NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Changhui; Wei, Kai
2008-07-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.
New regularization scheme for blind color image deconvolution
NASA Astrophysics Data System (ADS)
Chen, Li; He, Yu; Yap, Kim-Hui
2011-01-01
This paper proposes a new regularization scheme to address blind color image deconvolution. Color images generally have a significant correlation among the red, green, and blue channels. Conventional blind monochromatic deconvolution algorithms handle each color image channels independently, thereby ignoring the interchannel correlation present in the color images. In view of this, a unified regularization scheme for image is developed to recover edges of color images and reduce color artifacts. In addition, by using the color image properties, a spectral-based regularization operator is adopted to impose constraints on the blurs. Further, this paper proposes a reinforcement regularization framework that integrates a soft parametric learning term in addressing blind color image deconvolution. A blur modeling scheme is developed to evaluate the relevance of manifold parametric blur structures, and the information is integrated into the deconvolution scheme. An optimization procedure called alternating minimization is then employed to iteratively minimize the image- and blur-domain cost functions. Experimental results show that the method is able to achieve satisfactory restored color images under different blurring conditions.
Simulation Study of Effects of the Blind Deconvolution on Ultrasound Image
NASA Astrophysics Data System (ADS)
He, Xingwu; You, Junchen
2018-03-01
Ultrasonic image restoration is an essential subject in Medical Ultrasound Imaging. However, without enough and precise system knowledge, some traditional image restoration methods based on the system prior knowledge often fail to improve the image quality. In this paper, we use the simulated ultrasound image to find the effectiveness of the blind deconvolution method for ultrasound image restoration. Experimental results demonstrate that the blind deconvolution method can be applied to the ultrasound image restoration and achieve the satisfactory restoration results without the precise prior knowledge, compared with the traditional image restoration method. And with the inaccurate small initial PSF, the results shows blind deconvolution could improve the overall image quality of ultrasound images, like much better SNR and image resolution, and also show the time consumption of these methods. it has no significant increasing on GPU platform.
Multi-frame partially saturated images blind deconvolution
NASA Astrophysics Data System (ADS)
Ye, Pengzhao; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2016-12-01
When blurred images have saturated or over-exposed pixels, conventional blind deconvolution approaches often fail to estimate accurate point spread function (PSF) and will introduce local ringing artifacts. In this paper, we propose a method to deal with the problem under the modified multi-frame blind deconvolution framework. First, in the kernel estimation step, a light streak detection scheme using multi-frame blurred images is incorporated into the regularization constraint. Second, we deal with image regions affected by the saturated pixels separately by modeling a weighted matrix during each multi-frame deconvolution iteration process. Both synthetic and real-world examples show that more accurate PSFs can be estimated and restored images have richer details and less negative effects compared to state of art methods.
Parallelization of a blind deconvolution algorithm
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Borelli, Kathy J.
2006-09-01
Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.
Designing a stable feedback control system for blind image deconvolution.
Cheng, Shichao; Liu, Risheng; Fan, Xin; Luo, Zhongxuan
2018-05-01
Blind image deconvolution is one of the main low-level vision problems with wide applications. Many previous works manually design regularization to simultaneously estimate the latent sharp image and the blur kernel under maximum a posterior framework. However, it has been demonstrated that such joint estimation strategies may lead to the undesired trivial solution. In this paper, we present a novel perspective, using a stable feedback control system, to simulate the latent sharp image propagation. The controller of our system consists of regularization and guidance, which decide the sparsity and sharp features of latent image, respectively. Furthermore, the formational model of blind image is introduced into the feedback process to avoid the image restoration deviating from the stable point. The stability analysis of the system indicates the latent image propagation in blind deconvolution task can be efficiently estimated and controlled by cues and priors. Thus the kernel estimation used for image restoration becomes more precision. Experimental results show that our system is effective on image propagation, and can perform favorably against the state-of-the-art blind image deconvolution methods on different benchmark image sets and special blurred images. Copyright © 2018 Elsevier Ltd. All rights reserved.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Convex blind image deconvolution with inverse filtering
NASA Astrophysics Data System (ADS)
Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong
2018-03-01
Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.
A MAP blind image deconvolution algorithm with bandwidth over-constrained
NASA Astrophysics Data System (ADS)
Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong
2018-03-01
We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.
Adaptive Optics Image Restoration Based on Frame Selection and Multi-frame Blind Deconvolution
NASA Astrophysics Data System (ADS)
Tian, Yu; Rao, Chang-hui; Wei, Kai
Restricted by the observational condition and the hardware, adaptive optics can only make a partial correction of the optical images blurred by atmospheric turbulence. A postprocessing method based on frame selection and multi-frame blind deconvolution is proposed for the restoration of high-resolution adaptive optics images. By frame selection we mean we first make a selection of the degraded (blurred) images for participation in the iterative blind deconvolution calculation, with no need of any a priori knowledge, and with only a positivity constraint. This method has been applied to the restoration of some stellar images observed by the 61-element adaptive optics system installed on the Yunnan Observatory 1.2m telescope. The experimental results indicate that this method can effectively compensate for the residual errors of the adaptive optics system on the image, and the restored image can reach the diffraction-limited quality.
Semi-blind sparse image reconstruction with application to MRFM.
Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O
2012-09-01
We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.
NASA Astrophysics Data System (ADS)
Marrugo, Andrés. G.; Millán, María. S.; Å orel, Michal; Kotera, Jan; Å roubek, Filip
2015-01-01
Retinal images often suffer from blurring which hinders disease diagnosis and progression assessment. The restoration of the images is carried out by means of blind deconvolution, but the success of the restoration depends on the correct estimation of the point-spread-function (PSF) that blurred the image. The restoration can be space-invariant or space-variant. Because a retinal image has regions without texture or sharp edges, the blind PSF estimation may fail. In this paper we propose a strategy for the correct assessment of PSF estimation in retinal images for restoration by means of space-invariant or space-invariant blind deconvolution. Our method is based on a decomposition in Zernike coefficients of the estimated PSFs to identify valid PSFs. This significantly improves the quality of the image restoration revealed by the increased visibility of small details like small blood vessels and by the lack of restoration artifacts.
Blind image deconvolution using the Fields of Experts prior
NASA Astrophysics Data System (ADS)
Dong, Wende; Feng, Huajun; Xu, Zhihai; Li, Qi
2012-11-01
In this paper, we present a method for single image blind deconvolution. To improve its ill-posedness, we formulate the problem under Bayesian probabilistic framework and use a prior named Fields of Experts (FoE) which is learnt from natural images to regularize the latent image. Furthermore, due to the sparse distribution of the point spread function (PSF), we adopt a Student-t prior to regularize it. An improved alternating minimization (AM) approach is proposed to solve the resulted optimization problem. Experiments on both synthetic and real world blurred images show that the proposed method can achieve results of high quality.
Multi-limit unsymmetrical MLIBD image restoration algorithm
NASA Astrophysics Data System (ADS)
Yang, Yang; Cheng, Yiping; Chen, Zai-wang; Bo, Chen
2012-11-01
A novel multi-limit unsymmetrical iterative blind deconvolution(MLIBD) algorithm was presented to enhance the performance of adaptive optics image restoration.The algorithm enhances the reliability of iterative blind deconvolution by introducing the bandwidth limit into the frequency domain of point spread(PSF),and adopts the PSF dynamic support region estimation to improve the convergence speed.The unsymmetrical factor is automatically computed to advance its adaptivity.Image deconvolution comparing experiments between Richardson-Lucy IBD and MLIBD were done,and the result indicates that the iteration number is reduced by 22.4% and the peak signal-to-noise ratio is improved by 10.18dB with MLIBD method. The performance of MLIBD algorithm is outstanding in the images restoration the FK5-857 adaptive optics and the double-star adaptive optics.
Blind deconvolution post-processing of images corrected by adaptive optics
NASA Astrophysics Data System (ADS)
Christou, Julian C.
1995-08-01
Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2000-10-01
A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.
Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi
2017-01-18
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2002-09-01
We describe a postprocessing methodology for reconstructing undersampled image sequences with randomly varying blur that can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive-optics-(AO)-compensated imagery taken by the Starfire Optical Range 3.5-m telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground-based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques that include a representation of spatial sampling by the focal plane array elements based on a forward stochastic model. This generalization enables the random shifts and shape of the AO- compensated point spread function (PSF) to be used to partially eliminate the aliasing effects associated with sub-Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss that occurs when imaging in wide- field-of-view (FOV) modes.
Strehl-constrained iterative blind deconvolution for post-adaptive-optics data
NASA Astrophysics Data System (ADS)
Desiderà, G.; Carbillet, M.
2009-12-01
Aims: We aim to improve blind deconvolution applied to post-adaptive-optics (AO) data by taking into account one of their basic characteristics, resulting from the necessarily partial AO correction: the Strehl ratio. Methods: We apply a Strehl constraint in the framework of iterative blind deconvolution (IBD) of post-AO near-infrared images simulated in a detailed end-to-end manner and considering a case that is as realistic as possible. Results: The results obtained clearly show the advantage of using such a constraint, from the point of view of both performance and stability, especially for poorly AO-corrected data. The proposed algorithm has been implemented in the freely-distributed and CAOS-based Software Package AIRY.
Plenoptic Image Motion Deblurring.
Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo
2018-04-01
We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.
Improving Range Estimation of a 3-Dimensional Flash Ladar via Blind Deconvolution
2010-09-01
12 2.1.4 Optical Imaging as a Linear and Nonlinear System 15 2.1.5 Coherence Theory and Laser Light Statistics . . . 16 2.2 Deconvolution...rather than deconvolution. 2.1.5 Coherence Theory and Laser Light Statistics. Using [24] and [25], this section serves as background on coherence theory...the laser light incident on the detector surface. The image intensity related to different types of coherence is governed by the laser light’s spatial
Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution
NASA Astrophysics Data System (ADS)
Tian, Y.; Rao, C. H.; Wei, K.
2008-10-01
The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.
Real-time blind deconvolution of retinal images in adaptive optics scanning laser ophthalmoscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Lu, Jing; Shi, Guohua; Zhang, Yudong
2011-06-01
With the use of adaptive optics (AO), the ocular aberrations can be compensated to get high-resolution image of living human retina. However, the wavefront correction is not perfect due to the wavefront measure error and hardware restrictions. Thus, it is necessary to use a deconvolution algorithm to recover the retinal images. In this paper, a blind deconvolution technique called Incremental Wiener filter is used to restore the adaptive optics confocal scanning laser ophthalmoscope (AOSLO) images. The point-spread function (PSF) measured by wavefront sensor is only used as an initial value of our algorithm. We also realize the Incremental Wiener filter on graphics processing unit (GPU) in real-time. When the image size is 512 × 480 pixels, six iterations of our algorithm only spend about 10 ms. Retinal blood vessels as well as cells in retinal images are restored by our algorithm, and the PSFs are also revised. Retinal images with and without adaptive optics are both restored. The results show that Incremental Wiener filter reduces the noises and improve the image quality.
Retinal image restoration by means of blind deconvolution
NASA Astrophysics Data System (ADS)
Marrugo, Andrés G.; Šorel, Michal; Šroubek, Filip; Millán, María S.
2011-11-01
Retinal imaging plays a key role in the diagnosis and management of ophthalmologic disorders, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. Because of the acquisition process, retinal images often suffer from blurring and uneven illumination. This problem may seriously affect disease diagnosis and progression assessment. Here we present a method for color retinal image restoration by means of multichannel blind deconvolution. The method is applied to a pair of retinal images acquired within a lapse of time, ranging from several minutes to months. It consists of a series of preprocessing steps to adjust the images so they comply with the considered degradation model, followed by the estimation of the point-spread function and, ultimately, image deconvolution. The preprocessing is mainly composed of image registration, uneven illumination compensation, and segmentation of areas with structural changes. In addition, we have developed a procedure for the detection and visualization of structural changes. This enables the identification of subtle developments in the retina not caused by variation in illumination or blur. The method was tested on synthetic and real images. Encouraging experimental results show that the method is capable of significant restoration of degraded retinal images.
Deconvolution of astronomical images using SOR with adaptive relaxation.
Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J
2011-07-04
We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
Sequential deconvolution from wave-front sensing using bivariate simplex splines
NASA Astrophysics Data System (ADS)
Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai
2015-05-01
Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.
A blind deconvolution method based on L1/L2 regularization prior in the gradient space
NASA Astrophysics Data System (ADS)
Cai, Ying; Shi, Yu; Hua, Xia
2018-02-01
In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.
NASA Astrophysics Data System (ADS)
Luo, L.; Fan, M.; Shen, M. Z.
2007-07-01
Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.
Real-time blind image deconvolution based on coordinated framework of FPGA and DSP
NASA Astrophysics Data System (ADS)
Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun
2015-10-01
Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.
Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Qiheng; Zhang, Jianlin
2011-11-01
Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.
Image deblurring by motion estimation for remote sensing
NASA Astrophysics Data System (ADS)
Chen, Yueting; Wu, Jiagu; Xu, Zhihai; Li, Qi; Feng, Huajun
2010-08-01
The imagery resolution of imaging systems for remote sensing is often limited by image degradation resulting from unwanted motion disturbances of the platform during image exposures. Since the form of the platform vibration can be arbitrary, the lack of priori knowledge about the motion function (the PSF) suggests blind restoration approaches. A deblurring method which combines motion estimation and image deconvolution both for area-array and TDI remote sensing has been proposed in this paper. The image motion estimation is accomplished by an auxiliary high-speed detector and a sub-pixel correlation algorithm. The PSF is then reconstructed from estimated image motion vectors. Eventually, the clear image can be recovered by the Richardson-Lucy (RL) iterative deconvolution algorithm from the blurred image of the prime camera with the constructed PSF. The image deconvolution for the area-array detector is direct. While for the TDICCD detector, an integral distortion compensation step and a row-by-row deconvolution scheme are applied. Theoretical analyses and experimental results show that, the performance of the proposed concept is convincing. Blurred and distorted images can be properly recovered not only for visual observation, but also with significant objective evaluation increment.
Ramachandra, Ranjan; de Jonge, Niels
2012-01-01
Three-dimensional (3D) data sets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). The deconvolution of the 3D datasets was optimized to obtain the highest possible axial resolution. The deconvolution involved two different point spread function (PSF)s, each calculated iteratively via blind deconvolution.. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but at the cost of a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only. PMID:22152090
Successive Over-Relaxation Technique for High-Performance Blind Image Deconvolution
2015-06-08
deconvolution, space surveillance, Gauss - Seidel iteration 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 5...sensible approximate solutions to the ill-posed nonlinear inverse problem. These solutions are addresses as fixed points of the iteration which consists in...alternating approximations (AA) for the object and for the PSF performed with a prescribed number of inner iterative descents from trivial (zero
Minimum entropy deconvolution and blind equalisation
NASA Technical Reports Server (NTRS)
Satorius, E. H.; Mulligan, J. J.
1992-01-01
Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.
Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms.
Harikumar, G; Bresler, Y
1999-01-01
We address the problem of restoring an image from its noisy convolutions with two or more unknown finite impulse response (FIR) filters. We develop theoretical results about the existence and uniqueness of solutions, and show that under some generically true assumptions, both the filters and the image can be determined exactly in the absence of noise, and stably estimated in its presence. We present efficient algorithms to estimate the blur functions and their sizes. These algorithms are of two types, subspace-based and likelihood-based, and are extensions of techniques proposed for the solution of the multichannel blind deconvolution problem in one dimension. We present memory and computation-efficient techniques to handle the very large matrices arising in the two-dimensional (2-D) case. Once the blur functions are determined, they are used in a multichannel deconvolution step to reconstruct the unknown image. The theoretical and practical implications of edge effects, and "weakly exciting" images are examined. Finally, the algorithms are demonstrated on synthetic and real data.
Non-stationary blind deconvolution of medical ultrasound scans
NASA Astrophysics Data System (ADS)
Michailovich, Oleg V.
2017-03-01
In linear approximation, the formation of a radio-frequency (RF) ultrasound image can be described based on a standard convolution model in which the image is obtained as a result of convolution of the point spread function (PSF) of the ultrasound scanner in use with a tissue reflectivity function (TRF). Due to the band-limited nature of the PSF, the RF images can only be acquired at a finite spatial resolution, which is often insufficient for proper representation of the diagnostic information contained in the TRF. One particular way to alleviate this problem is by means of image deconvolution, which is usually performed in a "blind" mode, when both PSF and TRF are estimated at the same time. Despite its proven effectiveness, blind deconvolution (BD) still suffers from a number of drawbacks, chief among which stems from its dependence on a stationary convolution model, which is incapable of accounting for the spatial variability of the PSF. As a result, virtually all existing BD algorithms are applied to localized segments of RF images. In this work, we introduce a novel method for non-stationary BD, which is capable of recovering the TRF concurrently with the spatially variable PSF. Particularly, our approach is based on semigroup theory which allows one to describe the effect of such a PSF in terms of the action of a properly defined linear semigroup. The approach leads to a tractable optimization problem, which can be solved using standard numerical methods. The effectiveness of the proposed solution is supported by experiments with in vivo ultrasound data.
Optimal Dictionaries for Sparse Solutions of Multi-frame Blind Deconvolution
2014-09-01
object is the Hubble Space Telescope (HST). As stated above, the dictionary training used the first 100 of the total of the simulated PSFs. The second set...diffraction-limited Hubble image and HubbleRE is the reconstructed image from the 100 simulated atmospheric turbulence degraded images of the HST
Fruit fly optimization based least square support vector regression for blind image restoration
NASA Astrophysics Data System (ADS)
Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei
2014-11-01
The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.
NASA Astrophysics Data System (ADS)
Jeffs, Brian D.; Christou, Julian C.
1998-09-01
This paper addresses post processing for resolution enhancement of sequences of short exposure adaptive optics (AO) images of space objects. The unknown residual blur is removed using Bayesian maximum a posteriori blind image restoration techniques. In the problem formulation, both the true image and the unknown blur psf's are represented by the flexible generalized Gaussian Markov random field (GGMRF) model. The GGMRF probability density function provides a natural mechanism for expressing available prior information about the image and blur. Incorporating such prior knowledge in the deconvolution optimization is crucial for the success of blind restoration algorithms. For example, space objects often contain sharp edge boundaries and geometric structures, while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits while the residual blur psf in the corresponding partially corrected AO image is spectrally band limited, and exhibits smoothed, random , texture-like features on a peaked central core. By properly choosing parameters, GGMRF models can accurately represent both the blur psf and the object, and serve to regularize the deconvolution problem. These two GGMRF models also serve as discriminator functions to separate blur and object in the solution. Algorithm performance is demonstrated with examples from synthetic AO images. Results indicate significant resolution enhancement when applied to partially corrected AO images. An efficient computational algorithm is described.
A neural network approach for the blind deconvolution of turbulent flows
NASA Astrophysics Data System (ADS)
Maulik, R.; San, O.
2017-11-01
We present a single-layer feedforward artificial neural network architecture trained through a supervised learning approach for the deconvolution of flow variables from their coarse grained computations such as those encountered in large eddy simulations. We stress that the deconvolution procedure proposed in this investigation is blind, i.e. the deconvolved field is computed without any pre-existing information about the filtering procedure or kernel. This may be conceptually contrasted to the celebrated approximate deconvolution approaches where a filter shape is predefined for an iterative deconvolution process. We demonstrate that the proposed blind deconvolution network performs exceptionally well in the a-priori testing of both two-dimensional Kraichnan and three-dimensional Kolmogorov turbulence and shows promise in forming the backbone of a physics-augmented data-driven closure for the Navier-Stokes equations.
Restoration of solar and star images with phase diversity-based blind deconvolution
NASA Astrophysics Data System (ADS)
Li, Qiang; Liao, Sheng; Wei, Honggang; Shen, Mangzuo
2007-04-01
The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble of short-exposure images obtained simultaneously from multiple cameras to jointly estimate the object and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the turbulence-degraded images generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475 m) in La Palma and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted. The star image still can be restored when the defocus distance is measured inaccurately. The restored results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing the point-like or extended objects.
A hybrid method for synthetic aperture ladar phase-error compensation
NASA Astrophysics Data System (ADS)
Hua, Zhili; Li, Hongping; Gu, Yongjian
2009-07-01
As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.
Polarimeter Blind Deconvolution Using Image Diversity
2007-09-01
significant presence when imaging through turbulence and its ease of production in the labora- tory. An innovative algorithm for detection and estimation...1.2.2.2 Atmospheric Turbulence . Atmospheric turbulence spatially distorts the wavefront as light passes through it and causes blurring of images in an...intensity image . Various values of β are used in the experiments. The optimal β value varied with the input and the algorithm . The hybrid seemed to
2012-01-01
Dagobert, and C. Franchis . Atmospheric tur- bulence restoration by diffeomorphic image registration and blind deconvolution. In ACIVS, 2008. 1 [4] S...20] V. Tatarskii. Wave Propagation in a Turbulent Medium. McGraw-Hill Books, 1961. 2 [21] Y. Tian and S. Narasimhan. A globally optimal data-driven
Streaming Multiframe Deconvolutions on GPUs
NASA Astrophysics Data System (ADS)
Lee, M. A.; Budavári, T.
2015-09-01
Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.
A Comparative Study of Different Deblurring Methods Using Filters
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Kavitha, S.
2011-12-01
This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.
NASA Astrophysics Data System (ADS)
Luo, Lin; Fan, Min; Shen, Mang-zuo
2008-01-01
Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.
Blind deconvolution with principal components analysis for wide-field and small-aperture telescopes
NASA Astrophysics Data System (ADS)
Jia, Peng; Sun, Rongyu; Wang, Weinan; Cai, Dongmei; Liu, Huigen
2017-09-01
Telescopes with a wide field of view (greater than 1°) and small apertures (less than 2 m) are workhorses for observations such as sky surveys and fast-moving object detection, and play an important role in time-domain astronomy. However, images captured by these telescopes are contaminated by optical system aberrations, atmospheric turbulence, tracking errors and wind shear. To increase the quality of images and maximize their scientific output, we propose a new blind deconvolution algorithm based on statistical properties of the point spread functions (PSFs) of these telescopes. In this new algorithm, we first construct the PSF feature space through principal component analysis, and then classify PSFs from a different position and time using a self-organizing map. According to the classification results, we divide images of the same PSF types and select these PSFs to construct a prior PSF. The prior PSF is then used to restore these images. To investigate the improvement that this algorithm provides for data reduction, we process images of space debris captured by our small-aperture wide-field telescopes. Comparing the reduced results of the original images and the images processed with the standard Richardson-Lucy method, our method shows a promising improvement in astrometry accuracy.
A frequency-domain seismic blind deconvolution based on Gini correlations
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Zhang, Bing; Gao, Jinghuai; Huo Liu, Qing
2018-02-01
In reflection seismic processing, the seismic blind deconvolution is a challenging problem, especially when the signal-to-noise ratio (SNR) of the seismic record is low and the length of the seismic record is short. As a solution to this ill-posed inverse problem, we assume that the reflectivity sequence is independent and identically distributed (i.i.d.). To infer the i.i.d. relationships from seismic data, we first introduce the Gini correlations (GCs) to construct a new criterion for the seismic blind deconvolution in the frequency-domain. Due to a unique feature, the GCs are robust in their higher tolerance of the low SNR data and less dependent on record length. Applications of the seismic blind deconvolution based on the GCs show their capacity in estimating the unknown seismic wavelet and the reflectivity sequence, whatever synthetic traces or field data, even with low SNR and short sample record.
Multichannel blind deconvolution of spatially misaligned images.
Sroubek, Filip; Flusser, Jan
2005-07-01
Existing multichannel blind restoration techniques assume perfect spatial alignment of channels, correct estimation of blur size, and are prone to noise. We developed an alternating minimization scheme based on a maximum a posteriori estimation with a priori distribution of blurs derived from the multichannel framework and a priori distribution of original images defined by the variational integral. This stochastic approach enables us to recover the blurs and the original image from channels severely corrupted by noise. We observe that the exact knowledge of the blur size is not necessary, and we prove that translation misregistration up to a certain extent can be automatically removed in the restoration process.
Source Pulse Estimation of Mine Shock by Blind Deconvolution
NASA Astrophysics Data System (ADS)
Makowski, R.
The objective of seismic signal deconvolution is to extract from the signal information concerning the rockmass or the signal in the source of the shock. In the case of blind deconvolution, we have to extract information regarding both quantities. Many methods of deconvolution made use of in prospective seismology were found to be of minor utility when applied to shock-induced signals recorded in the mines of the Lubin Copper District. The lack of effectiveness should be attributed to the inadequacy of the model on which the methods are based, with respect to the propagation conditions for that type of signal. Each of the blind deconvolution methods involves a number of assumptions; hence, only if these assumptions are fulfilled, we may expect reliable results.Consequently, we had to formulate a different model for the signals recorded in the copper mines of the Lubin District. The model is based on the following assumptions: (1) The signal emitted by the sh ock source is a short-term signal. (2) The signal transmitting system (rockmass) constitutes a parallel connection of elementary systems. (3) The elementary systems are of resonant type. Such a model seems to be justified by the geological structure as well as by the positions of the shock foci and seismometers. The results of time-frequency transformation also support the dominance of resonant-type propagation.Making use of the model, a new method for the blind deconvolution of seismic signals has been proposed. The adequacy of the new model, as well as the efficiency of the proposed method, has been confirmed by the results of blind deconvolution. The slight approximation errors obtained with a small number of approximating elements additionally corroborate the adequacy of the model.
Using deconvolution to improve the metrological performance of the grid method
NASA Astrophysics Data System (ADS)
Grédiac, Michel; Sur, Frédéric; Badulescu, Claudiu; Mathias, Jean-Denis
2013-06-01
The use of various deconvolution techniques to enhance strain maps obtained with the grid method is addressed in this study. Since phase derivative maps obtained with the grid method can be approximated by their actual counterparts convolved by the envelope of the kernel used to extract phases and phase derivatives, non-blind restoration techniques can be used to perform deconvolution. Six deconvolution techniques are presented and employed to restore a synthetic phase derivative map, namely direct deconvolution, regularized deconvolution, the Richardson-Lucy algorithm and Wiener filtering, the last two with two variants concerning their practical implementations. Obtained results show that the noise that corrupts the grid images must be thoroughly taken into account to limit its effect on the deconvolved strain maps. The difficulty here is that the noise on the grid image yields a spatially correlated noise on the strain maps. In particular, numerical experiments on synthetic data show that direct and regularized deconvolutions are unstable when noisy data are processed. The same remark holds when Wiener filtering is employed without taking into account noise autocorrelation. On the other hand, the Richardson-Lucy algorithm and Wiener filtering with noise autocorrelation provide deconvolved maps where the impact of noise remains controlled within a certain limit. It is also observed that the last technique outperforms the Richardson-Lucy algorithm. Two short examples of actual strain fields restoration are finally shown. They deal with asphalt and shape memory alloy specimens. The benefits and limitations of deconvolution are presented and discussed in these two cases. The main conclusion is that strain maps are correctly deconvolved when the signal-to-noise ratio is high and that actual noise in the actual strain maps must be more specifically characterized than in the current study to address higher noise levels with Wiener filtering.
Toward Overcoming the Local Minimum Trap in MFBD
2015-07-14
the first two years of this grant: • A. Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind Deconvolution...Cornelio, E. Loli -Piccolomini, and J. G. Nagy. Constrained Numerical Optimization Meth- ods for Blind Deconvolution, Numerical Algorithms, volume 65, issue 1...Publications (published) during reporting period: A. Cornelio, E. Loli Piccolomini, and J. G. Nagy. Constrained Variable Projection Method for Blind
Scientific Visualization Made Easy for the Scientist
NASA Astrophysics Data System (ADS)
Westerhoff, M.; Henderson, B.
2002-12-01
amirar is an application program used in creating 3D visualizations and geometric models of 3D image data sets from various application areas, e.g. medicine, biology, biochemistry, chemistry, physics, and engineering. It has demonstrated significant adoption in the market place since becoming commercially available in 2000. The rapid adoption has expanded the features being requested by the user base and broadened the scope of the amira product offering. The amira product offering includes amira Standard, amiraDevT, used to extend the product capabilities by users, amiraMolT, used for molecular visualization, amiraDeconvT, used to improve quality of image data, and amiraVRT, used in immersive VR environments. amira allows the user to construct a visualization tailored to his or her needs without requiring any programming knowledge. It also allows 3D objects to be represented as grids suitable for numerical simulations, notably as triangular surfaces and volumetric tetrahedral grids. The amira application also provides methods to generate such grids from voxel data representing an image volume, and it includes a general-purpose interactive 3D viewer. amiraDev provides an application-programming interface (API) that allows the user to add new components by C++ programming. amira supports many import formats including a 'raw' format allowing immediate access to your native uniform data sets. amira uses the power and speed of the OpenGLr and Open InventorT graphics libraries and 3D graphics accelerators to allow you to access over 145 modules, enabling you to process, probe, analyze and visualize your data. The amiraMolT extension adds powerful tools for molecular visualization to the existing amira platform. amiraMolT contains support for standard molecular file formats, tools for visualization and analysis of static molecules as well as molecular trajectories (time series). amiraDeconv adds tools for the deconvolution of 3D microscopic images. Deconvolution is the process of increasing image quality and resolution by computationally compensating artifacts of the recording process. amiraDeconv supports 3D wide field microscopy as well as 3D confocal microscopy. It offers both non-blind and blind image deconvolution algorithms. Non-blind deconvolution uses an individual measured point spread function, while non-blind algorithms work on the basis of only a few recording parameters (like numerical aperture or zoom factor). amiraVR is a specialized and extended version of the amira visualization system which is dedicated for use in immersive installations, such as large-screen stereoscopic projections, CAVEr or Holobenchr systems. Among others, it supports multi-threaded multi-pipe rendering, head-tracking, advanced 3D interaction concepts, and 3D menus allowing interaction with any amira object in the same way as on the desktop. With its unique set of features, amiraVR represents both a VR (Virtual Reality) ready application for scientific and medical visualization in immersive environments, and a development platform that allows building VR applications.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
High Resolution Optical Imaging through the Atmosphere
1989-12-28
34Iterative Blind Deconvolution Method and its Applications’, Opt. Lett., 13, p.54 7 . Fienup, J.R. 1978, Opt. Lett., 3, 27. Karovska , M., Nisenson, P., and...Noyes, R. (1987), ’High Angular Resolution Speckle Imaging of Alpha Ori", BAAS, Vol.19, No. 2. Karovska , M., Koechlin, L., Nisenson, P., Papaliolios...Publishers. Karovska , M., Nisenson, P., Papaliolios, C., Stendley, C. (1989), "High Angular Speckle Observations of SN1987A. Days 40-580.", BAAS, Vol
Image restoration for civil engineering structure monitoring using imaging system embedded on UAV
NASA Astrophysics Data System (ADS)
Vozel, Benoit; Dumoulin, Jean; Chehdi, Kacem
2013-04-01
Nowadays, civil engineering structures are periodically surveyed by qualified technicians (i.e. alpinist) operating visual inspection using heavy mechanical pods. This method is far to be safe, not only for civil engineering structures monitoring staff, but also for users. Due to the unceasing traffic increase, making diversions or closing lanes on bridge becomes more and more difficult. New inspection methods have to be found. One of the most promising technique is to develop inspection method using images acquired by a dedicated monitoring system operating around the civil engineering structures, without disturbing the traffic. In that context, the use of images acquired with an UAV, which fly around the structures is of particular interest. The UAV can be equipped with different vision system (digital camera, infrared sensor, video, etc.). Nonetheless, detection of small distresses on images (like cracks of 1 mm or less) depends on image quality, which is sensitive to internal parameters of the UAV (vibration modes, video exposure times, etc.) and to external parameters (turbulence, bad illumination of the scene, etc.). Though progresses were made at UAV level and at sensor level (i.e. optics), image deterioration is still an open problem. These deteriorations are mainly represented by motion blur that can be coupled with out-of-focus blur and observation noise on acquired images. In practice, deteriorations are unknown if no a priori information is available or dedicated additional instrumentation is set-up at UAV level. Image restoration processing is therefore required. This is a difficult problem [1-3] which has been intensively studied over last decades [4-12]. Image restoration can be addressed by following a blind approach or a myopic one. In both cases, it includes two processing steps that can be implemented in sequential or alternate mode. The first step carries out the identification of the blur impulse response and the second one makes use of this estimated blur kernel for performing the deconvolution of the acquired image. In the present work, different regularization methods, mainly based on the pseudo norm aforementioned Total Variation, are studied and analysed. The key point of their respective implementation, their properties and limits are investigated in this particular applicative context. References [1] J. Hadamard. Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, 1923. [2] A. N. Tihonov. On the resolution of incorrectly posed problems and regularisation method (in Russian). Doklady A. N.SSSR, 151(3), 1963. [3] C. R. Vogel. Computational Methods for inverse problems, SIAM, 2002. [4] A. K. Katsaggelos, J. Biemond, R.W. Schafer, and R. M. Mersereau, "A regularized iterative image restoration algorithm," IEEE Transactions on Signal Processing, vol.39, no. 4, pp. 914-929, 1991. [5] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, "Iterative methods for image deblurring," Proceedings of the IEEE, vol. 78, no. 5, pp. 856-883, 1990. [6] D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Processing Magazine, vol. 13, no. 3, pp. 43-64, 1996. [7] Y. L. You and M. Kaveh, "A regularization approach to joint blur identification and image restoration," IEEE Transactions on Image Processing, vol. 5, no. 3, pp. 416-428, 1996. [8] T. F. Chan and C. K. Wong, "Total variation blind deconvolution," IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 370-375, 1998. [9] S. Chardon, B. Vozel, and K. Chehdi. Parametric Blur Estimation Using the GCV Criterion and a Smoothness Constraint on the Image. Multidimensional Systems and Signal Processing Journal, Kluwer Ed., 10:395-414, 1999 [10] B. Vozel, K. Chehdi, and J. Dumoulin. Myopic image restoration for civil structures inspection using UAV (in French). In GRETSI, 2005. [11] L. Bar, N. Sochen, and N. Kiryati. Semi-blind image restoration via Mumford-Shah regularization. IEEE Transactions on Image Processing, 15(2), 2006. [12] J. H. Money and S. H. Kang, "Total variation minimizing blind deconvolution with shock filter reference," Image and Vision Computing, vol. 26, no. 2, pp. 302-314, 2008.
