Sample records for block microrna function

  1. Knockdown of Rice microRNA166 by Short Tandem Target Mimic (STTM).

    PubMed

    Teotia, Sachin; Zhang, Dabing; Tang, Guiliang

    2017-01-01

    Small RNAs, including microRNAs (miRNAs), are abundant in plants and play key roles in controlling plant development and physiology. miRNAs regulate the expression of the target genes involved in key plant processes. Due to functional redundancy among miRNA family members in plants, an ideal approach to silence the expression of all members simultaneously, for their functional characterization, is desirable. Target mimic (TM) was the first approach to achieve this goal. Short tandem target mimic (STTM) is a potent approach complementing TM for silencing miRNAs in plants. STTMs have been successfully used in dicots to block miRNA functions. Here, we describe in detail the protocol for designing STTM construct to block miRNA functions in rice. Such approach can be applied to silence miRNAs in other monocots as well.

  2. Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs

    PubMed Central

    Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.

    2010-01-01

    Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144

  3. Molecules discovered that block cancer-associated microRNAs | Center for Cancer Research

    Cancer.gov

    Investigators from the Center for Cancer Research have identified a new class of compounds that block the action of a microRNA associated with the development of human cancers, cardiovascular diseases and immune disorders.  Read more...

  4. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants.

    PubMed

    Wu, Hua-Jun; Wang, Zhi-Min; Wang, Meng; Wang, Xiu-Jie

    2013-04-01

    Target mimicry is a recently identified regulatory mechanism for microRNA (miRNA) functions in plants in which the decoy RNAs bind to miRNAs via complementary sequences and therefore block the interaction between miRNAs and their authentic targets. Both endogenous decoy RNAs (miRNA target mimics) and engineered artificial RNAs can induce target mimicry effects. Yet until now, only the Induced by Phosphate Starvation1 RNA has been proven to be a functional endogenous microRNA target mimic (eTM). In this work, we developed a computational method and systematically identified intergenic or noncoding gene-originated eTMs for 20 conserved miRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The predicted miRNA binding sites were well conserved among eTMs of the same miRNA, whereas sequences outside of the binding sites varied a lot. We proved that the eTMs of miR160 and miR166 are functional target mimics and identified their roles in the regulation of plant development. The effectiveness of eTMs for three other miRNAs was also confirmed by transient agroinfiltration assay.

  5. A microRNA-mRNA expression network during oral siphon regeneration in Ciona.

    PubMed

    Spina, Elijah J; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S; Smith, William C

    2017-05-15

    Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta , and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. © 2017. Published by The Company of Biologists Ltd.

  6. A microRNA-mRNA expression network during oral siphon regeneration in Ciona

    PubMed Central

    Spina, Elijah J.; Guzman, Elmer; Zhou, Hongjun; Kosik, Kenneth S.

    2017-01-01

    Here we present a parallel study of mRNA and microRNA expression during oral siphon (OS) regeneration in Ciona robusta, and the derived network of their interactions. In the process of identifying 248 mRNAs and 15 microRNAs as differentially expressed, we also identified 57 novel microRNAs, several of which are among the most highly differentially expressed. Analysis of functional categories identified enriched transcripts related to stress responses and apoptosis at the wound healing stage, signaling pathways including Wnt and TGFβ during early regrowth, and negative regulation of extracellular proteases in late stage regeneration. Consistent with the expression results, we found that inhibition of TGFβ signaling blocked OS regeneration. A correlation network was subsequently inferred for all predicted microRNA-mRNA target pairs expressed during regeneration. Network-based clustering associated transcripts into 22 non-overlapping groups, the functional analysis of which showed enrichment of stress response, signaling pathway and extracellular protease categories that could be related to specific microRNAs. Predicted targets of the miR-9 cluster suggest a role in regulating differentiation and the proliferative state of neural progenitors through regulation of the cytoskeleton and cell cycle. PMID:28432214

  7. Widespread Long Noncoding RNAs as Endogenous Target Mimics for MicroRNAs in Plants1[W

    PubMed Central

    Wu, Hua-Jun; Wang, Zhi-Min; Wang, Meng; Wang, Xiu-Jie

    2013-01-01

    Target mimicry is a recently identified regulatory mechanism for microRNA (miRNA) functions in plants in which the decoy RNAs bind to miRNAs via complementary sequences and therefore block the interaction between miRNAs and their authentic targets. Both endogenous decoy RNAs (miRNA target mimics) and engineered artificial RNAs can induce target mimicry effects. Yet until now, only the Induced by Phosphate Starvation1 RNA has been proven to be a functional endogenous microRNA target mimic (eTM). In this work, we developed a computational method and systematically identified intergenic or noncoding gene-originated eTMs for 20 conserved miRNAs in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The predicted miRNA binding sites were well conserved among eTMs of the same miRNA, whereas sequences outside of the binding sites varied a lot. We proved that the eTMs of miR160 and miR166 are functional target mimics and identified their roles in the regulation of plant development. The effectiveness of eTMs for three other miRNAs was also confirmed by transient agroinfiltration assay. PMID:23429259

  8. Genetics Home Reference: DICER1 syndrome

    MedlinePlus

    ... called microRNA (miRNA). MicroRNA is a type of RNA, a chemical cousin of DNA, that attaches to a protein's blueprint (a molecule called messenger RNA) and blocks the production of proteins from it. ...

  9. BRCA1 Variants Co-Conspire with MicroRNA-155 | Center for Cancer Research

    Cancer.gov

    Recently discovered microRNAs (miRNAs) have an important biological role by switching "on" and "off" at different times during cell growth, death, development and differentiation. They regulate gene expression by blocking messenger RNA's instructions for protein production. 

  10. Selective blockade of microRNA processing by Lin-28

    PubMed Central

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  11. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells

    PubMed Central

    Zhao, Huiwu; Kalota, Anna; Jin, Shenghao

    2009-01-01

    The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment, proliferation, and differentiation. Given its critical functions, c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to posttranscriptional regulation by microRNA (miRNA)–15a. Using a luciferase reporter assay, we found that miR-15a directly binds the 3′-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic, functionality of binding was shown. The mimic decreased c-Myb expression, and blocked the cells in the G1 phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3′-UTR partially rescued the miR-15a induced cell-cycle block. Of interest, the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally, in studies using normal human CD34+ cells, we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation, and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate, these findings suggest the presence of a c-Myb–miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis. PMID:18818396

  13. Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells.

    PubMed

    Kong, Xiang-Jie; Duan, Liu-Jian; Qian, Xiao-Qiang; Xu, Ding; Liu, Hai-Long; Zhu, Ying-Jian; Qi, Jun

    2015-01-01

    Prostate cancer (PCa) is one of the most prevalent malignant tumors, PCa-related death is mainly due to the high probability of metastasis. MicroRNAs (miRNAs) play an important role in cancer initiation, progression and metastasis by regulating their target genes. real-time PCR was used to detected the expression of microRNA-497. The molecular biological function was investigated by using cell proliferation assays, cell cycle assay, and migration and invasion assay. We used several Algorithms and confirmed that IKKβ is directly regulated by miR-497. Here, we found miR-497 is downregulated in human prostate cancer (PCa) and inhibites the proliferation activity, migration and invasion of PC3-AR cells. Subsequently, IKKβ is confi rmed as a target of miR-497. Furthermore, knockdown of IKKβ expression resulted in decreased proliferation activity, migration and invasion. Finally, similar results was found after treatment with a novel IKK-β inhibitor (IMD-0354) in PC3-AR cells. CDK8, MMP-9, and PSA were involved in all these process. Taken together, our results show evidence that miR-497 may function as a tumor suppressor genes by regulating IKK-β in PCa, and may provide a strategy for blocking PCa metastasis.

  14. Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite.

    PubMed

    Peng, Hui; Lan, Chaowang; Zheng, Yi; Hutvagner, Gyorgy; Tao, Dacheng; Li, Jinyan

    2017-03-24

    MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.

  15. Novel insights of microRNAs in the development of systemic lupus erythematosus.

    PubMed

    Le, Xiong; Yu, Xiang; Shen, Nan

    2017-09-01

    To provide a brief overview of recent progress in microRNA biogenesis and homeostasis, its function in immune system and systemic lupus erythematosus (SLE), as well as successful microRNA-based therapy in vivo. Stepwise microRNA biogenesis is elaborately regulated at multiple levels, ranging from transcription to ultimate function. Mature microRNAs have inhibitory effects on various biological molecules, which are crucial for stabilizing and normalizing differentiation and function of immune cells. Abnormality in microRNA expression contributes to dysfunction of lupus immune cells and resident cells in local tissues. Manipulation of dysregulated microRNAs in vivo through microRNA delivery or targeting microRNA might be promising for SLE treatment. Recent advances highlight that microRNAs are important in immunity, lupus autoimmunity and as potential therapy target for SLE.

  16. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    PubMed

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  17. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  18. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    PubMed

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  19. MicroRNA Array Normalization: An Evaluation Using a Randomized Dataset as the Benchmark

    PubMed Central

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays. PMID:24905456

  20. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, Mikael; Harada, Masako; Loven, Jakob

    The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs. Mature miR-15a/miR-16-1 are produced in a Drosha-dependent process from DLEU2 and binding of the Myc oncoprotein to two alterative DLEU2 promoters represses both the host gene transcript and levels of mature miR-15a/miR-16-1. In line with a functional role for DLEU2 in the expression of themore » microRNAs, the miR-15a/miR-16-1 locus is retained in four CLL cases that delete both promoters of this gene and expression analysis indicates that this leads to functional loss of mature miR-15a/16-1. We additionally show that DLEU2 negatively regulates the G1 Cyclins E1 and D1 through miR-15a/miR-16-1 and provide evidence that these oncoproteins are subject to miR-15a/miR-16-1-mediated repression under normal conditions. We also demonstrate that DLEU2 overexpression blocks cellular proliferation and inhibits the colony-forming ability of tumor cell lines in a miR-15a/miR-16-1-dependent way. Together the data illuminate how inactivation of DLEU2 promotes cell proliferation and tumor progression through functional loss of miR-15a/miR-16-1.« less

  1. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    NASA Astrophysics Data System (ADS)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve therapeutic effect in living animals.

  2. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    PubMed

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Guidelines for the functional annotation of microRNAs using the Gene Ontology

    PubMed Central

    D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna

    2016-01-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  4. MiR-592 functions as a tumor suppressor in glioma by targeting IGFBP2.

    PubMed

    Peng, Tao; Zhou, Lixiang; Qi, Hui; Wang, Guangming; Luan, Yongxin; Zuo, Ling

    2017-07-01

    A growing body of evidence suggests that microRNA-592 is involved in tumor initiation and development in several types of human cancers. However, the biological functions and molecular mechanism of microRNA-592 in glioma remain unclear. In this study, we explored the potential role of microRNA-592 in glioma as well as the possible molecular mechanisms. Our results proved that microRNA-592 expression was significantly downregulated in glioma tissues and cell lines (p < 0.01). Functional assays revealed that overexpression of microRNA-592 dramatically reduced the cell proliferation, migration, and invasion and induced cell arrest at G1/G0 phase in vitro. Mechanistic investigations defined insulin-like growth factor binding protein 2 as a direct and functional downstream target of microRNA-592, which was involved in the microRNA-592-mediated tumor-suppressive effects in glioma cells. Moreover, the in vivo study showed that microRNA-592 overexpression produced the smaller tumor volume and weight in nude mice. In summary, these results elucidated the function of microRNA-592 in glioma progression and suggested a promising application of it in glioma treatment.

  5. Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach.

    PubMed

    Teotia, Sachin; Tang, Guiliang

    2017-01-01

    In plants, microRNAs (miRNAs) regulate more than hundred target genes comprising largely transcription factors that control growth and development as well as stress responses. However, the exact functions of miRNA families could not be deciphered because each miRNA family has multiple loci in the genome, thus are functionally redundant. Therefore, an ideal approach to study the function of a miRNA family is to silence the expression of all members simultaneously, which is a daunting task. However, this can be partly overcome by Target Mimic (TM) approach that can knockdown an entire miRNA family. STTM is a modification of TM approach and complements it. STTMs have been successfully used in monocots and dicots to block miRNA functions. miR159 has been shown to be differentially regulated by various abiotic stresses including ABA in various plant species. Here, we describe in detail the protocol for designing STTM construct to block miR159 functions in Arabidopsis, with the potential to apply this technique on a number of other stress-regulated miRNAs in plants.

  6. Neurexin and Neuroligin Mediate Retrograde Synaptic Inhibition in C. elegans

    PubMed Central

    Hu, Zhitao; Hom, Sabrina; Kudze, Tambudzai; Tong, Xia-Jing; Choi, Seungwon; Aramuni, Gayane; Zhang, Weiqi; Kaplan, Joshua M.

    2013-01-01

    The synaptic adhesion molecules Neurexin and Neuroligin alter the development and function of synapses and are linked to autism in humans. We find that C. elegans Neurexin (NRX-1) and Neuroligin (NLG-1) mediate a retrograde synaptic signal that inhibits neurotransmitter release at neuromuscular junctions. Retrograde signaling was induced in mutants lacking a muscle microRNA (miR-1) and was blocked in mutants lacking NLG-1 or NRX-1. Release was rapid and abbreviated when the retrograde signal was on whereas release was slow and prolonged when retrograde signaling was blocked. The retrograde signal adjusted release kinetics by inhibiting exocytosis of synaptic vesicles (SVs) that are distal to the site of calcium entry. Inhibition of release was mediated by increased pre-synaptic levels of Tomosyn, an inhibitor of SV fusion. PMID:22859820

  7. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  8. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less

  9. Inferring data-specific micro-RNA function through the joint ranking of micro-RNA and pathways from matched micro-RNA and gene expression data.

    PubMed

    Patrick, Ellis; Buckley, Michael; Müller, Samuel; Lin, David M; Yang, Jean Y H

    2015-09-01

    In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult. We propose a supervised framework, pMim, built upon concepts of significance combination, for jointly ranking regulatory micro-RNA and their potential functional impacts with respect to a condition of interest. Here, pMim directly tests if a micro-RNA is differentially expressed and if its predicted targets, which lie in a common biological pathway, have changed in the opposite direction. We leverage the information within existing micro-RNA target and pathway databases to stabilize the estimation and annotation of micro-RNA regulation making our approach suitable for datasets with small sample sizes. In addition to outputting meaningful and interpretable results, we demonstrate in a variety of datasets that the micro-RNA identified by pMim, in comparison to simpler existing approaches, are also more concordant with what is described in the literature. This framework is implemented as an R function, pMim, in the package sydSeq available from http://www.ellispatrick.com/r-packages. jean.yang@sydney.edu.au Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs

    PubMed Central

    Khan, Deena; Ansar Ahmed, S.

    2015-01-01

    In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted. PMID:26236331

  11. The role of MicroRNA molecules and MicroRNA-regulating machinery in the pathogenesis and progression of epithelial ovarian cancer.

    PubMed

    Wang, Xiyin; Ivan, Mircea; Hawkins, Shannon M

    2017-11-01

    MicroRNA molecules are small, single-stranded RNA molecules that function to regulate networks of genes. They play important roles in normal female reproductive tract biology, as well as in the pathogenesis and progression of epithelial ovarian cancer. DROSHA, DICER, and Argonaute proteins are components of the microRNA-regulatory machinery and mediate microRNA production and function. This review discusses aberrant expression of microRNA molecules and microRNA-regulating machinery associated with clinical features of epithelial ovarian cancer. Understanding the regulation of microRNA molecule production and function may facilitate the development of novel diagnostic and therapeutic strategies to improve the prognosis of women with epithelial ovarian cancer. Additionally, understanding microRNA molecules and microRNA-regulatory machinery associations with clinical features may influence prevention and early detection efforts. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. MicroRNA function in Drosophila melanogaster.

    PubMed

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of Prostate Cancer-Specific Circular RNAs

    DTIC Science & Technology

    2016-12-01

    they often have regulatory functions. For example, circRNAs can serve as endogenous microRNA sponges to neutralize the microRNA function. However, it...circRNAs is the capability to serve as sponges to neutralize the endogenous microRNAs. In this regard, all of these circRNAs had the potential to

  14. Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression

    PubMed Central

    Zhang, Huibin; Artiles, Karen L.; Fire, Andrew Z.

    2015-01-01

    The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity. PMID:26385508

  15. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  16. Friend or Foe: MicroRNAs in the p53 network.

    PubMed

    Luo, Zhenghua; Cui, Ri; Tili, Esmerina; Croce, Carlo

    2018-04-10

    The critical tumor suppressor gene TP53 is either lost or mutated in more than half of human cancers. As an important transcriptional regulator, p53 modulates the expression of many microRNAs. While wild-type p53 uses microRNAs to suppress cancer development, microRNAs that are activated by gain-of-function mutant p53 confer oncogenic properties. On the other hand, the expression of p53 is tightly controlled by a fine-tune machinery including microRNAs. MicroRNAs can target the TP53 gene directly or other factors in the p53 network so that expression and function of either the wild-type or the mutant forms of p53 is downregulated. Therefore, depending on the wild-type or mutant p53 context, microRNAs contribute substantially to suppress or exacerbate tumor development. Copyright © 2018. Published by Elsevier B.V.

  17. The role of microRNAs in synaptic development and function

    PubMed Central

    Corbin, Rachel; Olsson-Carter, Katherine; Slack, Frank

    2015-01-01

    MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory. PMID:19335998

  18. microRNA Profiling of Amniotic Fluid: Evidence of Synergy of microRNAs in Fetal Development.

    PubMed

    Sun, Tingting; Li, Weiyun; Li, Tianpeng; Ling, Shucai

    2016-01-01

    Amniotic fluid (AF) continuously exchanges molecules with the fetus, playing critical roles in fetal development especially via its complex components. Among these components, microRNAs are thought to be transferred between cells loaded in microvesicles. However, the functions of AF microRNAs remain unknown. To date, few studies have examined microRNAs in amniotic fluid. In this study, we employed miRCURY Locked Nucleotide Acid arrays to profile the dynamic expression of microRNAs in AF from mice on embryonic days E13, E15, and E17. At these times, 233 microRNAs were differentially expressed (p< 0.01), accounting for 23% of the total Mus musculus microRNAs. These differentially-expressed microRNAs were divided into two distinct groups based on their expression patterns. Gene ontology analysis showed that the intersectional target genes of these differentially-expressed microRNAs were mainly distributed in synapse, synaptosome, cell projection, and cytoskeleton. Pathway analysis revealed that the target genes of the two groups of microRNAs were synergistically enriched in axon guidance, focal adhesion, and MAPK signaling pathways. MicroRNA-mRNA network analysis and gene- mapping showed that these microRNAs synergistically regulated cell motility, cell proliferation and differentiation, and especially the axon guidance process. Cancer pathways associated with growth and proliferation were also enriched in AF. Taken together, the results of this study are the first to show the functions of microRNAs in AF during fetal development, providing novel insights into interpreting the roles of AF microRNAs in fetal development.

  19. MicroRNAs as Key Effectors in the p53 Network.

    PubMed

    Goeman, Frauke; Strano, Sabrina; Blandino, Giovanni

    2017-01-01

    The guardian of the genome p53 is embedded in a fine-spun network of MicroRNAs. p53 is able to activate or repress directly the transcription of MicroRNAs that are participating in the tumor-suppressive mission of p53. On the other hand, the expression of p53 is under tight control of MicroRNAs that are either targeting directly p53 or factors that are modifying its protein level or activity. Although the most important function of p53 is suggested to be transcriptional regulation, there are several nontranscriptional functions described. One of those regards the modulation of MicroRNA biogenesis. Wild-type p53 is increasing the maturation of selected MicroRNAs from the primary transcript to the precursor MiRNA by interacting with the Microprocessor complex. Furthermore, p53 is modulating the mRNA accessibility for certain MicroRNAs by association with the RISC complex and transcriptional regulation of RNA-binding proteins. In this way p53 is able to remodel the MiRNA-mRNA interaction network. As wild-type p53 is employing MicroRNAs to suppress cancer development, gain-of-function mutant p53 proteins use MicroRNAs to confer oncogenic properties like chemoresistance and the ability to drive metastasis. Like its wild-type counterpart mutant p53 is able to regulate MicroRNAs transcriptionally and posttranscriptionally. Mutant p53 affects the MiRNA processing at two cleavage steps through interfering with the Microprocessor complex and by downregulating Dicer and KSRP, a modulator of MiRNA biogenesis. Thus, MicroRNAs are essential components in the p53 pathway, contributing substantially to combat or enhance tumor development depending on the wild-type or mutant p53 context. © 2017 Elsevier Inc. All rights reserved.

  20. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  1. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    PubMed Central

    Alsaweed, Mohammed; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  2. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. MicroRNAs in Heart Failure, Cardiac Transplantation, and Myocardial Recovery: Biomarkers with Therapeutic Potential.

    PubMed

    Shah, Palak; Bristow, Michael R; Port, J David

    2017-12-01

    Heart failure is increasing in prevalence with a lack of recently developed therapies that produce major beneficial effects on its associated mortality. MicroRNAs are small non-coding RNA molecules that regulate gene expression, are differentially regulated in heart failure, and are found in the circulation serving as a biomarker of heart failure. Data suggests that microRNAs may be used to detect allograft rejection in cardiac transplantation and may predict the degree of myocardial recovery in patients with a left ventricular assist device or treated with beta-blocker therapy. Given their role in regulating cellular function, microRNAs are an intriguing target for oligonucleotide therapeutics, designed to mimic or antagonize (antagomir) their biological effects. We review the current state of microRNAs as biomarkers of heart failure and associated conditions, the mechanisms by which microRNAs control cellular function, and how specific microRNAs may be targeted with novel therapeutics designed to treat heart failure.

  4. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation

    PubMed Central

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  5. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation.

    PubMed

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details.

  6. Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists.

    PubMed

    Ambrose, Ashley R; Alsahli, Mohammed A; Kurmani, Sameer A; Goodall, Alison H

    2018-07-01

    On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r 2  > 0.98; p < 0.0001 for all), and with the microRNA content of the parent platelets (r 2  > 0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both microRNAs and pdEV.

  7. Differentially Expressed Plasma MicroRNAs and the Potential Regulatory Function of Let-7b in Chronic Thromboembolic Pulmonary Hypertension

    PubMed Central

    Guo, Lijuan; Yang, Yuanhua; Liu, Jie; Wang, Lei; Li, Jifeng; Wang, Ying; Liu, Yan; Gu, Song; Gan, Huili; Cai, Jun; Yuan, Jason X.-J.; Wang, Jun; Wang, Chen

    2014-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive disease characterized by misguided thrombolysis and remodeling of pulmonary arteries. MicroRNAs are small non-coding RNAs involved in multiple cell processes and functions. During CTEPH, circulating microRNA profile endued with characteristics of diseased cells could be identified as a biomarker, and might help in recognition of pathogenesis. Thus, in this study, we compared the differentially expressed microRNAs in plasma of CTEPH patients and healthy controls and investigated their potential functions. Microarray was used to identify microRNA expression profile and qRT-PCR for validation. The targets of differentially expressed microRNAs were identified in silico, and the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway database were used for functional investigation of target gene profile. Targets of let-7b were validated by fluorescence reporter assay. Protein expression of target genes was determined by ELISA or western blotting. Cell migration was evaluated by wound healing assay. The results showed that 1) thirty five microRNAs were differentially expressed in CTEPH patients, among which, a signature of 17 microRNAs, which was shown to be related to the disease pathogenesis by in silico analysis, gave diagnostic efficacy of both sensitivity and specificity >0.9. 2) Let-7b, one of the down-regulated anti-oncogenic microRNAs in the signature, was validated to decrease to about 0.25 fold in CTEPH patients. 3) ET-1 and TGFBR1 were direct targets of let-7b. Altering let-7b level influenced ET-1 and TGFBR1 expression in pulmonary arterial endothelial cells (PAECs) as well as the migration of PAECs and pulmonary arterial smooth muscle cells (PASMCs). These results suggested that CTEPH patients had aberrant microRNA signature which might provide some clue for pathogenesis study and biomarker screening. Reduced let-7b might be involved in the pathogenesis of CTEPH by affecting ET-1 expression and the function of PAECs and PASMCs. PMID:24978044

  8. A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations.

    PubMed

    Peng, Wei; Lan, Wei; Yu, Zeng; Wang, Jianxin; Pan, Yi

    2017-03-01

    MicroRNAs have close relationship with human diseases. Therefore, identifying disease related MicroRNAs plays an important role in disease diagnosis, prognosis and therapy. However, designing an effective computational method which can make good use of various biological resources and correctly predict the associations between MicroRNA and disease is still a big challenge. Previous researchers have pointed out that there are complex relationships among microRNAs, diseases and environment factors. There are inter-relationships between microRNAs, diseases or environment factors based on their functional similarity or phenotype similarity or chemical structure similarity and so on. There are also intra-relationships between microRNAs and diseases, microRNAs and environment factors, diseases and environment factors. Moreover, functionally similar microRNAs tend to associate with common diseases and common environment factors. The diseases with similar phenotypes are likely caused by common microRNAs and common environment factors. In this work, we propose a framework namely ThrRWMDE which can integrate these complex relationships to predict microRNA-disease associations. In this framework, microRNA similarity network (MFN), disease similarity network (DSN) and environmental factor similarity network (ESN) are constructed according to certain biological properties. Then, an unbalanced three random walking algorithm is implemented on the three networks so as to obtain information from neighbors in corresponding networks. This algorithm not only can flexibly infer information from different levels of neighbors with respect to the topological and structural differences of the three networks, but also in the course of working the functional information will be transferred from one network to another according to the associations between the nodes in different networks. The results of experiment show that our method achieves better prediction performance than other state-of-the-art methods.

  9. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs

    PubMed Central

    Hu, Yuanxin; Matkovich, Scot J.; Hecker, Peter A.; Zhang, Yan; Edwards, John R.; Dorn, Gerald W.

    2012-01-01

    Cardiac stress responses are driven by an evolutionarily conserved gene expression program comprising dozens of microRNAs and hundreds of mRNAs. Functionalities of different individual microRNAs are being studied, but the overall purpose of interactions between stress-regulated microRNAs and mRNAs and potentially distinct roles for microRNA-mediated epigenetic and conventional transcriptional genetic reprogramming of the stressed heart are unknown. Here we used deep sequencing to interrogate microRNA and mRNA regulation in pressure-overloaded mouse hearts, and performed a genome-wide examination of microRNA–mRNA interactions during early cardiac hypertrophy. Based on abundance and regulatory patterns, cardiac microRNAs were categorized as constitutively expressed housekeeping, regulated homeostatic, or dynamic early stress-responsive microRNAs. Regulation of 62 stress-responsive cardiac microRNAs directly affected levels of only 66 mRNAs, but the global impact of microRNA-mediated epigenetic regulation was amplified by preferential targeting of mRNAs encoding transcription factors, kinases, and phosphatases exerting amplified secondary effects. Thus, an emergent cooperative property of stress-regulated microRNAs is orchestration of transcriptional and posttranslational events that help determine the stress-reactive cardiac phenotype. This global functionality explains how large end-organ effects can be induced through modest individual changes in target mRNA and protein content by microRNAs that sense and respond dynamically to a changing physiological milieu. PMID:23150554

  10. MicroRNA: Biogenesis, Function and Role in Cancer

    PubMed Central

    MacFarlane, Leigh-Ann; Murphy, Paul R.

    2010-01-01

    MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer –dependent and –independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation. PMID:21532838

  11. MicroRNAs in right ventricular remodelling.

    PubMed

    Batkai, Sandor; Bär, Christian; Thum, Thomas

    2017-10-01

    Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  12. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium.

