Zhang, Dajie; Liu, Wenshi; Hou, Haobo; He, Xinghua

    2007-10-01

    The chemical composition and the leachability of heavy metals in municipal solid waste incinerator (MSWI) fly ash were measured and analysed. For the leachability of unstabilized MSWI fly ash it was found that the concentrations of Pb and Cr exceeded the leaching toxicity standard. Cementitious solidification of the MSWI fly ash by Na2SiO3-activated ground granulated blast-furnace slag (NS) was investigated. Results show that all solidified MSWI fly ash can meet the landfill standards after 28 days of curing. The heavy metals were immobilized within the hydration products such as C-S-H gel and ettringite through physical encapsulation, substitution, precipitation or adsorption mechanisms.

  16. Effect of Al2O3 Addition on the Precipitated Phase Transformation in Ti-Bearing Blast Furnace Slags

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin; Li, Jinfu; Sun, Yongqi; Seetharaman, Seshadri; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    The present paper aims to provide a fundamental understanding on phase change of Ti-enriched crystalline phase induced by Al2O3 addition in Ti-bearing blast furnace slags with different basicities using Single Hot Thermocouple Technique and X-ray Diffraction. The results showed that an increase in the Al2O3 content led to phase change from rutile or perovskite to Mg3Al4Ti8O25 and prompted crystallization of the slags with basicity of 0.60 and 0.75, whereas only CaTiO3 was precipitated at a basicity of 0.95. Both thermodynamic and kinetic analyses were conducted to study the slag crystallization, which would throw light on phase change and enhanced crystallization. To further reveal the relationship with Al2O3 addition on slag structure and crystallization, Fourier transform infrared spectroscopy and magic angle spinning-nuclear magnetic resonance were adopted, with AlO4 tetrahedra and AlO6 octahedra observed in the slag. For slags with the basicity of 0.60 and 0.75, AlO6 octahedron, which was suggested to induce the phase change from TiO2 or CaTiO3 to Mg3Al4Ti8O25, was detected at high Al2O3 content. On the other hand, in slags with the basicity of 0.95, abundant Ca2+ may be connected to TiO6 octahedra, resulting in CaTiO3 formation.

  17. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    PubMed

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  18. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu

    2016-09-01

    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  19. Novel blast furnace operation process involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Chu, Man-sheng; Wang, Hong-tao; Liu, Zheng-gen; Tang, Ya-ting

    2016-05-01

    An innovative process of blast furnace (BF) operation involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette (LVTM-CCB) was proposed for utilizing LVTM and conserving energy. In this study, the effect of LVTM-CCB charging ratio on the softening, melting, and dripping behaviors of the mixed burden was explored systemically, and the migration of valuable elements V and Cr was extensively investigated. The results show that with increasing LVTM-CCB charging ratio, the softening interval T 40 - T 4 increases from 146.1°C to 266.1°C, and the melting interval T D - T S first decreases from 137.2°C to 129.5°C and then increases from 129.5°C to 133.2°C. Moreover, the cohesive zone becomes narrower and then wider, and its location shifts slightly downward. In addition, the recovery ratios of V and Cr in dripped iron first increase and then decrease, reaching maximum values of 14.552% and 28.163%, respectively, when the charging ratio is 25%. A proper LVTM-CCB charging ratio would improve the softening-melting behavior of the mixed burden; however, Ti(C,N) would be generated rapidly in slag when the charging ratio exceeds 25%, which is not favorable for BF operation. When considering the comprehensive softening-melting behavior of the mixed burden and the recovery ratios of V and Cr, the recommended LVTM-CCB charging ratio is 20%.

  20. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  1. Performance of polish home stoves

    SciTech Connect

    Jaszczur, T.; Lewandowski, M.; Szewczyk, W.; Zaczkowski, A.; Butcher, T.

    1994-06-01

    Most of the city of Krakow, Poland is heated by either the central district heating system or single-building boilers, gas or coal-fired. In addition, concentrated in the older, central part of the city, there are many traditional, coal-fired tile stoves. It is currently estimated that there are 100,000 such stoves in Krakow with an annual coal consumption of 130,000 metric tons. These are felt to be important contributors to Krakow`s air quality problems. It his been estimated that there are about 7 million of these stoves throughout the country of Poland.These are very large masonry stoves with ornate file exterior. They are built in place by specialized craftsmen and often two or more stoves will be used to heat a single flat. During the heating season these stoves are fired once or twice each day. For each firing the owner will carry a bucket of coal up from a basement storage area. light a new fire, and then tend it occasionally for about one hour. During this time the masonry is heated and this stored heat keeps the flat warm for the next 12 hours. A testing effort on these tile stoves has been conducted as part of the Krakow lean Fossil Fuels and Energy Efficiency Program, sponsored by the US Government through the Agency for International Development (AID) and the US Department of Energy (DOE). One of the objectives of this testing program was to provide baseline thermal efficiency and emissions data as input to evaluations of costs and benefits of alternative options for heating these flats. The second Primary objective was to provide at least a preliminary assessment of the possibility of reducing emissions by using improved fuels in these stoves.

  2. Blast furnace slag of a ferrosilicon firm in aswan governorate, Upper Egypt, as an adsorbent for the removal of merocyanine dye from its aqueous solution.

    PubMed

    Taha, Gharib Mahmoud; Mosaed, Taghreed Mahmoud

    2010-04-01

    The adsorption potential of the blast furnace slag of a ferrosilicon firm in Aswan Governorate, Egypt, to decolorize aqueous solutions of 3-methyl-1-phenylpyrazol-5-one 4[2] merocyanine dye (1) was investigated at room temperature. The influence of the solution pH, the quantity of adsorbent, the initial concentration of 1, and the applied contact time were studied with the batch technique. The maximum percentage of removal of 1 was observed at pH 4. The adsorption data were better fitted by the Freundlich than by the Langmuir adsorption isotherm model, confirming the formation of monolayers of 1 on the adsorbent surface. Kinetic rate constants and the transient behavior at different initial concentrations of 1 were determined with both the Lagergren pseudo-first-order and the Ho and McKay pseudo-second-order kinetic models. The calculated kinetic parameters revealed that the adsorption of 1 on blast furnace slag followed a second-order chemisorption process.

  3. Improved Biomass Cooking Stoves and Improved Stove Emission Equipment

    SciTech Connect

    HATFIELD, MICHAEL; Still, Dean

    2013-04-15

    In developing countries, there is an urgent need for access to safe, efficient, and more affordable cooking technologies. Nearly 2.5 billion people currently use an open fire or traditional cookstove to prepare their meals, and recent models predict that use of biomass for cooking will continue to be the dominant energy use in rural, resource-poor households through 2030. For these families, cooking poses serious risks to health, safety, and income. An alarming 4 million people, primarily women and children, die prematurely each year from indoor and outdoor exposure to the harmful emissions released by solid fuel combustion. Use of traditional stoves can also have a significant impact on deforestation and climate change. This dire situation creates a critical need for cookstoves that significantly and verifiably reduce fuel use and emissions in order to reach protective levels for human health and the environment. Additionally, advances in the scientific equipment needed to measure and monitor stove fuel use and emissions have not kept pace with the significant need within the industry. While several testing centers in the developed world may have hundred thousand-dollar emissions testing systems, organizations in the field have had little more than a thermometer, a scale, and subjective observations to quantify the performance of stove designs. There is an urgent need for easy-to-use, inexpensive, accurate, and robust stove testing equipment for use by laboratory and field researchers around the world. ASAT and their research partner, Aprovecho Research Center (ARC), have over thirty years of experience addressing these two needs, improved cookstoves and emissions monitoring equipment, with expertise spanning the full spectrum of development from conceptual design to product manufacturing and dissemination. This includes: 1) research, design, and verification of clean biomass cookstove technology and emissions monitoring equipment; 2) mass production of quality

  4. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    SciTech Connect

    Zhong Shiyun; Ni Kun; Li Jinmei

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The mortar with uncalcined FGD gypsum has suitable workability. Black-Right-Pointing-Pointer The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. Black-Right-Pointing-Pointer The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO{sub 4}{sup 2-} from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO{sub 4}{sup 2-} releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO{sub 4}{sup 2-} from the mortar with 20% FGD gypsum is 9200 mg

  5. Improving the properties of geopolymer containing oil-contaminated clay, metakaolin, and blast furnace slag by applying nano-SiO2.

    PubMed

    Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh

    2017-02-28

    In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.

  6. Hopewell Furnace National Historic Site. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This teacher's guide contains activities to use in conjunction with a site visit to the Hopewell Furnace National Historic Site (Elverson, Pennsylvania). The guide provides diagrams of the furnace, a cold-blast smelting operation, and the furnace operation. It presents a timeline of iron production from ancient times through contemporary times.…

  7. 7. LOOKING EAST AT HOIST HOUSE No. 1 AND BLAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. LOOKING EAST AT HOIST HOUSE No. 1 AND BLAST FURNACE No. 1, WITH ORE YARD AND ORE BRIDGES IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. 68. DETAIL OF COOLING WATER PIPES FOR DOROTHY SIX BLAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. DETAIL OF COOLING WATER PIPES FOR DOROTHY SIX BLAST FURNACE. INTERIOR OF CAST HOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Phase Equilibrium Studies of CaO-SiO2-MgO-Al2O3 System with Binary Basicity of 1.5 Related to Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Kou, Mingyin; Wu, Shengli; Ma, Xiaodong; Wang, Laixin; Chen, Mao; Cai, Qingwu; Zhao, Baojun

    2016-04-01

    Slags play an important role in blast furnace operation, and their compositions are based on the CaO-SiO2-MgO-Al2O3 quaternary system in many steel companies. The binary basicity (CaO/SiO2 weight ratio) of blast furnace slags, especially primary slag and bosh slag, can be as high as 1.5 or higher. Phase equilibria and liquidus temperatures in the CaO-SiO2-MgO-Al2O3 system with binary basicity of 1.50 are experimentally determined for temperatures in the range 1723 K to 1823 K (1450 °C to 1550 °C). High temperature equilibration, quenching, and electron probe X-ray microanalysis techniques have been used in the present study. The isotherms are obtained in the primary phase fields of Ca2SiO4, melilite, spinel, periclase, and merwinite related to blast furnace slags. Effects of Al2O3, MgO, and binary basicity on liquidus temperatures have been discussed. In addition, extensive solid solutions have been measured for different primary phases and will be used for development and optimization of the thermodynamic database.

  10. 50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES IN THE FOREGROUND ARE PART OF THE TUYERE ASSEMBLY. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  11. 21. Photocopy of ca. 1951 view (when furnaces were still ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of ca. 1951 view (when furnaces were still in blast) looking north at central furnace complex with railroad cars of furnace charging materials in foreground and No. 2 Furnace at left. Photo marked on back 'David W. Corson from A. Devaney, N.Y.' - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  12. Monitoring and evaluation of new stoves

    SciTech Connect

    Basnet, K.

    1983-12-01

    Most of the people in Nepal depend on biomass for cooking and heating - be it wood, straw etc. and this is one of the reasons why we have a greater problem of deforestation which is the major component for deteriorating environment. Slowing the rate of deforestation to a limited degree at least can be achieved by improving the efficiency of wood utilization. The idea of improving the stoves in terms of firewood consumption and smokelessness has gained an increasing attention in recent years. The prefabricated household stoves (New Nepali Cooking Stoves) are being distributed and installed to the various regions of the country through the Small Farm Family Program with the support of ADB/Nepal and UNICEF/Nepal. These improved stoves make smokeless kitchens and use less firewood. The distribution of the modified Magan Stoves was first started in Budhanilkantha Village about one year before the survey. Still the stoves are being distributed to the villagers if they form a small group of 6-10 households (Small Farm Family) and the group asks for the stoves. After distribution and installations of improved stoves in various regions of the country a sample survey was conducted in Budhanilkantha to ascertain users acceptance and identify the kinds of problems inhibiting greater use. The survey was carried out in the beginning of 1983, and during the survey there were 51 stoves distributed in two Panchayats and different villages.

  13. Simulation of blast-furnace raceway conditions in a wire-mesh reactor: interference by the reactions of molybdenum mesh and initial results

    SciTech Connect

    Long Wu; N. Paterson; D.R. Dugwell; R. Kandiyoti

    2006-12-15

    A novel trapped air injection system has been built for a wire-mesh reactor to enable tests with short exposure times to air that are intended to simulate typical residence times in blast-furnace raceways. Initial tests have shown that the molybdenum wire-mesh sample-holder reacts with O{sub 2} under conditions intended for this work. By varying the proportions of solid MoO{sub 2} (weight gain), vapor phase oxides (weight loss) may form, depending on reaction conditions. Oxide formation pathways thus become relevant to coal weight loss determinations during experiments. If, in addition to solid MoO{sub 2} formation, significant formation of vapor phase oxides occurs, then the weight change is more complicated to understand and the impact on the O{sub 2} concentration cannot be unravelled. Furthermore, it turns out that O{sub 2}-scavenging by the mesh affects the amount of O{sub 2} that is available to react with the coal sample. It was concluded that it is only possible to conduct reliable tests under conditions which the favor the formation of solid MoO{sub 2} only, as this leads to a quantifiable weight gain. Its impact can then be accounted for in the evaluation of the experimental weight change. In the case of MoO{sub 2} formation, the impact of the mesh oxidation on the amount of O{sub 2} available to react with the sample can also be estimated. It has been found that the wire-mesh reactor, equipped with the trapped air injection system, can be used to obtain valid data at up to 1600{sup o} C and 0.5 MPa. This pressure is similar to that of the blast-furnace raceway, but the temperature is several hundred degrees lower. However, preliminary tests have shown that useful kinetic data on the extents of reaction can be obtained with the equipment, provided it is operated under conditions that minimize the formation of vapor phase Mo oxides. 18 refs., 13 figs., 3 tabs.

  14. Carbon monoxide poisoning while using a small cooking stove in a tent.

    PubMed

    Thomassen, Øyvind; Brattebø, Guttorm; Rostrup, Morten

    2004-05-01

    Carbon monoxide (CO) is formed wherever incomplete combustion of carbonaceous products occurs.(1) CO is the leading cause of poisoning in the United States, and common sources of CO poisoning include housefires, automobile exhaust, water heaters, kerosene space heaters, and furnaces.(2) Stoves used for cooking and heating during outdoor activities also produce significant amounts of CO. Mountain climbers have been reported to succumb to fumes generated by small cook stoves.(3) The aim of this study was to investigate if burning a cooking stove inside a tent is a potential health hazard. Seven healthy male volunteers used a cooking stove inside a small tent for 120 minutes. CO levels in the ambient tent air were measured in addition to hearth rate (HR) and pulse oximetry (SpO2). Venous blood samples were obtained every 15 minutes for measurement of carboxyhemoglobin (COHb). After 2 hours, all the subjects had significant CO levels in their blood (mean COHb = 21.5%). Mean SpO2, also fell from 98% to 95.3% (P <.05), whereas mean HR increased from 63 to 90 beats/min (P <.05). Kerosene camping stoves do produce CO when burned in a small tent. The concentration is high enough to cause significant COHb levels in venous blood after 120 minutes' stay in the tent.