NASA Astrophysics Data System (ADS)
Drummond, Jack; Christou, Julian
2008-10-01
Seven main belt asteroids, 2 Pallas, 3 Juno, 4 Vesta, 16 Psyche, 87 Sylvia, 324 Bamberga, and 707 Interamnia, were imaged with the adaptive optics system on the 3 m Shane telescope at Lick Observatory in the near infrared, and their triaxial ellipsoid dimensions and rotational poles have been determined with parametric blind deconvolution. In addition, the dimensions and pole for 1 Ceres are derived from resolved images at multiple epochs, even though it is an oblate spheroid.
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
NASA Astrophysics Data System (ADS)
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
Bilinear Inverse Problems: Theory, Algorithms, and Applications
NASA Astrophysics Data System (ADS)
Ling, Shuyang
We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical guarantees and stability theory are derived and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.
No-reference image quality assessment for horizontal-path imaging scenarios
NASA Astrophysics Data System (ADS)
Rios, Carlos; Gladysz, Szymon
2013-05-01
There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
A novel SURE-based criterion for parametric PSF estimation.
Xue, Feng; Blu, Thierry
2015-02-01
We propose an unbiased estimate of a filtered version of the mean squared error--the blur-SURE (Stein's unbiased risk estimate)--as a novel criterion for estimating an unknown point spread function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective functional over a family of Wiener processings. Based on this estimated blur kernel, we then perform nonblind deconvolution using our recently developed algorithm. The SURE-based framework is exemplified with a number of parametric PSF, involving a scaling factor that controls the blur size. A typical example of such parametrization is the Gaussian kernel. The experimental results demonstrate that minimizing the blur-SURE yields highly accurate estimates of the PSF parameters, which also result in a restoration quality that is very similar to the one obtained with the exact PSF, when plugged into our recent multi-Wiener SURE-LET deconvolution algorithm. The highly competitive results obtained outline the great potential of developing more powerful blind deconvolution algorithms based on SURE-like estimates.
High Resolution Imaging Using Phase Retrieval. Volume 2
1991-10-01
aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude
Three-dimensional FLASH Laser Radar Range Estimation via Blind Deconvolution
2009-10-01
scene can result in errors due to several factors including the optical spatial impulse response, detector blurring, photon noise , timing jitter, and...estimation error include spatial blur, detector blurring, noise , timing jitter, and inter-sample targets. Unlike previous research, this paper ac- counts...for pixel coupling by defining the range image mathematical model as a 2D convolution between the system spatial impulse response and the object (target
Multichannel blind iterative image restoration.
Sroubek, Filip; Flusser, Jan
2003-01-01
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.
Recovering the fine structures in solar images
NASA Technical Reports Server (NTRS)
Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.
1994-01-01
Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.
High Resolution Imaging of the Sun with CORONAS-1
NASA Technical Reports Server (NTRS)
Karovska, Margarita
1998-01-01
We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.
Incorporating LWIR Data into Multi-Frame Blind Deconvolution of Visible Imagery
2015-10-18
18.7% 10% 12% Fermi Gamma-ray Space Telescope (GLAST) 19.7% 50% 19% Hubble Space Telescope (HST) (Night 1) 39.9% 20% 15% Iridium 82 14.4% 40% 9...LEO Satellite name Δ Δ ΔMM Delta 1 Rocket Body 12.8% 10% 7% Fermi Gamma-ray Space Telescope (GLAST) 4.3% 10% 6% Hubble Space Telescope (HST) (Night...2) 21.4% 20% -4% Hubble Space Telescope (HST) (Night 3) 41.4% 30% 1% (a) (b) (c) Fig. 3. (a) LWIR image of HST, (b) LWIR image converted
Blind Deconvolution Method of Image Deblurring Using Convergence of Variance
2011-03-24
random variable x is [9] fX (x) = 1√ 2πσ e−(x−m) 2/2σ2 −∞ < x <∞, σ > 0 (6) where m is the mean and σ is the variance. 7 Figure 1: Gaussian distribution...of the MAP Estimation algorithm when N was set to 50. The APEX method is not without its own difficulties when dealing with astro - nomical data
NASA Astrophysics Data System (ADS)
Mita, Akifumi; Okamoto, Atsushi; Funakoshi, Hisatoshi
2004-06-01
We have proposed an all-optical authentic memory with the two-wave encryption method. In the recording process, the image data are encrypted to a white noise by the random phase masks added on the input beam with the image data and the reference beam. Only reading beam with the phase-conjugated distribution of the reference beam can decrypt the encrypted data. If the encrypted data are read out with an incorrect phase distribution, the output data are transformed into a white noise. Moreover, during read out, reconstructions of the encrypted data interfere destructively resulting in zero intensity. Therefore our memory has a merit that we can detect unlawful accesses easily by measuring the output beam intensity. In our encryption method, the random phase mask on the input plane plays important roles in transforming the input image into a white noise and prohibiting to decrypt a white noise to the input image by the blind deconvolution method. Without this mask, when unauthorized users observe the output beam by using CCD in the readout with the plane wave, the completely same intensity distribution as that of Fourier transform of the input image is obtained. Therefore the encrypted image will be decrypted easily by using the blind deconvolution method. However in using this mask, even if unauthorized users observe the output beam using the same method, the encrypted image cannot be decrypted because the observed intensity distribution is dispersed at random by this mask. Thus it can be said the robustness is increased by this mask. In this report, we compare two correlation coefficients, which represents the degree of a white noise of the output image, between the output image and the input image in using this mask or not. We show that the robustness of this encryption method is increased as the correlation coefficient is improved from 0.3 to 0.1 by using this mask.
NASA Astrophysics Data System (ADS)
Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip
2012-06-01
Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
Kratochvíla, Jiří; Jiřík, Radovan; Bartoš, Michal; Standara, Michal; Starčuk, Zenon; Taxt, Torfinn
2016-03-01
One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup. © 2015 Wiley Periodicals, Inc.
Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging
Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.
2014-01-01
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
Crowded field photometry with deconvolved images.
NASA Astrophysics Data System (ADS)
Linde, P.; Spännare, S.
A local implementation of the Lucy-Richardson algorithm has been used to deconvolve a set of crowded stellar field images. The effects of deconvolution on detection limits as well as on photometric and astrometric properties have been investigated as a function of the number of deconvolution iterations. Results show that deconvolution improves detection of faint stars, although artifacts are also found. Deconvolution provides more stars measurable without significant degradation of positional accuracy. The photometric precision is affected by deconvolution in several ways. Errors due to unresolved images are notably reduced, while flux redistribution between stars and background increases the errors.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths.
Ingaramo, Maria; York, Andrew G; Hoogendoorn, Eelco; Postma, Marten; Shroff, Hari; Patterson, George H
2014-03-17
We use Richardson-Lucy (RL) deconvolution to combine multiple images of a simulated object into a single image in the context of modern fluorescence microscopy techniques. RL deconvolution can merge images with very different point-spread functions, such as in multiview light-sheet microscopes,1, 2 while preserving the best resolution information present in each image. We show that RL deconvolution is also easily applied to merge high-resolution, high-noise images with low-resolution, low-noise images, relevant when complementing conventional microscopy with localization microscopy. We also use RL deconvolution to merge images produced by different simulated illumination patterns, relevant to structured illumination microscopy (SIM)3, 4 and image scanning microscopy (ISM). The quality of our ISM reconstructions is at least as good as reconstructions using standard inversion algorithms for ISM data, but our method follows a simpler recipe that requires no mathematical insight. Finally, we apply RL deconvolution to merge a series of ten images with varying signal and resolution levels. This combination is relevant to gated stimulated-emission depletion (STED) microscopy, and shows that merges of high-quality images are possible even in cases for which a non-iterative inversion algorithm is unknown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Qiu, Xiang; Dai, Ming; Yin, Chuan-li
2017-09-01
Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.
NASA Technical Reports Server (NTRS)
Schade, David J.; Elson, Rebecca A. W.
1993-01-01
We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.
Blind identification of the kinetic parameters in three-compartment models
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri Y.; Di Bella, Edward V. R.
2004-03-01
Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.
NASA Astrophysics Data System (ADS)
Yu, Zhongzhi; Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Liu, Xu
2018-06-01
Parallel detection, which can use the additional information of a pinhole plane image taken at every excitation scan position, could be an efficient method to enhance the resolution of a confocal laser scanning microscope. In this paper, we discuss images obtained under different conditions and using different image restoration methods with parallel detection to quantitatively compare the imaging quality. The conditions include different noise levels and different detector array settings. The image restoration methods include linear deconvolution and pixel reassignment with Richard-Lucy deconvolution and with maximum-likelihood estimation deconvolution. The results show that the linear deconvolution share properties such as high-efficiency and the best performance under all different conditions, and is therefore expected to be of use for future biomedical routine research.
Constrained maximum consistency multi-path mitigation
NASA Astrophysics Data System (ADS)
Smith, George B.
2003-10-01
Blind deconvolution algorithms can be useful as pre-processors for signal classification algorithms in shallow water. These algorithms remove the distortion of the signal caused by multipath propagation when no knowledge of the environment is available. A framework in which filters that produce signal estimates from each data channel that are as consistent with each other as possible in a least-squares sense has been presented [Smith, J. Acoust. Soc. Am. 107 (2000)]. This framework provides a solution to the blind deconvolution problem. One implementation of this framework yields the cross-relation on which EVAM [Gurelli and Nikias, IEEE Trans. Signal Process. 43 (1995)] and Rietsch [Rietsch, Geophysics 62(6) (1997)] processing are based. In this presentation, partially blind implementations that have good noise stability properties are compared using Classification Operating Characteristics (CLOC) analysis. [Work supported by ONR under Program Element 62747N and NRL, Stennis Space Center, MS.
Blind channel estimation and deconvolution in colored noise using higher-order cumulants
NASA Astrophysics Data System (ADS)
Tugnait, Jitendra K.; Gummadavelli, Uma
1994-10-01
Existing approaches to blind channel estimation and deconvolution (equalization) focus exclusively on channel or inverse-channel impulse response estimation. It is well-known that the quality of the deconvolved output depends crucially upon the noise statistics also. Typically it is assumed that the noise is white and the signal-to-noise ratio is known. In this paper we remove these restrictions. Both the channel impulse response and the noise model are estimated from the higher-order (fourth, e.g.) cumulant function and the (second-order) correlation function of the received data via a least-squares cumulant/correlation matching criterion. It is assumed that the noise higher-order cumulant function vanishes (e.g., Gaussian noise, as is the case for digital communications). Consistency of the proposed approach is established under certain mild sufficient conditions. The approach is illustrated via simulation examples involving blind equalization of digital communications signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixing; Yang, LV; Xu, Kele
Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less
NASA Astrophysics Data System (ADS)
Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.
Improving space debris detection in GEO ring using image deconvolution
NASA Astrophysics Data System (ADS)
Núñez, Jorge; Núñez, Anna; Montojo, Francisco Javier; Condominas, Marta
2015-07-01
In this paper we present a method based on image deconvolution to improve the detection of space debris, mainly in the geostationary ring. Among the deconvolution methods we chose the iterative Richardson-Lucy (R-L), as the method that achieves better goals with a reasonable amount of computation. For this work, we used two sets of real 4096 × 4096 pixel test images obtained with the Telescope Fabra-ROA at Montsec (TFRM). Using the first set of data, we establish the optimal number of iterations in 7, and applying the R-L method with 7 iterations to the images, we show that the astrometric accuracy does not vary significantly while the limiting magnitude of the deconvolved images increases significantly compared to the original ones. The increase is in average about 1.0 magnitude, which means that objects up to 2.5 times fainter can be detected after deconvolution. The application of the method to the second set of test images, which includes several faint objects, shows that, after deconvolution, up to four previously undetected faint objects are detected in a single frame. Finally, we carried out a study of some economic aspects of applying the deconvolution method, showing that an important economic impact can be envisaged.
High quality image-pair-based deblurring method using edge mask and improved residual deconvolution
NASA Astrophysics Data System (ADS)
Cui, Guangmang; Zhao, Jufeng; Gao, Xiumin; Feng, Huajun; Chen, Yueting
2017-04-01
Image deconvolution problem is a challenging task in the field of image process. Using image pairs could be helpful to provide a better restored image compared with the deblurring method from a single blurred image. In this paper, a high quality image-pair-based deblurring method is presented using the improved RL algorithm and the gain-controlled residual deconvolution technique. The input image pair includes a non-blurred noisy image and a blurred image captured for the same scene. With the estimated blur kernel, an improved RL deblurring method based on edge mask is introduced to obtain the preliminary deblurring result with effective ringing suppression and detail preservation. Then the preliminary deblurring result is served as the basic latent image and the gain-controlled residual deconvolution is utilized to recover the residual image. A saliency weight map is computed as the gain map to further control the ringing effects around the edge areas in the residual deconvolution process. The final deblurring result is obtained by adding the preliminary deblurring result with the recovered residual image. An optical experimental vibration platform is set up to verify the applicability and performance of the proposed algorithm. Experimental results demonstrate that the proposed deblurring framework obtains a superior performance in both subjective and objective assessments and has a wide application in many image deblurring fields.
Applications of two-photon fluorescence microscopy in deep-tissue imaging
NASA Astrophysics Data System (ADS)
Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.
2000-07-01
Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.
Blind deconvolution of 2-D and 3-D fluorescent micrographs
NASA Astrophysics Data System (ADS)
Krishnamurthi, Vijaykumar; Liu, Yi-Hwa; Holmes, Timothy J.; Roysam, Badrinath; Turner, James N.
1992-06-01
This paper presents recent results of our reconstructions of 3-D data from Drosophila chromosomes as well as our simulations with a refined version of the algorithm used in the former. It is well known that the calibration of the point spread function (PSF) of a fluorescence microscope is a tedious process and involves esoteric techniques in most cases. This problem is further compounded in the case of confocal microscopy where the measured intensities are usually low. A number of techniques have been developed to solve this problem, all of which are methods in blind deconvolution. These are so called because the measured PSF is not required in the deconvolution of degraded images from any optical system. Our own efforts in this area involved the maximum likelihood (ML) method, the numerical solution to which is obtained by the expectation maximization (EM) algorithm. Based on the reasonable early results obtained during our simulations with 2-D phantoms, we carried out experiments with real 3-D data. We found that the blind deconvolution method using the ML approach gave reasonable reconstructions. Next we tried to perform the reconstructions using some 2-D data, but we found that the results were not encouraging. We surmised that the poor reconstructions were primarily due to the large values of dark current in the input data. This, coupled with the fact that we are likely to have similar data with considerable dark current from a confocal microscope prompted us to look into ways of constraining the solution of the PSF. We observed that in the 2-D case, the reconstructed PSF has a tendency to retain values larger than those of the theoretical PSF in regions away from the center (outside of those we considered to be its region of support). This observation motivated us to apply an upper bound constraint on the PSF in these regions. Furthermore, we constrain the solution of the PSF to be a bandlimited function, as in the case in the true situation. We have derived two separate approaches for implementing the constraint. One approach involves the mathematical rigors of Lagrange multipliers. This approach is discussed in another paper. The second approach involves an adaptation of the Gershberg Saxton algorithm, which ensures bandlimitedness and non-negativity of the PSF. Although the latter approach is mathematically less rigorous than the former, we currently favor it because it has a simpler implementation on a computer and has smaller memory requirements. The next section describes briefly the theory and derivation of these constraint equations using Lagrange multipliers.
Faceting for direction-dependent spectral deconvolution
NASA Astrophysics Data System (ADS)
Tasse, C.; Hugo, B.; Mirmont, M.; Smirnov, O.; Atemkeng, M.; Bester, L.; Hardcastle, M. J.; Lakhoo, R.; Perkins, S.; Shimwell, T.
2018-04-01
The new generation of radio interferometers is characterized by high sensitivity, wide fields of view and large fractional bandwidth. To synthesize the deepest images enabled by the high dynamic range of these instruments requires us to take into account the direction-dependent Jones matrices, while estimating the spectral properties of the sky in the imaging and deconvolution algorithms. In this paper we discuss and implement a wideband wide-field spectral deconvolution framework (DDFacet) based on image plane faceting, that takes into account generic direction-dependent effects. Specifically, we present a wide-field co-planar faceting scheme, and discuss the various effects that need to be taken into account to solve for the deconvolution problem (image plane normalization, position-dependent Point Spread Function, etc). We discuss two wideband spectral deconvolution algorithms based on hybrid matching pursuit and sub-space optimisation respectively. A few interesting technical features incorporated in our imager are discussed, including baseline dependent averaging, which has the effect of improving computing efficiency. The version of DDFacet presented here can account for any externally defined Jones matrices and/or beam patterns.
Septal penetration correction in I-131 imaging following thyroid cancer treatment
NASA Astrophysics Data System (ADS)
Barrack, Fiona; Scuffham, James; McQuaid, Sarah
2018-04-01
Whole body gamma camera images acquired after I-131 treatment for thyroid cancer can suffer from collimator septal penetration artefacts because of the high energy of the gamma photons. This results in the appearance of ‘spoke’ artefacts, emanating from regions of high activity concentration, caused by the non-isotropic attenuation of the collimator. Deconvolution has the potential to reduce such artefacts, by taking into account the non-Gaussian point-spread-function (PSF) of the system. A Richardson–Lucy deconvolution algorithm, with and without prior scatter-correction was tested as a method of reducing septal penetration in planar gamma camera images. Phantom images (hot spheres within a warm background) were acquired and deconvolution using a measured PSF was applied. The results were evaluated through region-of-interest and line profile analysis to determine the success of artefact reduction and the optimal number of deconvolution iterations and damping parameter (λ). Without scatter-correction, the optimal results were obtained with 15 iterations and λ = 0.01, with the counts in the spokes reduced to 20% of the original value, indicating a substantial decrease in their prominence. When a triple-energy-window scatter-correction was applied prior to deconvolution, the optimal results were obtained with six iterations and λ = 0.02, which reduced the spoke counts to 3% of the original value. The prior application of scatter-correction therefore produced the best results, with a marked change in the appearance of the images. The optimal settings were then applied to six patient datasets, to demonstrate its utility in the clinical setting. In all datasets, spoke artefacts were substantially reduced after the application of scatter-correction and deconvolution, with the mean spoke count being reduced to 10% of the original value. This indicates that deconvolution is a promising technique for septal penetration artefact reduction that could potentially improve the diagnostic accuracy of I-131 imaging. Novelty and significance This work has demonstrated that scatter correction combined with deconvolution can be used to substantially reduce the appearance of septal penetration artefacts in I-131 phantom and patient gamma camera planar images, enable improved visualisation of the I-131 distribution. Deconvolution with symmetric PSF has previously been used to reduce artefacts in gamma camera images however this work details the novel use of an asymmetric PSF to remove the angularly dependent septal penetration artefacts.
An improved robust blind motion de-blurring algorithm for remote sensing images
NASA Astrophysics Data System (ADS)
He, Yulong; Liu, Jin; Liang, Yonghui
2016-10-01
Shift-invariant motion blur can be modeled as a convolution of the true latent image and the blur kernel with additive noise. Blind motion de-blurring estimates a sharp image from a motion blurred image without the knowledge of the blur kernel. This paper proposes an improved edge-specific motion de-blurring algorithm which proved to be fit for processing remote sensing images. We find that an inaccurate blur kernel is the main factor to the low-quality restored images. To improve image quality, we do the following contributions. For the robust kernel estimation, first, we adapt the multi-scale scheme to make sure that the edge map could be constructed accurately; second, an effective salient edge selection method based on RTV (Relative Total Variation) is used to extract salient structure from texture; third, an alternative iterative method is introduced to perform kernel optimization, in this step, we adopt l1 and l0 norm as the priors to remove noise and ensure the continuity of blur kernel. For the final latent image reconstruction, an improved adaptive deconvolution algorithm based on TV-l2 model is used to recover the latent image; we control the regularization weight adaptively in different region according to the image local characteristics in order to preserve tiny details and eliminate noise and ringing artifacts. Some synthetic remote sensing images are used to test the proposed algorithm, and results demonstrate that the proposed algorithm obtains accurate blur kernel and achieves better de-blurring results.
NASA Astrophysics Data System (ADS)
Neuer, Marcus J.
2013-11-01
A technique for the spectral identification of strontium-90 is shown, utilising a Maximum-Likelihood deconvolution. Different deconvolution approaches are discussed and summarised. Based on the intensity distribution of the beta emission and Geant4 simulations, a combined response matrix is derived, tailored to the β- detection process in sodium iodide detectors. It includes scattering effects and attenuation by applying a base material decomposition extracted from Geant4 simulations with a CAD model for a realistic detector system. Inversion results of measurements show the agreement between deconvolution and reconstruction. A detailed investigation with additional masking sources like 40K, 226Ra and 131I shows that a contamination of strontium can be found in the presence of these nuisance sources. Identification algorithms for strontium are presented based on the derived technique. For the implementation of blind identification, an exemplary masking ratio is calculated.
Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin
2012-11-21
New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.
Improved deconvolution of very weak confocal signals.
Day, Kasey J; La Rivière, Patrick J; Chandler, Talon; Bindokas, Vytas P; Ferrier, Nicola J; Glick, Benjamin S
2017-01-01
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.
He, Xinzi; Yu, Zhen; Wang, Tianfu; Lei, Baiying; Shi, Yiyan
2018-01-01
Dermoscopy imaging has been a routine examination approach for skin lesion diagnosis. Accurate segmentation is the first step for automatic dermoscopy image assessment. The main challenges for skin lesion segmentation are numerous variations in viewpoint and scale of skin lesion region. To handle these challenges, we propose a novel skin lesion segmentation network via a very deep dense deconvolution network based on dermoscopic images. Specifically, the deep dense layer and generic multi-path Deep RefineNet are combined to improve the segmentation performance. The deep representation of all available layers is aggregated to form the global feature maps using skip connection. Also, the dense deconvolution layer is leveraged to capture diverse appearance features via the contextual information. Finally, we apply the dense deconvolution layer to smooth segmentation maps and obtain final high-resolution output. Our proposed method shows the superiority over the state-of-the-art approaches based on the public available 2016 and 2017 skin lesion challenge dataset and achieves the accuracy of 96.0% and 93.9%, which obtained a 6.0% and 1.2% increase over the traditional method, respectively. By utilizing Dense Deconvolution Net, the average time for processing one testing images with our proposed framework was 0.253 s.
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri
Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlin, Thibaut, E-mail: thibaut.merlin@telecom-bretagne.eu; Visvikis, Dimitris; Fernandez, Philippe
2015-02-15
Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimationmore » of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a wavelet-based denoising in the reconstruction process to better correct for PVE. Future work includes further evaluations of the proposed method on clinical datasets and the use of improved PSF models.« less
Improved deconvolution of very weak confocal signals
Day, Kasey J.; La Rivière, Patrick J.; Chandler, Talon; Bindokas, Vytas P.; Ferrier, Nicola J.; Glick, Benjamin S.
2017-01-01
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage. PMID:28868135
Improved deconvolution of very weak confocal signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less
Improved deconvolution of very weak confocal signals
Day, Kasey J.; La Riviere, Patrick J.; Chandler, Talon; ...
2017-06-06
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal ofmore » background noise. Here, this approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.« less
Blind source deconvolution for deep Earth seismology
NASA Astrophysics Data System (ADS)
Stefan, W.; Renaut, R.; Garnero, E. J.; Lay, T.
2007-12-01
We present an approach to automatically estimate an empirical source characterization of deep earthquakes recorded teleseismically and subsequently remove the source from the recordings by applying regularized deconvolution. A principle goal in this work is to effectively deblur the seismograms, resulting in more impulsive and narrower pulses, permitting better constraints in high resolution waveform analyses. Our method consists of two stages: (1) we first estimate the empirical source by automatically registering traces to their 1st principal component with a weighting scheme based on their deviation from this shape, we then use this shape as an estimation of the earthquake source. (2) We compare different deconvolution techniques to remove the source characteristic from the trace. In particular Total Variation (TV) regularized deconvolution is used which utilizes the fact that most natural signals have an underlying spareness in an appropriate basis, in this case, impulsive onsets of seismic arrivals. We show several examples of deep focus Fiji-Tonga region earthquakes for the phases S and ScS, comparing source responses for the separate phases. TV deconvolution is compared to the water level deconvolution, Tikenov deconvolution, and L1 norm deconvolution, for both data and synthetics. This approach significantly improves our ability to study subtle waveform features that are commonly masked by either noise or the earthquake source. Eliminating source complexities improves our ability to resolve deep mantle triplications, waveform complexities associated with possible double crossings of the post-perovskite phase transition, as well as increasing stability in waveform analyses used for deep mantle anisotropy measurements.
Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D.
2010-01-01
In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors. PMID:22294896
Fors, Octavi; Núñez, Jorge; Otazu, Xavier; Prades, Albert; Cardinal, Robert D
2010-01-01
In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats
2000-05-01
Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.
2007-02-28
Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex Medium Response, International Journal of Imaging Systems and...1767-1782, 2006. 31. Z. Mu, R. Plemmons, and P. Santago. Iterative Ultrasonic Signal and Image Deconvolution for Estimation of the Complex...rigorous mathematical and computational research on inverse problems in optical imaging of direct interest to the Army and also the intelligence agencies
Efficient volumetric estimation from plenoptic data
NASA Astrophysics Data System (ADS)
Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.
2013-03-01
The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.
Calibration of a polarimetric imaging SAR
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.
1991-01-01
Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.
Huang, Yulin; Zha, Yuebo; Wang, Yue; Yang, Jianyu
2015-06-18
The forward looking radar imaging task is a practical and challenging problem for adverse weather aircraft landing industry. Deconvolution method can realize the forward looking imaging but it often leads to the noise amplification in the radar image. In this paper, a forward looking radar imaging based on deconvolution method is presented for adverse weather aircraft landing. We first present the theoretical background of forward looking radar imaging task and its application for aircraft landing. Then, we convert the forward looking radar imaging task into a corresponding deconvolution problem, which is solved in the framework of algebraic theory using truncated singular decomposition method. The key issue regarding the selecting of the truncated parameter is addressed using generalized cross validation approach. Simulation and experimental results demonstrate that the proposed method is effective in achieving angular resolution enhancement with suppressing the noise amplification in forward looking radar imaging.
Sizing up Asteroids at Lick Observatory with Adaptive Optics
NASA Astrophysics Data System (ADS)
Drummond, Jack D.; Christou, J.
2006-12-01
Using the Shane 3 meter telescope with adaptive optics at Lick Observatory, we have determined the triaxial dimensions and rotational poles of five asteroids, 3 Juno, 4 Vesta, 16 Psyche, 87 Sylvia, and 324 Bamberga. Parametric blind deconvolution was applied to images obtained mostly at 2.5 microns in 2004 and 2006. This is the first time Bamberga’s pole has been determined, and the results for the other four asteroids are in agreement with the analysis of decades of lightcurves by others. The techniques developed here to find sizes, shapes, and poles, in only one or two nights, can be applied to smaller asteroids that are resolved with larger telescopes.
Sparsity-based image monitoring of crystal size distribution during crystallization
NASA Astrophysics Data System (ADS)
Liu, Tao; Huo, Yan; Ma, Cai Y.; Wang, Xue Z.
2017-07-01
To facilitate monitoring crystal size distribution (CSD) during a crystallization process by using an in-situ imaging system, a sparsity-based image analysis method is proposed for real-time implementation. To cope with image degradation arising from in-situ measurement subject to particle motion, solution turbulence, and uneven illumination background in the crystallizer, sparse representation of a real-time captured crystal image is developed based on using an in-situ image dictionary established in advance, such that the noise components in the captured image can be efficiently removed. Subsequently, the edges of a crystal shape in a captured image are determined in terms of the salience information defined from the denoised crystal images. These edges are used to derive a blur kernel for reconstruction of a denoised image. A non-blind deconvolution algorithm is given for the real-time reconstruction. Consequently, image segmentation can be easily performed for evaluation of CSD. The crystal image dictionary and blur kernels are timely updated in terms of the imaging conditions to improve the restoration efficiency. An experimental study on the cooling crystallization of α-type L-glutamic acid (LGA) is shown to demonstrate the effectiveness and merit of the proposed method.
Quantitative fluorescence microscopy and image deconvolution.
Swedlow, Jason R
2013-01-01
Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used to remove blurred signal from an image. There are two major types of deconvolution approaches, deblurring and restoration algorithms. Deblurring algorithms remove blur, but treat a series of optical sections as individual two-dimensional entities, and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed. Copyright © 1998 Elsevier Inc. All rights reserved.
Landini, G; Perryer, G
2009-06-01
Individuals with red-green colour-blindness (CB) commonly experience great difficulty differentiating between certain histological stain pairs, notably haematoxylin-eosin (H&E). The prevalence of red-green CB is high (6-10% of males), including among medical and laboratory personnel, and raises two major concerns: first, accessibility and equity issues during the education and training of individuals with this disability, and second, the likelihood of errors in critical tasks such as interpreting histological images. Here we show two methods to enhance images of H&E-stained samples so the differently stained tissues can be well discriminated by red-green CBs while remaining usable by people with normal vision. Method 1 involves rotating and stretching the range of H&E hues in the image to span the perceptual range of the CB observers. Method 2 digitally unmixes the original dyes using colour deconvolution into two separate images and repositions the information into hues that are more distinctly perceived. The benefits of these methods were tested in 36 volunteers with normal vision and 11 with red-green CB using a variety of H&E stained tissue sections paired with their enhanced versions. CB subjects reported they could better perceive the different stains using the enhanced images for 85% of preparations (method 1: 90%, method 2: 73%), compared to the H&E-stained original images. Many subjects with normal vision also preferred the enhanced images to the original H&E. The results suggest that these colour manipulations confer considerable advantage for those with red-green colour vision deficiency while not disadvantaging people with normal colour vision.
Dependence of quantitative accuracy of CT perfusion imaging on system parameters
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Guang-Hong
2017-03-01
Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.
Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C
2014-09-15
We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.
4Pi microscopy deconvolution with a variable point-spread function.
Baddeley, David; Carl, Christian; Cremer, Christoph
2006-09-20
To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.
NASA Astrophysics Data System (ADS)
Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.
Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.
Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K
2016-08-01
The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.
New Physical Constraints for Multi-Frame Blind Deconvolution
2014-12-10
Laboratory) Dr. Julian Christou (Large Binocular Telescope Observatory) REAL ACADEMIA DE CIENCIAS Y ARTES DE BARCELONA RAMBLA DE LOS ESTUDIOS 115... CIENCIAS Y ARTES DE BARCELONA RAMBLA DE LOS ESTUDIOS 115 BARCELONA, 08002 SPAIN 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Wen, C; Wan, W; Li, F H; Tang, D
2015-04-01
The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Total variation based image deconvolution for extended depth-of-field microscopy images
NASA Astrophysics Data System (ADS)
Hausser, F.; Beckers, I.; Gierlak, M.; Kahraman, O.
2015-03-01
One approach for a detailed understanding of dynamical cellular processes during drug delivery is the use of functionalized biocompatible nanoparticles and fluorescent markers. An appropriate imaging system has to detect these moving particles so as whole cell volumes in real time with high lateral resolution in a range of a few 100 nm. In a previous study Extended depth-of-field microscopy (EDF-microscopy) has been applied to fluorescent beads and tradiscantia stamen hair cells and the concept of real-time imaging has been proved in different microscopic modes. In principle a phase retardation system like a programmable space light modulator or a static waveplate is incorporated in the light path and modulates the wavefront of light. Hence the focal ellipsoid is smeared out and images seem to be blurred in a first step. An image restoration by deconvolution using the known point-spread-function (PSF) of the optical system is necessary to achieve sharp microscopic images of an extended depth-of-field. This work is focused on the investigation and optimization of deconvolution algorithms to solve this restoration problem satisfactorily. This inverse problem is challenging due to presence of Poisson distributed noise and Gaussian noise, and since the PSF used for deconvolution exactly fits in just one plane within the object. We use non-linear Total Variation based image restoration techniques, where different types of noise can be treated properly. Various algorithms are evaluated for artificially generated 3D images as well as for fluorescence measurements of BPAE cells.
NASA Astrophysics Data System (ADS)
van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-02-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.
Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine
2017-01-01
Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns. PMID:28220842
NASA Astrophysics Data System (ADS)
Darudi, Ahmad; Bakhshi, Hadi; Asgari, Reza
2015-05-01
In this paper we present the results of image restoration using the data taken by a Hartmann sensor. The aberration is measure by a Hartmann sensor in which the object itself is used as reference. Then the Point Spread Function (PSF) is simulated and used for image reconstruction using the Lucy-Richardson technique. A technique is presented for quantitative evaluation the Lucy-Richardson technique for deconvolution.
Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico
NASA Astrophysics Data System (ADS)
Chavez-Perez, S.; Vargas-Meleza, L.
2007-05-01
We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.
Deconvolution of interferometric data using interior point iterative algorithms
NASA Astrophysics Data System (ADS)
Theys, C.; Lantéri, H.; Aime, C.
2016-09-01
We address the problem of deconvolution of astronomical images that could be obtained with future large interferometers in space. The presentation is made in two complementary parts. The first part gives an introduction to the image deconvolution with linear and nonlinear algorithms. The emphasis is made on nonlinear iterative algorithms that verify the constraints of non-negativity and constant flux. The Richardson-Lucy algorithm appears there as a special case for photon counting conditions. More generally, the algorithm published recently by Lanteri et al. (2015) is based on scale invariant divergences without assumption on the statistic model of the data. The two proposed algorithms are interior-point algorithms, the latter being more efficient in terms of speed of calculation. These algorithms are applied to the deconvolution of simulated images corresponding to an interferometric system of 16 diluted telescopes in space. Two non-redundant configurations, one disposed around a circle and the other on an hexagonal lattice, are compared for their effectiveness on a simple astronomical object. The comparison is made in the direct and Fourier spaces. Raw "dirty" images have many artifacts due to replicas of the original object. Linear methods cannot remove these replicas while iterative methods clearly show their efficacy in these examples.
Fiori, Simone
2003-12-01
In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.
NASA Astrophysics Data System (ADS)
Almasganj, Mohammad; Adabi, Saba; Fatemizadeh, Emad; Xu, Qiuyun; Sadeghi, Hamid; Daveluy, Steven; Nasiriavanaki, Mohammadreza
2017-03-01
Optical Coherence Tomography (OCT) has a great potential to elicit clinically useful information from tissues due to its high axial and transversal resolution. In practice, an OCT setup cannot reach to its theoretical resolution due to imperfections of its components, which make its images blurry. The blurriness is different alongside regions of image; thus, they cannot be modeled by a unique point spread function (PSF). In this paper, we investigate the use of solid phantoms to estimate the PSF of each sub-region of imaging system. We then utilize Lucy-Richardson, Hybr and total variation (TV) based iterative deconvolution methods for mitigating occurred spatially variant blurriness. It is shown that the TV based method will suppress the so-called speckle noise in OCT images better than the two other approaches. The performance of proposed algorithm is tested on various samples, including several skin tissues besides the test image blurred with synthetic PSF-map, demonstrating qualitatively and quantitatively the advantage of TV based deconvolution method using spatially-variant PSF for enhancing image quality.
Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2013-08-07
Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.
1983-06-01
system, provides a convenient, low- noise , fully parallel method of improving contrast and enhancing structural detail in an image prior to input to a...directed towards problems in deconvolution, reconstruction from projections, bandlimited extrapolation, and shift varying deblurring of images...deconvolution algorithm has been studied with promising 5 results [I] for simulated motion blurs. Future work will focus on noise effects and the extension
NASA Astrophysics Data System (ADS)
Rajendran, Kishore; Leng, Shuai; Jorgensen, Steven M.; Abdurakhimova, Dilbar; Ritman, Erik L.; McCollough, Cynthia H.
2017-03-01
Changes in arterial wall perfusion are an indicator of early atherosclerosis. This is characterized by an increased spatial density of vasa vasorum (VV), the micro-vessels that supply oxygen and nutrients to the arterial wall. Detection of increased VV during contrast-enhanced computed tomography (CT) imaging is limited due to contamination from blooming effect from the contrast-enhanced lumen. We report the application of an image deconvolution technique using a measured system point-spread function, on CT data obtained from a photon-counting CT system to reduce blooming and to improve the CT number accuracy of arterial wall, which enhances detection of increased VV. A phantom study was performed to assess the accuracy of the deconvolution technique. A porcine model was created with enhanced VV in one carotid artery; the other carotid artery served as a control. CT images at an energy range of 25-120 keV were reconstructed. CT numbers were measured for multiple locations in the carotid walls and for multiple time points, pre and post contrast injection. The mean CT number in the carotid wall was compared between the left (increased VV) and right (control) carotid arteries. Prior to deconvolution, results showed similar mean CT numbers in the left and right carotid wall due to the contamination from blooming effect, limiting the detection of increased VV in the left carotid artery. After deconvolution, the mean CT number difference between the left and right carotid arteries was substantially increased at all the time points, enabling detection of the increased VV in the artery wall.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently. PMID:25849350
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Wang, Qi; Gao, Jing
2015-01-01
Due to the rapid development of motor vehicle Driver Assistance Systems (DAS), the safety problems associated with automatic driving have become a hot issue in Intelligent Transportation. The traffic sign is one of the most important tools used to reinforce traffic rules. However, traffic sign image degradation based on computer vision is unavoidable during the vehicle movement process. In order to quickly and accurately recognize traffic signs in motion-blurred images in DAS, a new image restoration algorithm based on border deformation detection in the spatial domain is proposed in this paper. The border of a traffic sign is extracted using color information, and then the width of the border is measured in all directions. According to the width measured and the corresponding direction, both the motion direction and scale of the image can be confirmed, and this information can be used to restore the motion-blurred image. Finally, a gray mean grads (GMG) ratio is presented to evaluate the image restoration quality. Compared to the traditional restoration approach which is based on the blind deconvolution method and Lucy-Richardson method, our method can greatly restore motion blurred images and improve the correct recognition rate. Our experiments show that the proposed method is able to restore traffic sign information accurately and efficiently.
Brost, Eric Edward; Watanabe, Yoichi
2018-06-01
Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.; Iida, Y.; Quintero Noda, C.; Shimizu, T.
2017-11-01
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km s-1 and +3.0 km s-1 at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.
Hom, Erik F. Y.; Marchis, Franck; Lee, Timothy K.; Haase, Sebastian; Agard, David A.; Sedat, John W.
2011-01-01
We describe an adaptive image deconvolution algorithm (AIDA) for myopic deconvolution of multi-frame and three-dimensional data acquired through astronomical and microscopic imaging. AIDA is a reimplementation and extension of the MISTRAL method developed by Mugnier and co-workers and shown to yield object reconstructions with excellent edge preservation and photometric precision [J. Opt. Soc. Am. A 21, 1841 (2004)]. Written in Numerical Python with calls to a robust constrained conjugate gradient method, AIDA has significantly improved run times over the original MISTRAL implementation. Included in AIDA is a scheme to automatically balance maximum-likelihood estimation and object regularization, which significantly decreases the amount of time and effort needed to generate satisfactory reconstructions. We validated AIDA using synthetic data spanning a broad range of signal-to-noise ratios and image types and demonstrated the algorithm to be effective for experimental data from adaptive optics–equipped telescope systems and wide-field microscopy. PMID:17491626
Automated processing for proton spectroscopic imaging using water reference deconvolution.
Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W
1994-06-01
Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.
A method to measure the presampling MTF in digital radiography using Wiener deconvolution
NASA Astrophysics Data System (ADS)
Zhou, Zhongxing; Zhu, Qingzhen; Gao, Feng; Zhao, Huijuan; Zhang, Lixin; Li, Guohui
2013-03-01
We developed a novel method for determining the presampling modulation transfer function (MTF) of digital radiography systems from slanted edge images based on Wiener deconvolution. The degraded supersampled edge spread function (ESF) was obtained from simulated slanted edge images with known MTF in the presence of poisson noise, and its corresponding ideal ESF without degration was constructed according to its central edge position. To meet the requirements of the absolute integrable condition of Fourier transformation, the origianl ESFs were mirrored to construct the symmetric pattern of ESFs. Then based on Wiener deconvolution technique, the supersampled line spread function (LSF) could be acquired from the symmetric pattern of degraded supersampled ESFs in the presence of ideal symmetric ESFs and system noise. The MTF is then the normalized magnitude of the Fourier transform of the LSF. The determined MTF showed a strong agreement with the theoritical true MTF when appropriated Wiener parameter was chosen. The effects of Wiener parameter value and the width of square-like wave peak in symmetric ESFs were illustrated and discussed. In conclusion, an accurate and simple method to measure the presampling MTF was established using Wiener deconvolution technique according to slanted edge images.
Wille, M-L; Zapf, M; Ruiter, N V; Gemmeke, H; Langton, C M
2015-06-21
The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs versus 0.18 μs standard deviations), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.
Towards real-time image deconvolution: application to confocal and STED microscopy
Zanella, R.; Zanghirati, G.; Cavicchioli, R.; Zanni, L.; Boccacci, P.; Bertero, M.; Vicidomini, G.
2013-01-01
Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings. PMID:23982127
Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar
Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu
2015-01-01
Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871
Gainer, Christian F; Utzinger, Urs; Romanowski, Marek
2012-07-01
The use of upconverting lanthanide nanoparticles in fast-scanning microscopy is hindered by a long luminescence decay time, which greatly blurs images acquired in a nondescanned mode. We demonstrate herein an image processing method based on Richardson-Lucy deconvolution that mitigates the detrimental effects of their luminescence lifetime. This technique generates images with lateral resolution on par with the system's performance, ∼1.2 μm, while maintaining an axial resolution of 5 μm or better at a scan rate comparable with traditional two-photon microscopy. Remarkably, this can be accomplished with near infrared excitation power densities of 850 W/cm(2), several orders of magnitude below those used in two-photon imaging with molecular fluorophores. By way of illustration, we introduce the use of lipids to coat and functionalize these nanoparticles, rendering them water dispersible and readily conjugated to biologically relevant ligands, in this case epidermal growth factor receptor antibody. This deconvolution technique combined with the functionalized nanoparticles will enable three-dimensional functional tissue imaging at exceptionally low excitation power densities.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media
NASA Astrophysics Data System (ADS)
Edrei, Eitan; Scarcelli, Giuliano
2016-09-01
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
Edrei, Eitan; Scarcelli, Giuliano
2016-09-16
High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.
NASA Astrophysics Data System (ADS)
Schawinski, Kevin; Zhang, Ce; Zhang, Hantian; Fowler, Lucas; Santhanam, Gokula Krishnan
2017-05-01
Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10× cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.
Imaging samples in silica aerogel using an experimental point spread function.
White, Amanda J; Ebel, Denton S
2015-02-01
Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.
NASA Astrophysics Data System (ADS)
Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.
2018-01-01
The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.
Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C
2010-11-01
This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
2014-06-01
Purpose: To implement a new method that integrates deconvolution with segmentation under the variational framework for PET tumor delineation. Methods: Deconvolution and segmentation are both challenging problems in image processing. The partial volume effect (PVE) makes tumor boundaries in PET image blurred which affects the accuracy of tumor segmentation. Deconvolution aims to obtain a PVE-free image, which can help to improve the segmentation accuracy. Conversely, a correct localization of the object boundaries is helpful to estimate the blur kernel, and thus assist in the deconvolution. In this study, we proposed to solve the two problems simultaneously using a variational methodmore » so that they can benefit each other. The energy functional consists of a fidelity term and a regularization term, and the blur kernel was limited to be the isotropic Gaussian kernel. We minimized the energy functional by solving the associated Euler-Lagrange equations and taking the derivative with respect to the parameters of the kernel function. An alternate minimization method was used to iterate between segmentation, deconvolution and blur-kernel recovery. The performance of the proposed method was tested on clinic PET images of patients with non-Hodgkin's lymphoma, and compared with seven other segmentation methods using the dice similarity index (DSI) and volume error (VE). Results: Among all segmentation methods, the proposed one (DSI=0.81, VE=0.05) has the highest accuracy, followed by the active contours without edges (DSI=0.81, VE=0.25), while other methods including the Graph Cut and the Mumford-Shah (MS) method have lower accuracy. A visual inspection shows that the proposed method localizes the real tumor contour very well. Conclusion: The result showed that deconvolution and segmentation can contribute to each other. The proposed variational method solve the two problems simultaneously, and leads to a high performance for tumor segmentation in PET. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oba, T.; Riethmüller, T. L.; Solanki, S. K.
Solar granules are bright patterns surrounded by dark channels, called intergranular lanes, in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode /SP data inmore » an attempt to recover the original solar scene. Our results show a significant enhancement in both the convective upflows and downflows but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of −3.0 km s{sup −1} and +3.0 km s{sup −1} at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution, the net LOS velocity averaged over the whole field of view lies close to zero as expected in a rough sense from mass balance.« less
Least-Squares Deconvolution of Compton Telescope Data with the Positivity Constraint
NASA Technical Reports Server (NTRS)
Wheaton, William A.; Dixon, David D.; Tumer, O. Tumay; Zych, Allen D.
1993-01-01
We describe a Direct Linear Algebraic Deconvolution (DLAD) approach to imaging of data from Compton gamma-ray telescopes. Imposition of the additional physical constraint, that all components of the model be non-negative, has been found to have a powerful effect in stabilizing the results, giving spatial resolution at or near the instrumental limit. A companion paper (Dixon et al. 1993) presents preliminary images of the Crab Nebula region using data from COMPTEL on the Compton Gamma-Ray Observatory.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Michailovich, O.; Rathi, Y.
2014-03-01
High angular resolution diffusion imaging (HARDI) improves upon more traditional diffusion tensor imaging (DTI) in its ability to resolve the orientations of crossing and branching neural fibre tracts. The HARDI signals are measured over a spherical shell in q-space, and are usually used as an input to q-ball imaging (QBI) which allows estimation of the diffusion orientation distribution functions (ODFs) associated with a given region-of interest. Unfortunately, the partial nature of single-shell sampling imposes limits on the estimation accuracy. As a result, the recovered ODFs may not possess sufficient resolution to reveal the orientations of fibre tracts which cross each other at acute angles. A possible solution to the problem of limited resolution of QBI is provided by means of spherical deconvolution, a particular instance of which is sparse deconvolution. However, while capable of yielding high-resolution reconstructions over spacial locations corresponding to white matter, such methods tend to become unstable when applied to anatomical regions with a substantial content of isotropic diffusion. To resolve this problem, a new deconvolution approach is proposed in this paper. Apart from being uniformly stable across the whole brain, the proposed method allows one to quantify the isotropic component of cerebral diffusion, which is known to be a useful diagnostic measure by itself.
A stopping criterion to halt iterations at the Richardson-Lucy deconvolution of radiographic images
NASA Astrophysics Data System (ADS)
Almeida, G. L.; Silvani, M. I.; Souza, E. S.; Lopes, R. T.
2015-07-01
Radiographic images, as any experimentally acquired ones, are affected by spoiling agents which degrade their final quality. The degradation caused by agents of systematic character, can be reduced by some kind of treatment such as an iterative deconvolution. This approach requires two parameters, namely the system resolution and the best number of iterations in order to achieve the best final image. This work proposes a novel procedure to estimate the best number of iterations, which replaces the cumbersome visual inspection by a comparison of numbers. These numbers are deduced from the image histograms, taking into account the global difference G between them for two subsequent iterations. The developed algorithm, including a Richardson-Lucy deconvolution procedure has been embodied into a Fortran program capable to plot the 1st derivative of G as the processing progresses and to stop it automatically when this derivative - within the data dispersion - reaches zero. The radiograph of a specially chosen object acquired with thermal neutrons from the Argonauta research reactor at Institutode Engenharia Nuclear - CNEN, Rio de Janeiro, Brazil, have undergone this treatment with fair results.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
Two-dimensional imaging of two types of radicals by the CW-EPR method
NASA Astrophysics Data System (ADS)
Czechowski, Tomasz; Krzyminiewski, Ryszard; Jurga, Jan; Chlewicki, Wojciech
2008-01-01
The CW-EPR method of image reconstruction is based on sample rotation in a magnetic field with a constant gradient (50 G/cm). In order to obtain a projection (radical density distribution) along a given direction, the EPR spectra are recorded with and without the gradient. Deconvolution, then gives the distribution of the spin density. Projection at 36 different angles gives the information that is necessary for reconstruction of the radical distribution. The problem becomes more complex when there are at least two types of radicals in the sample, because the deconvolution procedure does not give satisfactory results. We propose a method to calculate the projections for each radical, based on iterative procedures. The images of density distribution for each radical obtained by our procedure have proved that the method of deconvolution, in combination with iterative fitting, provides correct results. The test was performed on a sample of polymer PPS Br 111 ( p-phenylene sulphide) with glass fibres and minerals. The results indicated a heterogeneous distribution of radicals in the sample volume. The images obtained were in agreement with the known shape of the sample.
Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho
2018-01-01
To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p < 0.001) and for the overall image quality (mean, 3.8; range, 3.3-4.0; p < 0.001). The most preferred anatomical regions were the azygoesophageal recess, thoracic spine, and unobscured lung. The visibility of chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.
DECONV-TOOL: An IDL based deconvolution software package
NASA Technical Reports Server (NTRS)
Varosi, F.; Landsman, W. B.
1992-01-01
There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.
Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.
2002-01-01
Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.
DECONVOLUTION OF IMAGES FROM BLAST 2005: INSIGHT INTO THE K3-50 AND IC 5146 STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Arabindo; Netterfield, Calvin B.; Ade, Peter A. R.
2011-04-01
We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed itsmore » performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and {sup 12}CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below {approx} 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.« less
Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions
NASA Astrophysics Data System (ADS)
Roy, Arabindo; Ade, Peter A. R.; Bock, James J.; Brunt, Christopher M.; Chapin, Edward L.; Devlin, Mark J.; Dicker, Simon R.; France, Kevin; Gibb, Andrew G.; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Martin, Peter G.; Mauskopf, Philip; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Viero, Marco P.; Wiebe, Donald V.
2011-04-01
We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4farcm5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and 12CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.
Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.
Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S
2010-03-01
This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.
Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition
NASA Astrophysics Data System (ADS)
Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding
2018-02-01
Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.
Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia
2014-08-01
We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Far-infrared continuum studies from the Kuiper Airborne Observatory are described that are designed to fully exploit the small-scale spatial information that this facility can provide. This work gives the clearest picture to data on the structure of galactic and extragalactic star forming regions in the far infrared. Work is presently being done with slit scans taken simultaneously at 50 and 100 microns, yielding one-dimensional data. Scans of sources in different directions have been used to get certain information on two dimensional structure. Planned work with linear arrays will allow us to generalize our techniques to two dimensional image restoration. For faint sources, spatial information at the diffraction limit of the telescope is obtained, while for brighter sources, nonlinear deconvolution techniques have allowed us to improve over the diffraction limit by as much as a factor of four. Information on the details of the color temperature distribution is derived as well. This is made possible by the accuracy with which the instrumental point-source profile (PSP) is determined at both wavelengths. While these two PSPs are different, data at different wavelengths can be compared by proper spatial filtering. Considerable effort has been devoted to implementing deconvolution algorithms. Nonlinear deconvolution methods offer the potential of superresolution -- that is, inference of power at spatial frequencies that exceed D lambda. This potential is made possible by the implicit assumption by the algorithm of positivity of the deconvolved data, a universally justifiable constraint for photon processes. We have tested two nonlinear deconvolution algorithms on our data; the Richardson-Lucy (R-L) method and the Maximum Entropy Method (MEM). The limits of image deconvolution techniques for achieving spatial resolution are addressed.
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-21
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
NASA Astrophysics Data System (ADS)
Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua
2016-11-01
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.
Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution.
Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl
2016-11-16
Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.
Ströhl, Florian; Kaminski, Clemens F
2015-01-16
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
NASA Astrophysics Data System (ADS)
Ströhl, Florian; Kaminski, Clemens F.
2015-03-01
We demonstrate the reconstruction of images obtained by multifocal structured illumination microscopy, MSIM, using a joint Richardson-Lucy, jRL-MSIM, deconvolution algorithm, which is based on an underlying widefield image-formation model. The method is efficient in the suppression of out-of-focus light and greatly improves image contrast and resolution. Furthermore, it is particularly well suited for the processing of noise corrupted data. The principle is verified on simulated as well as experimental data and a comparison of the jRL-MSIM approach with the standard reconstruction procedure, which is based on image scanning microscopy, ISM, is made. Our algorithm is efficient and freely available in a user friendly software package.
Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution
NASA Astrophysics Data System (ADS)
Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl
2016-11-01
Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.
An optimized algorithm for multiscale wideband deconvolution of radio astronomical images
NASA Astrophysics Data System (ADS)
Offringa, A. R.; Smirnov, O.
2017-10-01
We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the casa multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than casa msmfs. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the moresane deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
Hojjatoleslami, S A; Avanaki, M R N; Podoleanu, A Gh
2013-08-10
Optical coherence tomography (OCT) has the potential for skin tissue characterization due to its high axial and transverse resolution and its acceptable depth penetration. In practice, OCT cannot reach the theoretical resolutions due to imperfections of some of the components used. One way to improve the quality of the images is to estimate the point spread function (PSF) of the OCT system and deconvolve it from the output images. In this paper, we investigate the use of solid phantoms to estimate the PSF of the imaging system. We then utilize iterative Lucy-Richardson deconvolution algorithm to improve the quality of the images. The performance of the proposed algorithm is demonstrated on OCT images acquired from a variety of samples, such as epoxy-resin phantoms, fingertip skin and basaloid larynx and eyelid tissues.
A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution
NASA Astrophysics Data System (ADS)
Zuo, B.; Hu, X.; Li, H.
2011-12-01
A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure illustrates that more information and details structure of the actual model are enhanced through the proposed enhancement algorithm. Using the proposed enhancement method can help us gain a clearer insight into the results of the inversions and help make better informed decisions.
A note on the blind deconvolution of multiple sparse signals from unknown subspaces
NASA Astrophysics Data System (ADS)
Cosse, Augustin
2017-08-01
This note studies the recovery of multiple sparse signals, xn ∈ ℝL, n = 1, . . . , N, from the knowledge of their convolution with an unknown point spread function h ∈ ℝL. When the point spread function is known to be nonzero, |h[k]| > 0, this blind deconvolution problem can be relaxed into a linear, ill-posed inverse problem in the vector concatenating the unknown inputs xn together with the inverse of the filter, d ∈ ℝL where d[k] := 1/h[k]. When prior information is given on the input subspaces, the resulting overdetermined linear system can be solved efficiently via least squares (see Ling et al. 20161). When no information is given on those subspaces, and the inputs are only known to be sparse, it still remains possible to recover these inputs along with the filter by considering an additional l1 penalty. This note certifies exact recovery of both the unknown PSF and unknown sparse inputs, from the knowledge of their convolutions, as soon as the number of inputs N and the dimension of each input, L , satisfy L ≳ N and N ≳ T2max, up to log factors. Here Tmax = maxn{Tn} and Tn, n = 1, . . . , N denote the supports of the inputs xn. Our proof system combines the recent results on blind deconvolution via least squares to certify invertibility of the linear map encoding the convolutions, with the construction of a dual certificate following the structure first suggested in Candés et al. 2007.2 Unlike in these papers, however, it is not possible to rely on the norm ||(A*TAT)-1|| to certify recovery. We instead use a combination of the Schur Complement and Neumann series to compute an expression for the inverse (A*TAT)-1. Given this expression, it is possible to show that the poorly scaled blocks in (A*TAT)-1 are multiplied by the better scaled ones or vanish in the construction of the certificate. Recovery is certified with high probablility on the choice of the supports and distribution of the signs of each input xn on the support. The paper follows the line of previous work by Wang et al. 20163 where the authors guarantee recovery for subgaussian × Bernoulli inputs satisfying 𝔼xn|k| ∈ [1/10, 1] as soon as N ≳ L. Examples of applications include seismic imaging with unknown source or marine seismic data deghosting, magnetic resonance autocalibration or multiple channel estimation in communication. Numerical experiments are provided along with a discussion on the sample complexity tightness.
Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi
2017-08-01
Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.
2012-03-01
geometry of reflection from a smooth (or mirror-like) surface [27]. In passive polarimetry , the angle of polarization (AoP) provides information about... polarimetry for remote sens- ing applications”. Appl. Opt., 45(22):5453–5469, Aug 2006. URL http://ao.osa.org/abstract.cfm?URI=ao-45-22-5453. 27
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.
2017-02-01
CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
Statistical Deconvolution for Superresolution Fluorescence Microscopy
Mukamel, Eran A.; Babcock, Hazen; Zhuang, Xiaowei
2012-01-01
Superresolution microscopy techniques based on the sequential activation of fluorophores can achieve image resolution of ∼10 nm but require a sparse distribution of simultaneously activated fluorophores in the field of view. Image analysis procedures for this approach typically discard data from crowded molecules with overlapping images, wasting valuable image information that is only partly degraded by overlap. A data analysis method that exploits all available fluorescence data, regardless of overlap, could increase the number of molecules processed per frame and thereby accelerate superresolution imaging speed, enabling the study of fast, dynamic biological processes. Here, we present a computational method, referred to as deconvolution-STORM (deconSTORM), which uses iterative image deconvolution in place of single- or multiemitter localization to estimate the sample. DeconSTORM approximates the maximum likelihood sample estimate under a realistic statistical model of fluorescence microscopy movies comprising numerous frames. The model incorporates Poisson-distributed photon-detection noise, the sparse spatial distribution of activated fluorophores, and temporal correlations between consecutive movie frames arising from intermittent fluorophore activation. We first quantitatively validated this approach with simulated fluorescence data and showed that deconSTORM accurately estimates superresolution images even at high densities of activated fluorophores where analysis by single- or multiemitter localization methods fails. We then applied the method to experimental data of cellular structures and demonstrated that deconSTORM enables an approximately fivefold or greater increase in imaging speed by allowing a higher density of activated fluorophores/frame. PMID:22677393
Lee, Myung W.
1999-01-01
Processing of 20 seismic profiles acquired in the Chesapeake Bay area aided in analysis of the details of an impact structure and allowed more accurate mapping of the depression caused by a bolide impact. Particular emphasis was placed on enhancement of seismic reflections from the basement. Application of wavelet deconvolution after a second zero-crossing predictive deconvolution improved the resolution of shallow reflections, and application of a match filter enhanced the basement reflections. The use of deconvolution and match filtering with a two-dimensional signal enhancement technique (F-X filtering) significantly improved the interpretability of seismic sections.
Application of the Lucy–Richardson Deconvolution Procedure to High Resolution Photoemission Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameau, J.; Yang, H.-B.; Johnson, P.D.
2010-07-01
Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space.
Adaptive recovery of motion blur point spread function from differently exposed images
NASA Astrophysics Data System (ADS)
Albu, Felix; Florea, Corneliu; Drîmbarean, Alexandru; Zamfir, Adrian
2010-01-01
Motion due to digital camera movement during the image capture process is a major factor that degrades the quality of images and many methods for camera motion removal have been developed. Central to all techniques is the correct recovery of what is known as the Point Spread Function (PSF). A very popular technique to estimate the PSF relies on using a pair of gyroscopic sensors to measure the hand motion. However, the errors caused either by the loss of the translational component of the movement or due to the lack of precision in gyro-sensors measurements impede the achievement of a good quality restored image. In order to compensate for this, we propose a method that begins with an estimation of the PSF obtained from 2 gyro sensors and uses a pair of under-exposed image together with the blurred image to adaptively improve it. The luminance of the under-exposed image is equalized with that of the blurred image. An initial estimation of the PSF is generated from the output signal of 2 gyro sensors. The PSF coefficients are updated using 2D-Least Mean Square (LMS) algorithms with a coarse-to-fine approach on a grid of points selected from both images. This refined PSF is used to process the blurred image using known deblurring methods. Our results show that the proposed method leads to superior PSF support and coefficient estimation. Also the quality of the restored image is improved compared to 2 gyro only approach or to blind image de-convolution results.
NASA Astrophysics Data System (ADS)
Sapia, Mark Angelo
2000-11-01
Three-dimensional microscope images typically suffer from reduced resolution due to the effects of convolution, optical aberrations and out-of-focus blurring. Two- dimensional ultrasound images are also degraded by convolutional bluffing and various sources of noise. Speckle noise is a major problem in ultrasound images. In microscopy and ultrasound, various methods of digital filtering have been used to improve image quality. Several methods of deconvolution filtering have been used to improve resolution by reversing the convolutional effects, many of which are based on regularization techniques and non-linear constraints. The technique discussed here is a unique linear filter for deconvolving 3D fluorescence microscopy or 2D ultrasound images. The process is to solve for the filter completely in the spatial-domain using an adaptive algorithm to converge to an optimum solution for de-blurring and resolution improvement. There are two key advantages of using an adaptive solution: (1)it efficiently solves for the filter coefficients by taking into account all sources of noise and degraded resolution at the same time, and (2)achieves near-perfect convergence to the ideal linear deconvolution filter. This linear adaptive technique has other advantages such as avoiding artifacts of frequency-domain transformations and concurrent adaptation to suppress noise. Ultimately, this approach results in better signal-to-noise characteristics with virtually no edge-ringing. Many researchers have not adopted linear techniques because of poor convergence, noise instability and negative valued data in the results. The methods presented here overcome many of these well-documented disadvantages and provide results that clearly out-perform other linear methods and may also out-perform regularization and constrained algorithms. In particular, the adaptive solution is most responsible for overcoming the poor performance associated with linear techniques. This linear adaptive approach to deconvolution is demonstrated with results of restoring blurred phantoms for both microscopy and ultrasound and restoring 3D microscope images of biological cells and 2D ultrasound images of human subjects (courtesy of General Electric and Diasonics, Inc.).
A robust hidden Markov Gauss mixture vector quantizer for a noisy source.
Pyun, Kyungsuk Peter; Lim, Johan; Gray, Robert M
2009-07-01
Noise is ubiquitous in real life and changes image acquisition, communication, and processing characteristics in an uncontrolled manner. Gaussian noise and Salt and Pepper noise, in particular, are prevalent in noisy communication channels, camera and scanner sensors, and medical MRI images. It is not unusual for highly sophisticated image processing algorithms developed for clean images to malfunction when used on noisy images. For example, hidden Markov Gauss mixture models (HMGMM) have been shown to perform well in image segmentation applications, but they are quite sensitive to image noise. We propose a modified HMGMM procedure specifically designed to improve performance in the presence of noise. The key feature of the proposed procedure is the adjustment of covariance matrices in Gauss mixture vector quantizer codebooks to minimize an overall minimum discrimination information distortion (MDI). In adjusting covariance matrices, we expand or shrink their elements based on the noisy image. While most results reported in the literature assume a particular noise type, we propose a framework without assuming particular noise characteristics. Without denoising the corrupted source, we apply our method directly to the segmentation of noisy sources. We apply the proposed procedure to the segmentation of aerial images with Salt and Pepper noise and with independent Gaussian noise, and we compare our results with those of the median filter restoration method and the blind deconvolution-based method, respectively. We show that our procedure has better performance than image restoration-based techniques and closely matches to the performance of HMGMM for clean images in terms of both visual segmentation results and error rate.
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data
Pnevmatikakis, Eftychios A.; Soudry, Daniel; Gao, Yuanjun; Machado, Timothy A.; Merel, Josh; Pfau, David; Reardon, Thomas; Mu, Yu; Lacefield, Clay; Yang, Weijian; Ahrens, Misha; Bruno, Randy; Jessell, Thomas M.; Peterka, Darcy S.; Yuste, Rafael; Paninski, Liam
2016-01-01
SUMMARY We present a modular approach for analyzing calcium imaging recordings of large neuronal ensembles. Our goal is to simultaneously identify the locations of the neurons, demix spatially overlapping components, and denoise and deconvolve the spiking activity from the slow dynamics of the calcium indicator. Our approach relies on a constrained nonnegative matrix factorization that expresses the spatiotemporal fluorescence activity as the product of a spatial matrix that encodes the spatial footprint of each neuron in the optical field and a temporal matrix that characterizes the calcium concentration of each neuron over time. This framework is combined with a novel constrained deconvolution approach that extracts estimates of neural activity from fluorescence traces, to create a spatiotemporal processing algorithm that requires minimal parameter tuning. We demonstrate the general applicability of our method by applying it to in vitro and in vivo multineuronal imaging data, whole-brain light-sheet imaging data, and dendritic imaging data. PMID:26774160
ESO/ST-ECF Data Analysis Workshop, 5th, Garching, Germany, Apr. 26, 27, 1993, Proceedings
NASA Astrophysics Data System (ADS)
Grosbol, Preben; de Ruijsscher, Resy
1993-01-01
Various papers on astronomical data analysis are presented. Individual optics addressed include: surface photometry of early-type galaxies, wavelet transform and adaptive filtering, package for surface photometry of galaxies, calibration of large-field mosaics, surface photometry of galaxies with HST, wavefront-supported image deconvolution, seeing effects on elliptical galaxies, multiple algorithms deconvolution program, enhancement of Skylab X-ray images, MIDAS procedures for the image analysis of E-S0 galaxies, photometric data reductions under MIDAS, crowded field photometry with deconvolved images, the DENIS Deep Near Infrared Survey. Also discussed are: analysis of astronomical time series, detection of low-amplitude stellar pulsations, new SOT method for frequency analysis, chaotic attractor reconstruction and applications to variable stars, reconstructing a 1D signal from irregular samples, automatic analysis for time series with large gaps, prospects for content-based image retrieval, redshift survey in the South Galactic Pole Region.
Image processing tools dedicated to quantification in 3D fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dieterlen, A.; De Meyer, A.; Colicchio, B.; Le Calvez, S.; Haeberlé, O.; Jacquey, S.