    PubMed

    Wang, Jun; Wang, Youliang; Wang, Yu; Ma, Ying; Lan, Yu; Yang, Xiao

    2013-04-12

    The TGF-β pathway plays an important role in physiological and pathological angiogenesis. MicroRNAs (miRNAs) are a class of 18- to 25-nucleotide, small, noncoding RNAs that function by regulating gene expression. A number of miRNAs have been found to be regulated by the TGF-β pathway. However, the role of endothelial miRNAs in the TGF-β-mediated control of angiogenesis is still largely unknown. Here we investigated the regulation of endothelial microRNA-29a (miR-29a) by TGF-β signaling and the potential role of miR-29a in angiogenesis. MiR-29a was directly up-regulated by TGF-β/Smad4 signaling in human and mice endothelial cells. In a chick chorioallantoic membrane assay, miR-29a overexpression promoted the formation of new blood vessels, and miR-29a suppression completely blocked TGF-β1-stimulated angiogenesis. Consistently, miR-29a overexpression increased tube formation and migration in endothelial cultures. Mechanistically, miR-29a directly targeted the phosphatase and tensin homolog (PTEN) in endothelial cells, leading to activation of the AKT pathway. PTEN knockdown recapitulated the role of miR-29a in endothelial migration, whereas AKT inhibition completely attenuated the stimulating role of miR-29a in angiogenesis. Taken together, these results reveal a crucial role of a TGF-β-regulated miRNA in promoting angiogenesis by targeting PTEN to stimulate AKT activity.

  13. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response

    PubMed Central

    Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron

    2011-01-01

    MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620

  14. Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming.

    PubMed

    Zhang, Zhonghui; Wu, Wen-Shu

    2018-01-01

    MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.

  15. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes.

    PubMed

    Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie

    2009-10-01

    MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.

  16. A functional microRNA library screen reveals miR-410 as a novel anti-apoptotic regulator of cholangiocarcinoma.

    PubMed

    Palumbo, Tiziana; Poultsides, George A; Kouraklis, Grigorios; Liakakos, Theodore; Drakaki, Alexandra; Peros, George; Hatziapostolou, Maria; Iliopoulos, Dimitrios

    2016-06-03

    Cholangiocarcinoma is characterized by late diagnosis and a poor survival rate. MicroRNAs have been involved in the pathogenesis of different cancer types, including cholangiocarcinoma. Our aim was to identify novel microRNAs regulating cholangiocarcinoma cell growth in vitro and in vivo. A functional microRNA library screen was performed in human cholangiocarcinoma cells to identify microRNAs that regulate cholangiocarcinoma cell growth. Real-time PCR analysis evaluated miR-9 and XIAP mRNA levels in cholangiocarcinoma cells and tumors. The screen identified 21 microRNAs that regulated >50 % cholangiocarcinoma cell growth. MiR-410 was identified as the top suppressor of growth, while its overexpression significantly inhibited the invasion and colony formation ability of cholangiocarcinoma cells. Bioinformatics analysis revealed that microRNA-410 exerts its effects through the direct regulation of the X-linked inhibitor of apoptosis protein (XIAP). Furthermore, overexpression of miR-410 significantly reduced cholangiocarcinoma tumor growth in a xenograft mouse model through induction of apoptosis. In addition, we identified an inverse relationship between miR-410 and XIAP mRNA levels in human cholangiocarcinomas. Taken together, our study revealed a novel microRNA signaling pathway involved in cholangiocarcinoma and suggests that manipulation of the miR-410/XIAP pathway could have a therapeutic potential for cholangiocarcinoma.

  17. Network-based ranking methods for prediction of novel disease associated microRNAs.

    PubMed

    Le, Duc-Hau

    2015-10-01

    Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In addition, the performance of PRINCE, PRP and KSM was comparable with that of RWR, whereas it was worst for the neighborhood-based algorithm. Moreover, all the algorithms were stable with the change of parameters. Final, using the integrated network, we predicted six novel miRNAs (i.e., hsa-miR-101, hsa-miR-181d, hsa-miR-192, hsa-miR-423-3p, hsa-miR-484 and hsa-miR-98) associated with breast cancer. Network-based ranking algorithms, which were successfully applied for either disease gene prediction or for studying social/web networks, can be also used effectively for disease microRNA prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Inhibition of alpha interferon (IFN-α)-induced microRNA-122 negatively affects the anti-hepatitis B virus efficiency of IFN-α.

    PubMed

    Hao, Junli; Jin, Wensong; Li, Xinghui; Wang, Saifeng; Zhang, Xiaojun; Fan, Hongxia; Li, Changfei; Chen, Lizhao; Gao, Bin; Liu, Guangze; Meng, Songdong

    2013-01-01

    Alpha interferon (IFN-α)-based therapy can effectively treat chronic hepatitis B virus (HBV) infection, which causes life-threatening complications. Responses to IFN-α therapy vary greatly in chronic hepatitis B (CHB) patients, but underlying mechanisms are almost unknown. In this study, we found that IFN-α treatment induced a marked decrease of microRNA-122 (miR-122) expression in hepatocytes. We next showed that IFN-α-induced miR-122 downregulation was only partly due to transcriptional suppression. One IFN-stimulated gene (ISG), NT5C3, which was identified as a miR-122 target, efficiently inhibited miR-122 by binding and sequestering miR-122 with its mRNA 3'-untranslated region (3'-UTR), indicating that this ISG is involved in IFN-α-mediated miR-122 suppression. Notably, the inhibitory effect of IFN-α on miR-122 was completely abolished by blocking IFN-α-induced upregulation of NT5C3 mRNA expression by RNA interference (RNAi). Meanwhile, we observed that miR-122 dramatically inhibited HBV expression and replication. Finally, we showed that IFN-α-mediated HBV-inhibitory effects could be enhanced significantly by blocking IFN-α-induced downregulation of miR-122. We therefore concluded that IFN-α-induced inhibition of miR-122 may negatively affect the anti-HBV function of IFN-α. These data provide valuable insights for a better understanding of the antiviral mechanism of IFN-α and raise further potential interest in enhancing its anti-HBV efficacy.

  19. Inhibition of Alpha Interferon (IFN-α)-Induced MicroRNA-122 Negatively Affects the Anti-Hepatitis B Virus Efficiency of IFN-α

    PubMed Central

    Hao, Junli; Jin, Wensong; Li, Xinghui; Wang, Saifeng; Zhang, Xiaojun; Fan, Hongxia; Li, Changfei; Chen, Lizhao; Gao, Bin

    2013-01-01

    Alpha interferon (IFN-α)-based therapy can effectively treat chronic hepatitis B virus (HBV) infection, which causes life-threatening complications. Responses to IFN-α therapy vary greatly in chronic hepatitis B (CHB) patients, but underlying mechanisms are almost unknown. In this study, we found that IFN-α treatment induced a marked decrease of microRNA-122 (miR-122) expression in hepatocytes. We next showed that IFN-α-induced miR-122 downregulation was only partly due to transcriptional suppression. One IFN-stimulated gene (ISG), NT5C3, which was identified as a miR-122 target, efficiently inhibited miR-122 by binding and sequestering miR-122 with its mRNA 3′-untranslated region (3′-UTR), indicating that this ISG is involved in IFN-α-mediated miR-122 suppression. Notably, the inhibitory effect of IFN-α on miR-122 was completely abolished by blocking IFN-α-induced upregulation of NT5C3 mRNA expression by RNA interference (RNAi). Meanwhile, we observed that miR-122 dramatically inhibited HBV expression and replication. Finally, we showed that IFN-α-mediated HBV-inhibitory effects could be enhanced significantly by blocking IFN-α-induced downregulation of miR-122. We therefore concluded that IFN-α-induced inhibition of miR-122 may negatively affect the anti-HBV function of IFN-α. These data provide valuable insights for a better understanding of the antiviral mechanism of IFN-α and raise further potential interest in enhancing its anti-HBV efficacy. PMID:23055569

  20. Two microRNA signatures for malignancy and immune infiltration predict overall survival in advanced epithelial ovarian cancer.

    PubMed

    Korsunsky, Ilya; Parameswaran, Janaki; Shapira, Iuliana; Lovecchio, John; Menzin, Andrew; Whyte, Jill; Dos Santos, Lisa; Liang, Sharon; Bhuiya, Tawfiqul; Keogh, Mary; Khalili, Houman; Pond, Cassandra; Liew, Anthony; Shih, Andrew; Gregersen, Peter K; Lee, Annette T

    2017-10-01

    MicroRNAs have been established as key regulators of tumor gene expression and as prime biomarker candidates for clinical phenotypes in epithelial ovarian cancer (EOC). We analyzed the coexpression and regulatory structure of microRNAs and their co-localized gene targets in primary tumor tissue of 20 patients with advanced EOC in order to construct a regulatory signature for clinical prognosis. We performed an integrative analysis to identify two prognostic microRNA/mRNA coexpression modules, each enriched for consistent biological functions. One module, enriched for malignancy-related functions, was found to be upregulated in malignant versus benign samples. The second module, enriched for immune-related functions, was strongly correlated with imputed intratumoral immune infiltrates of T cells, natural killer cells, cytotoxic lymphocytes, and macrophages. We validated the prognostic relevance of the immunological module microRNAs in the publicly available The Cancer Genome Atlas data set. These findings provide novel functional roles for microRNAs in the progression of advanced EOC and possible prognostic signatures for survival. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Animal models to study microRNA function

    PubMed Central

    Pal, Arpita S.; Kasinski, Andrea L.

    2018-01-01

    The discovery of the microRNAs, lin-4 and let-7 as critical mediators of normal development in Caenorhabditis elegans and their conservation throughout evolution has spearheaded research towards identifying novel roles of microRNAs in other cellular processes. To accurately elucidate these fundamental functions, especially in the context of an intact organism various microRNA transgenic models have been generated and evaluated. Transgenic C. elegans (worms), Drosophila melanogaster (flies), Danio rerio (zebrafish), and Mus musculus (mouse) have contributed immensely towards uncovering the roles of multiple microRNAs in cellular processes such as proliferation, differentiation, and apoptosis, pathways that are severely altered in human diseases such as cancer. The simple model organisms, C. elegans, D. melanogaster and D. rerio do not develop cancers, but have proved to be convenient systesm in microRNA research, especially in characterizing the microRNA biogenesis machinery which is often dysregulated during human tumorigenesis. The microRNA-dependent events delineated via these simple in vivo systems have been further verified in vitro, and in more complex models of cancers, such as M. musculus. The focus of this review is to provide an overview of the important contributions made in the microRNA field using model organisms. The simple model systems provided the basis for the importance of microRNAs in normal cellular physiology, while the more complex animal systems provided evidence for the role of microRNAs dysregulation in cancers. Highlights include an overview of the various strategies used to generate transgenic organisms and a review of the use of transgenic mice for evaluating pre-clinical efficacy of microRNA-based cancer therapeutics. PMID:28882225

  2. Preliminary profiling of microRNA in the normal and regenerating liver of Chiloscyllium plagiosum.

    PubMed

    Cheng, Dandan; Chen, Yanna; Lu, Conger; Qian, Yuezhong; Lv, Zhengbing

    2017-12-01

    Liver is a vital organ present in animals for detoxification, protein synthesis, digestion and other functions and its powerful regenerative capacity is well known. C. plagiosum is an abundant fish that is representative of the cartilaginous class in the southeast coastal region of China and its liver accounts for >70% of the fish's visceral weight and contains many bioactive substances. MicroRNAs (microRNAs) play important roles in a wide range of biological processes in eukaryotes, including cell proliferation, differentiation, apoptosis. However, microRNAs in response to liver regeneration has not been well studied. This study aimed to identify the microRNAs that participate in liver regeneration and other liver-related diseases and to improve our understanding of the mechanisms of liver regeneration in sharks. To this end, normal and regenerating liver tissues from C. plagiosum were harvested 0, 3, 6, 12 and 24h after partial hepatectomy (pH) and were sequenced using the Illumina/Solexa platform. In total, 309 known microRNAs and 590 novel microRNAs were identified in C. plagiosum. There were many microRNAs differentially expressed in the normal and regenerating livers between time points. Using target prediction and GO analysis, most of the differentially expressed microRNAs were assigned to functional categories that may be involved in regulating liver regeneration, such as cell proliferation, differentiation and apoptosis. The microRNA expression profile of liver regeneration will pave the way for the development of effective strategies to fight against liver disease and other related disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  4. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    PubMed Central

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  5. microRNA in Human Reproduction.

    PubMed

    Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal

    2015-01-01

    microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation.

  6. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes

    PubMed Central

    2014-01-01

    Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. Conclusions We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST. PMID:24410935

  7. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes.

    PubMed

    Song, Kwang Hoon; Kim, Yun Hee; Kim, Bu-Yeo

    2014-01-11

    Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST.

  8. Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model.

    PubMed

    Lin, Yuxin; Chen, Feifei; Shen, Li; Tang, Xiaoyu; Du, Cui; Sun, Zhandong; Ding, Huijie; Chen, Jiajia; Shen, Bairong

    2018-05-21

    Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis of complex diseases. In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of systems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regulation, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA unique targets. With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further confirmed by the assessment of their predictive power and biological function analysis. Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other complex diseases.

  9. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  10. A parallel strategy for predicting the secondary structure of polycistronic microRNAs.

    PubMed

    Han, Dianwei; Tang, Guiliang; Zhang, Jun

    2013-01-01

    The biogenesis of a functional microRNA is largely dependent on the secondary structure of the microRNA precursor (pre-miRNA). Recently, it has been shown that microRNAs are present in the genome as the form of polycistronic transcriptional units in plants and animals. It will be important to design efficient computational methods to predict such structures for microRNA discovery and its applications in gene silencing. In this paper, we propose a parallel algorithm based on the master-slave architecture to predict the secondary structure from an input sequence. We conducted some experiments to verify the effectiveness of our parallel algorithm. The experimental results show that our algorithm is able to produce the optimal secondary structure of polycistronic microRNAs.

  11. Distinct microRNA alterations characterize high- and low-grade bladder cancer.

    PubMed

    Catto, James W F; Miah, Saiful; Owen, Helen C; Bryant, Helen; Myers, Katie; Dudziec, Ewa; Larré, Stéphane; Milo, Marta; Rehman, Ishtiaq; Rosario, Derek J; Di Martino, Erica; Knowles, Margaret A; Meuth, Mark; Harris, Adrian L; Hamdy, Freddie C

    2009-11-01

    Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant urothelial samples using real-time rtPCR. Genes targeted by differentially expressed microRNA were investigated using real-time quantification and microRNA knockdown. We also examined the role of aberrant DNA hypermethylation in microRNA downregulation. We found that altered microRNA expression is common in UCC and occurs early in tumorogenesis. In normal urothelium from patients with UCC, 11% of microRNAs had altered expression when compared with disease-free controls. This was associated with upregulation of Dicer, Drosha, and Exportin 5. In UCC, microRNA alterations occur in a tumor phenotype-specific manner and can predict disease progression. High-grade UCC were characterized by microRNA upregulation, including microRNA-21 that suppresses p53 function. In low-grade UCC, there was downregulation of many microRNA molecules. In particular, loss of microRNAs-99a/100 leads to upregulation of FGFR3 before its mutation. Promoter hypermethylation is partly responsible for microRNA downregulation. In conclusion, distinct microRNA alterations characterize UCC and target genes in a pathway-specific manner. These data reveal new insights into the disease biology and have implications regarding tumor diagnosis, prognosis and therapy.

  12. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  13. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions

    PubMed Central

    Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji

    2012-01-01

    Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735

  14. Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function

    PubMed Central

    Osman, Abdimajid; Hitzler, Walter E.; Meyer, Claudius U.; Landry, Patricia; Corduan, Aurélie; Laffont, Benoit; Boilard, Eric; Hellstern, Peter; Vamvakas, Eleftherios C.

    2015-01-01

    Pathogen reduction (PR) systems for platelets, based on chemically induced cross-linking and inactivation of nucleic acids, potentially prevent transfusion transmission of infectious agents, but can increase clinically significant bleeding in some clinical studies. Here, we documented the effects of PR systems on microRNA and mRNA levels of platelets stored in the blood bank, and assessed their impact on platelet activation and function. Unlike platelets subjected to gamma irradiation or stored in additive solution, platelets treated with Intercept (amotosalen + ultraviolet-A [UVA] light) exhibited significantly reduced levels of 6 of the 11 microRNAs, and 2 of the 3 anti-apoptotic mRNAs (Bcl-xl and Clusterin) that we monitored, compared with platelets stored in plasma. Mirasol (riboflavin + UVB light) treatment of platelets did not produce these effects. PR neither affected platelet microRNA synthesis or function nor induced cross-linking of microRNA-sized endogenous platelet RNA species. However, the reduction in the platelet microRNA levels induced by Intercept correlated with the platelet activation (p < 0.05) and an impaired platelet aggregation response to ADP (p < 0.05). These results suggest that Intercept treatment may induce platelet activation, resulting in the release of microRNAs and mRNAs from platelets. The clinical implications of this reduction in platelet nucleic acids secondary to Intercept remain to be established. PMID:24749844

  15. miR-7 Increases Cisplatin Sensitivity of Gastric Cancer Cells Through Suppressing mTOR

    PubMed Central

    Lian, Yan-Jun; Dai, Xiang; Wang, Yuan-Jie

    2017-01-01

    MicroRNAs have been reported to play an important role in diverse biological processes and cancer progression. MicroRNA-7 has been observed to be downregulated in human gastric cancer tissues, but the function of microRNA-7 in gastric cancer has not been well investigated. In this study, we demonstrate that the expression of microRNA-7 was significantly downregulated in 30 pairs of human gastric cancer tissues compared to adjacent normal tissues. Enforced expression of microRNA-7 inhibited cell proliferation and migration abilities of gastric cancer cells, BGC823 and SGC7901. Furthermore, microRNA-7 targeted mTOR in gastric cancer cells. In human clinical specimens, mTOR was higher expressed in gastric cancer tissues compared with adjacent normal tissues. More interestingly, microRNA-7 also sensitizes gastric cancer cells to cisplatin (CDDP) by targeting mTOR. Collectively, our results demonstrate that microRNA-7 is a tumor suppressor microRNA and indicate its potential application for the treatment of human gastric cancer in future. PMID:28693382

  16. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  17. Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers

    PubMed Central

    Beyreis, Marlena; Wagner, Andrej; Pichler, Martin; Neureiter, Daniel

    2016-01-01

    Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC. PMID:27957497

  18. The Big Role of Small RNAs in Anxiety and Stress-Related Disorders.

    PubMed

    Malan-Müller, S; Hemmings, S M J

    2017-01-01

    In the study of complex, heterogeneous disorders, such as anxiety and stress-related disorders, epigenetic factors provide an additional level of heritable complexity. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function as epigenetic modulators of gene expression by binding to target messenger RNAs (mRNAs) and subsequently blocking translation or accelerating their degradation. In light of their abundance in the central nervous system (CNS) and their involvement in synaptic plasticity and neuronal differentiation, miRNAs represent an exciting frontier to be explored in the etiology and treatment of anxiety and stress-related disorders. This chapter will present a thorough review of miRNAs, their functions, and mRNA targets in the CNS, focusing on their role in anxiety and stress-related disorders as described by studies performed in animals and human subjects. © 2017 Elsevier Inc. All rights reserved.

  19. Unsuccessful detection of plant microRNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil

    USDA-ARS?s Scientific Manuscript database

    The recent description of the presence of exogenous plant microRNAs from rice in human plasma had profound implications for the interpretation of microRNAs function in human health. If validated, these results suggest that food should not be considered only as a macronutrient and micronutrient suppl...

  20. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer

    PubMed Central

    2013-01-01

    Introduction MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Methods Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. Results We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo. Conclusions In this study, we provide evidence to support a role for miR-510 as a novel oncomir. We show that miR-510 directly binds to the 3'UTR of PRDX1 and blocks its protein expression, thereby suppressing migration of human breast cancer cells. Taken together, these data support a pivotal role for miR-510 in breast cancer progression and suggest it as a potential therapeutic target in breast cancer patients. PMID:23971998

  1. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer.

    PubMed

    Guo, Qi J; Mills, Jamie N; Bandurraga, Savannah G; Nogueira, Lourdes M; Mason, Natalie J; Camp, E Ramsay; Larue, Amanda C; Turner, David P; Findlay, Victoria J

    2013-01-01

    MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo. In this study, we provide evidence to support a role for miR-510 as a novel oncomir. We show that miR-510 directly binds to the 3'UTR of PRDX1 and blocks its protein expression, thereby suppressing migration of human breast cancer cells. Taken together, these data support a pivotal role for miR-510 in breast cancer progression and suggest it as a potential therapeutic target in breast cancer patients.

  2. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  3. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D.; Sung, Derek C.; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D.; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-01-01

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3′UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation. PMID:27764804

  4. A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells.

    PubMed

    Zhao, Zhenze; Ma, Xiuye; Shelton, Spencer D; Sung, Derek C; Li, Monica; Hernandez, Daniel; Zhang, Maggie; Losiewicz, Michael D; Chen, Yidong; Pertsemlidis, Alexander; Yu, Xiaojie; Liu, Yuanhang; Du, Liqin

    2016-11-29

    MYCN amplification is the most common genetic alteration in neuroblastoma and plays a critical role in neuroblastoma tumorigenesis. MYCN regulates neuroblastoma cell differentiation, which is one of the mechanisms underlying its oncogenic function. We recently identified a group of differentiation-inducing microRNAs. Given the demonstrated inter-regulation between MYCN and microRNAs, we speculated that MYCN and the differentiation-inducing microRNAs might form an interaction network to control the differentiation of neuroblastoma cells. In this study, we found that eight of the thirteen differentiation-inducing microRNAs, miR-506-3p, miR-124-3p, miR-449a, miR-34a-5p, miR-449b-5p, miR-103a-3p, miR-2110 and miR-34b-5p, inhibit N-Myc expression by either directly targeting the MYCN 3'UTR or through indirect regulations. Further investigation showed that both MYCN-dependent and MYCN-independent pathways play roles in mediating the differentiation-inducing function of miR-506-3p and miR-449a, two microRNAs that dramatically down-regulate MYCN expression. On the other hand, we found that N-Myc inhibits the expression of multiple differentiation-inducing microRNAs, suggesting that these miRNAs play a role in mediating the function of MYCN. In examining the published dataset collected from clinical neuroblastoma specimens, we found that expressions of two miRNAs, miR-137 and miR-2110, were significantly anti-correlated with MYCN mRNA levels, suggesting their interactions with MYCN play a clinically-relevant role in maintaining the MYCN and miRNA expression levels in neuroblastoma. Our findings altogether suggest that MYCN and differentiation-inducing miRNAs form an interaction network that play an important role in neuroblastoma tumorigenesis through regulating cell differentiation.

  5. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure.

    PubMed

    Bartram, Malte P; Amendola, Elena; Benzing, Thomas; Schermer, Bernhard; de Vita, Gabriella; Müller, Roman-Ulrich

    2016-04-18

    Non-coding RNAs have gained increasing attention during the last decade. The first large group of non-coding RNAs to be characterized systematically starting at the beginning of the 21st century were small oligonucleotides--the so-called microRNAs (miRNAs). By now we have learnt that microRNAs are indispensable for most biological processes including organogenesis and maintenance of organ structure and function. The role of microRNAs has been studied extensively in the development of a number of organs, so far most studies focussed on e.g. the heart or the brain whilst the role of microRNAs in the development and maintenance of complex epithelial organs is less well understood. Furthermore most analyses regarding microRNA function in epithelial organs employed conditional knockout mouse models of the RNAse III Dicer to abrogate microRNA biogenesis. However, there is increasing evidence for Dicer to have multiple functions independent from microRNA maturation. Therefore Dicer independent models are needed to gain further insight into the complex biology of miRNA dependent processes. Here we analyze the contribution of microRNA-dependent transcriptional control in Pax8-expressing epithelial cells. Pax8 is a transcription factor that is crucial to the development of epithelial organs. The miRNA machinery was disrupted by crossing conditional DiGeorge syndrome critical region 8 (Dgcr8) fl/fl mice to Pax8Cre mice. The Dgcr8/Drosha complex processes pri-miRNAs in the nucleus before they are exported as pre-miRNAs for further maturation by Dicer in the cytoplasm. Dgcr8 fl/fl; Pax8Cre+ knockout mice died prematurely, developed massive hypothyroidism and end stage renal disease due to a loss of miRNAs in Pax8 expressing tissue. Pax8Cre-mediated conditional loss of DiGeorge syndrome critical region 8 (Dgcr8), an essential component of the nuclear machinery that is required for microRNA biogenesis, resulted in severe hypothyroidism, massively reduced body weight and ultimately led to renal failure and death of the animals. These data provide further insight into the importance of miRNAs in organ homeostasis using a Dicer independent model.

  6. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    PubMed Central

    Li, Gengyun; Deng, Ying; Geng, Yupeng; Zhou, Chengchuan; Wang, Yuguo; Zhang, Wenju; Song, Zhiping; Gao, Lexuan; Yang, Ji

    2017-01-01

    Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance. PMID:29259617

  7. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    PubMed Central

    Islam, Md. Tariqul; Ferdous, Ahlan Sabah; Najnin, Rifat Ara; Sarker, Suprovath Kumar; Khan, Haseena

    2015-01-01

    MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops. PMID:25861616

  8. Profile of cerebrospinal microRNAs in fibromyalgia.

    PubMed

    Bjersing, Jan L; Lundborg, Christopher; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-01-01

    Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  9. Immunomodulation: A definitive role of microRNA-142.

    PubMed

    Sharma, Salil

    2017-12-01

    Majority of microRNAs are evolutionarily conserved in vertebrates. This is suggestive of their similar roles in regulation of gene networks. In addition to their conserved mature sequences and regulatory roles, a few microRNAs show very cell or tissue specific expression. These microRNAs are highly enriched in some cell types or organs. One such microRNA is microRNA-142 (miR-142). The classical stem-loop structure of miR142 encodes for two species of mature microRNAs; miR142-5p and miR142-3p. MiR-142 is abundant in cells of hematopoietic origin, and therefore, aptly plays a role in lineage differentiation of hematopoietic cells. Interestingly, over the years, miR-142 has gained considerable attention for its quintessential role in regulating immune response. This mini-review discusses the important functional roles of miR-142 in inflammatory and immune response in different physiological and disease setting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2 Gy suggest the cellular response to functionally suppress the apoptotic death signaling reflex after exposure to high dose radiation. Further analyses with transcriptome and global proteomic profiling will validate the reciprocal expression of signature microRNAs selected in our radiation-exposed cells, and their candidate target gene families, and test our hypothesis that unique radiation-specific microRNAs are keys in governing signaling responses for damage control of this environmental hazard.

  11. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle.

    PubMed

    Yang, I-Ping; Tsai, Hsiang-Lin; Hou, Ming-Feng; Chen, Ku-Chung; Tsai, Pei-Chien; Huang, Szu-Wei; Chou, Wen-Wen; Wang, Jaw-Yuan; Juo, Suh-Hang Hank

    2012-08-01

    Colorectal cancer (CRC) is associated with high recurrence and mortality. Because deregulation of microRNAs is associated with CRC development and recurrence, the expression levels of microRNAs can be a simple and reliable biomarker to detect postoperative early relapse, thereby helping physicians to treat high-risk patients more efficiently. We used microRNA arrays and observed that microRNA-93 had substantially different expression levels in early (recurrence within 12 months after surgery) and non-early relapse CRC patients. The replication study, which included 35 early relapse and 42 non-early relapse subjects, further confirmed overexpression of microRNA-93 in non-early relapse samples. The in vitro and in vivo effects of microRNA-93 were investigated by examining cell proliferation, migration and invasion, as well as cell cycles, target-gene expression and xenograft in null mice. Cellular studies showed that the overexpression of microRNA-93 inhibited colon cancer cell proliferation and migration but not invasion. The cell cycle studies also revealed that microRNA-93 caused an accumulation of the G2 population. However, microRNA-93 could not induce cell apoptosis or necrosis. Functional studies showed that microRNA-93 could suppress CCNB1 protein expression leading to cell cycle arrest in the G2 phase. Moreover, microRNA-93 repressed expression of ERBB2, p21 and VEGF, all of which are involved in cell proliferation. MicroRNA-93 also suppressed tumor growth in null mice. This study showed that microRNA-93 can inhibit tumorigenesis and reduce the recurrence of CRC; these findings may have potential clinical applications for predicting the recurrence of CRC.

  12. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.

    PubMed

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2013-12-01

    The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p < 0.001). The development of OA-induced chronic pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating peripheral knee joint cartilage. © 2013 American Society for Bone and Mineral Research.

