9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
Evaluation and implementation of a soil blending application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honerlah, H.; Sendra, D.; Zafran, A.
2007-07-01
With the Nuclear Regulatory Commission (NRC) issuing guidance on the 'Use of Intentional Mixing of Contaminated Soil' (SECY-04-0035) dated 1 March 2004, an opportunity to blend higher level radiologically contaminated soils with that of lower activity from the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) site became available. Shaw Environmental, under contract with United States Army Corps of Engineers (USACE) to remediate the Colonie site, was tasked to blend soils of higher radioactivity (> 6.29 Bq/g or 170 pCi/g) concentration with soils of lower radioactivity concentration (< 6.29 Bq/g or 170 pCi/g). A mass balance formula approach was usedmore » to determine the proper soil blending ratio. This blending process enabled soils to meet the Waste Acceptance Criteria (WAC) of a specific disposal facility. All blended waste streams were treated to stabilize lead, removing the hazardous waste code D008, and to meet appropriate Resource Conservation Recovery Act (RCRA) requirements and land disposal restrictions. The initial blending on-site was conducted with a 2,485 m{sup 3} (3,250 yd{sup 3}) stockpile of higher concentration soils being blended with lower concentration soils. The lower concentration soils were excavated, staged and sampled into 191 m{sup 3} (250 yd{sup 3}) stockpiles. The ratio for this blending was based on the average radiological concentration of the large stockpile being blended and average concentrations of the individual 191 m{sup 3} (250 yd{sup 3}) piles of lower radiological concentration using a mass balance approach. Once a new 191 m{sup 3} (250 yd{sup 3}) stockpile was created with blended soils it was sampled to insure it met the WAC of Facility A. After the large stockpile had been successfully blended and additional in-situ soils of higher concentration were excavated, they were blended using a similar mass balance approach. For the newly excavated soils, each of the individual piles radiological concentrations was used to determine the specific blending ratio. The blending process took place to lower the disposal costs for the project. By sending the soils to Facility A (RCRA part C permitted) vs. Facility B (Part 61 NRC licensed), a cost savings of over 1.56 million dollars was realized. Prior to commencing the blending of soils, USACE coordinated discussions with appropriate state and federal governmental organizations. (authors)« less
Zhang, Zhengjing; Li, Yuanya
2016-01-01
The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305
Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid.
Xiao, Huogen; Siddiqua, Mahbuba; Braybrook, Siobhan; Nassuth, Annette
2006-07-01
The C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding protein 1 (CBF/ DREB1) transcription factors control an important pathway for increased freezing and drought tolerance in plants. Three CBF/DREB1-like genes, CBF 1-3, were isolated from both freezing-tolerant wild grape (Vitis riparia) and freezing-sensitive cultivated grape (Vitis vinifera). The deduced proteins in V. riparia are 63-70% identical to each other and 96-98% identical to the corresponding proteins in V. vinifera. All Vitis CBF proteins are 42-51% identical to AtCBF1 and contain CBF-specific amino acid motifs, supporting their identification as CBF proteins. Grape CBF sequences are unique in that they contain 20-29 additional amino acids and three serine stretches. Agro-infiltration experiments revealed that VrCBF1b localizes to the nucleus. VrCBF1a, VrCBF1b and VvCBF1 activated a green fluorescent protein (GFP) or glucuronidase (GUS) reporter gene behind CRT-containing promoters. Expression of the endogenous CBF genes was low at ambient temperature and enhanced upon low temperature (4 degrees C) treatment, first for CBF1, followed by CBF2, and about 2 d later by CBF3. No obvious significant difference was observed between V. riparia and V. vinifera genes. The expression levels of all three CBF genes were higher in young tissues than in older tissues. CBF1, 2 and 3 transcripts also accumulated in response to drought and exogenous abscisic acid (ABA) treatment, indicating that grape contains unique CBF genes.
WI Biodiesel Blending Progream Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, Maria E; Levy, Megan M
The Wisconsin State Energy Office's (SEO) primary mission is to implement cost effective, reliable, balanced, and environmentally friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investmentmore » to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.« less
Carlow, Chevonne E; Faultless, J Trent; Lee, Christine; Siddiqua, Mahbuba; Edge, Alison; Nassuth, Annette
2017-09-01
The highly conserved CBF pathway is crucial in the regulation of plant responses to low temperatures. Extensive analysis of Arabidopsis CBF proteins revealed that their functions rely on several conserved amino acid domains although the exact function of each domain is disputed. The question was what functions similar domains have in CBFs from other, overwintering woody plants such as Vitis, which likely have a more involved regulation than the model plant Arabidopsis. A total of seven CBF genes were cloned and sequenced from V. riparia and the less frost tolerant V. vinifera. The deduced species-specific amino acid sequences differ in only a few amino acids, mostly in non-conserved regions. Amino acid sequence comparison and phylogenetic analysis showed two distinct groups of Vitis CBFs. One group contains CBF1, CBF2, CBF3 and CBF8 and the other group contains CBF4, CBF5 and CBF6. Transient transactivation assays showed that all Vitis CBFs except CBF5 activate via a CRT or DRE promoter element, whereby Vitis CBF3 and 4 prefer a CRT element. The hydrophobic domains in the C-terminal end of VrCBF6 were shown to be important for how well it activates. The putative nuclear localization domain of Vitis CBF1 was shown to be sufficient for nuclear localization, in contrast to previous reports for AtCBF1, and also important for transactivation. The latter highlights the value of careful analysis of domain functions instead of reliance on computer predictions and published data for other related proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Kim, Sihyun; An, Chung Sun; Hong, Young-Nam; Lee, Kwang-Woong
2004-12-31
C-Repeat/drought responsive element binding factor (CBF1/DREB1b) is a well known transcriptional activator that is induced at low temperature and in turn induces the CBF regulon (CBF-targeted genes). We have cloned and characterized two CBF1-like cDNAs, CaCBF1A and CaCBF1B, from hot pepper. CaCBF1A and CaCBF1B were not produced in response to mechanical wounding or abscisic acid but were induced by low-temperature stress at 4 degrees . When plants were returned to 25 degrees , their transcript levels of the CBF1-like genes decreased markedly within 40 min. Long-term exposure to chilling resulted in continuous expression of these genes. The critical temperature for induction of CaCBF1A was between 10 and 15 degrees . Low temperature led to its transcription in roots, stems, leaves, fruit without seeds, and apical meristems, and a monoclonal antibody against it revealed a significant increase in CaCBF1A protein by 4 h at 4 degrees . Two-hybrid screening led to the isolation of an homeodomain leucine zipper (HD-Zip) protein that interacts with CaCBF1B. Expression of HD-Zip was elevated by low temperature and drought.
Complementary regulation of four Eucalyptus CBF genes under various cold conditions
Navarro, M.; Marque, G.; Ayax, C.; Keller, G.; Borges, J. P.; Marque, C.; Teulières, C.
2009-01-01
CBF transcription factors play central roles in the control of freezing tolerance in plants. The isolation of two additional CBF genes, EguCBF1c and EguCBF1d, from E. gunnii, one of the cold-hardiest Eucalyptus species, is described. While the EguCBF1D protein sequence is very similar to the previously characterized EguCBF1A and EguCBF1B sequences, EguCBF1C is more distinctive, in particular in the AP2-DBD (AP2-DNA binding domain). The expression analysis of the four genes by RT-qPCR reveals that none of them is specific to one stress but they are all preferentially induced by cold, except for the EguCBF1c gene which is more responsive to salt. The calculation of the transcript copy number enables the quantification of constitutive CBF gene expression. This basal level, significant for the four genes, greatly influences the final EguCBF1 transcript level in the cold. A cold shock at 4 °C, as well as a progressive freezing which mimics a natural frost episode, trigger a fast and strong response of the EguCBF1 genes, while growth at acclimating temperatures results in a lower but more durable induction. The differential expression of the four EguCBF1 genes under these cold regimes suggests that there is a complementary regulation. The high accumulation of the CBF transcript, observed in response to the different types of cold conditions, might be a key for the winter survival of this evergreen broad-leaved tree. PMID:19457981
An, Dong; Ma, Qiuxiang; Wang, Hongxia; Yang, Jun; Zhou, Wenzhi; Zhang, Peng
2017-05-01
Cassava MeCBF1 is a typical CBF transcription factor mediating cold responses but its low expression in apical buds along with a retarded response cause inefficient upregulation of downstream cold-related genes, rendering cassava chilling-sensitive. Low temperature is a major abiotic stress factor affecting survival, productivity and geographic distribution of important crops worldwide. The C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB) are important regulators of abiotic stress response in plants. In this study, MeCBF1, a CBF-like gene, was identified in the tropical root crop cassava (Manihot esculenta Crantz). The MeCBF1 encodes a protein that shares strong homology with DREB1As/CBFs from Arabidopsis as well as other species. The MeCBF1 was localized to the nucleus and is mainly expressed in stem and mature leaves, but not in apical buds or stem cambium. MeCBF1 expression was not only highly responsive to cold, but also significantly induced by salt, PEG and ABA treatment. Several stress-associated cis-elements were found in its promoter region, e.g., ABRE-related, MYC recognition sites, and MYB responsive element. Compared with AtCBF1, the MeCBF1 expression induced by cold in cassava was retarded and upregulated only after 4 h, which was also confirmed by its promoter activity. Overexpression of MeCBF1 in transgenic Arabidopsis and cassava plants conferred enhanced crytolerance. The CBF regulon was smaller and not entirely co-regulated with MeCBF1 expression in overexpressed cassava. The retarded MeCBF1 expression in response to cold and attenuated CBF-regulon might lead cassava to chilling sensitivity.
Effects of finite spatial resolution on quantitative CBF images from dynamic PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Huang, S.C.; Mahoney, D.K.
1985-05-01
The finite spatial resolution of PET causes the time-activity responses on pixels around the boundaries between gray and white matter regions to contain kinetic components from tissues of different CBF's. CBF values estimated from kinetics of such mixtures are underestimated because of the nonlinear relationship between the time-activity response and the estimated CBF. Computer simulation is used to investigate these effects on phantoms of circular structures and realistic brain slice in terms of object size and quantitative CBF values. The CBF image calculated is compared to the case of having resolution loss alone. Results show that the size of amore » high flow region in the CBF image is decreased while that of a low flow region is increased. For brain phantoms, the qualitative appearance of CBF images is not seriously affected, but the estimated CBF's are underestimated by 11 to 16 percent in local gray matter regions (of size 1 cm/sup 2/) with about 14 percent reduction in global CBF over the whole slice. It is concluded that the combined effect of finite spatial resolution and the nonlinearity in estimating CBF from dynamic PET is quite significant and must be considered in processing and interpreting quantitative CBF images.« less
Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan
2017-01-01
C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3 , were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis . The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.
Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan
2017-01-01
C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes. PMID:28983312
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2002-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less
Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue
2013-01-01
The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095
2011-09-01
carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to
CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder
2002-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less
Biogasification of Walt Disney World biomass waste blend. Annual report Jan-Dec 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biljetina, R.; Chynoweth, D.P.; Janulis, J.
1983-05-01
The objective of this research is to develop efficient processes for conversion of biomass-waste blends to methane and other resources. To evaluate the technical and economic feasibility, an experimental test facility (ETU) is being designed and installed at the Reedy Creek Wastewater Treatment Plant at Walt Disney World, Orlando, Florida. The facility will integrate a biomethanogenic conversion process with a waste-water treatment process employing water hyacinth ponds for secondary and tertiary treatment of sewage produced at Walt Disney World. The ETU will be capable of feeding 1-wet ton per day of water hyacinth-sludge blends to the digestion system for productionmore » of methane and other byproducts. The detailed design of the facility has been completed and procurement of equipment is in progress.« less
Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd
2008-12-01
Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF-BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. Copyright 2007 Wiley-Liss, Inc.
Watabe, Tadashi; Shimosegawa, Eku; Kato, Hiroki; Isohashi, Kayako; Ishibashi, Mana; Tatsumi, Mitsuaki; Kitagawa, Kazuo; Fujinaka, Toshiyuki; Yoshimine, Toshiki; Hatazawa, Jun
2014-10-01
Paradoxical reduction of cerebral blood flow (CBF) after administration of the vasodilator acetazolamide is the most severe stage of cerebrovascular reactivity failure and is often associated with an increased oxygen extraction fraction (OEF). In this study, we aimed to reveal the mechanism underlying this phenomenon by focusing on the ratio of CBF to cerebral blood volume (CBV) as a marker of regional cerebral perfusion pressure (CPP). In 37 patients with unilateral internal carotid or middle cerebral arterial (MCA) steno-occlusive disease and 8 normal controls, the baseline CBF (CBF(b)), CBV, OEF, cerebral oxygen metabolic rate (CMRO2), and CBF after acetazolamide loading in the anterior and posterior MCA territories were measured by (15)O positron emission tomography. Paradoxical CBF reduction was found in 28 of 74 regions (18 of 37 patients) in the ipsilateral hemisphere. High CBF(b) (> 47.6 mL/100 mL/min, n = 7) was associated with normal CBF(b)/CBV, increased CBV, decreased OEF, and normal CMRO2. Low CBF(b) (< 31.8 mL/100 mL/min, n = 9) was associated with decreased CBF(b)/CBV, increased CBV, increased OEF, and decreased CMRO2. These findings demonstrated that paradoxical CBF reduction is not always associated with reduction of CPP, but partly includes high-CBF(b) regions with normal CPP, which has not been described in previous studies.
Wu, Mengrui; Li, Chenguan; Zhu, Guochun; Wang, Yiping; Jules, Joel; Lu, Yun; McConnell, Matthew; Wang, Yong-Jun; Shao, Jian-Zhong; Li, Yi-Ping; Chen, Wei
2015-01-01
Core-binding factor β (Cbfβ) is a subunit of the Cbf family of heterodimeric transcription factors which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfβ regulates cartilage and bone development remains unclear. Existing Cbfβ-deficient mouse models cannot specify the role of Cbfβ in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfβ in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfβ CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfβ in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage causing alveolus defects which led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfβ was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfβ deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfβ, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wildtype mice indicating that Cbfβ/Runx1 complex and Cbfβ/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfβ deletion in the mesenchymal progenitors impacted bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx), but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfβ mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfβ in cartilage and bone development, but also facilitate the design of novel therapeutic approaches for skeletal diseases. PMID:24798493
Wu, Mengrui; Li, Chenguan; Zhu, Guochun; Wang, Yiping; Jules, Joel; Lu, Yun; McConnell, Matthew; Wang, Yong-Jun; Shao, Jian-Zhong; Li, Yi-Ping; Chen, Wei
2014-08-01
Core-binding factor β (Cbfβ) is a subunit of the Cbf family of heterodimeric transcription factors, which plays a critical role in skeletal development through its interaction with the Cbfα subunits, also known as Runt-related transcription factors (Runxs). However, the mechanism by which Cbfβ regulates cartilage and bone development remains unclear. Existing Cbfβ-deficient mouse models cannot specify the role of Cbfβ in skeletal cell lineage. Herein, we sought to specifically address the role of Cbfβ in cartilage and bone development by using a conditional knockout (CKO) approach. A mesenchymal-specific Cbfβ CKO mouse model was generated by using the Dermo1-Cre mouse line to specifically delete Cbfβ in mesenchymal stem cells, which give rise to osteoblasts and chondrocytes. Surprisingly, the mutant mice had under-developed larynx and tracheal cartilage, causing alveolus defects that led to death shortly after birth from suffocation. Also, the mutant mice exhibited severe skeletal deformities from defective intramembranous and endochondral ossification, owing to delayed chondrocyte maturation and impaired osteoblast differentiation. Almost all bones of the mutant mice, including the calvariae, vertebrae, tibiae, femurs, ribs, limbs and sternums were defective. Importantly, we showed that Cbfβ was expressed throughout the skeleton during both embryonic and postnatal development, which explains the multiple-skeletal defects observed in the mutant mice. Consistently, Cbfβ deficiency impaired both chondrocyte proliferation and hypertrophy zone hypertrophy during growth-plate development in the long bones of mutant mice. Notably, Cbfβ, Runx1 and Runx2 displayed different expression patterns in the growth plates of the wild-type mice, indicating that Cbfβ/Runx1 complex and Cbfβ/Runx2 complex may regulate chondrocyte proliferation and hypertrophy, respectively, in a spatial and temporal manner. Cbfβ deletion in the mesenchymal progenitors affected bone development by dramatically down-regulating Collagen X (Col X) and Osterix (Osx) but had a dispensable effect on osteoclast development. Collectively, the results demonstrate that Cbfβ mediates cartilage and bone development by interacting with Runx1 and Runx2 to regulate the expressions of Col X and Osx for chondrocyte and osteoblast development. These findings not only reveal a critical role for Cbfβ in cartilage and bone development but also facilitate the design of novel therapeutic approaches for skeletal diseases. Copyright © 2014. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajra, A.; Liu, P.; Collins, E.S.
1994-09-01
A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less
Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity
Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta
2011-01-01
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions. PMID:21980485
Qiu, Maolin; Ramani, Ramachandran; Swetye, Michael; Constable, Robert Todd
2009-01-01
Pulsed arterial spin labeling magnetic resonance imaging (MRI) was performed to investigate the local coupling between resting regional cerebral blood flow (rCBF) and BOLD (blood oxygen level dependent) signal changes in 22 normal human subjects during the administration of 0.25 MAC (minimum alveolar concentration) sevoflurane. Two states were compared with subjects at rest: anesthesia and no-anesthesia. Regions of both significantly increased and decreased resting-state rCBF were observed. Increases were limited primarily to subcortical structures and insula, whereas, decreases were observed primarily in neocortical regions. No significant change was found in global CBF (gCBF). By simultaneously measuring rCBF and BOLD, region-specific anesthetic effects on the coupling between rCBF and BOLD were identified. Multiple comparisons of the agent-induced rCBF and BOLD changes demonstrated significant (P < 0.05) spatial variability in rCBF–BOLD coupling. The slope of the linear regression line for AC, where rCBF was increased by sevoflurane, was markedly smaller than the slope for those ROIs where rCBF was decreased by sevoflurane, indicating a bigger change in BOLD per unit change in rCBF in regions where rCBF was increased by sevoflurane. These results suggest that it would be inaccurate to use a global quantitative model to describe coupling across all brain regions and in all anesthesia conditions. The observed spatial nonuniformity of rCBF and BOLD signal changes suggests that any interpretation of BOLD fMRI data in the presence of an anesthetic requires consideration of these insights. PMID:17948882
Lin, Longting; Bivard, Andrew; Kleinig, Timothy; Spratt, Neil J; Levi, Christopher R; Yang, Qing; Parsons, Mark W
2018-04-01
This study aimed to assess how the ischemic core measured by perfusion computed tomography (CTP) was affected by the delay and dispersion effect. Ischemic stroke patients having CTP performed within 6 hours of onset were included. The CTP data were processed twice, generating standard cerebral blood flow (sCBF) and delay- and dispersion-corrected CBF (ddCBF), respectively. Ischemic core measured by the sCBF and ddCBF was then compared at the relative threshold <30% of normal tissue. Two references for ischemic core were used: acute diffusion-weighted imaging or 24-hour diffusion-weighted imaging in patients with complete recanalization. Difference of core volume between CTP and diffusion-weighted imaging was estimated by Mann-Whitney U test and limits of agreement. Patients were also classified into favorable and unfavorable CTP patterns. The imaging pattern classification by sCBF and ddCBF was compared by the χ 2 test; their respective ability to predict good clinical outcome (3-month modified Rankin Scale score) was tested in logistic regression. Fifty-five patients were included in this study. Median sCBF ischemic core volume was 38.5 mL (12.4-61.9 mL), much larger than the median core volume of 17.2 mL measured by ddCBF (interquartile range, 5.5-38.8; P <0.001). Moreover, compared with sCBF <30%, ddCBF <30% measured the ischemic core much closer to diffusion-weighted imaging core references, with the mean volume difference of -0.1 mL (95% limits of agreement, -25.4 to 25.2; P =0.97) and 16.7 mL (95% limits of agreement, -21.7 to 55.2; P <0.001), respectively. Imaging patterns defined by sCBF showed a difference to that defined by ddCBF ( P <0.001), with 12 patients classified as favorable imaging patterns by ddCBF but as unfavorable by sCBF. The favorable imaging pattern classified by ddCBF, compared with sCBF classification, had higher predictive power for good clinical outcome (odds ratio, 7.8 [2-30.5] and 3.1 [0.9-11], respectively). Delay and dispersion correction increases the accuracy of ischemic core measurement on CTP. © 2018 American Heart Association, Inc.
Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis1
Haake, Volker; Cook, Daniel; Riechmann, José Luis; Pineda, Omaira; Thomashow, Michael F.; Zhang, James Z.
2002-01-01
In plants, low temperature and dehydration activate a set of genes containing C-repeat/dehydration-responsive elements in their promoter. It has been shown previously that the Arabidopsis CBF/DREB1 transcription activators are critical regulators of gene expression in the signal transduction of cold acclimation. Here, we report the isolation of an apparent homolog of the CBF/DREB1 proteins (CBF4) that plays the equivalent role during drought adaptation. In contrast to the three already identified CBF/DREB1 homologs, which are induced under cold stress, CBF4 gene expression is up-regulated by drought stress, but not by low temperature. Overexpression of CBF4 in transgenic Arabidopsis plants results in the activation of C-repeat/dehydration-responsive element containing downstream genes that are involved in cold acclimation and drought adaptation. As a result, the transgenic plants are more tolerant to freezing and drought stress. Because of the physiological similarity between freezing and drought stress, and the sequence and structural similarity of the CBF/DREB1 and the CBF4 proteins, we propose that the plant's response to cold and drought evolved from a common CBF-like transcription factor, first through gene duplication and then through promoter evolution. PMID:12376631
Kashyap, Prakriti; Sehrawat, Ankita; Deswal, Renu
2015-11-01
Nitric oxide (NO) production increases in the cold stress. This cold enhanced NO manifests its effect either by regulating the gene expression or by modulating proteins by NO based post-translational modifications (PTMs) including S-nitrosylation. CBF (C-repeat binding factor) dependent cold stress signaling is most studied cold stress-signaling pathway in plants. SNP (sodium nitroprusside, a NO donor) treatment to tomato seedlings showed four fold induction of LeCBF1 (a cold inducible CBF) transcript in cold stress. S-nitrosylation as PTM of CBF has not been analyzed till date. In silico analysis using GPS-SNO 1.0 software predicted Cys 68 as the probable site for nitrosylation in LeCBF1. The 3D structure and motif prediction showed it to be present in the beta hairpin loop and hence available for S-nitrosylation. LeCBF1 was cloned and expressed in Escherichia coli. LeCBF1 accumulated in the inclusion bodies, which were solubilized under denaturing conditions and purified after on column refolding by Ni-NTA His tag affinity chromatography. Purified LeCBF1 resolved as a 34 kDa spot with a slightly basic pI (8.3) on a 2-D gel. MALDI-TOF mass spectrometry identified it as LeCBF1 and western blotting using anti-LeCBF1 antibodies confirmed its purification. Biotin switch assay and neutravidin affinity chromatography showed LeCBF1 to be S-nitrosylated in presence of GSNO (NO donor) as well as endogenously (without donor) in cold stress treated tomato seedlings. Dual regulation of LeCBF1 by NO at both transcriptional as well as post-translational level (by S-nitrosylation) is shown for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Lee, Chin-Mei; Thomashow, Michael F
2012-09-11
The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures.
Lee, Chin-Mei; Thomashow, Michael F.
2012-01-01
The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures. PMID:22927419
Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao
2016-01-01
Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551
BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2012-05-10
Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less
Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek
2015-07-01
Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashwal, S.; Stringer, W.; Tomasi, L.
1990-10-01
We examined total and regional cerebral blood flow (CBF) by stable xenon computed tomography in 20 seriously ill children with acute bacterial meningitis to determine whether CBF was reduced and to examine the changes in CBF during hyperventilation. In 13 children, total CBF was normal (62 +/- 20 ml/min/100 gm) but marked local variability of flow was seen. In five other children, total CBF was significantly reduced (26 +/- 10 ml/min/100 gm; p less than 0.05), with flow reduced more in white matter (8 +/- 5 ml/min/100 gm) than in gray matter (30 +/- 15 ml/min/100 gm). Autoregulation of CBFmore » appeared to be present in these 18 children within a range of mean arterial blood pressure from 56 to 102 mm Hg. In the remaining two infants, brain dead within the first 24 hours, total flow was uniformly absent, averaging 3 +/- 3 ml/min/100 gm. In seven children, CBF was determined at two carbon dioxide tension (PCO2) levels: 40 (+/- 3) mm Hg and 29 (+/- 3) mm Hg. In six children, total CBF decreased 33%, from 52 (+/- 25) to 35 (+/- 15) ml/min/100 gm; the mean percentage of change in CBF per millimeter of mercury of PCO2 was 3.0%. Regional variability of perfusion to changes in PCO2 was marked in all six children. The percentage of change in CBF per millimeter of mercury of PCO2 was similar in frontal gray matter (3.1%) but higher in white matter (4.5%). In the seventh patient a paradoxical response was observed; total and regional CBF increased 25% after hyperventilation. Our findings demonstrate that (1) CBF in children with bacterial meningitis may be substantially decreased globally, with even more variability noted regionally, (2) autoregulation of CBF is preserved, (3) CBF/CO2 responsitivity varies among patients and in different regions of the brain in the same patient, and (4) hyperventilation can reduce CBF below ischemic thresholds.« less
Cerebral blood flow in acute mountain sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, J.B.; Wright, A.D.; Lassen, N.A.
1990-08-01
Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h (45.1 to 55.9 initial slope index (ISI) units) and 4% increased at 6 days (47.1 ISI units). Four subjects had similar increases of CBF when ascending to 3,200 m 3 mo later, indicating the reproducibility of the measurements. In nine subjects, ascending from 3,200 to 4,785-5,430 m, CBF increased to 76.4 ISI units, 53% above estimated sea-level values. CBF andmore » increases in CBF were similar in subjects with or without AMS. In six subjects, CBF was measured before and after therapeutic intervention. At 2 h CBF increased 22% (71.3 to 87.3 ISI units) above pretreatment values in three subjects given 1.5 g acetazolamide, while three subjects given placebo showed no change. Symptoms remained unaltered in all subjects during the 2 h of the study. Overall, the results indicated that increases in CBF were similar in subjects with or without AMS while acetazolamide-provoked increases of CBF in AMS subjects caused no acute change in symptoms. Alterations in CBF cannot be directly implicated in the pathogenesis of AMS.« less
USDA-ARS?s Scientific Manuscript database
The C-repeat Binding Factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a t...
Kanno, I; Masamoto, K
Methods exist to evaluate the cerebral blood flow (CBF) at both the macroscopic and microscopic spatial scales. These methods provide complementary information for understanding the mechanism in maintaining an adequate blood supply in response to neural demand. The macroscopic CBF assesses perfusion flow, which is usually measured using radioactive tracers, such as diffusible, nondiffusible, or microsphere. Each of them determines CBF based on indicator dilution principle or particle fraction principle under the assumption that CBF is steady state during the measurement. Macroscopic CBF therefore represents averaged CBF over a certain space and time domains. On the other hand, the microscopic CBF assesses bulk flow, usually measures using real-time microscopy. The method assesses hemodynamics of microvessels, ie, vascular dimensions and flow velocities of fluorescently labeled or nonlabeled RBC and plasma markers. The microscopic CBF continuously fluctuates in time and space. Smoothing out this heterogeneity may lead to underestimation in the macroscopic CBF. To link the two measurements, it is needed to introduce a common parameter which is measurable for the both methods, such as mean transit time. Additionally, applying the defined physiological and/or pharmacological perturbation may provide a good exercise to determine how the specific perturbations interfere the quantitative relationships between the macroscopic and microscopic CBF. Finally, bridging these two-scale methods potentially gives a further indication how the absolute CBF is regulated with respect to a specific type of the cerebrovascular tones or capillary flow velocities in the brain. © 2016 Elsevier B.V. All rights reserved.
Cerebral blood flow variations in CNS lupus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushner, M.J.; Tobin, M.; Fazekas, F.
1990-01-01
We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less
Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei
2014-07-01
Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte proliferation and differentiation for the growth and maintenance of the skeleton in postnatal mice, but also that it functions in upregulating Ihh expression to promoter chondrocyte proliferation and osteoblast differentiation, and inhibiting PPR expression to enhance chondrocyte differentiation. © 2014 American Society for Bone and Mineral Research.
42 CFR 412.426 - Transition period.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Services of Inpatient Psychiatric Facilities § 412.426 Transition period. (a) Duration of transition period... psychiatric facility receives a payment comprised of a blend of the estimated Federal per diem payment amount... new inpatient psychiatric facilities. New inpatient psychiatric facilities, are facilities that under...
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing
2016-03-01
To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.
Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.
Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean
2012-12-01
Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana
The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code formore » nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.« less
Looking East at Motor Control System, Clarity Columns and Blend ...
Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok
2018-01-01
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046
Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok
2018-01-01
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, N.; Odano, I.; Ohkubo, M.
1994-05-01
We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minutemore » period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.« less
Low Temperature Induction of Arabidopsis CBF1, 2, and 3 Is Gated by the Circadian Clock1
Fowler, Sarah G.; Cook, Daniel; Thomashow, Michael F.
2005-01-01
Exposing Arabidopsis (Arabidopsis thaliana) plants to low temperature results in rapid induction of CBF1, 2, and 3 (CBF1-3; also known as DREB1B, C, and A, respectively), which encode transcriptional activators that induce expression of a battery of genes that increase plant freezing and chilling tolerance. Recently, it has been shown that basal levels of CBF3 transcripts and those of certain CBF-regulated genes exhibit circadian cycling. Here, we further explored the regulation of CBF1-3 by the circadian clock. The results indicated that the extent to which CBF1-3 transcripts accumulated in response to low temperature was dependent on the time of day that the plants were exposed to low temperature and that this was regulated by the circadian clock. The highest and lowest levels of cold-induced CBF1-3 transcript accumulation occurred at 4 and 16 h after subjective dawn, respectively. An analysis of CBF2 promoter-reporter gene fusions indicated that this control included transcriptional regulation. In addition, the cold responsiveness of RAV1 and ZAT12, genes that are cold induced in parallel with CBF1-3, was also subject to circadian regulation. However, whereas the maximum level of cold-induced RAV1 transcript accumulation occurred at the same time of day as did CBF1-3 transcripts, that of ZAT12 was in reverse phase, i.e. the highest level of cold-induced ZAT12 transcript accumulation occurred 16 h after subjective dawn. These results indicate that cold-induced expression of CBF1-3, RAV1, and ZAT12 is gated by the circadian clock and suggest that this regulation likely occurs through at least two nonidentical (though potentially overlapping) signaling pathways. PMID:15728337
Szabó, C. Ákos; Narayana, Shalini; Franklin, Crystal; Knape, Koyle D.; Davis, M. Duff; Fox, Peter T.; Leland, M. Michelle; Williams, Jeff T.
2011-01-01
Background Photosensitive epileptic (SZ) baboons demonstrate different cerebral blood flow (CBF) activation patterns from asymptomatic controls (CTL) during intermittent light stimulation (ILS). This study compares “resting” CBF between PS and CTL animals, and CBF correlations with ketamine dose and interictal epileptic discharges (IEDs) between PS and CTL animals. Methods Continuous intravenous ketamine was administered to eight PS and eight CTL baboons (matched for gender and weight), and maintained at subanesthetic doses (4.8–14.6 mg/kg/hr). Three resting H215O-PET studies were attempted in each animal (CTI/Siemens HR+ scanner). Images were acquired in 3D mode (63 contiguous slices, 2.4 mm thickness). PET images were co-registered with MRI images (3T Siemens Trio, T1-weighted 3D Turboflash sequence, TE/TR/TI = 3.04/2100/785 msec, flip angle=13 degrees). EEG was used to monitor depth of sedation and for quantification of IED rates. Regional CBF was compared between PS and CTL groups and correlations were analyzed for ketamine dose and IED rates. Results When subsets of animals of either group, receiving similar doses of ketamine were compared, PS animals demonstrated relative CBF increases in the occipital lobes and decreases in the frontal lobes. Correlation analyses with ketamine dose confirmed the frontal and occipital lobe changes in the PS animals. The negative correlations of CBF with ketamine dose and IED rate overlapped frontally. While frontal lobe CBF was also negatively correlated with IED rate, positive correlations were found in the parietal lobe. Conclusions “Resting” CBF differs between PS and CTL baboons. Correlation analyses of CBF and ketamine dose reveal that occipital lobe CBF increases and frontal lobe in PS animals are driven by ketamine. While frontal lobe CBF decreases may be related to ketamine’s propensity to activate IEDs, positive CBF correlations with IED rate suggest involvement of the parietal lobes in their generation. PMID:18801644
Yang, Zhong-jin; Price, Chrystal D.; Bosco, Gerardo; Tucci, Micheal; El-Badri, Nagwa S.; Mangar, Devanand; Camporesi, Enrico M.
2008-01-01
Background Cerebral blood flow (CBF) is auto-regulated to meet the brain's metabolic requirements. Oxycyte® is a perfluorocarbon emulsion that acts as a highly effective oxygen carrier compared to blood. The aim of this study is to determine the effects of Oxycyte® on regional CBF (rCBF), by evaluating the effects of stepwise isovolemic hemodilution with Oxycyte® on CBF. Methodology Male rats were intubated and ventilated with 100% O2 under isoflurane anesthesia. The regional (striatum) CBF (rCBF) was measured with a laser doppler flowmeter (LDF). Stepwise isovolemic hemodilution was performed by withdrawing 4ml of blood and substituting the same volume of 5% albumin or 2 ml Oxycyte® plus 2 ml albumin at 20-minute intervals until the hematocrit (Hct) values reached 5%. Principal Findings In the albumin-treated group, rCBF progressively increased to approximately twice its baseline level (208±30%) when Hct levels were less than 10%. In the Oxycyte®-treated group on the other hand, rCBF increased by significantly smaller increments, and this group's mean rCBF was only slightly higher than baseline (118±18%) when Hct levels were less than 10%. Similarly, in the albumin-treated group, rCBF started to increase when hemodilution with albumin caused the CaO2 to decrease below 17.5 ml/dl. Thereafter, the increase in rCBF was accompanied by a nearly proportional decrease in the CaO2 level. In the Oxycyte®-treated group, the increase in rCBF was significantly smaller than in the albumin-treated group when the CaO2 level dropped below 10 ml/dl (142±20% vs. 186±26%), and rCBF returned to almost baseline levels (106±15) when the CaO2 level was below 7 ml/dl. Conclusions/Significance Hemodilution with Oxycyte® was accompanied with higher CaO2 and PO2 than control group treated with albumin alone. This effect may be partially responsible for maintaining relatively constant CBF and not allowing the elevated blood flow that was observed with albumin. PMID:18431491
Shang, Yuan-Qi; Xie, Jun; Peng, Wei; Zhang, Jian; Chang, Da; Wang, Ze
2018-04-01
The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution. Copyright © 2018 Elsevier B.V. All rights reserved.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
Sidtis, John J; Tagliati, Michele; Alterman, Ron; Sidtis, Diana; Dhawan, Vijay; Eidelberg, David
2012-01-01
Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.
The oxygen paradox of neurovascular coupling
Leithner, Christoph; Royl, Georg
2014-01-01
The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931
De Michele, Manuela; Touzani, Omar; Foster, Alan C; Fieschi, Cesare; Sette, Giuliano; McCulloch, James
2005-09-01
The expression of corticotrophin-releasing factor (CRF) receptors in cerebral arteries and arterioles suggests that CRF may modulate cerebral blood flow (CBF). In the present study, the effects of CRF, CRF-like peptides and the CRF broad spectrum antagonist DPhe-CRF on CBF have been investigated under normal physiologic conditions and in the margins of focal ischaemic insult. The experiments were carried out in anaesthetised and ventilated rats. Changes in CBF after subarachnoid microapplication of CRF and related peptides were assessed with a laser-Doppler flowmetry (LDF) probe. In the ischaemic animals, agents were injected approximately 60 minutes after permanent middle cerebral artery occlusion (MCAo). Microapplication of CRF and related peptides in normal rats into the subarachnoid space produced sustained concentration-dependent increases in CBF. This effect was attenuated by co-application with DPhe-CRF, which did not alter CBF itself. A second microapplication of CRF 30 min after the first failed to produce increases in CBF in normal animals. Microapplication of CRF in the subarachnoid space overlying the ischaemic cortex effected minor increases in CBF whereas D-Phe-CRF had no significant effect on CBF. Activation of the CRF peptidergic system increases CBF in the rat. Repeated activation of CRF receptors results in tachyphylaxis of the vasodilator response. CRF vasodilator response is still present after MCAo in the ischaemic penumbra, suggesting that the CRF peptidergic system may modulate CBF in ischaemic stroke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelini, G.; Lanza, E.; Rozza Dionigi, A.
1983-05-01
The measurement of cerebral blood flow (CBF) by the extracranial detection of the radioactivity of /sup 133/Xe injected into an internal carotid artery has proved to be of considerable value for the investigation of cerebral circulation in conscious rabbits. Methods are described for calculating CBF from the curves of clearance of /sup 133/Xe, and include exponential analysis (two-component model), initial slope, and stochastic method. The different methods of curve analysis were compared in order to evaluate the fitness with the theoretical model. The initial slope and stochastic methods, compared with the biexponential model, underestimate the CBF by 35% and 46%more » respectively. Furthermore, the validity of recording the clearance curve for 10 min was tested by comparing these CBF values with those obtained from the whole curve. CBF values calculated with the shortened procedure are overestimated by 17%. A correlation exists between the ''10 min'' CBF values and the CBF calculated from the whole curve; in spite of that, the values are not accurate for limited animal populations or for single animals. The extent of the two main compartments into which the CBF is divided was also measured. There is no correlation between CBF values and the extent of the relative compartment. This fact suggests that these two parameters correspond to different biological entities.« less
Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.
2004-01-01
The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661
Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar
2018-07-01
The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.
Chang, Chia-Cheng; Kuwana, Nobumasa; Ito, Susumu; Yokoyama, Takaakira; Kanno, Hiroshi; Yamamoto, Isao
2003-01-01
Cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) may be reduced in patients with normal pressure hydrocephalus (NPH) after subarachnoid haemorrhage (SAH). However, little is known about brain circulation in asymptomatic patients with ventriculomegaly after SAH. This study investigated CBF and CVR in symptomatic and asymptomatic patients with ventriculomegaly to clarify the mechanism of NPH. CBF and CVR were investigated in 48 patients with ventriculomegaly after SAH due to ruptured aneurysm. Mean CBF of the whole brain was measured by first-pass radionuclide angiography using technetium-99m hexamethylpropylene amine oxime. CVR was measured as the percentage change from the baseline mean CBF value after administration of 500 mg acetazolamide. Thirty patients with NPH who responded to shunting had significantly ( P<0.01) reduced mean CBF and CVR compared with normal controls. Fourteen asymptomatic patients with ventriculomegaly showed significant ( P<0.01) reduction in CVR but no difference in mean CBF. Four symptomatic patients who did not respond to shunting showed significantly ( P<0.01) reduced mean CBF but had preserved CVR. Postoperative mean CBF and CVR increased significantly ( P<0.01) in 21 patients who responded to shunting, but showed no significant change in four symptomatic patients who did not respond to shunting. Reduction of CBF superimposed on pre-existing impairment of CVR may be an essential step in the mechanism responsible for the manifestation of symptoms of NPH.
2012-02-01
blended fuel be certified for use in USAF facilities. The introduction of the new fuel does have a few measureable effects that warrant monitoring: The...in surge suppressors and control valves. The blends may also cause shrinkage in certain seals which may result in short term leakage when the new...Agency (AFPA) and Air Force Civil Engineer Support Agency (AFCESA) have been tasked by AFCO to certify HRJ/JP-8 blended fuels for use in existing
Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Yan, Feng-Xian; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen
2017-08-01
No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P < .05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P < .001), overall nonstenting vascular (P < .001), and ipsilateral PCA (P < .05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS.
Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.
2003-01-01
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791
Transcriptomic and field evaluation of apple trees overexpressing a peach CBF gene
USDA-ARS?s Scientific Manuscript database
The role of CBF genes in cold response and acclimation has been well documented in both herbaceous and woody plants. Our initial research demonstrated that overexpression of a peach CBF gene (PpCBF1) in ‘M.26’ apple increases freezing tolerance of non-acclimated plants and unexpectedly also results...
Otake, Hironao; Yamamoto, Hiroshi; Teranishi, Masaaki; Sone, Michihiko; Nakashima, Tsutomu
2009-02-01
Topical application of dexamethasone may support autoregulation of cochlear blood flow (CBF), although it had no direct effect on CBF. Although intratympanic steroid therapy for patients with inner ear disorders is common, the mechanism by which steroids exert their effect is unclear. We investigated the response of CBF to topical application of dexamethasone onto the round window. Two concentrations of dexamethasone (3.3 mg/ml and 33 mg/ml dexamethasone in 0.5 microl saline) were applied to the round windows of rats, and CBF responses were measured using a laser Doppler flowmeter. The effects on CBF of a 2 h occlusion of the anterior inferior cerebellar artery (AICA) and subsequent release of the clamp with or without previous dexamethasone application were investigated. No significant change in CBF was observed after topical application of dexamethasone, and it did not affect the decrease in CBF caused by AICA occlusion. However, recovery of CBF after release of the AICA clamp was better in animals treated with dexamethasone than in those that did not receive dexamethasone.
Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd
2014-09-01
The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.
Shirzadi, Zahra; Crane, David E; Robertson, Andrew D; Maralani, Pejman J; Aviv, Richard I; Chappell, Michael A; Goldstein, Benjamin I; Black, Sandra E; MacIntosh, Bradley J
2015-11-01
To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition. Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner. ASL intermediate CBF images were included based on their contribution to the mean estimate, with the goal to maximize CBF detectability in gray matter (GM). Simulations were conducted to evaluate the performance of the proposed optimization procedure relative to other ASL postprocessing approaches. Clinical CBF images were also assessed visually by two experienced neuroradiologists. Optimized CBF images (CBFopt ) had significantly greater agreement with a synthetic ground truth CBF image and greater CBF detectability relative to the other ASL analysis methods (P < 0.05). Moreover, empirical CBFopt images showed a significantly improved signal-to-noise ratio relative to CBF images obtained from other postprocessing approaches (mean: 12.6%; range 1% to 56%; P < 0.001), and this improvement was age-dependent (P = 0.03). Differences between CBF images from different analysis procedures were not perceptible by visual inspection, while there was a moderate agreement between the ratings (κ = 0.44, P < 0.001). This study developed an automated head motion threshold-free procedure to improve the detection of CBF in GM. The improvement in CBF image quality was larger when considering older participants. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herscovitch, P.; Raichle, M.E.; Kilbourn, M.R.
1985-05-01
Tracers used to measure CBF with PET and the Kety autoradiographic approach should freely cross the blood-brain barrier. 0-15 water, which is not freely permeable, may underestimate CBF, especially at higher flows. The authors determined this under-estimation relative to flow measured with a freely diffusible tracer, C-11 butanol and used these data to calculate the extraction (E) and permeability surface area product (PS) for 0-15 water. Paired flow measurements were made with 0-15 water (CBF-wat) and C-11 butanol (CBF-but) in eight normal human subjects. Average CBF-but, 55.6 ml/(min . 100g) was significantly greater than CBF-water, 47.6 ml/(min . 100g). Themore » ratio of regional gray matter (GM) flow to white matter (WM) flow was significantly greater with C-11 butanol, indicating a greater underestimation of CBF with 0-15 water in the higher flow GM. Average E for water was 0.92 in WM and 0.82 in GM. The mean PS in GM, 148 ml/(min . 100g), was significantly greater than in WM, 94 ml/(min . 100g). Simulation studies demonstrated that a measurement error in CBF-wat or CBF-but causes an approximately equivalent error in E but a considerably larger error in PS due to the sensitivity of the equation, PS=-CBF . ln(1-E), to variations in E. Modest errors in E and PS result from tissue heterogeneity that occurs due to the limited spatial resolution of PET. The authors' measurements of E and PS for water are similar to data obtained by more invasive methods and demonstrate the ability of PET to measure brain water permeability.« less
Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru
2015-01-01
Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2 .- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510
1988-04-01
o CHEMICAL TREATMENT - CHLORINE (VARIOUS FORMS) AND CHLORINE/ULTRAVIOLET LIGHT (UV) - OZONE AND OZONE/UV - PERMANGANATE - HYDROGEN PEROXIDE AND...and placed in drums, rail cars or trucks (Hazard 3 Abatement Plan, 1982). The existing hydrazine blending facility area is a limited access site which...Area 40’-0" x 26’-0" Volume 44,000 gallons Function Receive wastewater and stormwater runoff m Construction Material Concrete 7. Building 759 Size 40’-0
Cerebral hemodynamic changes and electroencephalography during carotid endarterectomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algotsson, L.; Messeter, K.; Rehncrona, S.
Some patients undergoing endarterectomy for occlusive carotid artery disease run a risk of brain ischemia during cross-clamping of the artery. The present study of 15 patients was undertaken to evaluate changes in cerebral blood flow (CBF), as measured with an intravenous (IV) tracer (133Xenon) technique, and to relate CBF changes to changes in the electroencephalogram (EEG). CBF was measured before and after induction of anesthesia, during cross-clamping of the carotid artery, after release of the clamps, and at 24 hours after the operation. All the patients were anesthetized with methohexitone, fentanyl, and nitrous oxide and oxygen. EEG was continuously recordedmore » during the operation. Carotid artery shunts were not used. In 8 patients, cross-clamping of the carotid artery did not influence the EEG. In this group of patients, induction of anesthesia caused a 38% decrease in CBF, which presumably reflects the normal reaction to the anesthetic agent given. There were no further changes in CBF during cross-clamping. In 7 patients, the EEG showed signs of deterioration during the intraoperative vascular occlusion. In these patients, anesthesia did not cause any CBF change, whereas cross-clamping the artery induced a 33% decrease in CBF. In individual patients, the severity of EEG changes correlated with the decrease in CBF. The absence of a change in CBF by anesthesia and a decrease due to cross-clamping of the carotid artery may be explained by the presence of a more advanced cerebrovascular disease and an insufficiency to maintain CBF during cross-clamping.« less
Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.
2000-01-01
We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899
Foley, Lesley M; Clark, Robert S B; Vazquez, Alberto L; Hitchens, T Kevin; Alexander, Henry; Ho, Chien; Kochanek, Patrick M; Manole, Mioara D
2017-01-01
Disturbances in cerebral blood flow (CBF) and brain oxygenation (PbO 2 ) are present early after pediatric cardiac arrest (CA). CBF-targeted therapies improved neurological outcome in our CA model. To assess the therapeutic window for CBF- and PbO 2 -targeted therapies, we propose to determine if CBF and PbO 2 disturbances persist at 24 h after experimental pediatric CA. Regional CBF and PbO 2 were measured at 24 h after asphyxial CA in immature rats (n = 26, 6-8/group) using arterial spin label MRI and tissue electrodes, respectively. In all regions but the thalamus, CBF recovered to sham values by 24 h; thalamic CBF was >32% higher after CA vs. sham. PbO 2 values at 24 h after CA in the cortex and thalamus were similar to shams in rats who received supplemental oxygen, however, on room air, cortical PbO 2 was lower after CA vs. shams. CBF remains increased in the thalamus at 24 h after CA and PbO 2 is decreased to hypoxic levels in cortex at 24 h after CA in rats who do not receive supplemental oxygen. Given the enduring disturbances in this model and the lack of routine CBF or PbO 2 monitoring in patients, our data suggest the need for clinical correlation.
Symptom correlates of cerebral blood flow following acute concussion.
Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A
2017-01-01
Concussion is associated with significant symptoms within hours to days post-injury, including disturbances in physical function, cognition, sleep and emotion. However, little is known about how subjective impairments correlate with objective measures of cerebrovascular function following brain injury. This study examined the relationship between symptoms and cerebral blood flow (CBF) in individuals following sport-related concussion. Seventy university level athletes had CBF measured using Arterial Spin Labelling (ASL), including 35 with acute concussion and 35 matched controls and their symptoms were assessed using the Sport Concussion Assessment Tool 3 (SCAT3). For concussed athletes, greater total symptom severity was associated with elevated posterior cortical CBF, although mean CBF was not significantly different from matched controls ( p = 0.46). Examining symptom clusters, athletes reporting greater cognitive symptoms also had lower frontal and subcortical CBF, relative to athletes with greater somatic symptoms. The "cognitive" and "somatic" subgroups also exhibited significant differences in CBF relative to controls ( p ≤ 0.026). This study demonstrates objective CBF correlates of symptoms in recently concussed athletes and shows that specific symptom clusters may have distinct patterns of altered CBF, significantly extending our understanding of the neurobiology of concussion and traumatic brain injury.
CBF measured by Xe-CT: Approach to analysis and normal values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, H.; Darby, J.M.; Marks, E.C.
1991-09-01
Normal reference values and a practical approach to CBF analysis are needed for routine clinical analysis and interpretation of xenon-enhanced computed tomography (CT) CBF studies. The authors measured CBF in 67 normal individuals with the GE 9800 CT scanner adapted for CBF imaging with stable Xe. CBF values for vascular territories were systematically analyzed using the clustering of contiguous 2-cm circular regions of interest (ROIs) placed within the cortical mantle and basal ganglia. Mixed cortical flows averaged 51 {plus minus} 10ml.100g-1.min-1. High and low flow compartments, sampled by placing 5-mm circular ROIs in regions containing the highest and lowest flowmore » values in each hemisphere, averaged 84 {plus minus} 14 and 20 {plus minus} 5 ml.100 g-1.min-1, respectively. Mixed cortical flow values as well as values within the high flow compartment demonstrated significant decline with age; however, there were no significant age-related changes in the low flow compartment. The clustering of systematically placed cortical and subcortical ROIs has provided a normative data base for Xe-CT CBF and a flexible and uncomplicated method for the analysis of CBF maps generated by Xe-enhanced CT.« less
Chlorine Disinfection of Blended Municipal Wastewater Effluents
Blending is a practice used in the wastewater industry to manage wet weather events when the influx of storm water to municipal treatment facilities could compromise the hydraulic capacity of the facility’s biological treatment system. To prevent this, wastewater is treated thro...
The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.
Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs
2015-06-01
Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways. Copyright © 2015 Elsevier GmbH. All rights reserved.
Tanei, Takafumi; Kajita, Yasukazu; Nihashi, Takashi; Kaneoke, Yoshiki; Takebayashi, Shigenori; Nakatsubo, Daisuke; Wakabayashi, Toshihiko
2009-11-01
Changes in regional cerebral blood flow (rCBF) induced by unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) were investigated in 7 consecutive patients with Parkinson's disease, 4 men and 3 women (mean age 62.3 +/- 8.1 years), who underwent rCBF measurement by N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography at rest before and after unilateral STN DBS preoperatively in the on-drug condition, and postoperatively in the on-drug and on-stimulation condition. Statistical parametric mapping was used to identify significant changes in rCBF from the preoperative to the postoperative conditions. rCBF was increased in the bilateral cingulate cortices and bilateral cerebellar hemispheres. rCBF was decreased in the bilateral medial frontal cortices and left superior temporal cortex. Unilateral STN DBS produced rCBF changes in the bilateral cingulate cortices, cerebellar hemispheres, and medial frontal cortices. These findings indicate that unilateral STN DBS affects rCBF in both hemispheres.
MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.
An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2017-11-01
Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.
Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.
Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W
2014-01-01
To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.
Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping
2009-10-20
C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.
Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow
Hartley, Geoffrey L.; Watson, Cody L.; Ainslie, Philip N.; Tokuno, Craig D.; Greenway, Matthew J.; Gabriel, David A.; O'Leary, Deborah D.
2016-01-01
Key points Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic‐induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated.We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation‐induced hypocapnia to reduce both CBF and P ETC O2.Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub‐optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2.These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. Abstract Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia‐induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor‐evoked potentials (MEPs), maximal M‐wave (M max) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg−1) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end‐tidal PCO2 (P ETC O2); (2) controlled iso‐oxic hyperventilation‐induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation‐mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%M max) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability – as reflected by larger MEP amplitude – appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub‐optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2. PMID:26836470
Regulation of human airway ciliary beat frequency by intracellular pH
Sutto, Zoltan; Conner, Gregory E; Salathe, Matthias
2004-01-01
pHi affects a number of cellular functions, but the influence of pHi on mammalian ciliary beat frequency (CBF) is not known. CBF and pHi of single human tracheobronchial epithelial cells in submerged culture were measured simultaneously using video microscopy (for CBF) and epifluorescence microscopy with the pH-sensitive dye BCECF. Baseline CBF and pHi values in bicarbonate-free medium were 7.2 ± 0.2 Hz and 7.49 ± 0.02, respectively (n = 63). Alkalization by ammonium pre-pulse to pHi 7.78 ± 0.02 resulted in a 2.2 ± 0.1 Hz CBF increase (P < 0.05). Following removal of NH4Cl, pHi decreased to 7.24 ± 0.02 and CBF to 5.8 ± 0.1 Hz (P < 0.05). Removal of extracellular CO2 to change pHi resulted in similar CBF changes. Pre-activation of cAMP-dependent protein kinase (10 μm forskolin), broad inhibition of protein kinases (100 μm H-7), inhibition of PKA (10 μm H-89), nor inhibition of phosphatases (10 μm cyclosporin + 1.5 μm okadaic acid) changed pHi-mediated changes in CBF, nor were they due to [Ca2+]i changes. CBF of basolaterally permeabilized human tracheobronchial cells, re-differentiated at the air–liquid interface, was 3.9 ± 0.3, 5.7 ± 0.4, 7.0 ± 0.3 and 7.3 ± 0.3 Hz at basolateral i.e., intracellular pH of 6.8, 7.2, 7.6 and 8.0, respectively (n = 18). Thus, intracellular alkalization stimulates, while intracellular acidification attenuates human airway CBF. Since phosphorylation and [Ca2+]i changes did not seem to mediate pHi-induced CBF changes, pHi may directly act on the ciliary motile machinery. PMID:15308676
2011-01-01
Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548
Nguyen, Hong C; Cao, Phi B; San Clemente, Hélène; Ployet, Raphaël; Mounet, Fabien; Ladouce, Nathalie; Harvengt, Luc; Marque, Christiane; Teulieres, Chantal
2017-04-01
Annotation of the Eucalyptus grandis genome showed a large amplification of the dehydration-responsive element binding 1/C-repeat binding factor (DREB1/CBF) group without recent DREB2 gene duplication compared with other plant species. The present annotation of the CBF and DREB2 genes from a draft of the Eucalyptus gunnii genome sequence reveals at least one additional CBF copy in the E. gunnii genome compared with E. grandis, suggesting that this group is still evolving, unlike the DREB2 group. This study aims to investigate the redundancy/neo- or sub-functionalization of the duplicates and the relative involvement of the two groups in abiotic stress responses in both E. grandis and E. gunnii (lower growth but higher cold resistance). A comprehensive transcriptional analysis using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) was performed on leaves, stems and roots from the two Eucalyptus species after cold, heat or drought treatment. A large CBF cluster accounted for most of the cold response in all the organs, whereas heat and drought responses mainly involved a small CBF cluster and the DREB2 genes. In addition, CBF putative target genes, known to be involved in plant tolerance and development, were found to be cold-regulated. The higher transcript amounts of both the CBF and target genes in the cold tolerant E. gunnii contrasted with the higher CBF induction rates in the fast growing E. grandis. Altogether, the present results, in agreement with previous data about Eucalyptus transgenic lines over-expressing CBF, suggest that these factors, which promote both stress protection and growth limitation, participate in the trade-off between growth and resistance in this woody species. © 2016 Scandinavian Plant Physiology Society.
Goodson, Carrie M; Rosenblatt, Kathryn; Rivera-Lara, Lucia; Nyquist, Paul; Hogue, Charles W
2018-02-01
Cerebral blood flow (CBF) autoregulation maintains consistent blood flow across a range of blood pressures (BPs). Sepsis is a common cause of systemic hypotension and cerebral dysfunction. Guidelines for BP management in sepsis are based on historical concepts of CBF autoregulation that have now evolved with the availability of more precise technology for its measurement. In this article, we provide a narrative review of methods of monitoring CBF autoregulation, the cerebral effects of sepsis, and the current knowledge of CBF autoregulation in sepsis. Current guidelines for BP management in sepsis are based on a goal of maintaining mean arterial pressure (MAP) above the lower limit of CBF autoregulation. Bedside tools are now available to monitor CBF autoregulation continuously. These data reveal that individual BP goals determined from CBF autoregulation monitoring are more variable than previously expected. In patients undergoing cardiac surgery with cardiopulmonary bypass, for example, the lower limit of autoregulation varied between a MAP of 40 to 90 mm Hg. Studies of CBF autoregulation in sepsis suggest patients frequently manifest impaired CBF autoregulation, possibly a result of BP below the lower limit of autoregulation, particularly in early sepsis or with sepsis-associated encephalopathy. This suggests that the present consensus guidelines for BP management in sepsis may expose some patients to both cerebral hypoperfusion and cerebral hyperperfusion, potentially resulting in damage to brain parenchyma. The future use of novel techniques to study and clinically monitor CBF autoregulation could provide insight into the cerebral pathophysiology of sepsis and offer more precise treatments that may improve functional and cognitive outcomes for survivors of sepsis.