2006-05-01
3-D optical fluorescent microscopy now becomes an efficient tool for the volume investigation of living biological samples. Developments in instrumentation have permitted to beat off the conventional Abbe limit. In any case the recorded image can be described by the convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. Due to the finite resolution of the instrument, the original object is recorded with distortions and blurring, and contaminated by noise. This induces that relevant biological information cannot be extracted directly from raw data stacks. If the goal is 3-D quantitative analysis, then to assess optimal performance of the instrument and to ensure the data acquisition reproducibility, the system characterization is mandatory. The PSF represents the properties of the image acquisition system; we have proposed the use of statistical tools and Zernike moments to describe a 3-D PSF system and to quantify the variation of the PSF. This first step toward standardization is helpful to define an acquisition protocol optimizing exploitation of the microscope depending on the studied biological sample. Before the extraction of geometrical information and/or intensities quantification, the data restoration is mandatory. Reduction of out-of-focus light is carried out computationally by deconvolution process. But other phenomena occur during acquisition, like fluorescence photo degradation named "bleaching", inducing an alteration of information needed for restoration. Therefore, we have developed a protocol to pre-process data before the application of deconvolution algorithms. A large number of deconvolution methods have been described and are now available in commercial package. One major difficulty to use this software is the introduction by the user of the "best" regularization parameters. We have pointed out that automating the choice of the regularization level; also greatly improves the reliability of the measurements although it facilitates the use. Furthermore, to increase the quality and the repeatability of quantitative measurements a pre-filtering of images improves the stability of deconvolution process. In the same way, the PSF prefiltering stabilizes the deconvolution process. We have shown that Zemike polynomials can be used to reconstruct experimental PSF, preserving system characteristics and removing the noise contained in the PSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Marco; DIBRIS, University of Genoa, Via Opera Pia 13, Genoa 16145; Diaspro, Alberto
2014-12-08
Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated andmore » experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.« less
NASA Astrophysics Data System (ADS)
Ham, S.; Oh, Y.; Choi, K.; Lee, I.
2018-05-01
Detecting unregistered buildings from aerial images is an important task for urban management such as inspection of illegal buildings in green belt or update of GIS database. Moreover, the data acquisition platform of photogrammetry is evolving from manned aircraft to UAVs (Unmanned Aerial Vehicles). However, it is very costly and time-consuming to detect unregistered buildings from UAV images since the interpretation of aerial images still relies on manual efforts. To overcome this problem, we propose a system which automatically detects unregistered buildings from UAV images based on deep learning methods. Specifically, we train a deconvolutional network with publicly opened geospatial data, semantically segment a given UAV image into a building probability map and compare the building map with existing GIS data. Through this procedure, we could detect unregistered buildings from UAV images automatically and efficiently. We expect that the proposed system can be applied for various urban management tasks such as monitoring illegal buildings or illegal land-use change.
Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery
NASA Technical Reports Server (NTRS)
Smith, Jeffrey
2012-01-01
The Iterative Transform Phase Diversity algorithm is designed to solve the problem of recovering the wavefront in the exit pupil of an optical system and the object being imaged. This algorithm builds upon the robust convergence capability of Variable Sampling Mapping (VSM), in combination with the known success of various deconvolution algorithms. VSM is an alternative method for enforcing the amplitude constraints of a Misell-Gerchberg-Saxton (MGS) algorithm. When provided the object and additional optical parameters, VSM can accurately recover the exit pupil wavefront. By combining VSM and deconvolution, one is able to simultaneously recover the wavefront and the object.
Comparison of image deconvolution algorithms on simulated and laboratory infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, D.
1994-11-15
We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.
Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments
2012-01-01
acoustic field experiment (FAF06) conducted in July 2006 off the west coast of Italy. Dr. Heechun Song of the Scripps Institution of Oceanography...from seismic surveying and whale calls recorded on a vertical array with 12 elements. The whale call frequencies range from 100 to 500 Hz and the water...underway. Together Ms. Abadi and Dr. Thode had considerable success simulating the experimental environment, deconvolving whale calls, ranging the
Unsupervised Blind Deconvolution
2013-09-01
is: )()()( uuu HOI (4) where u is a spatial frequency vector in the Fourier plane and )(u I , )(u O and )(u H stand for...exposures is given by: uuu LEL HHH 0 (6) uuu SES HHH 0 (7) where uLE H represents
An improved method for polarimetric image restoration in interferometry
NASA Astrophysics Data System (ADS)
Pratley, Luke; Johnston-Hollitt, Melanie
2016-11-01
Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.
Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition
Yeh, Fang-Cheng; Tseng, Wen-Yih Isaac
2013-01-01
Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffusion decomposition, which obtains a sparse solution of fiber ODF by decomposing the diffusion ODF obtained from q-ball imaging (QBI), diffusion spectrum imaging (DSI), or generalized q-sampling imaging (GQI). A simulation study, a phantom study, and an in-vivo study were conducted to examine the performance of diffusion decomposition. The simulation study showed that diffusion decomposition was more accurate than both constrained spherical deconvolution and ball-and-sticks model. The phantom study showed that the angular error of diffusion decomposition was significantly lower than those of constrained spherical deconvolution at 30° crossing and ball-and-sticks model at 60° crossing. The in-vivo study showed that diffusion decomposition can be applied to QBI, DSI, or GQI, and the resolved fiber orientations were consistent regardless of the diffusion sampling schemes and diffusion reconstruction methods. The performance of diffusion decomposition was further demonstrated by resolving crossing fibers on a 30-direction QBI dataset and a 40-direction DSI dataset. In conclusion, diffusion decomposition can improve angular resolution and resolve crossing fibers in datasets with low SNR and substantially reduced number of diffusion encoding directions. These advantages may be valuable for human connectome studies and clinical research. PMID:24146772
SU-E-I-08: Investigation of Deconvolution Methods for Blocker-Based CBCT Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, C; Jin, M; Ouyang, L
2015-06-15
Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An “ideal” projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used tomore » recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (∼20 RMSE) can achieve 4-fold improvement over the direct method (∼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation compared to the direct method.« less
Space Imagery Enhancement Investigations; Software for Processing Middle Atmosphere Data
2011-12-19
SUPPLEMENTARY NOTES 14. ABSTRACT This report summarizes work related to optical superresolution for the ideal incoherent 1D spread function...optical superresolution , incoherent image eigensystem, image registration, multi-frame image reconstruction, deconvolution 16. SECURITY... Superresolution -Related Investigations ............................................................................. 1 2.2.1 Eigensystem Formulations
Jo, Javier A.; Fang, Qiyin; Marcu, Laura
2007-01-01
We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338
Microseismic source locations with deconvolution migration
NASA Astrophysics Data System (ADS)
Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu
2018-03-01
Identifying and locating microseismic events are critical problems in hydraulic fracturing monitoring for unconventional resources exploration. In contrast to active seismic data, microseismic data are usually recorded with unknown source excitation time and source location. In this study, we introduce deconvolution migration by combining deconvolution interferometry with interferometric cross-correlation migration (CCM). This method avoids the need for the source excitation time and enhances both the spatial resolution and robustness by eliminating the square term of the source wavelets from CCM. The proposed algorithm is divided into the following three steps: (1) generate the virtual gathers by deconvolving the master trace with all other traces in the microseismic gather to remove the unknown excitation time; (2) migrate the virtual gather to obtain a single image of the source location and (3) stack all of these images together to get the final estimation image of the source location. We test the proposed method on complex synthetic and field data set from the surface hydraulic fracturing monitoring, and compare the results with those obtained by interferometric CCM. The results demonstrate that the proposed method can obtain a 50 per cent higher spatial resolution image of the source location, and more robust estimation with smaller errors of the localization especially in the presence of velocity model errors. This method is also beneficial for source mechanism inversion and global seismology applications.
Temporal and spatial binning of TCSPC data to improve signal-to-noise ratio and imaging speed
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Beier, Hope T.
2016-03-01
Time-correlated single photon counting (TCSPC) is the most robust method for fluorescence lifetime imaging using laser scanning microscopes. However, TCSPC is inherently slow making it ineffective to capture rapid events due to the single photon product per laser pulse causing extensive acquisition time limitations and the requirement of low fluorescence emission efficiency to avoid bias of measurement towards short lifetimes. Furthermore, thousands of photons per pixel are required for traditional instrument response deconvolution and fluorescence lifetime exponential decay estimation. Instrument response deconvolution and fluorescence exponential decay estimation can be performed in several ways including iterative least squares minimization and Laguerre deconvolution. This paper compares the limitations and accuracy of these fluorescence decay analysis techniques to accurately estimate double exponential decays across many data characteristics including various lifetime values, lifetime component weights, signal-to-noise ratios, and number of photons detected. Furthermore, techniques to improve data fitting, including binning data temporally and spatially, are evaluated as methods to improve decay fits and reduce image acquisition time. Simulation results demonstrate that binning temporally to 36 or 42 time bins, improves accuracy of fits for low photon count data. Such a technique reduces the required number of photons for accurate component estimation if lifetime values are known, such as for commercial fluorescent dyes and FRET experiments, and improve imaging speed 10-fold.
Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.
Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard
2017-04-01
Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C
2013-05-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.
2014-01-01
Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422
NASA Astrophysics Data System (ADS)
Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li
2014-09-01
This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.
Acoustic Blind Deconvolution and Unconventional Nonlinear Beamforming in Shallow Ocean Environments
2013-09-30
this year’s work, contains natural bowhead whale calls recorded with a 12-element vertical array in the Arctic Ocean off the north coast of Alaska...This data set was collected and shared with this research project by Dr. Aaron Thode of Scripps Institution of Oceanography. The whale call frequencies...performance of STR and conventional mode filtering for ranging the recorded whale calls. Figure 1. Arctic ocean sound channel used for simulations of
Frequency-Difference Source Localization and Blind Deconvolution in Shallow Ocean Environments
2014-09-30
investigations were recorded as part of the KAM11 experiment and were provided for this research effort by Dr. Heechun Song of Scripps Institution of...kHz ≤ f ≤ 20 kHz, could not. Based on this simulation success, suitable broadband experimental measurements were sought, and Dr. Song of SIO...PROJECTS This project currently uses acoustic array recordings of sounds that propagated through the ocean. In FY14, Dr. Heechun Song of SIO
The research of multi-frame target recognition based on laser active imaging
NASA Astrophysics Data System (ADS)
Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan
2013-09-01
Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.
Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J
2014-05-01
In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.
Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne
2017-02-15
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.
Haji-Saeed, B; Sengupta, S K; Testorf, M; Goodhue, W; Khoury, J; Woods, C L; Kierstead, J
2006-05-10
We propose and demonstrate a new photorefractive real-time holographic deconvolution technique for adaptive one-way image transmission through aberrating media by means of four-wave mixing. In contrast with earlier methods, which typically required various codings of the exact phase or two-way image transmission for correcting phase distortion, our technique relies on one-way image transmission through the use of exact phase information. Our technique can simultaneously correct both amplitude and phase distortions. We include several forms of image degradation, various test cases, and experimental results. We characterize the performance as a function of the input beam ratios for four metrics: signal-to-noise ratio, normalized root-mean-square error, edge restoration, and peak-to-total energy ratio. In our characterization we use false-color graphic images to display the best beam-intensity ratio two-dimensional region(s) for each of these metrics. Test cases are simulated at the optimal values of the beam-intensity ratios. We demonstrate our results through both experiment and computer simulation.
iSAP: Interactive Sparse Astronomical Data Analysis Packages
NASA Astrophysics Data System (ADS)
Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.
2013-03-01
iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.
Yang, Hao; MacLaren, Ian; Jones, Lewys; ...
2017-04-01
Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Thus coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light andmore » heavy elements at atomic resolution. Here, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Our experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.« less
Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J
1975-01-01
The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.
Gokhin, David S.; Fowler, Velia M.
2016-01-01
The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyze periodic fluorescence signals in nonmuscle cells. PMID:27644080
Parallel Implementation of a Frozen Flow Based Wavefront Reconstructor
NASA Astrophysics Data System (ADS)
Nagy, J.; Kelly, K.
2013-09-01
Obtaining high resolution images of space objects from ground based telescopes is challenging, often requiring the use of a multi-frame blind deconvolution (MFBD) algorithm to remove blur caused by atmospheric turbulence. In order for an MFBD algorithm to be effective, it is necessary to obtain a good initial estimate of the wavefront phase. Although wavefront sensors work well in low turbulence situations, they are less effective in high turbulence, such as when imaging in daylight, or when imaging objects that are close to the Earth's horizon. One promising approach, which has been shown to work very well in high turbulence settings, uses a frozen flow assumption on the atmosphere to capture the inherent temporal correlations present in consecutive frames of wavefront data. Exploiting these correlations can lead to more accurate estimation of the wavefront phase, and the associated PSF, which leads to more effective MFBD algorithms. However, with the current serial implementation, the approach can be prohibitively expensive in situations when it is necessary to use a large number of frames. In this poster we describe a parallel implementation that overcomes this constraint. The parallel implementation exploits sparse matrix computations, and uses the Trilinos package developed at Sandia National Laboratories. Trilinos provides a variety of core mathematical software for parallel architectures that have been designed using high quality software engineering practices, The package is open source, and portable to a variety of high-performance computing architectures.
Matthews, Grant
2004-12-01
The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.
An l1-TV algorithm for deconvolution with salt and pepper noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, Brendt; Rodriguez, Paul
2008-01-01
There has recently been considerable interest in applying Total Variation with an {ell}{sup 1} data fidelity term to the denoising of images subject to salt and pepper noise, but the extension of this formulation to more general problems, such as deconvolution, has received little attention, most probably because most efficient algorithms for {ell}{sup 1}-TV denoising can not handle more general inverse problems. We apply the Iteratively Reweighted Norm algorithm to this problem, and compare performance with an alternative algorithm based on the Mumford-Shah functional.
Processing strategy for water-gun seismic data from the Gulf of Mexico
Lee, Myung W.; Hart, Patrick E.; Agena, Warren F.
2000-01-01
In order to study the regional distribution of gas hydrates and their potential relationship to a large-scale sea-fl oor failures, more than 1,300 km of near-vertical-incidence seismic profi les were acquired using a 15-in3 water gun across the upper- and middle-continental slope in the Garden Banks and Green Canyon regions of the Gulf of Mexico. Because of the highly mixed phase water-gun signature, caused mainly by a precursor of the source arriving about 18 ms ahead of the main pulse, a conventional processing scheme based on the minimum phase assumption is not suitable for this data set. A conventional processing scheme suppresses the reverberations and compresses the main pulse, but the failure to suppress precursors results in complex interference between the precursors and primary refl ections, thus obscuring true refl ections. To clearly image the subsurface without interference from the precursors, a wavelet deconvolution based on the mixedphase assumption using variable norm is attempted. This nonminimum- phase wavelet deconvolution compresses a longwave- train water-gun signature into a simple zero-phase wavelet. A second-zero-crossing predictive deconvolution followed by a wavelet deconvolution suppressed variable ghost arrivals attributed to the variable depths of receivers. The processing strategy of using wavelet deconvolution followed by a secondzero- crossing deconvolution resulted in a sharp and simple wavelet and a better defi nition of the polarity of refl ections. Also, the application of dip moveout correction enhanced lateral resolution of refl ections and substantially suppressed coherent noise.
BP Piscium: its flaring disc imaged with SPHERE/ZIMPOL★
NASA Astrophysics Data System (ADS)
de Boer, J.; Girard, J. H.; Canovas, H.; Min, M.; Sitko, M.; Ginski, C.; Jeffers, S. V.; Mawet, D.; Milli, J.; Rodenhuis, M.; Snik, F.; Keller, C. U.
2017-03-01
Whether BP Piscium (BP Psc) is either a pre-main sequence T Tauri star at d ≈ 80 pc, or a post-main sequence G giant at d ≈ 300 pc is still not clear. As a first-ascent giant, it is the first to be observed with a molecular and dust disc. Alternatively, BP Psc would be among the nearest T Tauri stars with a protoplanetary disc (PPD). We investigate whether the disc geometry resembles typical PPDs, by comparing polarimetric images with radiative transfer models. Our Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE)/Zurich IMaging Polarimeter (ZIMPOL) observations allow us to perform polarimetric differential imaging, reference star differential imaging, and Richardson-Lucy deconvolution. We present the first visible light polarization and intensity images of the disc of BP Psc. Our deconvolution confirms the disc shape as detected before, mainly showing the southern side of the disc. In polarized intensity the disc is imaged at larger detail and also shows the northern side, giving it the typical shape of high-inclination flared discs. We explain the observed disc features by retrieving the large-scale geometry with MCMAX radiative transfer modelling, which yields a strongly flared model, atypical for discs of T Tauri stars.
Lightfield super-resolution through turbulence
NASA Astrophysics Data System (ADS)
Trujillo-Sevilla, Juan M.; Fernández-Valdivia, Juan J.; Rodríguez-Ramos, Luis F.; Cárdenes, Óscar G.; Marichal-Hernández, José G.; Javidi, Bahram; Rodríguez-Ramos, José M.
2015-05-01
In this paper, we use information from the light field to obtain a distribution map of the wavefront phase. This distribution is associated with changes in refractive index which are relevant in the propagation of light through a heterogeneous or turbulent medium. Through the measurement of the wavefront phase from a single shot, it is possible to make the deconvolution of blurred images affected by the turbulence. If this deconvolution is applied to light fields obtained by plenoptic acquisition, the original optical resolution associated to the objective lens is restored, it means we are using a kind of superresolution technique that works properly even in the presence of turbulence. The wavefront phase can also be estimated from the defocused images associated to the light field: we present here preliminary results using this approach.
Hybrid Imaging for Extended Depth of Field Microscopy
NASA Astrophysics Data System (ADS)
Zahreddine, Ramzi Nicholas
An inverse relationship exists in optical systems between the depth of field (DOF) and the minimum resolvable feature size. This trade-off is especially detrimental in high numerical aperture microscopy systems where resolution is pushed to the diffraction limit resulting in a DOF on the order of 500 nm. Many biological structures and processes of interest span over micron scales resulting in significant blurring during imaging. This thesis explores a two-step computational imaging technique known as hybrid imaging to create extended DOF (EDF) microscopy systems with minimal sacrifice in resolution. In the first step a mask is inserted at the pupil plane of the microscope to create a focus invariant system over 10 times the traditional DOF, albeit with reduced contrast. In the second step the contrast is restored via deconvolution. Several EDF pupil masks from the literature are quantitatively compared in the context of biological microscopy. From this analysis a new mask is proposed, the incoherently partitioned pupil with binary phase modulation (IPP-BPM), that combines the most advantageous properties from the literature. Total variation regularized deconvolution models are derived for the various noise conditions and detectors commonly used in biological microscopy. State of the art algorithms for efficiently solving the deconvolution problem are analyzed for speed, accuracy, and ease of use. The IPP-BPM mask is compared with the literature and shown to have the highest signal-to-noise ratio and lowest mean square error post-processing. A prototype of the IPP-BPM mask is fabricated using a combination of 3D femtosecond glass etching and standard lithography techniques. The mask is compared against theory and demonstrated in biological imaging applications.
Wang, Gordon; Smith, Stephen J.
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA2 (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is ∼220 nm and ∼600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50–100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes. PMID:22956902
Wang, Gordon; Smith, Stephen J
2012-01-01
Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective) and at the axial plane to 1.4nλ/NA(2) (n = refractive index of the imaging medium, 1.51 for oil immersion), which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT), with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF), a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.
A-law/Mu-law Dynamic Range Compression Deconvolution (Preprint)
2008-02-04
noise filtering via the spectrum proportionality filter, and second the signal deblurring via the inverse filter. In this process for regions when...is the joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, 6(A’) is the gray level recovered image...joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered image using the A-law
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
NASA Astrophysics Data System (ADS)
Gurrola, H.; Berdine, A.; Pulliam, J.
2017-12-01
Interference between Ps phases and reverberations (PPs, PSs phases and reverberations thereof) make it difficult to use Ps receiver functions (RF) in regions with thick sediments. Crustal reverberations typically interfere with Ps phases from the lithosphere-asthenosphere boundary (LAB). We have developed a method to separate Ps phases from reverberations by deconvolution of all the data recorded at a seismic station by removing phases from a single wavefront at each iteration of the deconvolution (wavefield iterative deconvolution or WID). We applied WID to data collected in the Gulf Coast and Llano Front regions of Texas by the EarthScope Transportable array and by a temporary deployment of 23 broadband seismometers (deployed by Texas Tech and Baylor Universities). The 23 station temporary deployment was 300 km long; crossing from Matagorda Island onto the Llano uplift. 3-D imaging using these data shows that the deepest part of the sedimentary basin may be inboard of the coastline. The Moho beneath the Gulf Coast plain does not appear in many of the images. This could be due to interference from reverberations from shallower layers or it may indicate the lack of a strong velocity contrast at the Moho perhaps due to serpentinization of the uppermost mantle. The Moho appears to be flat, at 40 km) beneath most of the Llano uplift but may thicken to the south and thin beneath the Coastal plain. After application of WID, we were able to identify a negatively polarized Ps phase consistent with LAB depths identified in Sp RF images. The LAB appears to be 80-100 km deep beneath most of the coast but is 100 to 120 km deep beneath the Llano uplift. There are other negatively polarized phases between 160 and 200 km depths beneath the Gulf Coast and the Llano Uplift. These deeper phases may indicate that, in this region, the LAB is transitional in nature and rather than a discrete boundary.
On an image reconstruction method for ECT
NASA Astrophysics Data System (ADS)
Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro
2007-04-01
An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.
2015-06-11
These images, taken by NASA's New Horizons' Long Range Reconnaissance Imager (LORRI), show four different "faces" of Pluto as it rotates about its axis with a period of 6.4 days. All the images have been rotated to align Pluto's rotational axis with the vertical direction (up-down) on the figure, as depicted schematically in the upper left. From left to right, the images were taken when Pluto's central longitude was 17, 63, 130, and 243 degrees, respectively. The date of each image, the distance of the New Horizons spacecraft from Pluto, and the number of days until Pluto closest approach are all indicated in the figure.These images show dramatic variations in Pluto's surface features as it rotates. When a very large, dark region near Pluto's equator appears near the limb, it gives Pluto a distinctly, but false, non-spherical appearance. Pluto is known to be almost perfectly spherical from previous data. These images are displayed at four times the native LORRI image size, and have been processed using a method called deconvolution, which sharpens the original images to enhance features on Pluto. Deconvolution can occasionally introduce "false" details, so the finest details in these pictures will need to be confirmed by images taken from closer range in the next few weeks. All of the images are displayed using the same brightness scale. http://photojournal.jpl.nasa.gov/catalog/PIA19686
NASA Astrophysics Data System (ADS)
Zhang, Yongliang; Day-Uei Li, David
2017-02-01
This comment is to clarify that Poisson noise instead of Gaussian noise shall be included to assess the performances of least-squares deconvolution with Laguerre expansion (LSD-LE) for analysing fluorescence lifetime imaging data obtained from time-resolved systems. Moreover, we also corrected an equation in the paper. As the LSD-LE method is rapid and has the potential to be widely applied not only for diagnostic but for wider bioimaging applications, it is desirable to have precise noise models and equations.
Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2000-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
On a Mathematical Theory of Coded Exposure
2014-08-01
formulae that give the MSE and SNR of the final crisp image 1. Assumes the Shannon-Whittaker framework that i) requires band limited (with a fre...represents the ideal crisp image, i.e., the image that one would observed if there were no noise whatsoever, no motion, with a perfect optical system...discrete. In addition, the image obtained by a coded exposure camera requires to undergo a deconvolution to get the final crisp image. Note that the
Terahertz imaging for subsurface investigation of art paintings
NASA Astrophysics Data System (ADS)
Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.
2017-08-01
Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.
Maia Mapper: high definition XRF imaging in the lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude
2015-09-01
Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Maia Mapper: high definition XRF imaging in the lab
Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...
2018-03-13
Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less
Maia Mapper: high definition XRF imaging in the lab
NASA Astrophysics Data System (ADS)
Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.
2018-03-01
Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.
Temperature imaging with ultrasonic transmission tomography for treatment control
NASA Astrophysics Data System (ADS)
Chu, Zheqi; Pinter, Stephen. Z.; Yuan, Jie; Scarpelli, Matthew L.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Duric, Neb; Carson, Paul L.
2017-03-01
Hyperthermia is a promising method to enhance chemo- or radiation therapy of breast cancer and the time-temperature profile in the target and surrounding areas is the primary monitoring method. Unlike with thermal ablation of lesions, in hyperthermia there are not good alternative treatment monitoring quantities. However, there is less problem with non-monotonic thermal coefficients of speed of sound used with ultrasonic imaging of temperature. This paper tests a long discussed but little investigated method of imaging temperature using speed of sound and proposes methods of reducing edge enhancement artifacts in the temperature image. Normally, when directly using the speed of sound to reconstruct the temperature image around the tumor, there will be an abnormal bipolar edge enhancement along the boundary between two materials with different speeds of sound at a given temperature. This due to partial volume effects and can be diminished by regularized, weighted deconvolution. An initial, manual deconvolution is shown, as well as an EMD (Empirical Mode Decomposition) method. Here we use the continuity and other constraints to choose the coefficient, reprocess the temperature field image and take the mean variations of the temperature in the adjacent pixels as the judgment criteria. Both methods effectively reduce the edge enhancement and produce a more precise image of temperature.
NASA Astrophysics Data System (ADS)
Floberg, J. M.; Holden, J. E.
2013-02-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.
Elson, D S; Jo, J A
2007-01-01
We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues. PMID:19503759
Three Channel Polarimetric Based Data Deconvolution
2011-03-01
which have been degraded by atmospheric turbulence and noise . This thesis explains in entirety the process used for deblurring and de- noising images...10 3.1.2 Noise Model...Blur and Noise .............................................................................................................. 34 5.3 Laboratory Results
Methods in Astronomical Image Processing
NASA Astrophysics Data System (ADS)
Jörsäter, S.
A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, S. K.; Riethmüller, T. L.; Barthol, P.
The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments andmore » the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.« less
Filtering, Coding, and Compression with Malvar Wavelets
1993-12-01
speech coding techniques being investigated by the military (38). Imagery: Space imagery often requires adaptive restoration to deblur out-of-focus...and blurred image, find an estimate of the ideal image using a priori information about the blur, noise , and the ideal image" (12). The research for...recording can be described as the original signal convolved with impulses , which appear as echoes in the seismic event. The term deconvolution indicates
Wen, C; Ma, Y J
2018-03-01
The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data
NASA Astrophysics Data System (ADS)
Oktariena, M.; Triyoso, W.
2018-03-01
Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the pitfall area is reduced and some morphed as background lithology. Gabor Deconvolution removes the attenuation by performing Gabor Domain spectral division, which in extension also reduces interpretation pitfall in deeper target seismic.
NASA Astrophysics Data System (ADS)
Gong, Changfei; Zeng, Dong; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua
2016-03-01
Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for diagnosis and risk stratification of coronary artery disease by assessing the myocardial perfusion hemodynamic maps (MPHM). Meanwhile, the repeated scanning of the same region results in a relatively large radiation dose to patients potentially. In this work, we present a robust MPCT deconvolution algorithm with adaptive-weighted tensor total variation regularization to estimate residue function accurately under the low-dose context, which is termed `MPD-AwTTV'. More specifically, the AwTTV regularization takes into account the anisotropic edge property of the MPCT images compared with the conventional total variation (TV) regularization, which can mitigate the drawbacks of TV regularization. Subsequently, an effective iterative algorithm was adopted to minimize the associative objective function. Experimental results on a modified XCAT phantom demonstrated that the present MPD-AwTTV algorithm outperforms and is superior to other existing deconvolution algorithms in terms of noise-induced artifacts suppression, edge details preservation and accurate MPHM estimation.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, Thomas G.; Ives, Jeffrey T.
1993-01-01
A method and apparatus for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means.
Imagerie des étoiles évoluées par interférométrie. Réarrangement de pupille
NASA Astrophysics Data System (ADS)
Lacour, Sylvestre
2010-03-01
Atmospheric turbulence is an important limit to high angular resolution in astronomy. Interferometry resolved this issue by filtering the incoming light with single-mode fibers. Thanks to this technique, we obtained with the IOTA interferometer very precise measurements of the spatial frequencies of seven evolved stars. From these measurements, we performed a blind deconvolution to restore an image of the surface of the stars. Six of the them, Betelgeuse, Mu Cep, R leo, Mira, Chi Cyg and CH Cyg, feature very asymmetrical brightness distributions. On the other hand, the Arcturus data are extremely well fitted with a simple limb-darkened photospheric disc. From the observations of chi Cyg, we show that the star is surrounded by a molecular shell undergoing a ballistic motion. We propose to use the same technique of spatial filtering with single-mode fibers to correct for the effect of turbulence in the pupil of a telescope. Because the pupil is redundant, this technique does require a remapping of the pupil. We developed a dedicated algorithm to show that it was possible to reconstruct images at the diffraction limit of the telescope free of any speckle noise. Our simulations show that a high dynamic range (over 10^6) could be obtained in the visible on an 8 meter telescope. A lab experiment is under construction to validate the concept of this new instrument.
Restoration of uneven illumination in light sheet microscopy images.
Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel
2011-08-01
Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
Laser Illuminated Imaging: Multiframe Beam Tilt Tracking and Deconvolution Algorithm
2013-03-01
same way with atmospheric turbulence resulting in tilt, blur and other higher order distortions on the returned image. Using the Fourier shift...of the target image with distortions such as speckle, blurring and defocus mitigated via a multiframe processing strategy. Atmospheric turbulence ...propagating a beam in a turbulent atmosphere with a beam width at the target is smaller than the field of view (FOV) of the receiver optics. 1.2
Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan
2016-01-01
Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407
NASA Technical Reports Server (NTRS)
Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)
2001-01-01
The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.
Expectation maximization for hard X-ray count modulation profiles
NASA Astrophysics Data System (ADS)
Benvenuto, F.; Schwartz, R.; Piana, M.; Massone, A. M.
2013-07-01
Context. This paper is concerned with the image reconstruction problem when the measured data are solar hard X-ray modulation profiles obtained from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) instrument. Aims: Our goal is to demonstrate that a statistical iterative method classically applied to the image deconvolution problem is very effective when utilized to analyze count modulation profiles in solar hard X-ray imaging based on rotating modulation collimators. Methods: The algorithm described in this paper solves the maximum likelihood problem iteratively and encodes a positivity constraint into the iterative optimization scheme. The result is therefore a classical expectation maximization method this time applied not to an image deconvolution problem but to image reconstruction from count modulation profiles. The technical reason that makes our implementation particularly effective in this application is the use of a very reliable stopping rule which is able to regularize the solution providing, at the same time, a very satisfactory Cash-statistic (C-statistic). Results: The method is applied to both reproduce synthetic flaring configurations and reconstruct images from experimental data corresponding to three real events. In this second case, the performance of expectation maximization, when compared to Pixon image reconstruction, shows a comparable accuracy and a notably reduced computational burden; when compared to CLEAN, shows a better fidelity with respect to the measurements with a comparable computational effectiveness. Conclusions: If optimally stopped, expectation maximization represents a very reliable method for image reconstruction in the RHESSI context when count modulation profiles are used as input data.
2015-07-10
This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705
Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution
Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry
2014-01-01
One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718
High resolution imaging and wavefront aberration correction in plenoptic systems.
Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M
2014-09-01
Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.
Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J
2013-10-07
Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.
NASA Astrophysics Data System (ADS)
Ahi, Kiarash; Anwar, Mehdi
2016-04-01
This paper introduces a novel reconstruction approach for enhancing the resolution of the terahertz (THz) images. For this purpose the THz imaging equation is derived. According to our best knowledge we are reporting the first THz imaging equation by this paper. This imaging equation is universal for THz far-field imaging systems and can be used for analyzing, describing and modeling of these systems. The geometry and behavior of Gaussian beams in far-field region imply that the FWHM of the THz beams diverge as the frequencies of the beams decrease. Thus, the resolution of the measurement decreases in lower frequencies. On the other hand, the depth of penetration of THz beams decreases as frequency increases. Roughly speaking beams in sub 1.5 THz, are transmitted into integrated circuit (IC) packages and the similar packaged objects. Thus, it is not possible to use the THz pulse with higher frequencies in order to achieve higher resolution inspection of packaged items. In this paper, after developing the 3-D THz point spread function (PSF) of the scanning THz beam and then the THz imaging equation, THz images are enhanced through deconvolution of the THz PSF and THz images. As a result, the resolution has been improved several times beyond the physical limitations of the THz measurement setup in the far-field region and sub-Nyquist images have been achieved. Particularly, MSE and SSIḾ have been increased by 27% and 50% respectively. Details as small as 0.2 mm were made visible in the THz images which originally reveals no details smaller than 2.2 mm. In other words the resolution of the images has been increased by 10 times. The accuracy of the reconstructed images was proved by high resolution X-ray images.
Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery
Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin
2017-01-01
This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565
Improving the imaging of calcifications in CT by histogram-based selective deblurring
NASA Astrophysics Data System (ADS)
Rollano-Hijarrubia, Empar; van der Meer, Frits; van der Lugt, Add; Weinans, Harrie; Vrooman, Henry; Vossepoel, Albert; Stokking, Rik
2005-04-01
Imaging of small high-density structures, such as calcifications, with computed tomography (CT) is limited by the spatial resolution of the system. Blur causes small calcifications to be imaged with lower contrast and overestimated volume, thereby hampering the analysis of vessels. The aim of this work is to reduce the blur of calcifications by applying three-dimensional (3D) deconvolution. Unfortunately, the high-frequency amplification of the deconvolution produces edge-related ring artifacts and enhances noise and original artifacts, which degrades the imaging of low-density structures. A method, referred to as Histogram-based Selective Deblurring (HiSD), was implemented to avoid these negative effects. HiSD uses the histogram information to generate a restored image in which the low-intensity voxel information of the observed image is combined with the high-intensity voxel information of the deconvolved image. To evaluate HiSD we scanned four in-vitro atherosclerotic plaques of carotid arteries with a multislice spiral CT and with a microfocus CT (μCT), used as reference. Restored images were generated from the observed images, and qualitatively and quantitatively compared with their corresponding μCT images. Transverse views and maximum-intensity projections of restored images show the decrease of blur of the calcifications in 3D. Measurements of the areas of 27 calcifications and total volumes of calcification of 4 plaques show that the overestimation of calcification was smaller for restored images (mean-error: 90% for area; 92% for volume) than for observed images (143%; 213%, respectively). The qualitative and quantitative analyses show that the imaging of calcifications in CT can be improved considerably by applying HiSD.
Methods and apparatus for analysis of chromatographic migration patterns
Stockham, T.G.; Ives, J.T.
1993-12-28
A method and apparatus are presented for sharpening signal peaks in a signal representing the distribution of biological or chemical components of a mixture separated by a chromatographic technique such as, but not limited to, electrophoresis. A key step in the method is the use of a blind deconvolution technique, presently embodied as homomorphic filtering, to reduce the contribution of a blurring function to the signal encoding the peaks of the distribution. The invention further includes steps and apparatus directed to determination of a nucleotide sequence from a set of four such signals representing DNA sequence data derived by electrophoretic means. 16 figures.
NASA Astrophysics Data System (ADS)
Broggini, Filippo; Wapenaar, Kees; van der Neut, Joost; Snieder, Roel
2014-01-01
An iterative method is presented that allows one to retrieve the Green's function originating from a virtual source located inside a medium using reflection data measured only at the acquisition surface. In addition to the reflection response, an estimate of the travel times corresponding to the direct arrivals is required. However, no detailed information about the heterogeneities in the medium is needed. The iterative scheme generalizes the Marchenko equation for inverse scattering to the seismic reflection problem. To give insight in the mechanism of the iterative method, its steps for a simple layered medium are analyzed using physical arguments based on the stationary phase method. The retrieved Green's wavefield is shown to correctly contain the multiples due to the inhomogeneities present in the medium. Additionally, a variant of the iterative scheme enables decomposition of the retrieved wavefield into its downgoing and upgoing components. These wavefields then enable creation of a ghost-free image of the medium with either cross correlation or multidimensional deconvolution, presenting an advantage over standard prestack migration.
Computational Imaging in Demanding Conditions
2015-11-18
spatiotemporal domain where such blur is not present. Detailed Accomplishments: ● Removing Atmospheric Turbulence via Space-Invariant Deconvolution: ○ To...given image sequence distorted by atmospheric turbulence . This approach reduces the space and time-varying deblurring problem to a shift invariant...SUBJECT TERMS Image processing, Computational imaging, turbulence , blur, enhancement 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18
Application of digital image processing techniques to astronomical imagery, 1979
NASA Technical Reports Server (NTRS)
Lorre, J. J.
1979-01-01
Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.
Image analysis of the AXAF VETA-I x ray mirror
NASA Technical Reports Server (NTRS)
Freeman, Mark D.; Hughes, John P; Vanspeybroeck, L.; Weisskopf, M.; Bilbro, J.
1992-01-01
Initial core scan data of the VETA-I x-ray mirror proved disappointing, showing considerable unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing important insight into the nature of the distortion. Image deconvolutions using a ray traced model PSF was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM 0.22 arcsec) as a result.
NASA Astrophysics Data System (ADS)
Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.
2014-06-01
Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.
Two-photon speckle illumination for super-resolution microscopy.
Negash, Awoke; Labouesse, Simon; Chaumet, Patrick C; Belkebir, Kamal; Giovannini, Hugues; Allain, Marc; Idier, Jérôme; Sentenac, Anne
2018-06-01
We present a numerical study of a microscopy setup in which the sample is illuminated with uncontrolled speckle patterns and the two-photon excitation fluorescence is collected on a camera. We show that, using a simple deconvolution algorithm for processing the speckle low-resolution images, this wide-field imaging technique exhibits resolution significantly better than that of two-photon excitation scanning microscopy or one-photon excitation bright-field microscopy.
Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng
2017-02-01
Guided-wave echoes from weak reflective pipe defects are usually interfered by coherent noise and difficult to interpret. In this paper, a deconvolution imaging method is proposed to reconstruct defect images from synthetically focused guided-wave signals, with enhanced axial resolution. A compact transducer, circumferentially scanning around the pipe, is used to receive guided-wave echoes from discontinuities at a distance. This method achieves a higher circumferential sampling density than arrayed transducers-up to 72 sampling spots per lap for a pipe with a diameter of 180 mm. A noise suppression technique is used to enhance the signal-to-noise ratio. The enhancement in both signal-to-noise ratio and axial resolution of the method is experimentally validated by the detection of two kinds of artificial defects: a pitting defect of 5 mm in diameter and 0.9 mm in maximum depth, and iron pieces attached to the pipe surface. A reconstructed image of the pitting defect is obtained with a 5.87 dB signal-to-noise ratio. It is revealed that a high circumferential sampling density is important for the enhancement of the inspection sensitivity, by comparing the images reconstructed with different down-sampling ratios. A modified full width at half maximum is used as the criterion to evaluate the circumferential extent of the region where iron pieces are attached, which is applicable for defects with inhomogeneous reflection intensity.
A distance-driven deconvolution method for CT image-resolution improvement
NASA Astrophysics Data System (ADS)
Han, Seokmin; Choi, Kihwan; Yoo, Sang Wook; Yi, Jonghyon
2016-12-01
The purpose of this research is to achieve high spatial resolution in CT (computed tomography) images without hardware modification. The main idea is to consider geometry optics model, which can provide the approximate blurring PSF (point spread function) kernel, which varies according to the distance from the X-ray tube to each point. The FOV (field of view) is divided into several band regions based on the distance from the X-ray source, and each region is deconvolved with a different deconvolution kernel. As the number of subbands increases, the overshoot of the MTF (modulation transfer function) curve increases first. After that, the overshoot begins to decrease while still showing a larger MTF than the normal FBP (filtered backprojection). The case of five subbands seems to show balanced performance between MTF boost and overshoot minimization. It can be seen that, as the number of subbands increases, the noise (STD) can be seen to show a tendency to decrease. The results shows that spatial resolution in CT images can be improved without using high-resolution detectors or focal spot wobbling. The proposed algorithm shows promising results in improving spatial resolution while avoiding excessive noise boost.
Stephen, Michael J; Poindexter, Brian J; Moolman, Johan A; Sheikh-Hamad, David; Bick, Roger J
2009-01-01
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape. Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made. All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a ‘dormant’ or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle. Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183). PMID:19430572
Identification and restoration in 3D fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dieterlen, Alain; Xu, Chengqi; Haeberle, Olivier; Hueber, Nicolas; Malfara, R.; Colicchio, B.; Jacquey, Serge
2004-06-01
3-D optical fluorescent microscopy becomes now an efficient tool for volumic investigation of living biological samples. The 3-D data can be acquired by Optical Sectioning Microscopy which is performed by axial stepping of the object versus the objective. For any instrument, each recorded image can be described by a convolution equation between the original object and the Point Spread Function (PSF) of the acquisition system. To assess performance and ensure the data reproducibility, as for any 3-D quantitative analysis, the system indentification is mandatory. The PSF explains the properties of the image acquisition system; it can be computed or acquired experimentally. Statistical tools and Zernike moments are shown appropriate and complementary to describe a 3-D system PSF and to quantify the variation of the PSF as function of the optical parameters. Some critical experimental parameters can be identified with these tools. This is helpful for biologist to define an aquisition protocol optimizing the use of the system. Reduction of out-of-focus light is the task of 3-D microscopy; it is carried out computationally by deconvolution process. Pre-filtering the images improves the stability of deconvolution results, now less dependent on the regularization parameter; this helps the biologists to use restoration process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, B; Smith, C; La Riviere, P
2016-06-15
Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less
NASA Astrophysics Data System (ADS)
Ainiwaer, A.; Gurrola, H.
2017-12-01
In traditional Ps receiver functions (RFs) imaging, PPs and PSs phases from the shallow layers (near surface and crust) can be miss stacked as Ps phases or interfere with deeper Ps phases. To overcome interference between phases, we developed a method to produce phase specific Ps, PPs and PSs receiver functions (wavefield iterative deconvolution or WID). Rather than preforming a separate deconvolution of each seismogram recorded at a station, WID processes all the seismograms from a seismic station in a single run. Each iteration of WID identifies the most prominent phase remaining in the data set, based on the shape of its wavefield (or moveout curve), and then places this phase on the appropriate phase specific RF. As a result, we produce PsRFs that are free of PPs and PSs phase; and reverberations thereof. We also produce phase specific PPsRFs and PSsRFs but moveout curves for these phases and their higher order reverberations are not as distinct from one another. So the PPsRFs and the PSsRFs are not as clean as the PsRFs. These phase specific RFs can be stacked to image 2-D or 3-D Earth structure using common conversion point (CCP) stacking or migration. We applied WID to 524 Southern California seismic stations to construct 3-D PsRF image of lithosphere beneath southern California. These CCP images exhibit a Ps phases from the Moho and the lithosphere asthenosphere boundary (LAB) that are free of interference from the crustal reverberations. The Moho and LAB were found to be deepest beneath the Sierra Nevada, Tansverse Range and Peninsular Range. Shallow Moho and Lab is apparent beneath the Inner Borderland and Salton Trough. The LAB depth that we estimate is in close agreement to recent published results that used Sp imaging (Lekic et al., 2011). We also found complicated structure beneath Mojave Block where mid crustal features are apparent and anomalous Ps phases at 60 km depth are observed beneath Western Mojave dessert.
NASA Astrophysics Data System (ADS)
Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong
2007-10-01
The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring blood flow and vascular volume with the commercially available reference standard of the deconvolution-based approach. The lack of substantial agreement between the measurements of vascular transit time and permeability-surface area product may be attributed to the different tracer kinetic principles employed by both models and the detailed capillary tissue exchange physiological modeling of the DP technique.
Instrument-induced spatial crosstalk deconvolution algorithm
NASA Technical Reports Server (NTRS)
Wright, Valerie G.; Evans, Nathan L., Jr.
1986-01-01
An algorithm has been developed which reduces the effects of (deconvolves) instrument-induced spatial crosstalk in satellite image data by several orders of magnitude where highly precise radiometry is required. The algorithm is based upon radiance transfer ratios which are defined as the fractional bilateral exchange of energy betwen pixels A and B.
Kim, Min-Gab; Kim, Jin-Yong
2018-05-01
In this paper, we introduce a method to overcome the limitation of thickness measurement of a micro-patterned thin film. A spectroscopic imaging reflectometer system that consists of an acousto-optic tunable filter, a charge-coupled-device camera, and a high-magnitude objective lens was proposed, and a stack of multispectral images was generated. To secure improved accuracy and lateral resolution in the reconstruction of a two-dimensional thin film thickness, prior to the analysis of spectral reflectance profiles from each pixel of multispectral images, the image restoration based on an iterative deconvolution algorithm was applied to compensate for image degradation caused by blurring.
Application of an NLME-Stochastic Deconvolution Approach to Level A IVIVC Modeling.
Kakhi, Maziar; Suarez-Sharp, Sandra; Shepard, Terry; Chittenden, Jason
2017-07-01
Stochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F abs ) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters. In a separate analysis, a full population-PK/stochastic deconvolution was applied to the clinical PK data. Scenarios were considered in which immediate release (IR) data were either retained or excluded to inform parameter estimation. The resulting F abs profiles were then used to model level A IVIVCs. All the considered stochastic deconvolution scenarios, and numerical deconvolution, yielded on average similar results with respect to the IVIVC validation. These results could be achieved with stochastic deconvolution without recourse to IR data. Unlike numerical deconvolution, this also implies that in crossover studies where certain individuals do not receive an IR treatment, their ER data alone can still be included as part of the IVIVC analysis. Published by Elsevier Inc.
Tawfik, Ahmed M; Razek, Ahmed A; Elhawary, Galal; Batouty, Nihal M
2014-01-01
To evaluate the effect of increasing the sampling interval from 1 second (1 image per second) to 2 seconds (1 image every 2 seconds) on computed tomographic (CT) perfusion (CTP) of head and neck tumors. Twenty patients underwent CTP studies of head and neck tumors with images acquired in cine mode for 50 seconds using sampling interval of 1 second. Using deconvolution-based software, analysis of CTP was done with sampling interval of 1 second and then 2 seconds. Perfusion maps representing blood flow, blood volume, mean transit time, and permeability surface area product (PS) were obtained. Quantitative tumor CTP values were compared between the 2 sampling intervals. Two blinded radiologists compared the subjective quality of CTP maps using a 3-point scale between the 2 sampling intervals. Radiation dose parameters were recorded for the 2 sampling interval rates. No significant differences were observed between the means of the 4 perfusion parameters generated using both sampling intervals; all P >0.05. The 95% limits of agreement between the 2 sampling intervals were -65.9 to 48.1) mL/min per 100 g for blood flow, -3.6 to 3.1 mL/100 g for blood volume, -2.9 to 3.8 seconds for mean transit time, and -10.0 to 12.5 mL/min per 100 g for PS. There was no significant difference between the subjective quality scores of CTP maps obtained using the 2 sampling intervals; all P > 0.05. Radiation dose was halved when sampling interval increased from 1 to 2 seconds. Increasing the sampling interval rate to 1 image every 2 seconds does not compromise the image quality and has no significant effect on quantitative perfusion parameters of head and neck tumors. The radiation dose is halved.
Image scanning microscopy using a SPAD detector array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe
2017-02-01
The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.
The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C. G.; School of Physics, University of Melbourne, Parkville VIC; CODES Centre of Excellence, University of Tasmania, Hobart TAS
2010-04-06
Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.
The New Maia Detector System: Methods For High Definition Trace Element Imaging Of Natural Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; Siddons, D.P.; Kirkham, R.
2010-05-25
Motivated by the need for megapixel high definition trace element imaging to capture intricate detail in natural material, together with faster acquisition and improved counting statistics in elemental imaging, a large energy-dispersive detector array called Maia has been developed by CSIRO and BNL for SXRF imaging on the XFM beamline at the Australian Synchrotron. A 96 detector prototype demonstrated the capacity of the system for real-time deconvolution of complex spectral data using an embedded implementation of the Dynamic Analysis method and acquiring highly detailed images up to 77 M pixels spanning large areas of complex mineral sample sections.
Applying Zeeman Doppler imaging to solar spectra
NASA Astrophysics Data System (ADS)
Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.
2004-03-01
A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).
Spatial and spectral imaging of point-spread functions using a spatial light modulator
NASA Astrophysics Data System (ADS)
Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu
2017-12-01
We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.
Limb Spicules from the Ground and from Space
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Jacobson, William A.; Sterling, Alphonse C.
2009-11-01
We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA’s Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at Hα, on-band and at ± 0.035 nm and ± 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 Hα spicules, and 14 EUV spicules that overlapped Hα spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the Hα spicules.
Research in Solar Physics: Analysis of Skylab/ATM S-056 X-Ray Data
NASA Technical Reports Server (NTRS)
Henze, W., Jr.
1977-01-01
Data obtained by the X-ray event analyzer are described as well as methods used for film calibration. Topics discussed include analyses of the 15 June 1973 flare, oscillations in the solar soft X-ray flux, and deconvolution of X-ray images of the 5 September 1973 flare.
Blind image quality assessment without training on human opinion scores
NASA Astrophysics Data System (ADS)
Mittal, Anish; Soundararajan, Rajiv; Muralidhar, Gautam S.; Bovik, Alan C.; Ghosh, Joydeep
2013-03-01
We propose a family of image quality assessment (IQA) models based on natural scene statistics (NSS), that can predict the subjective quality of a distorted image without reference to a corresponding distortionless image, and without any training results on human opinion scores of distorted images. These `completely blind' models compete well with standard non-blind image quality indices in terms of subjective predictive performance when tested on the large publicly available `LIVE' Image Quality database.
Development of 2D deconvolution method to repair blurred MTSAT-1R visible imagery
NASA Astrophysics Data System (ADS)
Khlopenkov, Konstantin V.; Doelling, David R.; Okuyama, Arata
2014-09-01
Spatial cross-talk has been discovered in the visible channel data of the Multi-functional Transport Satellite (MTSAT)-1R. The slight image blurring is attributed to an imperfection in the mirror surface caused either by flawed polishing or a dust contaminant. An image processing methodology is described that employs a two-dimensional deconvolution routine to recover the original undistorted MTSAT-1R data counts. The methodology assumes that the dispersed portion of the signal is small and distributed randomly around the optical axis, which allows the image blurring to be described by a point spread function (PSF) based on the Gaussian profile. The PSF is described by 4 parameters, which are solved using a maximum likelihood estimator using coincident collocated MTSAT-2 images as truth. A subpixel image matching technique is used to align the MTSAT-2 pixels into the MTSAT-1R projection and to correct for navigation errors and cloud displacement due to the time and viewing geometry differences between the two satellite observations. An optimal set of the PSF parameters is derived by an iterative routine based on the 4-dimensional Powell's conjugate direction method that minimizes the difference between PSF-corrected MTSAT-1R and collocated MTSAT-2 images. This iterative approach is computationally intensive and was optimized analytically as well as by coding in assembly language incorporating parallel processing. The PSF parameters were found to be consistent over the 5-days of available daytime coincident MTSAT-1R and MTSAT-2 images, and can easily be applied to the MTSAT-1R imager pixel level counts to restore the original quality of the entire MTSAT-1R record.
Topography Estimation of the Core Mantle Boundary with ScS Reverberations and Diffraction Waves
NASA Astrophysics Data System (ADS)
Hein, B. E.; Nakata, N.
2017-12-01
In this study, we use the propagation of global seismic waves to study the Core Mantle Boundary (CMB). We focus on the use of S-wave reflections at the CMB (ScS reverberations) and outer-core diffracted waves. It is difficult imaging the CMB with the ScS wave because the complexity of the structure in the near surface ( 50 km); the complex structure degrades the signal-to-noise ratio of of the ScS. To avoid estimating the structure in the crust, we rely on the concept of seismic interferometry to extract wave propagation through mantle, but not through the crust. Our approach is compute the deconvolution between the ScS (and its reverberation) and direct S waves generated by intermediate to deep earthquakes (>50 km depth). Through this deconvolution, we have the ability to filter out the direct S wave and retrieve the wave field propagating from only the hypocenter to the outer core, but not between the hypocenter to the receiver. After the deconvolution, we can isolate the CMB reflected waves from the complicated wave phenomena because of the near-surface structure. Utilizing intermediate and deep earthquakes is key since we can suppress the near-surface effect from the surface to the hypocenter of the earthquakes. The variation of such waves (e.g., travel-time perturbation and/or wavefield decorrelation) at different receivers and earthquakes provides the information of the topography of the CMB. In order to get a more detailed image of the topography of the CMB we use diffracted seismic waves such as Pdiff , Sdiff, and P'P'. By using two intermediate to deep earthquakes on a great circle path with a station we can extract the wave propagation between the two earthquakes to simplify the waveform, similar to how it is preformed using the ScS wave. We generate more illumination of the CMB by using diffracted waves rather than only using ScS reverberations. The accurate topography of CMB obtained by these deconvolution analyses may provide new insight of the dynamics of the Earth such as heat flow at the CMB and through the mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, M.; Ebel, D.S.
2009-03-19
We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less
Men, Kuo; Chen, Xinyuan; Zhang, Ye; Zhang, Tao; Dai, Jianrong; Yi, Junlin; Li, Yexiong
2017-01-01
Radiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume (GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target volume (CTV), and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these targets. The proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC) was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model. The proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively. DDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy workflows, but careful human review and a considerable amount of editing will be required.
NASA Astrophysics Data System (ADS)
Sperling, Nicholas Niven
The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through the entire patient volume. The method requires patient specific information, including a CT for deconvolution/dose reconstruction. With the large-scale adoption of Cone Beam CT (CBCT) systems on modern linear accelerators, a treatment time CT is readily available for use in this deconvolution and in dose representation.
NASA Astrophysics Data System (ADS)
Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei
2018-07-01
Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.
Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
NASA Astrophysics Data System (ADS)
Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong
2018-02-01
Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation
NASA Astrophysics Data System (ADS)
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-01
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.
The IDL astronomy user's library
NASA Technical Reports Server (NTRS)
Landsman, W. B.
1992-01-01
IDL (Interactive Data Language) is a commercial programming, plotting, and image display language, which is widely used in astronomy. The IDL Astronomy User's Library is a central repository of over 400 astronomy-related IDL procedures accessible via anonymous FTP. The author will overview the use of IDL within the astronomical community and discuss recent enhancements at the IDL astronomy library. These enhancements include a fairly complete I/O package for FITS images and tables, an image deconvolution package and an image mosaic package, and access to IDL Open Windows/Motif widgets interface. The IDL Astronomy Library is funded by NASA through the Astrophysics Software and Research Aids Program.
Sparse Poisson noisy image deblurring.
Carlavan, Mikael; Blanc-Féraud, Laure
2012-04-01
Deblurring noisy Poisson images has recently been a subject of an increasing amount of works in many areas such as astronomy and biological imaging. In this paper, we focus on confocal microscopy, which is a very popular technique for 3-D imaging of biological living specimens that gives images with a very good resolution (several hundreds of nanometers), although degraded by both blur and Poisson noise. Deconvolution methods have been proposed to reduce these degradations, and in this paper, we focus on techniques that promote the introduction of an explicit prior on the solution. One difficulty of these techniques is to set the value of the parameter, which weights the tradeoff between the data term and the regularizing term. Only few works have been devoted to the research of an automatic selection of this regularizing parameter when considering Poisson noise; therefore, it is often set manually such that it gives the best visual results. We present here two recent methods to estimate this regularizing parameter, and we first propose an improvement of these estimators, which takes advantage of confocal images. Following these estimators, we secondly propose to express the problem of the deconvolution of Poisson noisy images as the minimization of a new constrained problem. The proposed constrained formulation is well suited to this application domain since it is directly expressed using the antilog likelihood of the Poisson distribution and therefore does not require any approximation. We show how to solve the unconstrained and constrained problems using the recent alternating-direction technique, and we present results on synthetic and real data using well-known priors, such as total variation and wavelet transforms. Among these wavelet transforms, we specially focus on the dual-tree complex wavelet transform and on the dictionary composed of curvelets and an undecimated wavelet transform.
Computed inverse resonance imaging for magnetic susceptibility map reconstruction.
Chen, Zikuan; Calhoun, Vince
2012-01-01
This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.
López-Pacheco, María G; Sánchez-Fernández, Luis P; Molina-Lozano, Herón
2014-01-15
Noise levels of common sources such as vehicles, whistles, sirens, car horns and crowd sounds are mixed in urban soundscapes. Nowadays, environmental acoustic analysis is performed based on mixture signals recorded by monitoring systems. These mixed signals make it difficult for individual analysis which is useful in taking actions to reduce and control environmental noise. This paper aims at separating, individually, the noise source from recorded mixtures in order to evaluate the noise level of each estimated source. A method based on blind deconvolution and blind source separation in the wavelet domain is proposed. This approach provides a basis to improve results obtained in monitoring and analysis of common noise sources in urban areas. The method validation is through experiments based on knowledge of the predominant noise sources in urban soundscapes. Actual recordings of common noise sources are used to acquire mixture signals using a microphone array in semi-controlled environments. The developed method has demonstrated great performance improvements in identification, analysis and evaluation of common urban sources. © 2013 Elsevier B.V. All rights reserved.
Deconvolution method for accurate determination of overlapping peak areas in chromatograms.
Nelson, T J
1991-12-20
A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by conventional methods.
Bigras, Gilbert
2012-06-01
Color deconvolution relies on determination of unitary optical density vectors (OD(3D)) derived from pure constituent stains initially defined as intensity vectors in RGB space. OD(3D) can be defined in polar coordinates (phi, theta, radius); always being equal to one, radius can be ignored. Easier handling of unitary optical density 2D vectors (OD(2D)) is shown. OD(2D) pure stains used in anatomical pathology were assessed as centroid values (phi, theta) with a measure of variance: inertia based on arc lengths between centroid value and sampled points. These variables were plotted on a stereographic projection plane. In order to assess pure stains OD(2D), different methods of sampling RGB pixels were tested and compared: (2) direct sampling of nuclei from preparations using (a) composite H&E and (b) hematoxylin only and (2) for any pure stain RGB image, different associated 8-bit masks (saturation, brightness and RGB average) were used for sampling and compared. Behaviors of phi, theta and inertia were obtained by moving threshold in 8-bit mask histograms. Phi and theta stability were tested against variable light intensity during image acquisition and by using 2 different image acquisition systems. The more saturated RGB pixels are, the more stable phi, theta and inertia values are obtained. Different commercial hematoxylins have distinct OD(2D) characteristics. UltraView DAB stain shows high inertia and is angularly closer to usual counterstains than ultraView Red stain, which also has a lower inertia. Superior accuracy is expected from the latter stain. Phi and theta OD(2D) values are sensitive to light intensity variation, to the used imaging system and to the used objectives. An ImageJ plugin was designed to plot and interactively modify OD(2D) values with instant update of color deconvolution allowing heuristic segmentation. Utilization of polar OD(2D) eases statistical characterization of OD(3D) vectors: conditions of optimal sampling were demonstrated and various factors influencing OD(2D) stability were explored. Stereographic projection plane allows intuitive visualization of OD(3D) vectors as well as heuristic vectorial modification. All findings are not restricted to anatomical pathology but can be applied to bright field microscopy and subtractive color applications in general.
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; van der Neut, Joost; Djikpesse, Hugues; Chen, Chin-Wu; Wapenaar, Kees
2010-05-01
Active-source surveys are widely used for the delineation of hydrocarbon accumulations. Most source and receiver configurations are designed to illuminate the first 5 km of the earth. For a deep understanding of the evolution of the crust, much larger depths need to be illuminated. The use of large-scale active surveys is feasible, but rather costly. As an alternative, we use passive acquisition configurations, aiming at detecting responses from distant earthquakes, in combination with seismic interferometry (SI). SI refers to the principle of generating new seismic responses by combining seismic observations at different receiver locations. We apply SI to the earthquake responses to obtain responses as if there was a source at each receiver position in the receiver array. These responses are subsequently migrated to obtain an image of the lithosphere. Conventionally, SI is applied by a crosscorrelation of responses. Recently, an alternative implementation was proposed as SI by multidimensional deconvolution (MDD) (Wapenaar et al. 2008). SI by MDD compensates both for the source-sampling and the source wavelet irregularities. Another advantage is that the MDD relation also holds for media with severe anelastic losses. A severe restriction though for the implementation of MDD was the need to estimate responses without free-surface interaction, from the earthquake responses. To mitigate this restriction, Groenestijn en Verschuur (2009) proposed to introduce the incident wavefield as an additional unknown in the inversion process. As an alternative solution, van der Neut et al. (2010) showed that the required wavefield separation may be implemented after a crosscorrelation step. These last two approaches facilitate the application of MDD for lithospheric-scale imaging. In this work, we study the feasibility for the implementation of MDD when considering teleseismic wavefields. We address specific problems for teleseismic wavefields, such as long and complicated source wavelets, source-side reverberations and illumination gaps. We exemplify the feasibility of SI by MDD on synthetic data, based on field data from the Laramie and the POLARIS-MIT array. van Groenestijn, G.J.A. & Verschuur, D.J., 2009. Estimation of primaries by sparse inversion from passive seismic data, Expanded abstracts, 1597-1601, SEG. van der Neut, J.R, Ruigrok, E.N., Draganov, D.S., & Wapenaar, K., 2010. Retrieving the earth's reflection response by multi-dimensional deconvolution of ambient seismic noise, Extended abstracts, submitted, EAGE. Wapenaar, K., van der Neut, J., & Ruigrok, E.N., 2008. Passive seismic interferometry by multidimensional deconvolution, Geophysics, 75, A51-A56.
Extended depth of field imaging for high speed object analysis
NASA Technical Reports Server (NTRS)
Frost, Keith (Inventor); Ortyn, William (Inventor); Basiji, David (Inventor); Bauer, Richard (Inventor); Liang, Luchuan (Inventor); Hall, Brian (Inventor); Perry, David (Inventor)
2011-01-01
A high speed, high-resolution flow imaging system is modified to achieve extended depth of field imaging. An optical distortion element is introduced into the flow imaging system. Light from an object, such as a cell, is distorted by the distortion element, such that a point spread function (PSF) of the imaging system is invariant across an extended depth of field. The distorted light is spectrally dispersed, and the dispersed light is used to simultaneously generate a plurality of images. The images are detected, and image processing is used to enhance the detected images by compensating for the distortion, to achieve extended depth of field images of the object. The post image processing preferably involves de-convolution, and requires knowledge of the PSF of the imaging system, as modified by the optical distortion element.
NASA Astrophysics Data System (ADS)
Oda, Hirokuni; Xuan, Chuang
2014-10-01
development of pass-through superconducting rock magnetometers (SRM) has greatly promoted collection of paleomagnetic data from continuous long-core samples. The output of pass-through measurement is smoothed and distorted due to convolution of magnetization with the magnetometer sensor response. Although several studies could restore high-resolution paleomagnetic signal through deconvolution of pass-through measurement, difficulties in accurately measuring the magnetometer sensor response have hindered the application of deconvolution. We acquired reliable sensor response of an SRM at the Oregon State University based on repeated measurements of a precisely fabricated magnetic point source. In addition, we present an improved deconvolution algorithm based on Akaike's Bayesian Information Criterion (ABIC) minimization, incorporating new parameters to account for errors in sample measurement position and length. The new algorithm was tested using synthetic data constructed by convolving "true" paleomagnetic signal containing an "excursion" with the sensor response. Realistic noise was added to the synthetic measurement using Monte Carlo method based on measurement noise distribution acquired from 200 repeated measurements of a u-channel sample. Deconvolution of 1000 synthetic measurements with realistic noise closely resembles the "true" magnetization, and successfully restored fine-scale magnetization variations including the "excursion." Our analyses show that inaccuracy in sample measurement position and length significantly affects deconvolution estimation, and can be resolved using the new deconvolution algorithm. Optimized deconvolution of 20 repeated measurements of a u-channel sample yielded highly consistent deconvolution results and estimates of error in sample measurement position and length, demonstrating the reliability of the new deconvolution algorithm for real pass-through measurements.
NASA Astrophysics Data System (ADS)
Xuan, Chuang; Oda, Hirokuni
2015-11-01
The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907-3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.
NASA Astrophysics Data System (ADS)
Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.
2014-12-01
Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to reveal.
Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary
2015-02-07
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.
NASA Technical Reports Server (NTRS)
1972-01-01
The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.
Evaluating performance in three-dimensional fluorescence microscopy
MURRAY, JOHN M; APPLETON, PAUL L; SWEDLOW, JASON R; WATERS, JENNIFER C
2007-01-01
In biological fluorescence microscopy, image contrast is often degraded by a high background arising from out of focus regions of the specimen. This background can be greatly reduced or eliminated by several modes of thick specimen microscopy, including techniques such as 3-D deconvolution and confocal. There has been a great deal of interest and some confusion about which of these methods is ‘better’, in principle or in practice. The motivation for the experiments reported here is to establish some rough guidelines for choosing the most appropriate method of microscopy for a given biological specimen. The approach is to compare the efficiency of photon collection, the image contrast and the signal-to-noise ratio achieved by the different methods at equivalent illumination, using a specimen in which the amount of out of focus background is adjustable over the range encountered with biological samples. We compared spot scanning confocal, spinning disk confocal and wide-field/deconvolution (WFD) microscopes and find that the ratio of out of focus background to in-focus signal can be used to predict which method of microscopy will provide the most useful image. We also find that the precision of measurements of net fluorescence yield is very much lower than expected for all modes of microscopy. Our analysis enabled a clear, quantitative delineation of the appropriate use of different imaging modes relative to the ratio of out-of-focus background to in-focus signal, and defines an upper limit to the useful range of the three most common modes of imaging. PMID:18045334
The role of figure-ground segregation in change blindness.
Landman, Rogier; Spekreijse, Henk; Lamme, Victor A F
2004-04-01
Partial report methods have shown that a large-capacity representation exists for a few hundred milliseconds after a picture has disappeared. However, change blindness studies indicate that very limited information remains available when a changed version of the image is presented subsequently. What happens to the large-capacity representation? New input after the first image may interfere, but this is likely to depend on the characteristics of the new input. In our first experiment, we show that a display containing homogeneous image elements between changing images does not render the large-capacity representation unavailable. Interference occurs when these new elements define objects. On that basis we introduce a new method to produce change blindness: The second experiment shows that change blindness can be induced by redefining figure and background, without an interval between the displays. The local features (line segments) that defined figures and background were swapped, while the contours of the figures remained where they were. Normally, changes are easily detected when there is no interval. However, our paradigm results in massive change blindness. We propose that in a change blindness experiment, there is a large-capacity representation of the original image when it is followed by a homogeneous interval display, but that change blindness occurs whenever the changed image forces resegregation of figures from the background.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Saba, A. M.; Alam, M. S.; Surpanani, A.