  13. Urinary MicroRNA as Biomarker in Renal Transplantation.

    PubMed

    van de Vrie, M; Deegens, J K; Eikmans, M; van der Vlag, J; Hilbrands, L B

    2017-05-01

    Urine represents a noninvasive source in which proteins and nucleic acids can be assessed. Such analytes may function as biomarkers to monitor kidney graft pathology at every desired frequency, thereby providing a time window to prevent graft damage by therapeutic intervention. Recently, several proteins have been measured in urine as markers of graft injury. However, the specificity is limited, and measuring urinary proteins generally lacks the potential to predict early kidney graft damage. Currently, urinary mRNA and microRNA are being investigated to evaluate the prognostic value of changes in gene expression during the initial stages of graft damage. At such time point, a change in treatment regimen and dosage is expected to have maximum potency to minimize future decline in graft function. Both mRNA and microRNAs have shown promising results in both detection and prediction of graft injury. An advantage of microRNAs compared to mRNA molecules is their stability, a characteristic that is beneficial when working with urine samples. In this review, we provide the current state of urinary biomarkers in renal transplantation, with a focus on urinary microRNA. In addition, we discuss the methods used to study urinary microRNA expression. © 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  14. In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer.

    PubMed

    Nariman-Saleh-Fam, Ziba; Bastami, Milad; Somi, Mohammad Hossein; Samadi, Naser; Abbaszadegan, Mohammad Reza; Behjati, Farkhondeh; Ghaedi, Hamid; Tavakkoly-Bazzaz, Javad; Masotti, Andrea

    2016-12-01

    Esophageal cancer is the eighth most common cancer worldwide. Also middle-aged obese adults with higher body mass index during childhood have a greater risk to develop esophageal cancer. The contribution of microRNAs to esophageal cancer has been extensively studied and it became clear that these noncoding RNAs may play crucial roles in pathogenesis, diagnosis and prognosis of the disease. Increasing evidences have suggested that polymorphisms perturbing microRNA targetome (i.e., the compendium of all microRNA target sites) are associated with cancers including esophageal cancer. However, the extent to which such variants contribute to esophageal cancer is still unclear. In this study, we applied an in silico approach to systematically identify polymorphisms perturbing microRNA targetome in esophageal cancer and performed various analyses to predict the functional consequences of the occurrence of these variants. The computational results were integrated to provide a prioritized list of the most potentially disrupting esophageal cancer-implicated microRNA targetome polymorphisms along with the in silico insight into the mechanisms with which such variations may modulate microRNA-mediated regulation. The results of this study will be valuable for future functional experiments aimed at dissecting the roles of microRNA targetome polymorphisms in the onset and progression of esophageal cancer.

  15. Transfer and functional consequences of dietary microRNAs in vertebrates: Concepts in search of corroboration Negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes ...

    USDA-ARS?s Scientific Manuscript database

    If validated, diet-derived foreign microRNA absorption and function in consuming vertebrates would drastically alter our understanding of nutrition and ecology. RNA interference (RNAi) mechanisms of Caenorhabditis elegans are enhanced by uptake of environmental RNA and amplification and systemic dis...

  16. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor*

    PubMed Central

    Li, Wai Ming; Chan, Ching-Man; Miller, Andrew L.; Lee, Chow H.

    2017-01-01

    MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo, molecular beacons can also be employed to inhibit microRNAs in a specific manner. PMID:28100783

  17. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens.

    PubMed

    Alehagen, Urban; Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)-plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of mechanisms underlying the clinical effects earlier reported that reduced cardiovascular mortality, gave better cardiac function, and showed less signs of inflammation and oxdative stress following the intervention. However, more research is needed to understand biological mechanisms of the protective effects of selenium and Q10 supplementation.

  18. Unsuccessful Detection of Plant MicroRNAs in Beer, Extra Virgin Olive Oil and Human Plasma After an Acute Ingestion of Extra Virgin Olive Oil.

    PubMed

    Micó, Victor; Martín, Roberto; Lasunción, Miguel A; Ordovás, Jose M; Daimiel, Lidia

    2016-03-01

    The recent description of the presence of exogenous plant microRNAs from rice in human plasma had profound implications for the interpretation of microRNAs function in human health. If validated, these results suggest that food should not be considered only as a macronutrient and micronutrient supplier but it could also be a way of genomic interchange between kingdoms. Subsequently, several studies have tried to replicate these results in rice and other plant foods and most of them have failed to find plant microRNAs in human plasma. In this scenario, we aimed to detect plant microRNAs in beer and extra virgin olive oil (EVOO)--two plant-derived liquid products frequently consumed in Spain--as well as in human plasma after an acute ingestion of EVOO. Our hypothesis was that microRNAs present in beer and EVOO raw material could survive manufacturing processes, be part of these liquid products, be absorbed by human gut and circulate in human plasma. To test this hypothesis, we first optimized the microRNA extraction protocol to extract microRNAs from beer and EVOO, and then tried to detect microRNAs in those samples and in plasma samples of healthy volunteers after an acute ingestion of EVOO.

  19. Precise let-7 expression levels balance organ regeneration against tumor suppression

    PubMed Central

    Wu, Linwei; Nguyen, Liem H; Zhou, Kejin; de Soysa, T Yvanka; Li, Lin; Miller, Jason B; Tian, Jianmin; Locker, Joseph; Zhang, Shuyuan; Shinoda, Gen; Seligson, Marc T; Zeitels, Lauren R; Acharya, Asha; Wang, Sam C; Mendell, Joshua T; He, Xiaoshun; Nishino, Jinsuke; Morrison, Sean J; Siegwart, Daniel J; Daley, George Q; Shyh-Chang, Ng; Zhu, Hao

    2015-01-01

    The in vivo roles for even the most intensely studied microRNAs remain poorly defined. Here, analysis of mouse models revealed that let-7, a large and ancient microRNA family, performs tumor suppressive roles at the expense of regeneration. Too little or too much let-7 resulted in compromised protection against cancer or tissue damage, respectively. Modest let-7 overexpression abrogated MYC-driven liver cancer by antagonizing multiple let-7 sensitive oncogenes. However, the same level of overexpression blocked liver regeneration, while let-7 deletion enhanced it, demonstrating that distinct let-7 levels can mediate desirable phenotypes. let-7 dependent regeneration phenotypes resulted from influences on the insulin-PI3K-mTOR pathway. We found that chronic high-dose let-7 overexpression caused liver damage and degeneration, paradoxically leading to tumorigenesis. These dose-dependent roles for let-7 in tissue repair and tumorigenesis rationalize the tight regulation of this microRNA in development, and have important implications for let-7 based therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09431.001 PMID:26445246

  20. [The function and application of animal microRNA-181].

    PubMed

    Chang, Yang; Mu, Weitao; Man, Chaolai

    2014-02-01

    MicroRNAs (miRNAs) are a type of non-coding RNAs which are short (17-25nt) and highly conservative in evolution. They can regulate gene expression by preventing target mRNA translation or inducing degradation via oligonucleotides complementary to target mRNA. Here, we briefly summarize the functions and regulatory mechanisms of microRNA-181 (miR-181) in cell proliferation, apoptosis and differentiation, and discuss the miR-181-mediated regulation of immune response in lymphocyte proliferation and differentiation, autoimmunity, inflammation and virus infection. Also, we analyze the functions of miR-181 in tumorigenesis, tumor development, diagnosis, treatment and prognosis. Finally, we discuss the application prospects of miR-181. The functional studies of miR-181 family members have important significance in understanding the mechanisms of biological events, pathogenesis of diseases, and finding new ways to diagnose and treat related diseases.

  1. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms.

    PubMed

    Figueroa-Romero, Claudia; Hur, Junguk; Lunn, J Simon; Paez-Colasante, Ximena; Bender, Diane E; Yung, Raymond; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. MicroRNA-627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth of Xenograft Tumors in Mice

    PubMed Central

    Padi, Sathish K.R.; Zhang, Qunshu; Rustum, Youcef M; Morrison, Carl; Guo, Bin

    2013-01-01

    Background & Aims Vitamin D protects against colorectal cancer by unclear mechanisms. We investigated the effects of calcitriol (1α,25-dihydroxyvitamin D3, the active form of vitamin D) on levels of different microRNAs (miRs) in colorectal cancer (CRC) cells from humans and xenograft tumors in mice. Methods Expression of microRNAs in CRC cell lines was examined using the Ambion mirVana miRNA Bioarray. The effects of calcitriol on expression of miR-627 and cell proliferation were determined by real-time PCR and WST-1 assay, respectively; growth of colorectal xenograft tumors was examined in nude mice. Real-time PCR was used to analyze levels of miR-627 in human colon adenocarcinoma samples and non-tumor colon mucosa tissues (controls). Results In HT-29 cells, miR-627 was the only microRNA significantly upregulated by calcitriol. Jumonji domain containing 1A (JMJD1A), which encodes a histone demethylase, was found to be a target of miR-627. By downregulating JMJD1A, miR-627 increased methylation of histone H3K9 and suppressed expression of proliferative factors such as GDF15. Calcitriol induced expression of miR-627, which downregulated JMJD1A and suppressed growth of xenograft tumors from HCT-116 cells in nude mice. Overexpression of miR-627 prevented proliferation of CRC cell lines in culture and growth of xenograft tumors in mice. Conversely, blocking the activity of miR-627 inhibited the tumor suppressive effects of calcitriol in cultured CRC cells and in mice. Levels of miR-627 were decreased in human colon adenocarcinoma samples, compared with controls. Conclusions miR-627 mediates tumor-suppressive epigenetic activities of vitamin D on CRC cells and xenograft tumors in mice. The mRNA that encodes the histone demethylase JMJD1A is a direct target of miR-627. Reagents designed to target JMJD1A or its mRNA, or increase the function of miR-627, might have the same antitumor activities of vitamin D without the hypercalcemic side effects. PMID:23619147

  3. MicroRNAs in CAG trinucleotide repeat expansion disorders: an integrated review of the literature.

    PubMed

    Dumitrescu, Laura; Popescu, Bogdan O

    2015-01-01

    MicroRNAs are small RNAs involved in gene silencing. They play important roles in transcriptional regulation and are selectively and abundantly expressed in the central nervous system. A considerable amount of the human genome is comprised of tandem repeating nucleotide streams. Several diseases are caused by above-threshold expansion of certain trinucleotide repeats occurring in a protein-coding or non-coding region. Though monogenic, CAG trinucleotide repeat expansion disorders have a complex pathogenesis, various combinations of multiple coexisting pathways resulting in one common final consequence: selective neurodegeneration. Mutant protein and mutant transcript gain of toxic function are considered to be the core pathogenic mechanisms. The profile of microRNAs in CAG trinucleotide repeat disorders is scarcely described, however microRNA dysregulation has been identified in these diseases and microRNA-related intereference with gene expression is considered to be involved in their pathogenesis. Better understanding of microRNAs functions and means of manipulation promises to offer further insights into the pathogenic pathways of CAG repeat expansion disorders, to point out new potential targets for drug intervention and to provide some of the much needed etiopathogenic therapeutic agents. A number of disease-modifying microRNA silencing strategies are under development, but several implementation impediments still have to be resolved. CAG targeting seems feasible and efficient in animal models and is an appealing approach for clinical practice. Preliminary human trials are just beginning.

  4. The effects of environmental chemical carcinogens on the microRNA machinery.

    PubMed

    Izzotti, A; Pulliero, A

    2014-07-01

    The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions

    PubMed Central

    Libânio, Diogo; Dinis-Ribeiro, Mário; Pimentel-Nunes, Pedro

    2015-01-01

    The accepted paradigm for intestinal-type gastric cancer pathogenesis is a multistep progression from chronic gastritis induced by Helicobacter pylori (H. pylori) to gastric atrophy, intestinal metaplasia, dysplasia and ultimately gastric cancer. The genetic and molecular mechanisms underlying disease progression are still not completely understood as only a fraction of colonized individuals ever develop neoplasia suggesting that bacterial, host and environmental factors are involved. MicroRNAs are noncoding RNAs that may influence H. pylori-related pathology through the regulation of the transcription and expression of various genes, playing an important role in inflammation, cell proliferation, apoptosis and differentiation. Indeed, H. pylori have been shown to modify microRNA expression in the gastric mucosa and microRNAs are involved in the immune host response to the bacteria and in the regulation of the inflammatory response. MicroRNAs have a key role in the regulation of inflammatory pathways and H. pylori may influence inflammation-mediated gastric carcinogenesis possibly through DNA methylation and epigenetic silencing of tumor suppressor microRNAs. Furthermore, microRNAs influenced by H. pylori also have been found to be involved in cell cycle regulation, apoptosis and epithelial-mesenchymal transition. Altogether, microRNAs seem to have an important role in the progression from gastritis to preneoplastic conditions and neoplastic lesions and since each microRNA can control the expression of hundreds to thousands of genes, knowledge of microRNAs target genes and their functions are of paramount importance. In this article we present a comprehensive review about the role of microRNAs in H. pylori gastric carcinogenesis, identifying the microRNAs downregulated and upregulated in the infection and clarifying their biological role in the link between immune host response, inflammation, DNA methylation and gastric carcinogenesis. PMID:26468448

  6. A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    PubMed

    Jebbawi, Fadi; Fayyad-Kazan, Hussein; Merimi, Makram; Lewalle, Philippe; Verougstraete, Jean-Christophe; Leo, Oberdan; Romero, Pedro; Burny, Arsene; Badran, Bassam; Martiat, Philippe; Rouas, Redouane

    2014-08-06

    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

  7. Chemoprevention of Cigarette Smoke–Induced Alterations of MicroRNA Expression in Rat Lungs

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Cartiglia, Cristina; Longobardi, Mariagrazia; Croce, Carlo M.; De Flora, Silvio

    2015-01-01

    We previously showed that exposure to environmental cigarette smoke (ECS) for 28 days causes extensive downregulation of microRNA expression in the lungs of rats, resulting in the overexpression of multiple genes and proteins. In the present study, we evaluated by microarray the expression of 484 microRNAs in the lungs of either ECS-free or ECS-exposed rats treated with the orally administered chemopreventive agents N-acetylcysteine, oltipraz, indole-3-carbinol, 5,6-benzoflavone, and phenethyl isothiocyanate (as single agents or in combinations). This is the first study of microRNA modulation by chemopreventive agents in nonmalignant tissues. Scatterplot, hierarchical cluster, and principal component analyses of microarray and quantitative PCR data showed that none of the above chemopreventive regimens appreciably affected the baseline microRNA expression, indicating potential safety. On the other hand, all of them attenuated ECS-induced alterations but to a variable extent and with different patterns, indicating potential preventive efficacy. The main ECS-altered functions that were modulated by chemopreventive agents included cell proliferation, apoptosis, differentiation, Ras activation, P53 functions, NF-κB pathway, transforming growth factor–related stress response, and angiogenesis. Some micro-RNAs known to be polymorphic in humans were downregulated by ECS and were protected by chemopreventive agents. This study provides proof-of-concept and validation of technology that we are further refining to screen and prioritize potential agents for continued development and to help elucidate their biological effects and mechanisms. Therefore, microRNA analysis may provide a new tool for predicting at early carcinogenesis stages both the potential safety and efficacy of cancer chemopreventive agents. PMID:20051373

  8. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2014-07-21

    MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad dysfunction combined with a severe sperm defect sharply reduces fecundity. Multiple lines of evidence, including a late embryonic temperature-sensitive period, support a role for mir-35-41 early during development to promote subsequent sperm production in later larval stages. We further show that the predicted mir-35 family target sup-26 (suppressor-26) acts downstream of mir-35-41 in this process, suggesting that sup-26 de-repression in mir-35-41 deletion mutants may contribute to temperature-sensitive loss of fecundity. In addition, these microRNAs play a role in male fertility, promoting proper morphogenesis of male-specific mating structures. Overall, our results demonstrate that robust activity of the mir-35-42 family microRNAs not only is essential for embryonic development across a range of temperatures but also enables the worm to subsequently develop full reproductive capacity. Copyright © 2014 McJunkin and Ambros.

  9. Expanding the horizons of microRNA bioinformatics.

    PubMed

    Huntley, Rachael P; Kramarz, Barbara; Sawford, Tony; Umrao, Zara; Kalea, Anastasia Z; Acquaah, Vanessa; Martin, Maria-Jesus; Mayr, Manuel; Lovering, Ruth C

    2018-06-05

    MicroRNA regulation of key biological and developmental pathways is a rapidly expanding area of research, accompanied by vast amounts of experimental data. This data, however, is not widely available in bioinformatic resources, making it difficult for researchers to find and analyse microRNA-related experimental data and define further research projects. We are addressing this problem by providing two new bioinformatics datasets that contain experimentally verified functional information for mammalian microRNAs involved in cardiovascular-relevant, and other, processes. To date, our resource provides over 3,900 Gene Ontology annotations associated with almost 500 miRNAs from human, mouse and rat and over 2,200 experimentally validated miRNA:target interactions. We illustrate how this resource can be used to create miRNA-focused interaction networks with a biological context using the known biological role of miRNAs and the mRNAs they regulate, enabling discovery of associations between gene products, biological pathways and, ultimately, diseases. This data will be crucial in advancing the field of microRNA bioinformatics and will establish consistent datasets for reproducible functional analysis of microRNAs across all biological research areas. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Strategies to identify microRNA targets: New advances

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progr...

  11. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have notmore » responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.« less

  12. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor.

    PubMed

    Li, Wai Ming; Chan, Ching-Man; Miller, Andrew L; Lee, Chow H

    2017-03-03

    MicroRNAs are essential in many cellular processes. The ability to detect microRNAs is important for understanding its function and biogenesis. This study is aimed at using a molecular beacon to detect miR-430 in developing zebrafish embryos as a proof of principle. miR-430 is crucial for the clearance of maternal mRNA during maternal zygotic transition in embryonic development. Despite its known function, the temporal and spatial expression of miR-430 remains unclear. We used various imaging techniques, including laser scanning confocal microscopy, spinning disk, and lightsheet microscopy, to study the localization of miR-430 and any developmental defects possibly caused by the molecular beacon. Our results show that miR-430 is expressed early in development and is localized in distinct cytoplasmic granules where its target mRNA can be detected. We also show that the designed molecular beacon can inhibit the function of miR-430 and cause developmental defect in the brain, notochord, heart, and kidney, depending on the delivery site within the embryo, suggesting that miR-430 plays a diverse role in embryonic morphogenesis. When compared with morpholino, molecular beacon is 2 orders of magnitude more potent in inhibiting miR-430. Thus, our results reveal that in addition to being used as a valuable tool for the detection of microRNAs in vivo , molecular beacons can also be employed to inhibit microRNAs in a specific manner. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy

    PubMed Central

    Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie

    2016-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080

  14. Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance.

    PubMed

    Jiang, Qian; Meng, Xing; Meng, Lingwei; Chang, Nannan; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai

    2014-01-01

    MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.

  15. Viability, Longevity, and Egg Production of Drosophila melanogaster Are Regulated by the miR-282 microRNA

    PubMed Central

    Vilmos, Péter; Bujna, Ágnes; Szuperák, Milán; Havelda, Zoltán; Várallyay, Éva; Szabad, János; Kucerova, Lucie; Somogyi, Kálmán; Kristó, Ildikó; Lukácsovich, Tamás; Jankovics, Ferenc; Henn, László; Erdélyi, Miklós

    2013-01-01

    The first microRNAs were discovered some 20 years ago, but only a small fraction of the microRNA-encoding genes have been described in detail yet. Here we report the molecular analysis of a computationally predicted Drosophila melanogaster microRNA gene, mir-282. We show that the mir-282 gene is the source of a 4.9-kb-long primary transcript with a 5′ cap and a 3′-poly(A) sequence and a mature microRNA of ∼25 bp. Our data strongly suggest the existence of an independent mir-282 gene conserved in holometabolic insects. We give evidence that the mir-282 locus encodes a functional transcript that influences viability, longevity, and egg production in Drosophila. We identify the nervous system-specific adenylate cyclase (rutabaga) as a target of miR-282 and assume that one of the main functions of mir-282 is the regulation of adenylate cyclase activity in the nervous system during metamorphosis. PMID:23852386

  16. Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens

    PubMed Central

    Johansson, Peter; Aaseth, Jan; Alexander, Jan; Wågsäter, Dick

    2017-01-01

    Background Selenium and coenzyme Q10 is essential for important cellular functions. A low selenium intake is reported from many European countries, and the endogenous coenzyme Q10 production is decreasing in the body with increasing age. Supplementation with selenium and coenzyme Q10 in elderly have shown reduced cardiovascular mortality and reduced levels of markers of inflammation. However, microRNA analyses could give important information on the mechanisms behind the clinical effects of supplementation. Methods Out of the 443 healthy elderly participants that were given supplementation with 200 μg Se/day as organic selenium yeast tablets, and 200 mg/day of coenzyme Q10 capsules, or placebo for 4 years, 25 participants from each group were randomized and evaluated regarding levels of microRNA. Isolation of RNA from plasma samples and quantitative PCR analysis were performed. Volcano- and principal component analyses (PCA)–plots were used to illustrate the differences in microRNA expression between the intervention, and the placebo groups. Serum selenium concentrations were measured before intervention. Findings On average 145 different microRNAs out of 172 were detected per sample. In the PCA plots two clusters could be identified indicating significant difference in microRNA expression between the two groups. The pre-treatment expression of the microRNAs did not differ between active treatment and the placebo groups. When comparing the post-treatment microRNAs in the active and the placebo groups, 70 microRNAs exhibited significant differences in expression, also after adjustment for multiple measurements. For the 20 microRNAs with the greatest difference in expression the difference was up to more than 4 fold and with a P-value that were less than 4.4e-8. Conclusions Significant differences were found in expression of more than 100 different microRNAs with up to 4 fold differences as a result of the intervention of selenium and coenzyme Q10 combined. The changes in microRNA could be a part of mechanisms underlying the clinical effects earlier reported that reduced cardiovascular mortality, gave better cardiac function, and showed less signs of inflammation and oxdative stress following the intervention. However, more research is needed to understand biological mechanisms of the protective effects of selenium and Q10 supplementation. PMID:28448590

  17. Cytokines and MicroRNAs as Candidate Biomarkers for Systemic Lupus Erythematosus

    PubMed Central

    Stypińska, Barbara; Paradowska-Gorycka, Agnieszka

    2015-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, with varied course and symptoms. Its etiology is very complex and not clearly understood. There is growing evidence of the important role of cytokines in SLE pathogenesis, as well as their utility as biomarkers and targets in new therapies. Other potential new SLE biomarkers are microRNAs. Recently, over one hundred different microRNAs have been demonstrated to have a significant impact on the immune system. Various alterations in these microRNAs, associated with disease pathogenesis, have been described. They influence the signaling pathways and functions of immune response cells. Here, we aim to review the emerging new data on SLE etiology and pathogenesis. PMID:26473848

  18. Exploiting microRNA Specificity and Selectivity: Paving a Sustainable Path Towards Precision Medicine.

    PubMed

    Santulli, Gaetano

    2015-01-01

    In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy.

  19. Exploiting microRNA Specificity and Selectivity: Paving a Sustainable Path Towards Precision Medicine

    PubMed Central

    2016-01-01

    In his State of the Union address before both chambers of the US Congress, President Barack Obama called for increased investment in US infrastructure and research and announced the launch of a new Precision Medicine Initiative, aiming to accelerate biomedical discovery. Due to their well-established selectivity and specificity, microRNAs can represent a useful tool, both in diagnosis and therapy, in forging the path towards the achievement of precision medicine. This introductory chapter represents a guide for the Reader in examining the functional roles of microRNAs in the most diverse aspects of clinical practice, which will be explored in this third volume of the microRNA trilogy. PMID:26663175

  20. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  1. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies

  2. Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models

    PubMed Central

    O'Hern, Patrick J; do Carmo G. Gonçalves, Inês; Brecht, Johanna; López Soto, Eduardo Javier; Simon, Jonah; Chapkis, Natalie; Lipscombe, Diane; Kye, Min Jeong; Hart, Anne C

    2017-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA. DOI: http://dx.doi.org/10.7554/eLife.20752.001 PMID:28463115

  3. Global microRNA profiling of peripheral blood mononuclear cells in patients with Behçet's disease.

    PubMed

    Erre, Gian Luca; Piga, Matteo; Carru, Ciriaco; Angius, Andrea; Carcangiu, Laura; Piras, Marco; Sotgia, Salvatore; Zinellu, Angelo; Mathieu, Alessandro; Passiu, Giuseppe; Pescatori, Mario

    2015-01-01

    To explore the post-transcriptional regulation of the peripheral blood mononuclear cells (PBMCs) transcriptome by microRNAs in Behçet's disease (BD). Using TaqMan Low Density Array-based microRNAs expression profiling, the expression of 750 mature human microRNAs in PBMCs from 5 BD patients and 3 healthy controls (HC) was compared. The expression of deregulated microRNAs was then validated by quantitative real time-polymerase chain reaction (qRT-PCR), in 42 BD patients and 8 HC. In the initial screening, 13 microRNAs appeared deregulated in BD vs HC. Among them, the differential expression of miR-720 and miR-139-3p was confirmed by qRT-PCR, (p<0.05 and FDR<5%). Areas under the receiver operating characteristic curve for miR-139-3p, miR-720 and miR-139-3p+miR-720 in the validation cohort were 0.84, 0.87 and 0.92 respectively, indicating good discrimination between BD patients and HC. Post-hoc analysis showed that 9 out of 13 microRNAs from the discovery phase were significantly upregulated in active vs. quiescent BD, suggesting inflammation as a key regulator of microRNAs machinery in BD. In silico analysis revealed that several BD candidate susceptibility genes are predicted target of significantly deregulated microRNAs in active BD. A significant enrichment in microRNAs targeting elements of the Toll-like receptor (TLR) and T-cell receptor signalling pathways was also assumed. miR199-3p and miR720 deserve further confirmation as biomarkers of BD in larger studies. PBMCs from active BD displayed a unique signature of microRNAs which may be implicated in regulation of innate immunity activation and T-cell function.

  4. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies.

    PubMed

    Matoušková, Petra; Hanousková, Barbora; Skálová, Lenka

    2018-04-14

    Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3'untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins' expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.

  5. Differential MicroRNA Profiles of Spontaneous and Induced Hepatocellular Carcinomas in Male B6C3F1 Mice.

    EPA Science Inventory

    Epigenetic processes have key roles in regulating transcriptional patterns and cellular functions related to chemical carcinogenesis. MicroRNAs (miRNAs) are attractive epigenetic biomarkers given their mechanistic roles in tumorigenesis, tissue-specificity, and small size, whi...

  6. The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p.

    PubMed

    Czimmerer, Zsolt; Varga, Tamas; Kiss, Mate; Vázquez, Cesaré Ovando; Doan-Xuan, Quang Minh; Rückerl, Dominik; Tattikota, Sudhir Gopal; Yan, Xin; Nagy, Zsuzsanna S; Daniel, Bence; Poliska, Szilard; Horvath, Attila; Nagy, Gergely; Varallyay, Eva; Poy, Matthew N; Allen, Judith E; Bacso, Zsolt; Abreu-Goodger, Cei; Nagy, Laszlo

    2016-05-31

    IL-4-driven alternative macrophage activation and proliferation are characteristic features of both antihelminthic immune responses and wound healing in contrast to classical macrophage activation, which primarily occurs during inflammatory responses. The signaling pathways defining the genome-wide microRNA expression profile as well as the cellular functions controlled by microRNAs during alternative macrophage activation are largely unknown. Hence, in the current work we examined the regulation and function of IL-4-regulated microRNAs in human and mouse alternative macrophage activation. We utilized microarray-based microRNA profiling to detect the dynamic expression changes during human monocyte-macrophage differentiation and IL-4-mediated alternative macrophage activation. The expression changes and upstream regulatory pathways of selected microRNAs were further investigated in human and mouse in vitro and in vivo models of alternative macrophage activation by integrating small RNA-seq, ChIP-seq, ChIP-quantitative PCR, and gene expression data. MicroRNA-controlled gene networks and corresponding functions were identified using a combination of transcriptomic, bioinformatic, and functional approaches. The IL-4-controlled microRNA expression pattern was identified in models of human and mouse alternative macrophage activation. IL-4-dependent induction of miR-342-3p and repression of miR-99b along with miR-125a-5p occurred in both human and murine macrophages in vitro. In addition, a similar expression pattern was observed in peritoneal macrophages of Brugia malayi nematode-implanted mice in vivo. By using IL4Rα- and STAT6-deficient macrophages, we were able to show that IL-4-dependent regulation of miR-342-3p, miR-99b, and miR-125a-5p is mediated by the IL-4Rα-STAT6 signaling pathway. The combination of gene expression studies and chromatin immunoprecipitation experiments demonstrated that both miR-342-3p and its host gene, EVL, are coregulated directly by STAT6. Finally, we found that miR-342-3p is capable of controlling macrophage survival through targeting an anti-apoptotic gene network including Bcl2l1. Our findings identify a conserved IL-4/STAT6-regulated microRNA signature in alternatively activated human and mouse macrophages. Moreover, our study indicates that miR-342-3p likely plays a pro-apoptotic role in such cells, thereby providing a negative feedback arm to IL-4-dependent macrophage proliferation.