NASA Astrophysics Data System (ADS)
Wang, Wenjia; Li, Qiang; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng
2007-02-01
Laser speckle imaging technique was used to characterize the spatiotemporal changes in cerebral blood flow (CBF) in rat cortex induced by the local ultraprofound hypothermia(0°C) with the duration time of 1 min, 2 min, 5 min, 7 min and 10 min. The experimental results showed significant difference of the spatiotemporal characteristics of changes in CBF between short term and long term of ultraprofound hypothermia. For the short duration of ultraprofound hypothermia (1 min, 2 min and 5 min), the hypothermia cause the CBF decrease firstly, and then the CBF increase rapidly when the temperature is recovered to 37°C, exceeding the baseline level and lasting 10+/-3 min, finally return to the baseline. This trend of changes in CBF is similar in the regions of artery, vein and parenchyma, but with different amplitude. For the duration time of 7 min, the changes in CBF also exhibit the similar decrease induced by ultraprofound hypothermia and the rapid increase induced by the temperature recovering, however the increase does not show the overshoot, but only reach around 75% of the baseline level. For the duration of 10 min of ultraprofound hypothermia, the CBF does not increase rapidly when the temperature is recovered to 37°C, but remains at the low level of CBF for 12+/-2 min, and then increases gradually at artery sites, or increases rapidly and then decrease slightly later at the vein and parenchyma sites. Similar as the case in the duration time of 7 min, the final CBF only recovers to about 75% of the baseline level. The experimental results suggest that the CBF can not recover to the baseline after a long duration of ultraprofound hypothermia longer than 7 min.
Long-term effects of boxing and judo-choking techniques on brain function.
Rodriguez, G; Vitali, P; Nobili, F
1998-12-01
Regional cerebral blood flow (rCBF) was measured by 133-xenon inhalation in 24 amateur and 20 professional boxers, and in 10 judoka. Results were compared with those from age- and sex-matched healthy controls. Eighteen boxers (9 amateurs and 9 professionals) and all judoka also underwent electroencephalography (EEG). Mean rCBF values did not differ between either amateur boxers orjudoka and controls, whereas in professional boxers rCBF was significantly (p<.001) reduced in the whole brain, especially in the frontocentral regions. Healthy subjects, judoka, and amateur boxers showed a similar distribution of global CBF (gCBF, the mean of 32 probes) values, although 12.5% of amateurs had a significantly lower gCBF than controls. Among professional boxers, 25% showed a significantly low gCBF value; in the remaining 75%, gCBF was below the mean value of controls but did not reach statistical significance. Regional hypoperfusion, mainly in the frontocentral regions of both sides, was found in 35% of professional and in 29% of amateur boxers. A correlation between gCBF values and number of official matches was not found in boxers. EEG was normal in all judoka and amateur boxers, but it was abnormal in 3 professionals. This study shows the relevance of the neurophysiological assessment of athletes engaged in violent sports which can cause brain impairment. In fact, while professional boxers may show brain functional impairment in comparison to normal subjects, judoka do not. The lack of correlation between CBF values in boxers and the number of official matches points to the difficulty of taking into account variables, such as the number and the severity of matches during training.
Homan, Philipp; Kindler, Jochen; Hauf, Martinus; Walther, Sebastian; Hubl, Daniela; Dierks, Thomas
2013-01-01
Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia. PMID:23805093
Honjo, Kie; Ohshita, Tomohiko; Kawakami, Hideshi; Naka, Hiromitsu; Imon, Yukari; Maruyama, Hirofumi; Mimori, Yasuyo; Matsumoto, Masayasu
2004-06-01
Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant cerebellar ataxia caused by CAG trinucleotide expansion. The characteristics of regional cerebral blood flow (rCBF) in SCA6 patients have not been established, whereas it has been reported that decreased rCBF in the cerebrum seems to be a remote effect of cerebellar impairment in other cerebellar disorders. To clarify the characteristics of rCBF, including cerebro-cerebellar relationship, and its correlation with clinical manifestations in patients with genetically confirmed SCA6 using quantitative assessment of rCBF by brain single-photon emission computed tomography (SPECT). Technetium Tc 99m ethyl cysteinate dimer SPECT study using a Patlak plot. Patients Hiroshima University Hospital, Hiroshima, Japan. Ten patients with SCA6 and 9 healthy controls. Main Outcome Measure The rCBF of the cerebellar vermis, cerebellar hemisphere, and frontal lobes. In SCA6 patients, rCBF was decreased only in the cerebellar vermis and hemisphere compared with healthy controls, and this was inversely correlated with duration of illness. The rCBF in the frontal lobes was slightly correlated with duration of illness without statistical significance. The rCBF in the vermis was inversely correlated with severity of dysarthria, but there was no significant correlation with CAG repeated expansions. Decrease in rCBF was found only in the cerebellum and was associated with duration of illness, dysarthria and ataxia, and cerebellar atrophy. No remote effect of cerebellar hypoperfusion was found in the SCA6 patients.
Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W.; Murphy, Kevin; Wise, Richard G.; Pattinson, Kyle T.S.
2013-01-01
Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9 cmH2O for 270 s) and viewed an intermittent 2 Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data. PMID:23108273
Cerebral white matter blood flow and energy metabolism in multiple sclerosis.
Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M; Fierens, Yves; Cambron, Melissa; Mostert, Jop P; Heersema, Dorothea J; Koch, Marcus W; De Keyser, Jacques
2013-09-01
Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using (1)H-MR spectroscopy and PCr/β-ATP ratios using (31)P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls (p = 0.02), but not in MS subjects (p = 0.68). Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.
Response of cochlear blood flow to prostaglandin E1 applied topically to the round window.
Tominaga, Mitsuo; Yamamoto, Hiroshi; Sone, Michihiko; Teranishi, Masa-aki; Nakashima, Tsutomu
2006-03-01
The increase in cochlear blood flow (CBF) after administration of prostaglandin E1 (PGE1) to the round window depends on increased blood flow through the anterior inferior cerebellar artery (AICA). To evaluate the response of CBF to PGE1 applied topically to the round window, and to investigate the origin of blood flow changes after this topical application. The response of CBF to topically applied PGE1 was measured by placing the tip of a laser Doppler probe on the bony wall of the basal turn of the cochlea after the middle ear mucosa over the cochlea had been removed in guinea pigs and rats. In rats, the CBF response to PGE1 administration was investigated after occlusion of the AICA or stapedial artery. CBF increased following PGE1 administration in both guinea pigs and rats. In rats, CBF increased from 100% to 132%+/-10% (mean+/-SD) after the topical application of 0.5 microl of a 0.014% PGE1 solution. CBF decreased after occlusion of the AICA or stapedial artery but did not increase after PGE1 administration during occlusion of the AICA. The CBF response to PGE1 administration was similar before and after occlusion of the stapedial artery.
Uchihashi, Y; Hosoda, K; Zimine, I; Fujita, A; Fujii, M; Sugimura, K; Kohmura, E
2011-09-01
Arterial spin-labeling is an emerging technique for noninvasive measurement of cerebral perfusion, but concerns remain regarding the reliability of CBF quantification and clinical applications. Recently, an ASL implementation called QUASAR was proposed, and it was shown to have good reproducibility of CBF assessment in healthy volunteers. This study aimed to determine the utility of QUASAR for CBF assessment in patients with cerebrovascular diseases. Twenty patients with carotid stenosis underwent CBF quantification by ASL (QUASAR) within 3 days of performance of (123)I-iodoamphetamine-SPECT. CVR to acetazolamide also was assessed by ASL and SPECT. In surgically treated patients, the respective scans before and after the procedures were compared. Regional CBF and CVR values measured by ASL were significantly correlated and agreed with those measured by SPECT (r(s) = 0.92 and 0.88, respectively). A Bland-Altman plot demonstrated good agreement between 2 methods in terms of CBF quantification. Furthermore, ASL could detect pathologic states such as hypoperfusion, impaired vasoreactivity, and postoperative hyperperfusion, equivalent to SPECT. However, ASL tended to overestimate CBF values especially in high-perfusion regions. ASL perfusion MR imaging is clinically applicable and can be an alternative method for CBF assessment in patients with cerebrovascular diseases.
An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng
2016-01-01
Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.
Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt
NASA Technical Reports Server (NTRS)
Kawai, Y.; Murthy, G.; Watenpaugh, D. E.; Breit, G. A.; Deroshia, C. W.; Hargens, A. R.
1993-01-01
This study investigates cerebral blood flow (CBF) velocity in humans before, during, and after 24 h of 6 deg head-down tilt (HDT), which is a currently accepted experimental model to simulate microgravity. CBF velocity was measured by use of the transcranial Doppler technique in the right middle cerebral artery of eight healthy male subjects. Mean CBF velocity increased from the pre-HDT upright seated baseline value of 55.5 +/- 3.7 (SE) cm/s to 61.5 +/- 3.3 cm/s at 0.5 h of HDT, reached a peak value of 63.2 +/- 4.1 cm/s at 3 h of HDT, and remained significantly above the pre-HDT baseline for over 6 h of HDT. During upright seated recovery, mean CBF velocity decreased to 87 percent of the pre-HDT baseline value. Mean CBF velocity correlated well with calculated intracranial arterial pressure (IAP). As analyzed by linear regression, mean CBF velocity = 29.6 + 0.32IAP. These results suggest that HDT increases CBF velocity by increasing IAP during several hours after the onset of microgravity. Importantly, the decrease in CBF velocity after HDT may be responsible, in part, for the increased risk of syncope observed in subjects after prolonged bed rest and also in astronauts returning to Earth.
Nourhashemi, Mina; Kongolo, Guy; Mahmoudzadeh, Mahdi; Goudjil, Sabrina; Wallois, Fabrice
2017-04-01
The mechanisms responsible for coupling between relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative cerebral metabolic rate of oxygen ([Formula: see text]), an important function of the microcirculation in preterm infants, remain unclear. Identification of a causal relationship between rCBF-rCBV and [Formula: see text] in preterms may, therefore, help to elucidate the principles of cortical hemodynamics during development. We simultaneously recorded rCBF and rCBV and estimated [Formula: see text] by two independent acquisition systems: diffuse correlation spectroscopy and near-infrared spectroscopy, respectively, in 10 preterms aged between 28 and 35 weeks of gestational age. Transfer entropy was calculated in order to determine the directionality between rCBF-rCBV and [Formula: see text]. The surrogate method was applied to determine statistical significance. The results show that rCBV and [Formula: see text] have a predominant driving influence on rCBF at the resting state in the preterm neonatal brain. Statistical analysis robustly detected the correct directionality of rCBV on rCBF and [Formula: see text] on rCBF. This study helps to clarify the early organization of the rCBV-rCBF and [Formula: see text] inter-relationship in the immature cortex.
Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.
Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi
2015-11-05
Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling
Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.
2014-01-01
To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416
Resistance of Gerbil Auditory Function to Reversible Decrease in Cochlear Blood Flow.
El Afia, Fahd; Giraudet, Fabrice; Gilain, Laurent; Mom, Thierry; Avan, Paul
2017-01-01
The objective was to design in gerbils a model of reversible decrease in cochlear blood flow (CBF) and analyze its influence on cochlear function. In Mongolian gerbils injected with ferromagnetic microbeads, a magnet placed near the porus acusticus allowed CBF to be manipulated. The cochlear microphonic potential (CM) from the basal cochlea was monitored by a round-window electrode. In 13 of the 20 successfully injected gerbils, stable CBF reduction was obtained for 11.5 min on average. The CM was affected only when CBF fell to less than 60% of its baseline, yet remained >40% of its initial level in about 2/3 of such cases. After CBF restoration, CM recovery was fast and usually complete. Reduced CM came with a 35- to 45-dB threshold elevation of neural responses determined by compound action potentials. This method allowing reversible changes of CBF confirms the robustness of cochlear function to decreased CBF. It can be used to study whether a hypovascularized cochlea is abnormally sensitive to stress. © 2017 S. Karger AG, Basel.
Cochlear blood flow and speech perception ability in cochlear implant users.
Nakashima, Tsutomu; Hattori, Taku; Sone, Michihiko; Asahi, Kiyomitsu; Matsuda, Naoko; Teranishi, Masaaki; Yoshida, Tadao; Kato, Ken; Sato, Eisuke
2012-02-01
The effect of cochlear blood flow (CBF) on speech perception ability in cochlear implant (CI) users has not been reported. We investigated various factors influencing speech perception including CBF in CI users. Eighty-two patients who received CI surgery at an academic hospital. CBF was measured during CI surgery using laser Doppler flowmetry. The speech perception level was measured after a sufficient interval after CI surgery. Multivariate analysis was used to evaluate the influences of age, duration of deafness, sex, cause of deafness, and CBF on the speech perception level. CBF decreased significantly with age but was not related to the speech perception level. In patients with congenital hearing loss, the speech perception level was significantly worse in children who received a CI at 3 years of age than in those who received a CI at 2 years of age or younger. Duration of deafness before CI surgery had deteriorative effects on the speech perception level. CBF may be associated with progression of hearing loss. However, measuring CBF during CI surgery is not useful for predicting postoperative speech perception.
Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime
2013-01-01
We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.
NASA Astrophysics Data System (ADS)
Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao
2015-09-01
Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.
Gong, Zhizhong; Lee, Hojoung; Xiong, Liming; Jagendorf, André; Stevenson, Becky; Zhu, Jian-Kang
2002-01-01
Susceptibility to chilling injury prevents the cultivation of many important crops and limits the extended storage of horticultural commodities. Although freezing tolerance is acquired through cold-induced gene expression changes mediated in part by the CBF family of transcriptional activators, whether plant chilling resistance or sensitivity involves the CBF genes is not known. We report here that an Arabidopsis thaliana mutant impaired in the cold-regulated expression of CBF genes and their downstream target genes is sensitive to chilling stress. Expression of CBF3 under a strong constitutive promoter restores chilling resistance to the mutant plants. The mutated gene was cloned and found to encode a nuclear localized RNA helicase. Our results identify a regulator of CBF genes, and demonstrate the importance of gene regulation and the CBF transcriptional activators in plant chilling resistance. PMID:12165572
Laser Speckle Imaging of Cerebral Blood Flow
NASA Astrophysics Data System (ADS)
Luo, Qingming; Jiang, Chao; Li, Pengcheng; Cheng, Haiying; Wang, Zhen; Wang, Zheng; Tuchin, Valery V.
Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution can be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. To improve the spatial resolution of current LSI, a modified LSI method is proposed. To accelerate the speed of data processing, three LSI data processing frameworks based on graphics processing unit (GPU), digital signal processor (DSP), and field-programmable gate array (FPGA) are also presented. Applications for detecting the changes in local CBF induced by sensory stimulation and thermal stimulation, the influence of a chemical agent on CBF, and the influence of acute hyperglycemia following cortical spreading depression on CBF are given.
Localization of cortical areas activated by thinking.
Roland, P E; Friberg, L
1985-05-01
These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All rCBF increases extended over a few square centimeters of the cortex. The activation of the superior prefrontal cortex was attributed to the organization of thinking. The activation of the angular cortex in 50-3 thinking was attributed to the retrieval of the numerical memory and memory for subtractions. The activation of the right midtemporal cortex was attributed to the retrieval of the nonverbal auditory memory.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei
2001-10-01
The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.
Wrenn, C C; Lappi, D A; Wiley, R G
1999-11-20
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.
Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar
2017-12-01
A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g - 1 , 13.35 Wh kg - 1 and of 322.85 W kg - 1 , respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g - 1 . The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.
Bangen, Katherine J; Restom, Khaled; Liu, Thomas T; Wierenga, Christina E; Jak, Amy J; Salmon, David P; Bondi, Mark W
2012-01-01
Functional magnetic resonance imaging (fMRI) of older adults at risk for Alzheimer's disease (AD) by virtue of their cognitive (i.e., mild cognitive impairment [MCI]) and/or genetic (i.e., apolipoprotein E [APOE] ε4 allele) status demonstrate divergent brain response patterns during memory encoding across studies. Using arterial spin labeling MRI, we examined the influence of AD risk on resting cerebral blood flow (CBF) as well as the CBF and blood oxygenation level dependent (BOLD) signal response to memory encoding in the medial temporal lobes (MTL) in 45 older adults (29 cognitively normal [14 APOE ε4 carriers and 15 noncarriers]; 16 MCI [8 APOE ε4 carriers, 8 noncarriers]). Risk groups were comparable in terms of mean age, years of education, gender distribution, and vascular risk burden. Individuals at genetic risk for AD by virtue of the APOE ε4 allele demonstrated increased MTL resting state CBF relative to ε4 noncarriers, whereas individuals characterized as MCI showed decreased MTL resting state CBF relative to their cognitively normal peers. For percent change CBF, there was a trend toward a cognitive status by genotype interaction. In the cognitively normal group, there was no difference in percent change CBF based on APOE genotype. In contrast, in the MCI group, APOE ε4 carriers demonstrated significantly greater percent change in CBF relative to ε4 noncarriers. No group differences were found for BOLD response. Findings suggest that abnormal resting state CBF and CBF response to memory encoding may be early indicators of brain dysfunction in individuals at risk for developing AD.
Canis, Martin; Arpornchayanon, Warangkana; Messmer, Catalina; Suckfuell, Markus; Olzowy, Bernhard; Strieth, Sebastian
2010-02-01
Impairment of cochlear blood flow (CBF) is considered to be important in inner ear pathology. However, direct measurement of CBF is difficult and has not been investigated in combination with hearing function. Six guinea pigs were used to show feasibility of an animal model for the analysis of cochlear microcirculation by intravital microscopy in combination with investigation of the hearing threshold by brainstem response audiometry (ABR). By the application of sodium nitroprusside (SNP), CBF was increased over 30 min. Reproducibility of measurements was shown by retest measurements. Mean baseline velocity of CBF was 109 +/- 19 mum/s. Vessel diameters had a mean value of 9.4 +/- 2.7 mum. Mean hearing threshold was 19 +/- 6 dB. In response to SNP, CBF velocity increased significantly to 161 +/- 26 mum/s. Mean arterial pressure decreased significantly to 36 +/- 11 mmHg. After the end of the application, CBF velocity recovered to a minimum of 123 +/- 17 microm/s. Within the retest, CBF velocity significantly increased to a maximum of 160 +/- 31 microm/s. Second recovery of CBF velocity was 125 +/- 14 mum/s. Within the second retest, CBF increased significantly to 157 +/- 25 microm/s. ABR thresholds did not change significantly. The increase in blood flow velocity occurred in spite of substantial hypotension as induced by a vasodilator. This may explain the fact that ABR threshold remained unchanged reflecting a maintained blood supply in this part of the brain. This technique can be used to evaluate effects of treatments aimed at cochlear microcirculation in inner ear pathologies.
Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F
2009-03-01
The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.
Effects of smoking marijuana on brain perfusion and cognition.
O'Leary, Daniel S; Block, Robert I; Koeppel, Julie A; Flaum, Michael; Schultz, Susan K; Andreasen, Nancy C; Ponto, Laura Boles; Watkins, G Leonard; Hurtig, Richard R; Hichwa, Richard D
2002-06-01
The effects of smoking marijuana on regional cerebral blood flow (rCBF) and cognitive performance were assessed in 12 recreational users in a double-blinded, placebo-controlled study. PET with [(15)Oxygen]-labeled water ([(15)O]H(2)O) was used to measure rCBF before and after smoking of marijuana and placebo cigarettes, as subjects repeatedly performed an auditory attention task. Smoking marijuana resulted in intoxication, as assessed by a behavioral rating scale, but did not significantly alter mean behavioral performance on the attention task. Heart rate and blood pressure increased dramatically following smoking of marijuana but not placebo cigarettes. However, mean global CBF did not change significantly. Increased rCBF was observed in orbital and mesial frontal lobes, insula, temporal poles, anterior cingulate, as well as in the cerebellum. The increases in rCBF in anterior brain regions were predominantly in "paralimbic" regions and may be related to marijuana's mood-related effects. Reduced rCBF was observed in temporal lobe auditory regions, in visual cortex, and in brain regions that may be part of an attentional network (parietal lobe, frontal lobe and thalamus). These rCBF decreases may be the neural basis of perceptual and cognitive alterations that occur with acute marijuana intoxication. There was no significant rCBF change in the nucleus accumbens or other reward-related brain regions, nor in basal ganglia or hippocampus, which have a high density of cannabinoid receptors.
Effects of smoking marijuana on focal attention and brain blood flow.
O'Leary, Daniel S; Block, Robert I; Koeppel, Julie A; Schultz, Susan K; Magnotta, Vincent A; Ponto, Laura Boles; Watkins, G Leonard; Hichwa, Richard D
2007-04-01
Using an attention task to control cognitive state, we previously found that smoking marijuana changes regional cerebral blood flow (rCBF). The present study measured rCBF during tasks requiring attention to left and right ears in different conditions. Twelve occasional marijuana users (mean age 23.5 years) were imaged with PET using [15O]water after smoking marijuana or placebo cigarettes as they performed a reaction time (RT) baseline task, and a dichotic listening task with attend-right- and attend-left-ear instructions. Smoking marijuana, but not placebo, resulted in increased normalized rCBF in orbital frontal cortex, anterior cingulate, temporal pole, insula, and cerebellum. RCBF was reduced in visual and auditory cortices. These changes occurred in all three tasks and replicated our earlier studies. They appear to reflect the direct effects of marijuana on the brain. Smoking marijuana lowered rCBF in auditory cortices compared to placebo but did not alter the normal pattern of attention-related rCBF asymmetry (i.e., greater rCBF in the temporal lobe contralateral to the direction of attention) that was also observed after placebo. These data indicate that marijuana has dramatic direct effects on rCBF, but causes relatively little change in the normal pattern of task-related rCBF on this auditory focused attention task. Copyright 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Elliott, Jonathan T.; Diop, Mamadou; Tichauer, Kenneth M.; Lee, Ting-Yim; Lawrence, Keith St.
2010-05-01
Nearly half a million children and young adults are affected by traumatic brain injury each year in the United States. Although adequate cerebral blood flow (CBF) is essential to recovery, complications that disrupt blood flow to the brain and exacerbate neurological injury often go undetected because no adequate bedside measure of CBF exists. In this study we validate a depth-resolved, near-infrared spectroscopy (NIRS) technique that provides quantitative CBF measurement despite significant signal contamination from skull and scalp tissue. The respiration rates of eight anesthetized pigs (weight: 16.2+/-0.5 kg, age: 1 to 2 months old) are modulated to achieve a range of CBF levels. Concomitant CBF measurements are performed with NIRS and CT perfusion. A significant correlation between CBF measurements from the two techniques is demonstrated (r2=0.714, slope=0.92, p<0.001), and the bias between the two techniques is -2.83 mL.min-1.100 g-1 (CI0.95: -19.63 mL.min-1.100 g-1-13.9 mL.min-1.100 g-1). This study demonstrates that accurate measurements of CBF can be achieved with depth-resolved NIRS despite significant signal contamination from scalp and skull. The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neurointensive care.
Relationships between Cerebral Blood Flow and IQ in Typically Developing Children and Adolescents.
Kilroy, Emily; Liu, Collin Y; Yan, Lirong; Kim, Yoon Chun; Dapretto, Mirella; Mendez, Mario F; Wang, Danny J J
2011-01-01
The objective of this study was to explore the relationships between IQ and cerebral blood flow (CBF) measured by arterial spin labeling (ASL) in children and adolescents. ASL was used to collect perfusion MRI data on 39 healthy participants aged 7 to 17. The Wechsler Abbreviated Intelligence Scale was administered to determine IQ scores. Multivariate regression was applied to reveal correlations between CBF and IQ scores, accounting for age, sex and global mean CBF. Voxel Based Morphometry (VBM) analysis, which measures regional cortical volume, was performed as a control. Regression analyses were further performed on CBF data with adjustment of regional gray matter density (GMD). A positive correlation between CBF and IQ scores was primarily seen in the subgenual/anterior cingulate, right orbitofrontal, superior temporal and right inferior parietal regions. An inverse relationship between CBF and IQ was mainly observed in bilateral posterior temporal regions. After adjusting for regional GMD, the correlations between CBF and IQ in the subgenual/anterior cingulate cortex, right orbitofrontal, superior temporal regions and left insula remained significant. These findings support the Parieto-Frontal Integration Theory of intelligence, especially the role of the subgenual/anterior cingulate cortex in the neural networks associated with intelligence. The present study also demonstrates the unique value of CBF in assessing brain-behavior relationships, in addition to structural morphometric measures.
Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.
2014-01-01
Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113
Zheng, Gang; Wen, Jiqiu; Lu, Hanzhang; Lou, Yaxian; Pan, Zhiying; Liu, Wei; Liu, Hui; Li, Xue; Zhang, Zhe; Chen, Huijuan; Kong, Xiang; Luo, Song; Jiang, Xiaolu; Liu, Ya; Zhang, Zongjun; Zhang, Long Jiang; Lu, Guang Ming
2016-06-01
To noninvasively assess global cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) in young adults with end-stage renal disease (ESRD). Thirty-six patients and 38 healthy volunteers were included and took part in MR examinations, blood and neuropsychological tests. CBF and OEF were measured by phase-contrast and T2-relaxation-under-spin-tagging MRI techniques, respectively. CMRO2 was computed from CBF, OEF and hematocrit according to Fick's principle. Correlations were performed between MR measurements, blood biochemistry measurements and neuropsychological test scores. Compared with controls, ESRD patients had elevated CBF (72.9 ± 12.5 vs. 63.8 ± 8.5 ml min(-1) 100 g(-1), P < 0.001), elevated OEF (47.2 ± 10.2 vs. 35.8 ± 5.4 %, P < 0.001), but unaffected CMRO2 (199.5 ± 36.4 vs. 193.8 ± 28.6 μmol O2 min(-1) 100 g(-1), P = 0.879). Hematocrit negatively correlated with CBF (r = -0.640, P < 0.001) and OEF (r = -0.701, P < 0.001), but not with CMRO2. Altered neuropsychological test scores of ESRD patients were associated with OEF and CBF, but not with CMRO2. There were weak relationships between eGFR and hematocrit (r = 0.308, P = 0.068) or CBF (r = 0.318, P = 0.059). Our findings suggested that anaemic young adults with ESRD may afford higher CBF and OEF to maintain a normal CMRO2. Despite this compensatory process, however, cognitive function was still impaired and its severity was correlated with their CBF and OEF abnormality. • Anaemic young adults with ESRD may afford higher CBF and OEF. • Anaemic young adults with ESRD maintain a normal CMRO 2 . • Cognitive function was still impaired in young ESRD adults. • The severity of cognitive dysfunction correlated with CBF and OEF changes.
Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka
2018-01-01
Quantitative cerebral blood flow (CBF) measurement is expected to help early detection of functional abnormalities caused by Alzheimer's disease (AD) and enable AD treatment to begin in its early stages. Recently, a technique of layer analysis was reported that allowed CBF to be analyzed from the outer to inner layers of the brain. The aim of this work was to develop methods for discriminating between patients with mild AD and healthy subjects based on CBF images of the lateral views created with the layer analysis technique in xenon-enhanced computed tomography. Xenon-enhanced computed tomography using a wide-volume CT was performed on 17 patients with mild AD aged 75 or older and on 15 healthy age-matched volunteers. For each subject, we created CBF images of the right and left lateral views with a depth of 10-15 mm from the surface of the brain. Ten circular regions of interest (ROI) were placed on each image, and CBF was calculated for each ROI. We determined discriminant ROI that had CBF that could be used to differentiate between the AD and volunteer groups. AD patients' CBF range (mean - SD to mean + SD) and healthy volunteers' CBF range (mean - SD to mean + SD) were obtained for each ROI. Receiver-operator curves were created to identify patients with AD for each of the discriminant ROI and for the AD patients' and healthy volunteers' CBF ranges. We selected an ROI on both the right and left temporal lobes as the discriminant ROI. Areas under the receiver-operator curve were 93.3% using the ROI on the right temporal lobe, 95.3% using the ROI on the left temporal lobe, and 92.4% using the AD patients' and healthy volunteers' CBF ranges. We could effectively discriminate between patients with mild AD and healthy subjects using ROI placed on CBF images of the lateral views in xenon-enhanced computed tomography. © 2017 Japanese Psychogeriatric Society.
Increased resting cerebral blood flow in adult Fabry disease: MRI arterial spin labeling study.
Phyu, Po; Merwick, Aine; Davagnanam, Indran; Bolsover, Fay; Jichi, Fatima; Wheeler-Kingshott, Claudia; Golay, Xavier; Hughes, Deralynn; Cipolotti, Lisa; Murphy, Elaine; Lachmann, Robin H; Werring, David John
2018-04-17
To assess resting cerebral blood flow (CBF) in the whole-brain and cerebral white matter (WM) and gray matter (GM) of adults with Fabry disease (FD), using arterial spin labeling (ASL) MRI, and to investigate CBF correlations with WM hyperintensity (WMH) volume and the circulating biomarker lyso-Gb3. This cross-sectional, case-control study included 25 patients with genetically confirmed FD and 18 age-matched healthy controls. We quantified resting CBF using Quantitative Signal Targeting With Alternating Radiofrequency Labeling of Arterial Regions (QUASAR) ASL MRI. We measured WMH volume using semiautomated software. We measured CBF in regions of interest in whole-brain, WM, and deep GM, and assessed correlations with WMH volume and plasma lyso-Gb3. The mean age (% male) for FD and healthy controls was 42.2 years (44%) and 37.1 years (50%). Mean whole-brain CBF was 27.56 mL/100 mL/min (95% confidence interval [CI] 23.78-31.34) for FD vs 22.39 mL/100 mL/min (95% CI 20.08-24.70) for healthy controls, p = 0.03. In WM, CBF was higher in FD (22.42 mL/100 mL/min [95% CI 17.72-27.12] vs 16.25 mL/100 mL/min [95% CI 14.03-18.48], p = 0.05). In deep GM, CBF was similar between groups (40.41 mL/100 mL/min [95% CI 36.85-43.97] for FD vs 37.46 mL/100 mL/min [95% CI 32.57-42.35], p = 0.38). In patients with FD with WMH (n = 20), whole-brain CBF correlated with WMH volume ( r = 0.59, p = 0.006), not with plasma lyso-Gb3. In FD, resting CBF is increased in WM but not deep GM. In FD, CBF correlates with WMH, suggesting that cerebral perfusion changes might contribute to, or result from, WM injury. © 2018 American Academy of Neurology.
Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S
2008-10-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease.
Karimi, M.; Golchin, N.; Tabbal, S. D.; Hershey, T.; Videen, T. O.; Wu, J.; Usche, J. W. M.; Revilla, F. J.; Hartlein, J. M.; Wernle, A. R.; Mink, J. W.
2008-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (rs = –0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (rs = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (rs = –0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease. PMID:18697909
Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari
2016-09-01
CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chen, Zi-Qi; Du, Ming-Ying; Zhao, You-Jin; Huang, Xiao-Qi; Li, Jing; Lui, Su; Hu, Jun-Mei; Sun, Huai-Qiang; Liu, Jia; Kemp, Graham J.; Gong, Qi-Yong
2015-01-01
Background Published meta-analyses of resting-state regional cerebral blood flow (rCBF) studies of major depressive disorder (MDD) have included patients receiving antidepressants, which might affect brain activity and thus bias the results. To our knowledge, no meta-analysis has investigated regional homogeneity changes in medication-free patients with MDD. Moreover, an association between regional homogeneity and rCBF has been demonstrated in some brain regions in healthy controls. We sought to explore to what extent resting-state rCBF and regional homogeneity changes co-occur in the depressed brain without the potential confound of medication. Methods Using the effect-size signed differential mapping method, we conducted 2 meta-analyses of rCBF and regional homogeneity studies of medication-free patients with MDD. Results Our systematic search identified 14 rCBF studies and 9 regional homogeneity studies. We identified conjoint decreases in resting-state rCBF and regional homogeneity in the insula and superior temporal gyrus in medication-free patients with MDD compared with controls. Other changes included altered resting-state rCBF in the precuneus and in the frontal–limbic–thalamic–striatal neural circuit as well as altered regional homogeneity in the uncus and parahippocampal gyrus. Meta-regression revealed that the percentage of female patients with MDD was negatively associated with resting-state rCBF in the right anterior cingulate cortex and that the age of patients with MDD was negatively associated with rCBF in the left insula and with regional homogeneity in the left uncus. Limitations The analysis techniques, patient characteristics and clinical variables of the included studies were heterogeneous. Conclusion The conjoint alterations of rCBF and regional homogeneity in the insula and superior temporal gyrus may be core neuropathological changes in medication-free patients with MDD and serve as a specific region of interest for further studies on MDD. PMID:25853283
Chen, Zi-Qi; Du, Ming-Ying; Zhao, You-Jin; Huang, Xiao-Qi; Li, Jing; Lui, Su; Hu, Jun-Mei; Sun, Huai-Qiang; Liu, Jia; Kemp, Graham J; Gong, Qi-Yong
2015-11-01
Published meta-analyses of resting-state regional cerebral blood flow (rCBF) studies of major depressive disorder (MDD) have included patients receiving antidepressants, which might affect brain activity and thus bias the results. To our knowledge, no meta-analysis has investigated regional homogeneity changes in medication-free patients with MDD. Moreover, an association between regional homogeneity and rCBF has been demonstrated in some brain regions in healthy controls. We sought to explore to what extent resting-state rCBF and regional homogeneity changes co-occur in the depressed brain without the potential confound of medication. Using the effect-size signed differential mapping method, we conducted 2 meta-analyses of rCBF and regional homogeneity studies of medication-free patients with MDD. Our systematic search identified 14 rCBF studies and 9 regional homogeneity studies. We identified conjoint decreases in resting-state rCBF and regional homogeneity in the insula and superior temporal gyrus in medication-free patients with MDD compared with controls. Other changes included altered resting-state rCBF in the precuneus and in the frontal-limbic-thalamic-striatal neural circuit as well as altered regional homogeneity in the uncus and parahippocampal gyrus. Meta-regression revealed that the percentage of female patients with MDD was negatively associated with resting-state rCBF in the right anterior cingulate cortex and that the age of patients with MDD was negatively associated with rCBF in the left insula and with regional homogeneity in the left uncus. The analysis techniques, patient characteristics and clinical variables of the included studies were heterogeneous. The conjoint alterations of rCBF and regional homogeneity in the insula and superior temporal gyrus may be core neuropathological changes in medication-free patients with MDD and serve as a specific region of interest for further studies on MDD.
Engel, Doortje C; Mies, Günter; Terpolilli, Nicole A; Trabold, Raimund; Loch, Alexander; De Zeeuw, Chris I; Weber, John T; Maas, Andrew I R; Plesnila, Nikolaus
2008-07-01
Although changes of cerebral blood flow (CBF) in and around traumatic contusions are well documented, the role of CBF for the delayed death of neuronal cells in the traumatic penumbra ultimately resulting in secondary contusion expansion remains unclear. The aim of the current study was therefore to investigate the relationship between changes of CBF and progressive peri-contusional cell death following traumatic brain injury (TBI). CBF and contusion size were measured in C57Bl6 mice under continuous on-line monitoring of (ETp)CO2 before, and at 15 min and 24 h following controlled cortical impact by 14C-iodoantipyrine autoradiography (IAP-AR; n = 5-6 per group) and by Nissl staining, respectively. Contused and ischemic (CBF < 10%) tissue volumes were calculated and compared over time. Cortical CBF in not injured mice varied between 69 and 93 mL/100mg/min depending on the anatomical location. Fifteen minutes after trauma, CBF decreased in the whole brain by approximately 50% (39 +/- 18 mL/100mg/min; p < 0.05), except in contused tissue where it fell by more than 90% (3 +/- 2 mL/100mg/min; p < 0.001). Within 24 h after TBI, CBF recovered to normal values in all brain areas except the contusion where it remained reduced by more than 90% (p < 0.001). Contusion volume expanded from 24.9 to 35.5 mm3 (p < 0.01) from 15 min to 24 h after trauma (+43%), whereas the area of severe ischemia (CBF < 10%) showed only a minimal (+13%) and not significant increase (22.3 to 25.1 mm3). The current data therefore suggest that the delayed secondary expansion of a cortical contusion following traumatic brain injury may not be caused by a reduction of CBF alone.
Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice
Scremin, Oscar U.; Holschneider, Daniel P.; Chen, Kevin; Li, Mingen G.; Shih, Jean C.
2014-01-01
Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n = 11) and the corresponding wild-type animals (WILD, n = 11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g−1 min−1 in normal saline at a volume rate of 0.11 μl g−1 min−1) or saline at the same volume rate. Maps of relative CBF distribution showed predominance of midline motor and sensory area CBF in KO mice over WILD mice that received saline. PEA enhanced CBF in lateral frontal and piriform cortex in both KO and WILD mice. These changes may reflect a differential activation due to chronic and acute PEA elevations on motor and olfactory function, as well as on the anxiogenic effects of this amine. In addition to its effects on regional CBF distribution, PEA decreased CBF globally in KO mice (range −31% to −41% decrease from control levels) with a lesser effect in WILD mice. It is concluded that MAOB may normally regulate CBF distribution and its response to blood PEA. PMID:10095040
Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui
2017-10-21
Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com
Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min
2013-02-01
Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.
Altered Cerebral Blood Flow Covariance Network in Schizophrenia.
Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui
2016-01-01
Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.
Jones, Stephen C; Easley, Kirk A; Radinsky, Carol R; Chyatte, Douglas; Furlan, Anthony J; Perez-Trepichio, Alejandro D
2003-09-01
Variations in the height of the CBF response to hypotension have been described recently in normal animals. The authors evaluated the effects of nitric oxide synthase (NOS) inhibition on these variations in height using laser Doppler flowmetry in 42 anesthetized (halothane and N2O) male Sprague-Dawley rats prepared with a superfused closed cranial window. In four groups (time control, enantiomer control, NOS inhibition, and reinfusion control) exsanguination to MABPs from 100 to 40 mm Hg was used to produce autoregulatory curves. For each curve the lower limit of autoregulation (the MABP at the first decrease in CBF) was identified; the pattern of autoregulation was classified as "peak" (15% increase in %CBF), "classic" (plateau with a decrease at the lower limit of autoregulation), or "none" (15% decrease in %CBF); and the autoregulatory height as the %CBF at 70 mm Hg (%CBF(70)) was determined. NOS inhibition decreased %CBF(70) in the NOS inhibition group (P = 0.014), in the control (combined time and enantiomer control) group (P = 0.015), and in the reinfusion control group (P = 0.025). NOS inhibition via superfusion depressed the autoregulatory pattern (P = 0.02, McNemar test on changes in autoregulatory pattern) compared with control (P = 0.375). Analysis of covariance showed that changes induced by NOS inhibition in the parameters of autoregulatory height are not related to changes in the lower limit, but are strongly (P < 0.001) related to each other. NOS inhibition depressed the autoregulatory pattern, decreasing the seemingly paradoxical increase in CBF as blood pressure decreases. These results suggest that nitric oxide increases CBF near the lower limit and augments the hypotensive portion of the autoregulatory curve.
Variation of Ciliary Beat Pattern in Three Different Beating Planes in Healthy Subjects.
Kempeneers, Celine; Seaton, Claire; Chilvers, Mark A
2017-05-01
Digital high-speed video microscopy (DHSV) allows analysis of ciliary beat frequency (CBF) and ciliary beat pattern (CBP) of respiratory cilia in three planes. Normal reference data use a sideways edge to evaluate ciliary dyskinesia and calculate CBF using the time needed for a cilium to complete 10 beat cycles. Variability in CBF within the respiratory epithelium has been described, but data concerning variation of CBP is limited in healthy epithelium. This study aimed to document variability of CBP in normal samples, to compare ciliary function in three profiles, and to compare CBF calculated over five or 10 beat cycles. Nasal brushing samples from 13 healthy subjects were recorded using DHSV in three profiles. CBP and CBF over a 10-beat cycle were evaluated in all profiles, and CBF was reevaluated over five-beat cycles in the sideways edges. A uniform CBP was seen in 82.1% of edges. In the sideways profile, uniformity within the edge was lower (uniform normal CBP, 69.1% [sideways profile]; 97.1% [toward the observer], 92.0% [from above]), and dyskinesia was higher. Interobserver agreement for dyskinesia was poor. CBF was not different between profiles (P = .8097) or between 10 and five beat cycles (P = .1126). Our study demonstrates a lack of uniformity and consistency in manual CBP analysis of samples from healthy subjects, emphasizing the risk of automated CBP analysis in limited regions of interest and of single and limited manual CBP analysis. The toward the observer and from above profiles may be used to calculate CBF but may be less sensitive for evaluation of ciliary dyskinesia and CBP. CBF can be measured reliably by evaluation of only five-beat cycles. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Traverse, Jay H; Chen, YingJie; Hou, MingXiao; Li, Yunfang; Bache, Robert J
2007-06-08
K(+)(ATP) channels are important metabolic regulators of coronary blood flow (CBF) that are activated in the setting of reduced levels of ATP or perfusion pressure. In the normal heart, blockade of K(+)(ATP) channels results in a approximately 20% reduction in resting CBF but does not impair the increase in CBF that occurs during exercise. In contrast, adenosine receptor blockade fails to alter CBF or myocardial oxygen consumption (MVO(2)) in the normal heart but contributes to the increase in CBF during exercise when vascular K(+)(ATP) channels are blocked. Congestive heart failure (CHF) is associated with a decrease in CBF that is matched to a decrease in MVO(2) suggesting downregulation of myocardial energy utilization. Because myocardial ATP levels and coronary perfusion pressure are reduced in CHF, this study was undertaken to examine the role of K(+)(ATP) channels and adenosine in dogs with pacing-induced CHF. Myocardial blood flow (MBF) and MVO(2) were measured during rest and treadmill exercise before and after K(+)(ATP) channel blockade with glibenclamide (50 microg/kg/min ic) or adenosine receptor blockade with 8-phenyltheophylline (8-PT; 5 mg/kg iv). Inhibition of K(+)(ATP) channels resulted in a decrease in CBF and MVO(2) at rest and during exercise without a change in the relationship between CBF and MVO(2). In contrast, adenosine receptor blockade caused a significant increase in CBF that occurred secondary to an increase of MVO(2). These findings demonstrate that coronary K(+)(ATP) channel activity contribute to the regulation of resting MBF in CHF, and that endogenous adenosine may act to inhibit MVO(2) in the failing heart.
Ramage, Amy E; Lin, Ai-Ling; Olvera, Rene L; Fox, Peter T; Williamson, Douglas E
2015-04-01
Adolescence is a period of developmental flux when brain systems are vulnerable to influences of early substance use, which in turn relays increased risk for substance use disorders. Our study intent was to assess adolescent regional cerebral blood flow (rCBF) as it relates to current and future alcohol use. The aim was to identify brain-based predictors for initiation of alcohol use and onset of future substance use disorders. Quantitative rCBF was assessed in 100 adolescents (age 12-15). Prospective behavioral assessments were conducted annually over a three-year follow-up period to characterize onset of alcohol initiation, future drinking patterns and use disorders. Comparisons amongst use groups (i.e., current-, future-, and non-alcohol using adolescents) identified rCBF associated with initiation of alcohol use. Regression by future drinking patterns identified rCBF predictive of heavier drinking. Survival analysis determined whether or not baseline rCBF predicted later development of use disorders. Baseline rCBF was decreased to the parietal cortex and increased to mesolimbic regions in adolescents currently using alcohol as well as those who would use alcohol in the future. Higher baseline rCBF to the left fusiform gyrus and lower rCBF to the right inferior parietal cortex and left cerebellum was associated with future drinking patterns as well as predicted the onset of alcohol and substance use disorders in this cohort. Variations in resting rCBF to regions within reward and default mode or control networks appear to represent trait markers of alcohol use initiation and are predictive of future development of use disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Uruma, G; Kakuda, W; Abo, M
2010-03-01
The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.
Khalili-Mahani, Najmeh; van Osch, Matthias J; de Rooij, Mark; Beckmann, Christian F; van Buchem, Mark A; Dahan, Albert; van Gerven, Johannes M; Rombouts, Serge A R B
2014-03-01
Resting state fMRI (RSfMRI) and arterial spin labeling (ASL) provide the field of pharmacological Neuroimaging tool for investigating states of brain activity in terms of functional connectivity or cerebral blood flow (CBF). Functional connectivity reflects the degree of synchrony or correlation of spontaneous fluctuations--mostly in the blood oxygen level dependent (BOLD) signal--across brain networks; but CBF reflects mean delivery of arterial blood to the brain tissue over time. The BOLD and CBF signals are linked to common neurovascular and hemodynamic mechanisms that necessitate increased oxygen transportation to the site of neuronal activation; however, the scale and the sources of variation in static CBF and spatiotemporal BOLD correlations are likely different. We tested this hypothesis by examining the relation between CBF and resting-state-network consistency (RSNC)--representing average intranetwork connectivity, determined from dual regression analysis with eight standard networks of interest (NOIs)--in a crossover placebo-controlled study of morphine and alcohol. Overall, we observed spatially heterogeneous relations between RSNC and CBF, and between the experimental factors (drug-by-time, time, drug and physiological rates) and each of these metrics. The drug-by-time effects on CBF were significant in all networks, but significant RSNC changes were limited to the sensorimotor, the executive/salience and the working memory networks. The post-hoc voxel-wise statistics revealed similar dissociations, perhaps suggesting differential sensitivity of RSNC and CBF to neuronal and vascular endpoints of drug actions. The spatial heterogeneity of RSNC/CBF relations encourages further investigation into the role of neuroreceptor distribution and cerebrovascular anatomy in predicting spontaneous fluctuations under drugs. Copyright © 2012 Wiley Periodicals, Inc.
Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J
2001-08-01
The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.
42 CFR 413.335 - Basis of payment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Facilities § 413.335 Basis of payment. (a) Method of payment. Under the prospective payment system, SNFs... and, during a transition period, on the basis of a blend of the Federal rate and the facility-specific...
Hwang, Jaeuk; Lyoo, In Kyoon; Kim, Seog Ju; Sung, Young Hoon; Bae, Soojeong; Cho, Sung-Nam; Lee, Ho Young; Lee, Dong Soo; Renshaw, Perry F
2006-04-28
The aim of the current study was to explore changes of relative regional cerebral blood flow (rCBF) in short-term and long-term abstinent methamphetamine (MA) users. Relative rCBF in 40 abstinent MA users and 23 healthy comparison subjects was compared by the technetium-99m-hexamethyl-propylene amine oxime ((99m)Tc-HMPAO) single photon emission computed tomography (SPECT). Relative rCBF in areas that were found to differ significantly was also compared in groups of MA users with short-term (<6 months) and long-term (>or=6 months) abstinence. MA users showed decreased relative rCBF in the right anterior cingulate cortex (Brodmann area 32) relative to healthy comparison subjects. Long-term abstinent MA users had significantly greater rCBF than short-term abstinent MA users. We report that abstinent MA users have decreased rCBF in the anterior cingulate cortex with smaller relative decreases in subjects with prolonged abstinence.
NASA Astrophysics Data System (ADS)
Popovic, Djordje; Bodo, Michael; Pearce, Frederick; van Albert, Stephen; Garcia, Alison; Settle, Tim; Armonda, Rocco
2013-04-01
The ability of cerebral vasculature to regulate cerebral blood flow (CBF) in the face of changes in arterial blood pressure (SAP) or intracranial pressure (ICP) is an important guard against secondary ischemia in acute brain injuries, and official guidelines recommend that therapeutic decisions be guided by continuous monitoring of CBF autoregulation (AR). The common method for CBF AR monitoring, which rests on real-time derivation of the correlation coefficient (PRx) between slow oscillations in SAP and ICP is, however, rarely used in clinical practice because it requires invasive ICP measurements. This study investigated whether the correlation coefficient between SAP and the pulsatile component of the non-invasive transcranial bioimpedance signal (rheoencephalography, REG) could be used to assess the state and lower limit of CBF AR. The results from pigs and rhesus macaques affirm the utility of REG; however, additional animal and clinical studies are warranted to assess selectivity of automatic REG-based evaluation of CBF AR.
A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids
NASA Astrophysics Data System (ADS)
Wang, Hsiao-Fang; Ho, Rong-Ming
2015-03-01
Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.
Tillett, Richard L; Wheatley, Matthew D; Tattersall, Elizabeth A R; Schlauch, Karen A; Cramer, Grant R; Cushman, John C
2012-01-01
Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. 'Freedom' and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2 °C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9-12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Wierenga, Christina E.; Bischoff-Grethe, Amanda; Rasmusson, Grace; Bailer, Ursula F.; Berner, Laura A.; Liu, Thomas T.; Kaye, Walter H.
2017-01-01
The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, fasting increases CBF, reflecting increased delivery of oxygen and glucose to support brain metabolism. This study investigated whether women remitted from restricting-type AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysregulation contributing to their ability to restrict food. We compared resting CBF measured with pulsed arterial spin labeling in 21 RAN and 16 healthy comparison women (CW) when hungry (after a 16-h fast) and after a meal. Only remitted subjects were examined to avoid the confounding effects of malnutrition on brain function. Compared to CW, RAN demonstrated a reduced difference in the Hungry − Fed CBF contrast in the right ventral striatum, right subgenual anterior cingulate cortex (pcorr < 0.05) and left posterior insula (punc < 0.05); RAN had decreased CBF when hungry versus fed, whereas CW had increased CBF when hungry versus fed. Moreover, decreased CBF when hungry in the left insula was associated with greater hunger ratings on the fasted day for RAN. This represents the first study to show that women remitted from AN have aberrant resting neurovascular function in homeostatic neural circuitry in response to hunger. Regions involved in homeostatic regulation showed group differences in the Hungry − Fed contrast, suggesting altered cellular energy metabolism in this circuitry that may reduce motivation to eat. PMID:28770207
Wierenga, Christina E; Bischoff-Grethe, Amanda; Rasmusson, Grace; Bailer, Ursula F; Berner, Laura A; Liu, Thomas T; Kaye, Walter H
2017-01-01
The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, fasting increases CBF, reflecting increased delivery of oxygen and glucose to support brain metabolism. This study investigated whether women remitted from restricting-type AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysregulation contributing to their ability to restrict food. We compared resting CBF measured with pulsed arterial spin labeling in 21 RAN and 16 healthy comparison women (CW) when hungry (after a 16-h fast) and after a meal. Only remitted subjects were examined to avoid the confounding effects of malnutrition on brain function. Compared to CW, RAN demonstrated a reduced difference in the Hungry - Fed CBF contrast in the right ventral striatum, right subgenual anterior cingulate cortex ( p corr < 0.05) and left posterior insula ( p unc < 0.05); RAN had decreased CBF when hungry versus fed, whereas CW had increased CBF when hungry versus fed. Moreover, decreased CBF when hungry in the left insula was associated with greater hunger ratings on the fasted day for RAN. This represents the first study to show that women remitted from AN have aberrant resting neurovascular function in homeostatic neural circuitry in response to hunger. Regions involved in homeostatic regulation showed group differences in the Hungry - Fed contrast, suggesting altered cellular energy metabolism in this circuitry that may reduce motivation to eat.
99mTc-d,l-HMPAO and SPECT of the brain in normal aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldemar, G.; Hasselbalch, S.G.; Andersen, A.R.
1991-05-01
Single photon emission computed tomography (SPECT) with 99mTc-d,l-hexamethylpropyleneamine oxime (99mTc-d,l-HMPAO) was used to determine global and regional CBF in 53 healthy subjects aged 21-83 years. For the whole group, global CBF normalized to the cerebellum was 86.4% +/- 8.4 (SD). The contribution of age, sex, and atrophy to variations in global CBF was studied using stepwise multiple regression analysis. There was a significant negative correlation of global CBF with subjective ratings of cortical atrophy, but not with ratings of ventricular size, Evans ratio, sex, or age. In a subgroup of 33 subjects, in whom volumetric measurements of atrophy were performed,more » cortical atrophy was the only significant determinant for global CBF, accounting for 27% of its variance. Mean global CBF as measured with the 133Xe inhalation technique and SPECT was 54 +/- 9 ml/100 g/min and did not correlate significantly with age. There was a preferential decline of CBF in the frontal cortex with advancing age. The side-to-side asymmetry of several regions of interest increased with age. A method was described for estimation of subcortical CBF, which decreased with advancing cortical atrophy. The relative area of the subcortical low-flow region increased with age. These results are useful in distinguishing the effects of age and simple atrophy from disease effects, when the 99mTc-d,l-HMPAO method is used.« less
Fiber optic laser light scattering measurement of ciliary function of the fallopian tube
NASA Astrophysics Data System (ADS)
Halbert, Sheridan A.; Lim, Kap; Lee, Wylie I.
1990-07-01
A fiber-optic laser light-scattering system (FLS) for measuring ciliary function was evaluated by means of three sets of in vitro experiments. First, FLS performance was compared to that of a previously proven benchtop laser system (BLS). Using tissue excised from rabbit fallopian tubes, ciliary beat frequency (CBF) of each sample was measured with FLS and BLS. Paired CBF measurements showed excellent correlation between the two systems (r =0.93). Second, the FLS was used to evaluate the dependency of CBF on temperature (T) by using tissue sampies of rabbit oviductal fimbna. Regression analysis of CBF vs T showed a linear relationship over the range of 18-37°C for both individual samples (r =0.98) and pooled data from all experiments (r = 0.84). Fmally, the relalionship between CBF and ciliary ovum transport rate (TR) was tested by using T to modulate CBF of rabbit fimbria, in vitro. The relationship was linear over the range of CBF from 10 to 30 Hz (r2 = 0.83). At 37°C, CBF = 31+/-1 Hz, and TR = O.12+/-.02 mm/sec. equal to ovum transport rate in situ. The FLS is a valuable tool for characterizing ciliary activity and thus ovum transport function. Owing to the fact that ciliary dyskinesia resulting from disease of the fallopian tube is associated with infeitility, the FLS may be useful to acquire data important to the clinical evaluation of fallopian tube function and female infertility.
Robertson, Andrew D; Crane, David E; Rajab, A Saeed; Swardfager, Walter; Marzolini, Susan; Shirzadi, Zahra; Middleton, Laura E; MacIntosh, Bradley J
2015-08-01
The mechanisms supporting functional improvement by aerobic exercise following stroke remain incompletely understood. This study investigated how cycling intensity and aerobic fitness influence cerebral blood flow (CBF) following a single exercise session. Thirteen community-living stroke survivors performed 20 min of semi-recumbent cycling at low and moderate intensities (40-50 and 60-70 % of heart rate reserve, respectively) as determined from an exercise stress test. CBF was quantified by arterial spin labeling MRI at baseline, as well as 30 and 50 min post-exercise. An intensity-dependent effect was observed in the right post-central and supramarginal gyri up to 50 min after exercise (uncorrected p < 0.005, cluster size ≥10). Regional CBF was increased 18 ± 17 % and reduced 8 ± 12 % following moderate- and low-intensity cycling, respectively. In contrast, CBF changes were similar between sessions in the right lentiform nucleus and mid-frontal gyrus, as well as the left temporal and parietal gyri. Aerobic fitness was directly related to posterior cingulate and thalamic CBF, and inversely related to precuneal CBF at rest (R (2) ≥ 0.75); however, no relationship between fitness and the post-exercise change in CBF was observed. Divergent changes in regional CBF were observed in the right parietal cortex following low- and moderate-intensity exercise, which suggests that intensity of prescribed exercise may be useful in optimizing rehabilitation.
Nagai, Toshiya; Kajita, Yasukazu; Maesawa, Satoshi; Nakatsubo, Daisuke; Yoshida, Kota; Kato, Katsuhiko; Wakabayashi, Toshihiko
2012-01-01
Preoperative regional cerebral blood flow (rCBF) was measured in 92 patients with Parkinson's disease (PD) by iodine-123 N-isopropyl-p-iodoamphetamine single-photon emission computed tomography. Quantitative mapping of rCBF was performed using the stereotactic extraction estimation method. The clinical features of the patients were assessed according to the Unified Parkinson Disease Rating Scale (UPDRS). The correlation between rCBF and improvement in the UPDRS score following surgery was examined. rCBF in the fusiform gyrus, superior and inferior parietal gyri, middle occipital gyrus, superior frontal gyrus, and middle temporal gyrus of the Talairach Daemon Level 3 was significantly correlated with UPDRS part II (off stage) and III (on stage) scores (p < 0.05). rCBF in the middle temporal gyrus (p = 0.00147), medial frontal gyrus (p = 0.00713), and cerebellum (p = 0.048) of the Talairach Daemon Level 3 was significantly greater in 47 patients with >60% improvement of UPDRS part III (off stage) score than in 37 patients with 40-60% improvement. The cutoff value of rCBF, which indicated that >40% improvement in the surgical outcome could be expected, was 38.8 ± 6.2 ml/100 g/min in the frontal lobe. This study indicated that rCBF in patients with PD might be related to their clinical features, suggesting that quantitative mapping of rCBF may be useful for predicting surgical outcome.
Priming within and across modalities: exploring the nature of rCBF increases and decreases.