  15. Estrogenic effects from household stoves.

    PubMed

    Wu, W Z; Chen, J; Rehmann, K; Schramm, K W; Kettrup

    2002-09-01

    With the application of a genetically modified yeast, estrogen receptor-activating compounds were detected in the soot and emission gas of a wood-burning household stove. The EC50 value of 17beta-estradiol was divided by the EC50 value of soot, and the obtained relative estrogenic value for raw soot was 2.37E-5, indicating that soot was about 100,000 times less estrogenic than 17beta-estradiol. Chemical analysis revealed that alkyl phenol, benzonic acid, and PAHs represented the major constituents in the most potent fractions of the soot. Along with PAHs, other constituents might also contribute to the estrogenicity of soot.

  16. Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics.

    PubMed

    Liu, Zhongzhe; Qian, Guangren; Zhou, Jizhi; Li, Chuanhua; Xu, Yunfeng; Qin, Zhe

    2008-08-30

    This paper investigated the effectiveness of (ground granulated blast furnace slag) GGBFS-added chemically bonded phosphate ceramic (CBPC) matrix on the stabilization/solidification (S/S) of mercury chloride and simulated mercury-bearing light bulbs (SMLB). The results showed that the maximal compressive strength was achieved when 15% and 10% ground GGBFS was added for HgCl(2)-doped and SMLB-doped CBPC matrices, respectively. The S/S performances of GGBFS-added matrices were significantly better than non-additive matrices. As pore size was reduced, the leaching concentration of Hg(2+) from GGBFS-added CBPC matrix could be reduced from 697 microg/L to about 3 microg/L when treating HgCl(2). Meanwhile, the main hydrating product of GGBFS-added matrices was still MgKPO(4).6H(2)O. The improvement of S/S effectiveness was mainly due to physical filling of fine GGBFS particles and microencapsulation of chemical cementing gel.

  17. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag

    NASA Astrophysics Data System (ADS)

    Shi, Huan; Feng, Ke-qin; Wang, Hai-bo; Chen, Chang-hong; Zhou, Hong-ling

    2016-05-01

    To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000°C. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%-5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.

  18. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge.

    PubMed

    Mikhailov, Ivan; Komarov, Sergey; Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis

    2017-01-05

    Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1g/l addition of nZVI and 0.05M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15min treatment with 0.1M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  19. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    PubMed

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  20. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  1. [Solidification/Stabilization of Chromite Ore Processing Residue (COPR) Using Zero-Valent Iron and Lime-Activated Ground Granulated Blast Furnace Slag].

    PubMed

    Chen, Zhong-lin; Li, Jin-chunzi; Wang, Bin-yuan; Fan, Lei-tao; Shen, Ji-min

    2015-08-01

    The solidification/stabilization (S/S) of chromite ore processing residue (COPR) was performed using zero-valent iron (ZVI) and lime-activated ground granulated blast furnace slag (GGBFS). The degree of Cr immobilization was evaluated using the leaching procedure, mineral composition analysis and morphology analysis. Semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The results showed that after reduction, all of the S/S treated COPR samples met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg x L(-1)), the compressive strength of all the S/S samples could meet the compressive strength standard (15 MPa) for producing clay bricks, and Cr existed as the specie that bound to Fe/Mn oxides in the S/S samples. At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  2. Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater during unstable combustion

    NASA Astrophysics Data System (ADS)

    Basok, B. I.; Gotsulenko, V. V.

    2015-01-01

    A procedure for simplified calculation of the parameters of self-oscillations excited during unstable (vibrating) combustion in the vertical combustion chambers of blast-furnace air heaters is developed. The proposed procedure is based on an independent nonlinear dynamic system similar to the equations from the theory of a blade supercharger stalling and surging mode. The head characteristic considered in the blade supercharger stalling and surging theory determines the part of the supercharger drive rotation energy that is converted into the head developed by the supercharger. In the considered system, the supercharger head characteristic is replaced by the combustion chamber head characteristic. Being a function of flow rate, this characteristic describes the part of heat supplied to flow that is converted to the flow head. Unlike the supercharger head characteristic, which is determined by experiment, the combustion chamber head characteristic is determined by calculation, due to which it becomes much easier to calculate the parameters of self-oscillations according to the proposed procedure. In particular, an analysis of the periodic solutions of the obtained dynamic system made it possible to determine the pattern in which the amplitude of considered self-oscillations depends on the surge impedance of the vertical combustion chamber.

  3. Effects of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Wu; Zhang, Ju-hua; Li, Guang-qiang

    2016-09-01

    The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases (anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.

  4. Solid fuel cooking stoves: International directory

    SciTech Connect

    Not Available

    1981-02-01

    Optimal design and promotion of the use of fuel efficient cooking stoves demand continued interaction and exchange of information between researchers, extension workers, policy makers and others concerned with stove projects. The directory is aimed at listing all the known organisations in this area.

  5. Experimental and numerical study of PC combustion with oxygen enrichment in a blowpipe model of blast furnace

    SciTech Connect

    Cang Daqiang; Yang Min; Ding Yulong; Yang Tianjun

    1994-12-31

    The method of pulverized coal injection (PCI), oxygen enrichment position, and PC size with oxygen enrichment have been studied to improve of the combustion efficiency of PC by using a theoretical model and experiment. The results showed: (1) by using double coal lance instead of single coal lance in a blowpipe, the combustion efficiency of anthracite can be increased significantly; (2) under the experimental conditions, pure oxygen directly mixed with hot blast is suitable for combustion efficiency when oxygen content is lower then 24%, and when oxygen content is higher, oxygen enrichment location at a proper position of blowpipe away from PC lance should be used; and (3) fine anthracite particle with high oxygen content is an effective way to improve the combustion efficiency of anthracite.

  6. Countering creosote and fumes in wood stoves

    SciTech Connect

    Not Available

    1984-08-01

    As wood stoves can pollute the air and fires can be caused by creosote buildup, companies are making products which help to solve these problems. These firms include a company which makes a liquid catalyst spray which minimizes the emission of polluting particles while preventing creosote buildup and another whose product aids the combustion of soot and forms a shield on chimney and stove surfaces against corrosive combustion products. Some stove makers have their own method for reducing emissions by incorporating a catalytic combustor.

  7. Hopewell Furnace: A Pennsylvania Iron-Making Plantation. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Koman, Rita G.

    The rhythmic noises of the turning water wheel and the roar of the furnace blast never stopped at Hopewell Furnace (Pennsylvania) during its years of operation (1771-1883). As long as the furnace was in blast, the ironworkers' jobs were safe. In case of trouble, they could escape to the woods, fields, and creeks of rural Pennsylvania. Now a…

  8. Speciation of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction, fluorescence, and absorption spectroscopy.

    PubMed

    Kretzschmar, Ruben; Mansfeldt, Tim; Mandaliev, Petar N; Barmettler, Kurt; Marcus, Matthew A; Voegelin, Andreas

    2012-11-20

    Blast furnace sludge (BFS), an industrial waste generated in pig iron production, typically contains high contents of iron and various trace metals of environmental concern, including Zn, Pb, and Cd. The chemical speciation of these metals in BFS is largely unknown. Here, we used a combination of synchrotron X-ray diffraction, micro-X-ray fluorescence, and X-ray absorption spectroscopy at the Zn K-edge for solid-phase Zn speciation in 12 BFS samples collected on a former BFS sedimentation pond site. Additionally, one fresh BFS was analyzed for comparison. We identified five major types of Zn species in the BFS, which occurred in variable amounts: (1) Zn in the octahedral sheets of phyllosilicates, (2) Zn sulfide minerals (ZnS, sphalerite, or wurtzite), (3) Zn in a KZn-ferrocyanide phase (K(2)Zn(3)[Fe(CN)(6)](2)·9H(2)O), (4) hydrozincite (Zn(5)(OH)(6)(CO(3))(2)), and (5) tetrahedrally coordinated adsorbed Zn. The minerals franklinite (ZnFe(2)O(4)) and smithsonite (ZnCO(3)) were not detected, and zincite (ZnO) was detected only in traces. The contents of ZnS were positively correlated with the total S contents of the BFS. Similarly, the abundance of the KZn-ferrocyanide phase was closely correlated with the total CN contents, with the stoichiometry suggesting this as the main cyanide phase. This study provides the first quantitative Zn speciation in BFS deposits, which is of great relevance for environmental risk assessment, the development of new methods for recovering Zn and Fe from BFS, and potential applications of BFS as sorbent materials in wastewater treatment.

  9. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag

    SciTech Connect

    Kim, Min Sik; Jun, Yubin; Lee, Changha Oh, Jae Eun

    2013-12-15

    The use of calcium oxide (CaO) demonstrates a superior potential for the activation of ground granulated blast furnace slag (GGBFS), and it produces a higher mechanical strength than calcium hydroxide [Ca(OH){sub 2}]. The mechanical strength differences between CaO- and Ca(OH){sub 2}-activated GGBFS binders are explored using isothermal calorimetry, powder X-ray diffraction, thermogravimetric and differential thermal analysis (TGA and DTA) as well as compressive strength testing. Calcium silicate hydrate (C–S–H), Ca(OH){sub 2} and a hydrotalcite-like phase are found as reaction products in all samples. The TGA and DTA results indicate that the use of CaO produces more C–S–H, although this is not likely to be the primary cause of higher strength development in the CaO-activated GGBFS. Rather, other factors such as porosity may govern the strength at a higher order of magnitude. Significant reduction of Ca(OH){sub 2} occurs only with the use of Ca(OH){sub 2}, followed by the formation of carbonate (CaCO{sub 3}), indicating carbonation. -- Highlights: •CaO showed a better potential for the activation of GGBFS than Ca(OH){sub 2}. •Strength test, XRD, TGA/DTA and isothermal calorimetry are used. •C-S-H, Ca(OH){sub 2}, and a hydrotalcite-like phase are found in all samples. •The use of Ca(OH){sub 2} causes some degree of carbonation.

  10. Wood Stoves May Spark Heart Trouble

    MedlinePlus

    ... source of pollution matters and that all particulate air pollution is perhaps not equally harmful when it comes ... did find that higher levels of fine particulate air pollution from wood stoves may be tied to increased ...

  11. 65. SOUTHERN VIEW OF THE CLEAN GAS CONNECTING LINES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. SOUTHERN VIEW OF THE CLEAN GAS CONNECTING LINES FOR THE HOT BLAST STOVES OF THE DOROTHY SIX BLAST FURNACE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. Burns of children caused by electric stoves.

    PubMed

    Still, J; Craft-Coffman, B; Law, E; Colon-Santini, J; Grant, J

    1998-01-01

    During a 2-year period, eight patients sustained burns caused by the tipping over of electric stoves. In seven of these cases, children aged 2 to 4 years stood up on the open oven door of a stove. The stove then tipped forward, and a pot of boiling liquid on the stove spilled onto the child, who fell forward across the oven door. The general area of involvement was back and buttocks, with spattered areas elsewhere on the body. In one other case, an older child, aged 8, sat on the open oven door and was burned when a pot fell on him. The weight of the children ranged from 12.7 to 20 kilograms, with a mean of 15.2 kilograms. The 8-year old weighed 14.9 kilos. Burn size ranged from 3% to 30%, with a mean of 16.75%. All burns were second-degree and were treated by debridement and coverage with either porcine grafts or Biobrane (Dow Hickman Pharmaceuticals, Inc.). Healing was satisfactory in all cases. Hospital stay ranged from 2 to 20 days. The increase in the use of electric stove has led to a situation in which children, usually toddlers, can overbalance the stove and bring down the pots sitting on the heating elements. This represents another mechanism by which young children can be injured in the kitchen; the awareness of this should be disseminated.

  13. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  14. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  15. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  16. Characterisation of Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    SciTech Connect

    Mobasher, Neda; Bernal, Susan A.; Hussain, Oday H.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2014-12-15

    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO{sub 4} and BaCO{sub 3}, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH){sub 2} and Na{sub 2}SO{sub 4} act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO{sub 4}, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH){sub 2} is added. An increased content of Ba(OH){sub 2} promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH){sub 2}–Na{sub 2}SO{sub 4}–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes.

  17. Update on EPA Stove Testing, Focus on Batch-Fueled Stoves

    EPA Science Inventory

    A webinar, entitled Update on EPA Stove Testing, Focus on Batch-Fueled Stoves, will be presented by Jim Jetter, EPA, and will be hosted by the Global Alliance for Clean Cookstoves on August 20, 2013. The purpose of this webinar is to (1) provide an update on the EPA cookstove te...

  18. What makes people cook with improved biomass stoves. A comparative international review of stove programs

    SciTech Connect

    Barnes, D.F.; Openshaw, K.; Smith, K.R.; Plas, R.

    1994-05-01

    Explores the successes and failures of stove programs--the use of biomass stoves, in particular--and suggests how adoption rates can be improved. This review of stove programs focuses on the use in developing countries of biomass stoves, which burn fuels such as wood, charcoal, and agricultural residues. Relied on by hundreds of millions of people, these fuels are overused and pose numerous problems, including energy inefficiency, deforestation, increased time spent on fuel collection, and deleterious health and environmental effects. Some of these problems can be alleviated by the use of modern, efficient biomass stoves, but many developing country households have been reluctant to use them. This study suggests how adoption rates can be improved consistently. Even though the modern biomass stove is more expensive than the traditional one, it pays for itself in fuelwood savings. The improved stoves are most popular when they are manufactured locally and are clearly durable, clean, and easily used. The authors suggest how to improve distribution of the stoves and how government subsidies and external support from donors and international organizations can be helpful. Annexes provide evaluations of improved cookstoves and cover projects surveyed for the study.

  19. 40 CFR Table 2 to Subpart X of... - Emissions Limits for Secondary Lead Smelting Furnaces

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Smelting Furnaces 2 Table 2 to Subpart X of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Smelting Furnaces For vents from these processes . . . You must meet the following emissions limits . . . a... reverberatory furnaces (new and existing) 20 ppmv 0.50 ng/dscm. Collocated blast and reverberatory furnaces...

  20. 40 CFR Table 2 to Subpart X of... - Emissions Limits for Secondary Lead Smelting Furnaces

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Smelting Furnaces 2 Table 2 to Subpart X of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Smelting Furnaces For vents from these processes . . . You must meet the following emissions limits . . . a... reverberatory furnaces (new and existing) 20 ppmv 0.50 ng/dscm. Collocated blast and reverberatory furnaces...

  1. 40 CFR Table 2 to Subpart X of... - Emissions Limits for Secondary Lead Smelting Furnaces

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Smelting Furnaces 2 Table 2 to Subpart X of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Smelting Furnaces For vents from these processes . . . You must meet the following emissions limits . . . a... reverberatory furnaces (new and existing) 20 ppmv 0.50 ng/dscm. Collocated blast and reverberatory furnaces...