  7. Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis.

    PubMed

    Lei, R; Tang, J; Zhuang, X; Deng, R; Li, G; Yu, J; Liang, Y; Xiao, J; Wang, H-Y; Yang, Q; Hu, G

    2014-03-06

    Breast cancer is the most common type of cancer among women worldwide, and metastasis represents the most devastating stage of the disease. Recent studies have revealed that microRNAs (miRNA) have critical roles to regulate cancer cell invasion and metastasis. Here we present evidence to show the role of miR-182 in breast cancer metastasis. miR-182 is upregulated in the malignant cell line variants of both human MCF10 and mouse 4T1 series. Ectopic expression of miR-182 enhanced breast cancer cell motility and invasiveness, whereas miR-182 inhibition resulted in opposite changes. In nude mice, miR-182 led to increased pulmonary colonization of cancer cells. We further demonstrated that miR-182 directly targets MIM (Missing in Metastasis), which suppresses metastasis by inhibiting ras homolog family member A (RhoA) activity and stress fiber formation in breast cancer cells. Restoring MIM expression completely blocked the pro-metastasis function of miR-182, while RhoA inhibition reversed the phenotypes of both miR-182 overexpression and MIM knockdown. In breast tumor samples, miR-182 induction is linked to downregulation of MIM, RhoA activation and poor prognosis. Hence, our data delineates the molecular pathway by which miR-182 promotes breast cancer invasion and metastasis, and may have important implication for the treatment of metastatic cancers.

  8. Elementary screening of lymph node metastatic-related genes in gastric cancer based on the co-expression network of messenger RNA, microRNA and long non-coding RNA.

    PubMed

    Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC.

  9. Elementary screening of lymph node metastatic-related genes in gastric cancer based on the co-expression network of messenger RNA, microRNA and long non-coding RNA

    PubMed Central

    Song, Zhonghua; Zhao, Wenhua; Cao, Danfeng; Zhang, Jinqing; Chen, Shouhua

    2018-01-01

    Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The high mortality might be attributed to delay in detection and is closely related to lymph node metastasis. Therefore, it is of great importance to explore the mechanism of lymph node metastasis and find strategies to block GC metastasis. Messenger RNA (mRNA), microRNA (miRNA) and long non-coding RNA (lncRNA) expression data and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. A total of 908 differentially expressed factors with variance >0.5 including 542 genes, 42 miRNA, and 324 lncRNA were screened using significant analysis microarray algorithm, and interaction networks were constructed using these differentially expressed factors. Furthermore, we conducted functional modules analysis in the network, and found that yellow and turquoise modules could separate samples efficiently. The groups classified in the yellow and turquoise modules had a significant difference in survival time, which was verified in another independent GC mRNA dataset (GSE62254). The results suggested that differentially expressed factors in the yellow and turquoise modules may participate in lymph node metastasis of GC and could be applied as potential biomarkers or therapeutic targets for GC. PMID:29489999

  10. Dicer-Like Proteins Regulate Sexual Development via the Biogenesis of Perithecium-Specific MicroRNAs in a Plant Pathogenic Fungus Fusarium graminearum

    PubMed Central

    Zeng, Wenping; Wang, Jie; Wang, Ying; Lin, Jing; Fu, Yanping; Xie, Jiatao; Jiang, Daohong; Chen, Tao; Liu, Huiquan; Cheng, Jiasen

    2018-01-01

    Ascospores act as the primary inoculum of Fusarium graminearum, which causes the destructive disease Fusarium head blight (FHB), or scab. MicroRNAs (miRNAs) have been reported in the F. graminearum vegetative stage, and Fgdcl2 is involved in microRNA-like RNA (milRNA) biogenesis but has no major impact on vegetative growth, abiotic stress or pathogenesis. In the present study, we found that ascospore discharge was decreased in the Fgdcl1 deletion mutant, and completely blocked in the double-deletion mutant of Fgdcl1 and Fgdcl2. Besides, more immature asci were observed in the double-deletion mutant. Interestingly, the up-regulated differentially expressed genes (DEGs) common to ΔFgdcl1 and ΔFgdcl1/2 were related to ion transmembrane transporter and membrane components. The combination of small RNA and transcriptome sequencing with bioinformatics analysis predicted 143 novel milRNAs in wild-type perithecia, and 138 of these milRNAs partly or absolutely depended on Fgdcl1, while only 5 novel milRNAs were still obtained in the Fgdcl1 and Fgdcl2 double-deletion mutant. Furthermore, 117 potential target genes were predicted. Overall, Fgdcl1 and Fgdcl2 genes were partly functionally redundant in ascospore discharge and perithecium-specific milRNA generation in F. graminearum, and these perithecium-specific milRNAs play potential roles in sexual development. PMID:29755439

  11. Virus-Based MicroRNA Silencing in Plants1[C][W][OPEN

    PubMed Central

    Sha, Aihua; Zhao, Jinping; Yin, Kangquan; Tang, Yang; Wang, Yan; Wei, Xiang; Hong, Yiguo; Liu, Yule

    2014-01-01

    MicroRNAs (miRNAs) play pivotal roles in various biological processes across kingdoms. Many plant miRNAs have been experimentally identified or predicted by bioinformatics mining of small RNA databases. However, the functions of these miRNAs remain largely unknown due to the lack of effective genetic tools. Here, we report a virus-based microRNA silencing (VbMS) system that can be used for functional analysis of plant miRNAs. VbMS is performed through tobacco rattle virus-based expression of miRNA target mimics to silence endogenous miRNAs. VbMS of either miR172 or miR165/166 caused developmental defects in Nicotiana benthamiana. VbMS of miR319 reduced the complexity of tomato (Solanum lycopersicum) compound leaves. These results demonstrate that tobacco rattle virus-based VbMS is a powerful tool to silence endogenous miRNAs and to dissect their functions in different plant species. PMID:24296072

  12. microRNA regulation of T-cell differentiation and function

    PubMed Central

    Jeker, Lukas T.; Bluestone, Jeffrey A.

    2013-01-01

    Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639

  13. Small RNA populations revealed by blocking rRNA fragments in Drosophila melanogaster reproductive tissues

    PubMed Central

    Dalmay, Tamas

    2018-01-01

    RNA interference (RNAi) is a complex and highly conserved regulatory mechanism mediated via small RNAs (sRNAs). Recent technical advances in high throughput sequencing have enabled an increasingly detailed analysis of sRNA abundances and profiles in specific body parts and tissues. This enables investigations of the localized roles of microRNAs (miRNAs) and small interfering RNAs (siRNAs). However, variation in the proportions of non-coding RNAs in the samples being compared can hinder these analyses. Specific tissues may vary significantly in the proportions of fragments of longer non-coding RNAs (such as ribosomal RNA or transfer RNA) present, potentially reflecting tissue-specific differences in biological functions. For example, in Drosophila, some tissues contain a highly abundant 30nt rRNA fragment (the 2S rRNA) as well as abundant 5’ and 3’ terminal rRNA fragments. These can pose difficulties for the construction of sRNA libraries as they can swamp the sequencing space and obscure sRNA abundances. Here we addressed this problem and present a modified “rRNA blocking” protocol for the construction of high-definition (HD) adapter sRNA libraries, in D. melanogaster reproductive tissues. The results showed that 2S rRNAs targeted by blocking oligos were reduced from >80% to < 0.01% total reads. In addition, the use of multiple rRNA blocking oligos to bind the most abundant rRNA fragments allowed us to reveal the underlying sRNA populations at increased resolution. Side-by-side comparisons of sequencing libraries of blocked and non-blocked samples revealed that rRNA blocking did not change the miRNA populations present, but instead enhanced their abundances. We suggest that this rRNA blocking procedure offers the potential to improve the in-depth analysis of differentially expressed sRNAs within and across different tissues. PMID:29474379

  14. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    EPA Science Inventory

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  15. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    PubMed

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. © 2016 John Wiley & Sons Ltd.

  16. MicroRNA-155 expression and function in AML: An evolving paradigm.

    PubMed

    Narayan, Nisha; Bracken, Cameron P; Ekert, Paul G

    2018-06-01

    Acute myeloid leukemia (AML) arises when immature myeloid blast cells acquire multiple, recurrent genetic and epigenetic changes that result in dysregulated proliferation. Acute leukemia is the most common form of pediatric cancer, with AML accounting for ~20% of all leukemias in children. The genomic aberrations that drive AML inhibit myeloid differentiation and activate signal transduction pathways that drive proliferation. MicroRNAs, a class of small (~22 nucleotide) noncoding RNAs that posttranscriptionally suppress the expression of specifically targeted transcripts, are also frequently dysregulated in AML, which may prove useful for the purposes of disease classification, prognosis, and future therapeutic approaches. MicroRNA expression profiles are associated with patient prognosis and responses to standard chemotherapy, including predicting therapy resistance in AML. miR-155 is the primary focus of this review because it has been repeatedly associated with poorer survival across multiple cohorts of adult and pediatric AML. We discuss some novel features of miR-155 expression in AML, in particular how the levels of expression can critically influence function. Understanding the role of microRNAs in AML and the ways in which microRNA expression influences AML biology is one means to develop novel and more targeted therapies. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non–small-cell lung cancer through BIM down-regulation

    PubMed Central

    Romano, Giulia; Acunzo, Mario; Garofalo, Michela; Di Leva, Gianpiero; Cascione, Luciano; Zanca, Ciro; Bolon, Brad; Condorelli, Gerolama; Croce, Carlo M.

    2012-01-01

    MicroRNAs (miRNAs) have an important role in the development of chemosensitivity or chemoresistance in different types of cancer. Activation of the ERK1/2 pathway is a major determinant of diverse cellular processes and cancer development and is responsible for the transcription of several important miRNAs. Here we show a link between the ERK1/2 pathway and BIM expression through miR-494. We blocked ERK1/2 nuclear activity through the overexpression of an ERK1/2 natural interactor, the protein PED/PEA15, and we performed a microRNA expression profile. miR-494 was the most down-regulated microRNA after ERK1/2 inactivation. Moreover, we found that miR-494 induced Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in non–small-cell lung cancer (NSCLC) through the down-modulation of BIM. Elucidation of this undiscovered ERK1/2 pathway that regulates apoptosis and cell proliferation through miR-494 in NSCLC will greatly enhance our understanding of the mechanisms responsible for TRAIL resistance and will provide an additional arm for the development of anticancer therapies. PMID:23012423

  18. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1.

    PubMed

    Skinner, Camille M; Ivanov, Nikita S; Barr, Sarah A; Chen, Yan; Skalsky, Rebecca L

    2017-11-01

    Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis. IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell. Copyright © 2017 American Society for Microbiology.

  19. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    PubMed

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  20. MicroRNA-9 Inhibits NLRP3 Inflammasome Activation in Human Atherosclerosis Inflammation Cell Models through the JAK1/STAT Signaling Pathway.

    PubMed

    Wang, Yue; Han, Zhihua; Fan, Yuqi; Zhang, Junfeng; Chen, Kan; Gao, Lin; Zeng, Huasu; Cao, Jiatian; Wang, Changqian

    2017-01-01

    MicroRNA-9 (miR-9) is involved in inflammatory reaction in atherosclerosis; however, its function and regulatory mechanisms remain unclear. We aimed to uncover the exact roles of miR-9 and downstream signaling pathways using in vitro human atherosclerosis models. We used oxidized low-density lipoprotein (oxLDL)-stimulated human THP-1 derived macrophages, oxLDL-stimulated human primary peripheral blood monocytes and lipopolysaccharides (LPS) or Alum-stimulated human THP-1 derived macrophages as in vitro atherosclerosis inflammation models. Transient transfection of over-expression vectors, small interference RNAs (siRNAs) or antisense oligonucleotides was used to regulate intracellular protein or miR-9 levels. Cell responses and signal transduction were detected by multiple assays including Western blotting, enzyme-linked immunosorbent assay (ELISA) and luciferase reporter assay. MiR-9 inhibited while anti-miR-9 antisense oligonucleotides induced interleukin-1 beta (IL-1β) and NLRP3 inflammasome activation in all in vitro models. Janus kinase 1 (JAK1) and matrix metalloproteinase 13 (MMP-13) were identified as the target genes of miR-9. In oxLDL-stimulated human THP-1 derived macrophages, knockdown of JAK1 by siRNA blocked the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and mimicked the effects of miR-9. In the same model, JAK1 knockdown blocked the phosphorylation of NF-κB p65 in the nuclei and the phosphorylation of NF-κB IκBα in the cytoplasm. Our study demonstrated that miR-9 could inhibit activation of the NLRP3 inflammasome and attenuate atherosclerosis-related inflammation, likely through the JAK1/STAT1 signaling pathway. Therefore, miR-9 may serve as a potential therapeutic target for atherosclerosis. © 2017 The Author(s)Published by S. Karger AG, Basel.

  1. Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byeong-Moo; Department of Medicine, Harvard Medical School, Boston, MA 02115; Choi, Michael Y., E-mail: mchoi@partners.org

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generatemore » mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.« less

  2. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells

    PubMed Central

    Ma, Yanni; Yao, Nan; Liu, Guang; Dong, Lei; Liu, Yufang; Zhang, Meili; Wang, Fang; Wang, Bin; Wei, Xueju; Dong, He; Wang, Lanlan; Ji, Shaowei; Zhang, Junwu; Wang, Yangming; Huang, Yue; Yu, Jia

    2015-01-01

    MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation. PMID:25519956

  3. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts.

    PubMed

    Wang, Zhen-Fei; Ma, Da-Guang; Zhu, Zhe; Mu, Yong-Ping; Yang, Yong-Yan; Feng, Li; Yang, Hao; Liang, Jun-Qing; Liu, Yong-Yan; Liu, Li; Lu, Hai-Wen

    2017-12-28

    To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts, and to explore the underlying mechanism. Paired gastric normal fibroblast (GNF) and gastric cancer-associated fibroblast (GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside IV. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs, and astragaloside IV-treated GCAFs, and used to culture BGC-823 human gastric cancer cells. Proliferation, migration and invasion capacities of BGC-823 cells were determined by MTT, wound healing, and Transwell invasion assays, respectively. The action mechanism of astragaloside IV was investigated by detecting the expression of microRNAs and the expression and secretion of the oncogenic factor, macrophage colony-stimulating factor (M-CSF), and the tumor suppressive factor, tissue inhibitor of metalloproteinase 2 (TIMP2), in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined. GCAFs displayed higher capacities to induce BGC-823 cell proliferation, migration, and invasion than GNFs ( P < 0.01). Astragaloside IV treatment strongly inhibited the proliferation-, migration- and invasion-promoting capacities of GCAFs ( P < 0.05 for 10 μmol/L, P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs, GCAFs expressed a lower level of microRNA-214 ( P < 0.01) and a higher level of microRNA-301a ( P < 0.01). Astragaloside IV treatment significantly up-regulated microRNA-214 expression ( P < 0.01) and down-regulated microRNA-301a expression ( P < 0.01) in GCAFs. Reestablishing the microRNA expression balance subsequently suppressed M-CSF production ( P < 0.01) and secretion ( P < 0.05), and elevated TIMP2 production ( P < 0.01) and secretion ( P < 0.05). Consequently, the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside IV. Astragaloside IV can inhibit the pathological functions of GCAFs by correcting their dysregulation of microRNA expression, and it is promisingly a potent therapeutic agent regulating tumor microenvironment.

  4. Astragaloside IV inhibits pathological functions of gastric cancer-associated fibroblasts

    PubMed Central

    Wang, Zhen-Fei; Ma, Da-Guang; Zhu, Zhe; Mu, Yong-Ping; Yang, Yong-Yan; Feng, Li; Yang, Hao; Liang, Jun-Qing; Liu, Yong-Yan; Liu, Li; Lu, Hai-Wen

    2017-01-01

    AIM To investigate the inhibitory effect of astragaloside IV on the pathological functions of cancer-associated fibroblasts, and to explore the underlying mechanism. METHODS Paired gastric normal fibroblast (GNF) and gastric cancer-associated fibroblast (GCAF) cultures were established from resected tissues. GCAFs were treated with vehicle control or different concentrations of astragaloside IV. Conditioned media were prepared from GNFs, GCAFs, control-treated GCAFs, and astragaloside IV-treated GCAFs, and used to culture BGC-823 human gastric cancer cells. Proliferation, migration and invasion capacities of BGC-823 cells were determined by MTT, wound healing, and Transwell invasion assays, respectively. The action mechanism of astragaloside IV was investigated by detecting the expression of microRNAs and the expression and secretion of the oncogenic factor, macrophage colony-stimulating factor (M-CSF), and the tumor suppressive factor, tissue inhibitor of metalloproteinase 2 (TIMP2), in different groups of GCAFs. The expression of the oncogenic pluripotency factors SOX2 and NANOG in BGC-823 cells cultured with different conditioned media was also examined. RESULTS GCAFs displayed higher capacities to induce BGC-823 cell proliferation, migration, and invasion than GNFs (P < 0.01). Astragaloside IV treatment strongly inhibited the proliferation-, migration- and invasion-promoting capacities of GCAFs (P < 0.05 for 10 μmol/L, P < 0.01 for 20 μmol/L and 40 μmol/L). Compared with GNFs, GCAFs expressed a lower level of microRNA-214 (P < 0.01) and a higher level of microRNA-301a (P < 0.01). Astragaloside IV treatment significantly up-regulated microRNA-214 expression (P < 0.01) and down-regulated microRNA-301a expression (P < 0.01) in GCAFs. Reestablishing the microRNA expression balance subsequently suppressed M-CSF production (P < 0.01) and secretion (P < 0.05), and elevated TIMP2 production (P < 0.01) and secretion (P < 0.05). Consequently, the ability of GCAFs to increase SOX2 and NANOG expression in BGC-823 cells was abolished by astragaloside IV. CONCLUSION Astragaloside IV can inhibit the pathological functions of GCAFs by correcting their dysregulation of microRNA expression, and it is promisingly a potent therapeutic agent regulating tumor microenvironment. PMID:29358859

  5. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  6. Early and late effects of aspirin and naproxen on microRNAs in the lung and blood of mice, either unexposed or exposed to cigarette smoke

    PubMed Central

    Izzotti, Alberto; Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Longobardi, Mariagrazia; Pulliero, Alessandra; Camoirano, Anna; D'Agostini, Francesco; Geretto, Marta; Micale, Rosanna T.; La Maestra, Sebastiano; Miller, Mark Steven; Steele, Vernon E.; De Flora, Silvio

    2017-01-01

    We recently showed that nonsteroidal anti-inflammatory drugs (NSAIDs) are able to inhibit the lung tumors induced by cigarette smoke, either mainstream (MCS) or environmental (ECS), in female mice. We used subsets of mice to analyze the expression of 1135 microRNAs in both lung and blood serum, as related to the whole-body exposure to smoke and/or oral administration of either aspirin or naproxen. In a first study, we evaluated early microRNA alterations in A/J mice exposed to ECS for 10 weeks, starting at birth, and/or treated with NSAIDs for 6 weeks, starting after weaning. At that time, when no histopathological change were apparent, ECS caused a considerable downregulation of pulmonary microRNAs affecting both adaptive mechanisms and disease-related pathways. Aspirin and naproxen modulated, with intergender differences, the expression of microRNAs having a variety of functions, also including regulation of cyclooxygenases and inflammation. In a second study, we evaluated late microRNA alterations in Swiss H mice exposed to MCS during the first 4 months of life and treated with NSAIDs after weaning until 7.5 months of life, when tumors were detected in mouse lung. Modulation of pulmonary microRNAs by the two NSAIDs was correlated with their ability to prevent preneoplastic lesions (microadenomas) and adenomas in the lung. In both studies, exposure to smoke and/or treatment with NSAIDs also modulated microRNA profiles in the blood serum. However, their levels were poorly correlated with those of pulmonary microRNAs, presumably because circulating microRNAs reflect the contributions from multiple organs and not only from lung. PMID:29156752

  7. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    PubMed

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  8. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma.

    PubMed

    Soliman, Bangly; Salem, Ahmed; Ghazy, Mohamed; Abu-Shahba, Nourhan; El Hefnawi, Mahmoud

    2018-05-01

    Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.

  9. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    PubMed Central

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. PMID:26664407

  10. Circulating microRNA are predictive of aging and acute adaptive response to resistance exercise in men

    USDA-ARS?s Scientific Manuscript database

    Circulating microRNA (c-miRNA) have the potential to function as novel noninvasive markers of the underlying physiological state of skeletal muscle. This investigation sought to determine the influence of aging on c-miRNA expression at rest and following resistance exercise in male volunteers (Young...

  11. Integrating microRNA and mRNA expression profiles of acute promyelocytic leukemia cells to explore the occurrence mechanisms of differentiation syndrome

    PubMed Central

    Ge, Fei; Cao, Fenglin; Li, Haitao; Wang, Ping; Xu, Mengyuan; Song, Peng; Li, Xiaoxia; Wang, Shuye; Li, Jinmei; Han, Xueying; Zhao, Yanhong; Su, Yanhua; Li, Yinghua; Fan, Shengjin; Li, Limin; Zhou, Jin

    2016-01-01

    The pathogenesis of therapy-induced differentiation syndrome (DS) in patients with acute promyelocytic leukemia (APL) remains unclear. In this study, mRNA and microRNA (miRNA) expression profiling of peripheral blood APL cells from patients complicated with vs. without DS were integratively analyzed to explore the mechanisms underlying arsenic trioxide treatment-associated DS. By integrating the differentially expressed data with the data of differentially expressed microRNAs and their computationally predicted target genes, as well as the data of transcription factors and differentially expressed target microRNAs obtained from a literature search, a DS-related genetic regulatory network was constructed. Then using an EAGLE algorithm in clusterViz, the network was subdivided into 10 modules. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database the modules were annotated functionally, and three functionally active modules were recognized. The further in-depth analyses on the annotated functions of the three modules and the expression and roles of the related genes revealed that proliferation, differentiation, apoptosis and infiltration capability of APL cells might play important roles in the DS pathogenesis. The results could improve our understanding of DS pathogenesis from a more overall perspective, and could provide new clues for future research. PMID:27634874

  12. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    PubMed

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.

  13. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ming-Wei

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressedmore » genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.« less

  14. Identification and functional analysis of microRNA in myometrium tissue from spontaneous preterm labor

    PubMed Central

    Tang, Yao; Ji, Hongjing; Liu, Haiyan; Gu, Weirong; Li, Xiaotian; Peng, Ting

    2015-01-01

    Spontaneous preterm labor is an important complication in perinatology characterized by early onset myometrium contractions leading to labor at preterm. However, the exact mechanism that maintain uterine quiescence and promote increased uterine contractility during labor were incompletely defined. MicroRNAs is a class of short non-coding RNAs that regulate gene expression at the post-transcriptional level by binding the 3’ untranslated region of target mRNAs and play an important role in biological process and cellular functions. We hypothesized we could find differentially expressed microRNAs in the myometrium of women in spontaneous preterm labor. Thus, a microarray analysis of miRNAs of preterm myometrium was performed. 18 out of the 2006 detected microRNAs were found to be significantly dysregulated in myometrium in labor verse not in labor at preterm. Biological validation by quantitative real-time polymerase chain reaction confirms us a consistence rate of 83.3% (5 out of 6) with microarray analysis. The target genes for validated microRNAs were predicted by three algorithms (PicTar, TargetScan, and miRanda). Most of the potential targets of the miRNAs were relevant to positive regulation of cardiac muscle hypertrophy, reduction of cytosolic calcium ion concentration and relaxation of cardiac muscle as well as prostate cancer, adherents junction, regulation of actin cytoskeleton and regulation and other factor-regulated calcium reabsorption. Our result illustrates a characteristic microRNA profile in myometrium tissues and provides a new understanding of the process involved in spontaneous preterm labor. PMID:26722471

  15. Triptonide inhibits the pathological functions of gastric cancer-associated fibroblasts.

    PubMed

    Wang, Zhenfei; Ma, Daguang; Wang, Changshan; Zhu, Zhe; Yang, Yongyan; Zeng, Fenfang; Yuan, Jianlong; Liu, Xia; Gao, Yue; Chen, Yongxia; Jia, Yongfeng

    2017-12-01

    Direct attacks on tumour cells with chemotherapeutic drugs have the drawbacks of accelerating tumour metastasis and inducing tumour stem cell phenotypes. Inhibition of tumour-associated fibroblasts, which provide nourishment and support to tumour cells, is a novel and promising anti-tumour strategy. However, effective drugs against tumour-associated fibroblasts are currently lacking. In the present study, we explored the possibility of inhibiting the pathological functions of tumour-associated fibroblasts with triptonide. Paired gastric normal fibroblasts (GNFs) and gastric cancer-associated fibroblasts (GCAFs) were obtained from resected tissues. GCAFs showed higher capacities to induce colony formation, migration, and invasion of gastric cancer cells than GNFs. Triptonide treatment strongly inhibited the colony formation-, migration-, and invasion-promoting capacities of GCAFs. The expression of microRNA-301a was higher and that of microRNA-149 was lower in GCAFs than in GNFs. Triptonide treatment significantly down-regulated microRNA-301a expression and up-regulated microRNA-149 expression in GCAFs. Re-establishment of microRNA expression balance increased the production and secretion of tissue inhibitor of metalloproteinase 2, a tumour suppressive factor, and suppressed the production and secretion of IL-6, an oncogenic factor, in GCAFs. Moreover, triptonide treatment abolished the ability of GCAFs to induce epithelial-mesenchymal transition in gastric cancer cells. These results indicate that triptonide inhibits the malignancy-promoting capacity of GCAFs by correcting abnormalities in microRNA expression. Thus, triptonide is a promisingly therapeutic agent for gastric cancer treatment, and traditional herbs may be a valuable source for developing new drugs that can regulate the tumour microenvironment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. RACK1 and the microRNA pathway: is it déjà-vu all over again?

    PubMed

    Speth, Corinna; Laubinger, Sascha

    2014-01-01

    MicroRNAs (miRNAs) control many aspects of development and adaption in plants and in animals by post-transcriptional control of mRNA stability and translatability. Over the last years numerous proteins have been identified in the miRNA pathway. The versatile scaffold protein RACK1 has been associated with efficient miRNA production and function in plants and metazoans. Here, we briefly summarize the differences of RACK1 function in the plant and animal miRNA pathways and discuss putative mechanisms and functional roles of RACK1 in miRNA biogenesis and action.

  17. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses.

    PubMed

    Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun

    2018-05-14

    MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.

    PubMed

    Ma, Jing; Gong, Wei; Liu, Su; Li, Qian; Guo, Mengzheng; Wang, Jinhan; Wang, Suying; Chen, Naiyao; Wang, Yafei; Liu, Qiang; Zhao, Hui

    2018-01-01

    The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.

  19. MicroRNAs in the pathobiology of atherosclerosis

    PubMed Central

    Laffont, Benoit; Rayner, Katey J

    2017-01-01

    MicroRNAs are short non-coding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we will focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs which are being developed as both targets and therapeutics for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection. PMID:28232017

  20. MicroRNA and extracellular vesicles in glioblastoma – Small but powerful

    PubMed Central

    Rooj, Arun K.; Mineo, Marco; Godlewski, Jakub

    2016-01-01

    To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma multiforme (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intracellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM. PMID:26968172

  1. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    PubMed

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications.

    PubMed

    Ceder, Yvonne

    2016-01-01

    Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.

  3. Uptake of dietary milk microRNAs by adult humans: Rules for the game of hide and seek

    USDA-ARS?s Scientific Manuscript database

    Milk producers recently used a social media campaign to build public confidence in the health benefits of their product; however, it is not clear why they did not tout the abundant microRNAs (miRNAs), small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation o...