Badgaiyan, R D; Schacter, D L; Alpert, N M
2001-02-01
Neuroimaging studies suggest that within-modality priming is associated with reduced regional cerebral blood flow (rCBF) in the extrastriate area, whereas cross-modality priming is associated with increased rCBF in prefrontal cortex. To characterize the nature of rCBF changes in within- and cross-modality priming, we conducted two neuroimaging experiments using positron emission tomography (PET). In experiment 1, rCBF changes in within-modality auditory priming on a word stem completion task were observed under same- and different-voice conditions. Both conditions were associated with decreased rCBF in extrastriate cortex. In the different-voice condition there were additional rCBF changes in the middle temporal gyrus and prefrontal cortex. Results suggest that the extrastriate involvement in within-modality priming is sensitive to a change in sensory modality of target stimuli between study and test, but not to a change in the feature of a stimulus within the same modality. In experiment 2, we studied cross-modality priming on a visual stem completion test after encoding under full- and divided-attention conditions. Increased rCBF in the anterior prefrontal cortex was observed in the full- but not in the divided-attention condition. Because explicit retrieval is compromised after encoding under the divided-attention condition, prefrontal involvement in cross-modality priming indicates recruitment of an aspect of explicit retrieval mechanism. The aspect of explicit retrieval that is most likely to be involved in cross-modality priming is the familiarity effect. Copyright 2001 Academic Press.
Cerebral blood flow in normal and abnormal sleep and dreaming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, J.S.; Ishikawa, Y.; Hata, T.
Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreamingmore » CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.« less
Acute marijuana effects on rCBF and cognition: a PET study.
O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D
2000-11-27
The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.
Smeda, John S; Daneshtalab, Noriko
2011-02-01
The ability of captopril and losartan treatment to restore cerebral blood flow (CBF) autoregulation after intracerebral hemorrhagic stroke (HS) was assessed in Kyoto-Wistar stroke-prone hypertensive rats (SHRsp). Laser Doppler techniques assessed CBF autoregulation in the middle cerebral artery (MCA) perfusion domain and a pressure myograph was used to measure pressure-dependent constriction (PDC) in isolated MCAs before and after stroke and after 13, 33, and 63 days of poststroke captopril or losartan treatment. The treatments did not lower blood pressure (BP) and equally suppressed plasma aldosterone after HS. The HS development was associated with the loss of CBF autoregulation, high CBF, increased CBF conductance to elevations in BP, and the loss of PDC in the MCAs. Both treatments restored these functions to prestroke levels within 13 days. The PDC and CBF autoregulation subsequently deteriorated after 63 days of captopril treatment while being maintained at prestroke levels over all durations of losartan treatment. The SHRsp subjected to 35 days of poststroke losartan treatment exhibited less blood-brain barrier (BBB) disruption and brain herniation than captopril-treated SHRsp. The superior ability of losartan to restore CBF autoregulation and myogenic function may have contributed to the more effective attenuation of cerebral damage after HS.
Smeda, John S; Daneshtalab, Noriko
2011-01-01
The ability of captopril and losartan treatment to restore cerebral blood flow (CBF) autoregulation after intracerebral hemorrhagic stroke (HS) was assessed in Kyoto–Wistar stroke-prone hypertensive rats (SHRsp). Laser Doppler techniques assessed CBF autoregulation in the middle cerebral artery (MCA) perfusion domain and a pressure myograph was used to measure pressure-dependent constriction (PDC) in isolated MCAs before and after stroke and after 13, 33, and 63 days of poststroke captopril or losartan treatment. The treatments did not lower blood pressure (BP) and equally suppressed plasma aldosterone after HS. The HS development was associated with the loss of CBF autoregulation, high CBF, increased CBF conductance to elevations in BP, and the loss of PDC in the MCAs. Both treatments restored these functions to prestroke levels within 13 days. The PDC and CBF autoregulation subsequently deteriorated after 63 days of captopril treatment while being maintained at prestroke levels over all durations of losartan treatment. The SHRsp subjected to 35 days of poststroke losartan treatment exhibited less blood–brain barrier (BBB) disruption and brain herniation than captopril-treated SHRsp. The superior ability of losartan to restore CBF autoregulation and myogenic function may have contributed to the more effective attenuation of cerebral damage after HS. PMID:20648036
Cockburn, Neil; Kovacs, Michael
2016-01-01
CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155–180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877
Tian, Yuwei; Wang, Hui; Li, Bing; Ke, Mengyun; Wang, Jing; Dou, Jie; Zhou, Changlin
2013-11-01
The 30-amino acid antimicrobial peptide Cbf-K16 is a cathelicidin-BF (BF-30) Lys16 mutant derived from the snake venom of Bungarus fasciatus. Our previous study found that BF-30 selectively inhibited the proliferation of the metastatic melanoma cell line B16F10 in vitro and in vivo, but had a negligible effect on human lung cells. In the present study, it was demonstrated for the first time that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells in vitro, with low toxicity to normal cells. The half-maximal inhibitory concentrations (IC50) of Cbf-K16 against H460 human non-small cell lung carcinoma cells and mouse Lewis lung cancer cells were only 16.5 and 10.5 µM, respectively, which were much less compared to that of BF-30 (45 and 40.3 µM). Data using a transmission electron microscope (TEM) assay showed that, at 20 and 40 µM, Cbf-K16 induced the rupture of the cytoplasmic membrane, which was consistent with data obtained from lactate dehydrogenase (LDH) release assays. The LDH release increased from 17.8 to 52.9% as the duration and dosage of Cbf-K16 increased. Annexin V-fluorescein and propidium iodide staining assays indicated that there were no obvious apoptotic effects at the different dosages and times tested. In H460 cells, the rate of genomic DNA binding increased from 51.9 to 86.8% as the concentration of Cbf-K16 increased from 5 to 10 µM. These data indicate that Cbf-K16 selectively inhibits the proliferation of lung carcinoma cells via cytoplasmic membrane permeabilization and DNA binding, rather than apoptosis. Although Cbf-K16 displayed significant cytotoxic activity (40 µM) against tumor cells, in splenocytes no significant inhibitory effect was observed and hemolysis was only 5.6%. These results suggest that Cbf-K16 is a low-toxicity anti-lung cancer drug candidate.
Biodiesel Blending Tax Credit Businesses and individuals are eligible for a tax credit of up to 15 operator of a motor fuel outlet. The credit can be claimed up to two tax years before the taxpayer begins tax liability. If the facility ceases to blend biodiesel for 12 continuous months within five years of
Code of Federal Regulations, 2010 CFR
2010-10-01
... establishes the method for determining Medicare payments for services related to covered ambulatory surgical... deductibles and coinsurance; or (2) The blended payment amount as described in paragraph (d) of this section...) Blended payment amount. (1) For cost reporting periods beginning on or after October 1, 1987 but before...
Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L
2018-05-09
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
Autoregulation after ischaemic stroke
Powers, William J.; Videen, Tom O.; Diringer, Michael N.; Aiyagari, Venkatesh; Zazulia, Allyson R.
2010-01-01
Objectives Absent outcome data from randomized clinical trials, management of hypertension in acute ischaemic stroke remains controversial. Data from human participants have failed to resolve the question whether cerebral blood flow (CBF) in the peri-infarct region will decrease due to impaired autoregulation when systemic mean arterial pressure (MAP) is rapidly reduced. Methods Nine participants, 1–11 days after hemispheric ischaemic stroke, with systolic blood pressure more than 145 mmHg, underwent baseline PET measurements of regional CBF. Intravenous nicardipine infusion was then used to rapidly reduce mean arterial pressure 16 ± 7 mmHg and CBF measurement was repeated. Results Compared with the contralateral hemisphere, there were no significant differences in the percent change in CBF in the infarct (P = 0.43), peri-infarct region (P = 1.00) or remainder of the ipsilateral hemisphere (P = 0.50). Two participants showed CBF reductions of greater than 19% in both hemispheres. Conclusion In this study, selective regional impairment of CBF autoregulation in the infarcted hemisohere to reduced systemic blood pressure was not a characteristic of acute cerebral infarction. Reductions in CBF did occur in some individuals, but it was bihemispheric phenomenon that likely was due to an upward shift of the autoregulatory curve as a consequence of chronic hypertension. These results indicate individual monitoring of changes in global CBF, such as with bedside transcranial Doppler, may be useful to determine individual safe limits when MAP is lowered in the setting of acute ischaemic stroke. The benefit of such an approach can only be demonstrated by clinical trials demonstrating improved patient outcome. PMID:19644387
KATAOKA, Hiroharu; MIYAMOTO, Susumu; OGASAWARA, Kuniaki; IIHARA, Koji; TAKAHASHI, Jun C.; NAKAGAWARA, Jyoji; INOUE, Tooru; MORI, Etsuro; OGAWA, Akira
The purpose of this study is to determine the true threshold of cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) for subsequent ischemic stroke without extracranial-intracranial (EC-IC) bypass surgery in patients with hemodynamic ischemia due to symptomatic major cerebral arterial occlusive diseases. Patients were categorized based on rest CBF and CVR into four subgroups as follows: Group A, 80% < CBF < 90% and CVR < 10%; Group B, CBF < 80% and 10% < CVR < 20%; Group C, 80% < CBF < 90% and 10% < CVR < 20%; and Group D, CBF < 90% and 20% < CVR < 30%. Patients were followed up for 2 years under best medical treatment by the stroke neurologists. Primary and secondary end points were defined as all adverse events and ipsilateral stroke recurrence respectively. A total of 132 patients were enrolled. All adverse events were observed in 9 patients (3.5%/year) and ipsilateral stroke recurrence was observed only in 2 patients (0.8%/year). There was no significant difference among the four subgroups in terms of the rate of both primary and secondary end points. Compared with the medical arm of the Japanese EC-IC bypass trial (JET) study including patients with CBF < 80% and CVR < 10% as a historical control, the incidence of ipsilateral stroke recurrence was significantly lower in the present study. Patients with symptomatic major cerebral arterial occlusive diseases and mild hemodynamic compromise have a good prognosis under medical treatment. EC-IC bypass surgery is unlikely to benefit patients with CBF > 80% or CVR > 10%. PMID:26041628
Johnson, Ulf; Engquist, Henrik; Howells, Tim; Nilsson, Pelle; Ronne-Engström, Elisabeth; Lewén, Anders; Rostami, Elham; Enblad, Per
2016-08-01
Subarachnoid hemorrhage (SAH) is a disease with a high rate of unfavorable outcome, often related to delayed cerebral ischemia (DCI), i.e., ischemic injury that develops days-weeks after onset, with a multifactorial etiology. Disturbances in cerebral pressure autoregulation, the ability to maintain a steady cerebral blood flow (CBF), despite fluctuations in systemic blood pressure, have been suggested to play a role in the development of DCI. Pressure reactivity index (PRx) is a well-established measure of cerebral pressure autoregulation that has been used to study traumatic brain injury, but not extensively in SAH. To study the relation between PRx and CBF in SAH patients, and to examine if PRx can be used to predict DCI. Retrospective analysis of prospectively collected data. PRx was calculated as the correlation coefficient between mean arterial blood pressure (MABP) and intracranial pressure (ICP) in a 5 min moving window. CBF was measured using bedside Xenon-CT (Xe-CT). DCI was diagnosed clinically. 47 poor-grade mechanically ventilated patients were studied. Patients with disturbed pressure autoregulation (high PRx values) had lower CBF, as measured by bedside Xe-CT; both in the early (day 0-3) and late (day 4-14) acute phase of the disease. PRx did not differ significantly between patients who developed DCI or not. In mechanically ventilated and sedated SAH patients, high PRx (more disturbed CBF pressure autoregulation) is associated with low CBF, both day 0-3 and day 4-14 after onset. The role of PRx as a monitoring tool in SAH patients needs further studying.
Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans.
Tymko, Michael M; Ainslie, Philip N; Smith, Kurt J
2018-05-16
The first accounts of measuring cerebral blood flow (CBF) in humans were made by Angelo Mosso in ~1880, who recorded brain pulsations in patients with skull defects. In 1890, Charles Roy and Charles Sherrington determined in animals that brain pulsations-assessed via a similar method used by Mosso-were altered during a variety of stimuli including sensory nerve stimulation, asphyxia, and pharmacological interventions. Between 1880 and 1944, measurements for CBF were typically relied on skull abnormalities in humans. Thereafter, Kety and Schmidt introduced a new methodological approach in 1945 that involved nitrous oxide dilution combined with serial arterial and jugular venous blood sampling. Less than a decade later (1950's), several research groups employed the Kety-Schmidt technique to assess the effects of exercise on global CBF and metabolism; these studies demonstrated an uncoupling of CBF and metabolism during exercise, which was contrary to early hypotheses. However, there were several limitations to this technique related to low temporal resolution and the inability to measure regional CBF. These limitations were overcome in the 1960's when transcranial Doppler ultrasound (TCD) was developed as a method to measure beat-by-beat cerebral blood velocity. Between 1990 and 2010, TCD further progressed our understanding of CBF regulation and allowed for insight into other mechanistic factors, independent of local metabolism, involved in regulating CBF during exercise. Recently, it was discovered that TCD may not be accurate under several physiological conditions. Other measures of indexing CBF such as Duplex ultrasound and magnetic resonance imaging, although not without some limitations, may be more applicable for future investigations.
Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response
USDA-ARS?s Scientific Manuscript database
Transcription factors C-repeat/dehydration-responsive element binding proteins (CBF/DREB) play an important role in plant response to abiotic stresses. Over-expression of various CBF/DREB genes in diverse plants have been reported, but inconsistency of gene donor, recipient genus, parameters used i...
Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise.
Madsen, P L; Sperling, B K; Warming, T; Schmidt, J F; Secher, N H; Wildschiødtz, G; Holm, S; Lassen, N A
1993-01-01
Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions. To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P < 0.0001) increase in MCA Vmean was observed. Hence, the exercise-induced increase in MCA Vmean is not a reflection of a proportional increase in CBF.
beta. -Receptor-mediated increase in cerebral blood flow during hypoglycemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinger, B.R.; Bryan, R.M.
1987-10-01
The authors tested the hypothesis that {beta}-adrenergic receptor stimulation is involved with the increase in regional cerebral blood flow (rCBF) during hypoglycemia. Rats were surgically prepared with the use of halothane-nitrous oxide anesthesia. A plaster restraining cast was placed around the hindquarters, and anesthesia was discontinued. Hypoglycemia was produced by an intravenous injection of insulin; normoglycemic control rates were given saline. Propranolol was administered to some control and some hypoglycemic rats to block the {beta}-adrenergic receptors. Regional CBF was measured using 4-(N-methyl-{sup 14}C)iodoantipyrine. Regional CBF increased during hypoglycemia in rats that were not treated with propranolol. The increase varied frommore » {approximately}60 to 200% depending on the brain region. During hypoglycemia, propranolol abolished the increase in rCBF in the hypothalamus, cerebellum, and pyramidal tract. In other regions the increase in rCBF was only 33-65% of the increase in hypoglycemic rats that were not treated with propranolol. They conclude that {beta}-receptor stimulation plays a major role in the increase in rCBF during hypoglycemia.« less
Intraoperative cerebral blood flow imaging of rodents
NASA Astrophysics Data System (ADS)
Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao
2014-09-01
Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.
Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury.
Mahdi, E S; Bouyssi-Kobar, M; Jacobs, M B; Murnick, J; Chang, T; Limperopoulos, C
2018-05-10
Early disturbances in systemic and cerebral hemodynamics are thought to mediate prematurity-related brain injury. However, the extent to which CBF is perturbed by preterm birth is unknown. Our aim was to compare global and regional CBF in preterm infants with and without brain injury on conventional MR imaging using arterial spin-labeling during the third trimester of ex utero life and to examine the relationship between clinical risk factors and CBF. We prospectively enrolled preterm infants younger than 32 weeks' gestational age and <1500 g and performed arterial spin-labeling MR imaging studies. Global and regional CBF in the cerebral cortex, thalami, pons, and cerebellum was quantified. Preterm infants were stratified into those with and without structural brain injury. We further categorized preterm infants by brain injury severity: moderate-severe and mild. We studied 78 preterm infants: 31 without brain injury and 47 with brain injury (29 with mild and 18 with moderate-severe injury). Global CBF showed a borderline significant increase with increasing gestational age at birth ( P = .05) and trended lower in preterm infants with brain injury ( P = .07). Similarly, regional CBF was significantly lower in the right thalamus and midpons ( P < .05) and trended lower in the midtemporal, left thalamus, and anterior vermis regions ( P < .1) in preterm infants with brain injury. Regional CBF in preterm infants with moderate-severe brain injury trended lower in the midpons, right cerebellar hemisphere, and dentate nuclei compared with mild brain injury ( P < .1). In addition, a significant, lower regional CBF was associated with ventilation, sepsis, and cesarean delivery ( P < .05). We report early disturbances in global and regional CBF in preterm infants following brain injury. Regional cerebral perfusion alterations were evident in the thalamus and pons, suggesting regional vulnerability of the developing cerebro-cerebellar circuitry. © 2018 by American Journal of Neuroradiology.
Clark, Alexandra L; Bangen, Katherine J; Sorg, Scott F; Schiehser, Dawn M; Evangelista, Nicole D; McKenna, Benjamin; Liu, Thomas T; Delano-Wood, Lisa
2017-01-01
Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI. 37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI. Regression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum ( p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI. Our results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury.
Oshida, Sotaro; Ogasawara, Kuniaki; Saura, Hiroaki; Yoshida, Koji; Fujiwara, Shunro; Kojima, Daigo; Kobayashi, Masakazu; Yoshida, Kenji; Kubo, Yoshitaka; Ogawa, Akira
2015-01-01
The purpose of the present study was to determine whether preoperative measurement of cerebral blood flow (CBF) with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of development of cerebral hyperperfusion after carotid endarterectomy (CEA). CBF at the resting state and cerebrovascular reactivity (CVR) to acetazolamide were quantitatively assessed using N-isopropyl-p-[(123)I]-iodoamphetamine (IMP)-autoradiography method with single-photon emission computed tomography (SPECT) before CEA in 500 patients with ipsilateral internal carotid artery stenosis (≥ 70%). CBF measurement using (123)I-IMP SPECT was also performed immediately and 3 days after CEA. A region of interest (ROI) was automatically placed in the middle cerebral artery territory in the affected cerebral hemisphere using a three-dimensional stereotactic ROI template. Preoperative decreases in CBF at the resting state [95% confidence intervals (CIs), 0.855 to 0.967; P = 0.0023] and preoperative decreases in CVR to acetazolamide (95% CIs, 0.844 to 0.912; P < 0.0001) were significant independent predictors of post-CEA hyperperfusion. The area under the receiver operating characteristic curve for prediction of the development of post-CEA hyperperfusion was significantly greater for CVR to acetazolamide than for CBF at the resting state (difference between areas, 0.173; P < 0.0001). Sensitivity, specificity, and positive- and negative-predictive values for the prediction of the development of post-CEA hyperperfusion were significantly greater for CVR to acetazolamide than for CBF at the resting state (P < 0.05, respectively). The present study demonstrated that preoperative measurement of CBF with acetazolamide in addition to preoperative measurement of CBF at the resting state increases the predictive accuracy of the development of post-CEA hyperperfusion.
NASA Astrophysics Data System (ADS)
Fazel Bakhsheshi, Mohammad; Diop, Mamadou; St Lawrence, Keith; Lee, Ting-Yim
2012-02-01
Hypothermia, in which the brain is cooled to 32-33 °C, has been shown to be neuroprotective for brain injury caused by hypoxia-ischemia, head trauma, or neonatal asphyxia. Neuroprotective effect of Hypothermia is partly due to suppression of brain metabolism and cerebral blood flow (CBF). The ability to measure CBF at the bedside provides a means of detecting, and thereby preventing, secondary ischemia during neuro intensive care before brain injury occurs. The purpose of the present study is to investigate the ability of a time-resolved near-infrared (TR-NIR) bolus-tracking method using indocyanine green as an intravascular flow tracer to measure CBF during cooling in a newborn animal model. For validation, CBF was independently measured by computed tomography (CT) perfusion. The results show a good agreement between CBF obtained with the two methods (R2 ~ 0.84, Δ ~ 5.84 ml. min -1.100 g -1, 32-38.5 °C), demonstrating the ability of the TR-NIR technique to non-invasively measure absolute CBF in-vivo during dynamic hypothermia. The TR-NIR technique reveals that CBF decreases from 54.3 +/- 5.4 ml. min -1.100 g -1, at normothermia (Tbrain of 38.5 °C), to 33.8 +/- 0.9 ml. min -1.100 g -1 at Tbrain of 32 °C during the hypothermia treatment.
Chiacchiaretta, Piero; Cerritelli, Francesco; Bubbico, Giovanna; Perrucci, Mauro Gianni; Ferretti, Antonio
2018-01-01
Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.
Matsuo, Noritaka; Yu-Hua, Wang; Sumiyoshi, Hideaki; Sakata-Takatani, Keiko; Nagato, Hitoshi; Sakai, Kumiko; Sakurai, Mami; Yoshioka, Hidekatsu
2003-08-29
We have characterized the proximal promoter region of the human COL11A1 gene. Transient transfection assays indicate that the segment from -199 to +1 is necessary for the activation of basal transcription. Electrophoretic mobility shift assays (EMSAs) demonstrated that the ATTGG sequence, within the -147 to -121 fragment, is critical to bind nuclear proteins in the proximal COL11A1 promoter. We demonstrated that the CCAAT binding factor (CBF/NF-Y) bound to this region using an interference assay with consensus oligonucleotides and a supershift assay with specific antibodies in an EMSA. In a chromatin immunoprecipitation assay and EMSA using DNA-affinity-purified proteins, CBF/NF-Y proteins directly bound this region in vitro and in vivo. We also showed that four tandem copies of the CBF/NF-Y-binding fragment produced higher transcriptional activity than one or two copies, whereas the absence of a CBF/NF-Y-binding fragment suppressed the COL11A1 promoter activity. Furthermore, overexpression of a dominant-negative CBF-B/NF-YA subunit significantly inhibited promoter activity in both transient and stable cells. These results indicate that the CBF/NF-Y proteins regulate the transcription of COL11A1 by directly binding to the ATTGG sequence in the proximal promoter region.
Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.
2015-01-01
Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799
Autonomic neural control of dynamic cerebral autoregulation in humans
NASA Technical Reports Server (NTRS)
Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.
2002-01-01
BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.
USDA-ARS?s Scientific Manuscript database
CBF/DREB related genes are considered important genes for regulation of abiotic stress in plants. In this study, CBF/DREB genes in perennial ryegrass (Lolium perenne L.), also known as LpCBF genes, were resequenced from several cultivated and landrace plants from a worldwide collection. The same pla...
Effect of nicergoline on cerebral blood flow
Iliff, L. D.; Boulay, G. H. Du; Marshall, John; Russell, R. W. Ross; Symon, Lindsay
1977-01-01
Cerebral blood flow (CBF) was measured before and after intravenous injection of the cerebral vasodilator nicergoline in 13 patients with cerebrovascular disease. CBF increased in seven. The possibility that the effect of the drug in the remainder may have been masked by a fall of CBF which occurs during sequential measurement of patients at rest is discussed. PMID:925694
NASA Astrophysics Data System (ADS)
Yang, Z.; Zhang, S.; Wang, B.; Sun, X. Q.
Objective The role of mechanical load in the functional regulation of osteoblasts becomes an emphasis in osseous biomechanical researches recently This study was aim to explore the effect of flow shear stress on the expression of Cbf alpha 1 in human osteosarcoma cells and to survey its functional alteration in simulated weightlessness Method After cultured for 72 h in two different gravitational environments i e 1G terrestrial gravitational condition and simulated weightlessness condition human osteosarcoma cells MG-63 were treated with 0 5 Pa or 1 5 Pa fluid shear stress FSS in a flow chamber for 15 30 60 min respectively The total RNA in cells was isolated Transcription PCR analysis was made to examine the gene expression of Cbf alpha 1 And the total protein of cells was extracted and the expression of Cbf alpha 1 protein was detected by means of Western Blotting Results MG-63 cultured in 1G condition reacted to FSS treatment with an enhanced expression of Cbf alpha 1 Compared with no FSS control group Cbf alpha 1 mRNA and protein expression increased significantly at 30 and 60 min with the treatment of FSS P 0 01 And there was remarkable difference on the Cbf alpha 1 mRNA and protein expression between the treatments of 0 5 Pa and 1 5 Pa FSS at 30 min or 60 min P 0 01 As to the osteoblasts cultured in simulated weightlessness by using clinostat the expression of Cbf alpha 1 was significantly different between 1G and simulated weightlessness conditions at each test time P 0 05 Compared with no FSS
Inoue, Kentaro; Ito, Hiroshi; Goto, Ryoi; Nakagawa, Manabu; Kinomura, Shigeo; Sato, Tachio; Sato, Kazunori; Fukuda, Hiroshi
2005-06-01
Several studies using single photon emission tomography (SPECT) have shown changes in cerebral blood flow (CBF) with age, which were associated with partial volume effects by some authors. Some studies have also demonstrated gender-related differences in CBF. The present study aimed to examine age and gender effects on CBF SPECT images obtained using the 99mTc-ethyl cysteinate dimer and a SPECT scanner, before and after partial volume correction (PVC) using magnetic resonance (MR) imaging. Forty-four healthy subjects (29 males and 15 females; age range, 27-64 y; mean age, 50.0 +/- 9.8 y) participated. Each MR image was segmented to yield grey and white matter images and coregistered to a corresponding SPECT image, followed by convolution to approximate the SPECT spatial resolution. PVC-SPECT images were produced using the convoluted grey matter MR (GM-MR) and white matter MR images. The age and gender effects were assessed using SPM99. Decreases with age were detected in the anterolateral prefrontal cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally, in the GM-MR images and the SPECT images. In the PVC-SPECT images, decreases in CBF in the lateral prefrontal cortex lost their statistical significance. Decreases in CBF with age found along the lateral sulcus and the lateral ventricle, on the other hand, remained statistically significant, but observation of the spatially normalized MR images suggests that these findings are associated with the dilatation of the lateral sulcus and lateral ventricle, which was not completely compensated for by the spatial normalization procedure. Our present study demonstrated that age effects on CBF in healthy subjects could reflect morphological differences with age in grey matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skyhoj Olsen, T.; Lassen, N.A.
1989-01-01
The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in themore » posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murkin, J.M.; Farrar, J.K.; Tweed, W.A.
Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBFmore » was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.« less
Staud, Roland; Boissoneault, Jeff; Craggs, Jason G; Lai, Song; Robinson, Michael E
2018-01-01
One hallmark of chronic fatigue syndrome (ME/CFS) is task related worsening of fatigue. Global brain hypoperfusion, abnormal regional activation, and altered functional connectivity of brain areas associated with cognition and memory have been reported but remain controversial. We enrolled 17 female participants fulfilling the CDC Criteria for ME/CFS and 16 matched healthy controls (HC). Using a 3T-Phillips Achieva MRI-scanner, pseudo-continuous arterial spin-labeling (pCASL), was used to study the dynamics of regional cerebral blood flow (rCBF) and their relationship to mental fatigue in ME/CFS patients and HC during a demanding cognitive task, i.e. modified Paced-Auditory-Serial-Addition-Testing (PASAT). ME/CFS subjects reported more fatigue than HC at baseline (p < .01). Global brain perfusion of ME/CFS and HC subjects was similar at rest. The PASAT resulted in significantly increased fatigue in ME/CFS participants and HC. Although not different between groups, overall CBF significantly increased over the first 3 min of the PASAT and then decreased thereafter. Regional CBF (rCBF) changes were significantly different between groups during the post-task recovery period. Whereas improvement of fatigue of ME/CFS subjects was associated with decreased rCBF in both superior temporal gyri (STG), precuneus, and fusiform gyrus, it was associated with increased rCBF in the same areas in HC. Our results suggest that ME/CFS is associated with normal global CBF at rest and during a strenuous task (PASAT); however rCBF of several brain regions associated with memory, goal-oriented attention, and visual function was differentially associated with recovery from fatigue in ME/CFS patients and HC.
Staud, Roland; Boissoneault, Jeff; Craggs, Jason G.; Lai, Song; Robinson, Michael E.
2018-01-01
Purpose One hallmark of chronic fatigue syndrome (ME/CFS) is task related worsening of fatigue. Global brain hypoperfusion, abnormal regional activation, and altered functional connectivity of brain areas associated with cognition and memory have been reported but remain controversial. Methods We enrolled 17 female participants fulfilling the CDC Criteria for ME/CFS and 16 matched healthy controls (HC). Using a 3T-Phillips Achieva MRI-scanner, pseudo-continuous arterial spin-labeling (pCASL), was used to study the dynamics of regional cerebral blood flow (rCBF) and their relationship to mental fatigue in ME/CFS patients and HC during a demanding cognitive task, i.e. modified Paced-Auditory-Serial-Addition-Testing (PASAT). Results ME/CFS subjects reported more fatigue than HC at baseline (p < .01). Global brain perfusion of ME/CFS and HC subjects was similar at rest. The PASAT resulted in significantly increased fatigue in ME/CFS participants and HC. Although not different between groups, overall CBF significantly increased over the first 3 min of the PASAT and then decreased thereafter. Regional CBF (rCBF) changes were significantly different between groups during the post-task recovery period. Whereas improvement of fatigue of ME/CFS subjects was associated with decreased rCBF in both superior temporal gyri (STG), precuneus, and fusiform gyrus, it was associated with increased rCBF in the same areas in HC. Conclusions Our results suggest that ME/CFS is associated with normal global CBF at rest and during a strenuous task (PASAT); however rCBF of several brain regions associated with memory, goal-oriented attention, and visual function was differentially associated with recovery from fatigue in ME/CFS patients and HC. PMID:29707427
Rodan, L H; Poublanc, J; Fisher, J A; Sobczyk, O; Wong, T; Hlasny, E; Mikulis, D; Tein, I
2015-05-01
To study the mechanisms underlying stroke-like episodes (SLEs) in MELAS syndrome. We performed a case control study in 3 siblings with MELAS syndrome (m.3243A>G tRNA(Leu(UUR))) with variable % mutant mtDNA in blood (35 to 59%) to evaluate regional cerebral blood flow (CBF) and arterial cerebrovascular reactivity (CVR) compared to age- and sex-matched healthy study controls and a healthy control population. Subjects were studied at 3T MRI using arterial spin labeling (ASL) to measure CBF; CVR was measured as a change in % Blood Oxygen Level Dependent signal (as a surrogate of CBF) to repeated 10 mmHg step increase in arterial partial pressure of CO2 (PaCO2). MELAS siblings had decreased CVR (p ≤ 0.002) and increased CBF (p < 0.0026) compared to controls; changes correlated with disease severity and % mutant mtDNA (inversely for CVR: r = -0.82 frontal, r = -0.91 occipital cortex; directly for CBF: r = +0.85 frontal, not for occipital infarct penumbra). Mean CVR was reduced more in frontal (p < 0.001) versus occipital cortex (p = 0.002); mean CBF was increased more in occipital (p = 0.001) than frontal (p = 0.0026) cortices compared to controls. CBF correlated inversely with CVR (r = -0.99 in frontal; not in occipital infarct penumbra) suggesting that increased frontal resting flows are at the expense of flow reserve. MELAS disease severity and mutation load were inversely correlated with Interictal CVR and directly correlated with frontal CBF. These metrics offer further insight into the cerebrovascular hemodynamics in MELAS syndrome and may serve as noninvasive prognostic markers to stratify risk for SLEs. Class III. Copyright © 2015 © Elsevier B.V. and Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-01-01
Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-02-29
Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.
NASA Astrophysics Data System (ADS)
Akgoren, Nuran; Fabricius, Martin; Lauritzen, Martin
1994-06-01
The endothelium-derived relaxing factor, probably nitric oxide (NO), is a potent vasodilator that regulates the vascular tone in several vascular beds, including the brain. We explored the possibility that NO might be of importance for the increase of cerebral blood flow (CBF) associated with activity of the well-defined neuronal circuits of the rat cerebellar cortex. Laser-Doppler flowmetry was used to measure increases of cerebellar blood flow evoked by trains of electrical stimulations of the dorsal surface. The evoked increases of CBF were frequency-dependent, being larger on than off the parallel fiber tracts, suggesting that conduction along parallel fibers and synaptic activation of target cells were important for the increase of CBF. This was verified experimentally since the evoked CBF increases were abolished by tetrodotoxin and reduced by 10 mM Mg2+ and selective antagonists for non-N-methyl-D-aspartate receptors. The cerebellar cortex contains high levels of NO synthase. This raised the possibility that NO was involved in the increase of CBF associated with neuronal activation. NO synthase inhibition by topical application of N^G-nitro-L-arginine attenuated the evoked CBF increase by about 50%. This effect was partially reversed by pretreatment with L-arginine, the natural substrate for the enzyme, while N^G-nitro-D-arginine, the inactive enantiomer, had no effect on the evoked CBF increases. Simultaneous blockade of non-N-methyl-D-aspartate receptors and NO synthase had no further suppressing effect on the blood flow increase than either substance alone, suggesting that the NO-dependent flow rise was dependent on postsynaptic mechanisms. These findings are consistent with the idea that local synthesis of NO is involved in the transduction mechanism between neuronal activity and increased CBF.
Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian
2015-01-01
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699
Kazumata, Ken; Uchino, Haruto; Tokairin, Kikutaro; Ito, Masaki; Shiga, Tohru; Osanai, Toshiya; Kawabori, Masahito
2018-06-01
Cerebral hyperperfusion complicates the postoperative course of patients with moyamoya disease after direct revascularization surgery. There is no clear distinction between cerebral hyperperfusion syndrome and benign postoperative increase in regional cerebral blood flow (rCBF). The present study aimed to determine clinically relevant changes in rCBF, anatomical correlations, and factors associated with transient neurologic symptoms after revascularization surgery in moyamoya disease. Whole-brain voxel-based perfusion mapping was used to identify regions involved in cerebral hyperperfusion and quantify the changes in 105 hemispheric surgeries with the use of single-photon computed tomography acquired on postoperative day 7. The changes in rCBF were quantitatively analyzed, and associations with cerebral hyperperfusion syndrome were determined. Transient neurologic symptoms appeared with rCBF increase in 37.9% of adults. Speech impairments were associated with an increase in rCBF in the operculo-insula region. Cheiro-oral syndrome was associated with the posterior insula as well as the prefrontal region. A receiver operating curve analysis yielded transient neurologic symptoms with maximum accuracy at >15.5% increase from baseline. Age and preoperative rCBF were independently associated with transient neurologic symptoms (P < 0.001). Areas showing rCBF increase during the experience of transient neurologic symptoms were spatially compatible with the known functional anatomy of the brain. An increase of approximately 15% from baseline was found to be critical, which is a far lower threshold than what has been reported previously. Increasing age was significantly associated with the occurrence of symptomatic hyperperfusion. Furthermore, patients with preserved rCBF also showed symptomatic hyperperfusion. Copyright © 2018 Elsevier Inc. All rights reserved.
Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong
2011-06-01
The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.
King, Kevin S; Sheng, Min; Liu, Peiying; Maroules, Christopher D; Rubin, Craig D; Peshock, Ron M; McColl, Roderick W; Lu, Hanzhang
2018-06-01
Background and purpose Vascular risk factors have been associated with decreased cerebral blood flow (CBF) but this is etiologically nonspecific and may result from vascular insufficiency or a response to decreased brain metabolic activity. We apply new MRI techniques to measure oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO 2 ), hypothesizing that decreased CBF related to these vascular risk factors will be associated with increased OEF, confirming a primary vascular insufficiency. Methods 3T MRI was obtained on 70 community-based participants in this IRB-approved study with informed consent, with previous assessment of systolic blood pressure, hypertension medication, elevated serum triglycerides, low serum HDL, and diabetes mellitus. CBF was measured using phase contrast adjusted for brain volume (ml/100 g/min), OEF (%) was obtained from T2-Relaxation-Under-Spin-Tagging (TRUST), and CMRO 2 (μmol/100 g/min) was derived using the Fick principle. Stepwise linear regression identified optimal predictors of CBF with age, sex, and hematocrit included for adjustment. This predictive model was then evaluated against OEF and CMRO 2 . Results Hypertriglyceridemia was associated with low CBF and high OEF. High systolic blood pressure was associated with high CBF and low OEF, which was primarily attributable to those with pressures above 160 mmHg. Neither risk factor was associated with significant differences in cerebral metabolic rate. Conclusion Low CBF related to hypertriglyceridemia was accompanied by high OEF with no significant difference in CMRO 2 , confirming subclinical vascular insufficiency. High CBF related to high systolic blood pressure likely reflected limitations of autoregulation at higher blood pressures.
Oakenfull, Rachael J.; Baxter, Robert; Knight, Marc R.
2013-01-01
Freezing stress affects all plants from temperate zones to the poles. Global climate change means such freezing events are becoming less predictable. This in turn reduces the ability of plants to predict the approaching low temperatures and cold acclimate. This has consequences for crop yields and distribution of wild plant species. C-repeat binding factors (CBFs) are transcription factors previously shown to play a vital role in the acclimation process of Arabidopsis thaliana, controlling the expression of hundreds of genes whose products are necessary for freezing tolerance. Work in other plant species cements CBFs as key determinants in the trait of freezing tolerance in higher plants. To test the function of CBFs from highly freezing tolerant plants species we cloned and sequenced CBF transcription factors from three Vaccinium species (Vaccinium myrtillus, Vaccinium uliginosum and Vaccinium vitis-idaea) which we collected in the Arctic. We tested the activity of CBF transcription factors from the three Vaccinium species by producing transgenic Arabidopsis lines overexpressing them. Only the Vaccinium myrtillus CBF was able to substantially activate COR (CBF-target) gene expression in the absence of cold. Correspondingly, only the lines expressing the Vaccinium myrtillus CBF were constitutively freezing tolerant. The basis for the differences in potency of the three Vaccinium CBFs was tested by observing cellular localisation and protein levels. All three CBFs were correctly targeted to the nucleus, but Vaccinium uliginosum CBF appeared to be relatively unstable. The reasons for lack of potency for Vaccinium vitis-idaea CBF were not due to stability or targeting, and we speculate that this was due to altered transcription factor function. PMID:23349799
Sakashita, Y.; Kanai, M.; Sugimoto, T.; Taki, S.; Takamori, M.
1997-01-01
OBJECTIVE—Previous reports about changes in cerebral blood flow (CBF) in transient global amnesia disclosed decreased flow in some parts of the brain. However, CBF analyses in most reports were qualitative but not quantitative. The purpose of this study was to determine changes in CBF in transient global amnesia. METHODS—The CBF was measured and the vasoreactive response to acetazolamide was evaluated in six patients with transient global amnesia using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). The CBF was measured during an attack in two patients and soon after an attack in the other four. About one month later, CBF was re-evaluated in each patient. RESULTS—Two patients examined during an attack and one patient examined five hours after an attack had increased blood flow in the occipital cortex and cerebellum. Three patients examined at six to 10 hours after an attack had decreased blood flow in the thalamus, cerebellum, or putamen. These abnormalities of blood flow almost disappeared in all patients one month after onset. The vasodilatory response to acetazolamide, which was evaluated initially using SPECT, was poor in areas of increased blood flow. By the second evaluation of CBF with acetazolamide, the vasodilatory response had returned to normal. CONCLUSIONS—In a patient with transient global amnesia, CBF increased in the vertebrobasilar territory during the attack and decreased afterwards. The vasodilatory response to acetazolamide may be impaired in the parts of the brain with increased blood flow. It is suggested that transient global amnesia is distinct from migraine but may share the same underlying mechanism. PMID:9408101
Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang
2015-03-01
This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task. Copyright © 2014 Elsevier B.V. All rights reserved.
Cerebral Perfusion Changes in Post-Concussion Syndrome: A Prospective Controlled Cohort Study
Marcil, Lorenzo D.; Dewey, Deborah; Carlson, Helen L.; MacMaster, Frank P.; Brooks, Brian L.; Lebel, R. Marc
2017-01-01
Abstract The biology of post-concussive symptoms is unclear. Symptoms are often increased during activities, and have been linked to decreased cerebrovascular reactivity and perfusion. The aim of this study was to examine cerebral blood flow (CBF) in children with different clinical recovery patterns following mild traumatic brain injury (mTBI). This was a prospective controlled cohort study of children with mTBI (ages 8 to 18 years) who were symptomatic with post-concussive symptoms at one month post-injury (symptomatic, n = 27) and children who had recovered quickly (asymptomatic, n = 24). Pseudo continuous arterial spin labeling magnetic resonance imaging (MRI) was used to quantify CBF. The mTBI groups were imaged at 40 days post-injury. Global and regional CBF were compared with healthy controls of similar age and sex but without a history of mTBI (n = 21). Seventy-two participants (mean age: 14.1 years) underwent neuroimaging. Significant differences in CBF were found: global CBF was higher in the symptomatic group and lower in the asymptomatic group compared with controls, (F(2,69) 9.734; p < 0.001). Post-injury symptom score could be predicted by pre-injury symptoms and CBF in presence of mTBI (adjusted R2 = 0.424; p < 0.001). Altered patterns of cerebral perfusion are seen following mTBI and are associated with the recovery trajectory. Symptomatic children have higher CBF. Children who “recovered” quickly, have decreased CBF suggesting that clinical recovery precedes the cerebral recovery. Further longitudinal studies are required to determine if these perfusion patterns continue to change over time. PMID:27554429
Publications - GMC 353 | Alaska Division of Geological & Geophysical
and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a Umiat (Blend, unknown well number) and from US Navy Umiat Ruby #1 (renamed Umiat Test Well #4); both Samples from US Navy Umiat (Blend, unknown well number) and from US Navy Umiat Ruby #1 (renamed Umiat Test
Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes
Bolger, Fiachra B.; Lowry, John P.
2005-01-01
In this communication we review selected experiments involving the use of carbon paste electrodes (CPEs) to monitor and measure brain tissue O2 levels in awake freely-moving animals. Simultaneous measurements of rCBF were performed using the H2 clearance technique. Voltammetric techniques used include both differential pulse (O2) and constant potential amperometry (rCBF). Mild hypoxia and hyperoxia produced rapid changes (decrease and increase respectively) in the in vivo O2 signal. Neuronal activation (tail pinch and stimulated grooming) produced similar increases in both O2and rCBF indicating that CPE O2currents provide an index of increases in rCBF when such increases exceed O2 utilization. Saline injection produced a transient increase in the O2 signal while chloral hydrate produced slower more long-lasting changes that accompanied the behavioral changes associated with anaesthesia. Acetazolamide increased O2 levels through an increase in rCBF.
CEREBRAL BLOOD FLOW AND METABOLISM IN ANXIETY AND ANXIETY DISORDERS
Mathew, Roy J.
1994-01-01
Anxiety disorders are some of the commonest psychiatric disorders and anxiety commonly co-exists with other psychiatric conditions. Anxiety can also be a normal emotion. Thus, study of the neurobiological effects of anxiety is of considerable significance. In the normal brain, cerebral blood flow (CBF) and metabolism (CMR) serve as indices of brain function. CBF/CMR research is expected to provide new insight into alterations in brain function in anxiety disorders and other psychiatric disorders. Possible associations between stress I anxiety I panic and cerebral ischemia I stroke give additional significance to the effects of anxiety on CBF. With the advent of non-invasive techniques, study of CBF/CMR in anxiety disorders became easier. A large numbers of research reports are available on the effects of stress, anxiety and panic on CBF/CMR in normals and anxiety disorder patients. This article reviews the available human research on this topic. PMID:21743685
COMMUNITY WATER QUALITY INFORMATION SYSTEM FOR A NEW AND SUSTAINABLE WATER SUPPLY
Clearwater Renewable Resource Facility. The Clearwater facility will provide a carefully selected blend of recharged Colorado River water and groundwater to the community beginning in 2001, thereby providing a renewable drinking water supply, lessening dependence on Tucson's p...
Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui
2017-03-27
Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.
Seo, Ho-Jun; Choi, Young Hee; Chung, Yong-An; Rho, Wangku; Chae, Jeong-Ho
2014-01-01
Aim Inconsistent results continue to be reported in studies that examine the neural correlates of cognitive behavioral therapy (CBT) in patients with panic disorder. We examined the changes in regional cerebral blood flow (rCBF) associated with the alleviation of anxiety by CBT in panic patients. Methods The change in rCBF and clinical symptoms before and after CBT were assessed using single photon emission computed tomography and various clinical measures were analyzed. Results Fourteen subjects who completed CBT showed significant improvements in symptoms on clinical measures, including the Panic and Agoraphobic Scale and the Anxiety Sensitivity Index-Revised. After CBT, increased rCBF was detected in the left postcentral gyrus (BA 43), left precentral gyrus (BA 4), and left inferior frontal gyrus (BA 9 and BA 47), whereas decreased rCBF was detected in the left pons. Correlation analysis of the association between the changes in rCBF and changes in each clinical measure did not show significant results. Conclusion We found changes in the rCBF associated with the successful completion of CBT. The present findings may help clarify the effects of CBT on changes in brain activity in panic disorder. PMID:24790449
Vertigo-related cerebral blood flow changes on magnetic resonance imaging.
Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu
2014-11-01
A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.
Aoe, Jo; Watabe, Tadashi; Shimosegawa, Eku; Kato, Hiroki; Kanai, Yasukazu; Naka, Sadahiro; Matsunaga, Keiko; Isohashi, Kayako; Tatsumi, Mitsuaki; Hatazawa, Jun
2018-06-22
Resting-state functional MRI (rs-fMRI) has revealed the existence of a default-mode network (DMN) based on spontaneous oscillations of the blood oxygenation level-dependent (BOLD) signal. The BOLD signal reflects the deoxyhemoglobin concentration, which depends on the relationship between the regional cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ). However, these two factors cannot be separated in BOLD rs-fMRI. In this study, we attempted to estimate the functional correlations in the DMN by means of quantitative 15 O-labeled gases and water PET, and to compare the contribution of the CBF and CMRO 2 to the DMN. Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by means of 15 O-O 2 , 15 O-CO gases and 15 O-water PET. Quantitative CBF and CMRO 2 images were generated by an autoradiographic method and transformed into MNI standardized brain template. Regions of interest were placed on normalized PET images according to the previous rs-fMRI study. For the functional correlation analysis, the intersubject Pearson's correlation coefficients (r) were calculated for all pairs in the brain regions and correlation matrices were obtained for CBF and CMRO 2 , respectively. We defined r > 0.7 as a significant positive correlation and compared the correlation matrices of CBF and CMRO 2 . Significant positive correlations (r > 0.7) were observed in 24 pairs of brain regions for the CBF and 22 pairs of brain regions for the CMRO 2 . Among them, 12 overlapping networks were observed between CBF and CMRO 2 . Correlation analysis of CBF led to the detection of more brain networks as compared to that of CMRO 2 , indicating that the CBF can capture the state of the spontaneous activity with a higher sensitivity. We estimated the functional correlations in the DMN by means of quantitative PET using 15 O-labeled gases and water. The correlation matrix derived from the CBF revealed a larger number of brain networks as compared to that derived from the CMRO 2 , indicating that contribution to the functional correlation in the DMN is higher in the blood flow more than the oxygen consumption.
Cerebral blood flow associated with creative performance: a comparative study.
Chávez-Eakle, Rosa Aurora; Graff-Guerrero, Ariel; García-Reyna, Juan-Carlos; Vaugier, Víctor; Cruz-Fuentes, Carlos
2007-11-15
Creativity is important for social survival and individual wellbeing; science, art, philosophy and technology have been enriched and expanded by this trait. To our knowledge this is the first study probing differences in brain cerebral blood flow (CBF) between highly creative individuals (scientists and/or artists socially recognized for their contributions to their fields with creativity indexes corresponding to the 99% percentile) and average control subjects while performing a verbal task from the Torrance Tests of Creative Thinking. Additionally, we correlated CBF with creativity dimensions such as fluency, originality and flexibility. Subjects with a high creative performance showed greater CBF activity in right precentral gyrus, right culmen, left and right middle frontal gyrus, right frontal rectal gyrus, left frontal orbital gyrus, and left inferior gyrus (BA 6, 10, 11, 47, 20), and cerebellum; confirming bilateral cerebral contribution. These structures have been involved in cognition, emotion, working memory, and novelty response. The score on the three creativity dimensions--fluency, originality, and flexibility--correlated with CBF activation in right middle frontal gyrus and right rectal gyrus (Brodmann Area 6, 11). Moreover, fluency and flexibility strongly correlated with CBF in left inferior frontal gyrus and originality correlated with CBF in left superior temporal gyrus and cerebellar tonsil. These findings suggest an integration of perceptual, volitional, cognitive and emotional processes in creativity. The higher CBF found in particular brain regions of highly creative individuals during the performance of a creative task provides evidence of a specific neural network related to the creative process.
Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.
2016-02-01
Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.
Jing, Rixing; Huang, Jiangjie; Jiang, Deguo; Lin, Xiaodong; Ma, Xiaolei; Tian, Hongjun; Li, Jie; Zhuo, Chuanjun
2018-01-23
Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.
Relationship of 133Xe cerebral blood flow to middle cerebral arterial flow velocity in men at rest
NASA Technical Reports Server (NTRS)
Clark, J. M.; Skolnick, B. E.; Gelfand, R.; Farber, R. E.; Stierheim, M.; Stevens, W. C.; Beck, G. Jr; Lambertsen, C. J.
1996-01-01
Cerebral blood flow (CBF) was measured by 133Xe clearance simultaneously with the velocity of blood flow through the left middle cerebral artery (MCA) over a wide range of arterial PCO2 in eight normal men. Average arterial PCO2, which was varied by giving 4% and 6% CO2 in O2 and by controlled hyperventilation on O2, ranged from 25.3 to 49.9 mm Hg. Corresponding average values of global CBF15 were 27.2 and 65.0 ml 100 g min-1, respectively, whereas MCA blood-flow velocity ranged from 42.8 to 94.2 cm/s. The relationship of CBF to MCA blood-flow velocity over the imposed range of arterial PCO2 was described analytically by a parabola with the equation: CBF = 22.8 - 0.17 x velocity + 0.006 x velocity2 The observed data indicate that MCA blood-flow velocity is a useful index of CBF response to change in arterial PCO2 during O2 breathing at rest. With respect to baseline values measured while breathing 100% O2 spontaneously, percent changes in velocity were significantly smaller than corresponding percent changes in CBF at increased levels of arterial PCO2 and larger than CBF changes at the lower arterial PCO2. These observed relative changes are consistent with MCA vasodilation at the site of measurement during exposure to progressive hypercapnia and also during extreme hyperventilation hypocapnia.
Halani, Sheliza; Kwinta, Jonathan B.; Golestani, Ali M.; Khatamian, Yasha B.; Chen, J. Jean
2016-01-01
Cerebrovascular reactivity (CVR) is an important metric of cerebrovascular health. While the BOLD fMRI method in conjunction with carbon-dioxide (CO2) based vascular manipulation has been the most commonly used, the BOLD signal is not a direct measure of vascular changes, and the use of arterial-spin labeling (ASL) cerebral blood flow (CBF) imaging is increasingly advocated. Nonetheless, given the differing dependencies of BOLD and CBF on vascular baseline conditions and the diverse CO2 manipulation types currently used in the literature, knowledge of potential biases introduced by each technique is critical for the interpretation of CVR measurements. In this work, we use simultaneous BOLD-CBF acquisitions during both vasodilatory (hypercapnic) and vasoconstrictive (hypocapnic) stimuli to measure CVR. We further imposed different levels of baseline vascular tension by inducing hypercapnic and hypocapnic baselines, separately from normocapnia by 4 mm Hg. We saw significant and diverse dependencies on vascular stimulus and baseline condition in both BOLD and CBF CVR measurements: (i) BOLD-based CVR is more sensitive to basal vascular tension than CBF-based CVR; (ii) the use of a combination of vasodilatory and vasoconstrictive stimuli maximizes the sensitivity of CBF-based CVR to vascular tension changes; (iii) the BOLD and CBF vascular response delays are both significantly lengthened at predilated baseline. As vascular tension can often be altered by potential pathology, our findings are important considerations when interpreting CVR measurements in health and disease. PMID:25655446
Functional PET Evaluation of the Photosensitive Baboon
Szabó, C. Ákos; Salinas, Felipe S; Narayana, Shalini
2011-01-01
The baboon provides a unique, natural model of epilepsy in nonhuman primates. Additionally, photosensitivity of the epileptic baboon provides an important window into the mechanism of human idiopathic generalized epilepsies. In order to better understand the networks underlying this model, our group utilized functional positron emission tomography (PET) to compare cerebral blood flow (CBF) changes occurring during intermittent light stimulation (ILS) and rest between baboons photosensitive, epileptic (PS) and asymptomatic, control (CTL) animals. Our studies utilized subtraction and covariance analyses to evaluate CBF changes occurring during ILS across activation and resting states, but also evaluated CBF correlations with ketamine doses and interictal epileptic discharge (IED) rate during the resting state. Furthermore, our group also assessed the CBF responses related to variation of ILS in PS and CTL animals. CBF changes in the subtraction and covariance analyses reveal the physiological response and visual connectivity in CTL animals and pathophysiological networks underlying responses associated with the activation of ictal and interictal epileptic discharges in PS animals. The correlation with ketamine dose is essential to understanding differences in CBF responses between both groups, and correlations with IED rate provides an insight into an epileptic network independent of visual activation. Finally, the ILS frequency dependent changes can help develop a framework to study not only spatial connectivity but also the temporal sequence of regional activations and deactivations related to ILS. The maps generated by the CBF analyses will be used to target specific nodes in the epileptic network for electrophysiological evaluation using intracranial electrodes. PMID:22276085
Reduced Perfusion in Broca’s Area in Developmental Stuttering
Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C. R.; Lythgoe, David; Zelaya, Fernando O.; Peterson, Bradley S.
2016-01-01
Objective To study resting cerebral blood flow in children and adults with developmental stuttering. Methods We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. Results We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared to healthy controls in Broca’s area bilaterally and the superior frontal gyrus. rCBF values in Broca’s area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared to healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. Conclusions rCBF is reduced in Broca’s region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca’s region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. PMID:28035724
Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N
2017-05-04
Carbofuran (CBF) removal in a continuous-flow photocatalytic reactor with granular activated carbon supported titanium dioxide (GAC-TiO 2 ) catalyst was investigated. The effects of feed flow rate, TiO 2 concentration and addition of supplementary oxidants on CBF removal were investigated. The central composite design (CCD) was used to design the experiments and to estimate the effects of feed flow rate and TiO 2 concentration on CBF removal. The outcome of CCD experiments demonstrated that reactor performance was influenced mainly by feed flow rate compared to TiO 2 concentration. A second-order polynomial model developed based on CCD experiments fitted the experimental data with good correlation (R 2 ∼ 0.964). The addition of 1 mL min -1 hydrogen peroxide has shown complete CBF degradation and 76% chemical oxygen demand removal under the following operating conditions of CBF ∼50 mg L -1 , TiO 2 ∼5 mg L -1 and feed flow rate ∼82.5 mL min -1 . Rate constant of the photodegradation process was also calculated by applying the kinetic data in pseudo-first-order kinetics. Four major degradation intermediates of CBF were identified using GC-MS analysis. As a whole, the reactor system and GAC-TiO 2 catalyst used could be constructive in cost-effective CBF removal with no impact to receiving environment through getaway of photocatalyst.
Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin
2018-01-01
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Reduced perfusion in Broca's area in developmental stuttering.