  2. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    SciTech Connect

    Lu, Wei-Kao; Debski, Paul

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  3. Quantifying Stove Emissions Related to Different Use Patterns for the Silver mini (Small Turkish) Space Heating Stove

    SciTech Connect

    Maddalena, Randy; Lunden, Melissa; Wilson, Daniel; Ceballos, Cristina; Kirchstetter, Thomas; Slack, Jonathan; Dale, Larry

    2012-08-01

    Air pollution levels in Ulaanbaatar, Mongolia’s capital, are among the highest in the world. A primary source of this pollution is emissions from traditional coal - burning space heating stoves used in the Ger (tent) regions around Ulaanbaatar. Significant investment has been made to replace traditional heating stoves with improved low - emission high-efficiency stoves. Testing performed to support selection of replacement stoves or for optimizing performance may not be representative of true field performance of the improved stoves. Field observations and lab measurements indicate that performance is impacted , often adversely, by how stoves are actually being used in the field. The objective of this project is to identify factors that influence stove emissions under typical field operating conditions and to quantify the impact of these factors. A highly - instrumented stove testing facility was constructed to allow for rapid and precise adjustment of factors influencing stove performance. Tests were performed using one of the improved stove models currently available in Ulaanbaatar. Complete burn cycles were conducted with Nailakh coal from the Ulaanbaatar region using various startup parameters, refueling conditions , and fuel characteristics . Measurements were collected simultaneously from undiluted chimney gas, diluted gas drawn directly from the chimney and plume gas collected from a dilution tunnel above the chimney. CO, CO2, O2, temperature, pressure, and particulate matter (PM) were measured . We found that both refueling events and coal characteristics strongly influenced PM emissions and stove performance. Start-up and refueling events lead to increased PM emissions with more than 98% of PM mass emitted during the 20% of the burn where coal ignition occurs. CO emissions are distributed more evenly over the burn cycle, peaking both during ignition and late in the burn cycle . We anticipate these results being useful for

  4. Evaluation of low-emission wood stoves. Research report (Final)

    SciTech Connect

    Shelton, J.W.; Gay, L.W.

    1986-06-01

    Emissions and efficiencies of five residential wood-burning heaters were measured. Measured emissions included particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), polycyclic aromatic hydrocarbons (PAHs), benzene, oxides of nitrogen (NOx), total combustibles, elemental carbon, cyanide (CN-), ammonia (NH/sub 3/) and creosote. Three fuels were used, although not in all appliances -- dimensional Douglas fir lumber (as specified in the Oregon and Colorado emissions standards), seasoned oak logs and green oak logs. The appliances consisted of a conventional airtight stove, a catalytic stove, two non-catalytic advanced technology stoves, and a wood pellet stove. Appliance effects were strong. All products of incomplete combustion (PM, CO, HC, benzene, PAH, elemental carbon, creosote and combustibles) were lowest for the pellet burner, next lowest for the catalytic stove, and highest for the conventional airtight stove.

  5. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  6. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  7. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  8. Fuel efficient stoves for the poorest two billion

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2012-03-01

    About 2 billion people cook their daily meals on generally inefficient, polluting, biomass cookstoves. The fuels include twigs and leaves, agricultural waste, animal dung, firewood, and charcoal. Exposure to resulting smoke leads to acute respiratory illness, and cancers, particularly among women cooks, and their infant children near them. Resulting annual mortality estimate is almost 2 million deaths, higher than that from malaria or tuberculosis. There is a large diversity of cooking methods (baking, boiling, long simmers, brazing and roasting), and a diversity of pot shapes and sizes in which the cooking is undertaken. Fuel-efficiency and emissions depend on the tending of the fire (and thermal power), type of fuel, stove characteristics, and fit of the pot to the stove. Thus, no one perfect fuel-efficient low-emitting stove can suit all users. Affordability imposes a further severe constraint on the stove design. For various economic strata within the users, a variety of stove designs may be appropriate and affordable. In some regions, biomass is harvested non-renewably for cooking fuel. There is also increasing evidence that black carbon emitted from stoves is a significant contributor to atmospheric forcing. Thus improved biomass stoves can also help mitigate global climate change. The speaker will describe specific work undertaken to design, develop, test, and disseminate affordable fuel-efficient stoves for internally displaced persons (IDPs) of Darfur, Sudan, where the IDPs face hardship, humiliation, hunger, and risk of sexual assault owing to their dependence on local biomass for cooking their meals.

  9. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  10. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  11. Retrofit catalytic converter for wood-burning stoves

    SciTech Connect

    1983-01-01

    The major purpose of this project was to design, fabricate, test, and evaluate a retrofit catalytic converter for woodburning stoves. In the interim between our date of application March 5, 1981 and the beginning of the grant period December 1, 1981, several such devices became commercially available. Therefore, we decided to modify the purpose and direction of our project. In summary, we designed and constructed a calorimeter room in a building located on the campus of Northern Kentucky University. We equipped this room with a woodburning stove and a metal chimney extending through the roof. We designed and constructed the appropriate instrumentation for monitoring the heat output of the stove. We observed and recorded the operating characteristics of this stove over a period of several days. We then equipped the stove with a barometric damper and repeated the experiment. We are now in the process of equipping the stove with a catalytic converter. Thus the major emphasis of the project currently is to test and evaluate several commercial retrofit devices which are purported to reduce creosote and/or increase the efficiency of a woodburning stove.

  12. INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR DETAIL, STOVE. SMALL CHARCOAL FIRES WERE LIT IN THE DEPRESSIONS, WHICH WERE COVERED WITH IRON GRATES TO SUSPEND POTS OVER THE HEAT SOURCE - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  13. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  14. Cord Wood Testing in a Non-Catalytic Wood Stove

    SciTech Connect

    Butcher, T.; Trojanowski, R.; Wei, G.

    2014-06-30

    EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here is to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.

  15. 11. STOVE NUT USED IN THE MILL WHEN THE BRAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. STOVE NUT USED IN THE MILL WHEN THE BRAKE WHEEL DROVE ONE PAIR OF MILLSTONES DIRECTLY; FOUND ON THE FIRST FLOOR OF THE WINDMILL AT WATERMILL - Windmill at Water Mill, Montauk Highway & Halsey Lane, Water Mill, Suffolk County, NY

  16. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO{sub 2} at low temperatures: effects of the presence of CO{sub 2}, O{sub 2}, and NOx

    SciTech Connect

    Liu, C.F.; Shih, S.M.

    2009-09-15

    The effects of the presence of CO{sub 2}, O{sub 2}, and NOx in the flue gas on the kinetics of the sulfation of blast furnace slag/hydrated lime sorbents at low temperatures were studied using a differential fixed-bed reactor. When O{sub 2} and NOx were not present simultaneously, the reaction kinetics was about the same as that under the gas mixtures containing SO{sub 2}, H{sub 2}O, and N{sub 2} only, being affected mainly by the relative humidity. The sulfation of sorbents can be described by the surface coverage model and the model equations derived for the latter case. When both O{sub 2} and NOx, were present, the sulfation of sorbents was greatly enhanced, forming a great amount of sulfate in addition to sulfite. The surface coverage model is still valid in this case, but the model equations obtained show a more marked effect of relative humidity and negligible effects of SO{sub 2} concentration and temperature on the reaction. The effect of sorbent composition on the reaction kinetics was entirely represented by the effects of the initial specific surface area (S{sub g0}) and the Ca molar content (M{sup -1}) of sorbent. The initial conversion rate of sorbent increased linearly with increasing S{sub g0}, and the ultimate conversion increased linearly with increasing S{sub g0}M{sup -1}. The model equations obtained in this work are applicable to describe the kinetics of the sulfation of the sorbents in the low-temperature dry and semidry fine gas desulfurization processes either with an upstream NOx, removal unit or without.111

  17. Maintaining vacuum furnaces

    SciTech Connect

    Kowalewski, J.

    2000-04-01

    A preventive maintenance program is essential for safe and consistent vacuum furnace operation. The program should be developed in cooperation with safety, maintenance, and furnace operators, implemented as soon as the furnace is commissioned, and adhered to throughout the life of the furnace. This article serves as an introduction to the topic of vacuum furnace preventive maintenance. Basic information about installing a new vacuum furnace also is provided.

  18. Industrial furnace

    SciTech Connect

    Shostak, V.M.; Tolochko, A.I.; Volkov, V.P.; Maradudin, G.I.; Schekin, N.G.; Popov, M.I.; Shepelev, D.N.; Matveev, A.I.; Butnyakov, A.I.; Rzhavichev, A.P.

    1986-09-02

    An industrial furnace is described which consists of: a bath made of a refractory material for filling with a melt; a direct current source; main current-carrying elements having free ends extending to an operating area of the refractory material of the bath below and above the melt, and the main current-carrying elements extending to the operating area below the melt being connected with opposite terminals of the current source from the main current-carrying elements extending to the operating area above the melt; and additional current-carrying elements having free ends sunk in the refractory material of the bath below and above the melt and the additional current-carrying elements being connected with the terminals of the power source of opposite polarity with respect to the connection of the main current-carrying elements of a corresponding part of the operating area.

  19. Wood-stove hot-water systems. Final report

    SciTech Connect

    Leitman, S.

    1982-07-01

    The objective of this grant was to evaluate the efficiency and economics of installing hot water heating systems or wood stoves. To evaluate the efficiency, six systems were installed in North Florida households and monitored over two heating systems. Three of the systems installed were placed in the flue pipe and three in the stove box. Tests indicate the in-pipe systems yielded on an average 1575 to 1675 Btu/hour, while in-stove systems yielded from 1850 to 2700 Btu/hour on the average. A detailed analysis of the economics of system performance concluded that the installation of wood-stove hot water heating systems is a marginal investment for the Tallahassee area without the current energy tax credit program and a reasonably good investment with it. It was determined that if a person used the stove as a regular heat source in the Tallahassee area and system cost was near $400.00 that person was guaranteed to recover their investment in current dollars within the useful life of the system. As a person travels north to areas where the heating season is longer, these systems become more justified.

  20. 33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. LOOKING EAST AT SPARE BUTTERFLY VALVE FOR BURNER CONNECTION ON HOT BLAST STOVES. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  2. Quantitative stove use and ventilation guidance for behavior change strategies.

    PubMed

    Johnson, Michael A; Chiang, Ranyee A

    2015-01-01

    Achieving World Health Organization air quality targets and aspirational fuel savings targets through clean cooking solutions will require high usage rates of high-performing products and low usage rates of traditional stoves. Catalyzing this shift is challenging as fuel and stove use practices associated with new technologies generally differ from those used with traditional technologies. Accompanying this shift with ventilation improvements can help further reduce exposure to emissions of health damaging pollutants. Behavior change strategies will be central to these efforts to move users to new technologies and minimize exposure to emissions. In this article, the authors show how behavior change can be linked to quantitative guidance on stove usage, household ventilation rates, and performance. The guidance provided here can help behavior change efforts in the household energy sector set and achieve quantitative goals for usage and ventilation rates.

  3. Comparative Use of Personal and Installed Tables and Stoves in Public Campgrounds.

    ERIC Educational Resources Information Center

    Bury, Richard L.; Dutra, Robert S.

    This survey reports the use of installed tables and stoves as compared with the use of personal tables and stoves at 20 campgrounds in the central Sierra Nevada during the summer of 1961. The data reveal about 70 percent of the campers brought a portable stove. Installed grates were used by only half of the campers who had them available, and…

  4. What makes people cook with improved biomass stoves. A comparative international review of Stove Programs. Energy series. World Bank technical paper

    SciTech Connect

    Barnes, D.F.; Openshaw, K.; Smith, K.R.; van der Plas, R.

    1994-05-01

    Hundreds of millions of people rely on woodfuels for most of their energy needs, despite the problems associated with traditional use of woodfuels. Modern, efficient biomass stoves can alleviate some of these problems by reducing some householders' cash outlays for fuel, diminishing the time others must spend to collect fuel, reducing air pollution, and relieving local pressure on wood resources. The study explores the successes and failures of stove programs and suggests how adoption rates can be improved more consistently. Under the right conditions, the social, economic, and environmental benefits of promoting improved stoves are large. Programs must be targeted carefully, however, to situations in which people pay high prices for fuel or walk long distances to collect fuelwood or other biomass materials. Subsidies may aid in the distribution of stoves but may not result in actual stove use. Ultimately, dissemination programs are most effective when they allow for interaction and feedback between stove designers, producers, and users.

  5. Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor

    2016-09-01

    Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.

  6. FIELD PERFORMANCE OF WOODBURNING STOVES IN CRESTED BUTTE, COLORADO

    EPA Science Inventory

    The paper discusses field emissions from woodstoves measured in Crested Butte, Colorado, during the winters of 1988-89 and 1989-90. Both particulate matter and carbon monoxide emissions were measured. The database from this work is large, including conventional stoves and EPA-cer...

  7. Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal

    SciTech Connect

    Ramdahl, T.; Alfheim, I.; Rustad, S.; Olsen, T.

    1982-01-01

    Emissions from a small residential wood stove and a newly developed residential stove burning charcoal have been characterized by chemical analysis and mutagenicity testing (Ames Salmonella test). For wood burning the samples were taken under normal and starved air conditions burning birch and spruce separately. The burning conditions in the stove seemed to influence the emissions to a larger extent than the type of wood. The emissions of aldehydes, benzene and polycyclic aromatic hydrocarbons from the charcoal-burning stove are lower by a factor of 25-1000 as compared to the wood stove. The mutagenicity of the emissions showed a similar trend.

  8. Score-stoveTM Performance with modified resonating tube shape and layouts

    NASA Astrophysics Data System (ADS)

    Hossain, Md. M.; Malek, M. I.; Ehsan, Md.; Riley, P. H.

    2016-07-01

    An electricity-generating stove using thermo-acoustic phenomena was introduced by SCORE team UK in 2007 and later a modified version of the stove was adopted by BUET SCORE team in 2013 which could use both pressurized kerosene burner and wood. The prototype was first tested in the laboratory and then demonstrated to potential end users in several rural communities. The feedback from the stakeholders showed great interest towards electricity generating stoves but identified - stove size, longer cooking time, cost of the stove and maintenance issues to be challenges needed to be addressed to make it truly feasible for use in Bangladesh. Further research is being carried out in these aspects to improve the acceptability of this new technology. This paper states the work carried out in order to reduce the overall dimensions of the stove in which orientation of the resonating tubes play a major part. The straight PVC pipes of original design were replaced by corrugated flexible PVC pipes in order to make the stove compact and space efficient. Corrugated flexible pipes give more flexibility in layout design with small change in resonance characteristics. After parametric study and successive test runs, suitable orientation layouts for corrugated flexible pipes were identified, without much compromising the stove performance. Use of the flexible piping and fixed angle PVC bends could successfully reduce the overall stove dimensions as well as improve compactness and aesthetics of the stove. Incorporating the present findings in Score-Stove design could improve its feasibility and acceptability to the end users.

  9. Results of laboratory tests on wood-stove emissions and efficiency

    SciTech Connect

    Hubble, B.R.; Harkness, J.B.L.

    1981-01-01

    Air-tight, wood-burning stoves were operated in a manner consistent with typical residential heating requirements in order to determine particulate and carbon monoxide emissions and creosote build-up. Test data are presented as functions of burn-rates and stove efficiencies. The principal conclusions are that emissions from the stove used in this study are related to log-size and wood burn-rate and that CO and particulate emissions and creosote build-up increased with increasing efficiency of operation. Therefore, future environmental testing should be conducted at typical stove operating conditions, low burn-rates with large logs. In addition, heat-loss calculations show a trade-off between sensible heat loss and CO-fuel heat loss over the range of burn-rates studied. This indicates that, if further improvements in stove efficiencies are desired, improvements in stove combustion efficiency are needed. This also decreases stove emissions.

  10. 44. Tube conveyors carry ore, coke and limestone to blast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Tube conveyors carry ore, coke and limestone to blast furnaces "B" and "C". Ore bridges to left, passenger elevator penthouse immediately to left of conveyor; gas stack and furnace "A" to right. Looking north - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  11. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  12. Chimney stoves modestly improved indoor air quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru

    PubMed Central

    Hartinger, S.M.; Commodore, A.A.; Hattendorf, J.; Lanata, C.F.; Gil, A.I.; Verastegui, H.; Aguilar-Villalobos, M.; Mäusezahl, D.; Naeher, L.P.