2006-05-01
Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
Computed inverse MRI for magnetic susceptibility map reconstruction
Chen, Zikuan; Calhoun, Vince
2015-01-01
Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372
Wear, Keith; Liu, Yunbo; Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2015-01-01
Nonlinear acoustic signals contain significant energy at many harmonic frequencies. For many applications, the sensitivity (frequency response) of a hydrophone will not be uniform over such a broad spectrum. In a continuation of a previous investigation involving deconvolution methodology, deconvolution (implemented in the frequency domain as an inverse filter computed from frequency-dependent hydrophone sensitivity) was investigated for improvement of accuracy and precision of nonlinear acoustic output measurements. Timedelay spectrometry was used to measure complex sensitivities for 6 fiber-optic hydrophones. The hydrophones were then used to measure a pressure wave with rich harmonic content. Spectral asymmetry between compressional and rarefactional segments was exploited to design filters used in conjunction with deconvolution. Complex deconvolution reduced mean bias (for 6 fiber-optic hydrophones) from 163% to 24% for peak compressional pressure (p+), from 113% to 15% for peak rarefactional pressure (p-), and from 126% to 29% for pulse intensity integral (PII). Complex deconvolution reduced mean coefficient of variation (COV) (for 6 fiber optic hydrophones) from 18% to 11% (p+), 53% to 11% (p-), and 20% to 16% (PII). Deconvolution based on sensitivity magnitude or the minimum phase model also resulted in significant reductions in mean bias and COV of acoustic output parameters but was less effective than direct complex deconvolution for p+ and p-. Therefore, deconvolution with appropriate filtering facilitates reliable nonlinear acoustic output measurements using hydrophones with frequency-dependent sensitivity.
Three-dimensional scanning transmission electron microscopy of biological specimens.
de Jonge, Niels; Sougrat, Rachid; Northan, Brian M; Pennycook, Stephen J
2010-02-01
A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.
High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method
NASA Astrophysics Data System (ADS)
Gillon, M.; Pont, F.; Moutou, C.; Bouchy, F.; Courbin, F.; Sohy, S.; Magain, P.
2006-11-01
A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large-scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.
Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens
de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.
2010-01-01
A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729
NASA Astrophysics Data System (ADS)
Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.
2017-11-01
This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-15
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America
2010-01-01
Background Change blindness refers to a failure to detect changes between consecutively presented images separated by, for example, a brief blank screen. As an explanation of change blindness, it has been suggested that our representations of the environment are sparse outside focal attention and even that changed features may not be represented at all. In order to find electrophysiological evidence of neural representations of changed features during change blindness, we recorded event-related potentials (ERPs) in adults in an oddball variant of the change blindness flicker paradigm. Methods ERPs were recorded when subjects performed a change detection task in which the modified images were infrequently interspersed (p = .2) among the frequently (p = .8) presented unmodified images. Responses to modified and unmodified images were compared in the time window of 60-100 ms after stimulus onset. Results ERPs to infrequent modified images were found to differ in amplitude from those to frequent unmodified images at the midline electrodes (Fz, Pz, Cz and Oz) at the latency of 60-100 ms even when subjects were unaware of changes (change blindness). Conclusions The results suggest that the brain registers changes very rapidly, and that changed features in images are neurally represented even without participants' ability to report them. PMID:20181126
Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data
NASA Astrophysics Data System (ADS)
Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.
2015-12-01
In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.
Platform for Postprocessing Waveform-Based NDE
NASA Technical Reports Server (NTRS)
Roth, Don
2008-01-01
Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).
NASA Technical Reports Server (NTRS)
Olson, W. S.; Yeh, C. L.; Weinman, J. A.; Chin, R. T.
1985-01-01
A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems.
Recovering of images degraded by atmosphere
NASA Astrophysics Data System (ADS)
Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2017-08-01
Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.
Fast restoration approach for motion blurred image based on deconvolution under the blurring paths
NASA Astrophysics Data System (ADS)
Shi, Yu; Song, Jie; Hua, Xia
2015-12-01
For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.
Analysis of photographic X-ray images. [S-054 telescope on Skylab
NASA Technical Reports Server (NTRS)
Krieger, A. S.
1977-01-01
Some techniques used to extract quantitative data from the information contained in photographic images produced by grazing incidence soft X-ray optical systems are described. The discussion is focussed on the analysis of the data returned by the S-054 X-Ray Spectrographic Telescope Experiment on Skylab. The parameters of the instrument and the procedures used for its calibration are described. The technique used to convert photographic density to focal plane X-ray irradiance is outlined. The deconvolution of the telescope point response function from the image data is discussed. Methods of estimating the temperature, pressure, and number density of coronal plasmas are outlined.
Siegel, Nisan; Storrie, Brian; Bruce, Marc
2016-01-01
FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called “CINCH”. An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution. PMID:26839443
Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.
Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R
2017-02-01
Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph ® )) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.
Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel
2016-11-01
The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.
A novel blinding digital watermark algorithm based on lab color space
NASA Astrophysics Data System (ADS)
Dong, Bing-feng; Qiu, Yun-jie; Lu, Hong-tao
2010-02-01
It is necessary for blinding digital image watermark algorithm to extract watermark information without any extra information except the watermarked image itself. But most of the current blinding watermark algorithms have the same disadvantage: besides the watermarked image, they also need the size and other information about the original image when extracting the watermark. This paper presents an innovative blinding color image watermark algorithm based on Lab color space, which does not have the disadvantages mentioned above. This algorithm first marks the watermark region size and position through embedding some regular blocks called anchor points in image spatial domain, and then embeds the watermark into the image. In doing so, the watermark information can be easily extracted after doing cropping and scale change to the image. Experimental results show that the algorithm is particularly robust against the color adjusting and geometry transformation. This algorithm has already been used in a copyright protecting project and works very well.
SU-F-T-478: Effect of Deconvolution in Analysis of Mega Voltage Photon Beam Profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, M; Manigandan, D; Murali, V
2016-06-15
Purpose: To study and compare the penumbra of 6 MV and 15 MV photon beam profiles after deconvoluting different volume ionization chambers. Methods: 0.125cc Semi-Flex chamber, Markus Chamber and PTW Farmer chamber were used to measure the in-plane and cross-plane profiles at 5 cm depth for 6 MV and 15 MV photons. The profiles were measured for various field sizes starting from 2×2 cm till 30×30 cm. PTW TBA scan software was used for the measurements and the “deconvolution” functionality in the software was used to remove the volume averaging effect due to finite volume of the chamber along lateralmore » and longitudinal directions for all the ionization chambers. The predicted true profile was compared and the change in penumbra before and after deconvolution was studied. Results: After deconvoluting the penumbra decreased by 1 mm for field sizes ranging from 2 × 2 cm till 20 x20 cm. This is observed for along both lateral and longitudinal directions. However for field sizes from 20 × 20 till 30 ×30 cm the difference in penumbra was around 1.2 till 1.8 mm. This was observed for both 6 MV and 15 MV photon beams. The penumbra was always lesser in the deconvoluted profiles for all the ionization chambers involved in the study. The variation in difference in penumbral values were in the order of 0.1 till 0.3 mm between the deconvoluted profile along lateral and longitudinal directions for all the chambers under study. Deconvolution of the profiles along longitudinal direction for Farmer chamber was not good and is not comparable with other deconvoluted profiles. Conclusion: The results of the deconvoluted profiles for 0.125cc and Markus chamber was comparable and the deconvolution functionality can be used to overcome the volume averaging effect.« less
NASA Astrophysics Data System (ADS)
Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang
2017-03-01
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.
NASA Astrophysics Data System (ADS)
Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen
2016-11-01
To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-12-01
The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model accuracy with the RMS value of 0.03-0.04. Currently, the telescope spectra are investigated for its calibrations and the results will be presented at AGU. References: [1] Hiesinger, H. and J. Helbert (2010) PSS, 58(1-2): 144-165. [2] Sprague, A.L. et al (2009) PSS, 57, 364-383. [3] Ramsey and Christiansen (1998) JGR, 103, 577-596
Shu, Jie; Dolman, G E; Duan, Jiang; Qiu, Guoping; Ilyas, Mohammad
2016-04-27
Colour is the most important feature used in quantitative immunohistochemistry (IHC) image analysis; IHC is used to provide information relating to aetiology and to confirm malignancy. Statistical modelling is a technique widely used for colour detection in computer vision. We have developed a statistical model of colour detection applicable to detection of stain colour in digital IHC images. Model was first trained by massive colour pixels collected semi-automatically. To speed up the training and detection processes, we removed luminance channel, Y channel of YCbCr colour space and chose 128 histogram bins which is the optimal number. A maximum likelihood classifier is used to classify pixels in digital slides into positively or negatively stained pixels automatically. The model-based tool was developed within ImageJ to quantify targets identified using IHC and histochemistry. The purpose of evaluation was to compare the computer model with human evaluation. Several large datasets were prepared and obtained from human oesophageal cancer, colon cancer and liver cirrhosis with different colour stains. Experimental results have demonstrated the model-based tool achieves more accurate results than colour deconvolution and CMYK model in the detection of brown colour, and is comparable to colour deconvolution in the detection of pink colour. We have also demostrated the proposed model has little inter-dataset variations. A robust and effective statistical model is introduced in this paper. The model-based interactive tool in ImageJ, which can create a visual representation of the statistical model and detect a specified colour automatically, is easy to use and available freely at http://rsb.info.nih.gov/ij/plugins/ihc-toolbox/index.html . Testing to the tool by different users showed only minor inter-observer variations in results.
Imagery in the Congenitally Blind: How Visual Are Visual Images?
ERIC Educational Resources Information Center
Zimler, Jerome; Keenan, Janice M.
1983-01-01
Three experiments compared congenitally blind and sighted adults and children on paired-associate, free-recall, and imaging tasks presumed to involve visual imagery in memory. In all three, blind subjects' performances were remarkably similar to the sighted. Results challenge previous explanations of performance such as Paivio's (1971). (Author/RD)
Quantitative Image Restoration in Bright Field Optical Microscopy.
Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús
2017-11-07
Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iglesias, F. A.; Feller, A.; Nagaraju, K.; Solanki, S. K.
2016-05-01
Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance when attempting to respond to a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (~10-1 arcsec) and low noise (10-3 to 10-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims: We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Methods: We describe the instrument in depth, including the fast pnCCD camera employed, the achromatic modulator package, the main calibration steps, the effects of the modulation frequency on the levels of seeing-induced spurious signals, and the effect of the camera properties on the image restoration quality. Results: The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6%) and very low noise (4.94 e- rms). The modulator is optimized to have high (>80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals that are present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7 × 10-5) after integrating 7.66 min, (b) lower than the noise (2.3 × 10-4) after integrating 1.16 min and (c) slightly above the noise (4 × 10-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low S/N of 13.9) of an active region, we can obtain one complete set of high-quality restored measurements about every 2 s.
NASA Astrophysics Data System (ADS)
Chantry, V.; Sluse, D.; Magain, P.
2010-11-01
Aims: We attempt to place very accurate positional constraints on seven gravitationally lensed quasars currently being monitored by the COSMOGRAIL collaboration, and shape parameters for the light distribution of the lensing galaxy. We attempt to determine simple mass models that reproduce the observed configuration and predict time delays. We finally test, for the quads, whether there is evidence of astrometric perturbations produced by substructures in the lensing galaxy, which may preclude a good fit with the simple models. Methods: We apply the iterative MCS deconvolution method to near-IR HST archival data of seven gravitationally lensed quasars. This deconvolution method allows us to differentiate the contributions of the point sources from those of extended structures such as Einstein rings. This method leads to an accuracy of 1-2 mas in the relative positions of the sources and lens. The limiting factor of the method is the uncertainty in the instrumental geometric distortions. We then compute mass models of the lensing galaxy using state-of-the-art modeling techniques. Results: We determine the relative positions of the lensed images and lens shape parameters of seven lensed quasars: HE 0047-1756, RX J1131-1231, SDSS J1138+0314, SDSS J1155+6346, SDSS J1226-0006, WFI J2026-4536, and HS 2209+1914. The lensed image positions are derived with 1-2 mas accuracy. Isothermal and de Vaucouleurs mass models are calculated for the whole sample. The effect of the lens environment on the lens mass models is taken into account with a shear term. Doubly imaged quasars are equally well fitted by each of these models. A large amount of shear is necessary to reproduce SDSS J1155+6346 and SDSS J1226-006. In the latter case, we identify a nearby galaxy as the dominant source of shear. The quadruply imaged quasar SDSS J1138+0314 is reproduced well by simple lens models, which is not the case for the two other quads, RX J1131-1231 and WFI J2026-4536. This might be the signature of astrometric perturbations caused by massive substructures in the galaxy, which are unaccounted for by the models. Other possible explanations are also presented. Based on observations made with the NASA/ESA HST Hubble Space Telescope, obtained from the data archive at the Space Science Institute, which is operated by AURA, the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26555.
Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong
2015-05-01
Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.
Improved Phased Array Imaging of a Model Jet
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Podboy, Gary G.
2010-01-01
An advanced phased array system, OptiNav Array 48, and a new deconvolution algorithm, TIDY, have been used to make octave band images of supersonic and subsonic jet noise produced by the NASA Glenn Small Hot Jet Acoustic Rig (SHJAR). The results are much more detailed than previous jet noise images. Shock cell structures and the production of screech in an underexpanded supersonic jet are observed directly. Some trends are similar to observations using spherical and elliptic mirrors that partially informed the two-source model of jet noise, but the radial distribution of high frequency noise near the nozzle appears to differ from expectations of this model. The beamforming approach has been validated by agreement between the integrated image results and the conventional microphone data.
Photon-efficient super-resolution laser radar
NASA Astrophysics Data System (ADS)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K.
2017-08-01
The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame- work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin biomedical imaging applications.
Computational optical tomography using 3-D deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Nguyen, Thanh; Bui, Vy; Nehmetallah, George
2018-04-01
Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.
The Blind Spot: Re-Educating Ourselves about Visual Images
ERIC Educational Resources Information Center
Farkas, N.; Donnelly, K. M.; Henriksen, P. N.; Ramsier, R. D.
2004-01-01
A simple blind spot activity has been devised to help students discard misconceptions about image formation by lenses. Our hands-on experiment, in which students determine the location and size of their blind spots, is suitable for various age groups at different educational levels. The activity provides an opportunity to teach students how to…
Advanced Source Deconvolution Methods for Compton Telescopes
NASA Astrophysics Data System (ADS)
Zoglauer, Andreas
The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a list-mode approach to get the best angular resolution, to get achieve both at the same time! The second open question concerns the best deconvolution algorithm. For example, several algorithms have been investigated for the famous COMPTEL 26Al map which resulted in significantly different images. There is no clear answer as to which approach provides the most accurate result, largely due to the fact that detailed simulations to test and verify the approaches and their limitations were not possible at that time. This has changed, and therefore we propose to evaluate several deconvolution algorithms (e.g. Richardson-Lucy, Maximum-Entropy, MREM, and stochastic origin ensembles) with simulations of typical observations to find the best algorithm for each application and for each stage of the hybrid reconstruction approach. We will adapt, implement, and fully evaluate the hybrid source reconstruction approach as well as the various deconvolution algorithms with simulations of synthetic benchmarks and simulations of key science objectives such as diffuse nuclear line science and continuum science of point sources, as well as with calibrations/observations of the COSI balloon telescope. This proposal for "development of new data analysis methods for future satellite missions" will significantly improve the source deconvolution techniques for modern Compton telescopes and will allow unlocking the full potential of envisioned satellite missions using Compton-scatter technology in astrophysics, heliophysics and planetary sciences, and ultimately help them to "discover how the universe works" and to better "understand the sun". Ultimately it will also benefit ground based applications such as nuclear medicine and environmental monitoring as all developed algorithms will be made publicly available within the open-source Compton telescope analysis framework MEGAlib.
Video-rate volumetric neuronal imaging using 3D targeted illumination.
Xiao, Sheng; Tseng, Hua-An; Gritton, Howard; Han, Xue; Mertz, Jerome
2018-05-21
Fast volumetric microscopy is required to monitor large-scale neural ensembles with high spatio-temporal resolution. Widefield fluorescence microscopy can image large 2D fields of view at high resolution and speed while remaining simple and costeffective. A focal sweep add-on can further extend the capacity of widefield microscopy by enabling extended-depth-of-field (EDOF) imaging, but suffers from an inability to reject out-of-focus fluorescence background. Here, by using a digital micromirror device to target only in-focus sample features, we perform EDOF imaging with greatly enhanced contrast and signal-to-noise ratio, while reducing the light dosage delivered to the sample. Image quality is further improved by the application of a robust deconvolution algorithm. We demonstrate the advantages of our technique for in vivo calcium imaging in the mouse brain.
Quality measures in applications of image restoration.
Kriete, A; Naim, M; Schafer, L
2001-01-01
We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.
Erny, Guillaume L; Moeenfard, Marzieh; Alves, Arminda
2015-02-01
In this manuscript, the separation of kahweol and cafestol esters from Arabica coffee brews was investigated using liquid chromatography with a diode array detector. When detected in conjunction, cafestol, and kahweol esters were eluted together, but, after optimization, the kahweol esters could be selectively detected by setting the wavelength at 290 nm to allow their quantification. Such an approach was not possible for the cafestol esters, and spectral deconvolution was used to obtain deconvoluted chromatograms. In each of those chromatograms, the four esters were baseline separated allowing for the quantification of the eight targeted compounds. Because kahweol esters could be quantified either using the chromatogram obtained by setting the wavelength at 290 nm or using the deconvoluted chromatogram, those compounds were used to compare the analytical performances. Slightly better limits of detection were obtained using the deconvoluted chromatogram. Identical concentrations were found in a real sample with both approaches. The peak areas in the deconvoluted chromatograms were repeatable (intraday repeatability of 0.8%, interday repeatability of 1.0%). This work demonstrates the accuracy of spectral deconvolution when using liquid chromatography to mathematically separate coeluting compounds using the full spectra recorded by a diode array detector. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time deblurring of handshake blurred images on smartphones
NASA Astrophysics Data System (ADS)
Pourreza-Shahri, Reza; Chang, Chih-Hsiang; Kehtarnavaz, Nasser
2015-02-01
This paper discusses an Android app for the purpose of removing blur that is introduced as a result of handshakes when taking images via a smartphone. This algorithm utilizes two images to achieve deblurring in a computationally efficient manner without suffering from artifacts associated with deconvolution deblurring algorithms. The first image is the normal or auto-exposure image and the second image is a short-exposure image that is automatically captured immediately before or after the auto-exposure image is taken. A low rank approximation image is obtained by applying singular value decomposition to the auto-exposure image which may appear blurred due to handshakes. This approximation image does not suffer from blurring while incorporating the image brightness and contrast information. The eigenvalues extracted from the low rank approximation image are then combined with those from the shortexposure image. It is shown that this deblurring app is computationally more efficient than the adaptive tonal correction algorithm which was previously developed for the same purpose.
Class of near-perfect coded apertures
NASA Technical Reports Server (NTRS)
Cannon, T. M.; Fenimore, E. E.
1977-01-01
Coded aperture imaging of gamma ray sources has long promised an improvement in the sensitivity of various detector systems. The promise has remained largely unfulfilled, however, for either one of two reasons. First, the encoding/decoding method produces artifacts, which even in the absence of quantum noise, restrict the quality of the reconstructed image. This is true of most correlation-type methods. Second, if the decoding procedure is of the deconvolution variety, small terms in the transfer function of the aperture can lead to excessive noise in the reconstructed image. It is proposed to circumvent both of these problems by use of a uniformly redundant array (URA) as the coded aperture in conjunction with a special correlation decoding method.
Quasi-Speckle Measurements of Close Double Stars With a CCD Camera
NASA Astrophysics Data System (ADS)
Harshaw, Richard
2017-01-01
CCD measurements of visual double stars have been an active area of amateur observing for several years now. However, most CCD measurements rely on “lucky imaging” (selecting a very small percentage of the best frames of a larger frame set so as to get the best “frozen” atmosphere for the image), a technique that has limitations with regards to how close the stars can be and still be cleanly resolved in the lucky image. In this paper, the author reports how using deconvolution stars in the analysis of close double stars can greatly enhance the quality of the autocorellogram, leading to a more precise solution using speckle reduction software rather than lucky imaging.
High resolution laboratory grating-based x-ray phase-contrast CT
NASA Astrophysics Data System (ADS)
Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia
2017-03-01
Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.
Doppler imaging of the young late-type star LO Pegasi (BD+22°4409) in 2003 September
NASA Astrophysics Data System (ADS)
Piluso, N.; Lanza, A. F.; Pagano, I.; Lanzafame, A. C.; Donati, J.-F.
2008-06-01
A Doppler image of the zero-age main-sequence (ZAMS) late-type rapidly rotating star LO Pegasi, based on spectra acquired between 2003 September 12 and 15 is presented. The least-squares deconvolution technique is applied to enhance the signal-to-noise ratio of the mean rotational broadened line profiles extracted from the observed spectra. In the present application, an unbroadened spectrum is used as a reference, instead of a simple line list, to improve the deconvolution technique applied to extract the mean profiles. The reconstructed image is similar to those previously obtained from observations taken in 1993 and 1998, and shows that LO Peg photospheric activity is dominated by high-latitude spots with a non-uniform polar cap. The latter seems to be a persistent feature as it has been observed since 1993 with little modifications. Small spots, observed between ~10° and ~60° of latitude, appears to be different with respect to those present in the 1993 and 1998 maps. Based on observations made with the Italian Telescopio Nazionale Galileo operated on the island of La Palma by the Centro Galileo Galilei of INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque del los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: nicolo.piluso@oact.inaf.it (NP); nuccio.lanza@oact.inaf.it (AFL); isabella.pagano@oact.inaf.it (IP); alessandro.lanzafame@oact.inaf.it (ACL); donati@ast.obs-mip.fr (J-FD)
Eaton, Sandra S; Shi, Yilin; Woodcock, Lukas; Buchanan, Laura A; McPeak, Joseph; Quine, Richard W; Rinard, George A; Epel, Boris; Halpern, Howard J; Eaton, Gareth R
2017-07-01
In rapid-scan EPR the magnetic field or frequency is repeatedly scanned through the spectrum at rates that are much faster than in conventional continuous wave EPR. The signal is directly-detected with a mixer at the source frequency. Rapid-scan EPR is particularly advantageous when the scan rate through resonance is fast relative to electron spin relaxation rates. In such scans, there may be oscillations on the trailing edge of the spectrum. These oscillations can be removed by mathematical deconvolution to recover the slow-scan absorption spectrum. In cases of inhomogeneous broadening, the oscillations may interfere destructively to the extent that they are not visible. The deconvolution can be used even when it is not required, so spectra can be obtained in which some portions of the spectrum are in the rapid-scan regime and some are not. The technology developed for rapid-scan EPR can be applied generally so long as spectra are obtained in the linear response region. The detection of the full spectrum in each scan, the ability to use higher microwave power without saturation, and the noise filtering inherent in coherent averaging results in substantial improvement in signal-to-noise relative to conventional continuous wave spectroscopy, which is particularly advantageous for low-frequency EPR imaging. This overview describes the principles of rapid-scan EPR and the hardware used to generate the spectra. Examples are provided of its application to imaging of nitroxide radicals, diradicals, and spin-trapped radicals at a Larmor frequency of ca. 250MHz. Copyright © 2017 Elsevier Inc. All rights reserved.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Application of acoustic imaging techniques on snowmobile pass-by noise.
Padois, Thomas; Berry, Alain
2017-02-01
Snowmobile manufacturers invest important efforts to reduce the noise emission of their products. The noise sources of snowmobiles are multiple and closely spaced, leading to difficult source separation in practice. In this study, source imaging results for snowmobile pass-by noise are discussed. The experiments involve a 193-microphone Underbrink array, with synchronization of acoustic with video data provided by a high-speed camera. Both conventional beamforming and Clean-SC deconvolution are implemented to provide noise source maps of the snowmobile. The results clearly reveal noise emission from the engine, exhaust, and track depending on the frequency range considered.
Navarro, Jorge; Ring, Terry A.; Nigg, David W.
2015-03-01
A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less
NASA Astrophysics Data System (ADS)
Wapenaar, K.; van der Neut, J.; Ruigrok, E.; Draganov, D.; Hunziker, J.; Slob, E.; Thorbecke, J.; Snieder, R.
2008-12-01
It is well-known that under specific conditions the crosscorrelation of wavefields observed at two receivers yields the impulse response between these receivers. This principle is known as 'Green's function retrieval' or 'seismic interferometry'. Recently it has been recognized that in many situations it can be advantageous to replace the correlation process by deconvolution. One of the advantages is that deconvolution compensates for the waveform emitted by the source; another advantage is that it is not necessary to assume that the medium is lossless. The approaches that have been developed to date employ a 1D deconvolution process. We propose a method for seismic interferometry by multidimensional deconvolution and show that under specific circumstances the method compensates for irregularities in the source distribution. This is an important difference with crosscorrelation methods, which rely on the condition that waves are equipartitioned. This condition is for example fulfilled when the sources are regularly distributed along a closed surface and the power spectra of the sources are identical. The proposed multidimensional deconvolution method compensates for anisotropic illumination, without requiring knowledge about the positions and the spectra of the sources.
NASA Technical Reports Server (NTRS)
Ioup, J. W.; Ioup, G. E.; Rayborn, G. H., Jr.; Wood, G. M., Jr.; Upchurch, B. T.
1984-01-01
Mass spectrometer data in the form of ion current versus mass-to-charge ratio often include overlapping mass peaks, especially in low- and medium-resolution instruments. Numerical deconvolution of such data effectively enhances the resolution by decreasing the overlap of mass peaks. In this paper two approaches to deconvolution are presented: a function-domain iterative technique and a Fourier transform method which uses transform-domain function-continuation. Both techniques include data smoothing to reduce the sensitivity of the deconvolution to noise. The efficacy of these methods is demonstrated through application to representative mass spectrometer data and the deconvolved results are discussed and compared to data obtained from a spectrometer with sufficient resolution to achieve separation of the mass peaks studied. A case for which the deconvolution is seriously affected by Gibbs oscillations is analyzed.
An improved image non-blind image deblurring method based on FoEs
NASA Astrophysics Data System (ADS)
Zhu, Qidan; Sun, Lei
2013-03-01
Traditional non-blind image deblurring algorithms always use maximum a posterior(MAP). MAP estimates involving natural image priors can reduce the ripples effectively in contrast to maximum likelihood(ML). However, they have been found lacking in terms of restoration performance. Based on this issue, we utilize MAP with KL penalty to replace traditional MAP. We develop an image reconstruction algorithm that minimizes the KL divergence between the reference distribution and the prior distribution. The approximate KL penalty can restrain over-smooth caused by MAP. We use three groups of images and Harris corner detection to prove our method. The experimental results show that our algorithm of non-blind image restoration can effectively reduce the ringing effect and exhibit the state-of-the-art deblurring results.
Cartailler, Jerome; Kwon, Taekyung; Yuste, Rafael; Holcman, David
2018-03-07
Most synaptic excitatory connections are made on dendritic spines. But how the voltage in spines is modulated by its geometry remains unclear. To investigate the electrical properties of spines, we combine voltage imaging data with electro-diffusion modeling. We first present a temporal deconvolution procedure for the genetically encoded voltage sensor expressed in hippocampal cultured neurons and then use electro-diffusion theory to compute the electric field and the current-voltage conversion. We extract a range for the neck resistances of 〈R〉=100±35MΩ. When a significant current is injected in a spine, the neck resistance can be inversely proportional to its radius, but not to the radius square, as predicted by Ohm's law. We conclude that the postsynaptic voltage cannot only be modulated by changing the number of receptors, but also by the spine geometry. Thus, spine morphology could be a key component in determining synaptic transduction and plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.
Parsimonious Charge Deconvolution for Native Mass Spectrometry
2018-01-01
Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new “parsimonious” charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies. PMID:29376659
Broadband ion mobility deconvolution for rapid analysis of complex mixtures.
Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj
2018-05-04
High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.
Laser-induced acoustic imaging of underground objects
NASA Astrophysics Data System (ADS)
Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.
1999-02-01
This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.
High-resolution electron microscopy and its applications.
Li, F H
1987-12-01
A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.
Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark
2005-06-22
In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function ofmore » the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.« less
Kinematic model for the space-variant image motion of star sensors under dynamical conditions
NASA Astrophysics Data System (ADS)
Liu, Chao-Shan; Hu, Lai-Hong; Liu, Guang-Bin; Yang, Bo; Li, Ai-Jun
2015-06-01
A kinematic description of a star spot in the focal plane is presented for star sensors under dynamical conditions, which involves all necessary parameters such as the image motion, velocity, and attitude parameters of the vehicle. Stars at different locations of the focal plane correspond to the slightly different orientation and extent of motion blur, which characterize the space-variant point spread function. Finally, the image motion, the energy distribution, and centroid extraction are numerically investigated using the kinematic model under dynamic conditions. A centroid error of eight successive iterations <0.002 pixel is used as the termination criterion for the Richardson-Lucy deconvolution algorithm. The kinematic model of a star sensor is useful for evaluating the compensation algorithms of motion-blurred images.
Constructing a WISE High Resolution Galaxy Atlas
NASA Technical Reports Server (NTRS)
Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.;
2012-01-01
After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.
Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging
NASA Astrophysics Data System (ADS)
Tyler, David W.
2000-07-01
I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.
NASA Astrophysics Data System (ADS)
Bardy, Fabrice; Van Dun, Bram; Dillon, Harvey; Cowan, Robert
2014-08-01
Objective. To evaluate the viability of disentangling a series of overlapping ‘cortical auditory evoked potentials’ (CAEPs) elicited by different stimuli using least-squares (LS) deconvolution, and to assess the adaptation of CAEPs for different stimulus onset-asynchronies (SOAs). Approach. Optimal aperiodic stimulus sequences were designed by controlling the condition number of matrices associated with the LS deconvolution technique. First, theoretical considerations of LS deconvolution were assessed in simulations in which multiple artificial overlapping responses were recovered. Second, biological CAEPs were recorded in response to continuously repeated stimulus trains containing six different tone-bursts with frequencies 8, 4, 2, 1, 0.5, 0.25 kHz separated by SOAs jittered around 150 (120-185), 250 (220-285) and 650 (620-685) ms. The control condition had a fixed SOA of 1175 ms. In a second condition, using the same SOAs, trains of six stimuli were separated by a silence gap of 1600 ms. Twenty-four adults with normal hearing (<20 dB HL) were assessed. Main results. Results showed disentangling of a series of overlapping responses using LS deconvolution on simulated waveforms as well as on real EEG data. The use of rapid presentation and LS deconvolution did not however, allow the recovered CAEPs to have a higher signal-to-noise ratio than for slowly presented stimuli. The LS deconvolution technique enables the analysis of a series of overlapping responses in EEG. Significance. LS deconvolution is a useful technique for the study of adaptation mechanisms of CAEPs for closely spaced stimuli whose characteristics change from stimulus to stimulus. High-rate presentation is necessary to develop an understanding of how the auditory system encodes natural speech or other intrinsically high-rate stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Dong; Zhang, Xinyu; Bian, Zhaoying, E-mail: zybian@smu.edu.cn, E-mail: jhma@smu.edu.cn
Purpose: Cerebral perfusion computed tomography (PCT) imaging as an accurate and fast acute ischemic stroke examination has been widely used in clinic. Meanwhile, a major drawback of PCT imaging is the high radiation dose due to its dynamic scan protocol. The purpose of this work is to develop a robust perfusion deconvolution approach via structure tensor total variation (STV) regularization (PD-STV) for estimating an accurate residue function in PCT imaging with the low-milliampere-seconds (low-mAs) data acquisition. Methods: Besides modeling the spatio-temporal structure information of PCT data, the STV regularization of the present PD-STV approach can utilize the higher order derivativesmore » of the residue function to enhance denoising performance. To minimize the objective function, the authors propose an effective iterative algorithm with a shrinkage/thresholding scheme. A simulation study on a digital brain perfusion phantom and a clinical study on an old infarction patient were conducted to validate and evaluate the performance of the present PD-STV approach. Results: In the digital phantom study, visual inspection and quantitative metrics (i.e., the normalized mean square error, the peak signal-to-noise ratio, and the universal quality index) assessments demonstrated that the PD-STV approach outperformed other existing approaches in terms of the performance of noise-induced artifacts reduction and accurate perfusion hemodynamic maps (PHM) estimation. In the patient data study, the present PD-STV approach could yield accurate PHM estimation with several noticeable gains over other existing approaches in terms of visual inspection and correlation analysis. Conclusions: This study demonstrated the feasibility and efficacy of the present PD-STV approach in utilizing STV regularization to improve the accuracy of residue function estimation of cerebral PCT imaging in the case of low-mAs.« less
Hard X-ray imaging spectroscopy of FOXSI microflares
NASA Astrophysics Data System (ADS)
Glesener, Lindsay; Krucker, Sam; Christe, Steven; Buitrago-Casas, Juan Camilo; Ishikawa, Shin-nosuke; Foster, Natalie
2015-04-01
The ability to investigate particle acceleration and hot thermal plasma in solar flares relies on hard X-ray imaging spectroscopy using bremsstrahlung emission from high-energy electrons. Direct focusing of hard X-rays (HXRs) offers the ability to perform cleaner imaging spectroscopy of this emission than has previously been possible. Using direct focusing, spectra for different sources within the same field of view can be obtained easily since each detector segment (pixel or strip) measures the energy of each photon interacting within that segment. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has successfully completed two flights, observing microflares each time. Flare images demonstrate an instrument imaging dynamic range far superior to the indirect methods of previous instruments like the RHESSI spacecraft.In this work, we present imaging spectroscopy of microflares observed by FOXSI in its two flights. Imaging spectroscopy performed on raw FOXSI images reveals the temperature structure of flaring loops, while more advanced techniques such as deconvolution of the point spread function produce even more detailed images.