Desai, Jay; Huo, Yuankai; Wang, Zhishun; Bansal, Ravi; Williams, Steven C R; Lythgoe, David; Zelaya, Fernando O; Peterson, Bradley S
2017-04-01
To study resting cerebral blood flow in children and adults with developmental stuttering. We acquired pulsed arterial spin labeling magnetic resonance imaging data in 26 participants with stuttering and 36 healthy, fluent controls. While covarying for age, sex, and IQ, we compared perfusion values voxel-wise across diagnostic groups and assessed correlations of perfusion with stuttering severity within the stuttering group and with measures of motor speed in both groups. We detected lower regional Cerebral Blood Flow (rCBF) at rest in the stuttering group compared with healthy controls in Broca's area bilaterally and the superior frontal gyrus. rCBF values in Broca's area bilaterally correlated inversely with the severity of stuttering and extended posteriorly into other portions of the language loop. We also found increased rCBF in cerebellar nuclei and parietal cortex in the stuttering group compared with healthy controls. Findings were unchanged in child-only analyses and when excluding participants with comorbid illnesses or those taking medication. rCBF is reduced in Broca's region in persons who stutter. More severe stuttering is associated with even greater reductions in rCBF to Broca's region, additive to the underlying putative trait reduction in rCBF relative to control values. Moreover, a greater abnormality in rCBF in the posterior language loop is associated with more severe symptoms, suggesting that a common pathophysiology throughout the language loop likely contributes to stuttering severity. Hum Brain Mapp 38:1865-1874, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sanchez, Olivia; García, Andrea; Castro-Prado, Fernando; Perez, Miriam; Lara-Estrada, Rafael; Ramirez-Meza, Martin; Godinez, Montserrat; Coco, Michael L; Azpiroz, Joaquín; Borsody, Mark K; Sacristán, Emilio
2018-02-15
Magnetic stimulation of the facial nerve has been tested in preclinical studies as a new, non-invasive emergency treatment of ischemic stroke that acts by increasing cerebral blood flow (CBF). The objective of the studies reported herein was to identify minimal stimulation parameters that increase CBF in large animals and then test those stimulation parameters in healthy volunteers for safety, tolerability, and effectiveness at increasing CBF. This translational research is necessary preparation for clinical studies in ischemic stroke patients. Initial experiments in anesthetized Yorkshire pigs were undertaken in order to identify the lowest stimulus power and duration that increase CBF. A full 3 × 3 factorial design was used to evaluate magnetic stimulation of the facial nerve at various stimulation powers (1.3, 1.6, and 1.9 Tesla field strength at coil surface) and for various durations (2, 3.5, and 5 min). CBF was measured with contrast MRI perfusion imaging and the internal carotid arteries were assessed with MR angiography. Magnetic facial nerve stimulation with parameters identified in the pig study was then applied to 35 healthy volunteers. Safety was assessed with adverse event reports and by medical examination. Tolerability was defined as each volunteer's ability to withstand at least 2 min of stimulation. Volunteers could determine the maximum power of stimulation they received during a ramp-up period. In pigs, unilateral facial nerve stimulation increased CBF by as much as 77% over pre-stimulation baseline when administered across a range of 1.3-1.9 Tesla power and for 2- to 5-min duration. No clear dose-response relationship could be observed across this range, but lower powers and durations than these were markedly less effective. The effect of a single stimulation lasted 90 min. A second stimulation delivered 100 min after the first stimulation sustained the increased CBF without evidence of tachyphylaxis. In human, bilateral facial nerve stimulation caused only non-serious adverse events that were limited to the 2-min stimulation period. Tolerability was greatly improved by gentle encouragement from the study staff, which enabled most volunteers to tolerate 1.6-1.8 Tesla of stimulation power. CBF measures taken approximately 10 min after stimulation demonstrated on average a 32 ± 6% increase in CBF, with ≥ 25% increases in CBF occurring in 10 of the 31 volunteers who had adequate CBF measurements. The minimal effective stimulation parameters defined by increased CBF, as identified in the pig study, translated into safe, tolerable, and effective stimulation of healthy volunteers. These results support the future development and evaluation of non-invasive facial nerve stimulation for the emergency treatment of ischemic stroke. Trial Registration retrospectively registered with clinicaltrials.gov NRV_P1_01_15 on June 6, 2017.
Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.
Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung
2017-12-18
We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Eric; Mathieu, Olivier; Morones, Anibal
This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less
Caffeine and human cerebral blood flow: A positron emission tomography study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, O.G.; Modell, J.G.; Hariharan, M.
1990-01-01
Positron emission tomography (PET) was used to quantify the effect of caffeine on whole brain and regional cerebral blood flow (CBF) in humans. A mean dose of 250 mg of caffeine produced approximately a 30% decrease in whole brain CBF; regional differences in caffeine effect were not observed. Pre-caffeine CBF strongly influenced the magnitude of the caffeine-induced decrease. Caffeine decreased p{sub a}CO{sub 2} and increased systolic blood pressure significantly; the change in p{sub a}CO{sub 2} did not account for the change in CBF. Smaller increases in diastolic blood pressure, heart rate, plasma epinephrine and norepinephrine, and subjectively reported anxiety weremore » also observed.« less
Selective Activation of Transcription by a Novel CCAAT Binding Factor
NASA Astrophysics Data System (ADS)
Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit
1988-07-01
A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.
Cerebral blood flow asymmetries in headache-free migraineurs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, S.R.; Welch, K.M.; Ewing, J.R.
1987-11-01
Regional cerebral blood flow (rCBF) asymmetries were studied in controls and patients with common and classic/complicated migraine using /sup 133/Xe inhalation with 8 homologously situated external collimators over each cerebral hemisphere. Migraine patients as a group more frequently had posterior rCBF asymmetries than controls (p less than 0.03). Although there were no differences in the number of anterior rCBF asymmetries, migraine patients had 2 or more asymmetric probe pairs more often than controls (p less than 0.02). The posterior rCBF asymmetries, consistent with the site of activation of many migraine attacks, may be related to more labile control of themore » cerebral circulation.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
...-refinery component. Automated detergent blending facility means any facility (including, but not limited to... through the fuel injector(s). Gasoline means any fuel for use in motor vehicles and motor vehicle engines, including both highway and off-highway vehicles and engines, and commonly or commercially known or sold as...
The Cbf5-Nop10 Complex is a Molecular Bracket that Organizes Box H/ACA RNPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamma, Tomoko; Reichow, Steve L.; Varani, Gabriele
2005-12-01
Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP componenets between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the activemore » site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.« less
Effect of ethanol on cerebral blood flow (CBF) and metabolism (CMRO2) in conscious sheep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasney, J.A.; Zubkov, B.; Iwamoto, J.
1991-03-11
A moderate dose of ethanol severely depresses CBF and CMRO2 in the awake sheep fetus. However, the effects of ethanol on CBF and CMRO2 in the adult are unclear. The same dose of ethanol was infused for 2 hr in 5 ewes instrumented with aortic, left ventricular and sagittal sinus catheters. Ethanol caused ataxia accompanied by early modest and variable increases of total and regional CBF and CMRO2, followed by later modest and variable decreases of total and regional CBF (cerebellum) and CMRO2. Ethanol caused a cerebral transcapillary fluid shift as indicated by significant increases of the arterial-cerebral venous differencesmore » for hematocrit and hemoglobin. Brain wet-dry ratios increased by 10% above control levels. However, cerebral venous pressures were unchanged. The authors conclude that the adult cerebral response to ethanol differs quantitatively from that of the fetus. The functional significance of the cerebral fluid shift is unclear.« less
Chen, Xi; Dou, Hu; Wang, Xingjuan; Huang, Yi; Lu, Ling; Bin, Junqing; Su, Yongchun; Zou, Lin; Yu, Jie; Bao, Liming
2018-04-01
The prevalence and clinical relevance of KIT mutations in childhood core-binding factor (CBF) acute myeloid leukemia (AML) have not been well characterized. In this study, a total of 212 children with de novo AML were enrolled from a Chinese population and 50 (23.5%) of the patients were deemed CBF-AML. KIT mutations were identified in 30% of the CBF-AML cohort. The KIT mutations were clustered in exon 17 and exon 8, and KIT mutations in exons 8 and 17 were correlated with a shorter overall survival (OS) (5-year OS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .007) and event-free survival (EFS) (5-year EFS: 30.0 ± 14.5% vs. 73.0 ± 8.5%, p = .003). Multivariate analysis revealed KIT mutations as an independent risk factor in CBF-AML. Our results suggest that KIT mutations are a molecular marker for an inferior prognosis in pediatric CBF-AML.
Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging.
van de Haar, Harm J; Jansen, Jacobus F A; van Osch, Matthias J P; van Buchem, Mark A; Muller, Majon; Wong, Sau May; Hofman, Paul A M; Burgmans, Saartje; Verhey, Frans R J; Backes, Walter H
2016-09-01
The neurovascular unit, which protects neuronal cells and supplies them with essential molecules, plays an important role in the pathophysiology of Alzheimer's Disease (AD). The aim of this study was to noninvasively investigate 2 linked functional elements of the neurovascular unit, blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), in patients with early AD and healthy controls. Therefore, both dynamic contrast-enhanced magnetic resonance imaging and arterial spin labeling magnetic resonance imaging were applied to measure BBB permeability and CBF, respectively. The patients with early AD showed significantly lower CBF and local blood volume in the gray matter, compared with controls. In the patients, we also found that a reduction in CBF is correlated with an increase in leakage rate. This finding supports the hypothesis that neurovascular damage, and in particular impairment of the neurovascular unit constitutes the pathophysiological link between CBF reduction and BBB impairment in AD. Copyright © 2016 Elsevier Inc. All rights reserved.
An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.
An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2018-02-01
Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swank, R.L.; Roth, J.G.; Woody, D.C. Jr.
1983-01-01
Regional cerebral blood flow (rCBF) was determined in 77 normal females and 53 normal males of different ages and in 26 men and 45 women with multiple sclerosis by the inhalation of radioactive Xe133 method. In the normal subjects the CBF was relatively high in the teens and fell, at first rapidly and then slowly in both sexes with age. During adult life the flow in females was significantly higher than in males. The delivery of packed red cells (RCD) was determined by multiplying the CBF by the percentage concentration of red cells (HCT). The RCD for both sexes wasmore » nearly the same. In the patients with multiple sclerosis there occurred a progressive generalized decrease in CBF and in RCD with age which was significantly greater than observed in normal subjects. The rate of decrease in CBF and RCD correlated directly with the rate of progress of the disease.« less
Vidyasagar, Rishma; Greyling, Arno; Draijer, Richard; Corfield, Douglas R; Parkes, Laura M
2013-01-01
Black tea consumption has been shown to improve peripheral vascular function. Its effect on brain vasculature is unknown, though tea contains small amounts of caffeine, a psychoactive substance known to influence cerebral blood flow (CBF). We investigated the effects on CBF due to the intake of tea components in 20 healthy men in a double-blinded, randomized, placebo-controlled study. On separate days, subjects received a single dose of 184 mg caffeine (equivalent to one strong espresso coffee), 2,820 mg black tea solids containing 184 mg caffeine (equivalent to 6 cups of tea), 2,820 mg decaffeinated black tea solids, or placebo. The CBF and cerebrovascular reactivity (CVR) to hypercapnia were measured with arterial spin labeled magnetic resonance imaging (MRI) before and 2 hours after administration. We found a significant global reduction with caffeine (20%) and tea (21%) in gray matter CBF, with no effect of decaffeinated tea, suggesting that only caffeine influences CBF acutely. Voxelwise analysis revealed the effect of caffeine to be regionally specific. None of the interventions had an effect on CVR. Additional research is required to conclude on the physiologic relevance of these findings and the chronic effects of caffeine and tea intake on CBF. PMID:23486295
Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi
2010-07-01
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
Kosinski, Przemyslaw D; Croal, Paula L; Leung, Jackie; Williams, Suzan; Odame, Isaac; Hare, Gregory M T; Shroff, Manohar; Kassner, Andrea
2017-01-01
Overt ischaemic stroke is one of the most devastating complications in children with sickle cell disease (SCD). The compensatory response to anaemia in SCD includes an increase in cerebral blood flow (CBF) by accessing cerebrovascular dilatory reserve. Exhaustion of dilatory reserve secondary to anaemic stress may lead to cerebral ischaemia. The purpose of this study was to investigate CBF and cerebrovascular reactivity (CVR) using magnetic resonance imaging (MRI) in children with SCD and to correlate these with haematological markers of anaemia. Baseline CBF was measured using arterial spin labelling. Blood-oxygen level-dependent MRI in response to a CO 2 stimulus was used to acquire CVR. In total, 28 children with SCD (23 not on any disease-modifying treatment, 5 on chronic transfusion) and 22 healthy controls were imaged using MRI. Transfusion patients were imaged at two time points to assess the effect of changes in haematocrit after a transfusion cycle. In children with SCD, CBF was significantly elevated compared to healthy controls, while CVR was significantly reduced. Both measures were significantly correlated with haematocrit. For transfusion patients, CBF decreased and CVR increased following a transfusion cycle. Lastly, a significant correlation was observed between CBF and CVR in both children with SCD and healthy controls. © 2016 John Wiley & Sons Ltd.
Characterizing Resting-State Brain Function Using Arterial Spin Labeling
Jann, Kay; Wang, Danny J.J.
2015-01-01
Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930
Kondo, M; Tamaoki, J; Takizawa, T
1990-08-01
We used cultured rabbit tracheal epithelium to determine the effect of mammalian-derived tachykinin on airway ciliary activity and its modulation by neutral endopeptidase EC 3.4.24.11 (NEP). Neurokinin A (NKA) caused dose-dependent increases in ciliary beat frequency (CBF), as measured by a photoelectric method, with the maximal increase from the baseline 15.7 +/- 1.7% (mean +/- SEM, p less than 0.01), whereas substance P (SP) had no effect. The NKA-induced increase in CBF was not inhibited by phentolamine, propranolol, or atropine, but it was abolished by the tachykinin antagonist [D-Pro2, D-Trp7,9]SP. Pretreatment of tissue with thiorphan (10(-5) M), a NEP inhibitor, had little effect on CBF responses to NKA; however, it significantly potentiated the responses to SP (14.9 +/- 3.0%, p less than 0.01). Other peptidase inhibitors, including captopril, bestatin, and leupeptin, did not alter the tachykinin-induced CBF response, suggesting that angiotensin converting enzyme, aminopeptidases, and serine proteinases do not modulate ciliary activity in response to tachykinins. These results suggest that NKA increases CBF by acting directly on tachykinin receptors and that NEP may play a role in modulating the tachykinin-induced stimulatory effects on CBF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gozukirmizi, E.; Meyer, J.S.; Okabe, T.
1982-01-01
Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significancemore » was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.« less
Jespersen, Sune N; Østergaard, Leif
2012-01-01
Normal brain function depends critically on moment-to-moment regulation of oxygen supply by the bloodstream to meet changing metabolic needs. Neurovascular coupling, a range of mechanisms that converge on arterioles to adjust local cerebral blood flow (CBF), represents our current framework for understanding this regulation. We modeled the combined effects of CBF and capillary transit time heterogeneity (CTTH) on the maximum oxygen extraction fraction (OEFmax) and metabolic rate of oxygen that can biophysically be supported, for a given tissue oxygen tension. Red blood cell velocity recordings in rat brain support close hemodynamic–metabolic coupling by means of CBF and CTTH across a range of physiological conditions. The CTTH reduction improves tissue oxygenation by counteracting inherent reductions in OEFmax as CBF increases, and seemingly secures sufficient oxygenation during episodes of hyperemia resulting from cortical activation or hypoxemia. In hypoperfusion and states of blocked CBF, both lower oxygen tension and CTTH may secure tissue oxygenation. Our model predicts that disturbed capillary flows may cause a condition of malignant CTTH, in which states of higher CBF display lower oxygen availability. We propose that conditions with altered capillary morphology, such as amyloid, diabetic or hypertensive microangiopathy, and ischemia–reperfusion, may disturb CTTH and thereby flow-metabolism coupling and cerebral oxygen metabolism. PMID:22044867
Cerebral Blood Flow and Cerebral Edema in Rats With Diabetic Ketoacidosis
Yuen, Natalie; Anderson, Steven E.; Glaser, Nicole; Tancredi, Daniel J.; O'Donnell, Martha E.
2008-01-01
OBJECTIVE— Cerebral edema (CE) is a potentially life-threatening complication of diabetic ketoacidosis (DKA) in children. Osmotic fluctuations during DKA treatment have been considered responsible, but recent data instead suggest that cerebral hypoperfusion may be involved and that activation of cerebral ion transporters may occur. Diminished cerebral blood flow (CBF) during DKA, however, has not been previously demonstrated. We investigated CBF and edema formation in a rat model of DKA and determined the effects of bumetanide, an inhibitor of Na-K-Cl cotransport. RESEARCH DESIGN AND METHODS— Juvenile rats with streptozotocin-induced DKA were treated with intravenous saline and insulin, similar to human treatment protocols. CBF was determined by magnetic resonance (MR) perfusion–weighted imaging before and during treatment, and CE was assessed by determining apparent diffusion coefficients (ADCs) using MR diffusion–weighted imaging. RESULTS— CBF was significantly reduced in DKA and was responsive to alterations in pCO2. ADC values were reduced, consistent with cell swelling. The reduction in ADCs correlated with dehydration, as reflected in blood urea nitrogen concentrations. Bumetanide caused a rapid rise in ADCs of DKA rats without significantly changing CBF, while saline/insulin caused a rapid rise in CBF and a gradual rise in ADCs. DKA rats treated with bumetanide plus saline/insulin showed a trend toward more rapid rise in cortical ADCs and a larger rise in striatal CBF than those observed with saline/insulin alone. CONCLUSIONS— These data demonstrate that CE in DKA is accompanied by cerebral hypoperfusion before treatment and suggest that blocking Na-K-Cl cotransport may reduce cerebral cell swelling. PMID:18633109
Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong
2013-03-01
Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P < 0.05). However, there was a negative correlation between radioactivity counts per unit volume detected on the SPECT rheoencephalogram and lactic acid concentration in the homolateral internal carotid artery and vein. In summary, this study found abnormal CBF in metabolism and utilization of brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.
Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD.
Fregni, F; Ono, C R; Santos, C M; Bermpohl, F; Buchpiguel, C; Barbosa, E R; Marcolin, M A; Pascual-Leone, A; Valente, K D
2006-06-13
Although depression is highly prevalent in Parkinson disease (PD), little is known about the neural correlates associated with depression and antidepressant treatment in PD. To examine the effects of fluoxetine and repetitive transcranial magnetic stimulation (rTMS) on regional cerebral blood flow (rCBF) using SPECT in patients with PD and depression. Twenty-six patients were enrolled into two groups: One received active rTMS and placebo medication and the other sham rTMS and fluoxetine 20 mg/day. Brain SPECT was performed at baseline and after 2 and 8 weeks. Changes in rCBF were compared across timepoints and correlated with clinical scores. In addition, baseline rCBF of these patients was compared with that of 29 healthy, age-matched subjects. At baseline, patients with PD and depression showed significantly lower rCBF in the left prefrontal cortex, posterior cingulate gyrus, left insula, and right parietal cortex when compared with healthy controls. Both treatments induced significant clinical improvement and increases in rCBF in the posterior cingulate gyrus and decreases in rCBF in the right medial frontal gyrus. These changes were significantly correlated to the clinical outcome. Furthermore, the comparison between these two treatments revealed that whereas rTMS treatment was associated with an increased perfusion in the right and left prefrontal cortex, fluoxetine treatment was associated with a relative rCBF increase in the occipital lobe. Depression in patients with Parkinson disease is correlated with a dysfunction of the frontal-limbic network that can be modulated by two different antidepressant therapies.
Cerebral oxygen metabolism in patients with early Parkinson's disease.
Borghammer, Per; Cumming, Paul; Østergaard, Karen; Gjedde, Albert; Rodell, Anders; Bailey, Christopher J; Vafaee, Manoucher S
2012-02-15
Decreased activity of the mitochondrial electron transport chain (ETC) has been implicated in the pathogenesis of Parkinson's disease (PD). This model would most likely predict a decrease in the rate of cerebral oxygen consumption (CMRO(2)). To test this hypothesis, we compared CMRO(2) and cerebral blood flow (CBF) PET scans from PD patients and healthy controls. Nine early-stage PD patients and 15 healthy age-matched controls underwent PET scans for quantitative mapping of CMRO(2) and CBF. Between-group differences were evaluated for absolute data and intensity-normalized values. No group differences were detected in regional magnitudes of CMRO(2) or CBF. Upon normalization using the reference cluster method, significant relative CMRO(2) decreases were evident in widespread prefrontal, parieto-occipital, and lateral temporal regions. Sensory-motor and subcortical regions, brainstem, and the cerebellum were spared. A similar pattern was evident in normalized CBF data, as described previously. While the data did not reveal substantially altered absolute CMRO(2) in brain of PD patients, employing data-driven intensity normalization revealed widespread relative CMRO(2) decreases in cerebral cortex. The detected pattern was very similar to that reported in earlier CBF and CMRglc studies of PD, and in the CBF images from the same subjects. Thus, the present results are consistent with the occurrence of parallel declines in CMRO(2), CBF, and CMRglc in spatially contiguous cortical regions in early PD, and support the hypothesis that ETC dysfunction could be a primary pathogenic mechanism in early PD. Copyright © 2011 Elsevier B.V. All rights reserved.
Hypoxemia, oxygen content, and the regulation of cerebral blood flow
Bain, Anthony R.; Rieger, Mathew G.; Bailey, Damian M; Ainslie, Philip N.
2015-01-01
This review highlights the influence of oxygen (O2) availability on cerebral blood flow (CBF). Evidence for reductions in O2 content (CaO2) rather than arterial O2 tension (PaO2) as the chief regulator of cerebral vasodilation, with deoxyhemoglobin as the primary O2 sensor and upstream response effector, is discussed. We review in vitro and in vivo data to summarize the molecular mechanisms underpinning CBF responses during changes in CaO2. We surmise that 1) during hypoxemic hypoxia in healthy humans (e.g., conditions of acute and chronic exposure to normobaric and hypobaric hypoxia), elevations in CBF compensate for reductions in CaO2 and thus maintain cerebral O2 delivery; 2) evidence from studies implementing iso- and hypervolumic hemodilution, anemia, and polycythemia indicate that CaO2 has an independent influence on CBF; however, the increase in CBF does not fully compensate for the lower CaO2 during hemodilution, and delivery is reduced; and 3) the mechanisms underpinning CBF regulation during changes in O2 content are multifactorial, involving deoxyhemoglobin-mediated release of nitric oxide metabolites and ATP, deoxyhemoglobin nitrite reductase activity, and the downstream interplay of several vasoactive factors including adenosine and epoxyeicosatrienoic acids. The emerging picture supports the role of deoxyhemoglobin (associated with changes in CaO2) as the primary biological regulator of CBF. The mechanisms for vasodilation therefore appear more robust during hypoxemic hypoxia than during changes in CaO2 via hemodilution. Clinical implications (e.g., disorders associated with anemia and polycythemia) and future study directions are considered. PMID:26676248
Oda, Kenji; Matsushima, Eisuke; Okubo, Yoshiro; Ohta, Katsuya; Murata, Yuji; Koike, Ryuji; Miyasaka, Nobuyuki; Kato, Motoichiro
2005-07-01
Single-photon emission computed tomography (SPECT) studies have demonstrated decreased regional cerebral blood flow (rCBF) in systemic lupus erythematosus (SLE) patients. However, no study has done voxel-based analysis using statistical parametric mapping (SPM) that can evaluate rCBF objectively, and the relationship between rCBF and psychiatric symptoms has not been well investigated. Using L,L-ethyl cysteinate dimer (99mTc ECD) SPECT and SPM, we aimed to clarify the association of rCBF changes with psychiatric symptoms in SLE patients whose magnetic resonance imaging (MRI) showed no morphological abnormalities. Twenty SLE patients and 19 healthy volunteers underwent 99mTc ECD SPECT. Data were collected from August 2000 to March 2003. SLE was diagnosed according to American College of Rheumatology criteria, and psychiatric symptoms were diagnosed according to ICD-10 criteria. On the basis of the modified Carbotte, Denburg, and Denburg method, the patients were classified into 3 groups: a group with major psychiatric symptoms (hallucinosis, delusional disorder, and mood disorder), a group with minor psychiatric symptoms (anxiety disorder, dissociative disorder, and emotionally labile disorder), and a group without psychiatric symptoms. Gross organic lesions were ruled out by brain MRI. Group comparisons of rCBF were performed with analysis using SPM99. SLE patients without MRI lesions showed decreased rCBF in the posterior cingulate gyrus and thalamus. The reduction in rCBF was overt in patients with major psychiatric symptoms. Our study indicated that SLE patients may have dysfunction in the posterior cingulate gyrus and thalamus and that this may be associated with the severity of psychiatric symptoms.
Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux.
Grüne, Frank; Kazmaier, Stephan; Sonntag, Hans; Stolker, Robert Jan; Weyland, Andreas
2014-02-01
Hyperventilation is known to decrease cerebral blood flow (CBF) and to impair cerebral metabolism, but the threshold in patients undergoing intravenous anesthesia is unknown. The authors hypothesized that reduced CBF associated with moderate hyperventilation might impair cerebral aerobic metabolism in patients undergoing intravenous anesthesia. Thirty male patients scheduled for coronary surgery were included in a prospective, controlled crossover trial. Measurements were performed under fentanyl-midazolam anesthesia in a randomized sequence aiming at partial pressures of carbon dioxide of 30 and 50 mmHg. Endpoints were CBF, blood flow velocity in the middle cerebral artery, and cerebral metabolic rates for oxygen, glucose, and lactate. Global CBF was measured using a modified Kety-Schmidt technique with argon as inert gas tracer. CBF velocity of the middle cerebral artery was recorded by transcranial Doppler sonography. Data were presented as mean (SD). Two-sided paired t tests and one-way ANOVA for repeated measures were used for statistical analysis. Moderate hyperventilation significantly decreased CBF by 60%, blood flow velocity by 41%, cerebral oxygen delivery by 58%, and partial pressure of oxygen of the jugular venous bulb by 45%. Cerebral metabolic rates for oxygen and glucose remained unchanged; however, net cerebral lactate efflux significantly increased from -0.38 (2.18) to -2.41(2.43) µmol min 100 g. Moderate hyperventilation, when compared with moderate hypoventilation, in patients with cardiovascular disease undergoing intravenous anesthesia increased net cerebral lactate efflux and markedly reduced CBF and partial pressure of oxygen of the jugular venous bulb, suggesting partial impairment of cerebral aerobic metabolism at clinically relevant levels of hypocapnia.
[Immigration and factors associated with breastfeeding. CALINA study].
Oves Suárez, B; Escartín Madurga, L; Samper Villagrasa, M P; Cuadrón Andrés, L; Alvarez Sauras, M L; Lasarte Velillas, J J; Moreno Aznar, L A; Rodríguez Martínez, G
2014-07-01
To identify socio-cultural, obstetric and perinatal characteristics associated with complete breastfeeding (CBF) during the first 4 months of age, depending on maternal origin. Socio-cultural, obstetric and perinatal aspects associated with breastfeeding depending on maternal origin were evaluated in a longitudinal study in a representative infant population from Aragon (n = 1452). The prevalence of CBF was higher in immigrant mothers than in those from Spain. CBF was maintained in 37.2% of mothers from Spain at 4 months, compared with 43% of immigrants (P=.039) (RR Spanish/immigrants=0.76; 95% CI: 0.58-0.99); at 6 months this occurred in 13.9% vs. 23.8%, respectively (P<.001) (RR Spanish/immigrants=0.52; 95% CI: 0.37-0.72). The factors associated with CBF at 4 months are different between both groups. Mothers born in Spain are older (P=.002), have higher academic level (P=.001), greater parity (P=.003), and a higher probability of vaginal delivery (P=.005); and their children have the highest anthropometric values at birth. However, in immigrant mothers, the maintenance of CBF was associated with a higher maternal body mass index and with working at home. In both groups, CBF remains more frequently in those mothers who do not smoke (P=.001). The prevalence of CBF during the first months of life is higher in immigrant mothers than in those from Spain, and socio-cultural, obstetric and perinatal factors are different, depending on maternal origin. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J
2016-01-01
Objective Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. Methods 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3–9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. Results A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=−0.67–−0.70 for all patients on room air, p<0.01 and R=−0.49–−0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. Conclusions There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. Trial Registration Number NCT02135081. PMID:26048877
Gardner, Amanda E.; Dutch, Rebecca E.
2007-01-01
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F1 and F2. Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F1 (CBF1) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F2 subunit (CBF2). To analyze the functions of CBF2, alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF2 mutations resulted in folding and expression defects. However, the CBF2 mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF2 Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF2 I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF2 in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion. PMID:17507474
Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Diaz Berenstein, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J
2015-08-01
Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3-9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=-0.67--0.70 for all patients on room air, p<0.01 and R=-0.49--0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. NCT02135081. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide.
Tymko, Michael M; Kerstens, Thijs P; Wildfong, Kevin W; Ainslie, Philip N
2017-12-01
What is the central question of this study? What is the role of carbon dioxide in the cerebral blood flow (CBF) response to the cold pressor test (CPT)? What is the main finding and its importance? The CBF response was elevated during the isocapnic (controlled CO 2 ) CPT in the middle cerebral artery and the internal carotid artery compared with the poikilocapnic (uncontrolled CO 2 ) CPT, owing to ventilation-associated reductions in end-tidal CO 2 . Furthermore, the common carotid artery vasodilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, whereas the internal carotid artery vasoconstricted during both CPTs. Our data highlight the importance of CO 2 control when investigating the CBF response to the CPT. In addition to increasing sympathetic nervous activity, blood pressure and cerebral blood flow (CBF), the cold pressor test (CPT) stimulates pain receptors, which may increase ventilation above metabolic demand; this response is likely to reduce the partial pressure of end-tidal carbon dioxide (P ET ,CO2) and will attenuate elevations in CBF. Our hypotheses were as follows: (i) the CPT will elicit hyperventilation, effectively lowering P ET ,CO2; (ii) the CBF response will be elevated during an isocapnic (controlled P ET ,CO2) compared with a poikilocapnic CPT (uncontrolled P ET ,CO2); and (iii) in response to the CPT, the common carotid artery (CCA) will vasodilate, while the internal carotid artery (ICA) will remain unchanged to help regulate CBF. Using a new, randomized experimental design, we measured the cerebrovascular response in the middle cerebral artery (MCA), CCA and internal carotid artery (ICA), during an isocapnic and poikilocapnic CPT in 15 participants. Blood pressure and cardiac output (finger photoplethysmography), heart rate (ECG), MCA mean velocity (transcranial Doppler ultrasound) and CCA and ICA CBF (Duplex ultrasound) were recorded during both CPT trials. Our findings were as follows: (i) ventilation increased, which reduced P ET ,CO2 (-5.3 ± 6.4 mmHg) during the poikilocapnic compared with the isocapnic CPT; (ii) the CBF response was elevated during the isocapnic compared with the poikilocapnic CPT in the MCA and ICA, but not in the CCA; and (iii) the CCA dilated to a greater extent during the isocapnic compared with the poikilocapnic CPT, and the ICA vasoconstricted during both trials. Our data emphasize the importance of P ET ,CO2 control in the CBF response to the CPT and in the differential vasomotor regulation between the CCA and ICA. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Traviss, Nora; Thelen, Brett Amy; Ingalls, Jaime Kathryn; Treadwell, Melinda Dawn
2016-01-01
Many organizations interested in renewable, domestic energy have switched from petroleum diesel to biodiesel blends for use in transportation and heavy-duty equipment. Although considerable evidence exists on the negative health effects of petroleum diesel exhaust exposures in occupational settings, there has been little research examining biodiesel exposures. Working collaboratively with a local municipality, concentrations of particulate matter (PM) and other air toxics were measured at a recycling facility in southwestern New Hampshire while heavy equipment operated first on petroleum diesel and then on a B20 blend (20% soy-based biodiesel/80% petroleum diesel). This pilot study used a combination of established industrial hygiene and environmental air monitoring methods to estimate occupational exposure profiles to PM and air toxics from combustion of petroleum diesel and biodiesel. Results indicate that B20 use dramatically reduces work area respirable particle, PM2.5 (PM ≤2.5 µm in aerodynamic diameter), and formaldehyde levels compared with petroleum diesel. Some volatile organic compound concentrations were higher for petroleum diesel and others were higher for the B20 blend. Overall, this study suggests that biodiesel blends reduce worker exposure to and health risk from petroleum diesel exhaust, but additional exposure research is recommended. PMID:20863048
Effectiveness of Low Temperature Additives for Biodiesel Blends
2012-06-30
Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute® (SwRI®) San Antonio, TX for U.S. Army TARDEC...INTERIM REPORT TFLRF No. 428 by Steven R. Westbrook U.S. Army TARDEC Fuels and Lubricants Research Facility Southwest Research Institute...Director U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®) UNCLASSIFIED UNCLASSIFIED REPORT DOCUMENTATION PAGE Form Approved
2014-01-01
Background The addition of an intra-aortic balloon pump (IABP) during peripheral venoarterial extracorporeal membrane oxygenation (VA ECMO) support has been shown to improve coronary bypass graft flows and cardiac function in refractory cardiogenic shock after cardiac surgery. The purpose of this study was to evaluate the impact of additional IABP support on the cerebral blood flow (CBF) in patients with peripheral VA ECMO following cardiac procedures. Methods Twelve patients (mean age 60.40 ± 9.80 years) received VA ECMO combined with IABP support for postcardiotomy cardiogenic shock after coronary artery bypass grafting. The mean CBF in the bilateral middle cerebral arteries was measured with and without IABP counterpulsation by transcranial Doppler. The patients provided their control values. The mean CBF data were divided into two groups (pulsatile pressure greater than 10 mmHg, P group; pulsatile pressure less than 10 mmHg, N group) based on whether the patients experienced cardiac stun. The mean cerebral blood flow in VA ECMO (IABP turned off) alone and VA ECMO with IABP support were compared using the paired t test. Results All of the patients were successfully weaned from VA ECMO, and eight patients survived to discharge. The addition of IABP to VA ECMO did not change the mean CBF (251.47 ± 79.28 ml/min vs. 251.30 ± 79.47 ml/min, P = 0.96). The mean CBF was higher in VA ECMO alone than in VA ECMO combined with IABP support in the N group (257.68 ± 97.21 ml/min vs. 239.47 ± 95.60, P = 0.00). The addition of IABP to VA ECMO support increased the mean CBF values significantly compared with VA ECMO alone (261.68 ± 82.45 ml/min vs. 244.43 ± 45.85 ml/min, P = 0.00) in the P group. Conclusion These results demonstrate that an IABP significantly changes the CBF during peripheral VA ECMO, depending on the antegrade blood flow by spontaneous cardiac function. The addition of an IABP to VA ECMO support decreased the CBF during cardiac stun, and it increased CBF without cardiac stun. PMID:24766774
NASA Technical Reports Server (NTRS)
Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.
2015-01-01
Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed in a subject with VIIP signs. Study limitations include a slightly longer landing-to-MRI scan period for the short-duration cohort and limited sensitivity of the subjective discrete ordinal CPG scale. This limitation can be overcome by using imaging based parametric measures of VIIP severity such as globe deformation measures.
Reinhardt, Martin; Parigi, Angelo Del; Chen, Kewei; Reiman, Eric M.; Thiyyagura, Pradeep; Krakoff, Jonathan; Hohenadel, Maximilian G.; Le, Duc Son N.T.; Weise, Christopher M.
2016-01-01
Background/Objectives Prader-Willi syndrome (PWS) a type of human genetic obesity may inform us about the physiology of non-syndromic obesity. Objective of this study was to investigate the functional correlates of hunger and satiety in individuals with PWS in comparison to healthy controls with obesity, hypothesizing that we would see significant differences in activation in the left dorsolateral prefrontal cortex (DLPFC) based on prior findings. Subjects/Methods This study compared the central effects of food consumption in 9 individuals with PWS (7 men, 2 women; body fat 35.3%±10.0) and 7 controls (7 men; body fat 28.8%±7.6), matched for percentage body fat. H215O PET scans were performed before and after consumption of a standardized liquid meal to obtain quantitative measures of regional cerebral blood flow (rCBF), a marker of neuronal activity. Results Compared with obese controls, PWS showed altered (p<0.05 FWE cluster-level corrected; voxelwise p<0.001) rCBF before and after meal consumption in multiple brain regions. There was a significant differential rCBF response within the left DLPFC after meal ingestion with decreases in DLPFC rCBF in PWS; in controls DLPFC rCBF tended to remain unchanged. In more liberal analyses (voxelwise p<0.005) rCBF of the right orbitofrontal cortex (OFC) increased in PWS and decreased in controls. In PWS, ΔrCBF of the right OFC was associated with changes in appetite ratings. Conclusion The pathophysiology of eating behavior in PWS is characterized by a paradoxical meal induced deactivation of the left DLPFC and activation in the right OFC, brain regions implicated in the central regulation of eating behavior. PMID:27121248
Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.
Mir-Tutusaus, Josep Anton; Masís-Mora, Mario; Corcellas, Cayo; Eljarrat, Ethel; Barceló, Damià; Sarrà, Montserrat; Caminal, Glòria; Vicent, Teresa; Rodríguez-Rodríguez, Carlos E
2014-12-01
Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals. Copyright © 2014 Elsevier B.V. All rights reserved.
Zaramella, Patrizia; Freato, Federica; Grazzina, Nicoletta; Saraceni, Elisabetta; Vianello, Andrea; Chiandetti, Lino
2006-10-01
We compared neonatal helmet continuous positive airway pressure (CPAP) and the conventional nasal Infant Flow driver (IFD) CPAP in the noninvasive assessment of absolute cerebral blood flow (CBF) and relative cerebral blood volume changes (DeltaCBV) by near-infrared spectroscopy. A randomized crossover study in a tertiary referral NICU. Assessment of CBF and DeltaCBV in 17 very low birth weight infants with respiratory distress (median age 5 days) treated with two CPAP devices at a continuous distending pressure of 4 mbar. Neonates were studied for two consecutive 60-min periods with helmet CPAP and with IFD CPAP. Basal chromophore traces enabled DeltaCBV changes to be calculated. CBF was calculated in milliliters per 100 grams per minute from the saturation rise integral and rate of rise O(2)Hb-HHb. Median (range) CBF with helmet CPAP was 27.37 (9.47-48.20) vs. IFD CBF 34.74 (13.59-60.10)(p=0.049) and DeltaCBV 0.15 (0.09-0.28) with IFD and 0.13 (0.07-0.27) with helmet CPAP (NS). Using helmet and IFD CPAP, the neonates showed no difference in mean physiological parameters (transcutaneous carbon dioxide and oxygen tension, pulse oximetry saturation, heart rate, breathing rate, mean arterial blood pressure, desaturation rate, axillary temperature). Assessing CBF and DeltaCBV measured by near-infrared spectroscopy with two CPAP devices revealed no differences in relative blood volume, but CBF was lower with helmet CPAP. Greater active vasoconstriction and/or passive capillary and/or venous vessel compression seem the most likely reason, due to a positive pressure around the head, neck, and shoulders by comparison with the airway pressure.
Buckley, Erin M.; Lynch, Jennifer M.; Goff, Donna A.; Schwab, Peter J.; Baker, Wesley B.; Durduran, Turgut; Busch, David R.; Nicolson, Susan C.; Montenegro, Lisa M.; Naim, Maryam Y.; Xiao, Rui; Spray, Thomas L.; Yodh, A. G.; Gaynor, J. William; Licht, Daniel J.
2013-01-01
Objective The early postoperative period following neonatal cardiac surgery is a time of increased risk for brain injury, yet the mechanisms underlying this risk are unknown. To understand these risks more completely, we quantified changes in postoperative cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF), and cerebral blood flow (CBF) compared with preoperative levels by using noninvasive optical modalities. Methods Diffuse optical spectroscopy and diffuse correlation spectroscopy were used concurrently to derive cerebral blood flow and oxygen utilization postoperatively for 12 hours. Relative changes in CMRO2, OEF, and CBF were quantified with reference to preoperative data. A mixed-effect model was used to investigate the influence of total support time and deep hypothermic circulatory arrest duration on relative changes in CMRO2, OEF, and CBF. Results Relative changes in CMRO2, OEF, and CBF were assessed in 36 patients, 21 with single-ventricle defects and 15 with 2-ventricle defects. Among patients with single-ventricle lesions, deep hypothermic circulatory arrest duration did not affect relative changes in CMRO2, CBF, or OEF (P > .05). Among 2-ventricle patients, total support time was not a significant predictor of relative changes in CMRO2 or CBF (P > .05), although longer total support time was associated significantly with greater increases in relative change of postoperative OEF (P = .008). Conclusions Noninvasive diffuse optical techniques were used to quantify postoperative relative changes in CMRO2, CBF, and OEF for the first time in this observational pilot study. Pilot data suggest that surgical duration does not account for observed variability in the relative change in CMRO2, and that more comprehensive clinical studies using the new technology are feasible and warranted to elucidate these issues further. PMID:23111021
Croal, Paula L; Leung, Jackie; Kosinski, Przemyslaw; Shroff, Manohar; Odame, Isaac; Kassner, Andrea
2017-11-01
Transcranial Doppler ultrasonography (TCD) is a clinical tool for stratifying ischemic stroke risk by identifying abnormal elevations in blood flow velocity (BFV) in the middle cerebral artery (MCA). However, TCD is not effective at screening for subtle neurologic injury such as silent cerebral infarcts. To better understand this disparity, we compared TCD measures of BFV with tissue-level cerebral blood flow (CBF) using arterial spin-labeling MRI in children with and without sickle cell disease, and correlated these measurements against clinical hematologic measures of disease severity. TCD and MRI assessment were performed in 13 pediatric sickle cell disease patients and eight age-matched controls. Using MRI measures of MCA diameter and territory weight, TCD measures of BFV in the MCA [cm/s] were converted into units of CBF [ml min -1 100 g -1 ] for comparison. There was no significant association between TCD measures of BFV in the MCA and corresponding MRI measures of CBF in patients ( r = .28, p = .39) or controls ( r = .10, p = .81). After conversion from BFV into units of CBF, a strong association was observed between TCD and MRI measures ( r = .67, p = .017 in patients, r = .86, p = .006 in controls). While BFV in the MCA showed a lack of correlation with arterial oxygen content, an inverse association was observed for CBF measurements. This study demonstrates that BFV in the MCA cannot be used as a surrogate marker for tissue-level CBF in children with sickle cell disease. Therefore, TCD alone may not be sufficient for understanding and predicting subtle pathophysiology in this population, highlighting the potential clinical value of tissue-level CBF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorstrup, S.; Brun, B.; Lassen, N.A.
1986-11-01
Cerebral blood flow (CBF) was measured by xenon-133 inhalation tomography in 18 patients with cerebrovascular disease before and 4 months after extracranial-intracranial bypass surgery. Only patients who showed a reduced CBF in areas that were intact on the CT scan and relevant to the clinical and angiographical findings were operated. The majority of the patients had suffered a minor stroke with or without subsequent transient ischemic attacks. They were studied at least 6 weeks following the stroke. All patients had an occlusion of the relevant internal carotid artery. To identify preoperatively the patients with a compromised collateral circulation and hencemore » reduced CBF due to reduced perfusion pressure, a cerebral vasodilatory stress test was performed using acetazolamide (Diamox). In normal subjects, Diamox has been shown to increase tomographic CBF without change of the flow distribution. In the present series 9 patients showed a significant redistribution of flow in favor of the non-occluded side (positive Diamox test). Two of these 9 patients showed even a paradoxical decrease in focal CBF preoperatively, i.e., a steal effect. These 2 patients were the only patients who improved in focal CBF after shunting. The remaining 9 patients all showed uniform flow responses (negative Diamox test), and none of these increased in focal CBF postoperatively. The finding of an unchanged flow map postoperatively confirmed that the low flow areas were not due to restricted flow via collateral pathways. However, an increase in the regional vasodilatory capacity was observed postoperatively in the majority of patients.« less
Measurement of ciliary beat frequency using Doppler optical coherence tomography.
Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F
2015-11-01
Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.
Baril, Andrée-Ann; Gagnon, Katia; Arbour, Caroline; Soucy, Jean-Paul; Montplaisir, Jacques; Gagnon, Jean-François; Gosselin, Nadia
2015-09-01
To evaluate changes in regional cerebral blood flow (rCBF) during wakeful rest in older subjects with mild to severe obstructive sleep apnea (OSA) and healthy controls, and to identify markers of OSA severity that predict altered rCBF. High-resolution (99m)Tc-HMPAO SPECT imaging during wakeful rest. Research sleep laboratory affiliated with a University hospital. Fifty untreated OSA patients aged between 55 and 85 years, divided into mild, moderate, and severe OSA, and 20 age-matched healthy controls. N/A. Using statistical parametric mapping, rCBF was compared between groups and correlated with clinical, respiratory, and sleep variables. Whereas no rCBF change was observed in mild and moderate groups, participants with severe OSA had reduced rCBF compared to controls in the left parietal lobules, left precentral gyrus, bilateral postcentral gyri, and right precuneus. Reduced rCBF in these regions and in areas of the bilateral frontal and left temporal cortex was associated with more hypopneas, snoring, hypoxemia, and sleepiness. Higher apnea, microarousal, and body mass indexes were correlated to increased rCBF in the basal ganglia, insula, and limbic system. While older individuals with severe obstructive sleep apnea (OSA) had hypoperfusion in the sensorimotor and parietal areas, respiratory variables and subjective sleepiness were correlated with extended regions of hypoperfusion in the lateral cortex. Interestingly, OSA severity, sleep fragmentation, and obesity correlated with increased perfusion in subcortical and medial cortical regions. Anomalies with such a distribution could result in cognitive deficits and reflect impaired vascular regulation, altered neuronal integrity, and/or undergoing neurodegenerative processes. © 2015 Associated Professional Sleep Societies, LLC.
A Low-Cost Method of Ciliary Beat Frequency Measurement Using iPhone and MATLAB: Rabbit Study.
Chen, Jason J; Lemieux, Bryan T; Wong, Brian J F
2016-08-01
(1) To determine ciliary beat frequency (CBF) using a consumer-grade cellphone camera and MATLAB and (2) to evaluate the effectiveness and accuracy of the proposed method. Prospective animal study. Academic otolaryngology department research laboratory. Five ex vivo tracheal samples were extracted from 3 freshly euthanized (<3 hours postmortem) New Zealand white rabbits and incubated for 30 minutes in buffer at 23°C, buffer at 37°C, or 10% formalin at 23°C. Samples were sectioned transversely and observed under a phase-contrast microscope. Cilia movement was recorded through the eyepiece using an iPhone 6 at 240 frames per second (fps). Through MATLAB programming, the video of the 23°C sample was downsampled to 120, 60, and 30 fps, and Fourier analysis was performed on videos of all frame rates and conditions to determine CBF. CBF of the 23°C sample was also calculated manually frame by frame for verification. Recorded at 240 fps, the CBF at 23°C was 5.03 ± 0.4 Hz, and the CBF at 37°C was 9.08 ± 0.49 Hz (P < .001). The sample with 10% formalin did not display any data beyond DC noise. Compared with 240 fps, the means of other frame rates/methods (120, 60, 30 fps; manual counting) at 23°C all showed no statistical difference (P > .05). There is no significant difference between CBF measured via visual inspection and that analyzed by the developed program. Furthermore, all tested acquisition rates are shown to be effective, providing a fast and inexpensive alternative to current CBF measurement protocols. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Cerebral Blood Flow Response to Hypercapnia in Children with Obstructive Sleep Apnea Syndrome.
Busch, David R; Lynch, Jennifer M; Winters, Madeline E; McCarthy, Ann L; Newland, John J; Ko, Tiffany; Cornaglia, Mary Anne; Radcliffe, Jerilynn; McDonough, Joseph M; Samuel, John; Matthews, Edward; Xiao, Rui; Yodh, Arjun G; Marcus, Carole L; Licht, Daniel J; Tapia, Ignacio E
2016-01-01
Children with obstructive sleep apnea syndrome (OSAS) often experience periods of hypercapnia during sleep, a potent stimulator of cerebral blood flow (CBF). Considering this hypercapnia exposure during sleep, it is possible that children with OSAS have abnormal CBF responses to hypercapnia even during wakefulness. Therefore, we hypothesized that children with OSAS have blunted CBF response to hypercapnia during wakefulness, compared to snorers and controls. CBF changes during hypercapnic ventilatory response (HCVR) were tested in children with OSAS, snorers, and healthy controls using diffuse correlation spectroscopy (DCS). Peak CBF changes with respect to pre-hypercapnic baseline were measured for each group. The study was conducted at an academic pediatric sleep center. Twelve children with OSAS (aged 10.1 ± 2.5 [mean ± standard deviation] y, obstructive apnea hypopnea index [AHI] = 9.4 [5.1-15.4] [median, interquartile range] events/hour), eight snorers (11 ± 3 y, 0.5 [0-1.3] events/hour), and 10 controls (11.4 ± 2.6 y, 0.3 [0.2-0.4] events/hour) were studied. The fractional CBF change during hypercapnia, normalized to the change in end-tidal carbon dioxide, was significantly higher in controls (9 ± 1.8 %/mmHg) compared to OSAS (7.1 ± 1.5, P = 0.023) and snorers (6.7 ± 1.9, P = 0.025). Children with OSAS and snorers have blunted CBF response to hypercapnia during wakefulness compared to controls. Noninvasive DCS blood flow measurements of hypercapnic reactivity offer insights into physiopathology of OSAS in children, which could lead to further understanding about the central nervous system complications of OSAS. © 2016 Associated Professional Sleep Societies, LLC.
Smith, Robert X; Guha, Anika; Vaida, Florin; Paul, Robert H; Ances, Beau
2018-05-02
Human immunodeficiency virus (HIV)-infected (HIV+) young adults often engage in risk-taking behavior. However, the disruptive effects of HIV on the neurobiological underpinnings of risky decision making are not well understood. Risky decision making, measured via the Iowa Gambling Task (IGT), was compared voxel-wise to resting cerebral blood flow (rCBF) acquired via arterial spin labeling. Separate topographical maps were obtained for HIV-uninfected (HIV-; n = 62) and HIV+ (n = 41) young adults (18-24 years old) and were compared to the full cohort of participants. For the HIV+ group, rCBF was compared to recent and nadir CD4. IGT performance was supported by rCBF in 3 distinct brain regions: regions I, II, and III. The relationship between IGT performance and rCBF in HIV+ individuals was most robust in region I, the ventromedial prefrontal and insular cortices. Region II contained strong relationships for both HIV- and HIV+. Region III, dorsolateral prefrontal and posterior cingulate cortices, contained relationships that were strongest for HIV- controls. IGT performance was intact among HIV+ participants with higher rCBF in either region I or region III. By contrast, performance was worse among HIV+ individuals with lower rCBF in both regions I and III when compared to HIV- controls (P = .01). rCBF in region III was reduced in HIV+ compared with HIV- individuals (P = .04), and positively associated with nadir CD4 cell count (P = .02). Recruitment of executive systems (region III) mitigates risk-taking behavior in HIV+ and HIV- individuals. Recruitment of reward systems (region I) mitigates risk-taking behavior when region III is disrupted due to immunological compromise. Identifying individual recruitment patterns may aid anatomically directed therapeutics or psychosocial interventions.
Bimpisidis, Zisis; Öberg, Carl M; Maslava, Natallia; Cenci, M Angela; Lundblad, Cornelia
2017-06-01
Preclinical imaging of brain activity requires the use of anesthesia. In this study, we have compared the effects of two widely used anesthetics, inhaled isoflurane and ketamine/xylazine cocktail, on cerebral blood flow and metabolism in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia. Specific tracers were used to estimate regional cerebral blood flow (rCBF - [ 14 C]-iodoantipyrine) and regional cerebral metabolic rate (rCMR - [ 14 C]-2-deoxyglucose) with a highly sensitive autoradiographic method. The two types of anesthetics had quite distinct effects on l-DOPA-induced changes in rCBF and rCMR. Isoflurane did not affect either the absolute rCBF values or the increases in rCBF in the basal ganglia after l-DOPA administration. On the contrary, rats anesthetized with ketamine/xylazine showed lower absolute rCBF values, and the rCBF increases induced by l-DOPA were masked. We developed a novel improved model to calculate rCMR, and found lower metabolic activities in rats anesthetized with isoflurane compared to animals anesthetized with ketamine/xylazine. Both anesthetics prevented changes in rCMR upon l-DOPA administration. Pharmacological challenges in isoflurane-anesthetized rats indicated that drugs mimicking the actions of ketamine/xylazine on adrenergic or glutamate receptors reproduced distinct effects of the injectable anesthetics on rCBF and rCMR. Our results highlight the importance of anesthesia in studies of cerebral flow and metabolism, and provide novel insights into mechanisms mediating abnormal neurovascular responses to l-DOPA in Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Bray, Signe
2017-05-01
Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Using arterial spin labeling to examine mood states in youth.
Mikita, Nina; Mehta, Mitul A; Zelaya, Fernando O; Stringaris, Argyris
2015-06-01
Little is known about the neural correlates of mood states and the specific physiological changes associated with their valence and duration, especially in young people. Arterial spin labeling (ASL) imaging is particularly well-suited to study sustained cerebral states in young people, due to its robustness to low-frequency drift, excellent interscan reliability, and noninvasiveness. Yet, it has so far been underutilized for understanding the neural mechanisms underlying mood states in youth. In this exploratory study, 21 healthy adolescents aged 16 to 18 took part in a mood induction experiment. Neutral, sad, and happy mood states were induced using film clips and explicit instructions. An ASL scan was obtained following presentation of each film clip. Mood induction led to robust changes in self-reported mood ratings. Compared to neutral, sad mood was associated with increased regional cerebral blood flow (rCBF) in the left middle frontal gyrus and anterior prefrontal cortex, and decreased rCBF in the right middle frontal gyrus and the inferior parietal lobule. A decrease in self-reported mood from neutral to sad condition was associated with increased rCBF in the precuneus. Happy mood was associated with increased rCBF in medial frontal and cingulate gyri, the subgenual anterior cingulate cortex, and ventral striatum, and decreased rCBF in the inferior parietal lobule. The level of current self-reported depressive symptoms was negatively associated with rCBF change in the cerebellum and lingual gyrus following both sad and happy mood inductions. Arterial spin labeling is sensitive to experimentally induced mood changes in healthy young people. The effects of happy mood on rCBF patterns were generally stronger than the effects of sad mood.
An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging.
Catchlove, Sarah J; Macpherson, Helen; Hughes, Matthew E; Chen, Yufen; Parrish, Todd B; Pipingas, Andrew
2018-01-01
Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.
Reinhardt, M; Parigi, A D; Chen, K; Reiman, E M; Thiyyagura, P; Krakoff, J; Hohenadel, M G; Le, D S N T; Weise, C M
2016-09-01
Prader-Willi syndrome (PWS) is a type of human genetic obesity that may give us information regarding the physiology of non-syndromic obesity. The objective of this study was to investigate the functional correlates of hunger and satiety in individuals with PWS in comparison with healthy controls with obesity, hypothesizing that we would see significant differences in activation in the left dorsolateral prefrontal cortex (DLPFC) based on prior findings. This study compared the central effects of food consumption in nine individuals with PWS (7 men, 2 women; body fat 35.3±10.0%) and seven controls (7 men; body fat 28.8±7.6%), matched for percentage body fat. H2(15)O-PET (positron emission tomography) scans were performed before and after consumption of a standardized liquid meal to obtain quantitative measures of regional cerebral blood flow (rCBF), a marker of neuronal activity. Compared with obese controls, PWS showed altered (P<0.05 family-wise error cluster-level corrected; voxelwise P<0.001) rCBF before and after meal consumption in multiple brain regions. There was a significant differential rCBF response within the left DLPFC after meal ingestion with decreases in DLPFC rCBF in PWS; in controls, DLPFC rCBF tended to remain unchanged. In more liberal analyses (P<0.05 family-wise error cluster-level corrected; voxelwise P<0.005), rCBF of the right orbitofrontal cortex (OFC) increased in PWS and decreased in controls. In PWS, ΔrCBF of the right OFC was associated with changes in appetite ratings. The pathophysiology of eating behavior in PWS is characterized by a paradoxical meal-induced deactivation of the left DLPFC and activation in the right OFC, brain regions implicated in the central regulation of eating behavior.
Drouin, Annick; Bolduc, Virginie; Thorin-Trescases, Nathalie; Bélanger, Élisabeth; Fernandes, Priscilla; Baraghis, Edward; Lesage, Frédéric; Gillis, Marc-Antoine; Villeneuve, Louis; Hamel, Edith; Ferland, Guylaine; Thorin, Eric
2013-01-01
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR−/− hApoB+/+; 3 mo old) mice with catechin (30 mg·kg−1·day−1) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities. PMID:21186270
Chronic kidney disease, cerebral blood flow, and white matter volume in hypertensive adults.
Tamura, Manjula Kurella; Pajewski, Nicholas M; Bryan, R Nick; Weiner, Daniel E; Diamond, Matthew; Van Buren, Peter; Taylor, Addison; Beddhu, Srinivasan; Rosendorff, Clive; Jahanian, Hesamoddin; Zaharchuk, Greg
2016-03-29
To determine the relation between markers of kidney disease-estimated glomerular filtration rate (eGFR) and urine albumin to creatinine ratio (UACR)-with cerebral blood flow (CBF) and white matter volume (WMV) in hypertensive adults. We used baseline data collected from 665 nondiabetic hypertensive adults aged ≥50 years participating in the Systolic Blood Pressure Intervention Trial (SPRINT). We used arterial spin labeling to measure CBF and structural 3T images to segment tissue into normal and abnormal WMV. We used quantile regression to estimate the association between eGFR and UACR with CBF and abnormal WMV, adjusting for sociodemographic and clinical characteristics. There were 218 participants (33%) with eGFR <60 mL/min/1.73 m(2) and 146 participants (22%) with UACR ≥30 mg/g. Reduced eGFR was independently associated with higher adjusted median CBF, but not with abnormal WMV. Conversely, in adjusted analyses, there was a linear independent association between UACR and larger abnormal WMV, but not with CBF. Compared to participants with neither marker of CKD (eGFR ≥60 mL/min/1.73 m(2) and UACR <30 mg/g), median CBF was 5.03 mL/100 g/min higher (95% confidence interval [CI] 0.78, 9.29) and abnormal WMV was 0.63 cm(3) larger (95% CI 0.08, 1.17) among participants with both markers of CKD (eGFR <60 mL/min/1.73 m(2) and UACR ≥30 mg/g). Among nondiabetic hypertensive adults, reduced eGFR was associated with higher CBF and higher UACR was associated with larger abnormal WMV. © 2016 American Academy of Neurology.
Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
Li, Xiaotao; Bhattacharya, Chitralekha; Dayal, Sandeep; Maity, Sankar; Klein, William H
2002-05-01
Transcriptional enhancers are short stretches of DNA that function to achieve highly specific patterns of gene expression. To identify the mechanisms by which enhancers achieve their specificity, we made use of an enhancer from the aboral ectoderm-specific spec2a gene of the sea urchin Strongylocentrotus purpuratus. The spec2a enhancer contains five cis-regulatory elements within 78 base pairs that interact with five distinct DNA-binding proteins to confer aboral ectoderm expression. Here, we present an analysis of the sea urchin CCAAT binding factor (CBF), which binds to a CCAAT motif within the spec2a enhancer. S. purpuratus CBF and SpOtx, a ubiquitously expressed factor, act together at closely placed cis-regulatory elements to mediate spec2a transcription in the ectoderm. SpCBF was the sole factor that bound to the spec2a CCAAT element, and two of the three subunits that make up the CBF holoprotein were cloned and shown to have high sequence conservation with their vertebrate orthologs. Based on its involvement in the regulation of several other sea urchin genes, SpCBF appears to be a major transcription factor in the sea urchin embryo for positive regulation of ectoderm gene expression. In addition to its role in vertebrate cell growth and proliferation, our results indicate that CBF also functions at the early stages of germ layer formation, namely ectoderm differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inugami, A.; Kanno, I.; Uemura, K.
1988-12-01
The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less
Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu
2013-01-01
The INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance. PMID:23933884
Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu
2013-08-01
The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.
Leijenaar, Jolien F; van Maurik, Ingrid S; Kuijer, Joost P A; van der Flier, Wiesje M; Scheltens, Philip; Barkhof, Frederik; Prins, Niels D
2017-01-01
In this cross-sectional study, we aimed to detect differences in cerebral blood flow (CBF) between subjects with Alzheimer's disease (AD), mild cognitive impairment (MCI), and subjective cognitive decline (SCD), using two-dimensional phase-contrast magnetic resonance imaging. We included 74 AD patients (67 years, 51% female), 36 MCI patients (66 years, 33% female), and 62 patients with SCD (60 years, 32% female) from the Amsterdam Dementia Cohort. Patients with SCD are those who visited the memory clinic with subjective cognitive complaints without objective cognitive impairment. Whole-brain CBF (mL/100 g/min) was calculated using total volume flow measured with two-dimensional phase-contrast magnetic resonance imaging and normalized for brain volume. Mean CBF values (SD) were lower in AD compared to SCD (age and sex adjusted 70 ± 26 vs. 82 ± 24 mL/100 g/min, P < .05). Mean CBF values of MCI were comparable to AD. Across clinical groups, lower CBF was associated with lower scores on the Mini-Mental State Examination (age and sex adjusted stβ = 0.19 per mL/100 g/min; P = .02). Lower whole-brain CBF is seen in AD patients compared to SCD patients and is associated with worse cognitive function.
Altered cerebral blood flow and neurocognitive correlates in adolescent cannabis users
Jacobus, Joanna; Goldenberg, Diane; Wierenga, Christina E.; Tolentino, Neil J.; Liu, Thomas T.
2012-01-01
Rationale The effects of adolescent marijuana use on the developing brain remain unclear, despite its prevalence. Arterial spin labeling (ASL) is a noninvasive imaging technique that characterizes neurovascular status and cerebral blood flow (CBF), potentially revealing contributors to neuropathological alterations. No studies to date have looked at CBF in adolescent marijuana users. Objectives This study examined CBF in adolescent marijuana users and matched healthy controls at baseline and after 4 weeks of monitored abstinence. Methods Heavy adolescent marijuana users (n=23, >200 lifetime marijuana use days) and demographically matched controls (n=23) with limited substance exposure underwent an ASL brain scan at an initial session and after 4 weeks of sequential urine toxicology to confirm abstinence. Results Marijuana users showed reduced CBF in four cortical regions including the left superior and middle temporal gyri, left insula, left and right medial frontal gyrus, and left supramarginal gyrus at baseline; users showed increased CBF in the right precuneus at baseline, as compared to controls (corrected p values<0.05). No between group differences were found at follow-up. Conclusions Marijuana use may influence CBF in otherwise healthy adolescents acutely; however, group differences were not observed after several weeks of abstinence. Neurovascular alterations may contribute to or underlie changes in brain activation, neuropsychological performance, and mood observed in young cannabis users with less than a month of abstinence. PMID:22395430
Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J
2014-05-15
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings. Copyright © 2014 Elsevier Inc. All rights reserved.
Specific cerebral perfusion patterns in three schizophrenia symptom dimensions.
Stegmayer, Katharina; Strik, Werner; Federspiel, Andrea; Wiest, Roland; Bohlhalter, Stephan; Walther, Sebastian
2017-12-01
Dimensional concepts such as the Research Domain Criteria initiative have been proposed to disentangle the heterogeneity of schizophrenia. One model introduced three neurobiologically informed behavioral dimensions: language, affectivity and motor behavior. To study the brain-behavior associations of these three dimensions, we investigated whether current behavioral alterations were linked to resting state perfusion in distinct brain circuits in schizophrenia. In total, 47 patients with schizophrenia spectrum disorders and 44 healthy controls were included. Psychopathology was assessed with the Positive And Negative Syndrome Scale and the Bern Psychopathology scale (BPS). The BPS provides severity ratings of three behavioral dimensions (language, affectivity and motor). Patients were classified according to the severity of alterations (severe, mild, no) in each dimension. Whole brain resting state cerebral blood flow (CBF) was compared between patient subgroups and controls. Two symptom dimensions were associated with distinct CBF changes. Behavioral alterations in the language dimension were linked to increased CBF in Heschl's gyrus. Altered affectivity was related to increased CBF in amygdala. The ratings of motor behavior instead were not specifically associated with CBF. Investigating behavioral alterations in three schizophrenia symptom dimensions identified distinct regional CBF changes in the language and limbic brain circuits. The results demonstrate a hitherto unknown segregation of pathophysiological pathways underlying a limited number of specific symptom dimensions in schizophrenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Imamura, K; Okayasu, N; Nagatsu, T
2011-07-01
We examined the relationship between severity of depression in Parkinson's disease (PD) and regional cerebral blood flow (rCBF) using single photon emission computed tomography (SPECT) and the reaction to levodopa-selegiline combination therapy. We evaluated 52 patients with PD and nine age-matched controls with SPECT and the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Mini-Mental State Examination (MMSE), and Beck Depression Inventory (BDI) to evaluate depression severity and its connection with rCBF. Furthermore, we examined rCBF in patients with PD treated with levodopa with or without selegiline. A significant fall in rCBF was observed in the bilateral posterior cingulate, hippocampus, and cuneus and the superior parietal and primary visual areas in PD patients with minor depression and in all regions in those with major depression. Elevations in UPDRS part III and BDI scores and falls in MMSE scores were of significantly lower magnitude in the levodopa-selegiline group than in the levodopa group. Whole brain rCBF fell significantly less in the levodopa-selegiline group than in the levodopa group. These results indicate that selegiline controlled not only worsening of motor function and cognitive function in PD but also aggravation of minor depression, and restrained a fall in whole brain rCBF. © 2010 John Wiley & Sons A/S.
Bilzer, Annika; Dölz, Heike; Reinhardt, Alexander; Schmith, Anika; Siol, Oliver; Winckler, Thomas
2011-01-01
Retrotransposable elements are molecular parasites that have invaded the genomes of virtually all organisms. Although retrotransposons encode essential proteins to mediate their amplification, they also require assistance by host cell-encoded machineries that perform functions such as DNA transcription and repair. The retrotransposon TRE5-A of the social amoeba Dictyostelium discoideum generates a notable amount of both sense and antisense RNAs, which are generated from element-internal promoters, located in the A module and the C module, respectively. We observed that TRE5-A retrotransposons depend on the C-module-binding factor (CbfA) to maintain high steady-state levels of TRE5-A transcripts and that CbfA supports the retrotransposition activity of TRE5-A elements. The carboxy-terminal domain of CbfA was found to be required and sufficient to mediate the accumulation of TRE5-A transcripts, but it did not support productive retrotransposition of TRE5-A. This result suggests different roles for CbfA protein domains in the regulation of TRE5-A retrotransposition frequency in D. discoideum cells. Although CbfA binds to the C module in vitro, the factor regulates neither C-module nor A-module promoter activity in vivo. We speculate that CbfA supports the amplification of TRE5-A retrotransposons by suppressing the expression of an as yet unidentified component of the cellular posttranscriptional gene silencing machinery.
A hybrid personalized data recommendation approach for geoscience data sharing
NASA Astrophysics Data System (ADS)
WANG, M.; Wang, J.
2016-12-01
Recommender systems are effective tools helping Internet users overcome information overloading. The two most widely used recommendation algorithms are collaborating filtering (CF) and content-based filtering (CBF). A number of recommender systems based on those two algorithms were developed for multimedia, online sells, and other domains. Each of the two algorithms has its advantages and shortcomings. Hybrid approaches that combine these two algorithms are better choices in many cases. In geoscience data sharing domain, where the items (datasets) are more informative (in space and time) and domain-specific, no recommender system is specialized for data users. This paper reports a dynamic weighted hybrid recommendation algorithm that combines CF and CBF for geoscience data sharing portal. We first derive users' ratings on items with their historical visiting time by Jenks Natural Break. In the CBF part, we incorporate the space, time, and subject information of geoscience datasets to compute item similarity. Predicted ratings were computed with k-NN method separately using CBF and CF, and then combined with weights. With training dataset we attempted to find the best model describing ideal weights and users' co-rating numbers. A logarithmic function was confirmed to be the best model. The model was then used to tune the weights of CF and CBF on user-item basis with test dataset. Evaluation results show that the dynamic weighted approach outperforms either solo CF or CBF approach in terms of Precision and Recall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, H.; Steed, D.L.; Latchaw, R.E.
Operative intervention remains controversial for patients with transient nonhemispheric symptoms with occlusive disease of both the anterior and posterior cerebral circulations. In addition to the standard evaluation of these patients, we have used stable xenon-enhanced computed tomographic mapping of cerebral blood flow (Xe/CT CBF). This relatively new and potentially widely available CBF methodology, by measuring approximately 30,000 CBF values within each of three CT levels, provides a readily interpretable means of evaluating extremes of hemodynamic compromise within any or all vascular territories. In the past 30 months, Xe/CT CBF studies in 300 patients with occlusive vascular disease have identified ninemore » patients with global low flow and nonhemispheric symptoms (vertigo, lightheadedness, and/or blurred vision). Blood pressures determined by ocular pneumoplethysmography of Gee were markedly abnormal with reduced ocular/brachial ratios. Each patient had a combination of both segmental carotid and vertebrobasilar occlusive disease. Each patient had a flow-augmenting procedure performed on the anterior circulation in an attempt to improve global flow: carotid endarterectomy (two patients), subclavian-external carotid bypass (one patient), and superficial temporal artery-middle cerebral artery bypass (six patients). In each case disabling transient symptoms were relieved. There were no operative deaths, but one stroke occurred, probably as a result of a brief period of postoperative hypotension. Postoperative Xe/CT CBF studies show a long-term improved global CBF in all patients.« less
Effect of angiotensin converting enzyme inhibitor on chronic ischemic patients.
Kawakami, N; Yamashita, T; Nakano, S; Ishihara, H; Kitahara, T; Nakashima, K; Kashiwagi, S; Ito, H
1996-01-01
Most of patients with cerebrovascular disease are associated with hypertension. Hypertension induces progressive atheromatous changes in cerebral arteries, and often causes steno-occlusive lesions of cerebral arteries. Angiotensin converting enzyme (ACE) inhibitor cilazapril is one of the antihypertensive drugs. It was reported that cilazapril improved resting cerebral blood flow (CBF) and cerebrovascular reserve capacity (CRC) in experimental studies. In this clinical study, the authors investigated whether long-term treatment with cilazapril could improve CBF and CRC in patients with steno-occlusive lesions of the major cerebral arterial trunk, measured by stable xenon computerized tomography (Xe-CT) with acetazolamide challenge. On the other hand, CBF and CRC in the calcium blocker-treated patients were measured in the same way. CBF did not change after long-term treatment with both cilazapril and calcium blocker. In the cilazapril-treated group, CRC was increased significantly (p < 0.05). However, CRC did not change in the calcium blocker-treated group. It was recognized that long-term treatment with cilazapril did not decrease CBF and improved CRC in patients with occlusive lesions of the major cerebral arterial trunk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, A.; Tsuda, Y.
Regional cerebral blood flow (rCBF) in 90 patients with CBF decreased due to vascular diseases was studied by using the xenon 133 inhalation technique and a 32-detector setup. Whereas 30 patients received their standard basic therapy only and were regarded as controls, 30 others received 3 x 2 mg/day of an ergot alkaloid (co-dergocrine mesylate), and 30 others received 3 x 400 mg pentoxifylline (slow-release formulation)/day orally. Therapy was performed for eight weeks and CBF measured before start of treatment, after a four-week treatment period, and at the end of the study. CBF did not change significantly in the controlmore » group; both the pentoxifylline and the ergot alkaloid group presented with a significant increase in the CBF. This positive effect was significantly more pronounced in the pentoxifylline group and affected more ischemic than other brain tissues. In addition, symptoms like sleep disturbances, vertigo, and tinnitus improved significantly during the pentoxifylline observation period.« less
Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T.; Kornbluth, Joshua
2016-01-01
Abstract. Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation. PMID:27403447
26 CFR 1.179C-1 - Election to expense certain refineries.
Code of Federal Regulations, 2012 CFR
2012-04-01
... facility, crude or product terminal, or blending facility; or (B) The refinery property is built solely to... waiver received by the taxpayer under that Act. (7) Construction of property—(i) In general. Qualified... construction of the property was in effect before June 14, 2005, and if— (A) The construction of the property...
NASA Astrophysics Data System (ADS)
Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato
2017-05-01
Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.
Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.
Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan
2012-06-29
In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.
Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending
2012-01-01
In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young’s modulus, and reactive blending leads to further improvement in Young’s modulus while hardly reducing the elongation at break of HDPE. PMID:22747773
Blended Learning Implementation in “Guru Pembelajar” Program
NASA Astrophysics Data System (ADS)
Mahdan, D.; Kamaludin, M.; Wendi, H. F.; Simanjuntak, M. V.
2018-02-01
The rapid development of information and communication technology (ICT), especially the internet, computers and communication devices requires the innovation in learning; one of which is Blended Learning. The concept of Blended Learning is the mixing of face-to-face learning models by learning online. Blended learning used in the learner teacher program organized by the Indonesian department of education and culture that a program to improve the competence of teachers, called “Guru Pembelajar” (GP). Blended learning model is perfect for learning for teachers, due to limited distance and time because online learning can be done anywhere and anytime. but the problems that arise from the implementation of this activity are many teachers who do not follow the activities because teachers, especially the elderly do not want to follow the activities because they cannot use computers and the internet, applications that are difficult to understand by participants, unstable internet connection in the area where the teacher lives and facilities and infrastructure are not adequate.
Ensrud, Kristine E.; Harrison, Stephanie L.; Cauley, Jane A.; Langsetmo, Lisa; Schousboe, John T.; Kado, Deborah M.; Gourlay, Margaret L.; Lyons, Jennifer G.; Fredman, Lisa; Napoli, Nicolas; Crandall, Carolyn J.; Lewis, Cora E.; Orwoll, Eric S.; Stefanick, Marcia L.; Cawthon, Peggy M.
2017-01-01
To determine the association of weight loss with risk of clinical fractures at the hip, spine and pelvis (central body fractures [CBF]) in older men with and without accounting for the competing risk of mortality, we used data from 4,523 men (mean age 77.5 years). Weight change between baseline and follow-up (mean 4.5 years between examinations) was categorized as moderate loss (loss ≥10%), mild loss (loss 5% to <10%), stable (<5% change) or gain (gain ≥5%). Participants were contacted every 4 months after the follow-up examination to ascertain vital status (deaths verified by death certificates) and ask about fractures (confirmed by radiographic reports). Absolute probability of CBF by weight change category was estimated using traditional Kaplan-Meier method and cumulative incidence function accounting for competing mortality risk. Risk of CBF by weight change category was determined using conventional Cox proportional hazards regression and subdistribution hazards models with death as a competing risk. During an average of 8 years, 337 men (7.5%) experienced CBF and 1,569 (34.7%) died before experiencing this outcome. Among men with moderate weight loss, CBF probability was 6.8% at 5 years and 16.9% at 10 years using Kaplan-Meier vs. 5.7% at 5 years and 10.2% at 10 years using a competing risk approach. Men with moderate weight loss compared with those with stable weight had a 1.6-fold higher adjusted risk of CBF (HR 1.59, 95% CI 1.06–2.38) using Cox models that was substantially attenuated in models accounting for competing mortality risk and no longer significant (subdistribution HR 1.16, 95% CI 0.77–1.75). Results were similar in analyses substituting hip fracture for CBF. Older men with weight loss who survive are at increased risk of CBF, including hip fracture. However, ignoring the competing mortality risk among men with weight loss substantially overestimates their longterm fracture probability and relative fracture risk. PMID:27739103
El-Hage, W; Zelaya, F; Radua, J; Gohier, B; Alsop, D C; Phillips, M L; Surguladze, S A
2013-08-01
Serotonin transporter-linked polymorphic region (5-HTTLPR) has been associated with modulation of resting-state amygdala level, which was considered to underlie a risk for mood and anxiety disorders. The findings however have been inconsistent which could be related to interactions of the genotype with other factors e.g. sex or personality characteristics. Therefore, the aim of the present study was to explore the modulation of the amygdala perfusion in the resting-state by sex and 5-HTTLPR/rs25531 genotype, controlled for personality dimensions assessed by Temperament and Character Inventory (Cloninger et al., 1994). The resting-state cerebral blood flow (rCBF) was examined using an arterial spin labelling technique. All participants were genotyped for the 5-HTTLPR/rs25531 genotype (L/L-L/S-S/S genotypes and LA-LG variants). The study group comprised 81 right-handed Caucasian healthy volunteers (42 females) aged 19-55 years. We measured rCBF in the amygdala and in the whole-brain grey matter. The data of blood-oxygen-level-dependent (BOLD) response in amygdala to fearful dynamic faces in the same sample were also analysed. There was a significant main effect of sex in both the left and right amygdalae, with higher rCBF in males. Main effect of 5-HTTLPR/rs25531 genotype which was significant in the right amygdala only, was accounted for by higher rCBF in S/S vs. L/L homozygotes. An interaction between sex and 5-HTTLPR/rs25531 genotype was observed in rCBF in the right amygdala. This was accounted for by higher values of rCBF in the right amygdala in males' S allele carriers compared with females. In females, there was a significant negative correlation between the rCBF and BOLD response in the right amygdala, and more so in S carriers. In males, there was no significant correlation between rCBF and BOLD response in the right amygdala. The novelty of our results lies in the demonstration of gene by sex interaction with resting blood flow in the amygdala that elucidates sex-related differences in emotional reactivity. Copyright © 2013 Elsevier Inc. All rights reserved.
Conger, Bryant T.; Zhang, Shaoyan; Skinner, Daniel; Hicks, Stephen B.; Sorscher, Eric J.; Rowe, Steven M.; Woodworth, Bradford A.
2014-01-01
IMPORTANCE Pharmacologic activation of mucociliary clearance (MCC) represents an emerging therapeutic strategy for patients with chronic rhinosinusitis, even in the absence of congenital mutations of the CFTR gene. Drug discovery efforts have identified small molecules that activate the cystic fibrosis transmembrane conductance regulator (CFTR), including potentiators under development for treatment of cystic fibrosis. OBJECTIVE To evaluate the properties of CFTR modulators and their effects on ciliary beat frequency (CBF) in human sinonasal epithelium (HSNE). DESIGN Primary HSNE cultures (wild type and F508del/F508del) were used to compare stimulation of CFTR-mediated Cl− conductance and CBF by the CFTR modulators genistein, VRT-532, and UCCF-152. MAIN OUTCOMES AND MEASURES Increase in CFTR-dependent anion transport and CBF. RESULTS HSNE cultures were analyzed using pharmacologic manipulation of ion transport (change in short-circuit current [ΔISC]) and high-speed digital imaging (CBF). Activation of CFTR-dependent anion transport was significantly different among agonists (P < .001), with genistein exerting the greatest effect (mean [SD] ΔISC, genistein, 23.1 [1.8] µA/cm2 > VRT-532, 8.1 [1.0] µA/cm2 > UCCF-152, 3.4 [1.4] µA/cm2 > control, 0.7 [0.2] µA/cm2; Tukey-Kramer P < .05) in the absence of forskolin. Genistein and UCCF-152 augmented CBF (under submerged conditions) significantly better (Tukey-Kramer P < .05) than cells treated with VRT-532 or dimethyl sulfoxide vehicle control (mean [SD] fold change over baseline, genistein, 1.63 [0.06]; UCCF-152, 1.56 [0.06]; VRT-532, 1.38 [0.08]; control, 1.27 [0.02]). Activation of CBF was blunted in F508del/F508del HSNE cultures. CONCLUSIONS AND RELEVANCE The degree of CBF stimulation was not dependent on the magnitude of Cl− secretion, suggesting that different mechanisms of action may underlie MCC activation by these small molecule potentiators. Agents that activate both CFTR-dependent ISC and CBF are particularly attractive as therapeutics because they may address 2 independent pathways that contribute to deficient MCC in chronic rhinosinusitis. PMID:23949358
Conger, Bryant T; Zhang, Shaoyan; Skinner, Daniel; Hicks, Stephen B; Sorscher, Eric J; Rowe, Steven M; Woodworth, Bradford A
2013-08-01
Pharmacologic activation of mucociliary clearance (MCC) represents an emerging therapeutic strategy for patients with chronic rhinosinusitis, even in the absence of congenital mutations of the CFTR gene. Drug discovery efforts have identified small molecules that activate the cystic fibrosis transmembrane conductance regulator (CFTR), including potentiators under development for treatment of cystic fibrosis. To evaluate the properties of CFTR modulators and their effects on ciliary beat frequency (CBF) in human sinonasal epithelium (HSNE). Primary HSNE cultures (wild type and F508del/F508del) were used to compare stimulation of CFTR-mediated Cl- conductance and CBF by the CFTR modulators genistein, VRT-532, and UCCF-152. Increase in CFTR-dependent anion transport and CBF. HSNE cultures were analyzed using pharmacologic manipulation of ion transport (change in short-circuit current [∆ISC]) and high-speed digital imaging (CBF). Activation of CFTR-dependent anion transport was significantly different among agonists (P < .001), with genistein exerting the greatest effect (mean [SD] ∆ISC, genistein, 23.1 [1.8] μA/cm2² > VRT-532, 8.1 [1.0] μA/cm² > UCCF-152, 3.4 [1.4] μA/cm² > control, 0.7 [0.2] μA/cm²; Tukey-Kramer P < .05) in the absence of forskolin. Genistein and UCCF-152 augmented CBF (under submerged conditions) significantly better (Tukey-Kramer P < .05) than cells treated with VRT-532 or dimethyl sulfoxide vehicle control (mean [SD] fold change over baseline, genistein, 1.63 [0.06]; UCCF-152, 1.56 [0.06]; VRT-532, 1.38 [0.08]; control, 1.27 [0.02]). Activation of CBF was blunted in F508del/F508del HSNE cultures. The degree of CBF stimulation was not dependent on the magnitude of Cl- secretion, suggesting that different mechanisms of action may underlie MCC activation by these small molecule potentiators. Agents that activate both CFTR-dependent ISC and CBF are particularly attractive as therapeutics because they may address 2 independent pathways that contribute to deficient MCC in chronic rhinosinusitis.
NASA Technical Reports Server (NTRS)
Golanov, E. V.; Reis, D. J.
1996-01-01
1. We sought to determine whether hypoxic stimulation of neurons of the rostral ventrolateral reticular nucleus (RVL) would elevate regional cerebral blood flow (rCBF) in anaesthetized paralysed rats. 2. Microinjection of sodium cyanide (NaCN; 150-450 pmol) into the RVL rapidly (within 1-2 s), transiently, dose-dependently and site-specifically elevated rCBF1 measured by laser Doppler flowmetry, by 61.3 +/- 22.1% (P < 0.01), increased arterial pressure (AP; +30 +/- 8 mmHg; P < 0.01)1 and triggered a synchronized 6 Hz rhythm of EEG activity. 3. Following cervical spinal cord transection, NaCN and also dinitrophenol (DNP) significantly (P < 0.05) elevated rCBF and synchronized the EEG but did not elevate AP; the response to NaCN was attenuated by hyperoxia and deepening of anaesthesia. 4. Electrical stimulation of NaCN-sensitive sites in the RVL in spinalized rats increased rCBF measured autoradiographically with 14C iodoantipyrine (Kety method) in the mid-line thalamus (by 182.3 +/- 17.2%; P < 0.05) and cerebral cortex (by 172.6 +/- 15.6%; P < 0.05) regions, respectively, directly or indirectly innervated by RVL neurons, and in the remainder of the brain. In contrast regional cerebral glucose utilization (rCGU), measured autoradiographically with 14C-2-deoxyglucose (Sokoloff method), was increased in proportion to rCBF in the mid-line thalamus (165.6 +/- 17.8%, P < 0.05) but was unchanged in the cortex. 5. Bilateral electrolytic lesions of NaCN sensitive sites of RVL, while not altering resting rCBF or the elevation elicited by hypercarbia (arterial CO2 pressure, Pa,CO2, approximately 69 mmHg), reduced the vasodilatation elicited by normocapnic hypoxaemia (arterial O2 pressure, Pa,O2, approximately 27 mmHg) by 67% (P < 0.01) and flattened the slope of the Pa,O2-rCBF response curve. 6. We conclude that the elevation of rCBF produced in the cerebral cortex by hypoxaemia is in large measure neurogenic, mediated trans-synaptically over intrinsic neuronal pathways, and initiated by excitation of oxygen sensitive neurons in the RVL.
NASA Astrophysics Data System (ADS)
Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo
2013-05-01
This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.
Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin
2017-01-01
Background: Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Methods: Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. Results: During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% (p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex (p < 0.001). Conclusions: α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses. PMID:28492488
Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin
2017-05-11
Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% ( p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex ( p < 0.001). α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses.
NASA Astrophysics Data System (ADS)
Diop, Mamadou; Elliott, Jonathan T.; Tichauer, Kenneth M.; Lee, Ting-Yim; St. Lawrence, Keith
2009-05-01
Near-infrared spectroscopy (NIRS) is a promising technique for assessing brain function in newborns, particularly due to its portability and sensitivity to cerebral hemodynamics and oxygenation. Methods for measuring cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) have been developed based on broadband continuous-wave NIRS. However, broadband NIRS apparatus typically have only one detection channel, which limits their applicability to measuring regional CBF and CMRO2. In this study, a relatively simple multiplexing approach based on electronically controlled mechanical shutters is proposed to expand the detection capabilities from one to eight channels. The tradeoff is an increase in the sampling interval; however, this has negligible effects on CBF measurements for intervals less than or equal to 1 s. The ability of the system to detect focal brain injury was demonstrated in piglets by injecting endothelin-1 (ET-1) into the cerebral cortex. For validation, CBF was independently measured by computed tomography (CT) perfusion. The average reduction in CBF from the source-detector pair that interrogated the injured region was 51%±9%, which was in good agreement with the CBF reduction measured by CT perfusion (55%±5%). No significant changes in regional CMRO2 were observed. The average regional differential pathlength prior to ET-1 injection was 8.4±0.2 cm (range of 7.1-9.6 cm) and did not significantly change after the injury.
Integrative regulation of human brain blood flow
Willie, Christopher K; Tzeng, Yu-Chieh; Fisher, Joseph A; Ainslie, Philip N
2014-01-01
Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60–150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research. PMID:24396059
Influence of essential and fatty oils on ciliary beat frequency of human nasal epithelial cells.
Neher, Andreas; Gstöttner, Michaela; Thaurer, Michael; Augustijns, Patrick; Reinelt, Monika; Schobersberger, Wolfgang
2008-01-01
In alternative and complementary medicine, the use of essential and fatty oils has become more and more popular. In addition to conventional medical therapies, self-medication is showing increasing popularity, using agents with unclear compounds and poorly controlled dosages. Among other disorders, these alternative treatments are used in bronchitis and rhinitis, including some topical applications. Thus, the influence on ciliated epithelia should be evaluated, because a disturbance of the ciliary function can lead to recurrent sinusitis and chronic rhinosinusitis. The aim of this study was to test the influence of fatty and essential oils on the ciliary beat frequency (CBF) of nasal mucosa in vivo. The influence of sesame oil, soy oil, peanut oil, Miglyol 840, thyme oil, lavender oil, eucalyptus oil, and menthol on the ciliary activity of nasal brushings was evaluated by digital high-speed imaging. The presence of most fatty oils resulted in an increase in CBF, the effect being highest for peanut oil. Miglyol 840 had no significant influence on CBF. The essential oils were tested at a concentration of 0.2 and 2%. Thyme oil did not affect CBF, whereas the presence of all other essentials oils resulted in an increase in CBF; the effect was higher at 0.2% than at 2%. Except thyme oil and Miglyol 840, all tested oils caused an increase in CBF. Interestingly, the 0.2% concentrations of essential oils resulted in stronger effects when compared with the 2% concentrations.
Ellis, Michael J.; Ryner, Lawrence N.; Sobczyk, Olivia; Fierstra, Jorn; Mikulis, David J.; Fisher, Joseph A.; Duffin, James; Mutch, W. Alan C.
2016-01-01
Concussion is a form of traumatic brain injury (TBI) that presents with a wide spectrum of subjective symptoms and few objective clinical findings. Emerging research suggests that one of the processes that may contribute to concussion pathophysiology is dysregulation of cerebral blood flow (CBF) leading to a mismatch between CBF delivery and the metabolic needs of the injured brain. Cerebrovascular reactivity (CVR) is defined as the change in CBF in response to a measured vasoactive stimulus. Several magnetic resonance imaging (MRI) techniques can be used as a surrogate measure of CBF in clinical and laboratory studies. In order to provide an accurate assessment of CVR, these sequences must be combined with a reliable, reproducible vasoactive stimulus that can manipulate CBF. Although CVR imaging currently plays a crucial role in the diagnosis and management of many cerebrovascular diseases, only recently have studies begun to apply this assessment tool in patients with concussion. In order to evaluate the quality, reliability, and relevance of CVR studies in concussion, it is important that clinicians and researchers have a strong foundational understanding of the role of CBF regulation in health, concussion, and more severe forms of TBI, and an awareness of the advantages and limitations of currently available CVR measurement techniques. Accordingly, in this review, we (1) discuss the role of CVR in TBI and concussion, (2) examine methodological considerations for MRI-based measurement of CVR, and (3) provide an overview of published CVR studies in concussion patients. PMID:27199885
Warwick, J M; Carey, P; Van der Linden, G; Prinsloo, C; Niehaus, D; Seedat, S; Dupont, P; Stein, D J
2006-09-01
The serotonin specific reuptake inhibitor (SSRI) citalopram and the reversible mono-amine oxidase-A inhibitor (RIMA) moclobemide have both been used successfully for the treatment of social anxiety disorder (SAD). In this study we investigate the effects of these compounds on resting brain function using single photon emission computed tomography (SPECT). Subjects meeting DSM-IV criteria for SAD underwent regional cerebral blood flow (rCBF) SPECT using Tc-HMPAO at baseline and after 8 weeks of treatment with either citalopram or moclobemide. Using statistical parametric mapping brain SPECT studies were analysed to determine the effects of treatment on rCBF, to compare the effects of citalopram and moclobemide, and to detect correlations between changes in rCBF and clinical response. Subjects received citalopram (n=17) or moclobemide (n=14) as therapy. Subjects in both treatment groups demonstrated a significant improvement of SAD symptoms as measured by the Liebowitz Social Anxiety Scale total score. All subjects demonstrated a decrease in rCBF in the insulae post therapy. Subjects receiving citalopram had decreased superior cingulate rCBF after therapy compared to those receiving moclobemide. Both SSRI's and RIMA's decreased rCBF in the insulae during treatment of SAD; an effect that may be consistent with the role of these regions in processing internal somatic cues evoked by emotional stimuli. Citalopram had a greater effect on superior cingulate perfusion, an effect that is consistent with evidence of high levels of 5-HT transporters in this region.
Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith
2016-06-01
Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.
Bilzer, Annika; Dölz, Heike; Reinhardt, Alexander; Schmith, Anika; Siol, Oliver; Winckler, Thomas
2011-01-01
Retrotransposable elements are molecular parasites that have invaded the genomes of virtually all organisms. Although retrotransposons encode essential proteins to mediate their amplification, they also require assistance by host cell-encoded machineries that perform functions such as DNA transcription and repair. The retrotransposon TRE5-A of the social amoeba Dictyostelium discoideum generates a notable amount of both sense and antisense RNAs, which are generated from element-internal promoters, located in the A module and the C module, respectively. We observed that TRE5-A retrotransposons depend on the C-module-binding factor (CbfA) to maintain high steady-state levels of TRE5-A transcripts and that CbfA supports the retrotransposition activity of TRE5-A elements. The carboxy-terminal domain of CbfA was found to be required and sufficient to mediate the accumulation of TRE5-A transcripts, but it did not support productive retrotransposition of TRE5-A. This result suggests different roles for CbfA protein domains in the regulation of TRE5-A retrotransposition frequency in D. discoideum cells. Although CbfA binds to the C module in vitro, the factor regulates neither C-module nor A-module promoter activity in vivo. We speculate that CbfA supports the amplification of TRE5-A retrotransposons by suppressing the expression of an as yet unidentified component of the cellular posttranscriptional gene silencing machinery. PMID:21076008
Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr
2016-11-16
For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.
Lai, S; Wang, J; Jahng, G H
2001-01-01
A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.
Low cerebral blood flow is associated with lower memory function in metabolic syndrome.
Birdsill, Alex C; Carlsson, Cynthia M; Willette, Auriel A; Okonkwo, Ozioma C; Johnson, Sterling C; Xu, Guofan; Oh, Jennifer M; Gallagher, Catherine L; Koscik, Rebecca L; Jonaitis, Erin M; Hermann, Bruce P; LaRue, Asenath; Rowley, Howard A; Asthana, Sanjay; Sager, Mark A; Bendlin, Barbara B
2013-07-01
Metabolic syndrome (MetS)--a cluster of cardiovascular risk factors--is linked with cognitive decline and dementia. However, the brain changes underlying this link are presently unknown. In this study, we tested the relationship between MetS, cerebral blood flow (CBF), white matter hyperintensity burden, and gray matter (GM) volume in cognitively healthy late middle-aged adults. Additionally, the extent to which MetS was associated with cognitive performance was assessed. Late middle-aged adults from the Wisconsin Registry for Alzheimer's Prevention (N = 69, mean age = 60.4 years) underwent a fasting blood draw, arterial spin labeling perfusion MRI, T1-weighted MRI, T2FLAIR MRI, and neuropsychological testing. MetS was defined as abnormalities on three or more factors, including abdominal obesity, triglycerides, HDL-cholesterol, blood pressure, and fasting glucose. Mean GM CBF was 15% lower in MetS compared to controls. Voxel-wise image analysis indicated that the MetS group had lower CBF across a large portion of the cortical surface, with the exception of medial and inferior parts of the occipital and temporal lobes. The MetS group also had lower immediate memory function; a mediation analysis indicated this relationship was partially mediated by CBF. Among the MetS factors, abdominal obesity and elevated triglycerides were most strongly associated with lower CBF. The results underscore the importance of reducing the number of cardiovascular risk factors for maintaining CBF and cognition in an aging population. Copyright © 2012 The Obesity Society.
Kochunov, Peter; Wey, Hsiao-Ying; Fox, Peter T; Lancaster, Jack L; Davis, Michael D; Wang, Danny J J; Lin, Ai-Ling; Bastarrachea, Raul A; Andrade, Marcia C R; Mattern, Vicki; Frost, Patrice; Higgins, Paul B; Comuzzie, Anthony G; Voruganti, Venkata S
2017-01-01
Changes in cerebral blood flow (CBF) during a hyperglycemic challenge were mapped, using perfusion-weighted MRI, in a group of non-human primates. Seven female baboons were fasted for 16 h prior to 1-h imaging experiment, performed under general anesthesia, that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500 mg/kg). CBF maps were collected every 7 s and blood glucose and insulin levels were sampled at regular intervals. Blood glucose levels rose from 51.3 ± 10.9 to 203.9 ± 38.9 mg/dL and declined to 133.4 ± 22.0 mg/dL, at the end of the experiment. Regional CBF changes consisted of four clusters: cerebral cortex, thalamus, hypothalamus, and mesencephalon. Increases in the hypothalamic blood flow occurred concurrently with the regulatory response to systemic glucose change, whereas CBF declined for other clusters. The return to baseline of hypothalamic blood flow was observed while CBF was still increasing in other brain regions. The spatial pattern of extra-hypothalamic CBF changes was correlated with the patterns of several cerebral networks including the default mode network. These findings suggest that hypothalamic blood flow response to systemic glucose levels can potentially be explained by regulatory activity. The response of extra-hypothalamic clusters followed a different time course and its spatial pattern resembled that of the default-mode network.
Diop, Mamadou; Elliott, Jonathan T; Tichauer, Kenneth M; Lee, Ting-Yim; St Lawrence, Keith
2009-05-01
Near-infrared spectroscopy (NIRS) is a promising technique for assessing brain function in newborns, particularly due to its portability and sensitivity to cerebral hemodynamics and oxygenation. Methods for measuring cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) have been developed based on broadband continuous-wave NIRS. However, broadband NIRS apparatus typically have only one detection channel, which limits their applicability to measuring regional CBF and CMRO(2). In this study, a relatively simple multiplexing approach based on electronically controlled mechanical shutters is proposed to expand the detection capabilities from one to eight channels. The tradeoff is an increase in the sampling interval; however, this has negligible effects on CBF measurements for intervals less than or equal to 1 s. The ability of the system to detect focal brain injury was demonstrated in piglets by injecting endothelin-1 (ET-1) into the cerebral cortex. For validation, CBF was independently measured by computed tomography (CT) perfusion. The average reduction in CBF from the source-detector pair that interrogated the injured region was 51%+/-9%, which was in good agreement with the CBF reduction measured by CT perfusion (55%+/-5%). No significant changes in regional CMRO(2) were observed. The average regional differential pathlength prior to ET-1 injection was 8.4+/-0.2 cm (range of 7.1-9.6 cm) and did not significantly change after the injury.
Production of a novel bioflocculant and its flocculation performance in aluminum removal.
Li, Lixin; Ma, Fang; Zuo, Huimin
2016-04-02
A novel bioflocculant CBF with high flocculating activity, produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaericus F6 from soil, was investigated with regard to its production and flocculation performance in Al(III) removal. The most preferred carbon source, nitrogen source and C/N ratio (w/w) for strains F2 and F6 to produce CBF were glucose, urea and 20, respectively. The optimal inoculum size for CBF production was 10 % (v/v). The optimal initial pH, culture temperature and shaking speed were 7-8, 30°C and 140 r/min for 24 h, respectively, under which the flocculating activity of the bioflocculant reached 98.52 %. According to literature review, flocculant dosage, coagulant aid dosage, pH, hydraulic condition of coagulation and sedimentation time are considered as influencing parameters for CBF flocculation performance in Al(III) removal by L16(4(5)) orthogonal design. The optimal conditions for Al(III) removal obtained through analysis and verification experiments were as follows: CBF, 28 mg/L; coagulant aid, 1.5 mL/L; initial pH, 8.0; and hydraulic conditions of coagulation: stir speed, 160 r/min; stir time, 40 s; and sedimentation time, 30 min. Under the optimal conditions, the removal efficiency of Al(III) was 92.95 %. Overall, these findings indicate that bioflocculant CBF offers an effective alternative method of decreasing Al(III) during drinking water treatment.
Newsome, Mary R; Scheibel, Randall S; Chu, Zili; Hunter, Jill V; Li, Xiaoqi; Wilde, Elisabeth A; Lu, Hanzhang; Wang, Zhiyue J; Lin, Xiaodi; Steinberg, Joel L; Vasquez, Ana C; Cook, Lori; Levin, Harvey S
2012-05-01
Alterations in cerebrovascular function are evident acutely in moderate to severe traumatic brain injury (TBI), although less is known about their chronic effects. Adolescent and adult patients with moderate to severe TBI have been reported to demonstrate diffuse activation throughout the brain during functional magnetic resonance imaging (fMRI). Because fMRI is a measure related to blood flow, it is possible that any deficits in blood flow may alter activation. An arterial spin labeling (ASL) perfusion sequence was performed on seven adolescents with chronic moderate to severe TBI and seven typically developing (TD) adolescents during the same session in which they had performed a social cognition task during fMRI. In the TD group, prefrontal CBF was positively related to prefrontal activation and negatively related to non-prefrontal, posterior, brain activation. This relationship was not seen in the TBI group, who demonstrated a greater positive relationship between prefrontal CBF and non-prefrontal activation than the TD group. An analysis of CBF data independent of fMRI showed reduced CBF in the right non-prefrontal region (p<.055) in the TBI group. To understand any role reduced CBF may play in diffuse extra-activation, we then related the right non-prefrontal CBF to activation. CBF in the right non-prefrontal region in the TD group was positively associated with prefrontal activation, suggesting an interactive role of non-prefrontal and prefrontal blood flow throughout the right hemisphere in healthy brains. However, the TBI group demonstrated a positive association with activation constrained to the right non-prefrontal region. These data suggest a relationship between impaired non-prefrontal CBF and the presence of non-prefrontal extra-activation, where the region with more limited blood flow is associated with activation limited to that region. In a secondary analysis, pathology associated with hyperintensities on T2-weighted FLAIR imaging over the whole brain was related to whole brain activation, revealing a negative relationship between lesion volume and frontal activation, and a positive relationship between lesion volume and posterior activation. These preliminary data, albeit collected with small sample sizes, suggest that reduced non-prefrontal CBF, and possibly pathological tissue associated with T2-hyperintensities, may provide contributions to the diffuse, primarily posterior extra-activation observed in adolescents following moderate to severe TBI. Published by Elsevier Ltd.
In vivo cerebral blood flow autoregulation studies using rheoencephalography
NASA Astrophysics Data System (ADS)
Bodo, M.; Pearce, F.; Garcia, A.; Van Albert, S.; Settle, T.; Szebeni, J.; Baranyi, L.; Hartings, J.; Armonda, R.
2010-04-01
Acute management of patients with traumatic brain/blast injury is a challenge. To minimize secondary injury and improve outcome, it is critical to detect neurological deterioration early, when it is potentially reversible. One potential monitoring method is cerebral electrical impedance (rheoencephalography-REG) because of its non-invasiveness and good time resolution. Reported here are the results of cerebral blood flow (CBF) manipulations comparing electroencephalogram (EEG) with REG (both intra-cerebral) and measuring with surface and skull REG electrodes. Our hypothesis was that REG would reflect spreading depression and CBF autoregulation. Animal experiments were performed using one rat (four trials with intracerebral electrodes), monkeys (n=8, with surface electrodes) and pigs (n = 24 pigs with skull electrodes; 57 trials, 19 types of liposomes). Challenges included intracranial pressure (ICP) elevation, liposome infusion, and hemorrhage. Data were stored on a PC and evaluated off line. CBF autoregulation was evaluated both by visual inspection and by a Matlab script. These studies confirmed that REG reflects CBF autoregulation and that REG is useful for detecting spreading depression (SD), vasospasm and the lower limit of CBF autoregulation. These findings have clinical relevance for use in noninvasive neuro-monitoring in the neurosurgery intensive care and during transportation of patients with brain injury.
Induction and imaging of photothrombotic stroke in conscious and freely moving rats
NASA Astrophysics Data System (ADS)
Lu, Hongyang; Li, Yao; Yuan, Lu; Li, Hangdao; Lu, Xiaodan; Tong, Shanbao
2014-09-01
In experimental stroke research, anesthesia is common and serves as a major reason for translational failure. Real-time cerebral blood flow (CBF) monitoring during stroke onset can provide important information for the prediction of brain injury; however, this is difficult to achieve in clinical practice due to various technical problems. We created a photothrombotic focal ischemic stroke model utilizing our self-developed miniature headstage in conscious and freely moving rats. In this model, a high spatiotemporal resolution imager using laser speckle contrast imaging technology was integrated to acquire real-time two-dimensional CBF information during thrombosis. The feasibility, stability, and reliability of the system were tested in terms of CBF, behavior, and T2-weighted magnetic resonance imaging (MRI) findings. After completion of occlusion, the CBF in the targeted cortex of the stroke group was reduced to 16±9% of the baseline value. The mean infarct volume measured by MRI 24 h postmodeling was 77±11 mm3 and correlated well with CBF (R2=0.74). This rodent model of focal cerebral ischemia and real-time blood flow imaging opens the possibility of performing various fundamental and translational studies on stroke without the influence of anesthetics.
Base-line O sub 2 extraction influences cerebral blood flow response to hematocrit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudak, M.L.; Tang, Yuilin; Massik, J.
1988-01-01
The authors have shown that the fall in cerebral blood flow (CBF) as hematocrit (Hct) rises is due to the independent effects of increasing red blood cell (RBC) concentration and arterial O{sub 2} content (Ca{sub O{sub 2}}). In the present study, they tested the hypothesis that the magnitude of the effect of RBC concentration depends on the base-line cerebral fractional oxygen extraction (E). Pentobarbital-anesthetized 1- to 7-day-old sheep were first exchange transfused with plasma to lower Hct to 20%. Base-line E was set to either high or low levels by induction of hypocarbia, or hypercarbia. A second isovolemic exchange transfusionmore » with pure methemoglobin-containing adult sheep red cells then raised Hct with no significant increase in Ca{sub O{sub 2}}. Pa{sub CO{sub 2}} was maintained and other variables with potential effect on CBF did not change. CBF corrected for any individual alteration in CMRo{sub 2}. This study supports the hypothesis that the magnitude of the decline in CBF secondary to an increase in RBC concentration depends on the initial E. The effect of RBC concentration on CBF is greatest when E is low.« less
Spatio-temporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex
Zhao, Mingrui; Ma, Hongtao; Suh, Minah; Schwartz, Theodore H.
2009-01-01
Epileptic events elicit a large focal increase in cerebral blood flow (CBF) to perfuse metabolically active neurons in the focus. Conflicting data exists, however, on whether hemoglobin saturation increases or decreases in the focus and surrounding cortex, and whether CBF increases globally or is decreased in adjacent areas. How these hemodynamic events correlate with actual changes in tissue oxygenation is also not known. Using laser Doppler flowmetry, oxygen microsensors and intrinsic optical imaging spectroscopy, we demonstrate that the dip in hemoglobin in the focus correlates with a profound but temporary decrease in tissue oxygenation in spite of a large increase in cerebral blood flow (CBF). Furthermore, CBF simultaneously decreases in the cortex immediately adjacent to the focus. These events are then replaced with a longer duration, less focal increase in CBF, CBV and hyperoxygenation, the duration of which correlates with the duration of the seizure. These findings raise the question of whether transient focal hypoxia and vascular steal might contribute to progressive deleterious effects of chronic epilepsy on the adult and developing brain. Possible mechanisms based on recent astrocyte-based models of neurovascular coupling are discussed. Implications for functional magnetic resonance imaging of epileptic events are discussed. PMID:19261877
Role of cerebral blood flow in extreme breath holding
Ainslie, Philip N.; Hoiland, Ryan L.; Willie, Chris K.; MacLeod, David B.; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko
2016-01-01
Abstract The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2) by about 26% (p < 0.01). Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04). In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2. PMID:28123816
Role of cerebral blood flow in extreme breath holding.
Bain, Anthony R; Ainslie, Philip N; Hoiland, Ryan L; Willie, Chris K; MacLeod, David B; Madden, Dennis; Maslov, Petra Zubin; Drviš, Ivan; Dujić, Željko
2016-01-01
The role of cerebral blood flow (CBF) on a maximal breath-hold (BH) in ultra-elite divers was examined. Divers (n = 7) performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg). Arterial blood gases and CBF were measured prior to (baseline), and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO 2 ) by about 26% (p < 0.01). Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04). In both conditions, the CDO 2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa). The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01). These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H + washout, and therefore central chemoreceptive drive to breathe, rather than to CDO 2 .
Increased putamen hypercapnic vasoreactivity in levodopa-induced dyskinesia.
Jourdain, Vincent A; Schindlbeck, Katharina A; Tang, Chris C; Niethammer, Martin; Choi, Yoon Young; Markowitz, Daniel; Nazem, Amir; Nardi, Dominic; Carras, Nicholas; Feigin, Andrew; Ma, Yilong; Peng, Shichun; Dhawan, Vijay; Eidelberg, David
2017-10-19
In a rodent model of Parkinson's disease (PD), levodopa-induced involuntary movements have been linked to striatal angiogenesis - a process that is difficult to document in living human subjects. Angiogenesis can be accompanied by localized increases in cerebral blood flow (CBF) responses to hypercapnia. We therefore explored the possibility that, in the absence of levodopa, local hypercapnic CBF responses are abnormally increased in PD patients with levodopa-induced dyskinesias (LID) but not in their nondyskinetic (NLID) counterparts. We used H215O PET to scan 24 unmedicated PD subjects (12 LID and 12 NLID) and 12 matched healthy subjects in the rest state under normocapnic and hypercapnic conditions. Hypercapnic CBF responses were compared to corresponding levodopa responses from the same subjects. Group differences in hypercapnic vasoreactivity were significant only in the posterior putamen, with greater CBF responses in LID subjects compared with the other subjects. Hypercapnic and levodopa-mediated CBF responses measured in this region exhibited distinct associations with disease severity: the former correlated with off-state motor disability ratings but not symptom duration, whereas the latter correlated with symptom duration but not motor disability. These are the first in vivo human findings linking LID to microvascular changes in the basal ganglia.
Investigating the physiology of brain activation with MRI
NASA Astrophysics Data System (ADS)
Buxton, Richard B.; Uludag, Kamil; Dubowitz, David J.
2004-04-01
Functional magnetic resonance imaging (fMRI) has become a powerful tool for investigating the working human brain based on the blood oxygenation level dependent (BOLD) effect on the MR signal. However, despite the widespread use of fMRI techniques for mapping brain activation, the basic physiological mechanisms underlying the observed signal changes are still poorly understood. Arterial spin labeling (ASL) techniques, which measure cerebral blood flow (CBF) and the BOLD effect simultaneously, provide a useful tool for investigating these physiological questions. In this paper, recent results of studies manipulating the baseline CBF both pharmacologically and physiologically will be discussed. These data are consistent with a feed-forward mechanism of neurovascular coupling, and suggest that the CBF change itself may be a more robust reflection of neural activity changes than the BOLD effect. Consistent with these data, a new thermodynamic hypothesis is proposed for the physiological function of CBF regulation: maintenance of the [O2]/[CO2] concentration ratio at the mitochondria in order to preserve the free energy available from oxidative metabolism. A kinetic model based on this hypothesis provides a reasonable quantitative description of the CBF changes associated with neural activity and altered blood gases (CO2 and O2).
Cerebral blood flow velocity and cranial fluid volume decrease during +Gz acceleration
NASA Technical Reports Server (NTRS)
Kawai, Y.; Puma, S. C.; Hargens, A. R.; Murthy, G.; Warkander, D.; Lundgren, C. E.
1997-01-01
Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.
Kim, YongSig; Park, Sunchung; Gilmour, Sarah J; Thomashow, Michael F
2013-08-01
Previous studies in Arabidopsis thaliana established roles for CALMODULIN BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) in the rapid cold induction of CRT/DRE BINDING FACTOR (CBF) genes CBF1 and CBF2, and the repression of salicylic acid (SA) biosynthesis at warm temperature. Here we show that CAMTA1 and CAMTA2 work in concert with CAMTA3 at low temperature (4°C) to induce peak transcript levels of CBF1, CBF2 and CBF3 at 2 h, contribute to up-regulation of approximately 15% of the genes induced at 24 h, most of which fall outside the CBF pathway, and increase plant freezing tolerance. In addition, CAMTA1, CAMTA2 and CAMTA3 function together to inhibit SA biosynthesis at warm temperature (22°C). However, SA levels increase in Arabidopsis plants that are exposed to low temperature for more than 1 week. We show that this chilling-induced SA biosynthesis proceeds through the isochorismate synthase (ICS) pathway, with cold induction of ICS1 (which encodes ICS), and two genes encoding transcription factors that positively regulate ICS1 - CBP60g and SARD1 -, paralleling SA accumulation. The three CAMTA proteins effectively repress the accumulation of ICS1, CBP60g and SARD1 transcripts at warm temperature but not at low temperature. This impairment of CAMTA function may involve post-transcriptional regulation, as CAMTA transcript levels did not decrease at low temperature. Salicylic acid biosynthesis at low temperature did not contribute to freezing tolerance, but had a major role in configuring the transcriptome, including the induction of 'defense response' genes, suggesting the possible existence of a pre-emptive defense strategy programmed by prolonged chilling temperatures. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Baril, Andrée-Ann; Gagnon, Katia; Arbour, Caroline; Soucy, Jean-Paul; Montplaisir, Jacques; Gagnon, Jean-François; Gosselin, Nadia
2015-01-01
Objectives: To evaluate changes in regional cerebral blood flow (rCBF) during wakeful rest in older subjects with mild to severe obstructive sleep apnea (OSA) and healthy controls, and to identify markers of OSA severity that predict altered rCBF. Design: High-resolution 99mTc-HMPAO SPECT imaging during wakeful rest. Setting: Research sleep laboratory affiliated with a University hospital. Participants: Fifty untreated OSA patients aged between 55 and 85 years, divided into mild, moderate, and severe OSA, and 20 age-matched healthy controls. Interventions: N/A. Measurements: Using statistical parametric mapping, rCBF was compared between groups and correlated with clinical, respiratory, and sleep variables. Results: Whereas no rCBF change was observed in mild and moderate groups, participants with severe OSA had reduced rCBF compared to controls in the left parietal lobules, left precentral gyrus, bilateral postcentral gyri, and right precuneus. Reduced rCBF in these regions and in areas of the bilateral frontal and left temporal cortex was associated with more hypopneas, snoring, hypoxemia, and sleepiness. Higher apnea, microarousal, and body mass indexes were correlated to increased rCBF in the basal ganglia, insula, and limbic system. Conclusions: While older individuals with severe obstructive sleep apnea (OSA) had hypoperfusion in the sensorimotor and parietal areas, respiratory variables and subjective sleepiness were correlated with extended regions of hypoperfusion in the lateral cortex. Interestingly, OSA severity, sleep fragmentation, and obesity correlated with increased perfusion in subcortical and medial cortical regions. Anomalies with such a distribution could result in cognitive deficits and reflect impaired vascular regulation, altered neuronal integrity, and/or undergoing neurodegenerative processes. Citation: Baril AA, Gagnon K, Arbour C, Soucy JP, Montplaisir J, Gagnon JF, Gosselin N. Regional cerebral blood flow during wakeful rest in older subjects with mild to severe obstructive sleep apnea. SLEEP 2015;38(9):1439–1449. PMID:25761981
2013-01-01
Background Although recent studies have clearly demonstrated functional and structural abnormalities in adolescents with internet gaming addiction (IGA), less is known about how IGA affects perfusion in the human brain. We used pseudocontinuous arterial spin-labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to measure the effects of IGA on resting brain functions by comparing resting cerebral blood flow in adolescents with IGA and normal subjects. Methods Fifteen adolescents with IGA and 18 matched normal adolescents underwent structural and perfusion fMRI in the resting state. Direct subtraction, voxel-wise general linear modeling was performed to compare resting cerebral blood flow (CBF) between the 2 groups. Correlations were calculated between the mean CBF value in all clusters that survived AlphaSim correction and the Chen Internet Addiction Scale (CIAS) scores, Barratt Impulsiveness Scale-11 (BIS-11) scores, or hours of Internet use per week (hours) in the 15 subjects with IGA. Results Compared with control subjects, adolescents with IGA showed significantly higher global CBF in the left inferior temporal lobe/fusiform gyrus, left parahippocampal gyrus/amygdala, right medial frontal lobe/anterior cingulate cortex, left insula, right insula, right middle temporal gyrus, right precentral gyrus, left supplementary motor area, left cingulate gyrus, and right inferior parietal lobe. Lower CBF was found in the left middle temporal gyrus, left middle occipital gyrus, and right cingulate gyrus. There were no significant correlations between mean CBF values in all clusters that survived AlphaSim correction and CIAS or BIS-11 scores or hours of Internet use per week. Conclusions In this study, we used ASL perfusion fMRI and noninvasively quantified resting CBF to demonstrate that IGA alters the CBF distribution in the adolescent brain. The results support the hypothesis that IGA is a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders. PMID:23937918
Li, Hongmei; Guo, Qinxi; Inoue, Taeko; Polito, Vinicia A; Tabuchi, Katsuhiko; Hammer, Robert E; Pautler, Robia G; Taffet, George E; Zheng, Hui
2014-08-09
Accumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood-brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer's disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background. Introduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology. Our study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.