    2015-01-01

    Nearly half of the world’s population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study promoted intervention (OPTIMA-improved) stoves and control stoves in San Marcos Province, Cajamarca Region, Peru. We determined 48hr indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA-improved stoves had been installed for an average of seven months. PM2.5 and CO measurements did not differ significantly between OPTIMA-improved stoves and control stoves. Although not statistically significant, a post-hoc stratification of OPTIMA-improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA-improved stoves were 28% lower (n=20, PM2.5, 136μg/m3 95%CI 54–217) and 45% lower (n=25, CO, 3.2ppm, 95%CI 1.5–4.9) in the kitchen environment compared to the control stoves (n=34, PM2.5, 189μg/m3, 95%CI 116–261; n=44, CO, 5.8ppm, 95%CI 3.3–8-2). Likewise, although not statistically significant, personal exposures for OPTIMA-improved stoves were 43% and 167% lower for PM2.5 (n=23) and CO (n=25) respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions. PMID:23311877

  13. Mammoth carbottom furnace programmed to automatically meet work specifications efficiently

    SciTech Connect

    Not Available

    1982-03-01

    Wisconsin Steel Treating and Blasting Co., Milwaukee, Wis., has a large 52 ft x 18 ft x 16 ft carbottom furnace used for stress relieving, normalizing and annealing of castings, forgings, and fabrications ranging from 25 lb to over 200,000 lb each. The 4-zone furnace, which has both nuclear and ASME Boiler Code certification, can develop a 44-million Btu input from 24 boilers to generate a temperature up to 1900/sup 0/F under positive pressure. A sophisticated and comprehensive automatic control system located on a panel adjacent to the carbottom furnace, is built around a microprocessor-based process programmer (LandN 1300) which uses programmable logic in directing the operation of the furnace.

  14. Electromelt furnace evaluation

    SciTech Connect

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  15. Electromelt furnace evaluation

    NASA Astrophysics Data System (ADS)

    Reimann, G. A.; Welch, J. M.

    1981-09-01

    An electromelt furnace was designed, built and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  16. 14. DETAIL OF CLEAN GAS MAIN (UPPER PIPE) AND ROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF CLEAN GAS MAIN (UPPER PIPE) AND ROUGH GAS MAIN FOR BLAST FURNACE No. 2 AT THE BASE OF HOT BLAST STOVES LOOKING EAST. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. VIEW LOOKING EAST FROM TOP OF WORK ORDERS OFFICE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING EAST FROM TOP OF WORK ORDERS OFFICE, SHOWING HOT BLAST STOVES (RIGHT) WITH STACK, BLOWING ENGINE HOUSE IN FRONT. SKIP HOIST ENGINE HOUSE IN MIDDLE, BLAST FURNACES E AND F (5 AND 6) TO LEFT. - Cambria Iron Company, Blast Furnaces No. 5 & 6, Lower Works, Johnstown, Cambria County, PA

  18. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    Sampling cast iron produced by the furnace posed two problems. First, verification that the iron was actually cast at Hopewell Furnace was necessary, as some iron objects found at Hopewell may not have originated there. This was accomplished by using artifacts on display at the Hopewell visitor center (fig. 2). All artifacts on display have been positively attributed to the furnace, and stoves produced by the furnace are easily recognized by the name “Hopewell” cast into them. The second problem was the analysis of the trace metal content of the cast iron, because it was not possible to break off part of a historically important artifact and send it to a laboratory for analysis. This problem was solved when the USGS collaborated with West Chester University, which owns a portable X-ray fluorescence (XRF) spectrometer.

  19. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    NASA Astrophysics Data System (ADS)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  20. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  1. SOLID-FUEL HOUSEHOLD COOK STOVES: CHARACTERIZATION OF PERFORMANCE AND EMISSIONS

    EPA Science Inventory

    Previous studies have shown that some fuel-efficient solid-fuel cook stoves have had worse pollutant emissions of PICs (products of incomplete combustion) than traditional cooking methods. Better stoves have been developed to reduce emissions, but test results have not previously...

  2. Adherence to reduced-polluting biomass fuel stoves improves respiratory and sleep symptoms in children

    PubMed Central

    2014-01-01

    Background Symptoms of sleep apnea are markedly increased in children exposed to smoke from biomass fuels and are reduced by kitchen stoves that improve indoor biomass pollution. However, the impact of adherence to the use of improved stoves has not been critically examined. Methods Sleep-related symptom questionnaires were obtained from children <15 years of age in 56 families residing in the communities of Lliupapuquio, Andahuaylas province in Peru before and 2 years after installation of less-polluting Inkawasi cooking stoves. Results 82 children with lifetime exposures to indoor fuel pollution were included. When compared to those alternating between both types of stoves or those using traditional stoves only, those children who exclusively used Inkawasi cooking stoves showed significant improvements in sleep and respiratory related symptoms, but some minor albeit significant improvements occurred when both stoves were concomitantly used. Conclusions Improvements in respiratory and sleep-related symptoms associated with elevated indoor biomass pollution occur only following implementation and exclusive utilization of improved kitchen stoves. PMID:24433576

  3. Performance of certified wood stoves under field conditions. Report for August 1985-September 1987

    SciTech Connect

    Burnet, P.G.; McCrillis, R.C.; Morgan, S.J.

    1988-05-01

    This paper discusses the monitoring of wood-stove performance under field conditions in 34 Northeast U.S. houses for two heating seasons, and in 8 Northwest U.S. and 14 Whitehorse, Yukon, Canada, houses for one heating season. Stoves included models certified or capable of being certified to Oregon Department of Environmental Quality and U.S. EPA standards. Objectives of the studies were to evaluate the performance of advanced-technology stoves (catalytic, noncatalytic low emission, and catalytic add-on/retrofit devices) relative to conventional technology stoves. Stoves were monitored for particulate emissions, wood use, and creosote accumulation in flue systems. The new-technology stoves models showed the potential to reduce particulate emissions, fuel use, and creosote accumulation. Good performance in at least one installation for most of the stove models indicates that factors such as stove maintenance and fueling practices, as well as technology factors, are important in reducing emissions. Reducing firebox size appears to be a consistent factor in reducing emissions.

  4. Biomass conservation potential of pottery/ceramic lined Mamta Stove: An improved stove promoted under National Programme on Improved Cookstoves in India

    SciTech Connect

    George, R.; Yadla, V.L.

    1995-10-01

    To combat biomass scarcity and ensure a cleaner cooking environment with less drudgery, among other things, a variety of improved stoves are promoted under National Programme on Improved Cookstoves (NPIC). Mamta Stove (MS) is one among such improved stoves. An indepth study was undertaken covering a sample of twenty-five rural families with the primary objective of assessing fuel saving potential of MS under field conditions through Kitchen Performance Test (KPT). Conventional stove (CS) used in almost all the families was shielded horse-shoe shaped stove with a negligible proportion using three stone open fire. Nearly 88% depended only on zero private cost fuels. The mean number of persons for whom the stoves were used on the days of field measurements in case of CS and MS were 5.6 and 5.7 respectively with an SD of 1.16 and standard adult equivalent (SAE) was approximately 4. Cooking pots included a concave roasting pan, a deep frying pan and flat bottomed pots. The mean daily fuel consumption on CS and MS were estimated to be 4.88 kg and 3.75 kg respective, thereby, resulting in fuel saving to the tune of 24% on MS. The paper discusses at length the design features of CS and MS, meal pattern, cooking habits, need for user training, consumerism in the area of cooking and stove technology, economics of switching over to MS and policy implications of commercialization of hitherto subsidized stove program. Further, salient characteristics of high and low cooking fuel consumers on MS are presented to bring to limelight their profile.

  5. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  6. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    SciTech Connect

    Szewczyk, W.

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources in Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.

  7. Performance evaluation of household pyrolytic stove: Effect of outer air holes condition

    NASA Astrophysics Data System (ADS)

    Pradana, Yano Surya; Prasetya, Agus

    2017-03-01

    Renewable energy is the future energy for the substitution of the depleting fossil fuels. In Indonesia, biomass is one of promising renewable energy due to its abundant availability. Biomass can be converted into energy by thermochemical process, such as pyrolysis. In the implementation, pyrolysis can be applied in household cookstove, called pyrolytic stove. Pyrolytic stove will be proposed for people still cooking over an open biomass fire. This paper studied the pyrolysis of Indonesian teak using household pyrolytic stove. The effect of outer air holes on the performance of household pyrolytic stove was investigated. The increasing of cross section area of outer air holes effected on the higher of biomass combustion releasing energy for pyrolysis and cooking. Furthermore, the optimum outer air holes condition in the stove was fully open with the minimum of char product and the maximum of energy recovered for cooking.

  8. Self-cleaning, high heat exchange wood or coal stove

    SciTech Connect

    Chelminski, S.V.

    1986-06-24

    A method is described of burning wood or coal fuel in a home-heating stove comprising the steps of: providing a rotatable,squirrel-cage grate of spaced parallel rigid tubes arranged in a continuous circular cylindrical squirrel-cage configuration, rotatably mounting the grate for rotation about a generally horizontal axis within a stove housing having a flue for exit of combustion gases, providing an accessible fuel-loading opening at one axial end of the cylindrical squirrel-cage grate, loading fuel into the rotatable grate through the fuel-loading opening at the axial end of the grate, burning the fuel in the grate with the gaseous products of combustion passing out of the housing through the flue, blowing room air through all of the air tubes for heating the room air and for cooling all of the tubes and for condensing creosote on the cooled tubes which happen to be near the top of the grate, and periodically rotating the grate through a portion of a full revolution during combustion of the fuel for moving the creosote-coated tubes down toward the bottom of the grate where combustion is occurring for burning the creosote off from the tubes for obtaining the heat value of the burned creosote and also for reducing the accumulation of creosote in the flue.

  9. Semicoke production and quality at Chinese vertical SJ furnaces

    SciTech Connect

    V.M. Strakhov; I.V. Surovtseva; A.V. D'yachenko; V.M. Men'shenin

    2007-05-15

    In Russia there has been little interest on the thermal processing of non-sintering coal. However it may be used to obtain many special types of coke and semicoke that are necessary for processes other than blast furnace smelting and employing small metallurgical coke fractions that do not meet the relevant quality requirements. China has recently made great progress in developing the thermal processing of coal (mainly energy coal) to obtain a highly effective product, semicoke, primarily used in metallurgy and adsorption process. The article considers the operation of a Chinese semicoking plant equipped with vertical SJ furnaces. The plant is in the Shenmu district of Shanxi province (Inner Mongolia). The enterprise includes two furnaces of total output of about 100,000 t/yr of semicoke.

  10. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  11. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  12. Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas

    SciTech Connect

    V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich

    2009-07-15

    The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

  13. Toward the Understanding and Optimization of Chimneys for Buoyantly Driven Biomass Stoves

    NASA Astrophysics Data System (ADS)

    Prapas, Jason

    The vast majority of indoor combustion devices in the developed world make use of stacks (flues, vents, chimneys, smokestacks) to channel flue gases out of the operator space. In the developing world, where indoor air pollution kills several million people every year, the use of chimneys with biomass cooking and heating stoves has been met with limited success and a high level of controversy. Due to a lack of theoretical understanding, design criteria, poorly executed installation practices, and/or insufficient maintenance routines, many chimney stoves have exhibited inadequate indoor emissions reductions in addition to low thermal efficiencies. This work aims (a) shed light on the physical phenomenon of the "stack effect" as it pertains to dynamic, non-adiabatic, buoyancy-driven stoves (b) apply new understanding toward the optimization of two types of biomass chimney stoves: plancha or griddle type stoves popular in Central America and two-pot stoves common in South America. A numerical heat and fluid flow model was developed that takes into account the highly-coupled variables and dynamic nature of such systems. With a comprehensive physical model, parameter studies were conducted to determine how several field-relevant variables influence the performance of stack-outfitted systems. These parameters include, but are not limited to: power/wood consumption rate, chimney geometry, stove geometry, material properties, heat transfer, and ambient conditions. An instrumented experimental chimney was built to monitor relationships between air flow, differential pressure, gas temperatures, emissions, and thermal efficiency. The draft provided by chimneys was found to have a strong influence over the bulk air-to-fuel ratio of buoyantly-driven cookstoves, greatly affecting the stove's overall performance by affecting gas temperatures, emissions, and efficiency. Armed with new information from the modeling and experimental work, two new stoves were designed and optimized to

  14. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  15. Zinc-lead blast furnace—the key developments

    NASA Astrophysics Data System (ADS)

    Temple, Derek

    1980-09-01

    Because of his close association with the zinc-lead blast furnace process, the author has chosen to draw on this source to examine some key metallurgical advances. In addition to discussing the importance of some of these developments in the context of the zinc-lead blast furnace, comment is made on the more general role of the blast furnace technique in nonferrous extractive metallurgy. Naturally, the lead splash condenser system, without which the zinc-lead blast furnace would never have operated, occupies first place. The development of lead cooling launders is considered after discussion of the adoption of top air additions to minimize the reoxidation of zinc vapor in its passage from the furnace charge to the condenser. Without these two improvements on the original concept large capacity plants could not have been built. In addition, the development of the updraft technique of zinc-lead sinter production is examined; without this operating costs would have been excessive and expansion of the process would have ceased.

  16. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  17. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  18. VIEW OF CENTRAL COMPLEX FROM THE EAST, SHOWING THE #1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF CENTRAL COMPLEX FROM THE EAST, SHOWING THE #1 BLAST FURNACE ON THE RIGHT, THE #2 BLAST FURNACE ON THE LEFT, AND THE BOILERS AND STOVES IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  19. VIEW FROM THE EAST, SHOWING THE STOCK BINS IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE EAST, SHOWING THE STOCK BINS IN THE FOREGROUND, THE #1 BLAST FURNACE ON THE RIGHT, STOVES IN THE CENTER, AND THE #2 BLAST FURNACE ON THE LEFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  20. Session 4 - Utilizing Stove Heat for Co-Generation. Session Introduction

    DTIC Science & Technology

    2009-11-01

    Micro-finance and carbon credits experts. • How do you distribute all those stoves? – Local merchants and entrepreneurs. • Outputs? – Design teams for engines and monitoring. – Test, monitoring and evaluation team.

  1. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia

    NASA Astrophysics Data System (ADS)

    Cameron, Colin; Pachauri, Shonali; Rao, Narasimha D.; McCollum, David; Rogelj, Joeri; Riahi, Keywan

    2016-01-01

    Household air pollution from traditional cook stoves presents a greater health hazard than any other environmental factor. Despite government efforts to support clean-burning cooking fuels, over 700 million people in South Asia could still rely on traditional stoves in 2030. This number could rise if climate change mitigation efforts increase energy costs. Here we quantify the costs of support policies to make clean cooking affordable to all South Asians under four increasingly stringent climate policy scenarios. Our most stringent mitigation scenario increases clean fuel costs 38% in 2030 relative to the baseline, keeping 21% more South Asians on traditional stoves or increasing the minimum support policy cost to achieve universal clean cooking by up to 44%. The extent of this increase depends on how policymakers allocate subsidies between clean fuels and stoves. These additional costs are within the range of financial transfers to South Asia estimated in efforts-sharing scenarios of international climate agreements.