  4. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling

    USDA-ARS?s Scientific Manuscript database

    Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plastic...

  5. Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity.

    PubMed

    Garbuzov, Alina; Tatar, Marc

    2010-01-01

    The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNAi knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNA, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNA when exposed to micromolar levels of 20-HE. We then explore the role microRNA plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3'UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNA control of antimicrobial peptide translation.

  6. Epigenetic regulation of miR-200 as the potential strategy for the therapy against triple-negative breast cancer.

    PubMed

    Mekala, Janaki Ramaiah; Naushad, Shaik Mohammad; Ponnusamy, Lavanya; Arivazhagan, Gayatri; Sakthiprasad, Vaishnave; Pal-Bhadra, Manika

    2018-01-30

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are involved in the regulation of gene expression at the post-transcriptional level. MicroRNAs play an important role in cancer cell proliferation, survival and apoptosis. Epigenetic modifiers regulate the microRNA expression. Among the epigenetic players, histone deacetylases (HDACs) function as the key regulators of microRNA expression. Epigenetic machineries such as DNA and histone modifying enzymes and various microRNAs have been identified as the important contributors in cancer initiation and progression. Recent studies have shown that developing innovative microRNA-targeting therapies might improve the human health, specifically against the disease areas of high unmet medical need. Thus microRNA based therapeutics are gaining importance for anti-cancer therapy. Studies on Triple negative breast cancer (TNBC) have revealed the early relapse and poor overall survival of patients which needs immediate therapeutic attention. In this report, we focus the effect of HDAC inhibitors on TNBC cell proliferation, regulation of microRNA gene expression by a series of HDAC genes, chromatin epigenetics, epigenetic remodelling at miR-200 promoter and its modulation by various HDACs. We also discuss the need for identifying novel HDAC inhibitors for modulation of miR-200 in triple negative breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Let-7b inhibits cancer-promoting effects of breast cancer-associated fibroblasts through IL-8 repression

    PubMed Central

    Al-Harbi, Bothina; Hendrayani, Siti-Fauziah; Silva, Gabriela; Aboussekhra, Abdelilah

    2018-01-01

    Cancer-associated fibroblasts (CAFs) are major players in the development and spread of breast carcinomas through non-cell-autonomous signaling. These paracrine effects are under the control of several genes and microRNAs. We present here clear evidence that let-7b, a tumor suppressor microRNA, plays key roles in the persistent activation of breast stromal fibroblasts and their functional interplay with cancer cells. We have first shown that let-7b is down-regulated in CAFs as compared to their corresponding normal adjacent fibroblasts, and transient specific let-7b inhibition permanently activated breast fibroblasts through induction of the IL-6-related positive feedback loop. More importantly, let-7b-deficient cells promoted the epithelial-to-mesenchymal transition process in breast cancer cells in an IL-8-dependent manner, and also enhanced orthotopic tumor growth in vivo. On the other hand, overexpression of let-7b by mimic permanently suppressed breast myofibroblasts through blocking the positive feedback loop, which inhibited their paracrine pro-carcinogenic effects. Furthermore, we have shown that let-7b negatively controls IL-8, which showed higher expression in the majority of CAF cells as compared to their adjacent normal counterparts, indicating that IL-8 plays a major role in the carcinoma/stroma cross-talk. These findings support targeting active stromal fibroblasts through restoration of let-7b/IL-8 expression as a therapeutic option for breast carcinomas. PMID:29707149

  8. [MicroRNAs in diagnosis and prognosis in lung cancer].

    PubMed

    Avila-Moreno, Federico; Urrea, Francisco; Ortiz-Quintero, Blanca

    2011-01-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that regulate gene expression at the posttranscriptional level by blocking translation or inducing degradation of messenger RNA targets. It has been shown that miRNAs participate in a wide spectrum of essential biologic processes including cell cycle, differentiation, development, apoptosis and hematopoiesis, revealing one of the major regulators of human gene expression. Recent studies have shown evidences of abnormal expression of miRNAs in solid and hematological tumors, as well as the association of altered miRNAs with oncogenic or tumor suppressor functions, suggesting a key role of miRNAs in carcinogenesis. Moreover, unique profiles of altered miRNAs expression seem to allow distinction from normal tissue, prediction of disease outcomes, and evaluation of tumor aggressiveness in several types of cancer, including lung cancer. These unique and highly stable miRNAs patterns seems not to depend of age and race, and these characteristics highlight their potential diagnostic and prognosis utility. These findings are particularly promising for lung cancer, a worldwide leading cause of cancer-related deaths with a poor survival rate, despite the discovery of novel therapies. This review describes the potential of miRNAs as biomarkers for diagnosis, cancer classification and estimation of prognosis in lung cancer; and the approaches used to detect and quantify these miRNAs; including the current information about circulating miRNAs as potential biomarkers in lung cancer. This review also provides a description of miRNAs biogenesis, nomenclature and available database for miRNA sequences.

  9. MicroRNA-214 Suppresses Gluconeogenesis by Targeting Activating Transcriptional Factor 4*

    PubMed Central

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-01-01

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. PMID:25657009

  10. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    PubMed Central

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  11. Posttranscriptional control of neuronal development by microRNA networks.

    PubMed

    Gao, Fen-Biao

    2008-01-01

    The proper development of the nervous system requires precise spatial and temporal control of gene expression at both the transcriptional and translational levels. In different experimental model systems, microRNAs (miRNAs) - a class of small, endogenous, noncoding RNAs that control the translation and stability of many mRNAs - are emerging as important regulators of various aspects of neuronal development. Further dissection of the in vivo physiological functions of individual miRNAs promises to offer novel mechanistic insights into the gene regulatory networks that ensure the precise assembly of a functional nervous system.

  12. MicroRNA network changes in the brain stem underlie the development of hypertension.

    PubMed

    DeCicco, Danielle; Zhu, Haisun; Brureau, Anthony; Schwaber, James S; Vadigepalli, Rajanikanth

    2015-09-01

    Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension. Copyright © 2015 the American Physiological Society.

  13. Downregulation of MicroRNA 29a/b exacerbated diabetic retinopathy by impairing the function of Müller cells via Forkhead box protein O4.

    PubMed

    Zhang, Jiayu; Wu, Liang; Chen, Jiawei; Lin, Sisi; Cai, Daqiu; Chen, Chengwei; Chen, Zhenguo

    2018-05-01

    Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.

  14. MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9.

    PubMed

    Chai, Sunghee; Cambronne, Xiaolu A; Eichhorn, Stephen W; Goodman, Richard H

    2013-10-29

    MicroRNA-134 (miR-134) serves as a widely accepted model for microRNA function in synaptic plasticity. In this model, synaptic activity stimulates miR-134 expression, which then regulates dendrite growth and spine formation. By using a ratiometric microRNA sensor, we found, unexpectedly, that miR-134 activity in cortical neurons was restricted to interneurons. Using an assay designed to trap microRNA-mRNA complexes, we determined that miR-134 interacted directly with the mRNA encoding the palmitoylation enzyme, DHHC9. This enzyme is known to palmitoylate H-Ras, a modification required for proper membrane trafficking. Treatment with bicuculline, a GABAA receptor antagonist, decreased DHHC9 expression in somatostatin-positive interneurons and membrane localization of an H-Ras reporter in a manner that depended on miR-134. Thus, although miR-134 has been proposed to affect all types of neurons, we showed that functionally active miR-134 is produced in only a selected population of neurons where it influences the expression of targets, such as DHHC9, that regulate membrane targeting of critical signaling molecules.

  15. microRNA expression in the neural retina: Focus on Müller glia.

    PubMed

    Quintero, Heberto; Lamas, Mónica

    2018-03-01

    The neural retina hosts a unique specialized type of macroglial cell that not only preserves retinal homeostasis, function, and integrity but also may serve as a source of new neurons during regenerative processes: the Müller cell. Precise microRNA-driven mechanisms of gene regulation impel and direct the processes of Müller glia lineage acquisition from retinal progenitors during development, the triggering of their response to retinal degeneration and, in some cases, Müller cell reprogramming and regenerative events. In this review we survey the recent reports describing, through functional assays, the regulatory role of microRNAs in Müller cell physiology, differentiation potential, and retinal pathology. We discuss also the evidence based on expression analysis that points out the relevance of a Müller glia-specific microRNA signature that would orchestrate these processes. © 2017 Wiley Periodicals, Inc.

  16. Characterization of the RNA silencing suppression activity of the Ebola virus VP35 protein in plants and mammalian cells.

    PubMed

    Zhu, Yali; Cherukuri, Nil Celebi; Jackel, Jamie N; Wu, Zetang; Crary, Monica; Buckley, Kenneth J; Bisaro, David M; Parris, Deborah S

    2012-03-01

    Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS). By inhibiting microRNA-directed silencing, mammalian virus RSSs have the capacity to alter the cellular environment to benefit replication. A reporter gene containing specific microRNA target sequences was used to demonstrate that prior expression of wild-type VP35 was able to block establishment of microRNA silencing in mammalian cells. In addition, wild-type VP35 C-terminal domain (CTD) protein fusions were shown to bind small interfering RNA (siRNA). Analysis of mutant proteins demonstrated that reporter activity in RSS assays did not correlate with their ability to antagonize double-stranded RNA (dsRNA)-activated protein kinase R (PKR) or bind siRNA. The results suggest that enhanced reporter activity in the presence of VP35 is a composite of nonspecific translational enhancement and silencing suppression. Moreover, most of the specific RSS activity in mammalian cells is RNA binding independent, consistent with VP35's proposed role in sequestering one or more silencing complex proteins. To examine RSS activity in a system without interferon, VP35 was tested in well-characterized plant silencing suppression assays. VP35 was shown to possess potent plant RSS activity, and the activities of mutant proteins correlated strongly, but not exclusively, with RNA binding ability. The results suggest the importance of VP35-protein interactions in blocking silencing in a system (mammalian) that cannot amplify dsRNA.

  17. STAT3-regulated exosomal miR-21 promotes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells.

    PubMed

    Liu, Yi; Luo, Fei; Wang, Bairu; Li, Huiqiao; Xu, Yuan; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Xu, Wenchao; Lu, Lu; Qin, Yu; Xiang, Quanyong; Liu, Qizhan

    2016-01-01

    Although microRNA (miRNA) enclosed in exosomes can mediate intercellular communication, the roles of exosomal miRNA and angiogenesis in lung cancer remain unclear. We investigated functions of STAT3-regulated exosomal miR-21 derived from cigarette smoke extract (CSE)-transformed human bronchial epithelial (HBE) cells in the angiogenesis of CSE-induced carcinogenesis. miR-21 levels in serum were higher in smokers than those in non-smokers. The medium from transformed HBE cells promoted miR-21 levels in normal HBE cells and angiogenesis of human umbilical vein endothelial cells (HUVEC). Transformed cells transferred miR-21 into normal HBE cells via exosomes. Knockdown of STAT3 reduced miR-21 levels in exosomes derived from transformed HBE cells, which blocked the angiogenesis. Exosomes derived from transformed HBE cells elevated levels of vascular endothelial growth factor (VEGF) in HBE cells and thereby promoted angiogenesis in HUVEC cells. Inhibition of exosomal miR-21, however, decreased VEGF levels in recipient cells, which blocked exosome-induced angiogenesis. Thus, miR-21 in exosomes leads to STAT3 activation, which increases VEGF levels in recipient cells, a process involved in angiogenesis and malignant transformation of HBE cells. These results, demonstrating the function of exosomal miR-21 from transformed HBE cells, provide a new perspective for intervention strategies to prevent carcinogenesis of lung cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis

    PubMed Central

    Caporali, Andrea; Emanueli, Costanza

    2011-01-01

    MicroRNAs (miRs) are post-transcriptional inhibitory regulators of gene expression acting by direct binding to complementary messenger RNA (mRNA) transcripts. Recent studies have demonstrated that miRs are crucial determinants of endothelial cell behavior and angiogenesis. We have provided evidence of the prominent role of miR-503 in impairment of postischemic reparative angiogenesis in the setting of diabetes. Because miR-503 belongs to the miR-16 extended family of miRs, in this review, we describe the cardiovascular functions of miR-503 and other members of the miR-16 family and their impact on angiogenesis. PMID:22814423

  19. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    PubMed Central

    Schyth, Brian Dall; Bela-ong, Dennis Berbulla; Jalali, Seyed Amir Hossein; Kristensen, Lasse Bøgelund Juel; Einer-Jensen, Katja; Pedersen, Finn Skou; Lorenzen, Niels

    2015-01-01

    MicroRNAs (miRNAs) are ~22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response in rainbow trout (Oncorhynchus mykiss) following inoculation with the virulent fish rhabdovirus Viral hemorrhagic septicaemia virus. Two clustered miRNAs, miR-462 and miR-731 (herein referred to as miR-462 cluster), described only in teleost fishes, were found to be strongly upregulated, indicating their involvement in fish-virus interactions. We searched for homologues of the two teleost miRNAs in other vertebrate species and investigated whether findings related to ours have been reported for these homologues. Gene synteny analysis along with gene sequence conservation suggested that the teleost fish miR-462 and miR-731 had evolved from the ancestral miR-191 and miR-425 (herein called miR-191 cluster), respectively. Whereas the miR-462 cluster locus is found between two protein-coding genes (intergenic) in teleost fish genomes, the miR-191 cluster locus is found within an intron of a protein-coding gene (intragenic) in the human genome. Interferon (IFN)-inducible and immune-related promoter elements found upstream of the teleost miR-462 cluster locus suggested roles in immune responses to viral pathogens in fish, while in humans, the miR-191 cluster functionally associated with cell cycle regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted in different regulation and presumably also different functional roles of these orthologous miRNA clusters in different vertebrate lineages. PMID:26207374

  20. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts, and identified a network of miRNA-mRNA interactions mediating UVB-induced senescence. In addition, miR-101 and Ezh2 were identified as key players in UVB-induced senescence of HDF. PMID:23557329

  1. Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function

    PubMed Central

    Chawla, Geetanjali; Sokol, Nicholas S.

    2012-01-01

    Steroid hormones and their nuclear receptors drive developmental transitions in diverse organisms, including mammals. In this study, we show that the Drosophila steroid hormone 20-hydroxyecdysone (20E) and its nuclear receptor directly activate transcription of the evolutionarily conserved let-7-complex (let-7-C) locus, which encodes the co-transcribed microRNAs miR-100, let-7 and miR-125. These small RNAs post-transcriptionally regulate the expression of target genes, and are required for the remodeling of the Drosophila neuromusculature during the larval-to-adult transition. Deletion of three 20E responsive elements located in the let-7-C locus results in reduced levels of let-7-C microRNAs, leading to neuromuscular and behavioral defects in adults. Given the evolutionary conservation of let-7-C microRNA sequences and temporal expression profiles, these findings indicate that steroid hormone-coupled control of let-7-C microRNAs is part of an ancestral pathway controlling the transition from larval-to-reproductive animal forms. PMID:22510985

  2. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  3. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  4. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.

  5. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  6. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex

    PubMed Central

    Scott, Helen L; Tamagnini, Francesco; Narduzzo, Katherine E; Howarth, Joanna L; Lee, Youn-Bok; Wong, Liang-Fong; Brown, Malcolm W; Warburton, Elizabeth C; Bashir, Zafar I; Uney, James B

    2012-01-01

    Evidence suggests that the acquisition of recognition memory depends upon CREB-dependent long-lasting changes in synaptic plasticity in the perirhinal cortex. The CREB-responsive microRNA miR-132 has been shown to regulate synaptic transmission and we set out to investigate a role for this microRNA in recognition memory and its underlying plasticity mechanisms. To this end we mediated the specific overexpression of miR-132 selectively in the rat perirhinal cortex and demonstrated impairment in short-term recognition memory. This functional deficit was associated with a reduction in both long-term depression and long-term potentiation. These results confirm that microRNAs are key coordinators of the intracellular pathways that mediate experience-dependent changes in the brain. In addition, these results demonstrate a role for miR-132 in the neuronal mechanisms underlying the formation of short-term recognition memory. PMID:22845676

  7. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  8. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells.

    PubMed

    González-Duarte, Ramiro José; Cázares-Ordoñez, Verna; Romero-Córdoba, Sandra; Díaz, Lorenza; Ortíz, Víctor; Freyre-González, Julio Augusto; Hidalgo-Miranda, Alfredo; Larrea, Fernando; Avila, Euclides

    2015-08-01

    MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.

  9. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer.

    PubMed

    Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Lu, Zhaohui; Mo, Yin-Yuan

    2014-11-26

    Exosomes are 30-100 nm membrane vesicles of endocytic origin, mediating diverse biological functions including tumor cell invasion, cell-cell communication and antigen presentation through transfer of proteins, mRNAs and microRNAs. Recent evidence suggests that microRNAs can be released through ceramide-dependent secretory machinery regulated by neutral sphingomyelinase 2 (nSMase2) enzyme encoded by the smpd3 gene that triggers exosome secretion. However, whether exosome-mediated microRNA transfer plays any role in cell invasion remains poorly understood. Thus, the aim of this study was to identify the exosomal microRNAs involved in breast cancer invasion. The expression level of endogenous and exosomal miRNAs were examined by real time PCR and the expression level of target proteins were detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study its uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-10b was estimated by invasion assay. In this study, we demonstrate that microRNA carrying exosomes can be transferred among different cell lines through direct uptake. miR-10b is highly expressed in metastatic breast cancer MDA-MB-231 cells as compared to non-metastatic breast cancer cells or non-malignant breast cells; it is actively secreted into medium via exosomes. In particular, nSMase2 or ceramide promotes the exosome-mediated miR-10b secretion whereas ceramide inhibitor suppresses this secretion. Moreover, upon uptake, miR-10b can suppress the protein level of its target genes such as HOXD10 and KLF4, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could induce the invasion ability of non-malignant HMLE cells. Together, our results suggest that a set of specific microRNAs may play an important role in modulating tumor microenvironment through exosomes. Thus, a better understanding of this process may aid in the development of novel therapeutic agents.

  10. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer.

    PubMed

    Zhao, Zhen-Jun; Shen, Jun

    2017-05-04

    Circular RNAs (circRNAs) are long, non-coding RNAs that result from the non-canonical splicing of linear pre-mRNAs. However, the characteristics and the critical role of circRNA in co-/post-transcriptional regulation were not well recognized until the "microRNA sponge" function of circRNA is discovered. Recent studies have mainly been devoted to the function of the circular RNA sponge for miR-7 (ciRS-7) and sex-determining region Y (SRY) by targeting microRNA-7 (miR-7) and microRNA-138 (miR-138), respectively. In this review, we illustrate the specific role of circRNAs in a wide variety of cancers and in regulating the biological behavior of cancers via miR-7 or miR-138 regulation. Furthermore, circRNA, together with its gene silencing ability, also shows its potential in RNA interference (RNAi) therapy by binding to target RNAs, which provides a novel perspective in cancer treatment. Thus, this review concerns the biogenesis, biological function, oncogenesis, progression and possible therapies for cancer involving circRNAs.

  11. Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs

    NASA Astrophysics Data System (ADS)

    Wang, Chenguang; Zhang, Huan; Zeng, Dongdong; Sun, Wenliang; Zhang, Honglu; Aldalbahi, Ali; Wang, Yunsheng; San, Lili; Fan, Chunhai; Zuo, Xiaolei; Mi, Xianqiang

    2015-09-01

    Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs.Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs. Electronic supplementary information (ESI) available: Sequences for oligonucleotides used for this work, dynamic light scattering (DLS) measurements, fluorescent signal intensity with different ratios between p-MBs and A5 oligonucleotides, quantification of the fluorescent p-MB, and UV-Vis spectra for naked AuNPs and the p-nanoMB. See DOI: 10.1039/c5nr04618a

  12. Plasma microRNA profile as a predictor of early virological response to interferon treatment in chronic hepatitis B patients.

    PubMed

    Zhang, Xiaonan; Chen, Cuncun; Wu, Min; Chen, Liang; Zhang, Jiming; Zhang, Xinxin; Zhang, Zhanqin; Wu, Jingdi; Wang, Jiefei; Chen, Xiaorong; Huang, Tao; Chen, Lixiang; Yuan, Zhenghong

    2012-01-01

    Interferon (IFN) and pegylated interferon (PEG-IFN) treatment of chronic hepatitis B leads to a sustained virological response in a limited proportion of patients and has considerable side effects. To find novel markers associated with prognosis of IFN therapy, we investigated whether a pretreatment plasma microRNA profile could be used to predict early virological response to IFN. We performed microRNA microarray analysis of plasma samples from 94 patients with chronic hepatitis B who received IFN therapy. The microRNA profiles from 13 liver biopsy samples were also measured. The OneR feature ranking and incremental feature selection method were used to rank and optimize the number of features in the model. Support vector machine prediction engine and jack-knife cross-validation were used to generate and evaluate the prediction model. The optimized model consisting of 11 microRNAs yielded a 74.2% overall accuracy in the training group and was independently confirmed in the test group (71.4% accuracy). Univariate and multivariate logistic regression analyses confirmed its independent association with early virological response (OR=7.35; P=2.12×10(-5)). Combining the microRNA profile with the alanine aminotransferase level improved the overall accuracy from 73.4% to 77.3%. Co-transfection of an HBV replicative construct with microRNA mimics revealed that let-7f, miR-939 and miR-638 were functionally associated with the HBV life cycle. The 11 microRNA signatures in plasma, together with basic clinical variables, might provide an accurate method to assist in medication decisions and improve the overall sustained response to IFN treatment.

  13. Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy.

    PubMed

    Klimczak, Dominika; Jazdzewski, Krystian; Kuch, Marek

    2017-02-01

    Multiple factors underlie the pathophysiology of hypertension, involving endothelial dysregulation, vascular smooth muscle dysfunction, increased oxidative stress, sympathetic nervous system activation and altered renin -angiotensin -aldosterone regulatory activity. A class of non-coding RNA called microRNA, consisting of 17-25 nucleotides, exert regulatory function over these processes. This paper summarizes the currently available data from preclinical and clinical studies on miRNA in the development of hypertension as well as the impact of anti-hypertensive treatment on their plasma expression. We present microRNAs' characteristics, their biogenesis and role in the regulation of blood pressure together with their potential diagnostic and therapeutic application in clinical practice.

  14. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma

    PubMed Central

    2014-01-01

    Background Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Methods Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. Results We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Conclusions Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology. PMID:24731550

  15. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma.

    PubMed

    Ambrosio, Maria Raffaella; Navari, Mohsen; Di Lisio, Lorena; Leon, Eduardo Andres; Onnis, Anna; Gazaneo, Sara; Mundo, Lucia; Ulivieri, Cristina; Gomez, Gonzalo; Lazzi, Stefano; Piris, Miguel Angel; Leoncini, Lorenzo; De Falco, Giulia

    2014-01-01

    Burkitt lymphoma is an aggressive B-cell lymphoma presenting in three clinical forms: endemic, sporadic and immunodeficiency-associated. More than 90% of endemic Burkitt lymphoma carry latent Epstein-Barr virus, whereas only 20% of sporadic Burkitt lymphoma are associated with Epstein-Barr infection. Although the Epstein-Barr virus is highly related with the endemic form, how and whether the virus participates in its pathogenesis remains to be fully elucidated. In particular, the virus may impair cellular gene expression by its own encoded microRNAs. Using microRNA profiling we compared Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for both cellular and viral microRNAs. The array results were validated by qRT-PCR, and potential targets of viral microRNAs were then searched by bioinformatic predictions, and classified in functional categories, according to the Gene Ontology. Our findings were validated by in vitro functional studies and by immunohistochemistry on a larger series of cases. We showed that a few cellular microRNAs are differentially expressed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases, and identified a subset of viral microRNAs expressed in Epstein-Barr-positive Burkitt lymphomas. Of these, we characterized the effects of viral BART6-3p on regulation of cellular genes. In particular, we analyzed the IL-6 receptor genes (IL-6Rα and IL-6ST), PTEN and WT1 expression for their possible relevance to Burkitt lymphoma. By means of immunohistochemistry, we observed a down-regulation of the IL-6 receptor and PTEN specifically in Epstein-Barr-positive Burkitt lymphoma cases, which may result in the impairment of key cellular pathways and may contribute to malignant transformation. On the contrary, no differences were observed between Epstein-Barr-positive and Epstein-Barr-negative Burkitt lymphoma cases for WT1 expression. Our preliminary results point at an active role for the Epstein-Barr virus in Burkitt lymphomagenesis and suggest new possible mechanisms used by the virus in determining dysregulation of the host cell physiology.

  16. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    PubMed

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  17. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia

    PubMed Central

    Silva, Ricardo Jorge; Cruz, Ana Rita; Mano, Miguel

    2017-01-01

    MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells. PMID:28394930

  18. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia.

    PubMed

    Sunkavalli, Ushasree; Aguilar, Carmen; Silva, Ricardo Jorge; Sharan, Malvika; Cruz, Ana Rita; Tawk, Caroline; Maudet, Claire; Mano, Miguel; Eulalio, Ana

    2017-04-01

    MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.

  19. MicroRNA in Development and in the Progression of Cancer | Center for Cancer Research

    Cancer.gov

    MicroRNA in Development and in the Progression of Cancer is divided into three parts. It provides a more complete understanding of miRNA function, summarizes the recent progress, and provides insights by which miRNAs regulate normal development and diseases (including cancers) and the fate of stem cells. It also presents the prospect of the great potential of miRNAs in cancer

  20. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  1. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea.

    PubMed

    Sasidharan, Vidyanand; Marepally, Srujan; Elliott, Sarah A; Baid, Srishti; Lakshmanan, Vairavan; Nayyar, Nishtha; Bansal, Dhiru; Sánchez Alvarado, Alejandro; Vemula, Praveen Kumar; Palakodeti, Dasaradhi

    2017-09-15

    Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family ( miR-124 ) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1 , which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. © 2017. Published by The Company of Biologists Ltd.

  2. The miR-124 family of microRNAs is crucial for regeneration of the brain and visual system in the planarian Schmidtea mediterranea

    PubMed Central

    Sasidharan, Vidyanand; Marepally, Srujan; Elliott, Sarah A.; Baid, Srishti; Lakshmanan, Vairavan; Nayyar, Nishtha; Bansal, Dhiru; Sánchez Alvarado, Alejandro; Vemula, Praveen Kumar

    2017-01-01

    Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the miR-124 family of microRNAs in planarian brain regeneration. The miR-124 family (miR-124) is highly conserved in animals and regulates neurogenesis by facilitating neural differentiation, yet its role in neural wiring and brain organization is not known. We developed a novel method for delivering anti-miRs using liposomes for the functional knockdown of microRNAs. Smed-miR-124 knockdown revealed a key role for these microRNAs in neuronal organization during planarian brain regeneration. Our results also demonstrated an essential role for miR-124 in the generation of eye progenitors. Additionally, miR-124 regulates Smed-slit-1, which encodes an axon guidance protein, either by targeting slit-1 mRNA or, potentially, by modulating the canonical Notch pathway. Together, our results reveal a role for miR-124 in regulating the regeneration of a functional brain and visual system. PMID:28807895

  3. Identification of suitable reference genes for hepatic microRNA quantitation.

    PubMed

    Lamba, Vishal; Ghodke-Puranik, Yogita; Guan, Weihua; Lamba, Jatinder K

    2014-03-07

    MicroRNAs (miRNAs) are short (~22 nt) endogenous RNAs that play important roles in regulating expression of a wide variety of genes involved in different cellular processes. Alterations in microRNA expression patterns have been associated with a number of human diseases. Accurate quantitation of microRNA levels is important for their use as biomarkers and in determining their functions. Real time PCR is the gold standard and the most frequently used technique for miRNA quantitation. Real time PCR data analysis includes normalizing the amplification data to suitable endogenous control/s to ensure that microRNA quantitation is not affected by the variability that is potentially introduced at different experimental steps. U6 (RNU6A) and RNU6B are two commonly used endogenous controls in microRNA quantitation. The present study was designed to investigate inter-individual variability and gender differences in hepatic microRNA expression as well as to identify the best endogenous control/s that could be used for normalization of real-time expression data in liver samples. We used Taqman based real time PCR to quantitate hepatic expression levels of 22 microRNAs along with U6 and RNU6B in 50 human livers samples (25 M, 25 F). To identify the best endogenous controls for use in data analysis, we evaluated the amplified candidates for their stability (least variability) in expression using two commonly used software programs: Normfinder and GeNormplus, Both Normfinder and GeNormplus identified U6 to be among the least stable of all the candidates analyzed, and RNU6B was also not among the top genes in stability. mir-152 and mir-23b were identified to be the two most stable candidates by both Normfinder and GeNormplus in our analysis, and were used as endogenous controls for normalization of hepatic miRNA levels. Measurements of microRNA stability indicate that U6 and RNU6B are not suitable for use as endogenous controls for normalizing microRNA relative quantitation data in hepatic tissue, and their use can led to possibly erroneous conclusions.