A complete passive blind image copy-move forensics scheme based on compound statistics features.
Peng, Fei; Nie, Yun-ying; Long, Min
2011-10-10
Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A Markov model for blind image separation by a mean-field EM algorithm.
Tonazzini, Anna; Bedini, Luigi; Salerno, Emanuele
2006-02-01
This paper deals with blind separation of images from noisy linear mixtures with unknown coefficients, formulated as a Bayesian estimation problem. This is a flexible framework, where any kind of prior knowledge about the source images and the mixing matrix can be accounted for. In particular, we describe local correlation within the individual images through the use of Markov random field (MRF) image models. These are naturally suited to express the joint pdf of the sources in a factorized form, so that the statistical independence requirements of most independent component analysis approaches to blind source separation are retained. Our model also includes edge variables to preserve intensity discontinuities. MRF models have been proved to be very efficient in many visual reconstruction problems, such as blind image restoration, and allow separation and edge detection to be performed simultaneously. We propose an expectation-maximization algorithm with the mean field approximation to derive a procedure for estimating the mixing matrix, the sources, and their edge maps. We tested this procedure on both synthetic and real images, in the fully blind case (i.e., no prior information on mixing is exploited) and found that a source model accounting for local autocorrelation is able to increase robustness against noise, even space variant. Furthermore, when the model closely fits the source characteristics, independence is no longer a strict requirement, and cross-correlated sources can be separated, as well.
The research on a novel type of the solar-blind UV head-mounted displays
NASA Astrophysics Data System (ADS)
Zhao, Shun-long
2011-08-01
Ultraviolet technology of detecting is playing a more and more important role in the field of civil application, especially in the corona discharge detection, in modern society. Now the UV imaging detector is one of the most important equipments in power equipment flaws detection. And the modern head-mounted displays (HMDs) have shown the applications in the fields of military, industry production, medical treatment, entertainment, 3D visualization, education and training. We applied the system of head-mounted displays to the UV image detection, and a novel type of head-mounted displays is presented: the solar-blind UV head-mounted displays. And the structure is given. By the solar-blind UV head-mounted displays, a real-time, isometric and visible image of the corona discharge is correctly displayed upon the background scene where it exists. The user will see the visible image of the corona discharge on the real scene rather than on a small screen. Then the user can easily find out the power equipment flaws and repair them. Compared with the traditional UV imaging detector, the introducing of the HMDs simplifies the structure of the whole system. The original visible spectrum optical system is replaced by the eye in the solar-blind UV head-mounted displays. And the optical image fusion technology would be used rather than the digital image fusion system which is necessary in traditional UV imaging detector. That means the visible spectrum optical system and digital image fusion system are not necessary. This makes the whole system cheaper than the traditional UV imaging detector. Another advantage of the solar-blind UV head-mounted displays is that the two hands of user will be free. So while observing the corona discharge the user can do some things about it. Therefore the solar-blind UV head-mounted displays can make the corona discharge expose itself to the user in a better way, and it will play an important role in corona detection in the future.
Scalar flux modeling in turbulent flames using iterative deconvolution
NASA Astrophysics Data System (ADS)
Nikolaou, Z. M.; Cant, R. S.; Vervisch, L.
2018-04-01
In the context of large eddy simulations, deconvolution is an attractive alternative for modeling the unclosed terms appearing in the filtered governing equations. Such methods have been used in a number of studies for non-reacting and incompressible flows; however, their application in reacting flows is limited in comparison. Deconvolution methods originate from clearly defined operations, and in theory they can be used in order to model any unclosed term in the filtered equations including the scalar flux. In this study, an iterative deconvolution algorithm is used in order to provide a closure for the scalar flux term in a turbulent premixed flame by explicitly filtering the deconvoluted fields. The assessment of the method is conducted a priori using a three-dimensional direct numerical simulation database of a turbulent freely propagating premixed flame in a canonical configuration. In contrast to most classical a priori studies, the assessment is more stringent as it is performed on a much coarser mesh which is constructed using the filtered fields as obtained from the direct simulations. For the conditions tested in this study, deconvolution is found to provide good estimates both of the scalar flux and of its divergence.
Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei
2016-01-01
Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was usedmore » on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant No.61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, R.; Siddons, D.; Dunn, P.A.
2010-06-23
The Maia detector system is engineered for energy dispersive x-ray fluorescence spectroscopy and elemental imaging at photon rates exceeding 10{sup 7}/s, integrated scanning of samples for pixel transit times as small as 50 {micro}s and high definition images of 10{sup 8} pixels and real-time processing of detected events for spectral deconvolution and online display of pure elemental images. The system developed by CSIRO and BNL combines a planar silicon 384 detector array, application-specific integrated circuits for pulse shaping and peak detection and sampling and optical data transmission to an FPGA-based pipelined, parallel processor. This paper describes the system and themore » underpinning engineering solutions.« less
Diagnostic accuracy of three biopsy techniques in 117 dogs with intra-nasal neoplasia.
Harris, B J; Lourenço, B N; Dobson, J M; Herrtage, M E
2014-04-01
To determine if nasal biopsies taken at rhinoscopy are more accurate for diagnosing neoplasia than biopsies taken blindly or using advanced imaging for guidance. A retrospective study of 117 dogs with nasal mass lesions that were divided into three groups according to the method of nasal biopsy collection; advanced imaging-guided, rhinoscopy-guided and blind biopsy. Signalment, imaging and rhinoscopic findings, and histopathological diagnosis were compared between groups. The proportion of first attempt biopsies confirming neoplasia were determined for each group. There were no statistically significant differences in the proportion of biopsies that confirmed neoplasia obtained via advanced imaging-guided, rhinoscopy-guided or blind biopsy techniques. In dogs with a high index of suspicion of nasal neoplasia, blind biopsy may be as diagnostic as rhinoscopy-guided biopsy. Repeated biopsies are frequently required for definitive diagnosis. © 2014 British Small Animal Veterinary Association.
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Ruigrok, Elmer; Draganov, Deyan; Hunziker, Juerg; Slob, Evert; Thorbecke, Jan; Snieder, Roel
2010-05-01
In recent years, seismic interferometry (or Green's function retrieval) has led to many applications in seismology (exploration, regional and global), underwater acoustics and ultrasonics. One of the explanations for this broad interest lies in the simplicity of the methodology. In passive data applications a simple crosscorrelation of responses at two receivers gives the impulse response (Green's function) at one receiver as if there were a source at the position of the other. In controlled-source applications the procedure is similar, except that it involves in addition a summation along the sources. It has also been recognized that the simple crosscorrelation approach has its limitations. From the various theoretical models it follows that there are a number of underlying assumptions for retrieving the Green's function by crosscorrelation. The most important assumptions are that the medium is lossless and that the waves are equipartitioned. In heuristic terms the latter condition means that the receivers are illuminated isotropically from all directions, which is for example achieved when the sources are regularly distributed along a closed surface, the sources are mutually uncorrelated and their power spectra are identical. Despite the fact that in practical situations these conditions are at most only partly fulfilled, the results of seismic interferometry are generally quite robust, but the retrieved amplitudes are unreliable and the results are often blurred by artifacts. Several researchers have proposed to address some of the shortcomings by replacing the correlation process by deconvolution. In most cases the employed deconvolution procedure is essentially 1-D (i.e., trace-by-trace deconvolution). This compensates the anelastic losses, but it does not account for the anisotropic illumination of the receivers. To obtain more accurate results, seismic interferometry by deconvolution should acknowledge the 3-D nature of the seismic wave field. Hence, from a theoretical point of view, the trace-by-trace process should be replaced by a full 3-D wave field deconvolution process. Interferometry by multidimensional deconvolution is more accurate than the trace-by-trace correlation and deconvolution approaches but the processing is more involved. In the presentation we will give a systematic analysis of seismic interferometry by crosscorrelation versus multi-dimensional deconvolution and discuss applications of both approaches.
Dietrich, Susanne; Hertrich, Ingo; Kumar, Vinod; Ackermann, Hermann
2015-01-01
Late-blind humans can learn to understand speech at ultra-fast syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. Thus, the observed functional cross-modal recruitment of occipital cortex might facilitate ultra-fast speech processing in these individuals. To further elucidate the structural prerequisites of this skill, diffusion tensor imaging (DTI) was conducted in late-blind subjects differing in their capability of understanding ultra-fast speech. Fractional anisotropy (FA) was determined as a quantitative measure of the directionality of water diffusion, indicating fiber tract characteristics that might be influenced by blindness as well as the acquired perceptual skills. Analysis of the diffusion images revealed reduced FA in late-blind individuals relative to sighted controls at the level of the optic radiations at either side and the right-hemisphere dorsal thalamus (pulvinar). Moreover, late-blind subjects showed significant positive correlations between FA and the capacity of ultra-fast speech comprehension within right-hemisphere optic radiation and thalamus. Thus, experience-related structural alterations occurred in late-blind individuals within visual pathways that, presumably, are linked to higher order frontal language areas. PMID:25830371
Blind subjects construct conscious mental images of visual scenes encoded in musical form.
Cronly-Dillon, J; Persaud, K C; Blore, R
2000-01-01
Blind (previously sighted) subjects are able to analyse, describe and graphically represent a number of high-contrast visual images translated into musical form de novo. We presented musical transforms of a random assortment of photographic images of objects and urban scenes to such subjects, a few of which depicted architectural and other landmarks that may be useful in navigating a route to a particular destination. Our blind subjects were able to use the sound representation to construct a conscious mental image that was revealed by their ability to depict a visual target by drawing it. We noted the similarity between the way the visual system integrates information from successive fixations to form a representation that is stable across eye movements and the way a succession of image frames (encoded in sound) which depict different portions of the image are integrated to form a seamless mental image. Finally, we discuss the profound resemblance between the way a professional musician carries out a structural analysis of a musical composition in order to relate its structure to the perception of musical form and the strategies used by our blind subjects in isolating structural features that collectively reveal the identity of visual form. PMID:11413637
A generic nuclei detection method for histopathological breast images
NASA Astrophysics Data System (ADS)
Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.
2016-03-01
The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.
Feasibility of infrared Earth tracking for deep-space optical communications.
Chen, Yijiang; Hemmati, Hamid; Ortiz, Gerry G
2012-01-01
Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth's nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
1982-01-01
A project to develop an effective mobility aid for blind pedestrians which acquires consecutive images of the scenes before a moving pedestrian, which locates and identifies the pedestrian's path and potential obstacles in the path, which presents path and obstacle information to the pedestrian, and which operates in real-time is discussed. The mobility aid has three principal components: an image acquisition system, an image interpretation system, and an information presentation system. The image acquisition system consists of a miniature, solid-state TV camera which transforms the scene before the blind pedestrian into an image which can be received by the image interpretation system. The image interpretation system is implemented on a microprocessor which has been programmed to execute real-time feature extraction and scene analysis algorithms for locating and identifying the pedestrian's path and potential obstacles. Identity and location information is presented to the pedestrian by means of tactile coding and machine-generated speech.
Data consistency-driven scatter kernel optimization for x-ray cone-beam CT
NASA Astrophysics Data System (ADS)
Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong
2015-08-01
Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.
An advanced software suite for the processing and analysis of silicon luminescence images
NASA Astrophysics Data System (ADS)
Payne, D. N. R.; Vargas, C.; Hameiri, Z.; Wenham, S. R.; Bagnall, D. M.
2017-06-01
Luminescence imaging is a versatile characterisation technique used for a broad range of research and industrial applications, particularly for the field of photovoltaics where photoluminescence and electroluminescence imaging is routinely carried out for materials analysis and quality control. Luminescence imaging can reveal a wealth of material information, as detailed in extensive literature, yet these techniques are often only used qualitatively instead of being utilised to their full potential. Part of the reason for this is the time and effort required for image processing and analysis in order to convert image data to more meaningful results. In this work, a custom built, Matlab based software suite is presented which aims to dramatically simplify luminescence image processing and analysis. The suite includes four individual programs which can be used in isolation or in conjunction to achieve a broad array of functionality, including but not limited to, point spread function determination and deconvolution, automated sample extraction, image alignment and comparison, minority carrier lifetime calibration and iron impurity concentration mapping.
Image-guided filtering for improving photoacoustic tomographic image reconstruction.
Awasthi, Navchetan; Kalva, Sandeep Kumar; Pramanik, Manojit; Yalavarthy, Phaneendra K
2018-06-01
Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Blind guidance system based on laser triangulation
NASA Astrophysics Data System (ADS)
Wu, Jih-Huah; Wang, Jinner-Der; Fang, Wei; Lee, Yun-Parn; Shan, Yi-Chia; Kao, Hai-Ko; Ma, Shih-Hsin; Jiang, Joe-Air
2012-05-01
We propose a new guidance system for the blind. An optical triangulation method is used in the system. The main components of the proposed system comprise of a notebook computer, a camera, and two laser modules. The track image of the light beam on the ground or on the object is captured by the camera and then the image is sent to the notebook computer for further processing and analysis. Using a developed signal-processing algorithm, our system can determine the object width and the distance between the object and the blind person through the calculation of the light line positions on the image. A series of feasibility tests of the developed blind guidance system were conducted. The experimental results show that the distance between the test object and the blind can be measured with a standard deviation of less than 8.5% within the range of 40 and 130 cm, while the test object width can be measured with a standard deviation of less than 4.5% within the range of 40 and 130 cm. The application potential of the designed system to the blind guidance can be expected.
Proton pinhole imaging on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Zylstra, A. B.; Park, H.-S.; Ross, J. S.; Fiuza, F.; Frenje, J. A.; Higginson, D. P.; Huntington, C.; Li, C. K.; Petrasso, R. D.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Séguin, F. H.; Turnbull, D.; Wilks, S. C.
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
NASA Astrophysics Data System (ADS)
Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi
2005-08-01
This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.
Parallel detecting super-resolution microscopy using correlation based image restoration
NASA Astrophysics Data System (ADS)
Yu, Zhongzhi; Liu, Shaocong; Zhu, Dazhao; Kuang, Cuifang; Liu, Xu
2017-12-01
A novel approach to achieve the image restoration is proposed in which each detector's relative position in the detector array is no longer a necessity. We can identify each detector's relative location by extracting a certain area from one of the detector's image and scanning it on other detectors' images. According to this location, we can generate the point spread functions (PSF) for each detector and perform deconvolution for image restoration. Equipped with this method, the microscope with discretionally designed detector array can be easily constructed without the concern of exact relative locations of detectors. The simulated results and experimental results show the total improvement in resolution with a factor of 1.7 compared to conventional confocal fluorescence microscopy. With the significant enhancement in resolution and easiness for application of this method, this novel method should have potential for a wide range of application in fluorescence microscopy based on parallel detecting.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Proton pinhole imaging on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B., E-mail: zylstra@lanl.gov; Park, H.-S.; Ross, J. S.
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging
NASA Astrophysics Data System (ADS)
Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ
2015-01-01
Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)
Proton pinhole imaging on the National Ignition Facility
Zylstra, Alex B.; Park, H. -S.; Ross, J. S.; ...
2016-07-29
Here, pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. Whenmore » the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.« less
NASA Astrophysics Data System (ADS)
Chen, Hu; Zhang, Yi; Zhou, Jiliu; Wang, Ge
2017-09-01
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.
Proton pinhole imaging on the National Ignition Facility.
Zylstra, A B; Park, H-S; Ross, J S; Fiuza, F; Frenje, J A; Higginson, D P; Huntington, C; Li, C K; Petrasso, R D; Pollock, B; Remington, B; Rinderknecht, H G; Ryutov, D; Séguin, F H; Turnbull, D; Wilks, S C
2016-11-01
Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4 ×. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment.
Praveen, Radhakrishnan; Prasad Verma, Priya Ranjan; Venkatesan, Jayachandran; Yoon, Dong-Han; Kim, Se-Kwon; Singh, Sandeep Kumar
2017-09-01
The objective of present investigation was to develop gastro-retentive controlled release system of carvedilol using biological macromolecule, chitosan. 3 2 full factorial design was adopted for optimization of tripolyphosphate (X 1 ) and curing time (X 2 ). Bead stability in 0.1N HCl, buoyancy duration, density, drug loading, dissolution efficiency and cumulative percentage release at 8th hour were evaluated as dependent variables. The levels of X 1 and X 2 of optimized formulation having maximum desirability was found to 2.0% w/v and 62.66min, respectively. The in silico predicted responses and observed response were found to be in good agreement (percent bias error: -13.295 to +13.269). SEM images showed numerous pores in the cross sectional image that renders buoyancy. AUC 0-∞ of optimized formulation was 1.47 times higher as compared to suspension corroborating enhanced extent of absorption. T max and mean residence time were significantly higher from optimized formulation vis a vis suspension. In silico study indicated maximum regional absorption from the duodenum (94.1%) followed by jejunum (5.6%). Wagner-Nelson and Loo-Reigelman method were the preferred deconvolution approach over numerical deconvolution to establish IVIVC. In conclusion, the study showed that gastro-retentive controlled release system prepared using chitosan could be a potential drug carrier of carvedilol with improved bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.
Methods and Apparatus for Reducing Multipath Signal Error Using Deconvolution
NASA Technical Reports Server (NTRS)
Kumar, Rajendra (Inventor); Lau, Kenneth H. (Inventor)
1999-01-01
A deconvolution approach to adaptive signal processing has been applied to the elimination of signal multipath errors as embodied in one preferred embodiment in a global positioning system receiver. The method and receiver of the present invention estimates then compensates for multipath effects in a comprehensive manner. Application of deconvolution, along with other adaptive identification and estimation techniques, results in completely novel GPS (Global Positioning System) receiver architecture.
Bardy, Fabrice; Dillon, Harvey; Van Dun, Bram
2014-04-01
Rapid presentation of stimuli in an evoked response paradigm can lead to overlap of multiple responses and consequently difficulties interpreting waveform morphology. This paper presents a deconvolution method allowing overlapping multiple responses to be disentangled. The deconvolution technique uses a least-squared error approach. A methodology is proposed to optimize the stimulus sequence associated with the deconvolution technique under low-jitter conditions. It controls the condition number of the matrices involved in recovering the responses. Simulations were performed using the proposed deconvolution technique. Multiple overlapping responses can be recovered perfectly in noiseless conditions. In the presence of noise, the amount of error introduced by the technique can be controlled a priori by the condition number of the matrix associated with the used stimulus sequence. The simulation results indicate the need for a minimum amount of jitter, as well as a sufficient number of overlap combinations to obtain optimum results. An aperiodic model is recommended to improve reconstruction. We propose a deconvolution technique allowing multiple overlapping responses to be extracted and a method of choosing the stimulus sequence optimal for response recovery. This technique may allow audiologists, psychologists, and electrophysiologists to optimize their experimental designs involving rapidly presented stimuli, and to recover evoked overlapping responses. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.
Sparse-view proton computed tomography using modulated proton beams.
Lee, Jiseoc; Kim, Changhwan; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong; Cho, Seungryong
2015-02-01
Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method-projection onto convex sets (SM-POCS), superiorization method-expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed within 1% error. EM-based algorithms produced an increased image noise and RMSE as the iteration reaches about 20, while the POCS-based algorithms showed a monotonic convergence with iterations. The ASD-POCS algorithm outperformed the others in terms of CNR, RMSE, and the accuracy of the reconstructed relative stopping power in the region of lung and soft tissues. The four iterative algorithms, i.e., ASD-POCS, SM-POCS, SM-EM, and EM-TV, have been developed and applied for proton CT image reconstruction. Although it still seems that the images need to be improved for practical applications to the treatment planning, proton CT imaging by use of the modulated beams in sparse-view sampling has demonstrated its feasibility.
NASA Astrophysics Data System (ADS)
Li, Zhong-xiao; Li, Zhen-chun
2016-09-01
The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.
Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure
NASA Astrophysics Data System (ADS)
Xie, J. "; Schaff, D. P.
2010-12-01
Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.
Mizrakhi, V M; Protsiuk, R G
2000-03-01
In profound impairement of vision the function of colour and seen objects perception is absent, with the person being unable to orient himself in space. The uncovered sensory sensations of colour allowed their use in training the blind in recognizing the colour of paper, fabric, etc. Further study in those having become blind will, we believe, help in finding eligible people and relevant approaches toward educating the blind, which will make for development of the trainee's ability to recognize images on the "inner visual screen".
Horger, Marius; Fallier-Becker, Petra; Thaiss, Wolfgang M; Sauter, Alexander; Bösmüller, Hans; Martella, Manuela; Preibsch, Heike; Fritz, Jan; Nikolaou, Konstantin; Kloth, Christopher
2018-05-03
This study aimed to test the hypothesis that ultrastructural wall abnormalities of lymphoma vessels correlate with perfusion computed tomography (PCT) kinetics. Our local institutional review board approved this prospective study. Between February 2013 and June 2016, we included 23 consecutive subjects with newly diagnosed lymphoma, who were referred for computed tomography-guided biopsy (6 women, 17 men; mean age, 60.61 ± 12.43 years; range, 28-74 years) and additionally agreed to undergo PCT of the target lymphoma tissues. PCT was obtained for 40 seconds using 80 kV, 120 mAs, 64 × 0.6-mm collimation, 6.9-cm z-axis coverage, and 26 volume measurements. Mean and maximum k-trans (mL/100 mL/min), blood flow (BF; mL/100 mL/min) and blood volume (BV) were quantified using the deconvolution and the maximum slope + Patlak calculation models. Immunohistochemical staining was performed for microvessel density quantification (vessels/m 2 ), and electron microscopy was used to determine the presence or absence of tight junctions, endothelial fenestration, basement membrane, and pericytes, and to measure extracellular matrix thickness. Extracellular matrix thickness as well as the presence or absence of tight junctions, basal lamina, and pericytes did not correlate with computed tomography perfusion parameters. Endothelial fenestrations correlated significantly with mean BF deconvolution (P = .047, r = 0.418) and additionally was significantly associated with higher mean BV deconvolution (P < .005). Mean k-trans Patlak correlated strongly with mean k-trans deconvolution (r = 0.939, P = .001), and both correlated with mean BF deconvolution (P = .001, r = 0.748), max BF deconvolution (P = .028, r = 0.564), mean BV deconvolution (P = .001, r = 0.752), and max BV deconvolution (P = .001, r = 0.771). Microvessel density correlated with max k-trans deconvolution (r = 0.564, P = .023). Vascular endothelial growth factor receptor-3 expression (receptor specific for lymphatics) correlated significantly with max k-trans Patlak (P = .041, r = 0.686) and mean BF deconvolution (P = .038, r = 0.695). k-Trans values of PCT do not correlate with ultrastructural microvessel features, whereas endothelial fenestrations correlate with increased intra-tumoral BVs. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
An underwater turbulence degraded image restoration algorithm
NASA Astrophysics Data System (ADS)
Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew
2017-09-01
Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
NASA Technical Reports Server (NTRS)
Wood, G. M.; Rayborn, G. H.; Ioup, J. W.; Ioup, G. E.; Upchurch, B. T.; Howard, S. J.
1981-01-01
Mathematical deconvolution of digitized analog signals from scientific measuring instruments is shown to be a means of extracting important information which is otherwise hidden due to time-constant and other broadening or distortion effects caused by the experiment. Three different approaches to deconvolution and their subsequent application to recorded data from three analytical instruments are considered. To demonstrate the efficacy of deconvolution, the use of these approaches to solve the convolution integral for the gas chromatograph, magnetic mass spectrometer, and the time-of-flight mass spectrometer are described. Other possible applications of these types of numerical treatment of data to yield superior results from analog signals of the physical parameters normally measured in aerospace simulation facilities are suggested and briefly discussed.
Quality assessment for color reproduction using a blind metric
NASA Astrophysics Data System (ADS)
Bringier, B.; Quintard, L.; Larabi, M.-C.
2007-01-01
This paper deals with image quality assessment. This field plays nowadays an important role in various image processing applications. Number of objective image quality metrics, that correlate or not, with the subjective quality have been developed during the last decade. Two categories of metrics can be distinguished, the first with full-reference and the second with no-reference. Full-reference metric tries to evaluate the distortion introduced to an image with regards to the reference. No-reference approach attempts to model the judgment of image quality in a blind way. Unfortunately, the universal image quality model is not on the horizon and empirical models established on psychophysical experimentation are generally used. In this paper, we focus only on the second category to evaluate the quality of color reproduction where a blind metric, based on human visual system modeling is introduced. The objective results are validated by single-media and cross-media subjective tests.
Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.
Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai
2016-03-01
Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.
The fabrication of a multi-spectral lens array and its application in assisting color blindness
NASA Astrophysics Data System (ADS)
Di, Si; Jin, Jian; Tang, Guanrong; Chen, Xianshuai; Du, Ruxu
2016-01-01
This article presents a compact multi-spectral lens array and describes its application in assisting color-blindness. The lens array consists of 9 microlens, and each microlens is coated with a different color filter. Thus, it can capture different light bands, including red, orange, yellow, green, cyan, blue, violet, near-infrared, and the entire visible band. First, the fabrication process is described in detail. Second, an imaging system is setup and a color blindness testing card is selected as the sample. By the system, the vision results of normal people and color blindness can be captured simultaneously. Based on the imaging results, it is possible to be used for helping color-blindness to recover normal vision.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
LCD motion blur reduction: a signal processing approach.
Har-Noy, Shay; Nguyen, Truong Q
2008-02-01
Liquid crystal displays (LCDs) have shown great promise in the consumer market for their use as both computer and television displays. Despite their many advantages, the inherent sample-and-hold nature of LCD image formation results in a phenomenon known as motion blur. In this work, we develop a method for motion blur reduction using the Richardson-Lucy deconvolution algorithm in concert with motion vector information from the scene. We further refine our approach by introducing a perceptual significance metric that allows us to weight the amount of processing performed on different regions in the image. In addition, we analyze the role of motion vector errors in the quality of our resulting image. Perceptual tests indicate that our algorithm reduces the amount of perceivable motion blur in LCDs.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method
NASA Astrophysics Data System (ADS)
Nakajima, Reiko; Bernstein, Gary
2007-04-01
We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.
NASA Astrophysics Data System (ADS)
McDonald, Geoff L.; Zhao, Qing
2017-01-01
Minimum Entropy Deconvolution (MED) has been applied successfully to rotating machine fault detection from vibration data, however this method has limitations. A convolution adjustment to the MED definition and solution is proposed in this paper to address the discontinuity at the start of the signal - in some cases causing spurious impulses to be erroneously deconvolved. A problem with the MED solution is that it is an iterative selection process, and will not necessarily design an optimal filter for the posed problem. Additionally, the problem goal in MED prefers to deconvolve a single-impulse, while in rotating machine faults we expect one impulse-like vibration source per rotational period of the faulty element. Maximum Correlated Kurtosis Deconvolution was proposed to address some of these problems, and although it solves the target goal of multiple periodic impulses, it is still an iterative non-optimal solution to the posed problem and only solves for a limited set of impulses in a row. Ideally, the problem goal should target an impulse train as the output goal, and should directly solve for the optimal filter in a non-iterative manner. To meet these goals, we propose a non-iterative deconvolution approach called Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA). MOMEDA proposes a deconvolution problem with an infinite impulse train as the goal and the optimal filter solution can be solved for directly. From experimental data on a gearbox with and without a gear tooth chip, we show that MOMEDA and its deconvolution spectrums according to the period between the impulses can be used to detect faults and study the health of rotating machine elements effectively.
Evaluation of deconvolution modelling applied to numerical combustion
NASA Astrophysics Data System (ADS)
Mehl, Cédric; Idier, Jérôme; Fiorina, Benoît
2018-01-01
A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.
Signal processing in ultrasound. [for diagnostic medicine
NASA Technical Reports Server (NTRS)
Le Croissette, D. H.; Gammell, P. M.
1978-01-01
Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.
1984-06-01
and shift varying deblurring of images. mui W AcCOan~MP ins Several of the techniques which have been investigated under this work unit are based upon...concern with the use of these iterative algorithms for deconvolution is the effect of noise on the restoration. In the absence of constraints on the...perform badly in the presence of broadband noise . An ad A hoc procedure which improves performance is to prefilter the data to enhance the signal-to
VizieR Online Data Catalog: R-band light curves of DES J0408-5359 (Courbin+ 2018)
NASA Astrophysics Data System (ADS)
Courbin, F.; Bonvin, V.; Buckley-Geer, E.; Fassnacht, C. D.; Frieman, J.; Lin, H.; Marshall, P. J.; Suyu, S. H.; Treu, T.; Anguita, T.; Motta, V.; Meylan, G.; Paic, E.; Tewes, M.; Agnello, A.; Chao, D. C.-Y.; Chijani, M.; Gilman, D.; Rojas, K.; Williams, P.; Hempel, A.; Kim, S.; Lachaume, R.; Rabus, M.; Abbott, T. M. C.; Allam, S.; Annis, J.; Banerji, M.; Bechtol, K.; Benoit-Levy, A.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; D'Andrea, C. B.; Costa, L. N. Da; Davis, C.; Depoy, D. L.; Desai, S.; Flaugher, B.; Fosalba, P.; Garcia-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Nord, B.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.
2017-11-01
We have been monitoring the quadruply lensed quasar DES J0408-5354 since July 2016 with different telescopes in the R band (~600-720nm). The resulting R-band light curves of the quadruply lensed quasar DES J0408-5354, is displayed in Fig. 3 of the paper. The light curves are obtained using deconvolution photometry of images from 42 different telescopes (the MPIA 2.2m and the ESO Euler 1.2m). (1 data file).
NASA Astrophysics Data System (ADS)
Pompa, P. P.; Cingolani, R.; Rinaldi, R.
2003-07-01
In this paper, we present a deconvolution method aimed at spectrally resolving the broad fluorescence spectra of proteins, namely, of the enzyme bovine liver glutamate dehydrogenase (GDH). The analytical procedure is based on the deconvolution of the emission spectra into three distinct Gaussian fluorescing bands Gj. The relative changes of the Gj parameters are directly related to the conformational changes of the enzyme, and provide interesting information about the fluorescence dynamics of the individual emitting contributions. Our deconvolution method results in an excellent fitting of all the spectra obtained with GDH in a number of experimental conditions (various conformational states of the protein) and describes very well the dynamics of a variety of phenomena, such as the dependence of hexamers association on protein concentration, the dynamics of thermal denaturation, and the interaction process between the enzyme and external quenchers. The investigation was carried out by means of different optical experiments, i.e., native enzyme fluorescence, thermal-induced unfolding, and fluorescence quenching studies, utilizing both the analysis of the “average” behavior of the enzyme and the proposed deconvolution approach.
A pratical deconvolution algorithm in multi-fiber spectra extraction
NASA Astrophysics Data System (ADS)
Zhang, Haotong; Li, Guangwei; Bai, Zhongrui
2015-08-01
Deconvolution algorithm is a very promising method in multi-fiber spectroscopy data reduction, the method can extract spectra to the photo noise level as well as improve the spectral resolution, but as mentioned in Bolton & Schlegel (2010), it is limited by its huge computation requirement and thus can not be implemented directly in actual data reduction. We develop a practical algorithm to solve the computation problem. The new algorithm can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. We further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. A series of simulations based on LAMOST data are carried out to test our method under more real situations with poisson noise and extreme cross talk, i.e., the fiber-to-fiber distance is comparable to the FWHM of the fiber profile. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method shows both higher S/N and spectral resolution. The computaion time for a noise added image with 250 fibers and 4k pixels in wavelength direction, is about 2 hours when the fiber cross talk is not in the extreme case and 3.5 hours for the extreme fiber cross talk. We finally apply our method to real LAMOST data. We find that the 1D spectrum extracted by our method has both higher SNR and resolution than the traditional methods, but there are still some suspicious weak features possibly caused by the noise sensitivity of the method around the strong emission lines. How to further attenuate the noise influence will be the topic of our future work. As we have demonstrated, multi-fiber spectra extracted by our method will have higher resolution and signal to noise ratio thus will provide more accurate information (such as higher radial velocity and metallicity measurement accuracy in stellar physics) to astronomers than traditional methods.
High-fidelity artifact correction for cone-beam CT imaging of the brain
NASA Astrophysics Data System (ADS)
Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.
2015-02-01
CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement with the nominal blood contrast of 50 HU. Although noise was amplified by the corrections, the contrast-to-noise ratio (CNR) of simulated bleeds was improved by nearly a factor of 3.5 (CNR = 0.54 without corrections and 1.91 after correction). The resulting image quality motivates further development and translation of the FPD-CBCT system for imaging of acute TBI.
Deep neural network-based bandwidth enhancement of photoacoustic data.
Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K
2017-11-01
Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Deconvolution single shot multibox detector for supermarket commodity detection and classification
NASA Astrophysics Data System (ADS)
Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian
2017-07-01
This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.