  2. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  3. Temperature dataloggers as stove use monitors (SUMs): Field methods and signal analysis

    PubMed Central

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Smith, Kirk R.

    2013-01-01

    We report the field methodology of a 32-month monitoring study with temperature dataloggers as Stove Use Monitors (SUMs) to quantify usage of biomass cookstoves in 80 households of rural Guatemala. The SUMs were deployed in two stoves types: a well-operating chimney cookstove and the traditional open-cookfire. We recorded a total of 31,112 days from all chimney cookstoves, with a 10% data loss rate. To count meals and determine daily use of the stoves we implemented a peak selection algorithm based on the instantaneous derivatives and the statistical long-term behavior of the stove and ambient temperature signals. Positive peaks with onset and decay slopes exceeding predefined thresholds were identified as “fueling events”, the minimum unit of stove use. Adjacent fueling events detected within a fixed-time window were clustered in single “cooking events” or “meals”. The observed means of the population usage were: 89.4% days in use from all cookstoves and days monitored, 2.44 meals per day and 2.98 fueling events. We found that at this study site a single temperature threshold from the annual distribution of daily ambient temperatures was sufficient to differentiate days of use with 0.97 sensitivity and 0.95 specificity compared to the peak selection algorithm. With adequate placement, standardized data collection protocols and careful data management the SUMs can provide objective stove-use data with resolution, accuracy and level of detail not possible before. The SUMs enable unobtrusive monitoring of stove-use behavior and its systematic evaluation with stove performance parameters of air pollution, fuel consumption and climate-altering emissions. PMID:25225456

  4. Temperature dataloggers as stove use monitors (SUMs): Field methods and signal analysis.

    PubMed

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Smith, Kirk R

    2012-12-01

    We report the field methodology of a 32-month monitoring study with temperature dataloggers as Stove Use Monitors (SUMs) to quantify usage of biomass cookstoves in 80 households of rural Guatemala. The SUMs were deployed in two stoves types: a well-operating chimney cookstove and the traditional open-cookfire. We recorded a total of 31,112 days from all chimney cookstoves, with a 10% data loss rate. To count meals and determine daily use of the stoves we implemented a peak selection algorithm based on the instantaneous derivatives and the statistical long-term behavior of the stove and ambient temperature signals. Positive peaks with onset and decay slopes exceeding predefined thresholds were identified as "fueling events", the minimum unit of stove use. Adjacent fueling events detected within a fixed-time window were clustered in single "cooking events" or "meals". The observed means of the population usage were: 89.4% days in use from all cookstoves and days monitored, 2.44 meals per day and 2.98 fueling events. We found that at this study site a single temperature threshold from the annual distribution of daily ambient temperatures was sufficient to differentiate days of use with 0.97 sensitivity and 0.95 specificity compared to the peak selection algorithm. With adequate placement, standardized data collection protocols and careful data management the SUMs can provide objective stove-use data with resolution, accuracy and level of detail not possible before. The SUMs enable unobtrusive monitoring of stove-use behavior and its systematic evaluation with stove performance parameters of air pollution, fuel consumption and climate-altering emissions.

  5. Strengthen flame stability during the furnace`s load decrease

    SciTech Connect

    Zhang Zhiguo; Sun Xuexin; Li Fujin; Qiu Jihua; Chen Gang

    1996-12-31

    This paper presents the result of the study of the coal combustion characteristic and flame stability during the load decrease of PCFF (corner burner arrangement). Considering the relation between flame stability and furnace load during the furnace load change, some method must be used to strengthen the pulverized coal ignition and combustion for the furnace to maintain the flame stability especially for the furnace which fires low rank anthracite. Experimental results show that when the furnace load decreased, the temperature distribution in furnace decreased and the flame stability in furnace had changed because of the load changing. This paper also introduces a new pulverized coal burner: Bluff-body with cavity burner. According to the result of application of this burner, this kind of pulverized coal burner can improve the coal ignition and combustion efficiency. Especially for low load operation of furnace the bluff-body with cavity burner has demonstrated its ability in strengthening coal ignition and improving the flame stability for furnace operation. Experimental results show that using bluff-body with cavity burner, the lowest load for furnace fired bituminous is 40% MCR and 50% MCr for low rank anthracite (V{sup r} < 12%, A{sup f} > 45%). This burner has simple structure and is very easy to set up for furnace.

  6. Biogas Cook Stoves for Healthy and Sustainable Diets? A Case Study in Southern India

    PubMed Central

    Anderman, Tal Lee; DeFries, Ruth S.; Wood, Stephen A.; Remans, Roseline; Ahuja, Richie; Ulla, Shujayath E.

    2015-01-01

    Alternative cook stoves that replace solid fuels with cleaner energy sources, such as biogas, are gaining popularity in low-income settings across Asia, Africa, and South America. Published research on these technologies focuses on their potential to reduce indoor air pollution and improve respiratory health. Effects on other cooking-related aspects, such as diets and women’s time management, are less understood. In this study, in southern India, we investigate if using biogas cook stoves alters household diets and women’s time management. We compare treatment households who are supplied with a biogas cook stove with comparison households who do not have access to these stoves, while controlling for several socio-economic factors. We find that diets of treatment households are more diverse than diets of comparison households. In addition, women from treatment households spend on average 40 min less cooking and 70 min less collecting firewood per day than women in comparison households. This study illustrates that alongside known benefits for respiratory health, using alternative cook stoves may benefit household diets and free up women’s time. To inform development investments and ensure these co-benefits, we argue that multiple dimensions of sustainability should be considered in evaluating the impact of alternative cook stoves. PMID:26442274

  7. Biogas Stoves Reduce Firewood Use, Household Air Pollution, and Hospital Visits in Odisha, India.

    PubMed

    Lewis, Jessica J; Hollingsworth, John W; Chartier, Ryan T; Cooper, Ellen M; Foster, William Michael; Gomes, Genna L; Kussin, Peter S; MacInnis, John J; Padhi, Bijaya K; Panigrahi, Pinaki; Rodes, Charles E; Ryde, Ian T; Singha, Ashok K; Stapleton, Heather M; Thornburg, Jonathan; Young, Cora J; Meyer, Joel N; Pattanayak, Subhrendu K

    2017-01-03

    Traditional cooking using biomass is associated with ill health, local environmental degradation, and regional climate change. Clean stoves (liquefied petroleum gas (LPG), biogas, and electric) are heralded as a solution, but few studies have demonstrated their environmental health benefits in field settings. We analyzed the impact of mainly biogas (as well as electric and LPG) stove use on social, environmental, and health outcomes in two districts in Odisha, India, where the Indian government has promoted household biogas. We established a cross-sectional observational cohort of 105 households that use either traditional mud stoves or improved cookstoves (ICS). Our multidisciplinary team conducted surveys, environmental air sampling, fuel weighing, and health measurements. We examined associations between traditional or improved stove use and primary outcomes, stratifying households by proximity to major industrial plants. ICS use was associated with 91% reduced use of firewood (p < 0.01), substantial time savings for primary cooks, a 72% reduction in PM2.5, a 78% reduction in PAH levels, and significant reductions in water-soluble organic carbon and nitrogen (p < 0.01) in household air samples. ICS use was associated with reduced time in the hospital with acute respiratory infection and reduced diastolic blood pressure but not with other health measurements. We find many significant gains from promoting rural biogas stoves in a context in which traditional stove use persists, although pollution levels in ICS households still remained above WHO guidelines.

  8. In-Home Performance of Exempt Pellet Stoves in Medford, Oregon.

    SciTech Connect

    Barnett, Stockton G.; Fields, Paula G.

    1991-07-05

    Pellet stoves that are considered exempt'' operate at an air-to-fuel ratio in excess of 35:1. They therefore qualify for exemption from the emissions certification process. A primary goal of this project was to determine how a sample of such stoves, operated in homes, would perform compared to their certified cousins,'' which were evaluated the previous year. In-home performance data documenting emissions from exempt stoves and net delivered efficiencies was particularly desired. This project evaluated six pellet stoves representing three major brands in Medford, Oregon. There were three Breckwell model P24FS, one Horizon Eclipse, one Horizon Destiny, and one Earth Stove TP40. The stoves were monitored for four week-long intervals in January and February 1991, for a total of 24 tests. Evaluations were conducted for particulate, CO (carbon monoxide) and PAH (polycyclic aromatic hydrocarbon) emissions and net efficiency. Monitoring was conducted using the AWES (automated woodstove emissions sampler) sampling system. A new data logger, developed for this project, was used to control the AWES and record real time data. 22 refs., 17 figs., 6 tabs.

  9. Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Smith, K. R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M. A. K.; Rasmussen, R. A.; Thorneloe, S. A.

    Emissions from household stoves, especially those using solid fuels, can contribute significantly to greenhouse gas (GHG) inventories and have adverse health impacts. Few data are available on emissions from the numerous types of cookstoves used in developing countries. We have systematically measured emissions from 56 fuel/stove combinations in India and China, a large fraction of the combinations in use world-wide. A database was generated containing emission factors of direct and indirect GHGs and other airborne pollutants such as CO 2, CO, CH 4, TNMHC, N 2O, SO 2, NO x, TSP, etc. In this paper, we report on the 28 fuel/stove combinations tested in China. Since fuel and stove parameters were measured simultaneously along with the emissions, the database allows construction of complete carbon balances and analyses of the trade-off of emissions per unit fuel mass and emissions per delivered energy. Results from the analyses show that the total emissions per unit delivered energy were substantially greater from burning the solid fuels than from burning the liquid or gaseous fuels, due to lower thermal and combustion efficiencies for solid-fuel/stove combinations. For a given biomass fuel type, increasing overall stove efficiency tends to increase emissions of products of incomplete combustion. Biomass fuels are typically burned with substantial production of non-CO 2 GHGs with greater radiative forcing, indicating that biomass fuels have the potential to produce net global warming commitments even when grown renewably.

  10. Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets

    PubMed Central

    Chiang, Ranyee A.

    2015-01-01

    Background Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings. Objectives This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements. Methods We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency. Results Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week). Conclusions Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact. Citation

  11. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Helmke, M.F.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.

  12. Indoor pollution and burning practices in wood stove management.

    PubMed

    Piccardo, M T; Cipolla, M; Stella, A; Ceppi, M; Bruzzone, M; Izzotti, A; Valerio, F

    2014-11-01

    This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use ofsolvents andpaints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance ofeducation, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.

  13. 4. STRAIGHT ON VIEW OF CASTIRON RETORTS AT TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STRAIGHT ON VIEW OF CAST-IRON RETORTS AT TOP OF FURNACE SHOWING PORTION OF HOT BLAST STOVE AND TURNED HEAD. - Nassawango Iron Furnace, Furnace Road, 1.2 miles west of Maryland Route 12, Snow Hill, Worcester County, MD

  14. Pollutant emissions and energy efficiency of Chinese gasifier cooking stoves and implications for future intervention studies.

    PubMed

    Carter, Ellison M; Shan, Ming; Yang, Xudong; Li, Jiarong; Baumgartner, Jill

    2014-06-03

    Household air pollution from solid fuel combustion is the leading environmental health risk factor globally. In China, almost half of all homes use solid fuel to meet their household energy demands. Gasifier cookstoves offer a potentially affordable, efficient, and low-polluting alternative to current solid fuel combustion technology, but pollutant emissions and energy efficiency performance of this class of stoves are poorly characterized. In this study, four Chinese gasifier cookstoves were evaluated for their pollutant emissions and efficiency using the internationally recognized water boiling test (WBT), version 4.1.2. WBT performance indicators included PM2.5, CO, and CO2 emissions and overall thermal efficiency. Laboratory investigation also included evaluation of pollutant emissions (PM2.5 and CO) under stove operating conditions designed to simulate common Chinese cooking practices. High power average overall thermal efficiencies ranged from 22 to 33%. High power average PM2.5 emissions ranged from 120 to 430 mg/MJ of useful energy, and CO emissions ranged from 1 to 30 g/MJ of useful energy. Compared with several widely disseminated "improved" cookstoves selected from the literature, on average, the four Chinese gasifier cookstoves had lower PM2.5 emissions and higher CO emissions. The recent International Organization for Standardization (ISO) International Workshop Agreement on tiered cookstove ranking was developed to help classify stove performance and identify the best-performing stoves. The results from this study highlight potential ways to further improve this approach. Medium power stove operation emitted nearly twice as much PM2.5 as was emitted during high power stove operation, and the lighting phase of a cooking event contributed 45% and 34% of total PM2.5 emissions (combined lighting and cooking). Future approaches to laboratory-based testing of advanced cookstoves could improve to include greater differentiation between different modes of

  15. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  16. 'Oorja' in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households.

    PubMed

    Thurber, Mark C; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2014-04-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 "Oorja" stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of "agricultural waste" to make

  17. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  18. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  19. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  20. Numerical investigation of the flow inside the combustion chamber of a plant oil stove

    NASA Astrophysics Data System (ADS)

    Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.

    2013-10-01

    Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.

  1. The intensive margin of technology adoption--Experimental evidence on improved cooking stoves in rural Senegal.

    PubMed

    Bensch, Gunther; Peters, Jörg

    2015-07-01

    Today, almost 3 billion people in developing countries rely on biomass as primary cooking fuel, with profound negative implications for their well-being. Improved biomass cooking stoves are alleged to counteract these adverse effects. This paper evaluates take-up and impacts of low-cost improved stoves through a randomized controlled trial. The randomized stove is primarily designed to curb firewood consumption, but not smoke emissions. Nonetheless, we find considerable effects not only on firewood consumption, but also on smoke exposure and, consequently, smoke-related disease symptoms. The reduced smoke exposure results from behavioural changes in terms of increased outside cooking and a reduction in cooking time. We conclude that in order to assess the effectiveness of a technology-oriented intervention, it is critical to not only account for the incidence of technology adoption - the extensive margin - but also for the way the new technology is used - the intensive margin.

  2. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  3. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  4. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  5. Patterns of Stove Usage after Introduction of an Advanced Cookstove: The Long-Term Application of Household Sensors

    PubMed Central

    2015-01-01

    Household air pollution generated from solid fuel use for cooking is one of the leading risk factors for ill-health globally. Deployment of advanced cookstoves to reduce emissions has been a major focus of intervention efforts. However, household usage of these stoves and resulting changes in usage of traditional polluting stoves is not well characterized. In Palwal District, Haryana, India, we carried out an intervention utilizing the Philips HD4012 fan-assisted stove, one of the cleanest biomass stoves available. We placed small, unobtrusive data-logging iButton thermometers on both the traditional and Philips stoves to collect continuous data on use patterns in 200 homes over 60 weeks. Intervention stove usage declined steadily over time and stabilized after approximately 200 days; use of the traditional stove remained relatively constant. We additionally evaluated how well short-duration usage measures predicted long-term use. Measuring usage over time of both traditional and intervention stoves provides better understanding of cooking behaviors and can lead to more precise quantification of potential exposure reductions and consequent health benefits attributable to interventions. PMID:25390366

  6. 75 FR 81966 - Top of the Stove Stainless Steel Cooking Ware From the Republic of Korea: Final Results of Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ...-580-602] Top of the Stove Stainless Steel Cooking Ware From the Republic of Korea: Final Results of...) initiated the third sunset reviews of the antidumping and countervailing duty orders on top of the stove...: Scope of the Orders The merchandise subject to the antidumping and countervailing duty orders on top...