  4. A microRNA family exerts maternal control on sex determination in C. elegans

    PubMed Central

    McJunkin, Katherine; Ambros, Victor

    2017-01-01

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 (sup-26) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 (nhl-2), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans. Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. PMID:28279983

  5. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Potential role for microRNA in regulating hypoxia-induced metabolic suppression in jumbo squids.

    PubMed

    Hadj-Moussa, Hanane; Logan, Samantha M; Seibel, Brad A; Storey, Kenneth B

    2018-05-02

    At night, Humboldt squid (Dosidicus gigas) rise to the ocean's surface to feed, but come morning, they descend into the ocean's oxygen minimum zone where they can avoid predators but must deal with severe hypoxia, high pressure, and very cold water. To survive this extreme environment, squid use various adaptations to enter a hypometabolic state characterized by metabolic rate suppression by 35-52%, relative to normoxic conditions. The molecular mechanisms facilitating this metabolic flexibility have yet to be elucidated in hypometabolic squid. Herein, we report the first investigation of the role of microRNAs, a rapid and reversible post-transcriptional master regulator of virtually all biological functions, in cephalopods. We examined expression levels of 39 highly-conserved invertebrate microRNAs in D. gigas brain, mantle muscle, and branchial heart, comparing hypoxic and normoxic conditions. Hypoxia-inducible microRNAs are potentially involved in facilitating neuroprotection, anti-apoptosis, and regenerative mechanisms in brain; inhibiting apoptosis and cell proliferation while conserving energy in heart; and limiting damage by reactive oxygen species and apoptosis in muscle. Rather than orchestrate global metabolic rate depression, the majority of hypoxia-inducible microRNAs identified are involved in promoting cytoprotective mechanisms, suggesting a regulatory role for microRNA in hypoxic marine invertebrates that sets the stage for mechanistic analyses. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Integration of miRNA and Protein Profiling Reveals Coordinated Neuroadaptations in the Alcohol-Dependent Mouse Brain

    PubMed Central

    Gorini, Giorgio; Nunez, Yury O.; Mayfield, R. Dayne

    2013-01-01

    The molecular mechanisms underlying alcohol dependence involve different neurochemical systems and are brain region-dependent. Chronic Intermittent Ethanol (CIE) procedure, combined with a Two-Bottle Choice voluntary drinking paradigm, represents one of the best available animal models for alcohol dependence and relapse drinking. MicroRNAs, master regulators of the cellular transcriptome and proteome, can regulate their targets in a cooperative, combinatorial fashion, ensuring fine tuning and control over a large number of cellular functions. We analyzed cortex and midbrain microRNA expression levels using an integrative approach to combine and relate data to previous protein profiling from the same CIE-subjected samples, and examined the significance of the data in terms of relative contribution to alcohol consumption and dependence. MicroRNA levels were significantly altered in CIE-exposed dependent mice compared with their non-dependent controls. More importantly, our integrative analysis identified modules of coexpressed microRNAs that were highly correlated with CIE effects and predicted target genes encoding differentially expressed proteins. Coexpressed CIE-relevant proteins, in turn, were often negatively correlated with specific microRNA modules. Our results provide evidence that microRNA-orchestrated translational imbalances are driving the behavioral transition from alcohol consumption to dependence. This study represents the first attempt to combine ex vivo microRNA and protein expression on a global scale from the same mammalian brain samples. The integrative systems approach used here will improve our understanding of brain adaptive changes in response to drug abuse and suggests the potential therapeutic use of microRNAs as tools to prevent or compensate multiple neuroadaptations underlying addictive behavior. PMID:24358208

  8. Neuro-Epigenetic Indications of Acute Stress Response in Humans: The Case of MicroRNA-29c

    PubMed Central

    Farberov, Luba; Lin, Tamar; Sharon, Haggai; Gilam, Avital; Volk, Naama; Admon, Roee; Edry, Liat; Fruchter, Eyal; Wald, Ilan; Bar-Haim, Yair; Tarrasch, Ricardo; Chen, Alon; Shomron, Noam; Hendler, Talma

    2016-01-01

    Stress research has progressively become more integrative in nature, seeking to unfold crucial relations between the different phenotypic levels of stress manifestations. This study sought to unravel stress-induced variations in expression of human microRNAs sampled in peripheral blood mononuclear cells and further assess their relationship with neuronal and psychological indices. We obtained blood samples from 49 healthy male participants before and three hours after performing a social stress task, while undergoing functional magnetic resonance imaging (fMRI). A seed-based functional connectivity (FC) analysis was conducted for the ventro-medial prefrontal cortex (vmPFC), a key area of stress regulation. Out of hundreds of microRNAs, a specific increase was identified in microRNA-29c (miR-29c) expression, corresponding with both the experience of sustained stress via self-reports, and alterations in vmPFC functional connectivity. Explicitly, miR-29c expression levels corresponded with both increased connectivity of the vmPFC with the anterior insula (aIns), and decreased connectivity of the vmPFC with the left dorso-lateral prefrontal cortex (dlPFC). Our findings further revealed that miR-29c mediates an indirect path linking enhanced vmPFC-aIns connectivity during stress with subsequent experiences of sustained stress. The correlative patterns of miR-29c expression and vmPFC FC, along with the mediating effects on subjective stress sustainment and the presumed localization of miR-29c in astrocytes, together point to an intriguing assumption; miR-29c may serve as a biomarker in the blood for stress-induced functional neural alterations reflecting regulatory processes. Such a multi-level model may hold the key for future personalized intervention in stress psychopathology. PMID:26730965

  9. MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.

    PubMed

    Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio

    2016-11-01

    Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.

  10. miRNAs and ovarian cancer: An overview.

    PubMed

    Deb, Bornali; Uddin, Arif; Chakraborty, Supriyo

    2018-05-01

    Ovarian cancer (OC) is the sixth most common cancer in women globally. However, even with the advances in detection and therapeutics it still represents the most dangerous gynecologic malignancy in women of the industrialized countries. The discovery of micro-RNAs (miRNA), a small noncoding RNA molecule targeting multiple mRNAs and regulation of gene expression by triggering translation repression and/or RNA degradation, has revealed the existence of a new array for regulation of genes involved in cancer. This review summarizes the current knowledge regarding the role of miRNAs expression in OC. It also provides information about potential clinical relevance of circulating miRNAs for OC diagnosis, prognosis, and therapeutics. The identification of functional targets for miRNAs represents a major obstacle in our understanding of microRNA function in OC, but significant progress is being made. The better understanding of the role of microRNA expression in ovarian cancer may provide new array for the detection, diagnosis, and therapy of the OC. © 2017 Wiley Periodicals, Inc.

  11. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4.

    PubMed

    Li, Kai; Zhang, Jin; Yu, Junjie; Liu, Bin; Guo, Yajie; Deng, Jiali; Chen, Shanghai; Wang, Chunxia; Guo, Feifan

    2015-03-27

    Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a

  13. [Progress of study on the detection technique of microRNA].

    PubMed

    Zhao, Hai-Feng; Yang, Ren-Chi

    2009-12-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their targeted mRNAs. MiRNAs are involved in critical biologic processes, including development, cell differentiation, proliferation and the pathogenesis of disease. This review focuses on recent researches on the detection techniques of miRNA including micorarray technique, Northern blot, real-time quantitative PCR, detection technique of miRNA function and so on.

  14. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    PubMed

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.g

    Human exposure to certain natural and man-made chemical carcinogens is one of the major risk factors for cancer development. The effect of chemical carcinogens on genetic and epigenetic alterations and their significance in the development of cancer has been well-established. In contrast, the role of microRNAs (miRNAs) in the etiology of chemical-associated cancers remains relatively unexplored despite extensive reports on changes in miRNA expression upon carcinogen exposure. This review summarizes the current knowledge for the role of miRNAs as drivers of chemical-induced carcinogenesis by bridging the gap between carcinogen exposure and cancer development through functional studies. It also emphasizes themore » potential for miRNA changes as early indicators of the carcinogenic process, markers for carcinogen exposure, and identification of chemical carcinogenic hazards. - Highlights: • Exposure to chemical carcinogens alters microRNA expression. • MicroRNA alterations may have significance in the development of cancer. • MicroRNAs may be early indicators of the carcinogenic process and carcinogen exposure.« less

  16. MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor

    PubMed Central

    Wu, Kaichun; Liu, Jie; Sun, Shiren; Guo, Xuegang; Wang, Biaoluo; Gang, Yi; Zhang, Yongguo; Li, Quanjiang; Qiao, Taidong; Zhao, Qingchuan; Nie, Yongzhan; Fan, Daiming

    2010-01-01

    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis. PMID:20300657

  17. Antagonists of the miRNA-Argonaute 2 Protein Complex: Anti-miR-AGOs.

    PubMed

    Schmidt, Marco F; Korb, Oliver; Abell, Chris

    2017-01-01

    microRNAs (miRNAs) have been identified as high-value drug targets. A widely applied strategy in miRNA inhibition is the use of antisense agents. However, it has been shown that oligonucleotides are poorly cell permeable because of their complex chemical structure and due to their negatively charged backbone. Consequently, the general application of oligonucleotides in therapy is limited. Since miRNAs' functions are executed exclusively by the Argonaute 2 protein, we therefore describe a protocol for the design of a novel miRNA inhibitor class: antagonists of the miRNA-Argonaute 2 protein complex, so-called anti-miR-AGOs, that not only block the crucial binding site of the target miRNA but also bind to the protein's active site. Due to their lower molecular weight and, thus, more drug-like chemical structure, the novel inhibitor class may show better pharmacokinetic properties than reported oligonucleotide inhibitors, enabling them for potential therapeutic use.

  18. MicroRNAs in islet immunobiology and transplantation.

    PubMed

    Pileggi, Antonello; Klein, Dagmar; Fotino, Carmen; Bravo-Egaña, Valia; Rosero, Samuel; Doni, Marco; Podetta, Michele; Ricordi, Camillo; Molano, R Damaris; Pastori, Ricardo L

    2013-12-01

    The ultimate goal of diabetes therapy is the restoration of physiologic metabolic control. For type 1 diabetes, research efforts are focused on the prevention or early intervention to halt the autoimmune process and preserve β cell function. Replacement of pancreatic β cells via islet transplantation reestablishes physiologic β cell function in patients with diabetes. Emerging research shows that microRNAs (miRNAs), noncoding small RNA molecules produced by a newly discovered class of genes, negatively regulate gene expression. MiRNAs recognize and bind to partially complementary sequences of target messenger RNA (mRNA), regulating mRNA translation and affecting gene expression. Correlation between miRNA signatures and genome-wide RNA expression allows identification of multiple miRNA-mRNA pairs in biological processes. Because miRNAs target functionally related genes, they represent an exciting and indispensable approach for biomarkers and drug discovery. We are studying the role of miRNA in the context of islet immunobiology. Our research aims at understanding the mechanisms underlying pancreatic β cell loss and developing clinically relevant approaches for preservation and restoration of β cell function to treat insulin-dependent diabetes. Herein, we discuss some of our recent efforts related to the study of miRNA in islet inflammation and islet engraftment. Our working hypothesis is that modulation of the expression of specific microRNAs in the transplant microenvironment will be of assistance in enhancing islet engraftment and promoting long-term function.

  19. MicroRNAs in prostate cancer: Functional role as biomarkers.

    PubMed

    Kanwal, Rajnee; Plaga, Alexis R; Liu, Xiaoqi; Shukla, Girish C; Gupta, Sanjay

    2017-10-28

    MicroRNAs (miRNAs) are small endogenous non-coding molecules that alters gene expression through post-transcriptional regulation of messenger RNA. Compelling evidence suggest the role of miRNA in cancer biology having potential as diagnostic, prognostic and predictive biomarkers. This review summarizes the current knowledge on miRNA deregulated in prostate cancer and their role as oncogene, tumor suppressor and metastasis regulators. The emerging information elucidating the biological function of miRNA is promising and may lead to their potential usefulness as diagnostic/prognostic markers and development as effective therapeutic tools for management of prostate cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MicroRNAs in neuronal function and dysfunction

    PubMed Central

    Im, Heh-In; Kenny, Paul J.

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNA transcripts expressed throughout the brain that can regulate neuronal gene expression at the post-transcriptional level. Here, we provide an overview of the role for miRNAs in brain development and function, and review evidence suggesting that dysfunction in miRNA signaling contributes to neurodevelopment disorders such as Rett and fragile X syndromes, as well as complex behavioral disorders including schizophrenia, depression and drug addiction. A better understanding of how miRNAs influence the development of neuropsychiatric disorders may reveal fundamental insights into the causes of these devastating illnesses and offer novel targets for therapeutic development. PMID:22436491

  1. Multilayer checkpoints for microRNA authenticity during RISC assembly.

    PubMed

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-09-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5' phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5' nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3' region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly.

  2. Role of microRNA Pathway in Mental Retardation

    PubMed Central

    Qurashi, Abrar; Chang, Shuang; Jin, Peng

    2007-01-01

    Deficits in cognitive functions lead to mental retardation (MR). Understanding the genetic basis of inherited MR has provided insights into the pathogenesis of MR. Fragile X syndrome is one of the most common forms of inherited MR, caused by the loss of functional Fragile X Mental Retardation Protein (FMRP). MicroRNAs (miRNAs) are endogenous, single-stranded RNAs between 18 and 25 nucleotides in length, which have been implicated in diversified biological pathways. Recent studies have linked the miRNA pathway to fragile X syndrome. Here we review the role of the miRNA pathway in fragile X syndrome and discuss its implication in MR in general. PMID:17982588

  3. Multilevel regulation of gene expression by microRNAs.

    PubMed

    Makeyev, Eugene V; Maniatis, Tom

    2008-03-28

    MicroRNAs (miRNAs) are approximately 22-nucleotide-long noncoding RNAs that normally function by suppressing translation and destabilizing messenger RNAs bearing complementary target sequences. Some miRNAs are expressed in a cell- or tissue-specific manner and may contribute to the establishment and/or maintenance of cellular identity. Recent studies indicate that tissue-specific miRNAs may function at multiple hierarchical levels of gene regulatory networks, from targeting hundreds of effector genes incompatible with the differentiated state to controlling the levels of global regulators of transcription and alternative pre-mRNA splicing. This multilevel regulation may allow individual miRNAs to profoundly affect the gene expression program of differentiated cells.

  4. MicroRNA-19a/b-3p protect the heart from hypertension-induced pathological cardiac hypertrophy through PDE5A.

    PubMed

    Liu, Kun; Hao, Qiongyu; Wei, Jie; Li, Gong-Hao; Wu, Yong; Zhao, Yun-Feng

    2018-04-16

    PDE5A is a leading factor contributing to cGMP signaling and cardiac hypertrophy. However, microRNA-mediated posttranscriptional regulation of PDE5A has not been reported. The aim of this study is to screen the microRNAs that are able to regulate PDE5A and explore the function of the microRNAs in cardiac hypertrophy and remodeling. Although miR-19a/b-3p (microRNA-19a-3p and microRNA-19b-3p) have been reported to be differentially expressed during cardiac hypertrophy, the direct targets and the functions of this microRNA family for regulation of cardiac hypertrophy have not yet been investigated. The present study identified some direct targets and the underlying functions of miR-19a/b-3p by using bioinformatics tools and gene manipulations within mouse neonatal cardiomyocytes. Transfection of miR-19a/b-3p down-regulated endogenous expressions of PDE5A at both mRNA and protein levels with real-time PCR and western blot. Luciferase reporter assays showed that PDE5A was a direct target of miR-19a/b-3p. In mouse models of cardiac hypertrophy, we found that miR-19a/b-3p was expressed in cardiomyocytes and that its expression was reduced in pressure overload-induced hypertrophic hearts. miR-19a/b-3p transgenic mice prevented the progress of cardiac hypertrophy and cardiac remodeling in response to angiotensin II infusion with echocardiographic assessment and pressure-volume relation analysis. Our study elucidates that PDE5A is a novel direct target of miR-19a/b-3p, and demonstrates that antihypertrophic roles of the miR-19a/b-3p family in Ang II-induced hypertrophy and cardiac remodeling, suggests that endogenous miR-19a/b-3p might have clinical potential to suppress cardiac hypertrophy and heart failure.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0.

  5. Overexpression of microRNA-26a protects against deficient β-cell function via targeting phosphatase with tensin homology in mouse models of type 2 diabetes.

    PubMed

    Song, Yingli; Jin, Di; Jiang, Xiaoshu; Lv, Chunmei; Zhu, Hui

    2018-01-01

    The prevalence of type 2 diabetes mellitus (T2DM) increased rapidly in the world. The development of β-cell dysfunction is the quintessential defects in T2DM patients However, the pathogenesis of β-cell dysfunction is still unclear. MicroRNAs are short non-coding RNAs and has been reported to be involved in pathogenesis of β-cell dysfunction and T2DM. Here, we investigated the mechanisms by which miR-26a regulate β-cell function and insulin signaling pathway in high fat diet (HFD) fed and db/db T2DM mice model. The expression of miR-26a was down-regulated dramatically in the serum and islets of both HFD and db/db mice model. miR-26a overexpression protected against HFD-induced diabetes and maintained prolonged normoglycemic time in HFD fed mice. Overexpression of miR-26a improved β-cell dysfunction in T2DM mice. Further, we identified that PTEN is a direct target gene of miR-26a. Overexpression of miR-26a significantly inhibited the luciferase activity of hPTEN 3'-UTR, while the effect of miR-26a disappeared when the miR-26a potential binding site within the PTEN 3'-UTR was mutated. Overexpression of miR-26a reduced both the mRNA and protein levels of PTEN in vitro and in vivo. We also found that miR-26a overexpression increased the expression of p-Akt and p-FoxO-1, while the effect of miR-26a was blocked by PTEN overexpression. In conclusion, our data indicated that miR-26a potentially contributes to the β-cell dysfunction in T2DM, and miR-26a may be a new therapeutic strategy against T2DM. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weidong; Jin, Xuejun; Deng, Xubin

    2014-06-27

    Highlights: • MiR-497 expression was down-regulated in GC patients and GC cell lines. • MiR-497 inhibited cell proliferation and invasion of GC cells in vitro. • MiR-497 modulated eIF4E expression in GC cells. • Restoration of miR-497 decreased tumor growth and metastasis in vivo. - Abstract: Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associatedmore » with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.« less

  7. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions.

    PubMed

    Vacchi-Suzzi, Caterina; Hahne, Florian; Scheubel, Philippe; Marcellin, Magali; Dubost, Valerie; Westphal, Magdalena; Boeglen, Catherine; Büchmann-Møller, Stine; Cheung, Ming Sin; Cordier, André; De Benedetto, Christopher; Deurinck, Mark; Frei, Moritz; Moulin, Pierre; Oakeley, Edward; Grenet, Olivier; Grevot, Armelle; Stull, Robert; Theil, Diethilde; Moggs, Jonathan G; Marrer, Estelle; Couttet, Philippe

    2013-01-01

    MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.

  8. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model.

    PubMed

    Malhotra, Meenakshi; Sekar, Thillai Veerapazham; Ananta, Jeyarama S; Devulapally, Rammohan; Afjei, Rayhaneh; Babikir, Husam A; Paulmurugan, Ramasamy; Massoud, Tarik F

    2018-04-20

    Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.

  9. Molecular Regulation of Parturition: A Myometrial Perspective

    PubMed Central

    Renthal, Nora E.; Williams, Koriand’r C.; Montalbano, Alina P.; Chen, Chien-Cheng; Gao, Lu; Mendelson, Carole R.

    2015-01-01

    The molecular mechanisms that maintain quiescence of the myometrium throughout most of pregnancy and promote its transformation to a highly coordinated contractile unit culminating in labor are complex and intertwined. During pregnancy, progesterone (P4) produced by the placenta and/or ovary serves a dominant role in maintaining myometrial quiescence by blocking proinflammatory response pathways and expression of so-called “contractile” genes. In the majority of placental mammals, increased uterine contractility near term is heralded by an increase in circulating estradiol-17β (E2) and/or increased estrogen receptor α (ERα) activity and a sharp decline in circulating P4 levels. However, in women, circulating levels of P4 and progesterone receptors (PR) in myometrium remain elevated throughout pregnancy and into labor. This has led to the concept that increased uterine contractility leading to term and preterm labor is mediated, in part, by a decline in PR function. The biochemical mechanisms for this decrease in PR function are also multifaceted and interwoven. In this paper, we focus on the molecular mechanisms that mediate myometrial quiescence and contractility and their regulation by the two central hormones of pregnancy, P4 and estradiol-17β. The integrative roles of microRNAs also are considered. PMID:26337112

  10. miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification.

    PubMed

    Nissan, Xavier; Denis, Jérôme Alexandre; Saidani, Manoubia; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2011-08-15

    The molecular mechanisms controlling the differentiation of human basal keratinocyte stem cells towards the epidermis are well characterized, whereas the earliest process leading to the specification of embryonic stem cells into keratinocytes is still not well understood. MicroRNAs are regulators of many cellular events, but evidence for microRNA acting on the differentiation of human embryonic stem cells into a specific lineage has been elusive. By using our recent protocol for obtaining functional keratinocytes from hESC, we attempted to analyze the role of microRNAs in the early stages of epidermal differentiation. Thus, we identified a set of 5 microRNAs, namely miR-200a, miR-200b, miR-203, miR-205 and miR-429, that are specifically overexpressed during the early stages of the differentiation process. Interestingly, our functional analyses revealed an instrumental role of miR-203, which had been previously shown to play a key role during the formation of the pluristratified epidermis by basal keratinocyte stem cells, in the early keratinocyte commitment. These results highlight the determinant and unique role of miR-203 during the entire process of epidermal development by extending its spectrum of action from the early commitment of embryonic stem cells to ultimate differentiation of the organ. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle.

    PubMed

    Rech, Monika; Barandiarán Aizpurua, Arantxa; van Empel, Vanessa; van Bilsen, Marc; Schroen, Blanche

    2018-05-01

    Half of all heart failure patients have preserved ejection fraction (HFpEF). Comorbidities associated with and contributing to HFpEF include obesity, diabetes and hypertension. Still, the underlying pathophysiological mechanisms of HFpEF are unknown. A preliminary consensus proposes that the multi-morbidity triggers a state of systemic, chronic low-grade inflammation, and microvascular dysfunction, causing reduced nitric oxide bioavailability to adjacent cardiomyocytes. As a result, the cardiomyocyte remodels its contractile elements and fails to relax properly, causing diastolic dysfunction, and eventually HFpEF. HFpEF is a complex syndrome for which currently no efficient therapies exist. This is notably due to the current one-size-fits-all therapy approach that ignores individual patient differences. MicroRNAs have been studied in relation to pathophysiological mechanisms and comorbidities underlying and contributing to HFpEF. As regulators of gene expression, microRNAs may contribute to the pathophysiology of HFpEF. In addition, secreted circulating microRNAs are potential biomarkers and as such, they could help stratify the HFpEF population and open new ways for individualized therapies. In this review, we provide an overview of the ever-expanding world of non-coding RNAs and their contribution to the molecular mechanisms underlying HFpEF. We propose prospects for microRNAs in stratifying the HFpEF population. MicroRNAs add a new level of complexity to the regulatory network controlling cardiac function and hence the understanding of gene regulation becomes a fundamental piece in solving the HFpEF puzzle.

  12. A microRNA family exerts maternal control on sex determination in C. elegans.

    PubMed

    McJunkin, Katherine; Ambros, Victor

    2017-02-15

    Gene expression in early animal embryogenesis is in large part controlled post-transcriptionally. Maternally contributed microRNAs may therefore play important roles in early development. We elucidated a major biological role of the nematode mir-35 family of maternally contributed essential microRNAs. We show that this microRNA family regulates the sex determination pathway at multiple levels, acting both upstream of and downstream from her-1 to prevent aberrantly activated male developmental programs in hermaphrodite embryos. Both of the predicted target genes that act downstream from the mir-35 family in this process, suppressor-26 ( sup-26 ) and NHL (NCL-1, HT2A, and LIN-41 repeat) domain-containing-2 ( nhl-2 ), encode RNA-binding proteins, thus delineating a previously unknown post-transcriptional regulatory subnetwork within the well-studied sex determination pathway of Caenorhabditis elegans Repression of nhl-2 by the mir-35 family is required for not only proper sex determination but also viability, showing that a single microRNA target site can be essential. Since sex determination in C. elegans requires zygotic gene expression to read the sex chromosome karyotype, early embryos must remain gender-naïve; our findings show that the mir-35 family microRNAs act in the early embryo to function as a developmental timer that preserves naïveté and prevents premature deleterious developmental decisions. © 2017 McJunkin and Ambros; Published by Cold Spring Harbor Laboratory Press.

  13. MicroRNA-Regulated Non-Viral Vectors with Improved Tumor Specificity in an Orthotopic Rat Model of Hepatocellular Carcinoma

    PubMed Central

    Ronald, John A.; Katzenberg, Regina; Nielsen, Carsten H.; Jae, Hwan Jun; Hofmann, Lawrence V.; Gambhir, Sanjiv S.

    2013-01-01

    In hepatocellular carcinoma, tumor specificity of gene therapy is of utmost importance to preserve liver function. MicroRNAs are powerful negative regulators of gene expression and many are down-regulated in human HCC. We identified seven miRNAs that are also down-regulated in tumors in a rat hepatoma model (p<0.05) and attempted to improve tumor specificity by constructing a panel of luciferase-expressing vectors containing binding sites for these microRNAs. Attenuation of luciferase expression by the corresponding microRNAs was confirmed across various cell lines and in mouse liver. We then tested our vectors in tumor-bearing rats and identified two microRNAs, miR-26a and miR-122, that significantly decreased expression in liver compared to control vector (6.40% and 0.26%, respectively; p<0.05). In tumor, miR-122 had a non-significant trend towards decreased (~50%) expression , while miR-26 had no significant effect on tumor expression. To our knowledge this is the first work using differentially expressed microRNAs to de-target transgene expression in an orthotopic hepatoma model and identification of miR-26a in addition to miR-122 for de-targeting liver. Considering the heterogeneity of microRNA expression in human HCC, this information will be important in guiding development of more personalized vectors for the treatment of this devastating disease. PMID:23719066

  14. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence

    PubMed Central

    Tapocik, Jenica D.; Solomon, Matthew; Flanigan, Meghan; Meinhardt, Marcus; Barbier, Estelle; Schank, Jesse; Schwandt, Melanie; Sommer, Wolfgang H.; Heilig, Markus

    2012-01-01

    Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs for persistent gene expression changes in the rat medial prefrontal cortex after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, qPCR, bioinformatic analysis, and microRNA-mRNA integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. 41 rat-microRNAs and 165 mRNAs in the medial prefrontal cortex were significantly altered after chronic alcohol exposure. A subset of the microRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation, and synaptic plasticity. microRNA-mRNA expression pairing identified 33 microRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the medial prefrontal cortex following a history of dependence. Due to their global regulation of multiple downstream target transcripts, microRNAs may play a pivotal role in the reorganization of synaptic connections and long term neuroadaptations in alcohol dependence. microRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol-drinking observed in alcoholic patients. PMID:22614244

  15. Inflammatory gene networks in term human decidual cells define a potential signature for cytokine-mediated parturition.