Yamashita, Koji; Hiwatashi, Akio; Togao, Osamu; Kikuchi, Kazufumi; Yamaguchi, Hiroo; Suzuki, Yuriko; Kamei, Ryotaro; Yamasaki, Ryo; Kira, Jun-Ichi; Honda, Hiroshi
2017-06-01
To evaluate cerebral blood flow (CBF) laterality derived from arterial spin labeling (ASL) in early-stage Parkinson's disease (PD) patients compared with those with advanced stages. Thirty-eight patients with PD (21 patients in early stages, 17 patients in advanced stages) were retrospectively studied. The CBF maps derived from 3T ASL data were co-registered to the corresponding 3DT1WI using SPM 12 software. Caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were manually traced on the representative axial slices of 3DT1WI. CBF of the CN, PT, GP, and TH was measured using corresponding pixels on the co-registered CBF maps. A laterality index (LI) was calculated as the ratio of the contralateral CBF to primary affected side CBF. Each LI was compared between early and advanced stages of PD using the Mann-Whitney U-test. The LIs were also compared between each stage of PD. In the CN, the LIs were significantly higher in early stages (mean LI ± SD, 95% confidence interval = 1.06 ± 0.14, 1.00-1.13) than in advanced stages (0.94 ± 0.14, 0.87-1.01; P < 0.05). We also observed a tendency toward decreased LIs with disease severity (1.10 ± 0.14, 0.99-1.21 for Hoehn and Yahr stage I; 1.04 ± 0.14, 0.92-1.12 for stage II; 0.96 ± 0.11, 0.89-1.10 for stage III; 0.93 ± 0.17, 0.81-1.05 for stage IV). The evaluation of CBF laterality pattern in the CN using ASL may be useful for assessing the disease severity of PD patients. 3 J. MAGN. RESON. IMAGING 2017;45:1821-1826. © 2016 International Society for Magnetic Resonance in Medicine.
Nagamachi, Shigeki; Wakamatsu, Hideyuki; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Tamura, Shozo; Nakazato, Masamitsu; Yamashita, Syuichi; Arita, Hideo; Nishii, Ryuichi; Kawai, Keiichi
2008-08-01
(123)I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy is a useful tool for differentiating idiopathic Parkinson's disease (PD) from parkinsonism (PS) caused by other disorders. However, cardiac MIBG uptake is affected by various causes. Alternatively, hypoperfusion in the occipital lobe of PD is reported recently. The objective is to clarify the correlation between regional cerebral blood flow (rCBF) alteration and cardiac MIBG uptake in PD. In addition, we examined whether additional brain perfusion analysis improved the differential diagnostic ability for PD from PS when compared with MIBG scintigraphy alone. Forty-nine patients with PD (27 mild groups: Hoehn and Yahr stages I, II; 22 severe groups: Hoehn and Yahr stages III, IV) and 28 patients with PS participated. We compared absolute rCBF values between PD and PS. In addition, we determined correlation between MIBG parameters and each rCBF value. Finally, we compared the diagnostic ability for the differentiation of PD from PS between two diagnostic criteria, each MIBG index abnormality alone [heart-to-mediastinum ratio, H/M (E) < 1.9, H/E (D) < 1.7, washout rate > 40%] and each MIBG index abnormality or occipital lobe hypoperfusion (<36 ml/100 g per min). Absolute rCBF value of occipital lobe was significantly lower in severe PD as compared with PS or mild PD. In the correlation analysis, rCBF of occipital lobe correlated positively with MIBG parameters (H/M). Regarding the diagnostic ability, sensitivity improved by accounting for occipital hypoperfusion as compared with MIBG indices alone. In contrast, neither specificity nor accuracy improved by adding occipital lobe analysis. MIBG parameters (H/M) correlated positively with occipital hypoperfusion in PD. In the differential diagnosis between PD and PS, although its usefulness might be limited, analysis of rCBF in the occipital lobe added to (123)I-MIBG myocardial imaging can be recommended.
Sestini, Stelvio; Pupi, Alberto; Ammannati, Franco; Silvia, Ramat; Sorbi, Sandro; Castagnoli, Antonio
2007-10-01
The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson's disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN). Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T(0)), and twice postoperatively in the off-drug/off-stimulation conditions at 5 +/- 2 (T(1)) and 42 +/- 7 months (T(2)). Patients were assessed using the UPDRS, H&Y and S&E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest. Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T(0) to T(1) was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T(1) to T(2) a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression. Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment.
Schaefer, Pamela W; Souza, Leticia; Kamalian, Shervin; Hirsch, Joshua A; Yoo, Albert J; Kamalian, Shahmir; Gonzalez, R Gilberto; Lev, Michael H
2015-02-01
Diffusion-weighted imaging (DWI) can reliably identify critically ischemic tissue shortly after stroke onset. We tested whether thresholded computed tomographic cerebral blood flow (CT-CBF) and CT-cerebral blood volume (CT-CBV) maps are sufficiently accurate to substitute for DWI for estimating the critically ischemic tissue volume. Ischemic volumes of 55 patients with acute anterior circulation stroke were assessed on DWI by visual segmentation and on CT-CBF and CT-CBV with segmentation using 15% and 30% thresholds, respectively. The contrast:noise ratios of ischemic regions on the DWI and CT perfusion (CTP) images were measured. Correlation and Bland-Altman analyses were used to assess the reliability of CTP. Mean contrast:noise ratios for DWI, CT-CBF, and CT-CBV were 4.3, 0.9, and 0.4, respectively. CTP and DWI lesion volumes were highly correlated (R(2)=0.87 for CT-CBF; R(2)=0.83 for CT-CBV; P<0.001). Bland-Altman analyses revealed little systemic bias (-2.6 mL) but high measurement variability (95% confidence interval, ±56.7 mL) between mean CT-CBF and DWI lesion volumes, and systemic bias (-26 mL) and high measurement variability (95% confidence interval, ±64.0 mL) between mean CT-CBV and DWI lesion volumes. A simulated treatment study demonstrated that using CTP-CBF instead of DWI for detecting a statistically significant effect would require at least twice as many patients. The poor contrast:noise ratios of CT-CBV and CT-CBF compared with those of DWI result in large measurement error, making it problematic to substitute CTP for DWI in selecting individual acute stroke patients for treatment. CTP could be used for treatment studies of patient groups, but the number of patients needed to identify a significant effect is much higher than the number needed if DWI is used. © 2014 American Heart Association, Inc.
Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill
2014-11-01
Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Ma, Qinhai; Liang, Dedong; Song, Shuai; Yu, Qintian; Shi, Chunyu; Xing, Xuefeng; Luo, Jia-Bo
2017-01-01
Shuang–Huang–Lian injectable powder (SHL)—a classical purified herbal preparation extracted from Scutellaria baicalensis, Lonicera japonica, and Forsythia suspense—has been used against human adenovirus III (HAdV3) for many years. The combination herb and its major bioactive compounds, including chlorogenic acid, baicalin, and forsythia glycosides A, are effective inhibitors of the virus. However, no comprehensive studies are available on the antiviral effects of SHL against HAdV3. Moreover, it remains unclear whether the mixture of chlorogenic acid, baicalin, and forsythia glycosides A (CBF) has enhanced antiviral activity compared with SHL. Therefore, a comparative study was performed to investigate the combination which is promising for further antiviral drug development. To evaluate their antivirus activity in parallel, the combination ratio and dose of CBF were controlled and consistent with SHL. First, the fingerprint and the ratio of CBF in SHL were determined by high performance liquid chromatography. Then, a plaque reduction assay, reverse transcription polymerase chain reaction (PCR), real-time polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA) were used to explore its therapeutic effects on viral infection and replication, respectively. The results showed that SHL and CBF inhibited dose- and time-dependently HAdV3-induced plaque formation in A549 and HEp-2 cells. SHL was more effective than CBF when supplemented prior to and after viral inoculation. SHL prevented viral attachment, internalization, and replication at high concentration and decreased viral levels within and out of cells at non-toxic concentrations in both cell types. Moreover, the expression of tumor necrosis factor alpha (TNF)-α, interleukin (IL)-1ß, and IL-6 was lower and the expression of interferon (IFN)-γ was higher in both cell types treated with SHL than with CBF. In conclusion, SHL is much more effective and slightly less toxic than CBF. PMID:28417913
Development of a cerebral circulation model for the automatic control of brain physiology.
Utsuki, T
2015-01-01
In various clinical guidelines of brain injury, intracranial pressure (ICP), cerebral blood flow (CBF) and brain temperature (BT) are essential targets for precise management for brain resuscitation. In addition, the integrated automatic control of BT, ICP, and CBF is required for improving therapeutic effects and reducing medical costs and staff burden. Thus, a new model of cerebral circulation was developed in this study for integrative automatic control. With this model, the CBF and cerebral perfusion pressure of a normal adult male were regionally calculated according to cerebrovascular structure, blood viscosity, blood distribution, CBF autoregulation, and ICP. The analysis results were consistent with physiological knowledge already obtained with conventional studies. Therefore, the developed model is potentially available for the integrative control of the physiological state of the brain as a reference model of an automatic control system, or as a controlled object in various control simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.D.
1988-01-01
Neurons within the rostral ventrolateral medulla (RVL) corresponding to the location of adrenaline neurons of the C1 group (C1 area) maintain resting levels of arterial pressure (AP) and mediate the reflex cardiovascular responses to baro- and chemoreceptor activation and cerebral ischemia. The author therefore sought to determine whether neurons in the C1 area: (a) modulate regional cerebral blood flow (rCBF) and/or cerebral glucose utilization (rCGU), (b) participate in the maintenance of resting levels of CBF and CGU, and (c) mediate the CBF response to hypoxia. Rats were anesthetized, paralyzed and ventilated. The RVL was stimulated electrically or chemically, with kainicmore » acid; lesions were placed electrolytically. rCBF was measured using 14-C-iodoantipyrine and rCGU with {sup 14}C-2-deoxyglucose in 11 dissected brain regions.« less
Regional cerebral blood flow and anxiety: a correlation study in neurologically normal patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, G.; Cogorno, P.; Gris, A.
1989-06-01
Regional CBF (rCBF) was evaluated by the /sup 133/Xe inhalation method in 60 neurologically normal patients (30 men and 30 women) and hemispheric and regional values were correlated with anxiety measurements collected by a self-rating questionnaire before and after the examination. Statistically significant negative correlations between rCBF and anxiety measures were found. rCBF reduction for high anxiety levels is in line with results previously reported by others and could be related to lower performance levels for moderately high anxiety scores as those reported in the present population. This could perhaps be explained by rearrangement of flow from cortical zones tomore » deeper areas of the brain, classically known to be implicated in the control of emotions. However, these results should be interpreted cautiously, since they were obtained in patients and not in normal subjects.« less
Tsujino, Naohisa; Nemoto, Takahiro; Yamaguchi, Taiju; Katagiri, Naoyuki; Tohgi, Nao; Ikeda, Ryu; Shiraga, Nobuyuki; Mizumura, Sunao; Mizuno, Masafumi
2011-10-01
The purpose of the present study was to investigate regional cerebral blood flow (rCBF) changes in a patient with very-late-onset schizophrenia-like psychosis (VLOS) with catatonia. A 64-year-old woman developed catatonia after experiencing persecutory delusions. The patient's rCBF was examined using single photon emission computed tomography (SPECT) with easy Z-score imaging system. Before treatment, hypoperfusion was observed in the striatum and the thalamus, whereas hyperperfusion was observed in the left lateral frontal cortex and the left temporal cortex. After treatment, the disproportions in rCBF disappeared, and hyperperfusion was observed in the motor cortex. Sequential SPECT findings suggest that rCBF abnormalities may be correlated with the symptomatology of catatonia in patients with VLOS. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.
Complementary acupuncture in Parkinson's disease: a spect study.
Huang, Yong; Jiang, Xuemei; Zhuo, Ying; Wik, Gustav
2010-02-01
We studied cerebral effects of complementary acupuncture in Parkinson's disease using single photon emission computed tomography (SPECT) measures of 99mTc-ECD and 99mTc-TRODAT-4, before and after five weeks of treatment. Ten patients were randomly assigned to receive levodopa alone (controls) or levodopa and complementary scalp electro-acupuncture. Before treatment, no hemispheric regional cerebral blood flow (rCBF) differences were found, whereas striatal dopamine transporter (DAT) activity was lower in the most affected hemisphere. Treatment with levodopa alone did not change rCBF, whereas it increased basal ganglion DAT activity in the most affected hemisphere. Patients who received levodopa and complementary acupuncture had increased rCBF in the frontal lobe, the occipital lobe, the basal ganglion, and the cerebellum in the most affected hemisphere as compared to baseline, but there were no changes in basal ganglia DAT levels. Thus, complementary acupuncture treatment in Parkinson's disease may affect rCBF but not basal ganglion DAT.
[The effect of nimodipine on cochlear blood flow in the guinea pig].
Meyer, P; Werner, E; Schmidt, R; Grützmacher, W; Gehrig, W; Seuter, F
1994-10-01
The influence of nimodipine (Nimotop, CAS 66085-59-4), a selectively cerebrovascularly acting 1,4-dihydropyridine calcium antagonist, on the cochlear blood flow (CBF) was studied in 19 guinea pigs (6 controls). The hydrogen clearance measurements were carried out under alpha-chloralose-ethylurethane anaesthesia, artificial respiration with simultaneous control of electrocardiogram, blood pressure, body temperature and arterial pH (hourly). The indirect measurement of CBF was carried out by means of hydrogen clearance in the perilymphatic space (basal turn) before and after intravenous application of 1 microgram nimodipine/kg/min. The mean arterial blood pressure remained within the +/- 5% range of the initial value during the experiment. Under treatment with nimodipine the CBF showed a non-significant average increase of 4.69% and under placebo (20% ethanol, 17% polyethylenglycol 400, citrate buffer), a non-significant average decrease of 6.16%. The influence of nimodipine on CBF was underlined by the overcompensation of the placebo effect.
Zhang, Nan; Gordon, Marc L; Goldberg, Terry E
2017-01-01
Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Golanov, E. V.; Reis, D. J.
1996-01-01
We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P < 0.05, chi-square) increased their activity during the earliest potential of the complex, approximately 1.3 s before the rise of rCBF, and during the minutes-long elevation of rCBF elicited by 10 s of stimulation of RVL or FN. The results indicate the presence of a small population of neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.
Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu
2017-10-01
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Amen, Daniel G; Taylor, Derek V; Ojala, Kristine; Kaur, Jasleen; Willeumier, Kristen
2013-01-01
In a prior open trial of professional football players who displayed the effects of traumatic brain injury, the current reserach team reported significant improvements in clinical symptoms, neuropsychological testing and regional cerebral blood flow (rCBF) following the use of brain-directed nutrients (BDNs) and lifestyle interventions. The current study intended to determine whether supplementation with BDNs improved rCBF and neuropsychological function in healthy individuals. The current study was a randomized, doubleblind, placebo-controlled, crossover trial, which was a more rigorous reseach design than the prior study and did not include lifestyle interventions. Participants underwent evaluation and testing at the Amen Clinics, Inc, a private medical facility in Newport Beach, CA. Thirty healthy adult (15 male and 15 female) participants were recruited from the community though local advertising and met the requirements for eligibility into the study. Twenty-five individuals completed the study, with dropout due to events unrelated to the study itself. The participants were randomly assigned to a treatment order for intervention, either placebo or brain supplements first. The BDNs treatment was comprised of three supplements: fish oil; a high-potency, multiple vitamin/mineral supplement; and a brainenhancement supplement. The placebo treatment was two supplements comprised of rice flour to replace the multiple vitamin/mineral complex and the brain-enhancement supplement and one supplement made of other oils to replace the fish-oil mixture. After 2 mo of this first intervention, a crossover intervention occurred for a final 2 mo, in which participants formerly receiving BDNs received a placebo treatment and participants formerly treated with placebo received the BDNs treatment. Primary outcome measures included (1) an analysis of the changes in rCBF using SPECT and (2) an assessment of the differences in cognitive and emotional function using the MicroCog (cognitive performance), the WebNeuro (emotional state), and three psychological inventories-the Beck Depression Inventory (BDI-II), Brief Symptom Inventory (BSI), and Quality of Life Inventory (QOLI). A region of interest (ROI) analysis for each of the 2-mo phases (baseline, then placebo and treatment according to randomized order) showed significant improvement in rCBF for the BDNs as compared to the placebo (as assigned at the start of the first intervention) in the prefrontal cortex, anterior and posterior cingulate gyrus, hippocampus, and cerebellum. Significant improvements were observed for the BDNs (1) on the MicroCog-reasoning, P=.008; memory, P=.014; information processing accuracy, P=.027; (2) on the WebNeuro-executive function, P=.002, information processing efficiency, P=.015; depressed mood, P=.017, and emotional identification, P=.041; and (3) on the BSI-positive symptom total, P=.024 and reduced hostility, P=.018. For the last, significance occurred upon accounting for the effect of order. This study demonstrates the potential effectiveness of BDNs in enhancing rCBF and neuropsychological function across various cognitive and psychological domains.
Wainwright, Mark S; Grundhoefer, Dava; Sharma, Shruti; Black, Stephen M
2007-03-26
Nitric oxide (NO) released in response to hypoxia-ischemia (HI) in the newborn brain may mediate both protective and pathologic responses. We sought to determine whether pharmacologic increase of NO using an NO donor would reduce neurologic injury resulting from HI in the postnatal day 7 rat. We measured NO levels and CBF in the presence of either a NOS inhibitor, N-nitro-l-arginine methyl ester (L-NAME) or an NO donor (Z)-1-[N-(2-amino-ethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate). Both inhibition of NOS and administration of an NO donor reduced neuropathologic injury after 7-day recovery. NO levels decreased in both ischemic and contralateral hemispheres during HI. This response was prevented by treatment with DETANONOate. Despite the decrease in NO, CBF increased during ischemia in the contralateral hemisphere but decreased when combined with brief hypoxia. Treatment with L-NAME abolished these increases, which were not altered by DETANONOate. Reduction of cellular metabolism by mild hypothermia also reduced both NO and CBF. Following prolonged HI, CBF remained decreased in the ischemic hemisphere up to 24-h recovery. This decrease was prevented by treatment with DETANONOate. These data show that administration of an NO donor reduces neurologic injury following HI in the newborn rat. This mechanism of this protection, in part, is due to an increase in the rate of recovery of CBF compared to vehicle-treated animals. Augmentation of NO-dependent increases in CBF may serve to improve neurologic outcome after perinatal asphyxia.
Wainwright, Mark S.; Grundhoefer, Dava; Sharma, Shruti; Black, Stephen M.
2007-01-01
Nitric oxide (NO) released in response to hypoxia-ischemia (HI) in the newborn brain may mediate both protective and pathologic responses. We sought to determine whether pharmacologic increase of NO using an NO donor would reduce neurologic injury resulting from HI in the postnatal day 7 rat. We measured NO levels and CBF in the presence of either a NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME) or an NO donor (Z)-1-[N-(2aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate). Both inhibition of NOS and administration of an NO donor reduced neuropathologic injury after 7-day recovery. NO levels decreased in both ischemic and contralateral hemispheres during HI. This response was prevented by treatment with DETANONOate. Despite the decrease in NO, CBF increased during ischemia in the contralateral hemisphere but decreased when combined with brief hypoxia. Treatment with L-NAME abolished these increases, which were not altered by DETANONOate. Reduction of cellular metabolism by mild hypothermia also reduced both NO and CBF. Following prolonged HI, CBF remained decreased in the ischemic hemisphere up to 24-hour recovery. This decrease was prevented by treatment with DETANONOate. These data show that administration of an NO donor reduces neurologic injury following HI in the newborn rat. This mechanism of this protection, in part, is due to an increase in the rate of recovery of CBF compared to vehicle-treated animals. Augmentation of NO-dependent increases in CBF may serve to improve neurologic outcome after perinatal asphyxia. PMID:17270345
Watanabe, Yoh-ichi; Gray, Michael W.
2000-01-01
A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366
Bonios, Michael J; Pierrakos, Charalampos N; Argiriou, Michael; Dalianis, Argirios; Terrovitis, John V; Dolou, Paraskevi; Drakos, Stavros G; Koudoumas, Dimitrios; Charitos, Christos E; Anastasiou-Nana, Maria I
2010-02-04
Studies of the IABP have reported variable effects on coronary blood flow (CBF). The purpose of the present study was to measure the changes in coronary blood flow induced by intra-aortic balloon pump (IABP) counterpulsation in normal and reperfused porcine myocardium. A 30-ml IABP was placed in the descending aorta of 6 open-chest pigs. Each pig underwent occlusion of the mid-left anterior descending (LAD) coronary artery for 1 h, followed by reperfusion for 2 h. The effects of IABP support on systolic aortic pressure (SAP) and aortic end-diastolic pressure were recorded. The mean CBF, distal to the LAD occlusion site was measured at baseline and during reperfusion, with and without IABP counterpulsation. The IABP decreased SAP and aortic end-diastolic pressure in normal and reperfused myocardium, and maintained a peak aortic diastolic augmentation at the level of SAP. In normal myocardium, the IABP decreased mean CBF by 8.4+/-2.2% (p<0.001). At 2, 15, 30, 60, 90 and 120 min of reperfusion, the IABP increased mean CBF by 11.5+/-6.8%, 8.0+/-7.0%, 11.2+/-6.9%, 12.4+/-12.9%, 23.5+/-9.9% and 8.9+/-6.9%, of the corresponding value without the assistance of the IABP (all p<0.05). In the normal heart, IABP counterpulsation decreased CBF, probably because of a decrease in myocardial oxygen demand from a decreased afterload. During reperfusion the IABP increased CBF, suggesting that it might effectively mitigate the no-reflow phenomenon. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.
Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.
2011-01-01
Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature. PMID:21511909
Pasha, Evan P; Tarumi, Takashi; Haley, Andreana P; Tanaka, Hirofumi
2017-11-30
We determined if transcranial color-coded Doppler derived hemodynamics are associated with MRI-based cerebral blood flow (CBF) in regions clinically important to dementia in healthy middle-aged adults. In 30 subjects (18m/12f; age = 52 ± 1 years), blood flow velocity (BFV) and cerebrovascular conductance (CVC) were measured with transcranial color-coded Doppler (TCCD) at the middle cerebral artery (MCA) and cerebral blood flow (CBF) was assessed with arterial spin labeled perfusion MRI. BFV and CVC were associated with hippocampus (r = 0.58 and r = 0.61, both p < 0.01) and occipitoparietal (r = 0.50 and r = 0.58, both p < 0.01) CBF. CVC was further associated with posterior cingulate CBF (r = 0.58 p < 0.01). Independent of age and sex, BFV and CVC were associated with hippocampus (r = 0.59 and r = 0.55, both p < 0.003) and occipitoparietal (r = 0.50 and r = 0.57, both p < 0.01) CBF. CVC was independently associated with posterior cingulate CBF (r = 0.38, p = 0.049). TCCD-measured BFV and CVC of the MCA are indicators of cerebral perfusion to clinically valuable brain regions in healthy middle-aged adults. TCCD may not be a good indicator of blood flow to cerebral white matter.
Carvallo, Marcela A; Pino, María-Teresa; Jeknic, Zoran; Zou, Cheng; Doherty, Colleen J; Shiu, Shin-Han; Chen, Tony H H; Thomashow, Michael F
2011-07-01
Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112-156 million years, it seems likely that these conserved cold-regulated genes-many of which encode transcription factors and proteins of unknown function-have fundamental roles in plant growth and development at low temperature.
Restom, Khaled; Bangen, Katherine J.; Bondi, Mark W.; Perthen, Joanna E.; Liu, Thomas T.
2007-01-01
Functional magnetic resonance imaging (fMRI) studies of the medial temporal lobe have primarily made use of the blood oxygenation level dependent (BOLD) response to neural activity. The interpretation of the BOLD signal as a measure of medial temporal lobe function can be complicated, however, by changes in the cerebrovascular system that can occur with both normal aging and age-related diseases, such as Alzheimer's disease. Quantitative measures of the functional cerebral blood flow (CBF) response offer a useful complement to BOLD measures, and have been shown to aid in the interpretation of fMRI studies. Despite these potential advantages, the application of ASL to fMRI studies of cognitive tasks and at-risk populations has been limited. In this study, we demonstrate the application of ASL fMRI to obtain measures of the CBF and BOLD responses to the encoding of natural scenes in healthy young (mean 25 years) and elderly (mean 74 years) adults. The percent CBF increase in the medial temporal lobe was significantly higher in the older adults, whereas the CBF levels during baseline and task conditions and during a separate resting-state scan were significantly lower in the older group. The older adults also showed slightly higher values for the BOLD response amplitude and the absolute change in CBF, but the age group differences were not significant. The percent CBF and BOLD responses are consistent with an age-related increase in the cerebral metabolic rate of oxygen metabolism (CMRO2) response to memory encoding. PMID:17590353
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong
2014-04-28
Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ{sub n}) is equal tomore » the hole injection barrier (ϕ{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ{sub n} > ϕ{sub p} under the condition of electron mobility (μ{sub 0n}) > hole mobility (μ{sub 0p}), whereas the result for the case of μ{sub 0n} < μ{sub 0p}, is opposite. The largest CBF when μ{sub 0n} = μ{sub 0p} can be achieved in the case of ϕ{sub n} = ϕ{sub p} in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn
2010-04-16
We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odano, I.; Ohkubo, M.; Takahashi, N.
1994-05-01
The estimate the distribution volume (Vd) of Iodine-123 IMP brain SPECT, we developed a new graphic plot, the rate constant square method, which was useful to predict an increase of rCBF in the ischemic lesions caused by bypass surgery. The tracer kinetics of IMP was assumed to be a 2-compartment model as follows: dCb(t)/dt=K1Ca(t)-k2Cb(t), where K1 is rCBF(ml/g/min), k2 is the washout constant(/min), and K1/k2 is defined as distribution volume (Vd:ml/g). When input function Ca(t) is prepared, we can determine the relationship between K1, Delayed/Early ratio and Vd on the graph. The method was applied to 13 patients with chronicmore » cerebral infarction. Regional CBF was measured by the microsphere model and early and delayed scans were performed. In the normal area, K1 and Delayed/Early ratio were 0.5 ml/g/min and 1.0, respectively, then Vd (=31.5 ml/g) was obtained on the graph. 30.0 ml/g, the value in the infarct area was reduced. After bypass surgery undertaken on five patients, we observed a significant relationship between % increase of rCBF in the lesions and values of Vd. Since Vd reflects the extent of IMP retention in the brain tissue, we can predict an increase of rCBF by the bypass operation using this method.« less
Parasympathetic reflex vasodilation in the cerebral hemodynamics of rats.
Ishii, Hisayoshi; Sato, Toshiya; Izumi, Hiroshi
2014-04-01
We investigated the role of parasympathetic reflex vasodilation in the regulation of the cerebral hemodynamics, and whether GABAA receptors modulate the response. We examined the effects of activation of the parasympathetic fibers through trigeminal afferent inputs on blood flow in the internal carotid artery (ICABF) and the cerebral blood vessels (rCBF) in parietal cortex in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited intensity- and frequency-dependent increases in ICABF that were independent of changes in external carotid artery blood flow. Increases in ICABF were elicited by LN stimulation regardless of the presence or absence of sympathetic innervation. The ICABF increases evoked by LN stimulation were almost abolished by the intravenous administration of hexamethonium (10 mg kg(-1)) and were reduced significantly by atropine administration (0.1 mg kg(-1)). Although the LN stimulation alone had no significant effect on rCBF, LN stimulation in combination with a blocker of the GABAA receptor pentylenetetrazole increased the rCBF markedly. This increase in rCBF was reduced significantly by the administration of hexamethonium and atropine. These observations indicate that the increases in both ICABF and rCBF are evoked by parasympathetic activation via the trigeminal-mediated reflex. The rCBF increase evoked by LN stimulation is thought to be limited by the GABAA receptors in the central nervous system. These results suggest that the parasympathetic reflex vasodilation and its modulation mediated by GABA receptors within synaptic transmission in the brainstem are involved in the regulation of the cerebral hemodynamics during trigeminal afferent inputs.
Therapy-related longitudinal brain perfusion changes in patients with chronic pelvic pain syndrome.
Weisstanner, Christian; Mordasini, Livio; Thalmann, George N; Verma, Rajeev K; Rummel, Christian; Federspiel, Andrea; Kessler, Thomas M; Wiest, Roland
2017-08-03
The imaging method most frequently employed to identify brain areas involved in neuronal processing of nociception and brain pain perception is blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI). Arterial spin labelling (ASL), in contrast, offers advantages when slow varying changes in brain function are investigated. Chronic pelvic pain syndrome (CPPS) is a disorder of, mostly, young males that leads to altered pain perceptions in structures related to the pelvis. We aimed to investigate the potential of ASL to monitor longitudinal cranial blood flow (CBF) changes in patients with CPPS. In a randomised, placebo-controlled, double-blind single centre trial, we investigated treatment effects in CPPS after 12 weeks in patients that underwent sono-electro-magnetic therapy vs placebo. We investigated changes of CBF related to treatment outcome using pseudo-continuous arterial spin labelling (pCASL)-MRI. We observed CBF downregulation in the prefrontal cortex and anterior cingulate cortex and upregulation in the dorsolateral prefrontal cortex in responders. Nonresponders presented with CBF upregulation in the hippocampus. In patients with a history of CPPS of less than 12 months, there were significant correlations between longitudinal CBF changes and the Chronic Prostatitis Symptom Index pain subscore within the joint clusters anterior cingulate cortex and left anterior prefrontal cortex in responders, and the right hippocampus in nonresponders. We demonstrated therapy-related and stimulus-free longitudinal CBF changes in core areas of the pain matrix using ASL. ASL may act as a complementary noninvasive method to functional MRI and single-photon emission computed tomography / positron emission tomography, especially in the longitudinal assessment of pain response in clinical trials.
Hu, Houchun H; Li, Zhiqiang; Pokorney, Amber L; Chia, Jonathan M; Stefani, Niccolo; Pipe, James G; Miller, Jeffrey H
2017-01-01
To demonstrate the clinical feasibility of a new non-Cartesian cylindrically-distributed spiral 3D pseudo-continuous arterial spin labeling (pCASL) magnetic resonance imaging (MRI) pulse sequence in pediatric patients in quantifying cerebral blood flow (CBF) response to an acetazolamide (ACZ) vasodilator challenge. MRI exams were performed on two 3 Tesla Philips Ingenia systems using 32 channel head coil arrays. After local institutional review board approval, the 3D spiral-based pCASL technique was added to a standard brain MRI exam and evaluated in 13 pediatric patients (average age: 11.7±6.4years, range: 1.4-22.2years). All patients were administered ACZ for clinically indicated reasons. Quantitative whole-brain CBF measurements were computed pre- and post-ACZ to assess cerebrovascular reserve. 3D spiral pCASL data were successfully reconstructed in all 13 cases. In 11 patients, CBF increased 2.8% to 93.2% after administration of ACZ. In the two remaining patients, CBF decreased by 2.4 to 6.0% after ACZ. The group average change in CBF due to ACZ was approximately 25.0% and individual changes were statistically significant (p<0.01) in all patients using a paired t-test analysis. CBF perfusion data were diagnostically useful in supporting conventional MR angiography and clinical findings. 3D cylindrically-distributed spiral pCASL MRI provides a robust approach to assess cerebral blood flow and reserve in pediatric patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Regional cerebral blood flow and abnormal eating behavior in Prader-Willi syndrome.
Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Fukuda, Hiroshi; Mori, Etsuro
2013-05-01
Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder and is generally regarded as a genetic model of obesity. Individuals with PWS exhibit behavioral symptoms including temper tantrums, rigid thinking, and compulsive behavior. The most striking feature of PWS is abnormal eating behavior, including hyperphagia, intense preoccupation with food, and incessant food seeking. To explore brain regions associated with the behavioral symptoms of PWS, we investigated differences in resting-state regional cerebral blood flow (rCBF) between individuals with PWS and healthy controls. Correlation analyses were also performed to examine the relationship between rCBF and altered eating behavior in PWS individuals. Twelve adults with PWS and 13 age- and gender-matched controls underwent resting-state single photon emission computerized tomography (SPECT) with N-isopropyl-p-[(123)I] iodoamphetamine (IMP). The rCBF data were analyzed on a voxel-by-voxel basis using SPM5 software. The results demonstrated that compared with controls, individuals with PWS had significantly lower rCBF in the right thalamus, left insular cortex, bilateral lingual gyrus, and bilateral cerebellum. They had significantly higher rCBF in the right inferior frontal gyrus, left middle/inferior frontal gyrus (anterior and posterior clusters), and bilateral angular gyrus. Additionally, rCBF in the left insula, which was significantly lower in PWS individuals, was negatively correlated with the eating behavior severity score. These results suggest that specific brain regions, particularly the left insula, may be partly responsible for the behavioral symptoms in PWS. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Kaczkurkin, Antonia N.; Moore, Tyler M.; Calkins, Monica E.; Ciric, Rastko; Detre, John A.; Elliott, Mark A.; Foa, Edna B.; de La Garza, Angel Garcia; Roalf, David R.; Rosen, Adon; Ruparel, Kosha; Shinohara, Russell T.; Xia, Cedric H.; Wolf, Daniel H.; Gur, Raquel E.; Gur, Ruben C.; Satterthwaite, Theodore D.
2017-01-01
The high comorbidity among neuropsychiatric disorders suggests a possible common neurobiological phenotype. Resting-state regional cerebral blood flow (CBF) can be measured noninvasively with MRI and abnormalities in regional CBF are present in many neuropsychiatric disorders. Regional CBF may also provide a useful biological marker across different types of psychopathology. To investigate CBF changes common across psychiatric disorders, we capitalized upon a sample of 1,042 youths (ages 11 to 23 years) who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. CBF during a resting state was quantified on a voxelwise basis using arterial spin labeled perfusion MRI at 3T. A dimensional measure of psychopathology was constructed using a bifactor model of item-level data from a psychiatric screening interview, which delineated four factors (fear, anxious-misery, psychosis, and behavioral symptoms) plus a general factor: overall psychopathology. Overall psychopathology was associated with elevated perfusion in several regions including the right dorsal anterior cingulate cortex (ACC) and left rostral ACC. Furthermore, several clusters were associated with specific dimensions of psychopathology. Psychosis symptoms were related to reduced perfusion in the left frontal operculum and insula, whereas fear symptoms were associated with less perfusion in the right occipital/fusiform gyrus and left subgenual ACC. Follow-up functional connectivity analyses using resting-state fMRI collected in the same participants revealed that overall psychopathology was associated with decreased connectivity between the dorsal ACC and bilateral caudate. Together, the results of this study demonstrate common and dissociable CBF abnormalities across neuropsychiatric disorders in youth. PMID:28924181
76. (Credit CBF) Inside of laboratory at McNeil Street Station, ...
76. (Credit CBF) Inside of laboratory at McNeil Street Station, c1912. Laboratory located over clear water well at this time. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Möller, Marika C; Nordin, Love Engström; Bartfai, Aniko; Julin, Per; Li, Tie-Qiang
2017-01-01
Fatigue is the most frequently reported persistent symptom following a mild traumatic brain injury (mTBI), but the explanations for the persisting fatigue symptoms in mTBI remain controversial. In this study, we investigated the change of cerebral blood flow during the performance of a psychomotor vigilance task (PVT) by using pseudo-continuous arterial spin labeling (PCASL) MRI technique to better understand the relationship between fatigability and brain activity in mTBI. Ten patients (mean age: 37.5 ± 11.2 years) with persistent complaints of fatigue after mTBI and 10 healthy controls (mean age 36.9 ± 11.0 years) were studied. Both groups completed a 20-min long PVT inside a clinical MRI scanner during simultaneous measurements of reaction time and regional cerebral blood flow (rCBF) with PCASL technique. Cognitive fatigability and neural activity during PVT were analyzed by dividing the performance and rCBF data into quintiles in addition to the assessment of self-rated fatigue before and after the PVT. The patients showed significant fatigability during the PVT while the controls had a stable performance. The variability in performance was also significantly higher among the patients, indicating monitoring difficulty. A three-way ANOVA, modeling of the rCBF data demonstrated that there was a significant interaction effect between the subject group and performance time during PVT in a mainly frontal/thalamic network, indicating that the pattern of rCBF change for the mTBI patients differed significantly from that of healthy controls. In the mTBI patients, fatigability at the end of the PVT was related to increased rCBF in the right middle frontal gyrus, while self-rated fatigue was related to increased rCBF in left medial frontal and anterior cingulate gyri and decreases of rCBF in a frontal/thalamic network during this period. This study demonstrates that PCASL is a useful technique to investigate neural correlates of fatigability and fatigue in mTBI patients. Patients suffering from fatigue after mTBI used different brain networks compared to healthy controls during a vigilance task and in mTBI, there was a distinction between rCBF changes related to fatigability vs. perceived fatigue. Whether networks for fatigability and self-rated fatigue are different, needs to be investigated in future studies.
Tosun, Duygu; Schuff, Norbert; Jagust, William; Weiner, Michael W
2016-01-01
Recent studies have demonstrated that arterial spin labeling magnetic resonance imaging (ASL-MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) identify similar regional abnormalities and have comparable diagnostic accuracy in Alzheimer's disease (AD). The agreement between these modalities in the AD continuum, which is an important concept for early detection and disease monitoring, is yet unclear. We aimed to assess the ability of the cerebral blood flow (CBF) measures from ASL-MRI and cerebral metabolic rate for glucose (CMRgl) measures from FDG-PET to distinguish amyloid-β-positive (Aβ+) subjects in the AD continuum from healthy controls. The study included asymptomatic, cognitively normal (CN) controls and patients with early mild cognitive impairment (MCI), late MCI, and AD, all with significant levels of cortical Aβ based on their florbetapir PET scans to restrict the study to patients truly in the AD continuum. The discrimination power of each modality was based on the whole-brain patterns of CBF and CMRgl changes identified by partial least squares logistic regression, a multivariate analysis technique. While CBF changes in the posterior inferior aspects of the brain and a pattern of CMRgl changes in the superior aspects of the brain including frontal and parietal regions best discriminated the Aβ+ subjects in the early disease stages from the Aβ- CN subjects, there was a greater agreement in the whole-brain patterns of CBF and CMRgl changes that best discriminated the Aβ+ subjects from the Aβ- CN subjects in the later disease stages. Despite the differences in the whole-brain patterns of CBF and CMRgl changes, the discriminative powers of both modalities were similar with statistically nonsignificant performance differences in sensitivity and specificity. The results comparing measurements of CBF to CMRgl add to previous reports that MRI-measured CBF has a similar diagnostic ability to detect AD as has FDG-PET. Our findings that CBF and CMRgl changes occur in different brain regions in Aβ+ subjects across the AD continuum compared with Aβ- CN subjects may be the result of methodological differences. Alternatively, these findings may signal alterations in neurovascular coupling which alter relationships between brain perfusion and glucose metabolism in the AD continuum. © 2015 S. Karger AG, Basel.
Leung, Jackie; Kosinski, Przemyslaw D; Croal, Paula L; Kassner, Andrea
2016-05-15
Cerebrovascular reactivity (CVR) reflects the vasodilatory reserve of cerebral resistance vessels. Normal development in children is associated with significant changes in blood pressure, cerebral blood flow (CBF) and cerebral oxygen metabolism. Therefore, it stands to reason that CVR will also undergo changes during this period. The study acquired magnetic resonance imaging measures of CVR and CBF in healthy children and young adults to trace their changes with age. We found that CVR changes in two phases, increasing with age until the mid-teens, followed by a decrease. Baseline CBF declined steadily with age. We conclude that CVR varies with age during childhood, which prompts future CVR studies involving children to take into account the effect of development. Cerebrovascular reactivity (CVR) reflects the vasculature's ability to accommodate changes in blood flow demand thereby serving as a critical imaging tool for mapping vascular reserve. Normal development is associated with extensive physiological changes in blood pressure, cerebral blood flow and cerebral metabolic rate of oxygen, all of which can affect CVR. Moreover, the evolution of these physiological parameters is most prominent during childhood. Therefore, the aim of this study was to use non-invasive magnetic resonance imaging (MRI) to characterize the developmental trajectories of CVR in healthy children and young adults, and relate them to changes in cerebral blood flow (CBF). Thirty-four healthy subjects (17 males, 17 females; age 9-30 years) underwent CVR assessment using blood oxygen level-dependent MRI in combination with a computer controlled CO2 stimulus. In addition, baseline CBF was measured with a pulsed arterial spin labelling sequence. CVR exhibited a gradual increase with age in both grey and white matter up to 14.7 years. After this break point, a negative correlation with age was detected. Baseline CBF maintained a consistent negative linear correlation across the entire age range. The significant age-dependent changes in CVR and CBF demonstrate the evolution of cerebral haemodynamics in children and should be taken into consideration. The shift in developmental trajectory of CVR from increasing to decreasing suggests that physiological factors beyond baseline CBF also influence CVR. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Jiang, Xiao Lu; Wen, Ji Qiu; Zhang, Long Jiang; Zheng, Gang; Li, Xue; Zhang, Zhe; Liu, Ya; Zheng, Li Juan; Wu, Long; Chen, Hui Juan; Kong, Xiang; Luo, Song; Lu, Guang Ming; Ji, Xue Man; Zhang, Zong Jun
2016-08-01
We used arterial-spin labeling (ASL) MR imaging, a non-invasive technique to evaluate cerebral blood flow (CBF) changes in patients with end-stage renal disease (ESRD) undergoing peritoneal dialysis (PD) and hemodialysis (HD), and nondialysis ESRD patients compared with healthy cohort. Ninety seven ESRD patients including 32 PD patients (20 male, 12 female; mean age 33 ± 8 years), 33 HD patients (22 male, 11 female; mean age 33 ± 8 years) and 32 nondialysis patients (20 male, 12 female; mean age 35 ± 7 years) and 31 age- and gender-matched healthy controls (20 male, 11 female; mean age 32 ± 8 years) were included in this study. All subjects underwent ASL MR imaging, neuropsychologic tests, and ESRD patients underwent laboratory testing. CBF values were compared among PD, HD, nondialysis patients and control groups. Correlation analysis and multiple regression analysis were performed to investigate the association between CBF values and hemoglobin, neuropsychologic test results, serum creatinine, urea levels, disease duration, and dialysis duration. Elevated CBFs of whole brain region, gray matter, and white matter were found in all ESRD patient groups compared with healthy controls (all P < 0.001). However, compared with non-dialysis ESRD patients, both PD and HD patients had widespread regional CBF decline mainly in bilateral frontal and anterior cingulate cortices. There were no differences for CBF between PD and HD patient groups. Negative correlations were observed between mean CBFs of whole brain region, gray matter, and white matter and the hemoglobin level in all ESRD patients. Multiple linear regression showed elevated CBF of multiple brain areas correlated with some neuropsychological tests in ESRD patients (all P < 0.001, AlphaSim corrected), but the association was not present or shrank after adjusting hemoglobin level. This study found that mean CBF was predominantly increased in patients with ESRD, which correlated with their hemoglobin level and neurocognitive disorders. There were no differences of CBF change and cognitive function between PD and HD ESRD patients with long-term treatment. The degree of anemia may be a predominant risk factor for cognitive impairment in these ESRD patients.
Jin Lee, Su; Kim, Yong-Jae; Young Yeo, So; Lee, Eunji; Sun Lim, Ho; Kim, Min; Song, Yong-Won; Cho, Jinhan; Ah Lim, Jung
2015-01-01
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step. PMID:26359068
Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah
2015-09-11
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.
TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Leishear, R.; Poirier, M.
2012-05-31
The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.« less
88. (Credit CBF) Twelve Mile Bayou Pumping Station and force ...
88. (Credit CBF) Twelve Mile Bayou Pumping Station and force main for pumping water over levee and into the canal (Blind Bayou), March 1913. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Iacopino, Domenico G; Conti, Alfredo; Battaglia, Calogero; Siliotti, Clotilde; Lucanto, Tullio; Santamaria, Letterio B; Tomasello, Francesco
2003-07-01
Nitrous oxide has an adverse effect on cerebrovascular hemodynamics. Increased intracranial pressure, cerebral blood flow (CBF), cerebral metabolic rate of O2 (CMRO2), and reduced autoregulation indices have been reported, but their magnitudes are still being debated. This study was designed to evaluate the effect of N2O on CBF and autoregulatory indexes during N2O-sevoflurane anesthesia in a prospective randomized controlled series of patients. Two groups of 20 patients were studied on the basis of the use of N2O in the anesthetic gas mixture. The transient hyperemic response test, which relies on transcranial Doppler ultrasound techniques, was used to assess cerebral hemodynamics. The time-averaged mean flow velocity, considered to be an index of actual CBF, increased significantly (p < 0.001) after introduction of N2O. The hyperemic response, considered as the index of autoregulatory potential, decreased significantly after introduction of N2O into the gas mixture (p < 0.001). The increase in CBF and the reduction in autoregulatory indices suggest caution in using N2O during sevoflurane anesthesia, especially in patients with reduced autoregulatory reserve and during neurosurgical interventions. Transcranial Doppler ultrasonography is an efficacious method to evaluate the effects of anesthetic agents on CBF.
Foucher, Jack R; Roquet, Daniel; Marrer, Corinne; Pham, Bich-Thuy; Gounot, Daniel
2011-10-01
To take into account the echo time (TE) influence on arterial spin labeling (ASL) signal when converting it in regional cerebral blood flow (rCBF). Gray matter ASL signal decrease with increasing TE as a consequence of the difference in the apparent transverse relaxation rates between labeled water in capillaries and nonlabeled water in the tissue (δR 2*). We aimed to measure ASL/rCBF changes in different parts of the brain and correct them. Fifteen participants underwent ASL measurements at TEs of 9.7-30 ms. Decreases in ASL values were localized by statistical parametric mapping. The corrections assessed were a subject-per-subject adjustment, an average δR 2* value adjustment, and a two-compartment model adjustment. rCBF decreases associated with increasing TEs were found for gray matter and were corrected using an average δR 2* value of 20 s(-1) . Conversely, for white matter, rCBF values increased with increasing TEs (δR 2* = -23 s(-1)). Our correction was as good as using a two-compartment model. However, it must be done separately for the gray and white matter rCBF values because the capillary R 2* values are, respectively, larger and smaller than those of surrounding tissues. Copyright © 2011 Wiley-Liss, Inc.
Rempp, K A; Brix, G; Wenz, F; Becker, C R; Gückel, F; Lorenz, W J
1994-12-01
Quantification of regional cerebral blood flow (rCBF) and volume (rCBV) with dynamic magnetic resonance (MR) imaging. After bolus administration of a paramagnetic contrast medium, rapid T2*-weighted gradient-echo images of two sections were acquired for the simultaneous creation of concentration-time curves in the brain-feeding arteries and in brain tissue. Absolute rCBF and rCBV values were determined for gray and white brain matter in 12 subjects with use of principles of the indicator dilution theory. The mean rCBF value in gray matter was 69.7 mL/min +/- 29.7 per 100 g tissue and in white matter, 33.6 mL/min +/- 11.5 per 100 g tissue; the average rCBV was 8.0 mL +/- 3.1 per 100 g tissue and 4.2 mL +/- 1.0 per 100 g tissue, respectively. An age-related decrease in rCBF and rCBV for gray and white matter was observed. Preliminary data demonstrate that the proposed technique allows the quantification of rCBF and rCBV. Although the results are in good agreement with data from positron emission tomography studies, further evaluation is needed to establish the validity of method.
2017-01-01
Collaborative beamforming (CBF) with a finite number of collaborating nodes (CNs) produces sidelobes that are highly dependent on the collaborating nodes’ locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL) reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA), particle swarm algorithm (PSO) and a simplified version of the PSO called the weightless swarm algorithm (WSA). An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense. PMID:28464000
Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg
2014-10-01
To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.
Zhao, Weihong; Zhu, Qian; Yan, Mingxing; Li, Cheng; Yuan, Jiangjing; Qin, Guojuan; Zhang, Jian
2015-02-01
Levonorgestrel, a derivative of progesterone, effectively protects women against unwanted pregnancy as an emergency contraceptive. Previous studies have not been successful in determining the mechanism by which levonorgestrel acts. In the present study we analysed cilia beat action and cilia morphology following levonorgestrel exposure in vitro and in vivo using both light and electron microscopy. There was a significant decrease in the ciliary beat frequency (CBF) of human fallopian tubes between mucosal explants bathed in 5 μmol/L levonorgestrel and those bathed in medium alone (P < 0.05). There was a tendency for CBF to decrease more in the ampulla than in isthmus, but there were no differences between the proliferative and secretory phases. In rat oviducts, levonorgestrel produced a similar reduction in CBF (~ 10%) compared with the saline control group (P < 0.05). Histological and ultrastructural analysis demonstrated no changes in the percentage of ciliated cells or in the classic '9 + 2' structure of cilia following levonorgestrel treatment in either system. Thus, levonorgestrel reduces CBF without damaging cilia morphology. Decreases in CBF may indicate a pathological role for levonorgestrel in the transportation of the ovum and zygote in the fallopian tube. © 2014 Wiley Publishing Asia Pty Ltd.
Lin, Ai-Ling; Fox, Peter T; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2009-01-01
The aim of this study was to investigate the relationship between relative cerebral blood flow (delta CBF) and relative cerebral metabolic rate of oxygen (delta CMRO(2)) during continuous visual stimulation (21 min at 8 Hz) with fMRI biophysical models by simultaneously measuring of BOLD, CBF and CBV fMRI signals. The delta CMRO(2) was determined by both a newly calibrated single-compartment model (SCM) and a multi-compartment model (MCM) and was in agreement between these two models (P>0.5). The duration-varying delta CBF and delta CMRO(2) showed a negative correlation with time (r=-0.97, P<0.001); i.e., delta CBF declines while delta CMRO(2) increases during continuous stimulation. This study also illustrated that without properly calibrating the critical parameters employed in the SCM, an incorrect and even an opposite appearance of the flow-metabolism relationship during prolonged visual stimulation (positively linear coupling) can result. The time-dependent negative correlation between flow and metabolism demonstrated in this fMRI study is consistent with a previous PET observation and further supports the view that the increase in CBF is driven by factors other than oxygen demand and the energy demands will eventually require increased aerobic metabolism as stimulation continues.
Åhs, Fredrik; Gingnell, Malin; Furmark, Tomas; Fredrikson, Mats
2017-03-30
Anxiety reduction following repeated exposure to stressful experiences is generally held to depend on neural processes involved in extinction of conditioned fear. We predicted that repeated exposure to stressful experiences would change activity throughout the circuitry serving extinction, including ventromedial prefrontal cortex (vmPFC), the hippocampus and the amygdala. To test this prediction, 36 participants diagnosed with SAD performed two successive speeches in front of an observing audience while regional cerebral blood flow (rCBF) was recorded using positron emission tomography. To control for non-anxiolytic effects of repeated exposure, rCBF was also measured during repeated presentations of neutral and angry facial expressions. Results showed that anxiety ratings and heart rate decreased from the first to the second speech, indicating an anxiolytic effect of repeated exposure. Exposure attenuated rCBF in the amygdala whereas no change in rCBF was observed in the vmPFC or hippocampus. The rCBF-reductions in the amygdala were greater following repetition of the speech task than repetition of face exposure indicating that they were specific to anxiety attenuation and not due to a reduced novelty. Our findings suggest that amygdala-related attenuation processes are key to understanding the working mechanisms of exposure therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Perfusion MRI Study of Emotional Valence and Arousal in Parkinson's Disease
Limsoontarakul, Sunsern; Campbell, Meghan C.; Black, Kevin J.
2011-01-01
Background. Brain regions subserving emotion have mostly been studied using functional magnetic resonance imaging (fMRI) during emotion provocation procedures in healthy participants. Objective. To identify neuroanatomical regions associated with spontaneous changes in emotional state over time. Methods. Self-rated emotional valence and arousal scores, and regional cerebral blood flow (rCBF) measured by perfusion MRI, were measured 4 or 8 times spanning at least 2 weeks in each of 21 subjects with Parkinson's disease (PD). A random-effects SPM analysis, corrected for multiple comparisons, identified significant clusters of contiguous voxels in which rCBF varied with valence or arousal. Results. Emotional valence correlated positively with rCBF in several brain regions, including medial globus pallidus, orbital prefrontal cortex (PFC), and white matter near putamen, thalamus, insula, and medial PFC. Valence correlated negatively with rCBF in striatum, subgenual cingulate cortex, ventrolateral PFC, and precuneus—posterior cingulate cortex (PCC). Arousal correlated positively with rCBF in clusters including claustrum-thalamus-ventral striatum and inferior parietal lobule and correlated negatively in clusters including posterior insula—mediodorsal thalamus and midbrain. Conclusion. This study demonstrates that the temporal stability of perfusion MRI allows within-subject investigations of spontaneous fluctuations in mental state, such as mood, over relatively long-time intervals. PMID:21969917
Novák, Aliz; Boldizsár, Ákos; Ádám, Éva; Kozma-Bognár, László; Majláth, Imre; Båga, Monica; Tóth, Balázs; Chibbar, Ravindra; Galiba, Gábor
2016-03-01
C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sun, Bao-Liang; Xia, Zuo-Li; Wang, Jing-Ru; Yuan, Hui; Li, Wen-Xia; Chen, Yu-She; Yang, Ming-Feng; Zhang, Su-Ming
2006-01-01
The study was designed to observe the influence of blockade of cerebral lymphatic drainage on the regional cerebral blood flow (rCBF) and brain edema after experimental subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH, SAH, and SAH plus cervical lymphatic blockade (SAH + CLB) groups. Autologous arterial hemolysate was injected into rat's cisterna magna to induce SAH. The rCBF was recorded continuously by a laser Doppler flowmeter. Intracranial pressure (ICP) was also monitored. After 24 hours and 72 hours of SAH, the rats were sacrificed and the brain was harvested for water content detection. It was found that there was no obvious change of rCBF and brain water content during the experiment in non-SAH group. An immediate and persistent drop in rCBF was found in SAH group. The drop in rCBF was more obvious in SAH + CLB group. CLB also worsened the SAH-induced increase in ICP. The brain water content 24 hours and 72 hours after induction of SAH in SAH group increased significantly. CLB led to a further increase of brain water content. In conclusion, blockade of cerebral lymphatic drainage pathway deteriorates the secondary cerebral ischemia and brain edema after SAH.
Parking Structures and the Space Race.
ERIC Educational Resources Information Center
Milshtein, Amy
2000-01-01
Presents some solutions to overcrowded parking on college campuses. Tips on selecting sites for parking garages, making parking decks blend with adjacent communities, and turning parking garages into multi use facilities are addressed. (GR)
86. (Credit CBF) Canal between Twelve Mile Bayou and Cross ...
86. (Credit CBF) Canal between Twelve Mile Bayou and Cross Bayou in the bed of Blind Bayou (constructed 1901-1903). Photo taken in November of 1911. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Li, Xiufeng; Spence, Jeffrey S.; Buhner, David M.; Hart, John; Cullum, C. Munro; Biggs, Melanie M.; Hester, Andrea L.; Odegard, Timothy N.; Carmack, Patrick S.; Haley, Robert W.
2011-01-01
Purpose: To determine, with arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging and physostigmine challenge, if abnormal hippocampal blood flow in ill Gulf War veterans persists 11 years after initial testing with single photon emission computed tomography and nearly 20 years after the 1991 Gulf War. Materials and Methods: The local institutional review board approved this HIPAA-compliant study. Veterans were screened for contraindications and gave written informed consent before the study. In a semiblinded retrospective protocol, veterans in three Gulf War illness groups—syndrome 1 (impaired cognition), syndrome 2 (confusion-ataxia), and syndrome 3 (central neuropathic pain)—and a control group received intravenous infusions of saline in an initial session and physostigmine in a second session, 48 hours later. Each infusion was followed by measurement of hippocampal regional cerebral blood flow (rCBF) with pulsed ASL. A mixed-effects linear model adjusted for age was used to test for differences in rCBF after the cholinergic challenge across the four groups. Results: Physostigmine significantly decreased hippocampal rCBF in control subjects (P < .0005) and veterans with syndrome 1 (P < .05) but significantly increased hippocampal rCBF in veterans with syndrome 2 (P < .005) and veterans with syndrome 3 (P < .002). The abnormal increase in rCBF was found to have progressed to the left hippocampus of the veterans with syndrome 2 and to both hippocampi of the veterans with syndrome 3. Conclusion: Chronic hippocampal perfusion dysfunction persists or worsens in veterans with certain Gulf War syndromes. ASL MR imaging examination of hippocampal rCBF in a cholinergic challenge experiment may be useful as a diagnostic test for this condition. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101715/-/DC1 PMID:21914840
Grocott, Hilary P; Ambrose, Emma; Moon, Mike
2016-10-01
Selective antegrade cerebral perfusion (SACP) involving cannulation of either the axillary or innominate artery is a commonly used technique for maintaining cerebral blood flow (CBF) during the use of hypothermic cardiac arrest (HCA) for operations on the aortic arch. Nevertheless, asymmetrical CBF with hypoperfusion of the left cerebral hemisphere is a common occurrence during SACP. The purpose of this report is to describe an adjunctive maneuver to improve left hemispheric CBF during SACP by applying extrinsic compression to the left carotid artery. A 77-yr-old male patient with a history of aortic valve replacement presented for emergent surgical repair of an acute type A aortic dissection of a previously known ascending aortic aneurysm. His intraoperative course included cannulation of the right axillary artery, which was used as the aortic inflow during cardiopulmonary bypass and also allowed for subsequent SACP during HCA. After the onset of HCA, the innominate artery was clamped at its origin to allow for SACP. Shortly thereafter, however, the left-sided cerebral oxygen saturation (SrO2) began to decrease. Augmenting the PaO2, PaCO2 and both SACP pressure and flow failed to increase left hemispheric SrO2. Following the use of ultrasound guidance to confirm the absence of atherosclerotic disease in the carotid artery, external pressure was applied partially compressing the artery. With the carotid compression, the left cerebral saturation abruptly increased, suggesting pressurization of the left cerebral hemispheric circulation and augmentation of CBF. Direct ultrasound visualization and cautious partial compression of the left carotid artery may address asymmetrical CBF that occurs with SACP during HCA for aortic arch surgery. This strategy may lead to improved symmetry of CBF and corresponding cerebral oximetry measurements during aortic arch surgery.
Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S
2014-01-15
The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.
Wintermark, P.; Hansen, A.; Warfield, SK.; Dukhovny, D.; Soul, JS.
2014-01-01
Background The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. Objective The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. Design/Methods In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow values (CBF), measured from 1–2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Results Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r = 0.88; p value = 0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. Conclusions NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. PMID:23631990
Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas
2011-12-01
The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.
Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy
2014-01-01
This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.
Nishimura, Naoko; Iwasaki, Ken-ichi; Ogawa, Yojiro; Aoki, Ken
2010-05-01
Effects of hypoxia on cerebral circulation are important for occupational, high-altitude, and aviation medicine. Increased risk of fainting might be attributable to altered cerebral circulation by hypoxia. Dynamic cerebral autoregulation is reportedly impaired immediately by mild hypoxia. However, continuous exposure to hypoxia causes hyperventilation, resulting in hypocapnia. This hypocapnia is hypothesized to restore impaired dynamic cerebral autoregulation with reduced steady-state cerebral blood flow (CBF). However, no studies have examined hourly changes in alterations of dynamic cerebral autoregulation and steady-state CBF during sustained hypoxia. We therefore examined cerebral circulation during 5-h exposure to 15% O2 hypoxia and 21% O2 in 13 healthy volunteers in a sitting position. Waveforms of blood pressure and CBF velocity in the middle cerebral artery were measured using finger plethysmography and transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis. As expected, steady-state CBF velocity decreased significantly from 2 to 5 h of hypoxia, accompanying 2- to 3-Torr decreases in end-tidal CO2 (ETCO2). Furthermore, transfer function gain and coherence in the very-low-frequency range increased significantly at the beginning of hypoxia, indicating impaired dynamic cerebral autoregulation. However, contrary to the proposed hypothesis, indexes of dynamic cerebral autoregulation showed no significant restoration despite ETCO2 reductions, resulting in persistent higher values of very-low-frequency power of CBF velocity variability during hypoxia (214+/-40% at 5 h of hypoxia vs. control) without significant increases in blood pressure variability. These results suggest that sustained mild hypoxia reduces steady-state CBF and continuously impairs dynamic cerebral autoregulation, implying an increased risk of shortage of oxygen supply to the brain.
Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara
2013-05-01
Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P < 0.05; left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P < 0.05) associated with cognitive impairment. Patients with cognitive impairment showed lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.
The effect of topically administered latanoprost on the cochlear blood flow and hearing.
Jang, Chul Ho; Cho, Yong Beom; Choi, Cheol Hee; Um, Jae-Young; Wang, Pa-Chun; Pak, Sok Cheon
2013-06-01
The application of intratympanic latanoprost (PGF2α analog) has been recently used to alleviate vertigo, disequilibrium and to improve hearing in Meniere's disease patients. However, there is no known report on the effect of topically applied latanoprost on hearing and cochlear hemodynamic parameters including cochlear blood flow (CBF) and vascular conductance. Our goal was to assess the influence of topically applied latanoprost on cochlear blood flow (CBF) and hearing. Twenty male Sprague-Dawley rats were randomly divided into the group A, 50 μl of latanoprost (1 ml containing 50 μg, n=10) and group B, 100 μl (1 ml containing 50 μg, n=10). Topical application of latanoprost was performed at the right side, and the left side was applied with phosphate buffered saline (PBS) as a negative control. Five rats at each group were used to measure cochlear blood flow (CBF). And the others at each group were used for hearing test by auditory brainstem response (ABR). After physiological examination, bullas were extracted. The changes of cochlear hair cells were observed by performing the field emission-scanning electron microscopy (FE-SEM). The CBF of both groups was found to be decreased compared to the PBS applied left side. Significant decrement of CBF was observed in group B compared to the group A. Significant elevation of hearing threshold at high frequencies was observed in both groups compared to the PBS applied group. However, inner and outer hair cells were intact. Topically administered latanoprost decreased the CBF and impaired hearing. Based on our findings, additional studies are required to evaluate the side effects of intratympanic latanoprost before its use in clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Jennings, J Richard; Heim, Alicia F; Sheu, Lei K; Muldoon, Matthew F; Ryan, Christopher; Gach, H Michael; Schirda, Claudiu; Gianaros, Peter J
2017-12-01
Hypertension is a presumptive risk factor for premature cognitive decline. However, lowering blood pressure (BP) does not uniformly reverse cognitive decline, suggesting that high BP per se may not cause cognitive decline. We hypothesized that essential hypertension has initial effects on the brain that, over time, manifest as cognitive dysfunction in conjunction with both brain vascular abnormalities and systemic BP elevation. Accordingly, we tested whether neuropsychological function and brain blood flow responses to cognitive challenges among prehypertensive individuals would predict subsequent progression of BP. Midlife adults (n=154; mean age, 49; 45% men) with prehypertensive BP underwent neuropsychological testing and assessment of regional cerebral blood flow (rCBF) response to cognitive challenges. Neuropsychological performance measures were derived for verbal and logical memory (memory), executive function, working memory, mental efficiency, and attention. A pseudo-continuous arterial spin labeling magnetic resonance imaging sequence compared rCBF responses with control and active phases of cognitive challenges. Brain areas previously associated with BP were grouped into composites for frontoparietal, frontostriatal, and insular-subcortical rCBF areas. Multiple regression models tested whether BP after 2 years was predicted by initial BP, initial neuropsychological scores, and initial rCBF responses to cognitive challenge. The neuropsychological composite of working memory (standardized beta, -0.276; se=0.116; P =0.02) and the frontostriatal rCBF response to cognitive challenge (standardized beta, 0.234; se=0.108; P =0.03) significantly predicted follow-up BP. Initial BP failed to significantly predict subsequent cognitive performance or rCBF. Changes in brain function may precede or co-occur with progression of BP toward hypertensive levels in midlife. © 2017 American Heart Association, Inc.
Carsin-Vu, Aline; Corouge, Isabelle; Commowick, Olivier; Bouzillé, Guillaume; Barillot, Christian; Ferré, Jean-Christophe; Proisy, Maia
2018-04-01
To investigate changes in cerebral blood flow (CBF) in gray matter (GM) between 6 months and 15 years of age and to provide CBF values for the brain, GM, white matter (WM), hemispheres and lobes. Between 2013 and 2016, we retrospectively included all clinical MRI examinations with arterial spin labeling (ASL). We excluded subjects with a condition potentially affecting brain perfusion. For each subject, mean values of CBF in the brain, GM, WM, hemispheres and lobes were calculated. GM CBF was fitted using linear, quadratic and cubic polynomial regression against age. Regression models were compared with Akaike's information criterion (AIC), and Likelihood Ratio tests. 84 children were included (44 females/40 males). Mean CBF values were 64.2 ± 13.8 mL/100 g/min in GM, and 29.3 ± 10.0 mL/100 g/min in WM. The best-fit model of brain perfusion was the cubic polynomial function (AIC = 672.7, versus respectively AIC = 673.9 and AIC = 674.1 with the linear negative function and the quadratic polynomial function). A statistically significant difference between the tested models demonstrating the superiority of the quadratic (p = 0.18) or cubic polynomial model (p = 0.06), over the negative linear regression model was not found. No effect of general anesthesia (p = 0.34) or of gender (p = 0.16) was found. we provided values for ASL CBF in the brain, GM, WM, hemispheres, and lobes over a wide pediatric age range, approximately showing inverted U-shaped changes in GM perfusion over the course of childhood. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of CO2 in the cerebral hyperemic response to incremental normoxic and hyperoxic exercise
Wildfong, K. W.; Hoiland, R. L.; Harper, M.; Lewis, N. C.; Pool, A.; Smith, S. L.; Kuca, T.; Ainslie, P. N.
2016-01-01
Cerebral blood flow (CBF) is temporally related to exercise-induced changes in partial pressure of end-tidal carbon dioxide (PetCO2); hyperoxia is known to enhance this relationship. We examined the hypothesis that preventing PetCO2 from rising (isocapnia) during submaximal exercise with and without hyperoxia [end-tidal Po2 (PetO2) = 300 mmHg] would attenuate the increases in CBF. Additionally, we aimed to identify the magnitude that breathing, per se, influences the CBF response to normoxic and hyperoxic exercise. In 14 participants, CBF (intra- and extracranial) measurements were measured during exercise [20, 40, 60, and 80% of maximum workload (Wmax)] and during rest while ventilation (V̇e) was volitionally increased to mimic volumes achieved during exercise (isocapnic hyperpnea). While V̇e was uncontrolled during poikilocapnic exercise, during isocapnic exercise and isocapnic hyperpnea, V̇e was increased to prevent PetCO2 from rising above resting values (∼40 mmHg). Although PetCO2 differed by 2 ± 3 mmHg during normoxic poikilocapnic and isocapnic exercise, except for a greater poikilocapnic compared with isocapnic increase in blood velocity in the posterior cerebral artery at 60% Wmax, the between condition increases in intracranial (∼12-15%) and extracranial (15–20%) blood flow were similar at each workload. The poikilocapnic hyperoxic increases in both intra- and extracranial blood-flow (∼17–29%) were greater compared with poikilocapnic normoxia (∼8–20%) at intensities >40% Wmax (P < 0.01). During both normoxic and hyperoxic conditions, isocapnia normalized both the intracranial and extracranial blood-flow differences. Isocapnic hyperpnea did not alter CBF. Our findings demonstrate a differential effect of PetCO2 on CBF during exercise influenced by the prevailing PetO2. PMID:26769951
2012-01-01
186 6.2 Non-Reactive Shear-Coaxial Jets . . . . . . . . . . . . . . . . . . . . . . 188 A Shear-Coaxial Jets Experimental Facility: Piping and...185 A.1 Experimental facility piping and instrumentation diagram. . . . . . . . . 194 A.2 Expanded view of section A in Figure...modification, whereas a blend of gasoline and 85% ethanol (E85) is only certified to be used in flexible fuel vehicles (FFVs) with engines specifically
75 FR 8318 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
... and disposition of crude oil, petroleum products, and natural gas liquids. The data are published by..., blending plants, bulk terminals, crude oil and product pipelines, natural gas plant facilities, tankers...
Cerebral blood flow is reduced in patients with sepsis syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowton, D.L.; Bertels, N.H.; Prough, D.S.
The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, themore » specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.« less
Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olesen, J.; Larsen, B.; Lauritzen, M.
1981-04-01
Regional cerebral blood flow (rCBF) was measured in 254 areas of a hemisphere with the xenon 133 intraarterial injection method. Six cases of classic migraine were followed from the normal state into the prodromal phase, and in 3 cases further into the headache phase. One patient with common migraine was similarly followed during his only classic attack. The attacks were initiated by focal hyperemia in 3 patients. During prodromes all patients displayed occipitoparietal rCBF reduction (oligemia), but in only 1 case did the reduction approach critical values. Oligemia gradually spread anteriorly in the course of 15 to 45 minutes. Inmore » 4 patients a global oligemia was observed. In 4 patients severe headache was present concomitantly with oligemia and with no sign of hyperemia or nonhomogeneous brain perfusion. The normal rCBF increase during cortical activity (hand movement, speech, and similar activities) was impaired in 6 patients. The results indicate that the vasospastic model of the migraine attack is too simplistic.« less
The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic.
Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U Thomas; Leulliot, Nicolas
2011-11-15
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic
Walbott, Hélène; Machado-Pinilla, Rosario; Liger, Dominique; Blaud, Magali; Réty, Stéphane; Grozdanov, Petar N.; Godin, Kate; van Tilbeurgh, Herman; Varani, Gabriele; Meier, U. Thomas; Leulliot, Nicolas
2011-01-01
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA–protein-binding sites to achieve a specific protein–protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins. PMID:22085966
Effect of hematocrit and systolic blood pressure on cerebral blood flow in newborn infants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younkin, D.P.; Reivich, M.; Jaggi, J.L.
1987-06-01
The effects of hematocrit and systolic blood pressure on cerebral blood flow were measured in 15 stable, low birth weight babies. CBF was measured with a modification of the xenon-133 (/sup 133/Xe) clearance technique, which uses an intravenous bolus of /sup 133/Xe, an external chest detector to estimate arterial /sup 133/Xe concentration, eight external cranial detectors to measure cephalic /sup 133/Xe clearance curves, and a two-compartmental analysis of the cephalic /sup 133/Xe clearance curves to estimate CBF. There was a significant inverse correlation between hematocrit and CBF, presumably due to alterations in arterial oxygen content and blood viscosity. Newborn CBFmore » varied independently of systolic blood pressure between 60 and 84 mm Hg, suggesting an intact cerebrovascular autoregulatory mechanism. These results indicate that at least two of the factors that affect newborn animal CBF are operational in human newborns and may have important clinical implications.« less
Inoue, Kentaro; Ito, Hiroshi; Shidahara, Miho; Goto, Ryoi; Kinomura, Shigeo; Sato, Kazunori; Taki, Yasuyuki; Okada, Ken; Kaneta, Tomohiro; Fukuda, Hiroshi
2006-02-01
The limited spatial resolution of SPECT causes a partial volume effect (PVE) and can lead to the significant underestimation of regional tracer concentration in the small structures surrounded by a low tracer concentration, such as the cortical gray matter of an atrophied brain. The aim of the present study was to determine, using 123I-IMP and SPECT, normal CBF of elderly subjects with and without PVE correction (PVC), and to determine regional differences in the effect of PVC and their association with the regional tissue fraction of the brain. Quantitative CBF SPECT using 123I-IMP was performed in 33 healthy elderly subjects (18 males, 15 females, 54-74 years old) using the autoradiographic method. We corrected CBF for PVE using segmented MR images, and analyzed quantitative CBF and regional differences in the effect of PVC using tissue fractions of gray matter (GM) and white matter (WM) in regions of interest (ROIs) placed on the cortical and subcortical GM regions and deep WM regions. The mean CBF in GM-ROIs were 31.7 +/- 6.6 and 41.0 +/- 8.1 ml/100 g/min for males and females, and in WM-ROIs, 18.2 +/- 0.7 and 22.9 +/- 0.8 ml/100 g/min for males and females, respectively. The mean CBF in GM-ROIs after PVC were 50.9 +/- 12.8 and 65.8 +/- 16.1 ml/100 g/min for males and females, respectively. There were statistically significant differences in the effect of PVC among ROIs, but not between genders. The effect of PVC was small in the cerebellum and parahippocampal gyrus, and it was large in the superior frontal gyrus, superior parietal lobule and precentral gyrus. Quantitative CBF in GM recovered significantly, but did not reach values as high as those obtained by invasive methods or in the H2(15)O PET study that used PVC. There were significant regional differences in the effect of PVC, which were considered to result from regional differences in GM tissue fraction, which is more reduced in the frontoparietal regions in the atrophied brain of the elderly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, M; Rane-Levandovsky, S; Andre, J
Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employedmore » to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal pulse sequence modifications and no additional scan time, improving ASL’s clinical applicability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Chang, T; Huang, K
2014-06-01
Purpose: This study aimed to evaluate the feasibility of using a short arterial spin labeling (ASL) scan for calibrating the dynamic susceptibility contrast- (DSC-) MRI in a group of patients with internal carotid artery stenosis. Methods: Six patients with unilateral ICA stenosis enrolled in the study on a 3T clinical MRI scanner. The ASL-cerebral blood flow (-CBF) maps were calculated by averaging different number of dynamic points (N=1-45) acquired by using a Q2TIPS sequence. For DSC perfusion analysis, arterial input function was selected to derive the relative cerebral blood flow (rCBF) map and the delay (Tmax) map. Patient-specific CF wasmore » calculated from the mean ASL- and DSC-CBF obtained from three different masks: (1)Tmax< 3s, (2)combined gray matter mask with mask 1, (3)mask 2 with large vessels removed. One CF value was created for each number of averages by using each of the three masks for calibrating the DSC-CBF map. The CF value of the largest number of averages (NL=45) was used to determine the acceptable range(< 10%, <15%, and <20%) of CF values corresponding to the minimally acceptable number of average (NS) for each patient. Results: Comparing DSC CBF maps corrected by CF values of NL (CBFL) in ACA, MCA and PCA territories, all masks resulted in smaller CBF on the ipsilateral side than the contralateral side of the MCA territory(p<.05). The values obtained from mask 1 were significantly different than the mask 3(p<.05). Using mask 3, the medium values of Ns were 4(<10%), 2(<15%) and 2(<20%), with the worst case scenario (maximum Ns) of 25, 4, and 4, respectively. Conclusion: This study found that reliable calibration of DSC-CBF can be achieved from a short pulsed ASL scan. We suggested use a mask based on the Tmax threshold, the inclusion of gray matter only and the exclusion of large vessels for performing the calibration.« less
Hodkinson, Duncan J; Krause, Kristina; Khawaja, Nadine; Renton, Tara F; Huggins, John P; Vennart, William; Thacker, Michael A; Mehta, Mitul A; Zelaya, Fernando O; Williams, Steven C R; Howard, Matthew A
2013-01-01
Arterial spin labelling (ASL) is increasingly being applied to study the cerebral response to pain in both experimental human models and patients with persistent pain. Despite its advantages, scanning time and reliability remain important issues in the clinical applicability of ASL. Here we present the test-retest analysis of concurrent pseudo-continuous ASL (pCASL) and visual analogue scale (VAS), in a clinical model of on-going pain following third molar extraction (TME). Using ICC performance measures, we were able to quantify the reliability of the post-surgical pain state and ΔCBF (change in CBF), both at the group and individual case level. Within-subject, the inter- and intra-session reliability of the post-surgical pain state was ranked good-to-excellent (ICC > 0.6) across both pCASL and VAS modalities. The parameter ΔCBF (change in CBF between pre- and post-surgical states) performed reliably (ICC > 0.4), provided that a single baseline condition (or the mean of more than one baseline) was used for subtraction. Between-subjects, the pCASL measurements in the post-surgical pain state and ΔCBF were both characterised as reliable (ICC > 0.4). However, the subjective VAS pain ratings demonstrated a significant contribution of pain state variability, which suggests diminished utility for interindividual comparisons. These analyses indicate that the pCASL imaging technique has considerable potential for the comparison of within- and between-subjects differences associated with pain-induced state changes and baseline differences in regional CBF. They also suggest that differences in baseline perfusion and functional lateralisation characteristics may play an important role in the overall reliability of the estimated changes in CBF. Repeated measures designs have the important advantage that they provide good reliability for comparing condition effects because all sources of variability between subjects are excluded from the experimental error. The ability to elicit reliable neural correlates of on-going pain using quantitative perfusion imaging may help support the conclusions derived from subjective self-report.
Wang, Ting; Li, Yanhua; Guo, Xinhong; Huang, Diandian; Ma, Lin; Wang, Danny J J; Lou, Xin
2016-03-01
To investigate the hemodynamic changes of normal-appearing white matter (NAWM) in hypertension using the 3D pseudocontinuous arterial spin labeling (pCASL) technique. Seventy-three subjects, including a patient group (n = 41; 30 males; age = 47.7 ± 8.3 years; test-time blood pressure [BP] = 155 ± 23/98 ± 11 mmHg) and an age-matched control group (n = 32; 14 males; age = 46 ± 8.3 years; test-time BP = 117 ± 8/76 ± 10 mmHg), were recruited and scanned on a 3.0T magnetic resonance imaging (MRI) system using routine MRI sequences and 3D pCASL sequence. The routine MRI sequences were used to further define the NAWM. The cerebral blood flow (CBF) values in various regions of interest (ROIs) were extracted. One-way analysis of variance (ANOVA) and unpaired t-test were performed to evaluate the significance of the intergroup difference in CBF modifications. Compared to healthy volunteers, CBF values in global gray matter (GM) and various NAWM regions were found to be lower (P < 0.05) in hypertensive patients, except for genu of corpus callosum (CC), cingulate gyrus, amygdala, pallidum, putamen, and thalamus (P > 0.05). Furthermore, compared to the control group, mild hypertension showed significantly reduced CBF in various ROIs (P < 0.05), but no intergroup differences in GM, R anterior horn of periventricular WM, and genu of CC (P > 0.05), while moderate hypertension showed reduced CBF in all ROIs (P < 0.05). However, it was observed that, between mild and moderate hypertensive patients, there were no statistically significant difference in CBF values except for genu of CC (P < 0.05). 3D pCASL has the ability to detect subtle hemodynamic abnormalities in NAWM regions at relatively early stages of hypertension. The observed decreases in CBF in these regions may suggest an increased risk of cerebral small vessel diseases. © 2015 Wiley Periodicals, Inc.
Ensrud, Kristine E; Harrison, Stephanie L; Cauley, Jane A; Langsetmo, Lisa; Schousboe, John T; Kado, Deborah M; Gourlay, Margaret L; Lyons, Jennifer G; Fredman, Lisa; Napoli, Nicolas; Crandall, Carolyn J; Lewis, Cora E; Orwoll, Eric S; Stefanick, Marcia L; Cawthon, Peggy M
2017-03-01
To determine the association of weight loss with risk of clinical fractures at the hip, spine, and pelvis (central body fractures [CBFs]) in older men with and without accounting for the competing risk of mortality, we used data from 4523 men (mean age 77.5 years). Weight change between baseline and follow-up (mean 4.5 years between examinations) was categorized as moderate loss (loss ≥10%), mild loss (loss 5% to <10%), stable (<5% change) or gain (gain ≥5%). Participants were contacted every 4 months after the follow-up examination to ascertain vital status (deaths verified by death certificates) and ask about fractures (confirmed by radiographic reports). Absolute probability of CBF by weight change category was estimated using traditional Kaplan-Meier method and cumulative incidence function accounting for competing mortality risk. Risk of CBF by weight change category was determined using conventional Cox proportional hazards regression and subdistribution hazards models with death as a competing risk. During an average of 8 years, 337 men (7.5%) experienced CBF and 1569 (34.7%) died before experiencing this outcome. Among men with moderate weight loss, CBF probability was 6.8% at 5 years and 16.9% at 10 years using Kaplan-Meier versus 5.7% at 5 years and 10.2% at 10 years using a competing risk approach. Men with moderate weight loss compared with those with stable weight had a 1.6-fold higher adjusted risk of CBF (HR 1.59; 95% CI, 1.06 to 2.38) using Cox models that was substantially attenuated in models accounting for competing mortality risk and no longer significant (subdistribution HR 1.16; 95% CI, 0.77 to 1.75). Results were similar in analyses substituting hip fracture for CBF. Older men with weight loss who survive are at increased risk of CBF, including hip fracture. However, ignoring the competing mortality risk among men with weight loss substantially overestimates their long-term fracture probability and relative fracture risk. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Kawadler, Jamie M; Hales, Patrick W; Barker, Simon; Cox, Timothy C S; Kirkham, Fenella J; Clark, Chris A
2018-03-30
Sickle cell anaemia (SCA) is associated with chronic anaemia and oxygen desaturation, which elevate cerebral blood flow (CBF) and increase the risk of neurocognitive complications. Arterial spin labelling (ASL) provides a methodology for measuring CBF non-invasively; however, ASL techniques using only a single inflow time are not sufficient to fully characterize abnormal haemodynamic behaviour in SCA. This study investigated haemodynamic parameters from a multi-inflow-time ASL acquisition in younger (8-12 years) and older (13-18 years) children with SCA with and without silent cerebral infarction (SCI+/-) (n = 20 and 19 respectively, 6 and 4 SCI+ respectively) and healthy controls (n = 9 and 7 respectively). Compared with controls, CBF was elevated globally in both groups of patients. In the younger SCA patients, blood oxygen content was negatively correlated with CBF in the middle and posterior cerebral artery territories and significantly positively correlated with bolus arrival time (BAT) in the anterior and middle cerebral artery territories. In older children, SCA patients had significantly shorter BAT than healthy controls and there was a significant negative correlation between CBF and oxygen content only in the territory of the posterior cerebral artery, with a trend for a correlation in the anterior cerebral artery but no relationship for the middle cerebral artery territory. In the younger group, SCI+ patients had significantly higher CBF in the posterior cerebral artery territory (SCI+ mean = 92.78 ml/100 g/min; SCI- mean = 72.71 ml/100 g/min; F = 4.28, p = 0.04), but this no longer reached significance when two children with abnormal transcranial Doppler and one with haemoglobin SC disease were excluded, and there were no significant differences between patients with and without SCI in the older children. With age, there appears to be increasing disparity between patients and controls in terms of the relationship between CBF and oxygen content in the anterior circulation, potentially predicting the risk of acute and chronic compromise of brain tissue. Copyright © 2018 John Wiley & Sons, Ltd.
The anesthetic effects on vasopressor modulation of cerebral blood flow in an immature swine model.
Bruins, Benjamin; Kilbaugh, Todd J; Margulies, Susan S; Friess, Stuart H
2013-04-01
The effect of various sedatives and anesthetics on vasopressor modulation of cerebral blood flow (CBF) in children is unclear. In adults, isoflurane has been described to decrease CBF to a lesser extent than fentanyl and midazolam. Most large-animal models of neurocritical care use inhaled anesthetics for anesthesia. Investigations involving modulations of CBF would have improved translatability within a model that more closely approximates the current practice in the pediatric intensive care unit. Fifteen 4-week-old piglets were given 1 of 2 anesthetic protocols: total IV anesthesia (TIVA) (midazolam 1 mg/kg/h and fentanyl 100 μg/kg/h, n = 8) or ISO (isoflurane 1.5%-2% and fentanyl 100 μg/kg/h, n = 7). Mean arterial blood pressure, intracranial pressure (ICP), CBF, and brain tissue oxygen tension were measured continuously as piglets were exposed to escalating doses of arginine vasopressin, norepinephrine (NE), and phenylephrine (PE). Baseline CBF was similar in the 2 groups (ISO 38 ± 10 vs TIVA 35 ± 26 mL/100 g/min) despite lower baseline cerebral perfusion pressure in the ISO group (45 ± 11 vs 71 ± 11 mm Hg; P < 0.0005). Piglets in the ISO group displayed increases in ICP with PE and NE (11 ± 4 vs 16 ± 4 mm Hg and 11 ± 8 vs 18 ± 5 mm Hg; P < 0.05), but in the TIVA group, only exposure to PE resulted in increases in ICP when comparing maximal dose values with baseline data (11 ± 4 vs 15 ± 5 mm Hg; P < 0.05). Normalized CBF displayed statistically significant increases regarding anesthetic group and vasopressor dose when piglets were exposed to NE and PE (P < 0.05), suggesting an impairment of autoregulation within ISO, but not TIVA. The vasopressor effect on CBF was limited when using a narcotic-benzodiazepine-based anesthetic protocol compared with volatile anesthetics, consistent with a preservation of autoregulation. Selection of anesthetic drugs is critical to investigate mechanisms of cerebrovascular hemodynamics, and in translating critical care investigations between the laboratory and bedside.
NASA Astrophysics Data System (ADS)
Kudomi, Nobuyuki; Watabe, Hiroshi; Hayashi, Takuya; Iida, Hidehiro
2007-04-01
Cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating 15O-labelled water (H152O) and oxygen (15O2). Conventionally, those images are measured with separate scans for three tracers C15O for CBV, H152O for CBF and 15O2 for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating H152O and 15O2 within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i.e., errors in those values were within 5%, when the area under the curve in the input function of the second tracer was larger than half of the first one. Bias and deviation in those values were also compatible to that of the conventional method, when noise was imposed on the arterial TAC. We concluded that the present calculation based methods could be of use for quantitatively calculating CBF and CMRO2 with the DARG approach.
Kinetic analysis of IMP split dose method for two consecutive measurement of cerebral blood flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizawa, S.; Yonekura, Y.; Tanaka, F.
1994-05-01
The split dose method for two consecutive measurements of cerebral blood flow (CBF) with I-123 IMP seems to offer a great merit to the SPECT study of the brain. However, because of complexity of the dynamics of IMP, it is not clear if microsphere (MS) model permits a estimation of CBF for the 2nd dose. We applied kinetic (KN) analysis based on 2 compartment model to the dynamic SPECT scan data, and compared the results with those obtained by MS model. Dynamic SPECT (1-min scans for 50 min) was performed using 3-head SPECT camera in 5 patients to test themore » reproducibility of measured CBF and in 9 patients to test the vascular response to acetazolamide (ACZ). Two doses of IMP (111 MBq each) were injected at the time of, and 25 min after, the scan initiation. ACZ (1g) was administered at 13 min. Arterial blood samples were drawn manually during the scan and an octanol extracted input function was obtained. Dynamic scan data for 22 min was used for CBF by KN analysis (K1), and 4-min scan data at 5 min for CBF by MS model (Km), for each dose. For 2nd CBF by MS model, simple subtraction of brain activity due to the I st dose was done using 4-min scan data just prior to the 2nd dose. Reproducibility of measured CBF by KN analysis was excellent (r=0.949, 1st K1=39.2{plus_minus}5.6 and 2nd K1=38.5{plus_minus}6.6 ml/l00g/min: mean{plus_minus}SD). Vascular response to ACZ was good (1st K1=42.4{plus_minus}7.8 to 2nd K1=67.9{plus_minus}10.0) in areas without ischemia, but poor (1st K1=41.1{plus_minus}8.5 to 2nd K1=46.1{plus_minus}11.1) in ischemic areas. Compared to KN analysis, MS model underestimated 3.5% for the 1st CBF measurement and 12.8% for the 2nd. However, excellent correlation was observed not only between 1st K1 and Km (r=0.993, slope=0.920) but between 2nd K1 and Km (r=0.994, slope=0.814), and the results permitted a reasonable correction for Km.« less
Pilkinton, David T; Hiraki, Teruyuki; Detre, John A; Greenberg, Joel H; Reddy, Ravinder
2012-06-01
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Copyright © 2011 Wiley-Liss, Inc.
SNP-array lesions in core binding factor acute myeloid leukemia
Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude
2018-01-01
Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia. PMID:29464086
Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R
2017-01-01
The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.
NASA Astrophysics Data System (ADS)
Cheng, Ran; Shang, Yu; Wang, Siqi; Evans, Joyce M.; Rayapati, Abner; Randall, David C.; Yu, Guoqiang
2014-01-01
Significant drops in arterial blood pressure and cerebral hemodynamics have been previously observed during vasovagal syncope (VVS). Continuous and simultaneous monitoring of these physiological variables during VVS is rare, but critical for determining which variable is the most sensitive parameter to predict VVS. The present study used a novel custom-designed diffuse correlation spectroscopy flow-oximeter and a finger plethysmograph to simultaneously monitor relative changes of cerebral blood flow (rCBF), cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: r[HbO2]/r[Hb]/rTHC), and mean arterial pressure (rMAP) during 70 deg head-up tilt (HUT) in 14 healthy adults. Six subjects developed presyncope during HUT. Two-stage physiological responses during HUT were observed in the presyncopal group: slow and small changes in measured variables (i.e., Stage I), followed by rapid and dramatic decreases in rMAP, rCBF, r[HbO2], and rTHC (i.e., Stage II). Compared to other physiological variables, rCBF reached its breakpoint between the two stages earliest and had the largest decrease (76±8%) during presyncope. Our results suggest that rCBF has the best sensitivity for the assessment of VVS. Most importantly, a threshold of ˜50% rCBF decline completely separated the subjects from those without presyncope, suggesting its potential for predicting VVS.
Inter-Vendor Reproducibility of Pseudo-Continuous Arterial Spin Labeling at 3 Tesla
Mutsaerts, Henri J. M. M.; Steketee, Rebecca M. E.; Heijtel, Dennis F. R.; Kuijer, Joost P. A.; van Osch, Matthias J. P.; Majoie, Charles B. L. M.; Smits, Marion; Nederveen, Aart J.
2014-01-01
Purpose Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. Material and Methods 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Results Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. Conclusion These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors. PMID:25090654
Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla.
Mutsaerts, Henri J M M; Steketee, Rebecca M E; Heijtel, Dennis F R; Kuijer, Joost P A; van Osch, Matthias J P; Majoie, Charles B L M; Smits, Marion; Nederveen, Aart J
2014-01-01
Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors.
Manole, Mioara D; Kochanek, Patrick M; Foley, Lesley M; Hitchens, T Kevin; Bayır, Hülya; Alexander, Henry; Garman, Robert; Ma, Li; Hsia, Carleton J C; Ho, Chien; Clark, Robert S B
2012-01-01
Postresuscitation cerebral blood flow (CBF) disturbances and generation of reactive oxygen species likely contribute to impaired neurologic outcome after pediatric cardiac arrest (CA). Hence, we determined the effects of the antioxidant colloid polynitroxyl albumin (PNA) versus albumin or normal saline (NS) on CBF and neurologic outcome after asphyxial CA in immature rats. We induced asphyxia for 9 minutes in male and female postnatal day 16 to 18 rats randomized to receive PNA, albumin, or NS at resuscitation from CA or sham surgery. Regional CBF was measured serially from 5 to 150 minutes after resuscitation by arterial spin-labeled magnetic resonance imaging. We assessed motor function (beam balance and inclined plane), spatial memory retention (water maze), and hippocampal neuronal survival. Polynitroxyl albumin reduced early hyperemia seen 5 minutes after CA. In contrast, albumin markedly increased and prolonged hyperemia. In the delayed period after resuscitation (90 to 150 minutes), CBF was comparable among groups. Both PNA- and albumin-treated rats performed better in the water maze versus NS after CA. This benefit was observed only in males. Hippocampal neuron survival was similar between injury groups. Treatment of immature rats with PNA or albumin resulted in divergent acute changes in CBF, but both improved spatial memory retention in males after asphyxial CA. PMID:22126915
Cutaneous blood flow in psoriasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemp, P.; Staberg, B.
1983-12-01
The disappearance rate of /sup 133/Xe was studied in 20 patients with psoriasis vulgaris, using an epicutaneous labeling technique in involved skin lesions or normal-appearing skin of the proximal extensor site of the forearm. Control experiments were performed in 10 normal subjects. Calculations of the cutaneous blood flow (CBF) in psoriatic skin lesions were performed using a tissue-to-blood partition coefficient for /sup 133/Xe, lambda c,pso, of 1.2 ml/100 g/min. lambda c,pso was estimated after the relative content of water, lipids, and proteins had been analyzed in psoriatic skin biopsies of 6 patients with untreated psoriasis. The mean relative content ofmore » water was markedly reduced to 23.5 +/- 1.5% (SEM), and lipids and proteins were markedly increased to 2.5 +/- 0.7% and 74.0 +/- 2.2, respectively, compared to previously published data for normal skin (water 72.5%, lipids 1%, proteins 26.5%). Mean CBF in untreated psoriatic skin was 63.5 +/- 9.0 ml/100 g/min. This was significantly higher than the mean CBF in 10 normal subjects, 6.3 +/- 0.5 ml/100 g/min (p much less than 0.0001). Mean CBF in normal-appearing skin in patients with psoriasis was 11.0 +/- 1.3 ml/100 g/min. This was significantly higher than CBF in normal subjects (p less than 0.0002).« less
Rostami, Elham; Engquist, Henrik; Enblad, Per
2014-01-01
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.
Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J
1993-01-01
Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.
Rostami, Elham; Engquist, Henrik; Enblad, Per
2014-01-01
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI. PMID:25071702
New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain
Venkat, Poornima; Chopp, Michael; Chen, Jieli
2016-01-01
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823
New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.
Venkat, Poornima; Chopp, Michael; Chen, Jieli
2016-06-30
The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.
Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J
2016-04-01
The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P < 0.05), although QUASAR significantly underestimated CBF by 30% (P < 0.001). CBVA was moderately correlated (r(2): 0.28-0.43, P < 0.05), with QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P < 0.001). Group-wise voxel statistics identified minor areas with significant contrast differences between [(15)O]H2O PET and QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.
Evaluation of MRI Models in the Measurement of CMRO2 and Its Relationship With CBF
Lin, Ai-Ling; Fox, Peter T.; Yang, Yihong; Lu, Hanzhang; Tan, Li-Hai; Gao, Jia-Hong
2008-01-01
The aim of this study was to investigate the various MRI biophysical models in the measurements of local cerebral metabolic rate of oxygen (CMRO2) and the corresponding relationship with cerebral blood flow (CBF) during brain activation. This aim was addressed by simultaneously measuring the relative changes in CBF, cerebral blood volume (CBV), and blood oxygen level dependent (BOLD) MRI signals in the human visual cortex during visual stimulation. A radial checkerboard delivered flash stimulation at five different frequencies. Two MRI models, the single-compartment model (SCM) and the multi-compartment model (MCM), were used to determine the relative changes in CMRO2 using three methods: [1] SCM with parameters identical to those used in a prior MRI study (M = 0.22; α = 0.38); [2] SCM with directly measured parameters (M from hypercapnia and α from measured δCBV and δCBF); and [3] MCM. The magnitude of relative changes in CMRO2 and the nonlinear relationship between CBF and CMRO2 obtained with Methods [2] and [3] were not in agreement with those obtained using Method [1]. However, the results of Methods [2] and [3] were aligned with positron emission tomography findings from the literature. Our results indicate that if appropriate parameters are used, the SCM and MCM models are equivalent for quantifying the values of CMRO2 and determining the flow-metabolism relationship. PMID:18666102
Holcomb, H H; Medoff, D R; Caudill, P J; Zhao, Z; Lahti, A C; Dannals, R F; Tamminga, C A
1998-09-01
Tone recognition is partially subserved by neural activity in the right frontal and primary auditory cortices. First we determined the brain areas associated with tone perception and recognition. This study then examined how regional cerebral blood flow (rCBF) in these and other brain regions correlates with the behavioral characteristics of a difficult tone recognition task. rCBF changes were assessed using H2(15)O positron emission tomography. Subtraction procedures were used to localize significant change regions and correlational analyses were applied to determine how response times (RT) predicted rCBF patterns. Twelve trained normal volunteers were studied in three conditions: REST, sensory motor control (SMC) and decision (DEC). The SMC-REST contrast revealed bilateral activation of primary auditory cortices, cerebellum and bilateral inferior frontal gyri. DEC-SMC produced significant clusters in the right middle and inferior frontal gyri, insula and claustrum; the anterior cingulate gyrus and supplementary motor area; the left insula/claustrum; and the left cerebellum. Correlational analyses, RT versus rCBF from DEC scans, showed a positive correlation in right inferior and middle frontal cortex; rCBF in bilateral auditory cortices and cerebellum exhibited significant negative correlations with RT These changes suggest that neural activity in the right frontal, superior temporal and cerebellar regions shifts back and forth in magnitude depending on whether tone recognition RT is relatively fast or slow, during a difficult, accurate assessment.
SNP-array lesions in core binding factor acute myeloid leukemia.
Duployez, Nicolas; Boudry-Labis, Elise; Roumier, Christophe; Boissel, Nicolas; Petit, Arnaud; Geffroy, Sandrine; Helevaut, Nathalie; Celli-Lebras, Karine; Terré, Christine; Fenneteau, Odile; Cuccuini, Wendy; Luquet, Isabelle; Lapillonne, Hélène; Lacombe, Catherine; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude
2018-01-19
Acute myeloid leukemia (AML) with t(8;21) and inv(16), together referred as core binding factor (CBF)-AML, are recognized as unique entities. Both rearrangements share a common pathophysiology, the disruption of the CBF, and a relatively good prognosis. Experiments have demonstrated that CBF rearrangements were insufficient to induce leukemia, implying the existence of cooperating events. To explore these aberrations, we performed single nucleotide polymorphism (SNP)-array in a well-annotated cohort of 198 patients with CBF-AML. Excluding breakpoint-associated lesions, the most frequent events included loss of a sex chromosome (53%), deletions at 9q21 (12%) and 7q36 (9%) in patients with t(8;21) compared with trisomy 22 (13%), trisomy 8 (10%) and 7q36 deletions (12%) in patients with inv(16). SNP-array revealed novel recurrent genetic alterations likely to be involved in CBF-AML leukemogenesis. ZBTB7A mutations (20% of t(8;21)-AML) were shown to be a target of copy-neutral losses of heterozygosity (CN-LOH) at chromosome 19p. FOXP1 focal deletions were identified in 5% of inv(16)-AML while sequence analysis revealed that 2% carried FOXP1 truncating mutations. Finally, CCDC26 disruption was found in both subtypes (4.5% of the whole cohort) and possibly highlighted a new lesion associated with aberrant tyrosine kinase signaling in this particular subtype of leukemia.
Tittl, Michael; Maar, Noemi; Polska, Elzbieta; Weigert, Günther; Stur, Michael; Schmetterer, Leopold
2005-12-01
Imaging studies suggest that the choroidal vasculature may be altered in central serous chorioretinopathy. Little is known, however, about the regulation of ocular blood flow in patients with central serous chorioretinopathy (CSC). The hypothesis for the present study was that choroidal blood flow changes during an increase in ocular perfusion pressure induced by isometric exercise may be altered in CSC. An observer-masked, two-cohort study was performed in 14 nonsmoking patients with chronic-relapsing but inactive CSC and in 14 healthy nonsmoking volunteers. Both groups were matched for age and sex. Subfoveal choroidal blood flow (CBF) was assessed with laser Doppler flowmetry, and ocular perfusion pressure (OPP) was calculated from mean arterial pressure (MAP) and intraocular pressure (IOP). Changes of CBF during isometric exercise over a period of 6 minutes were measured. Whereas the increase of MAP, the pulse rate, and the OPP were comparable between the two study groups, subfoveal CBF increased significantly more in the group of patients with CSC (P < 0.001). IOP remained unchanged in both groups during isometric exercise. At an 85% increase in OPP, subfoveal CBF was approximately twice as high in the patients with CSC compared with the healthy control group. The data indicate an abnormal subfoveal CBF regulation in patients with relapsing CSC compared with age-matched, nonsmoking, healthy volunteers during isometric exercise.
75 FR 29584 - Notice of Lodging of Consent Decree Under the Resource Conservation and Recovery Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
...(a); and applicable Arkansas Pollution Control and Ecology Commission regulations in connection with Rineco's fuel blending facility located in Benton, Arkansas. The Consent Decree requires Rineco to apply...
62. (Credit CBF) Operating floor of filter room, c1912. The ...
62. (Credit CBF) Operating floor of filter room, c1912. The remodeled New York horizontal pressure filters (now gravity filters) are in the foreground; the remodelled Hyatt tub filters are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Process improvement for regulatory analyses of custom-blend fertilizers.
Wegner, Keith A
2014-01-01
Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment.
HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, V; Charles Goergen, C; Ronald Oprea, R
2008-06-05
The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the productmore » throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.« less
Materials Evaluation in the Tri-Service Thermal Radiation Test Facility.
1981-02-28
degradation of materials exposed to the radiant heating generated by a nuclear blast can vary enor- mously. The intense radiation needed to simulate a...of surface degradation was accomplished with limited success during the current contract effort. Procedures still need refining to make surface...147; 148; 149 (Table I) 6648-6666 FACILITY CALIBRATION 6667 Aluminized Tape No coating 6668-6742 Aluminum NBR /EDPM blends, Vamac 6743-6755 Wind tunnel
Excluded Facility Financial Status and Options for Payment System Modification
Schneider, John E.; Cromwell, Jerry; McGuire, Thomas P.
1993-01-01
Psychiatric, rehabilitation, long-term care, and children's facilities have remained under the reimbursement system established under the Tax Equity and Fiscal Responsibility Act (TEFRA) of 1982 (Public Law 97-248). The number of TEFRA facilities and discharges has been increasing while their average profit rates have been steadily declining. Modifying TEFRA would require either rebasing the target amount or adjusting cost sharing for facilities exceeding their cost target. Based on our simulations of alternative payment systems, we recommend rebasing facilities' target amounts using a 50/50 blend of own costs and national average costs. Cost sharing above the target amount could be increased to include more government sharing of losses. PMID:10135345
Hazardous Waste Cleanup: Industrial Environmental Systems, Inc. in Saugerties, New York
Industrial Environmental System Inc. is located entirely within the property of the Northeast Solite Corporation in Old Kings Highway, Saugerties, New York. The Industrial Environmental System began operations in 1976. The facility stored and blended
Single-photon tomographic determination of regional cerebral blood flow in epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.
Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.
The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and by decoupling of algal production farms and conversion facilities.« less
Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.; ...
2017-03-22
The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and by decoupling of algal production farms and conversion facilities.« less
9. (Credit CBF) The McNeil Street Station from the northwest, ...
9. (Credit CBF) The McNeil Street Station from the northwest, March 1913. The low service pump room is on the right, the clear water well (installed c1900) and filter house are on the left. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Bao, Jie; Tartakovsky, Alexandre M.
2014-02-15
Robin boundary condition for the Navier-Stokes equations is used to model slip conditions at the fluid-solid boundaries. A novel Continuous Boundary Force (CBF) method is proposed for solving the Navier-Stokes equations subject to Robin boundary condition. In the CBF method, the Robin boundary condition at boundary is replaced by the homogeneous Neumann boundary condition at the boundary and a volumetric force term added to the momentum conservation equation. Smoothed Particle Hydrodynamics (SPH) method is used to solve the resulting Navier-Stokes equations. We present solutions for two-dimensional and three-dimensional flows in domains bounded by flat and curved boundaries subject to variousmore » forms of the Robin boundary condition. The numerical accuracy and convergence are examined through comparison of the SPH-CBF results with the solutions of finite difference or finite element method. Taken the no-slip boundary condition as a special case of slip boundary condition, we demonstrate that the SPH-CBF method describes accurately both no-slip and slip conditions.« less
Lopez-Alvarez, Blady; Torres-Palma, Ricardo A; Ferraro, Franklin; Peñuela, Gustavo
2012-01-01
The degradation of the pesticide carbofuran (CBF) using solar photo-Fenton treatment, at both the laboratory and the pilot scale, was evaluated. At the laboratory scale, in a suntest reactor, the Fe(2+) concentration and H(2)O(2) concentration were evaluated and optimized using the surface response methodology and the Pareto diagram. Under optimal conditions experiments were performed to evaluate the evolution of the substrate removal, oxidation, subsequent mineralization, toxicity and the formation of chloride ions during the treatment. The analysis and evolution of five CBF by-products as well as several control and reactivity tests at the density functional theory level were used to depict a general scheme of the main degradation pathway of CBF via the photo-Fenton system. Finally, at the pilot scale, a sample of the commercial CBF product Furadan was eliminated after 420 min by the photo-Fenton system using direct sunlight. Under these conditions, after 900 min 89% of toxicity (1/E(50) on Vibrio fischeri bacteria), 97% of chemical oxygen demand, and 90% of dissolved organic carbon were removed.
Regional CBF in chronic stable TBI treated with hyperbaric oxygen.
Barrett, K F; Masel, B; Patterson, J; Scheibel, R S; Corson, K P; Mader, J T
2004-01-01
To investigate whether Hyperbaric Oxygen Therapy (HBO2) could improve neurologic deficits and regional cerebral blood flow (rCBF) in chronic traumatic brain injuries (TBI), the authors employed a nonrandomized control pilot trial. Five subjects, at least three years post head injury, received HBO2. Five head injured controls (HIC) were matched for age, sex, and type of injury. Five healthy subjects served as normal controls. Sixty-eight normal volunteers comprised a reference data bank against which to compare SPECT brain scans. HBO2 subjects received 120 HBO2 in blocks of 80 and 40 treatments with an interval five-month break. Normal controls underwent a single SPECT brain scan, HBO2, and repeat SPECT battery. TBI subjects were evaluated by neurologic, neuropsychometric, exercise testing, and pre and post study MRIs, or CT scans if MRI was contraindicated. Statistical Parametric Mapping was applied to SPECT scans for rCBF analysis. There were no significant objective changes in neurologic, neuropsychometric, exercise testing, MRIs, or rCBF. In this small pilot study, HBO2 did not effect clinical or regional cerebral blood flow improvement in TBI subjects.
Johnson, Nathan F; Gold, Brian T; Bailey, Alison L; Clasey, Jody L; Hakun, Jonathan G; White, Matthew; Long, Doug E; Powell, David K
2016-05-01
A growing body of evidence indicates that cardiorespiratory fitness attenuates some age-related cerebral declines. However, little is known about the role that myocardial function plays in this relationship. Brain regions with high resting metabolic rates, such as the default mode network (DMN), may be especially vulnerable to age-related declines in myocardial functions affecting cerebral blood flow (CBF). This study explored the relationship between a measure of myocardial mechanics, global longitudinal strain (GLS), and CBF to the DMN. In addition, we explored how cardiorespiratory affects this relationship. Participants were 30 older adults between the ages of 59 and 69 (mean age=63.73years, SD=2.8). Results indicated that superior cardiorespiratory fitness and myocardial mechanics were positively associated with DMN CBF. Moreover, results of a mediation analysis revealed that the relationship between GLS and DMN CBF was accounted for by individual differences in fitness. Findings suggest that benefits of healthy heart function to brain function are modified by fitness. Copyright © 2015 Elsevier Inc. All rights reserved.
RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J.
Wacker, Stephan Armin; Alvarado, Cristobal; von Wichert, Götz; Knippschild, Uwe; Wiedenmann, Jörg; Clauss, Karen; Nienhaus, Gerd Ulrich; Hameister, Horst; Baumann, Bernd; Borggrefe, Tilman; Knöchel, Walter; Oswald, Franz
2011-01-05
The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.
Lotfy, Shereen N; Fadel, Hoda H M; El-Ghorab, Ahmed H; Shaheen, Mohamed S
2015-11-15
A comparative study was carried out between two beef-like flavourings prepared by conventional and microwave heating (CBF and MBF) of enzymatic hydrolysate of mushroom protein with other flavour precursors. GC-MS analysis of the isolated volatiles revealed that the thiol containing compounds were the predominate in both samples. However, MBF comprised higher concentration of these compounds (13.84 ± 0.06%) than CBF (10.74 ± 0.06%). The effect of microencapsulation with gum Arabic by using spray drying on the odour profile and volatile compounds of the two encapsulated samples (E-CBF and E-MBF) was investigated. The results revealed significant qualitative and quantitative variations in the volatiles of both samples. The highly volatile compounds decreased remarkably in concentration with encapsulation, while the pyrazines, thiazoles and disulphides showed opposite trend. The significant decrease in the thiol containing compounds in E-CBF and E-MBF were attributed to their oxidation to other compounds such as disulphide compounds which showed significant increase in the encapsulated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lin, Hongli; Yang, Xuedong; Wang, Weisheng
2014-08-01
Devising a method that can select cases based on the performance levels of trainees and the characteristics of cases is essential for developing a personalized training program in radiology education. In this paper, we propose a novel hybrid prediction algorithm called content-boosted collaborative filtering (CBCF) to predict the difficulty level of each case for each trainee. The CBCF utilizes a content-based filtering (CBF) method to enhance existing trainee-case ratings data and then provides final predictions through a collaborative filtering (CF) algorithm. The CBCF algorithm incorporates the advantages of both CBF and CF, while not inheriting the disadvantages of either. The CBCF method is compared with the pure CBF and pure CF approaches using three datasets. The experimental data are then evaluated in terms of the MAE metric. Our experimental results show that the CBCF outperforms the pure CBF and CF methods by 13.33 and 12.17 %, respectively, in terms of prediction precision. This also suggests that the CBCF can be used in the development of personalized training systems in radiology education.
Assessment of MRI Parameters as Imaging Biomarkers for Radiation Necrosis in the Rat Brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Silun; Tryggestad, Erik; Zhou Tingting
Purpose: Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T{sub 1}, T{sub 2}, apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Methods and Materials: Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 Multiplication-Sign 10 mm{sup 2}) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at {approx}25 weeks' postradiation. The MRI signals of necroticmore » cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. Results: ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T{sub 1}, T{sub 2}, MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T{sub 1}, T{sub 2}, MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. Conclusion: ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, D.G.; Weinberger, D.R.; Jones, D.W.
1991-07-01
To explore the role of monoamines on cerebral function during specific prefrontal cognitive activation, we conducted a double-blind placebo-controlled crossover study of the effects of 0.25 mg/kg oral dextroamphetamine on regional cerebral blood flow (rCBF) as determined by 133Xe dynamic single-photon emission-computed tomography (SPECT) during performance of the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task. Ten patients with chronic schizophrenia who had been stabilized for at least 6 weeks on 0.4 mg/kg haloperidol participated. Amphetamine produced a modest, nonsignificant, task-independent, global reduction in rCBF. However, the effect of amphetamine on task-dependent activation of rCBF (i.e., WCST minusmore » control task) was striking. Whereas on placebo no significant activation of rCBF was seen during the WCST compared with the control task, on amphetamine significant activation of the left dorsolateral prefrontal cortex (DLPFC) occurred (p = 0.0006). Both the mean number of correct responses and the mean conceptual level increased (p less than 0.05) with amphetamine relative to placebo. In addition, with amphetamine, but not with placebo, a significant correlation (p = -0.71; p less than 0.05) emerged between activation of DLPFC rCBF and performance of the WCST task. These findings are consistent with animal models in which mesocortical catecholaminergic activity modulates and enhances the signal-to-noise ratio of evoked cortical activity.« less
Effects of video game playing on cerebral blood flow in young adults: a SPECT study.
Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min
2013-04-30
To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Mutoh, Tatsushi; Totsune, Tomoko; Takenaka, Shunsuke; Tatewaki, Yasuko; Nakagawa, Manabu; Suarez, Jose I; Taki, Yasuyuki; Ishikawa, Tatsuya
2018-02-01
The aim of this study was to evaluate the impact of cerebral blood flow (CBF) recovery obtained from brain single-photon emission computed tomography (SPECT) images on postoperative outcome after aneurysmal subarachnoid haemorrhage (SAH). Twenty-nine patients who had undergone surgical clipping for ruptured anterior communicating artery aneurysms were analyzed prospectively. Routine measurements of CBF were performed using technetium-99 m hexamethyl propyleneamine oxine SPECT on days 4 and 14 after SAH. Regional voxel data analyzed by three dimensional stereotactic surface projection (3D-SSP) were compared between patients and age-matched normal database (NDB). In 3D-SSP analysis of all patients, cortical hypoperfusion around the surgical site in bilateral frontal lobes was evident on day 4 (P < .05 vs NDB), which was improved significantly on day 14. However, the recovery was less complete in patients with poor clinical grades (P < .05) and presenting symptoms attributable to delayed cerebral ischaemia (DCI) (P < .05) than those without. Multivariate analysis showed that patients with mild to moderate CBF recovery (relative Z-score differences of <4) (P = .014; odds ratio, 2.5; 95% confidence interval, 1.93-3.31) was independently associated with poor functional outcome at 3 months. We conclude that reduced CBF recovery detected by serial 3D-SSP SPECT image analyses can be a potential predictor of poor prognosis in postoperative patients after SAH. © 2017 John Wiley & Sons Australia, Ltd.
Kuo, Jon-Son; Wang, Jia-Yi
2015-01-01
Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury. PMID:26146654
Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model.
Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani; Scherrer, Sandra; Dewey, Stephen L; Cenci, M Angela; Eidelberg, David
2016-12-01
Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal. Rats with unilateral 6-OHDA or sham lesion underwent sequential 15 O-water (H 2 15 O) and 18 F-fluorodeoxyglucose (FDG) microPET to map CBF and CMR following the injection of levodopa or saline. A subset of animals was separately scanned under ketamine/xylazine and isoflurane to compare the effects of these anesthetics. Regardless of anesthetic agent, 6-OHDA animals exhibited significant dissociation of vasomotor (ΔCBF) and metabolic (ΔCMR) responses to levodopa, with stereotyped increases in CBF and reductions in CMR in the basal ganglia ipsilateral to the dopamine lesion. No significant changes were seen in sham-lesioned animals. These data faithfully recapitulate analogous dissociation effects observed previously in human PD subjects scanned sequentially during levodopa infusion. This approach may have utility in the assessment of new drugs targeting the exaggerated regional vasomotor responses seen in human PD and in experimental models of levodopa-induced dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhu, Xiao-Hong; Chen, James; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei
2012-01-01
Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO2 and CBF. This study employed the recently developed in vivo 17O MR spectroscopic imaging to simultaneously assess CMRO2, CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of 17O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive 17O-MR approach for rapidly imaging CMRO2, CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO2 and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising 17O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This 17O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. PMID:23000789
Zhu, Xiao-Hong; Chen, James M; Tu, Tsang-Wei; Chen, Wei; Song, Sheng-Kwei
2013-01-01
Many brain diseases have been linked to abnormal oxygen metabolism and blood perfusion; nevertheless, there is still a lack of robust diagnostic tools for directly imaging cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF), as well as the oxygen extraction fraction (OEF) that reflects the balance between CMRO(2) and CBF. This study employed the recently developed in vivo (17)O MR spectroscopic imaging to simultaneously assess CMRO(2), CBF and OEF in the brain using a preclinical middle cerebral arterial occlusion mouse model with a brief inhalation of (17)O-labeled oxygen gas. The results demonstrated high sensitivity and reliability of the noninvasive (17)O-MR approach for rapidly imaging CMRO(2), CBF and OEF abnormalities in the ischemic cortex of the MCAO mouse brain. It was found that in the ischemic brain regions both CMRO(2) and CBF were substantially lower than that of intact brain regions, even for the mildly damaged brain regions that were unable to be clearly identified by the conventional MRI. In contrast, OEF was higher in the MCAO affected brain regions. This study demonstrates a promising (17)O MRI technique for imaging abnormal oxygen metabolism and perfusion in the diseased brain regions. This (17)O MRI technique is advantageous because of its robustness, simplicity, noninvasiveness and reliability: features that are essential to potentially translate it to human patients for early diagnosis and monitoring of treatment efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation
Tancredi, Felipe B; Hoge, Richard D
2013-01-01
Stimulation of cerebral vasculature using hypercapnia has been widely used to study cerebral vascular reactivity (CVR), which can be expressed as the quantitative change in cerebral blood flow (CBF) per mm Hg change in end-tidal partial pressure of CO2 (PETCO2). We investigate whether different respiratory manipulations, with arterial spin labeling used to measure CBF, lead to consistent measures of CVR. The approaches included: (1) an automated system delivering variable concentrations of inspired CO2 for prospective targeting of PETCO2, (2) administration of a fixed concentration of CO2 leading to subject-dependent changes in PETCO2, (3) a breath-hold (BH) paradigm with physiologic modeling of CO2 accumulation, and (4) a maneuver combining breath-hold and hyperventilation. When CVR was expressed as the percent change in CBF per mm Hg change in PETCO2, methods 1 to 3 gave consistent results. The CVR values using method 4 were significantly lower. When CVR was expressed in terms of the absolute change in CBF (mL/100 g per minute per mm Hg), greater discrepancies became apparent: methods 2 and 3 gave lower absolute CVR values compared with method 1, and the value obtained with method 4 was dramatically lower. Our findings indicate that care must be taken to ensure that CVR is measured over the linear range of the CBF-CO2 dose–response curve, avoiding hypocapnic conditions. PMID:23571282
Body and brain temperature coupling: the critical role of cerebral blood flow
Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.
2010-01-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681
Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.
Wang, Silun; Tryggestad, Erik; Zhou, Tingting; Armour, Michael; Wen, Zhibo; Fu, De-Xue; Ford, Eric; van Zijl, Peter C M; Zhou, Jinyuan
2012-07-01
Radiation necrosis is a major complication of radiation therapy. We explore the features of radiation-induced brain necrosis in the rat, using multiple MRI approaches, including T(1), T(2), apparent diffusion constant (ADC), cerebral blood flow (CBF), magnetization transfer ratio (MTR), and amide proton transfer (APT) of endogenous mobile proteins and peptides. Adult rats (Fischer 344; n = 15) were irradiated with a single, well-collimated X-ray beam (40 Gy; 10 × 10 mm(2)) in the left brain hemisphere. MRI was acquired on a 4.7-T animal scanner at ~25 weeks' postradiation. The MRI signals of necrotic cores and perinecrotic regions were assessed with a one-way analysis of variance. Histological evaluation was accomplished with hematoxylin and eosin staining. ADC and CBF MRI could separate perinecrotic and contralateral normal brain tissue (p < 0.01 and < 0.05, respectively), whereas T(1), T(2), MTR, and APT could not. MRI signal intensities were significantly lower in the necrotic core than in normal brain for CBF (p < 0.001) and APT (p < 0.01) and insignificantly higher or lower for T(1), T(2), MTR, and ADC. Histological results demonstrated coagulative necrosis within the necrotic core and reactive astrogliosis and vascular damage within the perinecrotic region. ADC and CBF are promising imaging biomarkers for identifying perinecrotic regions, whereas CBF and APT are promising for identifying necrotic cores. Copyright © 2012 Elsevier Inc. All rights reserved.
Body and brain temperature coupling: the critical role of cerebral blood flow.
Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2009-08-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Accuracy of Computed Tomographic Perfusion in Diagnosis of Brain Death: A Prospective Cohort Study.
Sawicki, Marcin; Sołek-Pastuszka, Joanna; Chamier-Ciemińska, Katarzyna; Walecka, Anna; Bohatyrewicz, Romuald
2018-05-04
BACKGROUND This study was designed to determine diagnostic accuracy of computed tomographic perfusion (CTP) compared to computed tomographic angiography (CTA) for the diagnosis of brain death (BD). MATERIAL AND METHODS Whole-brain CTP was performed in patients diagnosed with BD and in patients with devastating brain injury with preserved brainstem reflexes. CTA was derived from CTP datasets. Cerebral blood flow (CBF) and volume (CBV) were calculated in all brain regions. CTP findings were interpreted as confirming diagnosis of BD (positive) when CBF and CBV in all ROIs were below 10 mL/100 g/min and 1.0 mL/100 g, respectively. CTA findings were interpreted using a 4-point system. RESULTS Fifty brain-dead patients and 5 controls were included. In brain-dead patients, CTP results revealed CBF 0.00-9.98 mL/100 g/min and CBV 0.00-0.99 mL/100 g, and were thus interpreted as positive in all patients. CTA results suggested 7 negative cases, providing 86% sensitivity. In the non-brain-dead group, CTP results revealed CBF 2.37-37.59 mL/100 g/min and CBV 0.73-2.34 mL/100 g. The difference between values of CBF and CBV in the brain-dead and non-brain-dead groups was statistically significant (p=0.002 for CBF and p=0.001 for CBV). CTP findings in all non-brain-dead patients were interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTP in the diagnosis of BD. In all non-brain-dead patients, CTA revealed preserved intracranial filling and was interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTA in diagnosis of BD. CONCLUSIONS Whole-brain CTP seems to be a highly sensitive and specific method in diagnosis of BD.
Mutsaerts, Henri J M M; van Osch, Matthias J P; Zelaya, Fernando O; Wang, Danny J J; Nordhøy, Wibeke; Wang, Yi; Wastling, Stephen; Fernandez-Seara, Maria A; Petersen, E T; Pizzini, Francesca B; Fallatah, Sameeha; Hendrikse, Jeroen; Geier, Oliver; Günther, Matthias; Golay, Xavier; Nederveen, Aart J; Bjørnerud, Atle; Groote, Inge R
2015-06-01
A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL (PCASL) sequence implemented on 3T scanners from three vendors (General Electric Healthcare, Philips Healthcare and Siemens Healthcare) within the same center and with the same subjects. Fourteen healthy volunteers (50% male, age 26.4±4.7years) were scanned twice on each scanner in an interleaved manner within 3h. Because of differences in gradient and coil specifications, two separate studies were performed with slightly different sequence parameters, with one scanner used across both studies for comparison. Reproducibility was evaluated by means of quantitative cerebral blood flow (CBF) agreement and inter-session variation, both on a region-of-interest (ROI) and voxel level. In addition, a qualitative similarity comparison of the CBF maps was performed by three experienced neuro-radiologists. There were no CBF differences between vendors in study 1 (p>0.1), but there were CBF differences of 2-19% between vendors in study 2 (p<0.001 in most gray matter ROIs) and 10-22% difference in CBF values obtained with the same vendor between studies (p<0.001 in most gray matter ROIs). The inter-vendor inter-session variation was not significantly larger than the intra-vendor variation in all (p>0.1) but one of the ROIs (p<0.001). This study demonstrates the possibility to acquire comparable cerebral CBF maps on scanners of different vendors. Small differences in sequence parameters can have a larger effect on the reproducibility of ASL than hardware or software differences between vendors. These results suggest that researchers should strive to employ identical labeling and readout strategies in multi-center ASL studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Beaudin, Andrew E.; Pun, Matiram; Yang, Christina; Nicholl, David D. M.; Steinback, Craig D.; Slater, Donna M.; Wynne‐Edwards, Katherine E.; Hanly, Patrick J.; Ahmed, Sofia B.; Poulin, Marc J.
2014-01-01
Background Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)‐induced inflammation. Cyclooxygenase (COX)‐formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Methods and Results Twelve healthy, male participants underwent three, 6‐hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex® (selective COX‐2 inhibitor) in a double‐blind, randomized, crossover study design. Pre‐ and post‐IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre‐IH blood pressure (P≤0.04) and decreased pre‐IH CBF (P=0.04) while neither physiological variable was affected by COX‐2 inhibition (P≥0.90). Post‐IH, MAP was elevated (P≤0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX‐2 inhibition abrogated the IH‐induced MAP increase (P=0.19), but resulted in lower post‐IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P≤0.4) and COX‐1 formed thromboxane A2 concentrations (P=0.02). Conclusions COX‐2 and COX‐1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX‐1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique identifier: NCT01280006 PMID:24815497
Brain magnetic resonance imaging CO2 stress testing in adolescent postconcussion syndrome.
Mutch, W Alan C; Ellis, Michael J; Ryner, Lawrence N; Ruth Graham, M; Dufault, Brenden; Gregson, Brian; Hall, Thomas; Bunge, Martin; Essig, Marco; Fisher, Joseph A; Duffin, James; Mikulis, David J
2016-09-01
OBJECT A neuroimaging assessment tool to visualize global and regional impairments in cerebral blood flow (CBF) and cerebrovascular responsiveness in individual patients with concussion remains elusive. Here the authors summarize the safety, feasibility, and results of brain CO2 stress testing in adolescents with postconcussion syndrome (PCS) and healthy controls. METHODS This study was approved by the Biomedical Research Ethics Board at the University of Manitoba. Fifteen adolescents with PCS and 17 healthy control subjects underwent anatomical MRI, pseudo-continuous arterial spin labeling MRI, and brain stress testing using controlled CO2 challenge and blood oxygen level-dependent (BOLD) MRI. Post hoc processing was performed using statistical parametric mapping to determine voxel-by-voxel regional resting CBF and cerebrovascular responsiveness of the brain to the CO2 stimulus (increase in BOLD signal) or the inverse (decrease in BOLD signal). Receiver operating characteristic (ROC) curves were generated to compare voxel counts categorized by control (0) or PCS (1). RESULTS Studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study participants. No differences in CO2 stimuli were seen between the 2 participant groups. No group differences in global mean CBF were detected between PCS patients and healthy controls. Patient-specific differences in mean regional CBF and CO2 BOLD responsiveness were observed in all PCS patients. The ROC curve analysis for brain regions manifesting a voxel response greater than and less than the control atlas (that is, abnormal voxel counts) produced an area under the curve of 0.87 (p < 0.0001) and 0.80 (p = 0.0003), respectively, consistent with a clinically useful predictive model. CONCLUSIONS Adolescent PCS is associated with patient-specific abnormalities in regional mean CBF and BOLD cerebrovascular responsiveness that occur in the setting of normal global resting CBF. Future prospective studies are warranted to examine the utility of brain MRI CO2 stress testing in the longitudinal assessment of acute sports-related concussion and PCS.
Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A
2012-06-01
The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.
Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.
Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y
2001-11-01
Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.
Lindberg, S; Cervin, A; Runer, T
1997-09-01
Findings in previous studies have suggested nitric oxide (NO) to be a regulator of mucociliary activity in the upper airways. The aim of the present investigation was to study whether a correlation exists between the nasal NO concentration and mucociliary function in patients suffering from respiratory tract diseases such as chronic sinusitis or recurrent pneumonia. Nasal NO was measured with a chemiluminescence analyser, 100 ppb (parts per billion) being adopted as the lower limit of the normal range on the basis of findings in an earlier study of healthy subjects. Mucociliary function was evaluated by measurements of ciliary beat frequency (CBF) in nasal brush samples, and the saccharin transport test. A subnormal level of nasal NO was found in 50% (9/18) of the patients. This correlated with a significantly impaired mucociliary function, regarding both CBF and the saccharin transport time. The median CBF was 10.6 Hz in the group with normal levels of nasal NO, as compared to 8.4 Hz in the subnormal NO group. All patients with a normal nasal NO concentration had a mean CBF of > or = 9.0 Hz in their nasal brush samples, but in the subnormal group the same measurements yielded a CBF of > or = 9.0 Hz in only 22% (2/9) of the cases. As measured with the saccharin test, mucociliary transport was normal in 78% (7/9) in the normal nasal NO group, but the saccharin test was normal only in 11% (1/9) of the subnormal nasal NO group. Nasal NO levels were found to correlate with both CBF measurements (Spearman's rho, 0.80) and the saccharin transport test results (Spearman's rho, -0.61). The results of the present study provide further support for the view that NO is an important regulator of mucociliary function in the upper airways, and that measurements of the nasal NO concentration should be included in investigations of the mucociliary system.
Reconstruction of an input function from a dynamic PET water image using multiple tissue curves
NASA Astrophysics Data System (ADS)
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro
2016-08-01
Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n = 29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around <8% and the calculated CBF values showed a tight correlation (r = 0.97). The simulation showed that errors associated with the assumed parameters were <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.
Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy
2014-01-01
Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario. PMID:24475210
Kashyap, Prakriti; Deswal, Renu
2017-06-01
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery.
Smith, K J; MacLeod, D; Willie, C K; Lewis, N C S; Hoiland, R L; Ikeda, K; Tymko, M M; Donnelly, J; Day, T A; MacLeod, N; Lucas, S J E; Ainslie, P N
2014-12-15
We examined the hypotheses that: (1) during incremental exercise and recovery following 4-6 days at high altitude (HA) global cerebral blood flow (gCBF) increases to preserve cerebral oxygen delivery (CDO2) in excess of that required by an increasing cerebral metabolic rate of oxygen ( CM RO2); (2) the trans-cerebral exchange of oxygen vs. carbohydrates (OCI; carbohydrates = glucose + ½lactate) would be similar during exercise and recovery at HA and sea level (SL). Global CBF, intra-cranial arterial blood velocities, extra-cranial blood flows, and arterial-jugular venous substrate differences were measured during progressive steady-state exercise (20, 40, 60, 80, 100% maximum workload (Wmax)) and through 30 min of recovery. Measurements (n = 8) were made at SL and following partial acclimatization to 5050 m. At HA, absolute Wmax was reduced by ∼50%. During submaximal exercise workloads (20-60% Wmax), despite an elevated absolute gCBF (∼20%, P < 0.05) the relative increases in gCBF were not different at HA and SL. In contrast, gCBF was elevated at HA compared with SL during 80 and 100% Wmax and recovery. Notwithstanding a maintained CDO2 and elevated absolute CM RO2 at HA compared with SL, the relative increase in CM RO2 was similar during 20-80% Wmax but half that of the SL response (i.e. 17 vs. 27%; P < 0.05 vs. SL) at 100% Wmax. The OCI was reduced at HA compared with SL during 20, 40, and 60% Wmax but comparable at 80 and 100% Wmax. At HA, OCI returned almost immediately to baseline values during recovery, whereas at SL it remained below baseline. In conclusion, the elevations in gCBF during exercise and recovery at HA serve to maintain CDO2. Despite adequate CDO2 at HA the brain appears to increase non-oxidative metabolism during exercise and recovery. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Efimova, Y N; Lichikaki, A V; Lishmanov, B Y
2017-07-01
To study the effect of radiofrequency ablation of renal arteries on regional cerebral blood flow and cognitive function in patients with resistant arterial hypertension (AH). Transcatheter renal denervation (TRD) was performed in 17 patients with resistant AH. Examination before and after TRD included SPECT with mTc-HMPAO, 24-hours blood pressure (BP) monitoring, and comprehensive neuropsychological testing. Fifteen patients without angiographic signs of carotid atherosclerosis, coronary artery disease and AH, neurological and psychiatric disorders were investigated as control group. Compared with control group patients with AH had decreases of regional cerebral blood flow (rCBF) in right (by 13.5%, p=0.00002) and left (by 15.5%, p=0.0006) inferior frontal lobes, in right temporal brain region (by 11.5%, p=0.008); in right and left occipital lobes (by 8.2%, p=0.04). In 6 months after TRD we observed significant improvement of cognitive function, parameters of 24-hour BP monitoring, and rCBF. We also noted definite close interdependence between changes of rCBF, indices of 24-hours BP monitoring, and dynamics of cognitive function. Improvement of long-term verbal memory correlated with increases of rCBF in left superior frontal and right occipital regions while dynamics of mentation and attention correlated positively with augmentation of rCBF in right posterior parietal region. Changes of perfusion in inferior parts of left frontal lobe and in right occipital region correlated with dynamics of index of diurnal diastolic hypertension time (R2=0.64, p=0.001, and R2=0.60, p=0.03, respectively). Our results suggest, that in patients with resistant AH positive effect of TRD on levels of 24-hour mean BP as well as on indices of BP load leads to in augmentation of rCBF and improvement of cognitive function.
Jang, Chul Ho; Cho, Yong Beom; Lee, Jun Sik; Kim, Geun Hyung; Jung, Won-Kyo; Pak, Sok Cheon
2016-12-01
Propofol is the most commonly used intravenous (IV) anesthetic agent and is associated with hypotension upon induction of anesthesia. Intravenous propofol infusion has several properties that may be beneficial to patients undergoing middle ear surgery. Topical application of concentrated epinephrine is a valuable tool for achieving hemostasis in the middle ear and during mastoid surgery. The purpose of the present study was to determine the effects of propofol infusion with topical epinephrine on cochlear blood flow (CBF) and hearing in rats. Twenty one male Sprague-Dawley rats were divided into three groups. The rate of intravenous infusion of propofol was 4-6 ml/kg/hour. The first group (control group, n = 7) was given IV infusion of phosphate buffered saline (PBS) with topical application of PBS in the round window. In study group A (n = 7), the effect of topical phosphate buffered saline with IV infusion of propofol on CBF and hearing was evaluated. In study group B (n = 7), additional effects of topical epinephrine with IV infusion of propofol on CBF and hearing were evaluated. The laser Doppler blood flowmeter, CBF, and the mean arterial blood pressure (MAP) were measured and analyzed. Additionally, hearing test using auditory brainstem response (ABR) was performed in both groups. In both groups, infusion of propofol induced a time-dependent decrease in MAP. Approximately 30 min after the start of the propofol infusion, the CBF started to decrease slowly. The decrease in CBF was significantly greater in the study group compared to the control group. The threshold was elevated in the study group relative to the control group. During middle ear surgery, use of IV infusion of propofol with topical epinephrine cotton ball or cottonoid application is not recommended. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery
Smith, K J; MacLeod, D; Willie, C K; Lewis, N C S; Hoiland, R L; Ikeda, K; Tymko, M M; Donnelly, J; Day, T A; MacLeod, N; Lucas, S J E; Ainslie, P N
2014-01-01
We examined the hypotheses that: (1) during incremental exercise and recovery following 4–6 days at high altitude (HA) global cerebral blood flow (gCBF) increases to preserve cerebral oxygen delivery () in excess of that required by an increasing cerebral metabolic rate of oxygen (); (2) the trans-cerebral exchange of oxygen vs. carbohydrates (OCI; carbohydrates = glucose + ½lactate) would be similar during exercise and recovery at HA and sea level (SL). Global CBF, intra-cranial arterial blood velocities, extra-cranial blood flows, and arterial–jugular venous substrate differences were measured during progressive steady-state exercise (20, 40, 60, 80, 100% maximum workload (Wmax)) and through 30 min of recovery. Measurements (n = 8) were made at SL and following partial acclimatization to 5050 m. At HA, absolute Wmax was reduced by ∼50%. During submaximal exercise workloads (20–60% Wmax), despite an elevated absolute gCBF (∼20%, P < 0.05) the relative increases in gCBF were not different at HA and SL. In contrast, gCBF was elevated at HA compared with SL during 80 and 100% Wmax and recovery. Notwithstanding a maintained and elevated absolute at HA compared with SL, the relative increase in was similar during 20–80% Wmax but half that of the SL response (i.e. 17 vs. 27%; P < 0.05 vs. SL) at 100% Wmax. The OCI was reduced at HA compared with SL during 20, 40, and 60% Wmax but comparable at 80 and 100% Wmax. At HA, OCI returned almost immediately to baseline values during recovery, whereas at SL it remained below baseline. In conclusion, the elevations in gCBF during exercise and recovery at HA serve to maintain . Despite adequate at HA the brain appears to increase non-oxidative metabolism during exercise and recovery. PMID:25362150
O'Phelan, Kristine; Ernst, Thomas; Park, Dalnam; Stenger, Andrew; Denny, Katherine; Green, Deborah; Chang, Cherylee; Chang, Linda
2014-01-01
Substance abuse is a frequent comorbid condition among patients with Traumatic Brain Injury (TBI), but little is known about its potential additive or interactive effects on tissue injury or recovery from TBI. This study aims to evaluate changes in regional metabolism and cerebral perfusion in subjects who used methamphetamine(METH) prior to sustaining a TBI. We hypothesized that METH use would decrease pericontusional cerebral perfusion and markers of neuronal metabolism, in TBI patients compared to those without METH use. Methods This is a single center prospective observational study. Adults with moderate and severe TBI were included. MRI scanning was performed on a 3 Tesla scanner. MP-RAGE and FLAIR sequences as well as Metabolite spectra of NAA and lactate in pericontusional and contralateral voxels identified on the MP-RAGE scans. A spiral-based FAIR sequence was used for the acquisition of cerebral blood flow (CBF) maps. Regional CBF images were analyzed using Image J open source software. Pericontusional and contralateral CBF, NAA and lactate were assessed in the entire cohort and in the METH and non-METH groups. Results 17 subjects completed the MR studies. Analysis of entire cohort: Pericontusional NAA concentrations (5.81 ± 2.0 mM/kg) were 12% lower compared to the contralateral NAA (6.98 ± 1.2 mM/kg; p=0.03). Lactate concentrations and CBF were not significantly different between the two regions, however, regional cerebral blood flow was equally reduced in the two regions. Subgroup analysis: 41% of subjects tested positive for METH. The mean age, Glasgow Coma Scale and time to scan did not differ between groups. The two subject groups also had similar regional NAA and lactate. Pericontusional CBF was 60% lower in the METH users than the non-users, p=0.04; contralateral CBF did not differ between the groups. Conclusion This small study demonstrates that tissue metabolism is regionally heterogeneous after TBI and pericontusional perfusion was significantly reduced in the METH subgroup. PMID:23836426
SanClemente, H.; Mounet, F.; Dunand, C.; Marque, G.; Marque, C.; Teulières, C.
2015-01-01
Background The AP2/ERF family includes a large number of developmentally and physiologically important transcription factors sharing an AP2 DNA-binding domain. Among them DREB1/CBF and DREB2 factors are known as master regulators respectively of cold and heat/osmotic stress responses. Experimental Approaches The manual annotation of AP2/ERF family from Eucalyptus grandis, Malus, Populus and Vitis genomes allowed a complete phylogenetic study for comparing the structure of this family in woody species and the model Arabidopsis thaliana. Expression profiles of the whole groups of EgrDREB1 and EgrDREB2 were investigated through RNAseq database survey and RT-qPCR analyses. Results The structure and the size of the AP2/ERF family show a global conservation for the plant species under comparison. In addition to an expansion of the ERF subfamily, the tree genomes mainly differ with respect to the group representation within the subfamilies. With regard to the E. grandis DREB subfamily, an obvious feature is the presence of 17 DREB1/CBF genes, the maximum reported to date for dicotyledons. In contrast, only six DREB2 have been identified, which is similar to the other plants species under study, except for Malus. All the DREB1/CBF and DREB2 genes from E. grandis are expressed in at least one condition and all are heat-responsive. Regulation by cold and drought depends on the genes but is not specific of one group; DREB1/CBF group is more cold-inducible than DREB2 which is mainly drought responsive. Conclusion These features suggest that the dramatic expansion of the DREB1/CBF group might be related to the adaptation of this evergreen tree to climate changes when it expanded in Australia. PMID:25849589
Peňa, Jorge Pereyra; Tomimatsu, Takuji; Hatran, Douglas P; McGill, Lisa L; Longo, Lawrence D
2007-01-01
For the fetus, although the roles of arterial blood gases are recognized to be critical in the regulation of cerebral blood flow (CBF) and cerebral oxygenation, the relation of CBF, cortical tissue PO2 (t PO2), sagittal sinus PO2, and related indices of cerebral oxygenation to arterial blood gases are not well defined. This is particularly true for that fetus subjected to long-term hypoxia (LTH). In an effort to elucidate these interrelations, we tested the hypothesis that in the fetus acclimatized to high altitude, cerebral oxygenation is not compromised relative to that at low altitude. By use of a laser Doppler flowmeter with a fluorescent O2 probe, in near-term fetal sheep at low altitude (n = 8) and those acclimatized to high altitude hypoxia (3801 m for 90 ± 5 days; n = 6), we measured laser Doppler CBF (LD-CBF), t PO2, and related variables in response to 40 min superimposed hypoxia. At both altitudes, fetal LD-CBF, cerebral O2 delivery, t PO2, and several other variables including sagittal sinus PO2, correlated highly with arterial PO2 (Pa,O2). In response to superimposed hypoxia (Pa,O2 = 11 ± 1 Torr), LD-CBF was significantly blunted at high altitude, as compared with that at low altitude. In the two altitude groups fetal cerebral oxygenation was similar under both control conditions and with superimposed hypoxia, cortical t PO2 decreasing from 8 ± 1 and 6 ± 1 Torr, respectively, to 2 ± 1 Torr. Also, for these conditions sagittal sinus PO2 and [HbO2] values were similar. In response to superimposed hypoxia, cerebral metabolic rate for O2 decreased ∼50% in each group (P < 0.05). For both the fetus at low altitude and that acclimatized to high altitude LTH, we present the first dose–response data on the relation of LD-CBF, cortical t PO2, and sagittal sinus blood gas values to Pa,O2. In addition, despite differences in several variables, the fetus at high altitude showed evidence of successful acclimatization, supporting the hypothesis that such fetuses demonstrate no compromise in cerebral oxygenation. PMID:17068100
In Search of Cost-Effective Schools.
ERIC Educational Resources Information Center
Raywid, Mary Anne; Shaheen, Thomas A.
1994-01-01
Examines major cost-effectiveness proposals, describing developments that highlight concerns over making schools cost effective. The article discusses ways to blend the concerns of educational quality, equity, and costs (district consolidations, shared service and facilities arrangements, new accountability strategies, new information systems,…
Chemical Safety Alert: Identifying Chemical Reactivity Hazards Preliminary Screening Method
Introduces small-to-medium-sized facilities to a method developed by Center for Chemical Process Safety (CCPS), based on a series of twelve yes-or-no questions to help determine hazards in warehousing, repackaging, blending, mixing, and processing.
Maturation of Speech and Language Functional Neuroanatomy in Pediatric Normal Controls
ERIC Educational Resources Information Center
Devous, Michael D., Sr.; Altuna, Dianne; Furl, Nicholas, Cooper, William; Gabbert, Gretchen; Ngai, Wei Tat; Chiu, Stephanie; Scott, Jack M., III; Harris, Thomas S.; Payne, J. Kelly; Tobey, Emily A.
2006-01-01
Purpose: This study explores the relationship between age and resting-state regional cerebral blood flow (rCBF) in regions associated with higher order language skills using a population of normal children, adolescents, and young adults. Method: rCBF was measured in 33 normal participants between the ages of 7 and 19 years using single photon…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohde, Brian J.; Le, Kim Mai; Krishnamoorti, Ramanan
The mechanical properties of two chemically distinct and complementary thermoset polymers were manipulated through development of thermoset blends. The thermoset blend system was composed of an anhydride-cured diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin, contributing high tensile strength and modulus, and polydicyclopentadiene (PDCPD), which has a higher toughness and impact strength as compared to other thermoset polymers. Ultra-small-angle and small-angle X-ray scattering analysis explored the morphology of concurrently cured thermoset blends, revealing a macroscopically phase separated system with a surface fractal structure across blended systems of varying composition. The epoxy resin rich and PDCPD rich phases exhibited distinct glassmore » transitions (Tg’s): the Tg observed at higher temperature was associated with the epoxy resin rich phase and was largely unaffected by the presence of PDCPD, whereas the PDCPD rich phase Tg systematically decreased with increasing epoxy resin content due to inhibition of dicyclopentadiene ring-opening metathesis polymerization. The mechanical properties of these phase-separated blends were in reasonable agreement with predictions by the rule of mixtures for the blend tensile strength, modulus, and fracture toughness. Scanning electron microscopy analysis of the tensile and fracture specimen fracture surfaces showed an increase in energy dissipation mechanisms, such as crazing, shear banding, and surface roughness, as the fraction of the more ductile component, PDPCD, increased. These results present a facile method to tune the mechanical properties of a toughened thermoset network, in which the high modulus and tensile strength of the epoxy resin can be largely retained at high epoxy resin content in the blend, while increasing the fracture toughness.« less
Structure and Biophysics of CBFβ/RUNX and Its Translocation Products.
Tahirov, Tahir H; Bushweller, John
2017-01-01
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Imamura, Keiko; Wada-Isoe, Kenji; Kowa, Hisanori; Tanabe, Yoshio; Nakashima, Kenji
2008-01-01
It has been reported that the cholinesterase inhibitor, donepezil, improves cognitive decline in patients with Parkinson's disease dementia (PDD). However, this improvement was dominant for frontal lobe dysfunction, and the increase in the Mini-Mental State Examination (MMSE) score was minimal. We report a PDD patient with a decline of regional cerebral blood flow (rCBF) in the posterior cingulate cortex, precunei, and bilateral parietotemporal association cortex, as determined by single-photon emission computed tomography (SPECT) using the easy Z-scores imaging system (e-ZIS). Upon administration of donepezil, both the rCBF and MMSE score increased. The effectiveness of donepezil may vary based on the rCBF pattern in PDD.
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rooms shall be well-lighted and have ceilings and walls of a tile surface, enamel paint, or other water-resistant material. (1) The floors shall be free from cracks or rough surfaces where water or dirt could...
He, Huawei; Cai, Rui; Wang, Yejing; Tao, Gang; Guo, Pengchao; Zuo, Hua; Chen, Liqun; Liu, Xinyu; Zhao, Ping; Xia, Qingyou
2017-11-01
Sericin has great potentials in biomedical applications for its good reactive activity, biocompatibility and biodegradability. However, the undesirable mechanical performance limits its application. Here, we developed a green, facile and economic approach to prepare sericin/polyvinyl alcohol (PVA) blend film. Further, silver nanoparticles (AgNPs) were synthesized in situ on the surface of sericin/PVA film via UV-assisted green synthesis method. Mechanical performance, swelling, mass losing and water retention tests showed the blend film had good mechanical performance, hygroscopicity, water retention capacity and low mass losing ratio. Scanning electron microscopy, fourier transfer infrared spectroscopy, X-ray diffractometry diffraction and X-ray photoelectron spectroscopy indicated the blending of PVA and sericin promoted the formation of hydrogen bond network between sericin and PVA, thus enhanced the mechanical performance and the stability of sericin, as well as the hygroscopicity and water retention capacity. UV irradiation and AgNPs modification did not affect the inner crystalline structure of sericin/PVA blend film. The inhibition zone and bacteria growth curve assay suggested AgNPs-sericin/PVA film had good antibacterial activities against E. coli and S. aureus. This novel AgNPs-sericin/PVA film shows great potentials in biomedical materials such as wound dressing and skin tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Del Campo, A; de León, A S; Rodríguez-Hernández, J; Muñoz-Bonilla, A
2017-03-21
Herein, we propose a strategy to fabricate core-shell microstructures ordered in hexagonal arrays by combining the breath figures approach and phase separation of immiscible ternary blends. This simple strategy to fabricate these structures involves only the solvent casting of a ternary polymer blend under moist atmosphere, which provides a facile and low-cost fabrication method to obtain the porous structures with a core-shell morphology. For this purpose, blends consisting of polystyrene (PS) as a major component and PS 40 -b-P(PEGMA300) 48 amphiphilic copolymer and polydimethylsiloxane (PDMS) as minor components were dissolved in tetrahydrofuran and cast onto glass wafers under humid conditions, 70% of relative humidity. The resulting porous morphologies were characterized by optical and confocal Raman microscopy. In particular, confocal Raman results demonstrated the formation of core-shell morphologies into the ordered pores, in which the PS forms the continuous matrix, whereas the other two phases are located into the cavities (PDMS is the core while the amphiphilic copolymer is the shell). Besides, by controlling the weight ratio of the polymer blends, the structural parameters of the porous structure such as pore diameter and the size of the core can be effectively tuned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buell, U.; Krappel, W.; Schmiedek, P.
1985-05-01
SPECT may be used to measure regional cerebral blood flow (rCBF) by X) Xe-133 gas and a rotating four detector array system or by I) I-123 amphetamine (IMP) and a rotating gamma camera. Results of X) and I) were compared to find out an optimum time frame wherein cerebral IMP distribution reflects rCBF, using Xe-133 as reference. In 20 patients (pts) with strictly unilateral CFD, X) and I) were performed within 48 hrs. X) was used to establish interhemispherical ratios (R) of rCBF (diseased-to-normal hemisphere) from both, hemispherical (half) slices (S, at 6-8 and 10-12 cm above OML, 2 SRmore » per pt) and standardized areas (A, 6 AR per S). I) was done with a dual head gamma camera at (2) 13-27, (2) 33-47 min and (3) 5.5. hrs after injection of 180 MBq IMP-123 (p,5n). After reconstruction, identical S of X) and I) were evaluated by a ROI computer program. For comparison, values of SR and AR were subtracted from l.000 and pronounced CVD was selected by thresholds for XE-R (>.11 and >.14). In pronounced CVD, IMP(2)SR was significantly different from Xe SR. AR showed a low correlation, too. At 5.5 hrs, IMP 3 did represent rCBF at least. However, excellent congruence was found at IMP 1 (13-27 min pi.) The authors conclude that in CVED cerebral IMP uptake and distribution represent rCBF only during the first 30 min after injection.« less
Nardo, D; Högberg, G; Flumeri, F; Jacobsson, H; Larsson, S A; Hällström, T; Pagani, M
2011-12-01
The aim of this study was to investigate the distribution of the regional cerebral blood flow (rCBF) in occupational-related post-traumatic stress disorder (PTSD) subjects and to seek possible correlations between brain perfusion and self-rating scales (SRS) in order to cross-check their diagnostic value and to look for their neural correlates. A total of 13 traumatized underground and long-distance train drivers developing (S) and 17 not developing (NS) PTSD who had experienced a 'person under train' accident or who had been assaulted at work underwent clinical assessment and 99mTc-HMPAO SPECT imaging during autobiographical trauma scripts. Statistical parametric mapping was applied to analyse rCBF changes in S as compared with NS and to search for correlations between rCBF and the administered SRS scores, modelling age, months to SPECT and the ratio 'grey matter/intra-cranial volume' as nuisance variables. Significantly higher activity was observed during trauma script in left posterior and anterior insula, posterior cingulate, inferior parietal lobule, precuneus, caudate and putamen in PTSD subjects as compared with the trauma-exposed control group. Impact of Event Scale and World Health Organisation (10) Well-Being Index scores highly correlated with tracer uptake to a great extent in the same regions in which rCBF differences between S and NS were found. These findings support the involvement of insular, cingulate and parietal cortices (as well as the basal ganglia) in the pathogenesis of PTSD and in the processing of related subjective well-being and distress.
Design and Characterization of a Microfabricated Hydrogen Clearance Blood Flow Sensor
Walton, Lindsay R.; Edwards, Martin A.; McCarty, Gregory S.; Wightman, R. Mark
2016-01-01
Background Modern cerebral blood flow (CBF) detection favors the use of either optical technologies that are limited to cortical brain regions, or expensive magnetic resonance. Decades ago, inhalation gas clearance was the choice method of quantifying CBF, but this suffered from poor temporal resolution. Electrolytic H2 clearance (EHC) generates and collects gas in situ at an electrode pair, which improves temporal resolution, but the probe size has prohibited meaningful subcortical use. New Method We microfabricated EHC electrodes to an order of magnitude smaller than those existing, on the scale of 100 µm, to permit use deep within the brain. Results Novel EHC probes were fabricated. The devices offered exceptional signal-to-noise, achieved high collection efficiencies (40 – 50%) in vitro, and agreed with theoretical modeling. An in vitro chemical reaction model was used to confirm that our devices detected flow rates higher than those expected physiologically. Computational modeling that incorporated realistic noise levels demonstrated devices would be sensitive to physiological CBF rates. Comparison with Existing Method The reduced size of our arrays makes them suitable for subcortical EHC measurements, as opposed to the larger, existing EHC electrodes that would cause substantial tissue damage. Our array can collect multiple CBF measurements per minute, and can thus resolve physiological changes occurring on a shorter timescale than existing gas clearance measurements. Conclusion We present and characterize microfabricated EHC electrodes and an accompanying theoretical model to interpret acquired data. Microfabrication allows for the high-throughput production of reproducible devices that are capable of monitoring deep brain CBF with sub-minute resolution. PMID:27102042
Kaneta, T; Katsuse, O; Hirano, T; Ogawa, M; Yoshida, K; Odawara, T; Hirayasu, Y; Inoue, T
2017-08-01
Arterial spin-labeling MR imaging has been recently developed as a noninvasive technique with magnetically labeled arterial blood water as an endogenous contrast medium for the evaluation of CBF. Our aim was to compare arterial spin-labeling MR imaging and SPECT in the visual assessment of CBF in patients with Alzheimer disease. In 33 patients with Alzheimer disease or mild cognitive impairment due to Alzheimer disease, CBF images were obtained by using both arterial spin-labeling-MR imaging with a postlabeling delay of 1.5 seconds and 2.5 seconds (PLD 1.5 and PLD 2.5 , respectively) and brain perfusion SPECT. Twenty-two brain regions were visually assessed, and the diagnostic confidence of Alzheimer disease was recorded. Among all arterial spin-labeling images, 84.9% of PLD 1.5 and 9% of PLD 2.5 images showed the typical pattern of advanced Alzheimer disease (ie, decreased CBF in the bilateral parietal, temporal, and frontal lobes). PLD 1.5 , PLD 2.5 , and SPECT imaging resulted in obviously different visual assessments. PLD 1.5 showed a broad decrease in CBF, which could have been due to an early perfusion. In contrast, PLD 2.5 did not appear to be influenced by an early perfusion but showed fewer pathologic findings than SPECT. The distinctions observed by us should be carefully considered in the visual assessments of Alzheimer disease. Further studies are required to define the patterns of change in arterial spin-labeling-MR imaging associated with Alzheimer disease. © 2017 by American Journal of Neuroradiology.
Haga, Sei; Morioka, Takato; Shimogawa, Takafumi; Akiyama, Tomoaki; Murao, Kei; Kanazawa, Yuka; Sayama, Tetsuro; Arakawa, Shuji
2016-01-01
Perfusion magnetic resonance image with arterial spin labeling (ASL) provides a completely noninvasive measurement of cerebral blood flow (CBF). However, arterial transient times can have a marked effect on the ASL signal. For example, a single postlabeling delay (PLD) of 1.5 seconds underestimates the slowly streaming collateral pathways that maintain the cerebrovascular reserve (CVR). To overcome this limitation, we developed a dual PLD method. A dual PLD method of 1.5 and 2.5 seconds was compared with (123)I-iodoamphetamine single-photon emission computed tomography with acetazolamide loading to assess CVR in 10 patients with steno-occlusive cerebrovascular disease. In 5 cases (Group A), dual PLD-ASL demonstrated low CBF with 1.5-second PLD in the target area, whereas CBF was improved with 2.5-second PLD. In the other 5 cases (Group B), dual PLD-ASL depicted low CBF with 1.5-second PLD, and no improvement in CBF with 2.5-second PLD in the target area was observed. On single-photon emission computed tomography, CVR was maintained in Group A but decreased in Group B. Although dual PLD methods may not be a completely alternative test for (123)I-iodoamphetamine single-photon emission computed tomography with acetazolamide loading, it is a feasible, simple, noninvasive, and repeatable technique for assessing CVR, even when employed in a routine clinical setting. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor
2017-07-01
Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Quintard, Hervé; Patet, Camille; Zerlauth, Jean-Baptiste; Suys, Tamarah; Bouzat, Pierre; Pellerin, Luc; Meuli, Reto; Magistretti, Pierre J.
2016-01-01
Abstract Energy dysfunction is associated with worse prognosis after traumatic brain injury (TBI). Recent data suggest that hypertonic sodium lactate infusion (HL) improves energy metabolism after TBI. Here, we specifically examined whether the efficacy of HL (3h infusion, 30–40 μmol/kg/min) in improving brain energetics (using cerebral microdialysis [CMD] glucose as a main therapeutic end-point) was dependent on baseline cerebral metabolic state (assessed by CMD lactate/pyruvate ratio [LPR]) and cerebral blood flow (CBF, measured with perfusion computed tomography [PCT]). Using a prospective cohort of 24 severe TBI patients, we found CMD glucose increase during HL was significant only in the subgroup of patients with elevated CMD LPR >25 (n = 13; +0.13 [95% confidence interval (CI) 0.08–0.19] mmol/L, p < 0.001; vs. +0.04 [–0.05–0.13] in those with normal LPR, p = 0.33, mixed-effects model). In contrast, CMD glucose increase was independent from baseline CBF (coefficient +0.13 [0.04–0.21] mmol/L when global CBF was <32.5 mL/100 g/min vs. +0.09 [0.04–0.14] mmol/L at normal CBF, both p < 0.005) and systemic glucose. Our data suggest that improvement of brain energetics upon HL seems predominantly dependent on baseline cerebral metabolic state and support the concept that CMD LPR – rather than CBF – could be used as a diagnostic indication for systemic lactate supplementation following TBI. PMID:26421521
Calibrated fMRI in the Medial Temporal Lobe During a Memory Encoding Task
Restom, Khaled; Perthen, Joanna E.; Liu, Thomas T.
2008-01-01
Prior measures of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses to a memory encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxgyen (CMRO2) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO2 and to assess the coupling between CBF and CMRO2 in the medial temporal lobe. The CBF-CMRO2 coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects. In addition, we examined the effect of region-of-interest (ROI) selection on the estimates. In response to the memory encoding task, CMRO2 increased by 23.1% ± 8.8 to 25.3% ± 5.7 (depending upon ROI), with an estimated CBF-CMRO2 coupling ratio of 1.66 ± 0.07 to 1.75± 0.16. There was not a significant effect of ROI selection on either the CMRO2 or coupling ratio estimates. The observed coupling ratios were significantly lower than the values (2 to 4.5) that have been reported in previous calibrated fMRI studies of the visual and motor cortices. In addition, the estimated coupling ratio was found to be less sensitive to the calibration procedure for functional responses in the medial temporal lobe as compared to the primary sensory areas. PMID:18329291
Buckley, Erin M.; Naim, Maryam Y.; Lynch, Jennifer M.; Goff, Donna A.; Schwab, Peter J.; Diaz, Laura K.; Nicolson, Susan C.; Montenegro, Lisa M.; Lavin, Natasha A.; Durduran, Turgut; Spray, Thomas L.; Gaynor, J. William; Putt, Mary E.; Yodh, A.G.; Fogel, Mark A.; Licht, Daniel J.
2013-01-01
Background Sodium bicarbonate (NaHCO3) is a common treatment for metabolic acidemia, however little definitive information exists regarding its treatment efficacy and cerebral hemodynamic effects. This pilot observational study quantifies relative changes in cerebral blood flow (rCBF) and oxy and deoxy-hemoglobin concentrations (ΔHbO2 and ΔHb) due to bolus administration of NaHCO3 in patients with mild base deficits. Methods Infants and children with hypoplastic left heart syndrome (HLHS) were recruited prior to cardiac surgery. NaHCO3 was given as needed for treatment of base deficit. Diffuse optical spectroscopies were employed for 15 minutes post-injection to non-invasively monitor ΔHb, ΔHbO2 and rCBF relative to baseline prior to NaHCO3 administration. Results Twenty-two anesthetized and mechanically ventilated HLHS patients (1 day to 4 years old) received a median (interquartile range) dose of 1.1 (0.8, 1.8) mEq/kg NaHCO3 administered intravenously over 10–20 seconds to treat a base deficit of −4 (−6, −3) mEq/l. NaHCO3 caused significant dose-dependent increases in rCBF, however population averaged ΔHb or Δ4HbO2 compared to controls were not significant. Conclusions Dose-dependent increases in cerebral blood flow (CBF) caused by bolus NaHCO3 are an important consideration in vulnerable populations wherein risk of rapid CBF fluctuations does not outweigh the benefit of treating a base deficit. PMID:23403802
Amyloid burden and sleep blood pressure in amnestic mild cognitive impairment
Tarumi, Takashi; Harris, Thomas S.; Hill, Candace; German, Zohre; Riley, Jonathan; Turner, Marcel; Womack, Kyle B.; Kerwin, Diana R.; Monson, Nancy L.; Stowe, Ann M.; Mathews, Dana; Cullum, C. Munro
2015-01-01
Objective: To determine whether cortical β-amyloid (Aβ) deposition is associated with circadian blood pressure (BP) profiles and dynamic cerebral blood flow (CBF) regulation in patients with amnestic mild cognitive impairment (aMCI). Methods: Forty participants with aMCI were included in this study. Cortical Aβ depositions were measured by 18F-florbetapir PET and expressed as the standardized uptake value ratio (SUVR) relative to the cerebellum. Circadian BP profiles were measured by 24-hour ambulatory monitoring during awake and sleep periods. The dipping status of sleep BP (i.e., the percent changes from the awake BP) was calculated and dichotomized into the dipper (≥10%) and nondipper (<10%) groups. Dynamic CBF regulation was assessed by a transfer function analysis between beat-to-beat changes in BP and CBF velocity measured from the middle cerebral artery during a repeated sit-stand maneuver. Results: Age was positively correlated with a greater Aβ deposition in the posterior cingulate, precuneus, and mean cortex. Accounting for the age effect, attenuated reductions in sleep systolic BP were associated with higher levels of posterior cingulate SUVR. Consistently, the nondippers exhibited a higher SUVR in the posterior cingulate than the dippers. Transfer function gain between changes in BP and CBF velocity was diminished in the nondippers, and moreover those individuals with a lower gain exhibited a higher SUVR in the posterior cingulate. Conclusions: Attenuated reductions in sleep BP are associated with a greater Aβ burden in the posterior cingulate and altered dynamic CBF regulation in patients with aMCI. PMID:26537049
Condon, Logan; Raible, David W.
2017-01-01
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved. PMID:28708822
Gau, Philia; Curtright, Andrew; Condon, Logan; Raible, David W; Dhaka, Ajay
2017-07-01
In terrestrial vertebrates such as birds and mammals, neurotrophin receptor expression is considered fundamental for the specification of distinct somatosensory neuron types where TrkA, TrkB and TrkC specify nociceptors, mechanoceptors and proprioceptors/mechanoceptors, respectively. In turn, Runx transcription factors promote neuronal fate specification by regulating neurotrophin receptor and sensory receptor expression where Runx1 mediates TrkA+ nociceptor diversification while Runx3 promotes a TrkC+ proprioceptive/mechanoceptive fate. Here, we report in zebrafish larvae that orthologs of the neurotrophin receptors in contrast to terrestrial vertebrates mark overlapping and distinct subsets of nociceptors suggesting that TrkA, TrkB and TrkC do not intrinsically promote nociceptor, mechanoceptor and proprioceptor/mechanoceptor neuronal fates, respectively. While we find that zebrafish Runx3 regulates nociceptors in contrast to terrestrial vertebrates, it shares a conserved regulatory mechanism found in terrestrial vertebrate proprioceptors/mechanoceptors in which it promotes TrkC expression and suppresses TrkB expression. We find that Cbfβ, which enhances Runx protein stability and affinity for DNA, serves as an obligate cofactor for Runx in neuronal fate determination. High levels of Runx can compensate for the loss of Cbfβ, indicating that in this context Cbfβ serves solely as a signal amplifier of Runx activity. Our data suggests an alteration/expansion of the neurotrophin receptor code of sensory neurons between larval teleost fish and terrestrial vertebrates, while the essential roles of Runx/Cbfβ in sensory neuron cell fate determination while also expanded are conserved.
Sosic-Vasic, Zrinka; Abler, Birgit; Grön, Georg; Plener, Paul; Straub, Joana
2017-04-12
A number of neuroimaging studies have identified altered regional cerebral blood flow (rCBF) related to major depressive disorder (MDD) in adult samples, particularly in the lateral prefrontal, cingular and temporal regions. In contrast, neuroimaging investigations in adolescents with MDD are rare, although investigating young patients during a significant period of brain maturation might offer valuable insights into the neural mechanisms of MDD. We acquired perfusion images obtained with continuous arterial spin labelling in 21 medication-naive adolescents with MDD before and after a five-session cognitive behavioural group therapy (group CBT). A control group included medication-naive patients under treatment as usual while waiting for the psychotherapy. We found relatively increased rCBF in the right dorsolateral prefrontal cortex (DLPFC; BA 46), the right caudate nucleus and the left inferior parietal lobe (BA 40) after CBT compared with before CBT. Relatively increased rCBF in the right DLPFC postgroup CBT was confirmed by time (post vs. pre)×group (intervention/waiting list) interaction analyses. In the waiting group, relatively increased rCBF was found in the thalamus and the anterior cingulate cortex (BA 24). The relatively small number of patients included in this pilot study has to be considered. Our findings indicate that noninvasive resting perfusion scanning is suitable to identify CBT-related changes in adolescents with MDD. rCBF increase in the DLPFC following a significant reduction in MDD symptoms in adolescents might represent the core neural correlate of changes in 'top-down' cognitive processing, a possible correlate of improved self-regulation and cognitive control.
NASA Astrophysics Data System (ADS)
Rajaram, Ajay; St. Lawrence, Keith; Diop, Mamadou
2017-02-01
In Canada, 8% of births occur prematurely. Preterm infants weighing less than 1500g are at a high risk of neurodevelopmental impairment: 5-10% develop major disabilities such as cerebral palsy and 40-50% show other cognitive and behavioural deficits. The brain is vulnerable to periods of low cerebral blood flow (CBF) that can impair energy metabolism and cause tissue damage. There is, therefore, a need for an efficient neuromonitoring system to alert the neonatal intensive care team to clinically significant changes in CBF and metabolism, before injury occurs. Optical technologies offer safe, non-invasive, and cost-effective methods for neuromonitoring. Cerebral oxygen saturation (ScO2) can be measured by exploiting the absorption properties of hemoglobin though Near-Infrared Spectroscopy (NIRS), and Diffuse Correlation Spectroscopy (DCS) can monitor CBF by tracking red blood cells. These measures can be combined to describe metabolism, a key indicator of tissue viability. In this study we present the development and testing of a hybrid broadband NIRS/DCS neuromonitor. This system is novel in its ability to simultaneously acquire broadband NIRS and DCS signals, providing a truly real-time measure of metabolism. Narrow bandpass and notch filters have been incorporated to diminish light contamination between the two modalities, preferentially filtering out each source from the opposing detector, allowing for an accurate measure of ScO2, CBF, and metabolism. With a broadband NIRS/DCS system, a real-time measure of CBF and metabolism within the developing brain can aid clinicians in monitoring events that precede brain injury, ultimately leading to better clinical outcomes.
Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women.
Georgiadis, Janniko R; Kortekaas, Rudie; Kuipers, Rutger; Nieuwenburg, Arie; Pruim, Jan; Reinders, A A T Simone; Holstege, Gert
2006-12-01
There is a severe lack of knowledge regarding the brain regions involved in human sexual performance in general, and female orgasm in particular. We used [15O]-H2O positron emission tomography to measure regional cerebral blood flow (rCBF) in 12 healthy women during a nonsexual resting state, clitorally induced orgasm, sexual clitoral stimulation (sexual arousal control) and imitation of orgasm (motor output control). Extracerebral markers of sexual performance and orgasm were rectal pressure variability (RPstd) and perceived level of sexual arousal (PSA). Sexual stimulation of the clitoris (compared to rest) significantly increased rCBF in the left secondary and right dorsal primary somatosensory cortex, providing the first account of neocortical processing of sexual clitoral information. In contrast, orgasm was mainly associated with profound rCBF decreases in the neocortex when compared with the control conditions (clitoral stimulation and imitation of orgasm), particularly in the left lateral orbitofrontal cortex, inferior temporal gyrus and anterior temporal pole. Significant positive correlations were found between RPstd and rCBF in the left deep cerebellar nuclei, and between PSA and rCBF in the ventral midbrain and right caudate nucleus. We propose that decreased blood flow in the left lateral orbitofrontal cortex signifies behavioural disinhibition during orgasm in women, and that deactivation of the temporal lobe is directly related to high sexual arousal. In addition, the deep cerebellar nuclei may be involved in orgasm-specific muscle contractions while the involvement of the ventral midbrain and right caudate nucleus suggests a role for dopamine in female sexual arousal and orgasm.
Schubert, Gerrit Alexander; Czabanka, Marcus; Seiz, Marcel; Horn, Peter; Vajkoczy, Peter; Thomé, Claudius
2014-01-01
Moyamoya disease (MMD) is characterized by unique angiographic features of collateralization. However, a detailed quantification as well as comparative analysis with cerebrovascular atherosclerotic disease (CAD) and healthy controls have not been performed to date. We reviewed 67 patients with MMD undergoing Xenon-enhanced computed tomography, as well as 108 patients with CAD and 5 controls. In addition to cortical, central, and infratentorial regions of interest, particular emphasis was put on regions that are typically involved in MMD (pericallosal territory, basal ganglia). Cerebral blood flow (CBF), cerebrovascular reserve capacity (CVRC), and hemodynamic stress distribution were calculated. MMD is characterized by a significant, ubiquitous decrease in CVRC and a cortical but not pericallosal decrease in CBF when compared with controls. Baseline perfusion is maintained within the basal ganglia, and hemodynamic stress distribution confirmed a relative preservation of central regions of interest in MMD, indicative for its characteristic proximal collateralization pattern. In MMD and CAD, cortical and central CBF decreased significantly with age, whereas CVRC and hemodynamic stress distribution are relatively unaffected by age. No difference in CVRC of comparable regions of interest was seen between MMD and CAD, but stress distribution was significantly higher in MMD, illustrating the functionality of the characteristic rete mirabilis. Our data provide quantitative support for a territory-specific perfusion pattern that is unique for MMD, including central preservation of CBF compared with controls and patients with CAD. This correlates well with its characteristic feature of proximal collateralization. CVRC and hemodynamic stress distribution seem to be more robust parameters than CBF alone for assessment of disease severity.
Mutoh, Tomoko; Mutoh, Tatsushi; Sasaki, Kazumasu; Nakamura, Kazuhiro; Tatewaki, Yasuko; Ishikawa, Tatsuya; Taki, Yasuyuki
2017-02-15
Acute cerebral hypoperfusion following subarachnoid hemorrhage (SAH) is highly related to the pathogenesis of delayed cerebral ischemia (DCI), but the therapeutic option is poorly available. This study aimed to clarify the effect of milrinone (MIL) on cerebral blood flow (CBF) and related outcomes after experimental SAH. Twenty-seven male C57BL/6 mice were assigned to either sham surgery (SAH-sham; n=6), SAH induced by endovascular perforation (control; n=10), or SAH followed by cardiac support with intravenous MIL (n=11) performed 1.5-h after SAH induction. CBF, neurobehavioral function, occurrence of DCI were assessed by MR-continuous arterial spin labeling, daily neurological score testing, and diffusion- and T2-weighted MR images on days 1 and 3, respectively. Initial global CBF depression was notable in mice of control and MIL groups as compared to the SAH-sham group (P<0.05). MIL raised CBF in a dose-dependent manner (P<0.001), resulted in lower incidence of DCI (P=0.008) and better recovery from neurobehavioral decline than control (P<0.001). The CBF values on day 1 predicted DCI with a cut-off of 42.5ml/100g/min (82% specificity and 83% sensitivity), which was greater in mice treated with MIL than those of control (51.7 versus 37.6ml/100g/min; P<0.001). MIL improves post-SAH acute hypoperfusion that can lead to the prevention of DCI and functional worsening, acting as a neurocardiac protective agent against EBI. Copyright © 2017 Elsevier B.V. All rights reserved.
Wittlich, F; Kohno, K; Mies, G; Norris, D G; Hoehn-Berlage, M
1995-01-01
NMR bolus track measurements were correlated with autoradiographically determined regional cerebral blood flow (rCBF). The NMR method is based on bolus infusion of the contrast agent gadolinium diethylenetriaminepentaacetate and high-speed T*2-sensitive NMR imaging. The first pass of the contrast agent through the image plane causes a transient decrease of the signal intensity. This time course of the signal intensity is transformed into relative concentrations of the contrast agent in each pixel. The mean transit time and relative blood flow and volume are calculated from such indicator dilution curves. We investigated whether this NMR technique correctly expresses the relative rCBF. The relative blood flow data, calculated from NMR bolus track experiments, and the absolute values of iodo[14C]antipyrine autoradiography were compared. A linear relationship was observed, indicating the proportionality of the transient NMR signal change with CBF. Excellent interindividual reproducibility of calibration constants is observed (r = 0.963). For a given NMR protocol, bolus track measurements calibrated with autoradiography after the experiment allow determination of absolute values for rCBF and regional blood volume. Images Fig. 2 Fig. 3 PMID:7892189