  7. Pro-Inflammatory Effects of Cook Stove Emissions on Human Bronchial Epithelial Cells

    PubMed Central

    Hawley, Brie; Volckens, John

    2012-01-01

    Approximately half the world’s population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many ‘improved’ stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial (NHBE) cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 hours following exposure. Cells exposed to emissions from the cleaner burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional, three stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. PMID:22672519

  8. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake

  9. Fuel stoker and furnace

    SciTech Connect

    Schafer, T.L.; Schafer, G.L.; Swett, H.D.

    1984-02-14

    A furnace having a primary heat exchange unit also providing a combustion chamber, a secondary heat exchange unit connected by an upper crossover conduit to the primary heat exchange unit, and a tertiary heat exchange unit connected by a lower V-shaped crossover conduit to the secondary heat exchange unit. A third crossover conduit connects the V-shaped crossover conduit with the primary heat exchange unit. Vibrating means are provided between the secondary and tertiary heat exchange units to vibrate the walls thereof and dislodge clinging fly ash so that it falls into the V-shaped crossover conduit for removal by the screw conveyor. A burner assembly of a furnace includes a combustion air housing carrying a circular, stationary grate with an annular valley for carrying fuel during combustion. A central opening is connected to a fuel conveyor for introduction of fuel to the grate through the lower portion of the housing. Combustion air introduction conduits on the housing are remote from the fuel introduction passages and introduce air under pressure at the lower portion of the grate. An agitator and discharge ring is provided on the grate and is rotated on the grate by a suitable drive sprocket mechanism to agitate the fuel for more complete burning thereof and to remove burned ash. A horizontal burner plate is supported by a plurality of legs connected to the agitator and discharge ring over the grate to promote more complete combustion of the fuel.

  10. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  12. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking... antidumping and countervailing duty orders on imports of top-of-the- stove stainless steel cooking ware from... effective date of the revocation of the antidumping duty order on imports of top-of-the-stove...

  13. 75 FR 62144 - Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of-the-Stove Stainless Steel Cooking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ...-304 (Third Review))] Porcelain-on-Steel Cooking Ware From China and Taiwan; Top-of- the-Stove... from China and Taiwan and the antidumping and countervailing duty orders on top-of-the-stove stainless... and the countervailing and antidumping duty orders on top-of-the-stove stainless steel cooking...

  14. Lung Function in Rural Guatemalan Women Before and After a Chimney Stove Intervention to Reduce Wood Smoke Exposure

    PubMed Central

    Guarnieri, Michael; Diaz, Esperanza; Pope, Daniel; Eisen, Ellen A.; Mann, Jennifer; Smith, Kirk R.; Smith-Sivertsen, Tone; Bruce, Nigel G.

    2015-01-01

    BACKGROUND: COPD is the third most frequent cause of death globally, with much of this burden attributable to household biomass smoke exposure in developing countries. As biomass smoke exposure is also associated with cardiovascular disease, lower respiratory infection, lung cancer, and cataracts, it presents an important target for public health intervention. METHODS: Lung function in Guatemalan women exposed to wood smoke from open fires was measured throughout the Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) stove intervention trial and continued during the Chronic Respiratory Effects of Early Childhood Exposure to Respirable Particulate Matter (CRECER) cohort study. In RESPIRE, early stove households received a chimney woodstove at the beginning of the 18-month trial, and delayed stove households received a stove at trial completion. Personal exposure to wood smoke was assessed with exhaled breath carbon monoxide (CO) and personal CO tubes. Change in lung function between intervention groups and as a function of wood smoke exposure was assessed using random effects models. RESULTS: Of 306 women participating in both studies, acceptable spirometry was collected in 129 early stove and 136 delayed stove households (n = 265), with a mean follow-up of 5.6 years. Despite reduced wood smoke exposures in early stove households, there were no significant differences in any of the measured spirometric variables during the study period (FEV1, FVC, FEV1/FVC ratio, and annual change) after adjustment for confounding. CONCLUSIONS: In these young Guatemalan women, there was no association between lung function and early randomization to a chimney stove or personal wood smoke exposure. Future stove intervention trials should incorporate cleaner stoves, longer follow-up, or potentially susceptible groups to identify meaningful differences in lung function. PMID:26065915

  15. The impact of improved wood-burning stoves on fine particulate matter concentrations in rural Mexican homes.

    PubMed

    Zuk, Miriam; Rojas, Leonora; Blanco, Salvador; Serrano, Paulina; Cruz, Jephte; Angeles, Felipe; Tzintzun, Guadalupe; Armendariz, Cynthia; Edwards, Rufus D; Johnson, Michael; Riojas-Rodriguez, Horacio; Masera, Omar

    2007-05-01

    To evaluate the impact of improved wood burning stoves on indoor air pollution, 53 homes in a rural town in Michoacán, Mexico, were selected from a health intervention study and monitored before and after receiving improved wood-burning stoves. Fine particulate matter--particles with aerodynamic diameter less than 2.5 microm (PM(2.5))--concentrations were measured in the central plaza of the community and in three microenvironments in the home (next to the stove, in the kitchen away from the stove, and outdoor patio). Forty-eight hour mean PM(2.5) concentrations in homes that burned wood in open fires were 693 microg/m(3) (95% CI: 246-1338) near the stove, 658 microg/m(3) (95% CI: 67-1448) in the kitchen away from the stove, and 94 microg/m(3) (95% CI: 36-236) on the patio. Mean ambient 24-h concentrations in the main plaza of the community were 59 microg/m(3) (95% CI: 29-92). Paired measurements before and after the installation of the Patsari improved wood-burning stove indicate a median 71% reduction in PM(2.5) concentrations near the stove and 58% reductions in kitchen concentrations, whereas patio and main plaza concentrations remain unaffected. Only 44% of participants reported to use their Patsari stoves exclusively during the transition period. Even with the predominant mixed use of the Patsari stove with open fires, estimated daily average personal exposures to PM(2.5) were reduced by 50%.

  16. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  17. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  18. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  19. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  20. FIELD PERFORMANCE OF WOODBURNING STOVES IN COLORADO DURING THE 1995-96 HEATING SEASON

    EPA Science Inventory

    The report gives results of evaluations of the field performance of 13 EPA-certified woodburning stoves in Crested Butte and Curecanti National Park, CO, during the winter of 1995-96. Measurements included particulate matter (PM), carbon monoxide (CO), and weekly average burn rat...

  1. Development of thermoacoustic engine operating by waste heat from cooking stove

    NASA Astrophysics Data System (ADS)

    Chen, B. M.; Abakr, Y. A.; Riley, P. H.; Hann, D. B.

    2012-06-01

    There are about 1.5 billion people worldwide use biomass as their primary form of energy in household cooking[1]. They do not have access to electricity, and are too remote to benefit from grid electrical supply. In many rural communities, stoves are made without technical advancements, mostly using open fires cooking stoves which have been proven to be extremely low efficiency, and about 93% of the energy generated is lost during cooking. The cooking is done inside a dwelling and creates significant health hazard to the family members and pollution to environment. SCORE (www.score.uk.com) is an international collaboration research project to design and build a low-cost, high efficiency woodstove that uses about half amount of the wood of an open wood fire, and uses the waste heat of the stove to power a thermoacoustic engine (TAE) to produce electricity for applications such as LED lighting, charging mobile phones or charging a 12V battery. This paper reviews on the development of two types of the thermoacoustic engine powered by waste heat from cooking stove which is either using Propane gas or burning of wood as a cooking energy to produce an acceptable amount of electricity for the use of rural communities.

  2. Residential Wood Combustion Study. Task 5. Emissions testing of wood stoves. Volumes 3 and 4 (Appendices)

    SciTech Connect

    Not Available

    1982-11-01

    This report contains the appendices for the results of 19 emission tests on four wood stoves and two retrofit emission control devices (reported in PB84-170638). The objectives of the study were to further identify the effect of wood moisture on stove emissions, to evaluate several inexpensive (simplified) test procedures for assessing particulate emissions, and to define a level of particulate emissions which can be expected from state-of-the-art improved combustion stoves. This study included evaluating previous test data reported in the literature. A single standard operating procedure was used throughout the test program, the objective of which was to maintain a constant heat output rate, as monitored by combustion chamber temperature and stove surface temperature. A heat output rate corresponding to a relatively moderate to low burn rate (less than 2.5 kg wood/hour) was chosen. A single wood type (Douglas fir) was used throughout the study; wood size was maintained at a consistent level. Throughout the entire test program measurements were made for particulate, carbon monoxide, carbon dioxide, oxygen, and hydrocarbon content of the emissions; the gaseous constituents were monitored continuously. Measurements were made for creosote deposition, opacity, and smoke spot density.

  3. IMPACT OF AN INDOOR COOK STOVE INTERVENTION ON MEASURES OF SYSTEMIC INFLAMMATION

    EPA Science Inventory

    Background and Aims: Approximately three billion people use inefficient and poorly-vented indoor cook stoves, which can result in high indoor air pollution concentrations. Few studies have evaluated the cardiovascular effects of indoor biomass burning. Methods: In this pilot s...

  4. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  5. Performance monitoring of advanced technology wood stoves: Field testing for fuel savings, creosote buildup and emissions: Volume 1, Final report

    SciTech Connect

    Not Available

    1987-11-01

    This report presents the results of a two-year study in Vermont and New York monitoring woodstove performance. The objective of the study was to determine the effectiveness of catalytic and non-catalytic low-emission woodstove technology in reducing wood use, creosote and particulate emissions. Measurements of wood use and creosote accumulation in chimney systems were made in a total of 68 homes over a period of two heating seasons. Forty-two of these homes were equipped with instrumentation to measure particulate emissions and directly-measured wood use. Catalytic woodstoves, catalytic add-on/retrofit devices and non-catalytic low-emission stoves were provided by various woodstove manufacturers for use by volunteer homeowners during the study period. Conventional technology stoves were also included to provide baseline data. Averaged results indicate that the low-emission non-catalytic stoves and catalytic stoves had lower creosote accumulation, wood use, and particulate emissions than the conventional technology stoves, although the range of values was quite large. The reductions in particulate emissions by the catalytic and low-emission stoves were not as great as could be expected based on laboratory testing. The large number of variables affecting stove performance in ''real world'' conditions make identifying causative factors difficult. Additional analysis of data and further testing are currently planned. 5 refs., 61 figs., 23 tabs.

  6. Assessing the impact of a wood stove replacement program on air quality and children's health.

    PubMed

    Noonan, Curtis W; Ward, Tony J; Navidi, William; Sheppard, Lianne; Bergauff, Megan; Palmer, Chris

    2011-12-01

    Many rural mountain valley communities experience elevated ambient levels of fine particulate matter (PM*) in the winter, because of contributions from residential wood-burning appliances and sustained temperature inversion periods during the cold season. A wood stove change-out program was implemented in a community heavily affected by wood-smoke-derived PM2.5 (PM < or = 2.5 microm in aerodynamic diameter). The objectives of this study were to evaluate the impact of this intervention program on ambient and indoor PM2.5 concentrations and to identify possible corresponding changes in the frequency of childhood respiratory symptoms and infections and illness-related school absences. Over 1100 old wood stoves were replaced with new EPA-certified wood stoves or other heating sources. Ambient PM2.5 concentrations were 30% lower in the winter after the changeout program, compared with baseline winters, which brought the community's ambient air within the PM2.5 standards of the U.S. Environmental Protection Agency (U.S. EPA). The installation of a new wood stove resulted in an overall reduction in indoor PM2.5 concentrations in a small sample of wood-burning homes, but the effects were highly variable across homes. Community-level reductions in wood-smoke-derived PM2.5 concentration were associated with decreased reports of childhood wheeze and of other childhood respiratory health conditions. The association was not limited to children living in homes with wood stoves nor does it appear to be limited to susceptible children (e.g., children with asthma). Community-level reductions in wood-smoke-derived PM2.5 concentration were also associated with lower illness-related school absences among older children, but this finding was not consistent across all age-groups. This community-level intervention provided a unique opportunity to prospectively observe exposure and outcome changes resulting from a targeted air pollution reduction strategy.

  7. Vertical feed stick wood fuel burning furnace system

    DOEpatents

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  8. Vertical feed stick wood fuel burning furnace system

    DOEpatents

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  9. Valorization of electric arc furnace primary steelmaking slags for cement applications.

    PubMed

    Kim, Hyung-Seok; Kim, Kee-Seok; Jung, Sung Suk; Hwang, Jin Ill; Choi, Jae-Seok; Sohn, Il

    2015-07-01

    To produce supplementary cementitious materials from electric arc furnace (EAF) slags, FeO was reduced using a two-stage reduction process that included an Al-dross reduction reaction followed by direct carbon reduction. A decrease in FeO was observed on tapping after the first-stage reduction, and further reduction with a stirred carbon rod in the second-stage reduction resulted in final FeO content below 5wt%, which is compatible with cement clinker applications. The reduced electric arc furnace slags (REAFS) mixed with cement at a unit ratio exhibited physical properties comparable to those of commercialized ground granulated blast furnace slags (GGBFS). Confocal laser scanning microscopy (CLSM) was used to obtain fundamental information on the cooling characteristics and conditions required to obtain amorphous REAFS. REAFS can be applied in cement mixtures to achieve the hydraulic properties needed for commercial use.

  10. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  11. DEVELOPMENT OF ELECTRONIC VERNEUIL FURNACE

    DTIC Science & Technology

    HIGH TEMPERATURE, *PLASMA JETS, *REFRACTORY MATERIALS, ALTERNATING CURRENT, CELLULOSE ACETATES, CRYSTAL STRUCTURE, CRYSTALS , GAS DISCHARGES, GROWTH ...PHYSIOLOGY), LABORATORY FURNACES, PLASMAS(PHYSICS), RADIOFREQUENCY GENERATORS, RADIOFREQUENCY POWER, SINGLE CRYSTALS , THEORY.

  12. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  13. Brain injuries from blast.

    PubMed

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  14. Lip-hung retort furnace

    SciTech Connect

    Mackenzie, P.B.

    1986-08-05

    A fluidized bed furnace is described which consists of: a furnace housing including an outer shell; a furnace base and an outer top plate secured to the respective lower and upper ends of the furnace housing; a vertical retort having an opened upper end and an opened lower end, the retort being disposed in an opening formed in the outer top plate and extending downwardly into the center of the furnace housing; heat insulating material disposed between the outer shell and the vertical retort; a retort base assembly being adapted for closing the lower end of the vertical retort; upper support means for supporting the upper end of the vertical retort on top of the outer top plate so as to permit downward growth only during thermal expansion; the upper support means including an annular flange formed integrally with the sidewalls of the retort at the upper end thereof and being adapted to be fixedly mounted to the outer surface of the outer top plate; lower support means interposed between the lower surface of the retort base assembly and the upper surface of the furnace base for supporting substantially all the weight of the retort, the weight of the load of a fluidizable media, and the weight of a load of material to be heat treated.

  15. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  16. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  17. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  18. Wood burning furnace

    SciTech Connect

    Lillo, A.D.