    PubMed

    Ibrahim, Sherrine A; Ackerman, William E; Summerfield, Taryn L; Lockwood, Charles J; Schatz, Frederick; Kniss, Douglas A

    2016-02-01

    Inflammation is a proximate mediator of preterm birth and fetal injury. During inflammation several microRNAs (22 nucleotide noncoding ribonucleic acid (RNA) molecules) are up-regulated in response to cytokines such as interleukin-1β. MicroRNAs, in most cases, fine-tune gene expression, including both up-regulation and down-regulation of their target genes. However, the role of pro- and antiinflammatory microRNAs in this process is poorly understood. The principal goal of the work was to examine the inflammatory genomic profile of human decidual cells challenged with a proinflammatory cytokine known to be present in the setting of preterm parturition. We determined the coding (messenger RNA) and noncoding (microRNA) sequences to construct a network of interacting genes during inflammation using an in vitro model of decidual stromal cells. The effects of interleukin-1β exposure on mature microRNA expression were tested in human decidual cell cultures using the multiplexed NanoString platform, whereas the global inflammatory transcriptional response was measured using oligonucleotide microarrays. Differential expression of select transcripts was confirmed by quantitative real time-polymerase chain reaction. Bioinformatics tools were used to infer transcription factor activation and regulatory interactions. Interleukin-1β elicited up- and down-regulation of 350 and 78 nonredundant transcripts (false discovery rate < 0.1), respectively, including induction of numerous cytokines, chemokines, and other inflammatory mediators. Whereas this transcriptional response included marked changes in several microRNA gene loci, the pool of fully processed, mature microRNA was comparatively stable following a cytokine challenge. Of a total of 6 mature microRNAs identified as being differentially expressed by NanoString profiling, 2 (miR-146a and miR-155) were validated by quantitative real time-polymerase chain reaction. Using complementary bioinformatics approaches, activation of several inflammatory transcription factors could be inferred downstream of interleukin-1β based on the overall transcriptional response. Further analysis revealed that miR-146a and miR-155 both target genes involved in inflammatory signaling, including Toll-like receptor and mitogen-activated protein kinase pathways. Stimulation of decidual cells with interleukin-1β alters the expression of microRNAs that function to temper proinflammatory signaling. In this setting, some microRNAs may be involved in tissue-level inflammation during the bulk of gestation and assist in pregnancy maintenance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Profile of circulating microRNAs in fibromyalgia and their relation to symptom severity: an exploratory study.

    PubMed

    Bjersing, Jan L; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2015-04-01

    Fibromyalgia (FM) is characterized by generalized chronic pain and reduced pain thresholds. Disturbed neuroendocrine function and impairment of growth hormone/insulin-like growth factor-1 is common. However, the pathophysiology of FM is not clear. MicroRNAs are important regulatory factors reflecting interface of genes and environment. Our aim was to identify characteristic microRNAs in FM and relations of specific microRNAs with characteristic symptoms. A total of 374 circulating microRNAs were measured in women with FM (n = 20; median 52.5 years) and healthy women (n = 20; 52.5 years) by quantitative PCR. Pain thresholds were examined by algometry. Pain [fibromyalgia impact questionnaire (FIQ) pain] levels were rated (0-100 mm) using FIQ. Fatigue (FIQ fatigue) was rated (0-100 mm) using FIQ and multidimensional fatigue inventory general fatigue. Sleep quantity and quality (1-4) rated from satisfactory to nonsatisfactory. Higher scores indicate more severe symptoms. Eight microRNAs differed significantly between FM and healthy women. Seven microRNAs, miR-103a-3p, miR-107, let-7a-5p, miR-30b-5p, miR-151a-5p, miR-142-3p and miR-374b-5p, were lower in FM. However, levels of miR-320a were higher in FM. MiR-103a-3p correlated with pain (r = 0.530, p = 0.016) and sleep quantity (r = 0.593, p = 0.006) in FM. MiR-320a correlated inversely with pain (r = -0.468, p = 0.037). MiR-374b-5p correlated inversely with pain threshold (r = -0.612, p = 0.004). MiR-30b-5p correlated with sleep quantity (r = 0.509, p = 0.022), and let-7a-5p was associated with sleep symptoms. When adjusted for body mass index, the correlation of sleep quantity with miR-103a and miR-30b was no longer significant. To our knowledge, this is the first study of circulating microRNAs in FM. Levels of several microRNAs differed significantly in FM compared to healthy women. Three microRNAs were associated with pain or pain threshold in FM.

  17. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies have shown that the levels of cellular miRNAs can be altered in diseased tissues, and these changes potentially could be used for diagnosis or disease monitoring.

  18. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell

    PubMed Central

    Sotiropoulou, Georgia; Pampalakis, Georgios; Lianidou, Evi; Mourelatos, Zissimos

    2009-01-01

    Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches. PMID:19561119

  19. miRNEST database: an integrative approach in microRNA search and annotation

    PubMed Central

    Szcześniak, Michał Wojciech; Deorowicz, Sebastian; Gapski, Jakub; Kaczyński, Łukasz; Makałowska, Izabela

    2012-01-01

    Despite accumulating data on animal and plant microRNAs and their functions, existing public miRNA resources usually collect miRNAs from a very limited number of species. A lot of microRNAs, including those from model organisms, remain undiscovered. As a result there is a continuous need to search for new microRNAs. We present miRNEST (http://mirnest.amu.edu.pl), a comprehensive database of animal, plant and virus microRNAs. The core part of the database is built from our miRNA predictions conducted on Expressed Sequence Tags of 225 animal and 202 plant species. The miRNA search was performed based on sequence similarity and as many as 10 004 miRNA candidates in 221 animal and 199 plant species were discovered. Out of them only 299 have already been deposited in miRBase. Additionally, miRNEST has been integrated with external miRNA data from literature and 13 databases, which includes miRNA sequences, small RNA sequencing data, expression, polymorphisms and targets data as well as links to external miRNA resources, whenever applicable. All this makes miRNEST a considerable miRNA resource in a sense of number of species (544) that integrates a scattered miRNA data into a uniform format with a user-friendly web interface. PMID:22135287

  20. Extension of microRNA expression pattern associated with high-risk neuroblastoma.

    PubMed

    Bienertova-Vasku, Julie; Mazanek, Pavel; Hezova, Renata; Curdova, Anna; Nekvindova, Jana; Kren, Leos; Sterba, Jaroslav; Slaby, Ondrej

    2013-08-01

    Clinical behavior of neuroblastoma (NBL) is remarkably heterogeneous, as it ranges from spontaneous regression to aggressive clinical phenotype and death. There is increasing body of evidence demonstrating that microRNAs could be considered the potential biomarkers for clinical applications in NBL. In this report, we focus on molecular characterization of high-risk as well as low-risk and intermediate-risk NBL cases in the context of the microRNA expression profile that is specific for the given risk category of the disease. We investigated a total of 30 NBL patients, out of whom there were 19 patients with low- to intermediate-risk and 11 with high-risk NBLs as defined by the Clinical Oncology Group. We determined the expression profiles of 754 microRNAs (miRNAs), whereas the miRNA expression levels were normalized to RNU44, mean expression levels were calculated, and data were analyzed by use of the microarray biostatistical approaches. We identified the signature of 38 miRNAs differentially expressed between these groups of NBL patients (P < 0.05): 17 miRNAs were upregulated and 21 miRNAs were downregulated in the tumors of high-risk NBL patients. We confirm some of the previous observations and we report several new microRNAs associated with aggressive NBL, both being relevant subjects for further translational validation and functional studies.

  1. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies.

    PubMed

    Scott, Elizabeth; Loya, Komal; Mountford, Joanne; Milligan, Graeme; Baker, Andrew H

    2013-09-01

    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Multilayer checkpoints for microRNA authenticity during RISC assembly

    PubMed Central

    Kawamata, Tomoko; Yoda, Mayuko; Tomari, Yukihide

    2011-01-01

    MicroRNAs (miRNAs) function through the RNA-induced silencing complex (RISC), which contains an Argonaute (Ago) protein at the core. RISC assembly follows a two-step pathway: miRNA/miRNA* duplex loading into Ago, and separation of the two strands within Ago. Here we show that the 5′ phosphate of the miRNA strand is essential for duplex loading into Ago, whereas the preferred 5′ nucleotide of the miRNA strand and the base-pairing status in the seed region and the middle of the 3′ region function as additive anchors to Ago. Consequently, the miRNA authenticity is inspected at multiple steps during RISC assembly. PMID:21738221

  3. MicroRNA-542-5p as a Novel Tumor Suppressor in Neuroblastoma

    PubMed Central

    Bray, Isabella; Tivnan, Amanda; Bryan, Kenneth; Foley, Niamh H; Watters, Karen M; Tracey, Lorraine; Davidoff, Andrew M; Stallings, Raymond L

    2011-01-01

    Several studies have implicated the dysregulation of microRNAs in neuroblastoma pathogenesis, an often fatal paediatric cancer arising from precursor cells of the sympathetic nervous system. Our group and others have demonstrated that lower expression of miR-542-5p is highly associated with poor patient survival, indicating a potential tumor suppressive function. Here, we demonstrate that ectopic over-expression of this miRNA decreases the invasive potential of neuroblastoma cell lines in vitro, along with primary tumor growth and metastases in an orthotopic mouse xenograft model, providing the first functional evidence for the involvement of miR-542-5p as a tumor suppressor in any type of cancer. PMID:21310526

  4. Using Functional Signature Ontology (FUSION) to Identify Mechanisms of Action for Natural Products

    PubMed Central

    Potts, Malia B.; Kim, Hyun Seok; Fisher, Kurt W.; Hu, Youcai; Carrasco, Yazmin P.; Bulut, Gamze Betul; Ou, Yi-Hung; Herrera-Herrera, Mireya L.; Cubillos, Federico; Mendiratta, Saurabh; Xiao, Guanghua; Hofree, Matan; Ideker, Trey; Xie, Yang; Huang, Lily Jun-shen; Lewis, Robert E.; MacMillan, John B.; White, Michael A.

    2014-01-01

    A challenge for biomedical research is the development of pharmaceuticals that appropriately target disease mechanisms. Natural products can be a rich source of bioactive chemicals for medicinal applications but can act through unknown mechanisms and can be difficult to produce or obtain. To address these challenges, we developed a new marine-derived, renewable natural products resource and a method for linking bioactive derivatives of this library to the proteins and biological processes that they target in cells. We used cell-based screening and computational analysis to match gene expression signatures produced by natural products to those produced by siRNA and synthetic microRNA libraries. With this strategy, we matched proteins and microRNAs with diverse biological processes and also identified putative protein targets and mechanisms of action for several previously undescribed marine-derived natural products. We confirmed mechanistic relationships for selected short-interfering RNAs, microRNAs, and compounds with functional roles in autophagy, chemotaxis mediated by discoidin domain receptor 2, or activation of the kinase AKT. Thus, this approach may be an effective method for screening new drugs while simultaneously identifying their targets. PMID:24129700

  5. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  6. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  7. MicroRNAs in Leukemias: Emerging Diagnostic Tools and Therapeutic Targets

    PubMed Central

    Mian, Yousaf A.; Zeleznik-Le, Nancy J.

    2010-01-01

    MicroRNAs (miRNA) are small non-coding RNAs of ~22 nucleotides that regulate the translation and stability of mRNA to control different functions of the cell. Misexpression of miRNA has been linked to disruption of normal cellular functions, which results in various disorders including cancers such as leukemias. MicroRNA involvement in disease has been the subject of much attention and is increasing our current understanding of disease biology. Such linkages have been determined by high-throughput studies, which provide a framework for characterizing differential miRNA expression levels correlating to different cytogenetic abnormalities and their corresponding malignancies. In addition, functional studies of particular miRNAs have begun to define the effects of miRNA on predicted mRNA targets. It is clear that miRNAs can serve as molecular markers of leukemias and the hope is that they can also serve as new therapeutic targets. Studies are beginning to elucidate how to deliver therapeutic antagonists to attenuate overexpressed miRNAs and to replace underexpressed miRNAs. In this review, we: i) discuss the current understanding of miRNA function and expression in normal hematopoiesis, ii) provide examples of miRNAs that are misregulated in leukemias, and iii) evaluate the current status and potential future directions for the burgeoning field of antisense oligonucleotides and other therapeutic attempts to intervene in miRNA disregulation in leukemias. PMID:20370647

  8. MicroRNA-34a regulation of endothelial senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu, E-mail: munekazu_yamakuchi@urmc.rochester.edu

    2010-08-06

    Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelialmore » cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.« less

  9. RNA-binding protein GLD-1/quaking genetically interacts with the mir-35 and the let-7 miRNA pathways in Caenorhabditis elegans

    PubMed Central

    Akay, Alper; Craig, Ashley; Lehrbach, Nicolas; Larance, Mark; Pourkarimi, Ehsan; Wright, Jane E.; Lamond, Angus; Miska, Eric; Gartner, Anton

    2013-01-01

    Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance. Possible functions of GLD-1 during somatic development and the mechanism of how GLD-1 acts as a translational repressor are not known. Its human homologue, quaking (QKI), is essential for embryonic development. Here, we report that the RNA-binding protein GLD-1 in C. elegans affects multiple microRNA pathways and interacts with proteins required for microRNA function. Using genome-wide RNAi screening, we found that nhl-2 and vig-1, two known modulators of miRNA function, genetically interact with GLD-1. gld-1 mutations enhance multiple phenotypes conferred by mir-35 and let-7 family mutants during somatic development. We used stable isotope labelling with amino acids in cell culture to globally analyse the changes in the proteome conferred by let-7 and gld-1 during animal development. We identified the histone mRNA-binding protein CDL-1 to be, in part, responsible for the phenotypes observed in let-7 and gld-1 mutants. The link between GLD-1 and miRNA-mediated gene regulation is further supported by its biochemical interaction with ALG-1, CGH-1 and PAB-1, proteins implicated in miRNA regulation. Overall, we have uncovered genetic and biochemical interactions between GLD-1 and miRNA pathways. PMID:24258276

  10. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis

    PubMed Central

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3′ UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3′ UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders. PMID:23435502

  11. MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis.

    PubMed

    Zhao, Chunnian; Sun, GuoQiang; Ye, Peng; Li, Shengxiu; Shi, Yanhong

    2013-01-01

    MicroRNAs have important functions in the nervous system through post-transcriptional regulation of neurogenesis genes. Here we show that microRNA let-7d, which has been implicated in cocaine addiction and other neurological disorders, targets the neural stem cell regulator TLX. Overexpression of let-7d in vivo reduced neural stem cell proliferation and promoted premature neuronal differentiation and migration, a phenotype similar to those induced by TLX knockdown or overexpression of its negatively-regulated target, microRNA-9. We found a let-7d binding sequence in the tlx 3' UTR and demonstrated that let-7d reduced TLX expression levels in neural stem cells, which in turn, up-regulated miR-9 expression. Moreover, co-expression of let-7d and TLX lacking its 3' UTR in vivo restored neural stem cell proliferation and reversed the premature neuronal differentiation and migration. Therefore, manipulating let-7d and its downstream targets could be a novel strategy to unravel neurogenic signaling pathways and identify potential interventions for relevant neurological disorders.

  12. MicroRNAs: A Puzzling Tool in Cancer Diagnostics and Therapy.

    PubMed

    D'Angelo, Barbara; Benedetti, Elisabetta; Cimini, Annamaria; Giordano, Antonio

    2016-11-01

    MicroRNAs (miRNAs) constitute a dominating class of small RNAs that regulate diverse cellular functions. Due the pivotal role of miRNAs in biological processes, a deregulated miRNA expression is likely involved in human cancers. MicroRNAs possess tumor suppressor capability, as well as display oncogenic characteristics. Interestingly, miRNAs exist in various biological fluids as circulating entities. Changes in the profile of circulating miRNAs are indicative of pathophysiological conditions in human cancer. This concept has led to consider circulating miRNAs valid biomarkers in cancer diagnostics. Furthermore, current research promotes the use of miRNAs as a target in cancer therapy. However, miRNAs are an evolving research field. Although miRNAs have been demonstrated to be potentially valuable tools both in cancer diagnosis and treatment, a greater effort should be made to improve our understanding of miRNAs biology. This review describes the biology of microRNAs, emphasizing on the use of miRNAs in cancer diagnostics and therapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Impact of gastro-oesophageal reflux on microRNA expression, location and function

    PubMed Central

    2013-01-01

    Background Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Methods Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). Results miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Conclusions Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These miRNAs localised to the basal layer of the oesophageal epithelium. They reduced proliferation and increased apoptosis, and may play roles in regulating epithelial restoration in response to injury caused by gastro-oesophageal reflux. PMID:23297865

  14. Impact of gastro-oesophageal reflux on microRNA expression, location and function.

    PubMed

    Smith, Cameron M; Michael, Michael Z; Watson, David I; Tan, Grace; Astill, David St J; Hummel, Richard; Hussey, Damian J

    2013-01-08

    Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis) is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett's oesophagus. Barrett's oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett's oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett's oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A). miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Elevated miR-143, miR-145 and miR-205 expression was observed in oesophageal squamous mucosa of individuals with ulcerative oesophagitis. These miRNAs localised to the basal layer of the oesophageal epithelium. They reduced proliferation and increased apoptosis, and may play roles in regulating epithelial restoration in response to injury caused by gastro-oesophageal reflux.

  15. MicroRNA-206: Effective Inhibition of Gastric Cancer Progression through the c-Met Pathway

    PubMed Central

    Zheng, Zhiqiang; Yan, Dongsheng; Chen, Xiaoyan; Huang, He; Chen, Ke; Li, Guangjing; Zhou, Linglin; Zheng, Dandan; Tu, LiLi; Dong, Xiang Da

    2015-01-01

    MicroRNAs are endogenous short chain nucleotide RNAs that regulate gene function by direct binding of target mRNAs. In this study, we investigated the effects of microRNA-206 (miR-206) on the development of gastric cancer. miR-206 was first confirmed to be downregulated in gastric cancer specimens. Conversely, upregulation of c-Met was confirmed in tissue samples of human gastric cancer, with its level inversely correlated with miR-206 expression. Introduction of miR-206 inhibited cellular proliferation by inducing G1 cell cycle arrest, as well as migration and invasion. Moreover, important proliferation and/or migration related molecules such as c-Met, CDK4, p-Rb, p-Akt and p-ERK were confirmed to be downregulated by Western blot analysis. Targeting of c-Met also directly affected AGS cell proliferation, migration and invasion. In vivo, miR-206 expressing tumor cells also displayed growth delay in comparison to unaffected tumor cells. Our results demonstrated that miR-206 suppressed c-Met expression in gastric cancer and could function as a potent tumor suppressor in c-Met overexpressing tumors. Inhibition of miR-206 function could contribute to aberrant cell proliferation and migration, leading to gastric cancer development. PMID:26186594

  16. Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis1[W

    PubMed Central

    Ochando, Isabel; Jover-Gil, Sara; Ripoll, Juan José; Candela, Héctor; Vera, Antonio; Ponce, María Rosa; Martínez-Laborda, Antonio; Micol, José Luis

    2006-01-01

    Here, we describe how the semidominant, gain-of-function icu4-1 and icu4-2 alleles of the INCURVATA4 (ICU4) gene alter leaf phyllotaxis and cell organization in the root apical meristem, reduce root length, and cause xylem overgrowth in the stem. The ICU4 gene was positionally cloned and found to encode the ATHB15 transcription factor, a class III homeodomain/leucine zipper family member, recently named CORONA. The icu4-1 and icu4-2 alleles bear the same point mutation that affects the microRNA complementarity site of ICU4 and is identical to those of several semidominant alleles of the class III homeodomain/leucine zipper family members PHABULOSA and PHAVOLUTA. The icu4-1 and icu4-2 mutations significantly increase leaf transcript levels of the ICU4 gene. The null hst-1 allele of the HASTY gene, which encodes a nucleocytoplasmic transporter, synergistically interacts with icu4-1, the double mutant displaying partial adaxialization of rosette leaves and carpels. Our results suggest that the ICU4 gene has an adaxializing function and that it is down-regulated by microRNAs that require the HASTY protein for their biogenesis. PMID:16617092

  17. Exploration of low temperature microRNA function in an anoxia tolerant vertebrate ectotherm, the red eared slider turtle (Trachemys scripta elegans).

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2017-08-01

    As a model for vertebrate long-term survival in oxygen-restricted environments, the red-eared slider turtle (Trachemys scripta elegans) can adapt at the biochemical level to survive in oxygen-free (anoxic) cold water (<10°C). This impressive ability is enabled through a coordinated suppression of energy-expensive, non-essential, cell processes. This study explored the anoxia-responsive expression of several microRNA species (miR-1a, -133, -17, -107, -148a, -21, -103, -210, -20a, -365 and -29b) in adult turtles exposed to 5h and 20h anoxia (at 5±1°C). Furthermore, since microRNA target binding is regularly defined only by microRNA-mRNA interactions at 37°C, the possibility of unique low temperature-selective microRNA targeting interactions with mRNA was explored in this ectotherm. Approximately twice as many microRNA-mRNA interactions were predicted at 5°C versus 37°C with particular enrichment of mRNA targets involved in biological processes known to be part of the stress response. Hence, the results suggest that the influence of temperature should be considered for the prediction of microRNA targets (and their follow-up) in poikilothermic animals and that interacting effects of low body temperature and anoxia on microRNA expression could potentially be important to achieve the profound metabolic rate depression that characterizes turtle hibernation underwater during the winter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs.

    PubMed

    Yan, Xu; Wu, Hongjin; Ren, Jianxun; Liu, Yuna; Wang, Shengqi; Yang, Jiyuan; Qin, Shuyan; Wu, Delin

    2018-05-07

    Shenfu decoction consists of the water extract from the dried root or rootstalk of Panax ginseng C. A. Mey (Asian ginseng) and the lateral root of Aconitum carmichaeli Debx (Fuzi, Heishunpian in Chinese). Shenfu Formula has been used as a folk Chinese medicine for thousands of years. Recent studies have shown that Shenfu injection can enhance cardiac function and regulate arrhythmia. Shenfu Formula plays an important role in the treatment of heart failure. However, its microRNA-mediated mechanisms are still not fully understood. Thus, we established a heart failure model in rats to investigate the microRNA mechanism of Shenfu Formula in cardiac function and apoptosis. The heart failure animal model was established via left-anterior descending coronary artery ligation in rats. Seven days after surgery, Shenfu Formula was given to the heart failure rats, which were selected by echocardiography with an LVEF<45%. After Shenfu Formula was given intragastrically for 30 days, blood samples were drawn, the heart was excised after echocardiography, and echocardiographic parameters and apoptosis-related proteins were further examined. Fas/Fas-L and Bcl-2/Bax proteins were analyzed by Western blot, and microRNAs were evaluated using Affymetrix GeneChip miRNA arrays. Shenfu Formula increased the left ventricular ejection fraction, improved the hemodynamic index of heart failure rats, and decreased serum brain natriuretic peptide (BNP) levels. Shenfu Formula also decreased the positive rate of myocardial cells as detected by the TUNEL method and significantly suppressed caspase 3 expression. Moreover, we found that Shenfu formula can regulate the initiative factors Fas/Fas-L in the intrinsic pathway and Bcl-2/Bax in the extrinsic apoptosis pathway to suppress apoptosis in heart failure rats. Finally, Shenfu formula potentially alters the balance of microRNAs involved in activating and inhibiting apoptosis, ultimately suppressing apoptosis; this leads to changes in the gene expression profiles of microRNAs targets. Shenfu Granule can effectively improve cardiac function in heart failure rats, and the anti-apoptosis effects of Shenfu Formula are potential mechanisms for inhibiting heart failure. Copyright © 2018. Published by Elsevier B.V.

  19. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury.

    PubMed

    Ye, Yumei; Hu, Zhaoyong; Lin, Yu; Zhang, Congfang; Perez-Polo, Jose R

    2010-08-01

    MicroRNAs (miRNAs) regulate various cardiac processes including cell proliferation and apoptosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, protects against myocardial ischaemia-reperfusion (IR) injury. We assessed the effects of PPAR-gamma activation on myocardial miRNA levels and the role of miRNAs in IR injury. We evaluated the expression changes of miRNAs in the rat heart after PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-gamma inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition. Downregulation of miR-29 protected hearts against IR injury. The modulation of miRNAs can be achieved by pharmacological intervention. These findings provide a rationale for the development of miRNA-based strategies for the attenuation of IR injury.

  20. miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration

    PubMed Central

    Lewis, Holly; Lance, Raymond; Troyer, Dean; Beydoun, Hind; Hadley, Melissa; Orians, Joseph; Benzine, Tiffany; Madric, Kenya; Semmes, O John; Drake, Richard; Esquela-Kerscher, Aurora

    2014-01-01

    microRNAs (miRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer. PMID:24200968

  1. Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic.

    PubMed

    Chen, Hao; Jiang, Shan; Zheng, Jie; Lin, Yongjun

    2013-04-01

    The adoption of hybrid rice caused the second leap in rice yield after the 'green revolution' and contributes substantially to food security of China and the world. However, almost all cytoplasmic male sterile lines (A lines) as females of hybrid rice have a natural deficiency of 'panicle enclosure', which blocks pollination between the A line and the fertility restorer line as the male (R line) of hybrid rice and decreases seed yield. In hybrid rice seed production, exogenous '920' (the active ingredient is gibberellin A3 ) must be applied to eliminate or alleviate panicle enclosure of the A line; however, this not only increases production cost and pollutes the environment, it also decreases seed quality. In this study, we designed a transgenic approach to improve plant height and panicle exsertion of the A line to facilitate hybrid rice production and maintain the semi-dwarf plant type of the hybrid. This approach comprising two components-artificial microRNA (amiRNA) and artificial target mimicry-can manipulate the differential expression of the endogenous Eui1 gene that is associated with rice internode elongation in the A line and the hybrid. amiRNA is a recently developed gene silencing method with high specificity, while target mimicry is a natural mechanism inhibiting the miRNA function that was also recently characterized. This approach provides a paradigm to tune the expression of endogenous genes to achieve the desired phenotype by combining amiRNA and artificial target mimicry technologies. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation.

    PubMed

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S; Abboud, Hanna E; Choudhury, Goutam Ghosh

    2013-12-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cell proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. © 2013.

  3. NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation

    PubMed Central

    Bera, Amit; Ghosh-Choudhury, Nandini; Dey, Nirmalya; Das, Falguni; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2013-01-01

    MicroRNAs regulate post-transcriptomic landscape in many tumors including renal cell carcinoma. We have recently shown significantly increased expression of miR-21 in renal tumors and that this miRNA contributes to the proliferation of renal cancer cells in culture. However, the mechanism by which miR-21 regulates renal cancer cells proliferation is poorly understood. Addiction to constitutive NFκB activity is hallmark of many cancers including renal cancer. Using miR-21 Sponge in renal cancer cells to block endogenous function of miR-21, we show inhibition of phosphorylation of p65 subunit of NFκB, IKKβ and IκB, which results in attenuation of NFκB transcriptional activity. Subtle reduction in the tumor suppressor PTEN has been linked to various malignancies. We showed previously that miR-21 targeted PTEN in renal cancer cells. Inhibition of PTEN by siRNAs restored miR-21 Sponge-induced suppression of phosphorylation of p65, IKKβ, IκB and NFκB transcriptional activity along with reversal of miR-21 Sponge-reduced phosphorylation of Akt. Expression of constitutively active Akt protected against miR-21 Sponge- and PTEN-mediated decrease in p65/IKKβ/IκB phosphorylation and NFκB transcriptional activity. Furthermore, IKKβ and p65 were required for miR-21-induced renal cancer cell proliferation. Interestingly, miR-21 controlled the expression of cyclin D1 through NFκB-dependent transcription. Finally, we demonstrate that miR-21-regulated renal cancer cell proliferation is mediated by cyclin D1 and CDK4. Together, our results establish a molecular order of a phosphatase-kinase couple involving PTEN/Akt/IKKβ and NFκB-dependent cyclin D1 expression for renal carcinoma cell proliferation by increased miR-21 levels. PMID:23981302

  4. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins.