NASA Technical Reports Server (NTRS)
Heyer, Mark H.; Graham, J. A.
1990-01-01
Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star.
Wide-Field Imaging of Single-Nanoparticle Extinction with Sub-nm2 Sensitivity
NASA Astrophysics Data System (ADS)
Payne, Lukas M.; Langbein, Wolfgang; Borri, Paola
2018-03-01
We report on a highly sensitive wide-field imaging technique for quantitative measurement of the optical extinction cross section σext of single nanoparticles. The technique is simple and high speed, and it enables the simultaneous acquisition of hundreds of nanoparticles for statistical analysis. Using rapid referencing, fast acquisition, and a deconvolution analysis, a shot-noise-limited sensitivity down to 0.4 nm2 is achieved. Measurements on a set of individual gold nanoparticles of 5 nm diameter using this method yield σext=(10.0 ±3.1 ) nm2, which is consistent with theoretical expectations and well above the background fluctuations of 0.9 nm2 .
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander
2016-08-24
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander
2016-01-01
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506
Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
Huang, Xiaoshuai; Fan, Junchao; Li, Liuju; Liu, Haosen; Wu, Runlong; Wu, Yi; Wei, Lisi; Mao, Heng; Lal, Amit; Xi, Peng; Tang, Liqiang; Zhang, Yunfeng; Liu, Yanmei; Tan, Shan; Chen, Liangyi
2018-06-01
To increase the temporal resolution and maximal imaging time of super-resolution (SR) microscopy, we have developed a deconvolution algorithm for structured illumination microscopy based on Hessian matrixes (Hessian-SIM). It uses the continuity of biological structures in multiple dimensions as a priori knowledge to guide image reconstruction and attains artifact-minimized SR images with less than 10% of the photon dose used by conventional SIM while substantially outperforming current algorithms at low signal intensities. Hessian-SIM enables rapid imaging of moving vesicles or loops in the endoplasmic reticulum without motion artifacts and with a spatiotemporal resolution of 88 nm and 188 Hz. Its high sensitivity allows the use of sub-millisecond excitation pulses followed by dark recovery times to reduce photobleaching of fluorescent proteins, enabling hour-long time-lapse SR imaging of actin filaments in live cells. Finally, we observed the structural dynamics of mitochondrial cristae and structures that, to our knowledge, have not been observed previously, such as enlarged fusion pores during vesicle exocytosis.
Ball, Felix; Elzemann, Anne; Busch, Niko A
2014-09-01
The change blindness paradigm, in which participants often fail to notice substantial changes in a scene, is a popular tool for studying scene perception, visual memory, and the link between awareness and attention. Some of the most striking and popular examples of change blindness have been demonstrated with digital photographs of natural scenes; in most studies, however, much simpler displays, such as abstract stimuli or "free-floating" objects, are typically used. Although simple displays have undeniable advantages, natural scenes remain a very useful and attractive stimulus for change blindness research. To assist researchers interested in using natural-scene stimuli in change blindness experiments, we provide here a step-by-step tutorial on how to produce changes in natural-scene images with a freely available image-processing tool (GIMP). We explain how changes in a scene can be made by deleting objects or relocating them within the scene or by changing the color of an object, in just a few simple steps. We also explain how the physical properties of such changes can be analyzed using GIMP and MATLAB (a high-level scientific programming tool). Finally, we present an experiment confirming that scenes manipulated according to our guidelines are effective in inducing change blindness and demonstrating the relationship between change blindness and the physical properties of the change and inter-individual differences in performance measures. We expect that this tutorial will be useful for researchers interested in studying the mechanisms of change blindness, attention, or visual memory using natural scenes.
Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.
Wang, Hongbin; Miller, Paul C
2014-02-01
The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images.
Active illuminated space object imaging and tracking simulation
NASA Astrophysics Data System (ADS)
Yue, Yufang; Xie, Xiaogang; Luo, Wen; Zhang, Feizhou; An, Jianzhu
2016-10-01
Optical earth imaging simulation of a space target in orbit and it's extraction in laser illumination condition were discussed. Based on the orbit and corresponding attitude of a satellite, its 3D imaging rendering was built. General simulation platform was researched, which was adaptive to variable 3D satellite models and relative position relationships between satellite and earth detector system. Unified parallel projection technology was proposed in this paper. Furthermore, we denoted that random optical distribution in laser-illuminated condition was a challenge for object discrimination. Great randomicity of laser active illuminating speckles was the primary factor. The conjunction effects of multi-frame accumulation process and some tracking methods such as Meanshift tracking, contour poid, and filter deconvolution were simulated. Comparison of results illustrates that the union of multi-frame accumulation and contour poid was recommendable for laser active illuminated images, which had capacities of high tracking precise and stability for multiple object attitudes.
1980-05-30
afflicted with Retinitis Pigmentosa , commonly called night blindness. People who suffer from this are virtually blind in absence of normal room light...image intensification 5. Low light ophthalmological surgery 6. Retinitis Pigmentosa patients 7. Mine rescue and first aid 8. TV microscopy 9
Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G
2012-05-01
This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
Dipy, a library for the analysis of diffusion MRI data.
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.
Dipy, a library for the analysis of diffusion MRI data
Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian
2014-01-01
Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing. PMID:24600385
Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope
Klauss, André; König, Marcelle; Hille, Carsten
2015-01-01
By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating. PMID:26091552
NASA Astrophysics Data System (ADS)
Chichester, B.; Rychert, C.; Harmon, N.; Rietbrock, A.; Collier, J.; Henstock, T.; Goes, S. D. B.; Kendall, J. M.; Krueger, F.
2017-12-01
In the Lesser Antilles subduction zone Atlantic oceanic lithosphere, expected to be highly hydrated, is being subducted beneath the Caribbean plate. Water and other volatiles from the down-going plate are released and cause the overlying mantle to melt, feeding volcanoes with magma and hence forming the volcanic island arc. However, the depths and pathways of volatiles and melt within the mantle wedge are not well known. Here, we use S-to-P receiver functions to image seismic velocity contrasts with depth within the subduction zone in order to constrain the release of volatiles and the presence of melt in the mantle wedge, as well as slab structure and arc-lithosphere structure. We use data from 55-80° epicentral distances recorded by 32 recovered broadband ocean-bottom seismometers that were deployed during the 2016-2017 Volatiles in the Lesser Antilles (VoiLA) project for 15 months on the back- and fore-arc. The S-to-P receiver functions are calculated using two methods: extended time multi-taper deconvolution followed by migration to depth to constrain 3-D discontinuity structure of the subduction zone; and simultaneous deconvolution to determine structure beneath single stations. In the south of the island arc, we image a velocity increase with depth associated with the Moho at depths of 32-40 ± 4 km on the fore- and back-arc, consistent with various previous studies. At depths of 65-80 ± 4 km beneath the fore-arc we image a strong velocity decrease with depth that is west-dipping. At 96-120 ± 5 km beneath the fore-arc, we image a velocity increase with depth that is also west-dipping. The dipping negative-positive phase could represent velocity contrasts related to the top of the down-going plate, a feature commonly imaged in subduction zone receiver function studies. The negative phase is strong, so there may also be contributions to the negative velocity discontinuity from slab dehydration and/or mantle wedge serpentinization in the fore-arc.
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Audible sonar images generated with proprioception for target analysis.
Kuc, Roman B
2017-05-01
Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.
An Improved Image Ringing Evaluation Method with Weighted Sum of Gray Extreme Value
NASA Astrophysics Data System (ADS)
Yang, Ling; Meng, Yanhua; Wang, Bo; Bai, Xu
2018-03-01
Blind image restoration algorithm usually produces ringing more obvious at the edges. Ringing phenomenon is mainly affected by noise, species of restoration algorithm, and the impact of the blur kernel estimation during restoration. Based on the physical mechanism of ringing, a method of evaluating the ringing on blind restoration images is proposed. The method extracts the ringing image overshooting and ripple region to make the weighted statistics for the regional gradient value. According to the weights set by multiple experiments, the edge information is used to characterize the details of the edge to determine the weight, quantify the seriousness of the ring effect, and propose the evaluation method of the ringing caused by blind restoration. The experimental results show that the method can effectively evaluate the ring effect in the restoration images under different restoration algorithms and different restoration parameters. The evaluation results are consistent with the visual evaluation results.
NASA Astrophysics Data System (ADS)
Arslan, Musa T.; Tofighi, Mohammad; Sevimli, Rasim A.; ćetin, Ahmet E.
2015-05-01
One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented.
Astronomy with the color blind
NASA Astrophysics Data System (ADS)
Smith, Donald A.; Melrose, Justyn
2014-12-01
The standard method to create dramatic color images in astrophotography is to record multiple black and white images, each with a different color filter in the optical path, and then tint each frame with a color appropriate to the corresponding filter. When combined, the resulting image conveys information about the sources of emission in the field, although one should be cautious in assuming that such an image shows what the subject would "really look like" if a person could see it without the aid of a telescope. The details of how the eye processes light have a significant impact on how such images should be understood, and the step from perception to interpretation is even more problematic when the viewer is color blind. We report here on an approach to manipulating stacked tricolor images that, while abandoning attempts to portray the color distribution "realistically," do result in enabling those suffering from deuteranomaly (the most common form of color blindness) to perceive color distinctions they would otherwise not be able to see.
Accounting for pharmacokinetic differences in dual-tracer receptor density imaging
Tichauer, K M; Diop, M; Elliott, J T; Samkoe, K S; Hasan, T; St. Lawrence, K; Pogue, B W
2014-01-01
Dual-tracer molecular imaging is a powerful approach to quantify receptor expression in a wide range of tissues by using an untargeted tracer to account for any nonspecific uptake of a molecular-targeted tracer. This approach has previously required the pharmacokinetics of the receptor-targeted and untargeted tracers to be identical, requiring careful selection of an ideal untargeted tracer for any given targeted tracer. In this study, methodology capable of correcting for tracer differences in arterial input functions, as well as binding-independent delivery and retention, is derived and evaluated in a mouse U251 glioma xenograft model using an Affibody tracer targeted to epidermal growth factor receptor (EGFR), a cell membrane receptor overexpressed in many cancers. Simulations demonstrated that blood, and to a lesser extent vascular-permeability, pharmacokinetic differences between targeted and untargeted tracers could be quantified by deconvolving the uptakes of the two tracers in a region of interest devoid of targeted tracer binding, and therefore corrected for, by convolving the uptake of the untargeted tracer in all regions of interest by the product of the deconvolution. Using fluorescently labelled, EGFR-targeted and untargeted Affibodies (known to have different blood clearance rates), the average tumor concentration of EGFR in 4 mice was estimated using dual-tracer kinetic modelling to be 3.9 ± 2.4 nM compared to an expected concentration of 2.0 ± 0.4 nM. However, with deconvolution correction a more equivalent EGFR concentration of 2.0 ± 0.4 nM was measured. PMID:24743262
An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties
NASA Technical Reports Server (NTRS)
Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.
2007-01-01
The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.
Sp and Ps Receiver Function Imaging of the Cenozoic and Precambrian US
NASA Astrophysics Data System (ADS)
Keenan, James; Thurner, Sally; Levander, Alan
2013-04-01
Using teleseismic USArray data we have made Ps and Sp receiver function common conversion point stacked image volumes that extend from the Pacific coast to approximately the Mississippi River. We have used iterative time-domain deconvolution, water-level frequency-domain deconvolution, and least squares inverse filtering to form receiver functions in various frequency bands (Ps: 1.0 and, 0.5 Hz, Sp: 0.2 and 0.1 Hz). The receiver functions were stacked to give an image volume for each frequency band using a hybrid velocity model made by combining Crust2.0 (Bassin et al., 2000) and finite-frequency P and S wave tomography models (Schmandt and Humphreys, 2010; and Schmandt, unpublished). We contrast the lithospheric and asthenospheric structure of the western U.S., modified by Cenozoic tectonism, with that of the Precambrian central U.S. Here we describe 2 notable features: (1) In the Sp image volumes the upper mantle beneath the western U.S. differs dramatically from that to the east of the Rocky Mountain front. In the western U.S. the lithosphere is either thin, or highly variable in thickness (40-140 km) with neither the lithosphere nor asthenosphere having much internal structure (e.g., Levander and Miller, 2012). In contrast, east of the Rocky Mountain front the lithosphere steadily deepens to > 150 km and shows relatively strong internal layering. Individual positive and negative conversions are coherent over 100's of kilometers, suggesting the thrust stacking model of cratonic formation. (2) Beneath parts of the Archean Wyoming Province (Henstock et al, 1998; Snelson et al., 1998; Gorman et al., 2002; Mahan et al, 2012), much of the Great Plains and part of the Midwest lies a vast variable thickness (up to ~25 km) high velocity crustal layer. This layer lies roughly north of the Grenville Front, underlying much of the Yavapai-Mazatzal Province east of the Rockies, parts of the Superior Province, and possibly parts of the Trans-Hudson province.
Graphic Biology Laboratory Modules for the Blind.
ERIC Educational Resources Information Center
Brooks, Austin E.
The goal of this project was to devise new methods of producing tactile facsimiles of microscopic images for the blind and visually impaired biology students at the secondary and college level. The numerous raised-line images that were produced were assembled along with brailled and large print student instructions, audio cassette tapes describing…
[The role of sustained attention in shift-contingent change blindness].
Nakashima, Ryoichi; Yokosawa, Kazuhiko
2015-02-01
Previous studies of change blindness have examined the effect of temporal factors (e.g., blank duration) on attention in change detection. This study examined the effect of spatial factors (i.e., whether the locations of original and changed objects are the same or different) on attention in change detection, using a shift-contingent change blindness task. We used a flicker paradigm in which the location of a to-be-judged target image was manipulated (shift, no-shift). In shift conditions, the image of an array of objects was spatially shifted so that all objects appeared in new locations; in no-shift conditions, all object images of an array appeared at the same location. The presence of visual stimuli (dots) in the blank display between the two images was.manipulated (dot, no-dot) under the assumption that abrupt onsets of these stimuli would capture attention. Results indicated that change detection performance was improved by exogenous attentional capture in the shift condition. Thus, we suggest that attention can play an important role in change detection during shift-contingent change blindness.
Parotid gland tumours: MR tractography to assess contact with the facial nerve.
Attyé, Arnaud; Karkas, Alexandre; Troprès, Irène; Roustit, Matthieu; Kastler, Adrian; Bettega, Georges; Lamalle, Laurent; Renard, Félix; Righini, Christian; Krainik, Alexandre
2016-07-01
To assess the feasibility of intraparotid facial nerve (VIIn) tractographic reconstructions in estimating the presence of a contact between the VIIn and the tumour, in patients requiring surgical resection of parotid tumours. Patients underwent MR scans with VIIn tractography calculated with the constrained spherical deconvolution model. The parameters of the diffusion sequence were: b-value of 1000 s/mm(2); 32 directions; voxel size: 2 mm isotropic; scan time: 9'31'. The potential contacts between VIIn branches and tumours were estimated with different initial fractional anisotropy (iFA) cut-offs compared to surgical data. Surgeons were blinded to the tractography reconstructions and identified both nerves and contact with tumours using nerve stimulation and reference photographs. Twenty-six patients were included in this study and the mean patient age was 55.2 years. Surgical direct assessment of VIIn allowed identifying 0.1 as the iFA threshold with the best sensitivity to detect tumour contact. In all patients with successful VIIn identification by tractography, surgeons confirmed nerve courses as well as lesion location in parotid glands. Mean VIIn branch FA values were significantly lower in cases with tumour contact (t-test; p ≤ 0.01). This study showed the feasibility of intraparotid VIIn tractography to identify nerve contact with parotid tumours. • Diffusion imaging is an efficient method for highlighting the intraparotid VIIn. • Visualization of the VIIn may help to better manage patients before surgery. • We bring new insights to future trials for patients with VIIn dysfunction. • We aimed to provide radio-anatomical references for further studies.
Application of deconvolution interferometry with both Hi-net and KiK-net data
NASA Astrophysics Data System (ADS)
Nakata, N.
2013-12-01
Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.
2004-01-01
We successfully applied deterministic deconvolution to real ground-penetrating radar (GPR) data by using the source wavelet that was generated in and transmitted through air as the operator. The GPR data were collected with 400-MHz antennas on a bench adjacent to a cleanly exposed quarry face. The quarry site is characterized by horizontally bedded carbonate strata with shale partings. In order to provide groundtruth for this deconvolution approach, 23 conductive rods were drilled into the quarry face at key locations. The steel rods provided critical information for: (1) correlation between reflections on GPR data and geologic features exposed in the quarry face, (2) GPR resolution limits, (3) accuracy of velocities calculated from common midpoint data and (4) identifying any multiples. Comparing the results of deconvolved data with non-deconvolved data demonstrates the effectiveness of deterministic deconvolution in low dielectric-loss media for increased accuracy of velocity models (improved at least 10-15% in our study after deterministic deconvolution), increased vertical and horizontal resolution of specific geologic features and more accurate representation of geologic features as confirmed from detailed study of the adjacent quarry wall. ?? 2004 Elsevier B.V. All rights reserved.
Peptide de novo sequencing of mixture tandem mass spectra
Hotta, Stéphanie Yuki Kolbeck; Verano‐Braga, Thiago; Kjeldsen, Frank
2016-01-01
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co‐isolation and thus prone to false identifications. The deconvolution approach matched complementary b‐, y‐ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co‐isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. PMID:27329701
Deconvolution using a neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S.K.
1990-11-15
Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.
Patwary, Nurmohammed; Doblas, Ana; Preza, Chrysanthe
2018-01-01
The performance of structured illumination microscopy (SIM) is hampered in many biological applications due to the inability to modulate the light when imaging deep into the sample. This is in part because sample-induced aberration reduces the modulation contrast of the structured pattern. In this paper, we present an image restoration approach suitable for processing raw incoherent-grid-projection SIM data with a low fringe contrast. Restoration results from simulated and experimental ApoTome SIM data show results with improved signal-to-noise ratio (SNR) and optical sectioning compared to the results obtained from existing methods, such as 2D demodulation and 3D SIM deconvolution. Our proposed method provides satisfactory results (quantified by the achieved SNR and normalized mean square error) even when the modulation contrast of the illumination pattern is as low as 7%. PMID:29675307
Dickinson, R J
1985-04-01
In a recent paper, Vaknine and Lorenz discuss the merits of lateral deconvolution of demodulated B-scans. While this technique will decrease the lateral blurring of single discrete targets, such as the diaphragm in their figure 3, it is inappropriate to apply the method to the echoes arising from inhomogeneous structures such as soft tissue. In this latter case, the echoes from individual scatterers within the resolution cell of the transducer interfere to give random fluctuations in received echo amplitude termed speckle. Although his process can be modeled as a linear convolution similar to that of conventional image formation theory, the process of demodulation is a nonlinear process which loses the all-important phase information, and prevents the subsequent restoration of the image by Wiener filtering, itself a linear process.
A motion deblurring method with long/short exposure image pairs
NASA Astrophysics Data System (ADS)
Cui, Guangmang; Hua, Weiping; Zhao, Jufeng; Gong, Xiaoli; Zhu, Liyao
2018-01-01
In this paper, a motion deblurring method with long/short exposure image pairs is presented. The long/short exposure image pairs are captured for the same scene under different exposure time. The image pairs are treated as the input of the deblurring method and more information could be used to obtain a deblurring result with high image quality. Firstly, the luminance equalization process is carried out to the short exposure image. And the blur kernel is estimated with the image pair under the maximum a posteriori (MAP) framework using conjugate gradient algorithm. Then a L0 image smoothing based denoising method is applied to the luminance equalized image. And the final deblurring result is obtained with the gain controlled residual image deconvolution process with the edge map as the gain map. Furthermore, a real experimental optical system is built to capture the image pair in order to demonstrate the effectiveness of the proposed deblurring framework. The long/short image pairs are obtained under different exposure time and camera gain control. Experimental results show that the proposed method could provide a superior deblurring result in both subjective and objective assessment compared with other deblurring approaches.
Ahmetovic, Dragan; Manduchi, Roberto; Coughlan, James M.; Mascetti, Sergio
2016-01-01
In this paper we propose a computer vision-based technique that mines existing spatial image databases for discovery of zebra crosswalks in urban settings. Knowing the location of crosswalks is critical for a blind person planning a trip that includes street crossing. By augmenting existing spatial databases (such as Google Maps or OpenStreetMap) with this information, a blind traveler may make more informed routing decisions, resulting in greater safety during independent travel. Our algorithm first searches for zebra crosswalks in satellite images; all candidates thus found are validated against spatially registered Google Street View images. This cascaded approach enables fast and reliable discovery and localization of zebra crosswalks in large image datasets. While fully automatic, our algorithm could also be complemented by a final crowdsourcing validation stage for increased accuracy. PMID:26824080
Deconvolution of gas chromatographic data
NASA Technical Reports Server (NTRS)
Howard, S.; Rayborn, G. H.
1980-01-01
The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful.
Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona
Bultman, Mark W.
2015-01-01
Euler deconvolution depth estimates derived from aeromagnetic data with a structural index of 0 show that mapped faults on the northern margin of the Patagonia Mountains generally agree with the depth estimates in the new geologic model. The deconvolution depth estimates also show that the concealed Patagonia Fault southwest of the Patagonia Mountains is more complex than recent geologic mapping represents. Additionally, Euler deconvolution depth estimates with a structural index of 2 locate many potential intrusive bodies that might be associated with known and unknown mineralization.
NASA Technical Reports Server (NTRS)
1990-01-01
Optacon II uses the same basic technique of converting printed information into a tactile image as did Optacon. Optacon II can also be connected directly to a personal computer, which opens up a new range of job opportunities for the blind. Optacon II is not limited to reading printed words, it can convert any graphic image viewed by the camera. Optacon II demands extensive training for blind operators. TSI provides 60-hour training courses at its Mountain View headquarters and at training centers around the world. TeleSensory discontinued production of the Optacon as of December 1996.
A novel method for enhancing the lateral resolution and image SNR in confocal microscopy
NASA Astrophysics Data System (ADS)
Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu
2017-12-01
There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.
NASA Technical Reports Server (NTRS)
Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)
1992-01-01
Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.
Inverting Monotonic Nonlinearities by Entropy Maximization
López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261
Inverting Monotonic Nonlinearities by Entropy Maximization.
Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.
Robust through-the-wall radar image classification using a target-model alignment procedure.
Smith, Graeme E; Mobasseri, Bijan G
2012-02-01
A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE
A Regularization Approach to Blind Deblurring and Denoising of QR Barcodes.
van Gennip, Yves; Athavale, Prashant; Gilles, Jérôme; Choksi, Rustum
2015-09-01
QR bar codes are prototypical images for which part of the image is a priori known (required patterns). Open source bar code readers, such as ZBar, are readily available. We exploit both these facts to provide and assess purely regularization-based methods for blind deblurring of QR bar codes in the presence of noise.
Carnevale Neto, Fausto; Pilon, Alan C; Selegato, Denise M; Freire, Rafael T; Gu, Haiwei; Raftery, Daniel; Lopes, Norberto P; Castro-Gamboa, Ian
2016-01-01
Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.
Carnevale Neto, Fausto; Pilon, Alan C.; Selegato, Denise M.; Freire, Rafael T.; Gu, Haiwei; Raftery, Daniel; Lopes, Norberto P.; Castro-Gamboa, Ian
2016-01-01
Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts. PMID:27747213
Assessment of Sentinel Node Biopsies With Full-Field Optical Coherence Tomography.
Grieve, Kate; Mouslim, Karima; Assayag, Osnath; Dalimier, Eugénie; Harms, Fabrice; Bruhat, Alexis; Boccara, Claude; Antoine, Martine
2016-04-01
Current techniques for the intraoperative analysis of sentinel lymph nodes during breast cancer surgery present drawbacks such as time and tissue consumption. Full-field optical coherence tomography is a novel noninvasive, high-resolution, fast imaging technique. This study investigated the use of full-field optical coherence tomography as an alternative technique for the intraoperative analysis of sentinel lymph nodes. Seventy-one axillary lymph nodes from 38 patients at Tenon Hospital were imaged minutes after excision with full-field optical coherence tomography in the pathology laboratory, before being handled for histological analysis. A pathologist performed a blind diagnosis (benign/malignant), based on the full-field optical coherence tomography images alone, which resulted in a sensitivity of 92% and a specificity of 83% (n = 65 samples). Regular feedback was given during the blind diagnosis, with thorough analysis of the images, such that features of normal and suspect nodes were identified in the images and compared with histology. A nonmedically trained imaging expert also performed a blind diagnosis aided by the reading criteria defined by the pathologist, which resulted in 85% sensitivity and 90% specificity (n = 71 samples). The number of false positives of the pathologist was reduced by 3 in a second blind reading a few months later. These results indicate that following adequate training, full-field optical coherence tomography can be an effective noninvasive diagnostic tool for extemporaneous sentinel node biopsy qualification. © The Author(s) 2015.
Wave optics of the central spot in planetary occultations
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1977-01-01
The detection of a bright central spot during the occultation of epsilon Geminorum by Mars demonstrates that an exponentially-stratified planetary atmosphere can act as a lens providing very high resolution of distant objects (e.g., quasars, white dwarfs, and pulsars). The diffraction nature of the central occultation spot is investigated, with special reference to Mars and Venus. In practice, however, central occultations by these planets are seldom observable from the earth's surface, and spacecraft would have to be used to obtain a suitable orientation for observers. Further difficulties may be encountered in image deconvolution needed for extended objects, in location of the image of a true point source, and in compensation for peculiarities of planets and their atmospheres.
GASPACHO: a generic automatic solver using proximal algorithms for convex huge optimization problems
NASA Astrophysics Data System (ADS)
Goossens, Bart; Luong, Hiêp; Philips, Wilfried
2017-08-01
Many inverse problems (e.g., demosaicking, deblurring, denoising, image fusion, HDR synthesis) share various similarities: degradation operators are often modeled by a specific data fitting function while image prior knowledge (e.g., sparsity) is incorporated by additional regularization terms. In this paper, we investigate automatic algorithmic techniques for evaluating proximal operators. These algorithmic techniques also enable efficient calculation of adjoints from linear operators in a general matrix-free setting. In particular, we study the simultaneous-direction method of multipliers (SDMM) and the parallel proximal algorithm (PPXA) solvers and show that the automatically derived implementations are well suited for both single-GPU and multi-GPU processing. We demonstrate this approach for an Electron Microscopy (EM) deconvolution problem.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
NASA Astrophysics Data System (ADS)
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
The interaction of the outflow with the molecular disk in the Active Galactic Nucleus of NGC 6951
NASA Astrophysics Data System (ADS)
May, D.; Steiner, J. E.; Ricci, T. V.; Menezes, R. B.; Andrade, I. S.
2015-02-01
Context: we present a study of the central 200 pc of NGC 6951, in the optical and NIR, taken with the Gemini North Telescope integral field spectrographs, with resolution of ~ 0''.1 Methods: we used a set of image processing techniques, as the filtering of high spatial and spectral frequencies, Richardson-Lucy deconvolution and PCA Tomography (Steiner et al. 2009) to map the distribution and kinematics of the emission lines. Results: we found a thick molecular disk, with the ionization cone highly misaligned.
2013-01-01
The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the ’brown component’ extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. Virtual Slides The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017. PMID:23531405
Korzynska, Anna; Roszkowiak, Lukasz; Lopez, Carlos; Bosch, Ramon; Witkowski, Lukasz; Lejeune, Marylene
2013-03-25
The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the 'brown component' extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/webViewer.php?snapshotId=13617948230017.
Development of a screening tool for staging of diabetic retinopathy in fundus images
NASA Astrophysics Data System (ADS)
Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Bency, Mayur Joseph; Rangayyan, Rangaraj M.; Bansal, Reema; Gupta, Amod
2015-03-01
Diabetic retinopathy is a condition of the eye of diabetic patients where the retina is damaged because of long-term diabetes. The condition deteriorates towards irreversible blindness in extreme cases of diabetic retinopathy. Hence, early detection of diabetic retinopathy is important to prevent blindness. Regular screening of fundus images of diabetic patients could be helpful in preventing blindness caused by diabetic retinopathy. In this paper, we propose techniques for staging of diabetic retinopathy in fundus images using several shape and texture features computed from detected microaneurysms, exudates, and hemorrhages. The classification accuracy is reported in terms of the area (Az) under the receiver operating characteristic curve using 200 fundus images from the MESSIDOR database. The value of Az for classifying normal images versus mild, moderate, and severe nonproliferative diabetic retinopathy (NPDR) is 0:9106. The value of Az for classification of mild NPDR versus moderate and severe NPDR is 0:8372. The Az value for classification of moderate NPDR and severe NPDR is 0:9750.
Reversible integer wavelet transform for blind image hiding method
Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez
2017-01-01
In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855
A deconvolution technique to correct deep images of galaxies from instrumental scattered light
NASA Astrophysics Data System (ADS)
Karabal, E.; Duc, P.-A.; Kuntschner, H.; Chanial, P.; Cuillandre, J.-C.; Gwyn, S.
2017-05-01
Deep imaging of the diffuse light that is emitted by stellar fine structures and outer halos around galaxies is often now used to probe their past mass assembly. Because the extended halos survive longer than the relatively fragile tidal features, they trace more ancient mergers. We use images that reach surface brightness limits as low as 28.5-29 mag arcsec-2 (g-band) to obtain light and color profiles up to 5-10 effective radii of a sample of nearby early-type galaxies. These were acquired with MegaCam as part of the CFHT MATLAS large programme. These profiles may be compared to those produced using simulations of galaxy formation and evolution, once corrected for instrumental effects. Indeed they can be heavily contaminated by the scattered light caused by internal reflections within the instrument. In particular, the nucleus of galaxies generates artificial flux in the outer halo, which has to be precisely subtracted. We present a deconvolution technique to remove the artificial halos that makes use of very large kernels. The technique, which is based on PyOperators, is more time efficient than the model-convolution methods that are also used for that purpose. This is especially the case for galaxies with complex structures that are hard to model. Having a good knowledge of the point spread function (PSF), including its outer wings, is critical for the method. A database of MegaCam PSF models corresponding to different seeing conditions and bands was generated directly from the deep images. We show that the difference in the PSFs in different bands causes artificial changes in the color profiles, in particular a reddening of the outskirts of galaxies having a bright nucleus. The method is validated with a set of simulated images and applied to three representative test cases: NGC 3599, NGC 3489, and NGC 4274, which exhibits a prominent ghost halo for two of them. This method successfully removes this. The library of PSFs (FITS files) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A86
A digital algorithm for spectral deconvolution with noise filtering and peak picking: NOFIPP-DECON
NASA Technical Reports Server (NTRS)
Edwards, T. R.; Settle, G. L.; Knight, R. D.
1975-01-01
Noise-filtering, peak-picking deconvolution software incorporates multiple convoluted convolute integers and multiparameter optimization pattern search. The two theories are described and three aspects of the software package are discussed in detail. Noise-filtering deconvolution was applied to a number of experimental cases ranging from noisy, nondispersive X-ray analyzer data to very noisy photoelectric polarimeter data. Comparisons were made with published infrared data, and a man-machine interactive language has evolved for assisting in very difficult cases. A modified version of the program is being used for routine preprocessing of mass spectral and gas chromatographic data.
Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer.
Ngô, Huân M; Zhou, Ying; Lorenzi, Hernan; Wang, Kai; Kim, Taek-Kyun; Zhou, Yong; El Bissati, Kamal; Mui, Ernest; Fraczek, Laura; Rajagopala, Seesandra V; Roberts, Craig W; Henriquez, Fiona L; Montpetit, Alexandre; Blackwell, Jenefer M; Jamieson, Sarra E; Wheeler, Kelsey; Begeman, Ian J; Naranjo-Galvis, Carlos; Alliey-Rodriguez, Ney; Davis, Roderick G; Soroceanu, Liliana; Cobbs, Charles; Steindler, Dennis A; Boyer, Kenneth; Noble, A Gwendolyn; Swisher, Charles N; Heydemann, Peter T; Rabiah, Peter; Withers, Shawn; Soteropoulos, Patricia; Hood, Leroy; McLeod, Rima
2017-09-13
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Peptide de novo sequencing of mixture tandem mass spectra.
Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Verano-Braga, Thiago; Kjeldsen, Frank
2016-09-01
The impact of mixture spectra deconvolution on the performance of four popular de novo sequencing programs was tested using artificially constructed mixture spectra as well as experimental proteomics data. Mixture fragmentation spectra are recognized as a limitation in proteomics because they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced peptides. The improvement was in the range of 20-35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight candidate peptide score distribution and high sensitivity to small changes in the mass spectrum introduced by the employed deconvolution method could explain some of the missing peptide identifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robustifying blind image deblurring methods by simple filters
NASA Astrophysics Data System (ADS)
Liu, Yan; Zeng, Xiangrong; Huangpeng, Qizi; Fan, Jun; Zhou, Jinglun; Feng, Jing
2016-07-01
The state-of-the-art blind image deblurring (BID) methods are sensitive to noise, and most of them can deal with only small levels of Gaussian noise. In this paper, we use simple filters to present a robust BID framework which is able to robustify exiting BID methods to high-level Gaussian noise or/and Non-Gaussian noise. Experiments on images in presence of Gaussian noise, impulse noise (salt-and-pepper noise and random-valued noise) and mixed Gaussian-impulse noise, and a real-world blurry and noisy image show that the proposed method can faster estimate sharper kernels and better images, than that obtained by other methods.