    1986-03-25

    An improved furnace for burning wood is described which is resistant to creosote deposits from smoke. It consists of: an upright frame; a fire box carried by the frame and having a door for the insertion of the wood; a heat exchanger carried on the fire box and having an interior chamber with a top and bottom; means connecting the fire box and the heat exchanger and directing smoke from the fire box into the exchanger chamber; a chimney stack fixed to and extending upwardly from the exchanger to discharge smoke, the stack also extending substantially downwardly within the exchanger chamber to receive smoke from adjacent the bottom of the chamber to thereby retain hot smoke adjacent the top of the exchanger for an increased time interval to allow additional heat transfer from the smoke to the exchanger; an insulative housing carried on the frame to define an air plenum within the housing and about the fire box and exchanger to permit air in the plenum to be heated by contact with the fire box and the exchanger; and an air inlet for cold air to enter the plenum and an air outlet by which heated air may leave the plenum.

  19. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  20. Bethlehem Steel Corporation Blast Furnace Granulated Coal Injection Demonstration Project

    SciTech Connect

    Not Available

    1993-05-01

    Construction of the proposed BFGCI system is not expected to have significant impacts on air quality, noise, and land use at the Burns Harbor Plant area. Operation of the proposed BFGCI system is not expected to have significant impacts on the environment at the Burns Harbor Plant area. An increase of approximately 30 tons/yr for NO{sub x} and approximately 13 tons/yr for particulate matter (from the coal storage area) is expected. These emissions are within the currently permitted levels. Carbon dioxide emissions, which are unregulated, would increase by about 220,000 tons/yr at the Burns Harbor Plant. Water withdrawn and returned to Lake Michigan would increase by 1.3 million gal/d (0.4 percent of existing permitted discharge) for non-contact cooling water. No protected species, floodplains, wetlands, or cultural resources would be affected by operation of the proposed facility. Small economic benefits would occur from the creation of 5 or 6 permanent new jobs during the operation of the proposed demonstration project and subsequent commercial operation. Under the No Action Alternative, the proposed project would not receive cost-shared funding support from DOE.

  1. Sulfate Resistance of Hydraulic Cements Containing Blast-Furnace Slag.

    DTIC Science & Technology

    1985-09-01

    Mather was project leader for both projects. Mr. A. D. Buck, CTD, prepared the report. The Concrete Technology Information Analysis Center (CTIAC...provided funds to publish this report, which is CTIAC report No. 72. The Commander and Director of WES during the preparation of tiis report was COL...solution and in a mixed solution containing both sodium sulfate and magnesium sulfate, each at 0.176 M. A cement paste conccntrate was prepared from one

  2. Reverse osmosis of blast-furnace scrubber water

    SciTech Connect

    Terril, M.E.; Neufeld, R.D.

    1983-05-01

    The use of reverse osmosis for treatment of waters discharged from cooling-water recycle systems in conjunction with spiral-wound cellulose acetate membranes is discussed. The use of the membranes represents a significant potential for capital-cost savings. Cellulose acetate displays low rejections of cyanide and phenol at pH value below 7. A pilot-scale experimental method, the theoretical approach, and permeate water quality data are given. (JMT)

  3. Indoor air pollution in rural China: cooking fuels, stoves, and health status.

    PubMed

    Peabody, John W; Riddell, Travis J; Smith, Kirk R; Liu, Yaping; Zhao, Yanyun; Gong, Jianghui; Milet, Meredith; Sinton, Jonathan E

    2005-01-01

    Solid fuels are a major source of indoor air pollution, but in less developed countries the short-term health effects of indoor air pollution are poorly understood. The authors conducted a large cross-sectional study of rural Chinese households to determine associations between individual health status and domestic cooking as a source of indoor air pollution. The study included measures of health status as well as measures of indoor air-pollution sources, such as solid cooking fuels and cooking stoves. Compared with other fuel types, coal was associated with a lower health status, including negative impacts on exhaled carbon monoxide level, forced vital capacity, lifetime prevalence of chronic obstructive pulmonary disease and asthma, and health care utilization. Decreasing household coal use, increasing use of improved stove technology, and increasing kitchen ventilation may decrease the short-term health effects of indoor air pollution.

  4. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects.

  5. Critical evaluation of selected methods for the isolation of polycyclic aromatic hydrocarbons from wood stove creosote

    SciTech Connect

    MacDonald, S.J.

    1987-01-01

    The polycyclic aromatic hydrocarbon (PAH) content of creosote samples from a conventional air tight residential wood burning stove and a Franklin type stove were analyzed. It was determined that these samples did contain most of those PAH identified by the Environmental Protection Agency as priority pollutants. Furthermore, it was evidenced that these compounds are present in creosote generated by the air tight stove at levels approximately twice those found in the Franklin type counterpart. The investigation also focused on the evaluation of different classical liquid, and planar chromatographic techniques as well as the introduction of a novel approach for the isolation of PAH material from creosote. It was found that adsorbents commonly employed were too difficult to standardize for routine use and that the cleanest PAH fractions were obtained by gradient elution, circular, thin layer chromatography. Finally, the potential for future applications of gradient elution, circular, thin layer chromatography was demonstrated by the separation of both polar and nonpolar components in a single chromatogram.

  6. Pilot study to reduce emissions, improve health, and offset BC emissions through the distribution of improved cook stoves in Nepal

    NASA Astrophysics Data System (ADS)

    Banmali Pradhan, B.; Panday, A. K.; Surapipith, V.

    2013-12-01

    In most developing countries, wood and other biomass fuels are still the primary source of energy for the majority of the people, particularly the poor. It is estimated that cook stoves account for approximately 20% of global black carbon emissions. In Nepal 87% of energy is supplied from traditional biomass and 75% of households still depend on biomass as a cooking fuel. The substitution of traditional cook stoves with improved cook stoves provides an important way to reduce black carbon emissions. In 2013 the International Centre for Integrated Mountain Development (ICIMOD) has commenced a pilot study that both examines ways to effectively disseminate improved cookstoves across remote rural mountain regions, and also quantifies the resulting changes in emissions, air quality and health. The selected study area is in Bajrabarahi Village in Makawanpur district, to the southwest of Kathmandu. The study area consists of around 1600 households, which are divided into control groups and groups where the cook stove intervention is taking place. The study complements the ';Clean Cooking energy solution for all by 2017' announced by the Government of Nepal recently, and will provide insights to the government on ways to effectively reduce black carbon emissions from cook stoves. To make the study robust and sustainable, local women's group and a local medical institution are involved in the project right from the conceptualization stage. The study region has been chosen in part because the medical school Patan Academy of Health Sciences (PAHS) has already started a long term health assessment in the region, and has built up considerable local contacts. The local women's group is working on the modality of cook stove distribution through micro credit programmes in the village. We will distribute the best available manufactured, fan-assisted cook stoves that are expected to reduce BC emissions the most. Health assessments, emissions estimates, as well as measurements of

  7. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-03

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment.

  8. Automated Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Pickett, Isaiah R.; Yulfo, Alyce R.

    1992-01-01

    Automatic grit-blasting machine removes melted-layer residue from electrical-discharge-machined surfaces of turbine blades. Automatic control system of machine provides steady flow of grit and maintains blast nozzles at proper distance and in correct orientation perpendicular to surface being blasted, regardless of contour. Eliminates localized excessive blasting and consequent excessive removal of underlying material, blasting of adjacent surfaces, and missed areas.

  9. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  10. Blast Injury

    PubMed Central

    de Candole, C. A.

    1967-01-01

    The shock wave generated by an explosion (“blast wave”) may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  11. Blast Technologies

    DTIC Science & Technology

    2011-06-27

    Development Generic Hull Testing Airbag and Sensor Technology Development Blast Data Recorder Specifications and Fielding Numerical Model Improvement...seat designs, airbag and restraint systems, and energy absorbing flooring solutions  Vehicle event data recorders for collecting highly accurate...treatments.  Airbag or comparable technologies such as bolsters.  Sensors that can detect and deploy/trigger interior treatments within the timeframe of a

  12. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  13. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  14. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  15. Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites.

    PubMed

    Li, Zheng; Sjödin, Andreas; Romanoff, Lovisa C; Horton, Kevin; Fitzgerald, Christopher L; Eppler, Adam; Aguilar-Villalobos, Manuel; Naeher, Luke P

    2011-10-01

    Burning biomass fuels such as wood on indoor open-pit stoves is common in developing regions. In such settings, exposure to harmful combustion products such as fine particulate matter (PM(2.5)), carbon monoxide (CO) and polycyclic aromatic hydrocarbons (PAHs) is of concern. We aimed to investigate if the replacement of open pit stoves by improved stoves equipped with a chimney would significantly reduce exposure to PAHs, PM(2.5) and CO. Two stove projects were evaluated in Peru. Program A was part of the Juntos National Program in which households built their own stoves using materials provided. In Program B, Barrick Gold Corporation hired a company to produce and install the stoves locally. A total of 30 and 27 homes participated in Program A and B, respectively. We collected personal and kitchen air samples, as well as morning urine samples from women tasked with cooking in the households before and after the installation of the improved stoves. Median levels of PM(2.5) and CO were significantly reduced in kitchen and personal air samples by 47-74% after the installation of the new stoves, while the median reduction of 10 urinary hydroxylate PAH metabolites (OH-PAHs) was 19%-52%. The observed OH-PAH concentration in this study was comparable or higher than the 95th percentile of the general U.S. population, even after the stove intervention, indicating a high overall exposure in this population.

  16. Impact of Reduced Maternal Exposures to Wood Smoke from an Introduced Chimney Stove on Newborn Birth Weight in Rural Guatemala

    PubMed Central

    Bruce, Nigel; Eskenazi, Brenda; Diaz, Anaite; Pope, Daniel; Smith, Kirk R.

    2011-01-01

    Background: A growing body of evidence indicates a relationship between household indoor air pollution from cooking fires and adverse neonatal outcomes, such as low birth weight (LBW), in resource-poor countries. Objective: We examined the effect of reduced wood smoke exposure in pregnancy on LBW of Guatemalan infants in RESPIRE (Randomized Exposure Study of Pollution Indoors and Respiratory Effects). Methods: Pregnant women (n = 266) either received a chimney stove (intervention) or continued to cook over an open fire (control). Between October 2002 and December 2004 we weighed 174 eligible infants (69 to mothers who used a chimney stove and 105 to mothers who used an open fire during pregnancy) within 48 hr of birth. Multivariate linear regression and adjusted odds ratios (ORs) were used to estimate differences in birth weight and LBW (< 2,500 g) associated with chimney-stove versus open-fire use during pregnancy. Results: Pregnant women using chimney stoves had a 39% reduction in mean exposure to carbon monoxide compared with those using open fires. LBW prevalence was high at 22.4%. On average, infants born to mothers who used a stove weighed 89 g more [95% confidence interval (CI), –27 to 204 g] than infants whose mothers used open fires after adjusting for maternal height, diastolic blood pressure, gravidity, and season of birth. The adjusted OR for LBW was 0.74 (95% CI, 0.33–1.66) among infants of stove users compared with open-fire users. Average birth weight was 296 g higher (95% CI, 109–482 g) in infants born during the cold season (after harvest) than in other infants; this unanticipated finding may reflect the role of maternal nutrition on birth weight in an impoverished region. Conclusions: A chimney stove reduced wood smoke exposures and was associated with reduced LBW occurrence. Although not statistically significant, the estimated effect was consistent with previous studies. PMID:21652290

  17. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  18. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  19. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    PubMed Central

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to

  20. Symptoms of respiratory illness in young children and the use of wood-burning stoves for indoor heating

    SciTech Connect

    Honicky, R.E.; Osborne, J.S.; Akpom, C.A.

    1985-03-01

    The occurrence of symptoms of respiratory illness among preschool children living in homes heated by wood-burning stoves was examined by conducting an historical prospective study (n . 62) with an internal control group (matched for age, sex, and town of residence). Exposures of subjects were not significantly different (P greater than .05) with respect to parental smoking, urea-formaldehyde foam insulation, and use of humidifiers. The control group made significantly greater use of gas stoves for cooking whereas the study group made greater use of electric stoves for cooking and of air filters (P less than .05). Only one home used a kerosene space heater. During the winter of 1982, moderate and severe symptoms in all categories were significantly greater for the study group compared with the control group (P less than .001). These differences could not be accounted for by medical histories (eg, allergies, asthma), demographic or socioeconomic characteristics, or by exposure to sources of indoor air pollution other than wood-burning stoves. Present findings suggest that indoor heating with wood-burning stoves may be a significant etiologic factor in the occurrence of symptoms of respiratory illness in young children.

  1. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  2. secureBLAST.

    PubMed

    Wiezer, Arnim; Merkl, Rainer

    2003-01-01

    secureBLAST supplements NCBI wwwblast with features necessary to control in an easy manageable way usage of BLAST data sets and their update. The concept we implemented allows to offer on a single BLAST server several data sets with individually configurable access rights. Security is provided by user authentication and encryption of the http traffic via SSL. By using secureBLAST, the administration of users and databases can be done via a web interface. Therefore, secureBLAST is valuable for institutions that have to restrict access to their datasets or just want to administer BLAST servers via a web interface.

  3. Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions

    PubMed Central

    Rhodes, Evelyn L.; Dreibelbis, Robert; Klasen, Elizabeth; Naithani, Neha; Baliddawa, Joyce; Menya, Diana; Khatry, Subarna; Levy, Stephanie; Tielsch, James M.; Miranda, J. Jaime; Kennedy, Caitlin; Checkley, William

    2014-01-01

    Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design. We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20–49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences. Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a “one size fits all” improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of traditional stoves. PMID

  4. Characteristics of gaseous pollutants from biofuel-stoves in rural China

    NASA Astrophysics Data System (ADS)

    Wang, Shuxiao; Wei, Wei; Du, Li; Li, Guanghui; Hao, Jiming

    The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO 2, NO x, CH 4 and THC analyzers were used for in-field, real-time emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH 4 and THC, as well as CO and CO 2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 ± 8.1% of VOCs, followed by propylene (11.3 ± 3.5%), acetone (10.8 ± 8.2%), toluene (7.3 ± 5.7%) and acetaldehyde (6.5 ± 7.3%). Carbon mass balance approach was applied to calculate CO, CO 2, CH 4, NO x, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.

  5. Characterization of Emissions of Climate Forcers generated by Combustion Processes in Cook Stoves

    NASA Astrophysics Data System (ADS)

    Padilla Barrera, Z. V.; Ruiz-Suárez, L. G.; Torres, R.; Castro, T.; Peralta, O.; Berrueta, V.; Torres, A.; Garcia, J.; Barrera-Huertas, H.; Mendoza, A.; Medina, P.; Molina, L. T.

    2014-12-01

    The short-lived climate forcers (SLCF) are gases and particles in the air and that its increase may contribute significantly to climate change. Among SLCF are black carbon, tropospheric ozone and methane. These compounds remain in the atmosphere a relatively short time, so they are known as climate forcers short life. Recent scientific evidence shows that the control SLCF through rapid implementation of emission reduction measures would have immediate and multiple benefits for human welfare. In Mexico there is large uncertainty about the amount of emissions that can be generated by SLCF combustion processes. A quarter of the population lives in rural areas and using wood as an energy source. As a result of incomplete combustion of wood particulate emissions (PM2.5, EC and OC) and gases such as CO2, CO, NOx, SO2, VOCs are generated, so it is essential to have better emission factors for calculating these emissions. Sampling and monitoring of emissions from combustion of wood (white oak) in three different stoves was conducted: Patsari, Onil, Ecoestufa and an three stones. A dilution system was used to sample particles for analysis and diluted to the real time measurement of gases, some properties and flow particle concentrations. Dilute concentrations are measured using a mobile laboratory instrumentation. For each stove a sampling protocol (water boiling test, WBT) consists of three tests that followed: Cold start, hot start, and low heat. The tests are performed consecutively, with the aim of reaching a temperature of 90 ° C of 1 L water contained in a container placed in the pan from the cook stove. From the analysis of the data recorded emission, time series and emission factors of gases and particles emitted in each wood stove were obtained. Emission factors were obtained per kilogram of dry wood to CO2 (1035.79 g / kg - 1182.65 g / kg), CH4 (1.84 g / kg - 3.37 g / kg) and EC (0.06 g / kg - 0.74 g / kg), and other contaminants. The results obtained are close

  6. Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace - Temperature-time transformations

    SciTech Connect

    Anameric, B.; Kawatra, S.K.

    2007-02-15

    The pig iron nugget process is gaining in importance as an alternative to the traditional blast furnace. Throughout the process, self-reducing-fluxing dried greenballs composed of iron ore concentrate, reducing-carburizing agent (coal), flux (limestone) and binder (bentonite) are heat-treated. During the heat treatment, dried greenballs are first transformed into direct reduced iron (DRI), then to transition direct reduced iron (TDRI) and finally to pig iron nuggets. The furnace temperature and/or residence time and the corresponding levels of carburization, reduction and metallization dictate these transformations. This study involved the determination of threshold furnace temperatures and residence times for completion of all of the transformation reactions and pig iron nugget production. The experiments involved the heat treatment of self-reducing-fluxing dried greenballs at various furnace temperatures and residence times. The products of these heat treatments were identified by utilizing optical microscopy, apparent density and microhardness measurements.

  7. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-26

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant.

  8. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  9. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies.

    PubMed

    Hollada, Jacqueline; Williams, Kendra N; Miele, Catherine H; Danz, David; Harvey, Steven A; Checkley, William

    2017-02-13

    Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG) stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1) perceived differences in food taste and nutrition by stove type; (2) cooking niches filled by different stoves; (3) social norms related to cooking practices; (4) safety concerns; (5) comparative costs of using different stoves; and (6) lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking.

  10. Perceptions of Improved Biomass and Liquefied Petroleum Gas Stoves in Puno, Peru: Implications for Promoting Sustained and Exclusive Adoption of Clean Cooking Technologies

    PubMed Central

    Hollada, Jacqueline; Williams, Kendra N.; Miele, Catherine H.; Danz, David; Harvey, Steven A.; Checkley, William

    2017-01-01

    Many households in low- and middle-income countries cook with inefficient biomass-burning stoves, which cause high levels of household air pollution and threaten long-term health. Although clean stoves and fuels are available, uptake and consistent use has been low. Using observations and in-depth interviews, we assessed the attitudes, preferences, and beliefs about traditional versus liquefied petroleum gas (LPG) stoves in rural Puno, Peru. A total of 31 in-depth interviews were conducted with primary cooks and their families, health workers, community leaders, and improved stove contractors. Six in-home observations of meal preparation were also conducted. Six major barriers to consistent use of clean stoves were identified: (1) perceived differences in food taste and nutrition by stove type; (2) cooking niches filled by different stoves; (3) social norms related to cooking practices; (4) safety concerns; (5) comparative costs of using different stoves; and (6) lack of awareness and concern about long-term health risks. These findings suggest that to successfully reduce household air pollution, clean cooking programs and policies must consider the many factors influencing adoption beyond health, such as cost, taste, fears, and cultural traditions. These factors could be incorporated into community-based and national efforts to scale-up sustained and exclusive adoption of clean cooking. PMID:28208813

  11. Improving residential coal stoves: Air quality issues on the Navajo Reservation and the implications for China

    SciTech Connect

    Goff, S.J.; Hickmott, D.D.; Brown, L.F.; Currier, R.P.; Thayer, G.R.; Semken, S.C.; Lameman, T.; Martin, S.; Yazzie, S.

    1997-12-31

    This is a report of a one-year, Laboratory-Directed Research and Development (LDRD) program development (PD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) back of the envelope calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to utilize low-grade coal in their homes.

  12. Personal exposure to nitrogen dioxide from indoor heaters and cooking stoves

    SciTech Connect

    Kawamoto, T.; Matsuno, K.; Arashidani, K.; Yoshikawa, M.; Kayama, F.; Kodama, Y. )

    1993-11-01

    The personal exposure to NO2 generated from various heaters and cooking stoves were studied, using 85 university students. The students attached NO2 filter badges to their chests or collars and wrote down the period of time for heating and cooking for 1 week. Types of heaters and smoking habits were described through a questionnaire. The urinary hydroxyproline/creatinine ratio (HOP/C) was examined as a biomarker for health effects. The outdoor NO2 concentration during the study period was 13.5-13.7 micrograms/m3. Smoking and the usage of electric heaters did not affect the exposure to NO2. Exposure increased according to the length of time kerosene heaters or oil fan heaters were used. The NO2 concentration during the heating by a kerosene heater and an oil fan heater was calculated to be 219 and 474 micrograms/m3, respectively. The correlation between the period of cooking and personal exposure was also observed. The NO2 levels during cooking were calculated to be 290 micrograms/m3. Using these calculated values of NO2 concentration, it is possible to presume the personal exposure levels from the length of time heaters and cooking stoves are used even if the subjects do not attach the filter badges. Neither smoking nor exposure to NO2 were associated with the increase of urinary HOP/C.

  13. Characterization and problems of indoor pollution due to cooking stove smoke

    NASA Astrophysics Data System (ADS)

    Raiyani, C. V.; Shah, S. H.; Desai, N. M.; Venkaiah, K.; Patel, J. S.; Parikh, D. J.; Kashyap, S. K.

    Findings from the five groups of matched houses, each using either cattle dung, wood, coal, kerosene or liquid petroleum gas (LPG) as cooking fuels are presented with emphasis on cross comparison of indoor pollution levels during the cooking period. The houses using LPG were considered as controls. The characterization of pollution was made by measurements of total suspended particulates (TSP), carbon monoxide, nitrogen dioxide, formaldehyde, sulfur dioxide and particle sizing of TSP, which were further analysed for the evaluation of levels of polycyclic aromatic hydrocarbons (PAHs). A correlation between the pollutants as a function of fuel type has also been looked for. The study revealed that 50-80% of the TSP emissions from biomass and coal-burning cooking stoves were in a respirable fraction of ≤2 μm size and that a large amount of the PAHs (> 75%) belonged to this fraction only. Air quality biomass-using houses was the worst among the users of the five aforementioned fuels and levels were relatively high. The findings stress that a conserted effort towards a solution should be made as a large fraction of the world's population regularly uses biomass as a prime domestic fuel. The problems associated with cooking stoves in India and immediate research needs are outlined.

  14. Beer, Wood, and Welfare ‒ The Impact of Improved Stove Use Among Dolo-Beer Breweries

    PubMed Central

    2015-01-01

    Local beer breweries in Burkina Faso absorb a considerable amount of urban woodfuel demand. We assess the woodfuel savings caused by the adoption of improved brewing stoves by these micro-breweries and estimate the implied welfare effects through the woodfuel market on private households as well as the environmental effect. We find substantial wood savings among the breweries, 36% to 38% if they fully switch to an improved stove. In absolute amounts, they save about 0.176 kg of fuelwood per litre of dolo brewed. These savings imply huge reductions in CO2-emissions and reduce the overall demand for woodfuel, which is predominantly used by the poorer strata for cooking purposes. We provide estimates for the price decrease that might result from this and show that the urban poor are likely to benefit. Thus, the intervention under study is an example for a green growth intervention with pro-poor welfare gains – something green growth strategies should look for. PMID:26244341

  15. Coal use, stove improvement, and adult pneumonia mortality in Xuanwei, China: a retrospective cohort study

    SciTech Connect

    Shen, M.; Chapman, R.S.; Vermeulen, R.; Tian, L.W.; Zheng, T.Z.; Chen, B.E.; Engels, E.A.; He, X.Z.; Blair, A.; Lan, Q.

    2009-02-15

    In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.

  16. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  17. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  18. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  19. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  20. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  2. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  3. INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A FLOOR INDICATING FOURCAULT DRAWING MACHINE AND FURNACE. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  4. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  5. Residential Wood Combustion Study. Task 5. Emissions testing of wood stoves. Volumes 1 and 2. Final report

    SciTech Connect

    Not Available

    1982-11-01

    This report presents the results of 19 emission tests on four wood stoves and two retrofit emission control devices. The testing was conducted during June-October 1981. The objectives of this study were to further identify the effect of wood moisture on stove emissions, to evaluate several inexpensive (simplified) test procedures for assessing particulate emissions, and to define a level of particulate emissions which can be expected from state-of-the-art improved combustion stoves. This study included evaluating previous test data reported in the literature. A single standard operating procedure was used throughout the test program, the objective of which was to maintain a constant heat output rate, as monitored by combustion chamber temperature and stove surface temperature. A heat output rate corresponding to a relatively moderate to low burn rate (less than 2.5 kg wood/hour) was chosen. A single wood type (Douglas fir) was used throughout the study, wood size was maintained at a consistent level. Throughout the entire test program measurements were made for particulates, carbon monoxide, carbon dioxide, oxygen, and hydrocarbon content of the emissions; the gaseous constituents were monitored continuously. Measurements were made for creosote deposition, opacity, and smoke spot density. Appendices for this report are contained in Report No. PB84-170646.

  6. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  7. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B. )

    1991-01-01

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  8. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B.

    1991-12-31

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  9. Emission characteristics of carbonaceous particles from various residential coal-stoves in China

    SciTech Connect

    Guorui Zhi; Yingjun Chen; Yanli Feng; Shengchun Xiong; Jun Li; Gan Zhang; Guoying Sheng; Jiamo Fu

    2008-05-01

    China is thought to be the most important contributor to the global burden of carbonaceous aerosols, and residential coal combustion is the greatest emission source of black carbon (BC). In the present study, two high-efficiency household coal-stoves are tested together with honeycomb-coal-briquettes and raw-coal-chunks of nine different coals. Coal-burning emissions are collected onto quartz fiber filters (QFFs) and analyzed by a thermal-optical transmittance (TOT) method. Emission factors (EFs) of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) are systematically measured, and the average EFs are calculated by taking into account our previous data. For bituminous coal-briquette and -chunk, EFs of PM, OC, and EC are 7.33, 4.16, and 0.08 g/kg and 14.8, 5.93, and 3.81 g/kg, respectively; and for anthracite-briquette and -chunk, they are 1.21, 0.06, and 0.004 g/kg and 1.08, 0.10, and 0.007 g/kg, respectively. Annual estimates for PM, OC, and EC emissions in China are calculated for the years of 2000 and 2005 according to the EFs and coal consumptions, and the results are consistent with our previous estimates. Bituminous coal-chunk contributes 68% and 99% of the total OC and EC emissions from household coal burning, respectively. Additionally, a new model of Aethalometer (AE90) is introduced into the sampling system to monitor the real-time BC concentrations. On one hand, AE90 provides a set of EFs for optical BC in parallel to thermal-optical EC, and these two data are generally comparable, although BC/EC ratios vary in different coal/stove combinations. On the other hand, AE90 offers a chance to observe the variation of BC concentrations during whole burning cycles, which demonstrates that almost all BC emits into the flue during the initial period of 15 min after coal addition into household stoves. 23 refs., 2 figs., 3 tabs.

  10. Blast assessment and optimization for high quarry face-blasting

    SciTech Connect

    Sames, F.; O`Meara, R.

    1996-12-01

    Where applicable, high production benches can improve efficiency in quarrying. Quality control, geological, cost or other considerations might result in the development of quarry benches higher than 30 m and sometimes up to 60 m. Production blasts on high quarry faces require a confident blast design with respect to safety, cost efficiency and minimized environmental effects. Careful pre-blast assessment of the design parameters, blast monitoring of the product performance and the environmental effects and post-blast assessment of the overall blast performance are essential for the successful implementation of the blast design. The blast geometry for high quarry faces and a blast design that often includes multiple explosive charges in a blasthole, make a reliable assessment of the blast parameters difficult. Assessment techniques, their applications and limitations are described and discussed. This will include such methods as blast surveying using laser profiling and borehole deviation measurements, blast monitoring using continuous velocity of detonation measurement systems, high speed photography and seismographs for blast performance and environmental effects. Observations of low frequency airblast and high standard deviations in ground vibration measurements are described and discussed against a background of timing assessment and frequency spectra analysis. Approaches where an optimized design was implemented based on the blast parameter assessment and modeling are presented. An improvement in blast efficiency lies in the combination of blast assessment and blast modeling, whilst adequate documentation supports the process of designing and implementing successful blasts.

  11. Measurement and modeling of indoor air pollution in rural households with multiple stove interventions in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zohir; Campanella, Luke; Gray, Christen; Al Masud, Abdullah; Marter-Kenyon, Jessica; Pennise, David; Charron, Dana; Zuzhang, Xia

    2013-03-01

    In the developing world, indoor air pollution (IAP) created from solid fuel used in traditional biomass cook stoves is a leading contributor of poor respiratory health, global burden of disease, and greenhouse pollutant emissions. In the present study, we piloted an experimental cross-sectional monitoring and evaluation design with 30 households in rural Lijiang and Deqin counties in northwest Yunnan province, China. This approach offers the ability to examine the effectiveness of improved cook stove (ICS) programs with a much smaller sample size than the typical population based pre- and post-intervention study that requires a large sample representative of the population. Continuous PM2.5 was measured with the UCB (currently known as UCB-PATS) and the TSI DustTrak and continuous CO was measured with the HOBO CO logger. Using the traditional method of cooking and heating, mean 24-h PM2.5 and CO concentrations in the kitchen were measured in the range of 0.15-0.71 mg m-3 for PM2.5 and 3.0-11 ppm for CO. These concentrations were compared to using a combination of improved stoves in the kitchen where PM2.5 and CO concentrations were measured in the range of 0.08-0.18 mg m-3 for PM2.5 and 0.7-5.5 ppm for CO. These concentrations yielded statistically significant reduction in IAP when replacing the traditional fireplace or traditional stove with an improved stove combination. Finally, we show a strong correlation between CO and PM2.5 (R2 = 0.72-0.76). The combination of this experimental design along with the monitoring and evaluation protocol presented here may provide a robust framework to rapidly assess the effectiveness of ICS interventions in progress.

  12. SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN FOREGROUND, LOOKING NORTH-NORTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  13. GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS THE CREEK, LOOKING SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  14. WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE AND TRESSLE, LOOKING SOUTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  15. Energy Saving Devices on Gas Furnaces.

    DTIC Science & Technology

    1980-03-01

    AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER

  16. Developmental testing of a programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Larson, D. J., Jr.

    1986-01-01

    A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained.

  17. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  18. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  19. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  20. Particulate Matter 2.5 Exposure and Self-Reported Use of Wood Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in Norway

    PubMed Central

    Wyss, Annah B.; Jones, Anna Ciesielski; Bølling, Anette K.; Kissling, Grace E.; Chartier, Ryan; Dahlman, Hans Jørgen; Rodes, Charles E.; Archer, Janet; Thornburg, Jonathan; Schwarze, Per E.; London, Stephanie J.

    2016-01-01

    Few studies have examined particulate matter (PM) exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5) for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04) for the 14 homes with wood stove use (15.6 μg/m3) than for the 22 homes without (12.6 μg/m3). Moreover, mean hourly PM2.5 was higher (p = 0.001) for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3), when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3) which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country. PMID:27855223