    PubMed

    Yin, Mianmian; Wang, Xiaorong; Yao, Guidong; Lü, Mingrong; Liang, Meng; Sun, Yingpu; Sun, Fei

    2014-06-27

    Our previous studies have shown that microRNA-320 (miR-320) is one of the most down-regulated microRNAs (miRNA) in mouse ovarian granulosa cells (GCs) after TGF-β1 treatment. However, the underlying mechanisms of miR-320 involved in GC function during follicular development remain unknown. In this study, we found that pregnant mare serum gonadotropin treatment resulted in the suppression of miR-320 expression in a time-dependent manner. miR-320 was mainly expressed in GCs and oocytes of mouse ovarian follicles in follicular development. Overexpression of miR-320 inhibited estradiol synthesis and proliferation of GCs through targeting E2F1 and SF-1. E2F1/SF-1 mediated miR-320-induced suppression of GC proliferation and of GC steroidogenesis. FSH down-regulated the expression of miR-320 and regulated the function of miR-320 in mouse GCs. miR-383 promoted the expression of miR-320 and enhanced miR-320-mediated suppression of GC proliferation. Injection of miR-320 into the ovaries of mice partially promoted the production of testosterone and progesterone but inhibited estradiol release in vivo. Moreover, the expression of miR-320 and miR-383 was up-regulated in the follicular fluid of polycystic ovarian syndrome patients, although the expression of E2F1 and SF-1 was down-regulated in GCs. These data demonstrated that miR-320 regulates the proliferation and steroid production by targeting E2F1 and SF-1 in the follicular development. Understanding the regulation of miRNA biogenesis and function in the follicular development will potentiate the usefulness of miRNA in the treatment of reproduction and some steroid-related disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Functions of MicroRNAs in Cardiovascular Biology and Disease

    PubMed Central

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  6. Passenger strand loading in overexpression experiments using microRNA mimics.

    PubMed

    Søkilde, Rolf; Newie, Inga; Persson, Helena; Borg, Åke; Rovira, Carlos

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene function and manipulation of miRNAs is a central component of basic research. Modulation of gene expression by miRNA gain-of-function can be based on different approaches including transfection with miRNA mimics; artificial, chemically modified miRNA-like small RNAs. These molecules are intended to mimic the function of a miRNA guide strand while bypassing the maturation steps of endogenous miRNAs. Due to easy accessibility through commercial providers this approach has gained popularity, and accuracy is often assumed without prior independent testing. Our in silico analysis of over-represented sequence motifs in microarray expression data and sequencing of AGO-associated small RNAs indicate, however, that miRNA mimics may be associated with considerable side-effects due to the unwanted activity of the miRNA mimic complementary strand.

  7. The interplay of microRNA and neuronal activity in health and disease

    PubMed Central

    Eacker, Stephen M.; Dawson, Ted M.; Dawson, Valina L.

    2013-01-01

    MicroRNAs (miRNAs) are small 19–23 nucleotide regulatory RNAs that function by modulating mRNA translation and/or turnover in a sequence-specific fashion. In the nervous system, miRNAs regulate the production of numerous proteins involved in synaptic transmission. In turn, neuronal activity can regulate the production and turnover of miRNA through a variety of mechanisms. In this way, miRNAs and neuronal activity are in a reciprocal homeostatic relationship that balances neuronal function. The miRNA function is critical in pathological states related to overexcitation such as epilepsy and stroke, suggesting miRNA’s potential as a therapeutic target. We review the current literature relating the interplay of miRNA and neuronal activity and provide future directions for defining miRNA’s role in disease. PMID:23986658

  8. The long non-coding RNA MALAT1 promotes the migration and invasion of hepatocellular carcinoma by sponging miR-204 and releasing SIRT1.

    PubMed

    Hou, Zhouhua; Xu, Xuwen; Zhou, Ledu; Fu, Xiaoyu; Tao, Shuhui; Zhou, Jiebin; Tan, Deming; Liu, Shuiping

    2017-07-01

    Increasing evidence supports the significance of long non-coding RNA in cancer development. Several recent studies suggest the oncogenic activity of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in hepatocellular carcinoma. In this study, we explored the molecular mechanisms by which MALAT1 modulates hepatocellular carcinoma biological behaviors. We found that microRNA-204 was significantly downregulated in sh-MALAT1 HepG2 cell and 15 hepatocellular carcinoma tissues by quantitative real-time polymerase chain reaction analysis. Through bioinformatic screening, luciferase reporter assay, RNA-binding protein immunoprecipitation, and RNA pull-down assay, we identified microRNA-204 as a potential interacting partner for MALAT1. Functionally, wound-healing and transwell assays revealed that microRNA-204 significantly inhibited the migration and invasion of hepatocellular carcinoma cells. Notably, sirtuin 1 was recognized as a direct downstream target of microRNA-204 in HepG2 cells. Moreover, si-SIRT1 significantly inhibited cell invasion and migration process. These data elucidated, by sponging and competitive binding to microRNA-204, MALAT1 releases the suppression on sirtuin 1, which in turn promotes hepatocellular carcinoma migration and invasion. This study reveals a novel mechanism by which MALAT1 stimulates hepatocellular carcinoma progression and justifies targeting metastasis-associated lung adenocarcinoma transcript 1 as a potential therapy for hepatocellular carcinoma.

  9. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  10. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    PubMed Central

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819

  11. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation

    PubMed Central

    Wang, Xiaoqin; Omar, Omar; Vazirisani, Forugh; Thomsen, Peter

    2018-01-01

    Human mesenchymal stem cell (hMSC)-derived exosomes have shown regenerative effects, but their role in osteogenesis and the underlying mechanism are yet to be determined. In this study, we examined the time-course secretion of exosomes by hMSCs during the entire process of osteogenic differentiation. Exosomes derived from hMSCs in various stages of osteogenic differentiation committed homotypic cells to differentiate towards osteogenic lineage, but only exosomes from late stages of osteogenic differentiation induced extracellular matrix mineralisation. Exosomes from expansion and early and late stages of osteogenic differentiation were internalised by a subpopulation of hMSCs. MicroRNA profiling revealed a set of differentially expressed exosomal microRNAs from the late stage of osteogenic differentiation, which were osteogenesis related. Target prediction demonstrated that these microRNAs enriched pathways involved in regulation of osteogenic differentiation and general mechanisms how exosomes exert their functions, such as “Wnt signalling pathway” and “endocytosis”. Taken together, the results show that MSCs secrete exosomes with different biological properties depending on differentiation stage of their parent cells. The exosomal cargo transferred from MSCs in the late stage of differentiation induces osteogenic differentiation and mineralisation. Moreover, it is suggested that the regulatory effect on osteogenesis by exosomes is at least partly exerted by exosomal microRNA. PMID:29447276

  12. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.

    PubMed

    Liu, Minmin; Yu, Huiyang; Zhao, Gangjun; Huang, Qiufeng; Lu, Yongen; Ouyang, Bo

    2017-06-26

    Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H 2 O 2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.

  13. Evolution of coding and non-coding genes in HOX clusters of a marsupial.

    PubMed

    Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B

    2012-06-18

    The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  14. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    PubMed Central

    2012-01-01

    Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672

  15. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites.

    PubMed

    Betel, Doron; Koppal, Anjali; Agius, Phaedra; Sander, Chris; Leslie, Christina

    2010-01-01

    mirSVR is a new machine learning method for ranking microRNA target sites by a down-regulation score. The algorithm trains a regression model on sequence and contextual features extracted from miRanda-predicted target sites. In a large-scale evaluation, miRanda-mirSVR is competitive with other target prediction methods in identifying target genes and predicting the extent of their downregulation at the mRNA or protein levels. Importantly, the method identifies a significant number of experimentally determined non-canonical and non-conserved sites.

  16. DIANA-microT web server: elucidating microRNA functions through target prediction.

    PubMed

    Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G

    2009-07-01

    Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.

  17. The microRNA Expression Profile in Donation after Cardiac Death (DCD) Livers and Its Ability to Identify Primary Non Function.

    PubMed

    Khorsandi, Shirin Elizabeth; Quaglia, Alberto; Salehi, Siamak; Jassem, Wayel; Vilca-Melendez, Hector; Prachalias, Andreas; Srinivasan, Parthi; Heaton, Nigel

    2015-01-01

    Donation after cardiac death (DCD) livers are marginal organs for transplant and their use is associated with a higher risk of primary non function (PNF) or early graft dysfunction (EGD). The aim was to determine if microRNA (miRNA) was able to discriminate between DCD livers of varying clinical outcome. DCD groups were categorized as PNF retransplanted within a week (n=7), good functional outcome (n=7) peak aspartate transaminase (AST) ≤ 1000 IU/L and EGD (n=9) peak AST ≥ 2500 IU/L. miRNA was extracted from archival formalin fixed post-perfusion tru-cut liver biopsies. High throughput expression analysis was performed using miRNA arrays. Bioinformatics for expression data analysis was performed and validated with real time quantitative PCR (RT-qPCR). The function of miRNA of interest was investigated using computational biology prediction algorithms. From the array analysis 16 miRNAs were identified as significantly different (p<0.05). On RT-qPCR miR-155 and miR-940 had the highest expression across all three DCD clinical groups. Only one miRNA, miR-22, was validated with marginal significance, to have differential expression between the three groups (p=0.049). From computational biology miR-22 was predicted to affect signalling pathways that impact protein turnover, metabolism and apoptosis/cell cycle. In conclusion, microRNA expression patterns have a low diagnostic potential clinically in discriminating DCD liver quality and outcome.

  18. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.

    PubMed

    Tay, Felix Chang; Lim, Jia Kai; Zhu, Haibao; Hin, Lau Cia; Wang, Shu

    2015-01-01

    Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Integrative analysis of micro-RNA, gene expression, and survival of glioblastoma multiforme.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Kelsey, Karl T; Lin, Chien-Ling

    2015-02-01

    Glioblastoma multiforme (GBM), the most common type of malignant brain tumor, is highly fatal. Limited understanding of its rapid progression necessitates additional approaches that integrate what is known about the genomics of this cancer. Using a discovery set (n = 348) and a validation set (n = 174) of GBM patients, we performed genome-wide analyses that integrated mRNA and micro-RNA expression data from GBM as well as associated survival information, assessing coordinated variability in each as this reflects their known mechanistic functions. Cox proportional hazards models were used for the survival analyses, and nonparametric permutation tests were performed for the micro-RNAs to investigate the association between the number of associated genes and its prognostication. We also utilized mediation analyses for micro-RNA-gene pairs to identify their mediation effects. Genome-wide analyses revealed a novel pattern: micro-RNAs related to more gene expressions are more likely to be associated with GBM survival (P = 4.8 × 10(-5)). Genome-wide mediation analyses for the 32,660 micro-RNA-gene pairs with strong association (false discovery rate [FDR] < 0.01%) identified 51 validated pairs with significant mediation effect. Of the 51 pairs, miR-223 had 16 mediation genes. These 16 mediation genes of miR-223 were also highly associated with various other micro-RNAs and mediated their prognostic effects as well. We further constructed a gene signature using the 16 genes, which was highly associated with GBM survival in both the discovery and validation sets (P = 9.8 × 10(-6)). This comprehensive study discovered mediation effects of micro-RNA to gene expression and GBM survival and provided a new analytic framework for integrative genomics. © 2014 WILEY PERIODICALS, INC.

  20. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa

    PubMed Central

    Morin, Ryan D.; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H. Alexander; Magrini, Vincent; Mardis, Elaine R.; Sahinalp, S. Cenk; Unrau, Peter J.

    2008-01-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21- and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/. PMID:18323537

  1. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors

    PubMed Central

    Cruz, F M; Tomé, M; Bernal, J A; Bernad, A

    2015-01-01

    B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal. PMID:26512961

  2. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer.

    PubMed

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-09-26

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  3. The microRNA miR-1 regulates a MEF-2 dependent retrograde signal at neuromuscular junctions

    PubMed Central

    Simon, David J.; Madison, Jon M.; Conery, Annie L.; Thompson-Peer, Katherine L.; Soskis, Michael; Ruvkun, Gary B.; Kaplan, Joshua M.; Kim, John K.

    2008-01-01

    Summary We show that miR-1, a conserved muscle specific microRNA, regulates aspects of both pre- and post-synaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered pre-synaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses, and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in pre-synaptic function. PMID:18510933

  4. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility.

    PubMed

    Liu, Hao; Chen, Wei; Zhi, Xiao; Chen, En-Jiang; Wei, Tao; Zhang, Jian; Shen, Jian; Hu, Li-Qiang; Zhao, Bin; Feng, Xin-Hua; Bai, Xue-Li; Liang, Ting-Bo

    2018-05-22

    Tumor self-seeding occurs when circulating malignant cells reinfiltrate the original tumor. The process may breed more aggressive tumor cells, which may contribute to cancer progression. In this study, we observed tumor self-seeding in mouse xenograft models of hepatocellular carcinoma (HCC) for the first time. We confirmed that circulating tumor cell uptake of tumor-derived exosomes, which are increasingly recognized as key instigators of cancer progression by facilitating cell-cell communication, promoted tumor self-seeding by enhancing the invasive and migration capability of recipient HCC cells. Horizontal transfer of exosomal microRNA-25-5p to anoikis-resistant HCC cells significantly enhanced their migratory and invasive abilities, whereas inhibiting microRNA-25-5p alleviated these effects. Our experiments delineate an exosome-based novel pathway employed by functional microRNA from the original tumor cells that can influence the biological fate of circulating tumor cells.

  5. Stimuli-Responsive Nano-Carrier for Co-delivery of MiR-31 and Doxorubicin to Suppress High MtEF4 Cancer.

    PubMed

    Wang, Fang; Zhang, Lingyun; Bai, Xiufeng; Cao, Xintao; Jiao, Xiangyu; Huang, Yan; Li, Yansheng; Qin, Yan; Wen, Yongqiang

    2018-06-13

    Gene interference-based therapeutics represents a fascinating challenge and shows enormous potential for cancer treatment, in which microRNA is used to correct abnormal gene. Based on the above, we introduced microRNA-31 to bind to 3' untranslated region of mtEF4, resulting in the downregulation of its messenger RNA and protein to trigger cancer cells apoptosis through mitochondria-related pathway. To achieve better therapeutic effect, a mesoporous silica nanoparticles-based controlled nanoplatform had been developed. This system was fabricated by conjugation of microRNA-31 onto doxorubicin-loaded mesoporous silica nanoparticles with a PEI/HA coating, and drug release was triggered by acidic environment of tumors. By feat of surface functionalization and tumor-specific conjugation to nanoparticles, our drug delivery system could promote intracellular accumulation of drugs via the active transport at tumor site. More importantly, microRNA-31 not only directly targeted to mtEF4 to promote cells death, but had synergistic effects when used in combination with doxorubicin, and achieved excellent superadditive effects. As such, our research might provide new insights towards detecting high mtEF4 cancer and exploiting highly effective anticancer drugs.

  6. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  7. Role of Extracellular Vesicles and microRNAs on Dysfunctional Angiogenesis during Preeclamptic Pregnancies.

    PubMed

    Escudero, Carlos A; Herlitz, Kurt; Troncoso, Felipe; Acurio, Jesenia; Aguayo, Claudio; Roberts, James M; Truong, Grace; Duncombe, Gregory; Rice, Gregory; Salomon, Carlos

    2016-01-01

    Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.

  8. Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration.

    PubMed

    Hu, Bo; Xu, Chen; Tian, Ye; Shi, Changgui; Zhang, Ying; Deng, Lianfu; Zhou, Hongyu; Cao, Peng; Chen, Huajiang; Yuan, Wen

    2017-07-25

    Intervertebral disc degeneration (IDD) is characterized by dehydration and loss of extracellular matrixes in the nucleus pulposus region. Chondroitin sulfate has been found to be the water-binding molecule that played a key role in IDD. Although investigators have reported that inflammatory cytokines are involved in the reduction of chondroitin sulfate in IDD, but the underlying mechanism is unrevealed. Since chondroitin sulfate synthesis is controlled by chondroitin sulfate glycosyltransferases CHSY-1/2/3 and CSGALNACT-1/2, their functional role and regulatory mechanism in IDD is not fully studied. Here, we set out to investigate the function and regulatory roles of these factors during IDD development. We found that among these chondroitin sulfate glycosyltransferases, CHSY-1/2/3 are significantly down-regulated in severe IDD samples than mild IDD samples. In vitro experiments revealed that Interleukin-1β and Tumor Necrosis Factor-α stimulation led to significant reduction of CHSY-1/2/3 at protein level than mRNA level in NP cells, indicating a post-transcriptional regulatory mechanisms are involved. By computational prediction and analysis, we found that inflammatory cytokines stimulated microRNA-194 and -515 target CHSY-1/2/3 mRNA and significantly interrupt their translation and downstream chondroitin sulfate deposition. Inhibition of microRNA-194 and -515 however, significantly rescued CHSY-1/2/3 expressions and chondroitin sulfate deposition. These findings together demonstrated a vital role of inflammatory stimulated microRNAs in promoting intervertebral disc degeneration by interrupt chondroitin sulfate synthesis, which may provide new insights into the mechanism and therapeutic approaches in IDD.

  9. Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans

    PubMed Central

    Chan, Shih-Peng; Slack, Frank J.

    2009-01-01

    The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3′UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs. PMID:19627982

  10. MicroRNA signature of the human developing pancreas.

    PubMed

    Rosero, Samuel; Bravo-Egana, Valia; Jiang, Zhijie; Khuri, Sawsan; Tsinoremas, Nicholas; Klein, Dagmar; Sabates, Eduardo; Correa-Medina, Mayrin; Ricordi, Camillo; Domínguez-Bendala, Juan; Diez, Juan; Pastori, Ricardo L

    2010-09-22

    MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase algorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas.

  11. MicroRNA signature of the human developing pancreas

    PubMed Central

    2010-01-01

    Background MicroRNAs are non-coding RNAs that regulate gene expression including differentiation and development by either inhibiting translation or inducing target degradation. The aim of this study is to determine the microRNA expression signature during human pancreatic development and to identify potential microRNA gene targets calculating correlations between the signature microRNAs and their corresponding mRNA targets, predicted by bioinformatics, in genome-wide RNA microarray study. Results The microRNA signature of human fetal pancreatic samples 10-22 weeks of gestational age (wga), was obtained by PCR-based high throughput screening with Taqman Low Density Arrays. This method led to identification of 212 microRNAs. The microRNAs were classified in 3 groups: Group number I contains 4 microRNAs with the increasing profile; II, 35 microRNAs with decreasing profile and III with 173 microRNAs, which remain unchanged. We calculated Pearson correlations between the expression profile of microRNAs and target mRNAs, predicted by TargetScan 5.1 and miRBase altgorithms, using genome-wide mRNA expression data. Group I correlated with the decreasing expression of 142 target mRNAs and Group II with the increasing expression of 876 target mRNAs. Most microRNAs correlate with multiple targets, just as mRNAs are targeted by multiple microRNAs. Among the identified targets are the genes and transcription factors known to play an essential role in pancreatic development. Conclusions We have determined specific groups of microRNAs in human fetal pancreas that change the degree of their expression throughout the development. A negative correlative analysis suggests an intertwined network of microRNAs and mRNAs collaborating with each other. This study provides information leading to potential two-way level of combinatorial control regulating gene expression through microRNAs targeting multiple mRNAs and, conversely, target mRNAs regulated in parallel by other microRNAs as well. This study may further the understanding of gene expression regulation in the human developing pancreas. PMID:20860821

  12. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759

  13. miRBase: integrating microRNA annotation and deep-sequencing data.

    PubMed

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  14. SeedVicious: Analysis of microRNA target and near-target sites.

    PubMed

    Marco, Antonio

    2018-01-01

    Here I describe seedVicious, a versatile microRNA target site prediction software that can be easily fitted into annotation pipelines and run over custom datasets. SeedVicious finds microRNA canonical sites plus other, less efficient, target sites. Among other novel features, seedVicious can compute evolutionary gains/losses of target sites using maximum parsimony, and also detect near-target sites, which have one nucleotide different from a canonical site. Near-target sites are important to study population variation in microRNA regulation. Some analyses suggest that near-target sites may also be functional sites, although there is no conclusive evidence for that, and they may actually be target alleles segregating in a population. SeedVicious does not aim to outperform but to complement existing microRNA prediction tools. For instance, the precision of TargetScan is almost doubled (from 11% to ~20%) when we filter predictions by the distance between target sites using this program. Interestingly, two adjacent canonical target sites are more likely to be present in bona fide target transcripts than pairs of target sites at slightly longer distances. The software is written in Perl and runs on 64-bit Unix computers (Linux and MacOS X). Users with no computing experience can also run the program in a dedicated web-server by uploading custom data, or browse pre-computed predictions. SeedVicious and its associated web-server and database (SeedBank) are distributed under the GPL/GNU license.

  15. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping; Mao, Haian; Chen, Jin-yuan

    2013-02-15

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) asmore » a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs.« less

  16. An intronic microRNA silences genes that are functionally antagonistic to its host gene.

    PubMed

    Barik, Sailen

    2008-09-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.

  17. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions

    PubMed Central

    Shukla, Girish C.; Singh, Jagjit; Barik, Sailen

    2012-01-01

    The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia. PMID:22468167

  18. MicroRNA-derived network analysis of differentially methylated genes in schizophrenia, implicating GABA receptor B1 [GABBR1] and protein kinase B [AKT1].

    PubMed

    Gumerov, Vadim; Hegyi, Hedi

    2015-10-08

    While hundreds of genes have been implicated already in the etiology of schizophrenia, the exact cause is not known or the disease is considered multigenic in origin. Recent discoveries of new types of RNAs and the gradual elimination of the "junk DNA" hypothesis refocused the attention on the noncoding part of the human genome. Here we re-analyzed a recent dataset of differentially methylated genes from schizophrenic patients and cross-tabulated them with cis regulatory and repetitive elements and microRNAs known to be involved in schizophrenia. We found that the number of schizophrenia-related (SZ) microRNA targets follows a scale-free distribution with several microRNA hubs and that schizophrenia-related microRNAs with shared targets form a small-world network. The top ten microRNAs with the highest number of SZ gene targets regulate approximately 80 % of all microRNA-regulated genes whereas the top two microRNAs regulate 40-52 % of all such genes. We also found that genes that are regulated by the same microRNAs tend to have more protein-protein interactions than randomly selected schizophrenia genes. This highlights the role microRNAs possibly play in coordinating the abundance of interacting proteins, an important function that has not been sufficiently explored before. The analysis revealed that GABBR1 is regulated by both of the top two microRNAs and acts as a hub by interacting with many schizophrenia-related genes and sharing several types of transcription-binding sites with its interactors. We also found that differentially methylated repetitive elements are significantly more methylated in schizophrenia, pointing out their potential role in the disease. We find that GABBR1 has a central importance in schizophrenia, even if no direct cause and effect have been shown for it for the time. In addition to being a hub in microRNA-derived regulatory pathways and protein-protein interactions, its centrality is also supported by the high number of cis regulatory elements and transcription factor-binding sites that regulate its transcription. These findings are in line with several genome-wide association studies that repeatedly find the major histocompatibility region (where GABBR1 is located) to have the highest number of single nucleotide polymorphisms in schizophrenics. Our model also offers an explanation for the downregulation of protein kinase B, another consistent finding in schizophrenic patients. Our observations support the notion that microRNAs fine-tune the amount of proteins acting in the same biological pathways in schizophrenia, giving further support to the emerging theory of competing endogenous RNAs.

  19. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; He, Xijing; Wei, Wenzhi

    Osteoblast differentiation is a vital process in maintaining bone homeostasis in which various transcriptional factors, signaling molecules, and microRNAs (miRNAs) are involved. Recently, signal transducer and activator of transcription 1 (STAT1) has been found to play an important role in regulating osteoblast differentiation. Here, we identified that STAT1 expression was regulated by miR-194. Using mouse bone mesenchymal stem cells (BMSCs), we found that miR-194 expression was significantly increased following osteoblast differentiation induction. Overexpression of miR-194 by lentivirus-mediated gene transfer markedly increased osteoblast differentiation, whereas inhibition of miR-194 significantly suppressed osteoblast differentiation of BMSCs. Using a dual-luciferase reporter assay, a directmore » interaction between miR-194 and the 3′-untranslated region (UTR) of STAT1 was confirmed. Additionally, miR-194 regulated mRNA and protein expression of STAT1 in BMSCs. Further analysis showed that miR-194 overexpression promoted the nuclear translocation of runt-related transcription factor 2 (Runx2), which is critical for osteoblast differentiation. In contrast, inhibition of miR-194 blocked the nuclear translocation of Runx2. Moreover, overexpression of STAT1 significantly blocked Runx2 nuclear translocation and osteoblast differentiation mediated by miR-194 overexpression. Taken together, our data suggest that miR-194 regulates osteoblast differentiation through modulating STAT1-mediated Runx2 nuclear translocation. - Highlights: • Overexpression of miR-194 significantly increased osteoblast differentiation. • miR-194 directly targeted the 3′- UTR of STAT1. • miR-194 regulated the expression of STAT1. • Overexpression of miR-194 promoted the nuclear translocation of Runx2.« less

  20. MicroRNAs associated with exercise and diet: a systematic review.

    PubMed

    Flowers, Elena; Won, Gloria Y; Fukuoka, Yoshimi

    2015-01-01

    MicroRNAs are posttranscriptional regulators of gene expression. MicroRNAs reflect individual biologic adaptation to exposures in the environment. As such, measurement of circulating microRNAs presents an opportunity to evaluate biologic changes associated with behavioral interventions (i.e., exercise, diet) for weight loss. The aim of this study was to perform a systematic review of the literature to summarize what is known about circulating microRNAs associated with exercise, diet, and weight loss. We performed a systematic review of three scientific databases. We included studies reporting on circulating microRNAs associated with exercise, diet, and weight loss in humans. Of 1,219 studies identified in our comprehensive database search, 14 were selected for inclusion. Twelve reported on microRNAs associated with exercise, and two reported on microRNAs associated with diet and weight loss. The majority of studies used a quasiexperimental, cross-sectional design. There were numerous differences in the type and intensity of exercise and dietary interventions, the biologic source of microRNAs, and the methodological approaches used quantitate microRNAs. Data from several studies support an association between circulating microRNAs and exercise. The evidence for an association between circulating microRNAs and diet is weaker because of a small number of studies. Additional research is needed to validate previous observations using methodologically rigorous approaches to microRNA quantitation to determine the specific circulating microRNA signatures associated with behavioral approaches to weight loss. Future directions include longitudinal studies to determine if circulating microRNAs are predictive of response to behavioral interventions. Copyright © 2015 the American Physiological Society.

  1. MicroRNAs meet calcium: joint venture in ER proteostasis.

    PubMed

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  2. MicroRNAs are important regulators of drug resistance in colorectal cancer

    PubMed Central

    Zhang, Yang; Wang, Jing

    2018-01-01

    Despite of continuous development of cancer treatment over the past decades, drug resistance is still one of the major hurdles of effective therapy for advanced colorectal cancer (CRC) worldwide and the understanding of its underlying mechanisms remains limited. Emerged data suggests that many microRNAs (miRNAs) may contribute to drug resistance in CRC. Major findings on miRNA functions in drug resistance of CRC are systemically reviewed here, with the goal of providing new updates to broaden our comprehension of its mechanisms and evidence to utilize miRNAs as potential therapeutic targets for CRC treatment. PMID:28095367

  3. [Significance of Hypoxia-related microRNA for Estimating the Cause of Mechanical Asphyxia Death].

    PubMed

    Zeng, Y; Ma, J L; Chen, L

    2017-02-01

    Under hypoxia condition, microRNA (miRNA) can interact with transcription factors for regulating the cell metabolism, angiogenesis, erythropoiesis, cellular proliferation, differentiation and apoptosis. The biological processes above may play an important role in mechanical asphyxia death. This article reviews the regulating function of miRNA under hypoxia condition and the influence of hypoxia to biosynthesis of miRNA, which may provide some new ideas to the research of miRNA on determining the cause of mechanical asphyxia death in the field of forensic medicine. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  4. MicroRNAs in cancer therapeutics: "from the bench to the bedside".

    PubMed

    Monroig-Bosque, Paloma del C; Rivera, Carlos A; Calin, George A

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNA transcripts that regulate physiological processes by targeting proteins directly. Their involvement in research has been robust, and evidence of their regulative functions has granted them the title: master regulators of the human genome. In cancer, they are considered important therapeutic agents, due to the fact that their aberrant expression contributes to disease development, progression, metastasis, therapeutic response and patient overall survival. This has endeavored fields of biomedical sciences to invest in developing and exploiting miRNA-based therapeutics thoroughly. Herein we highlight relevant ongoing/open clinical trials involving miRNAs and cancer.

  5. microRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis.

    PubMed

    Busch, Martin; Zernecke, Alma

    2012-08-01

    Atherosclerosis has been established as a chronic inflammatory disease of the vessel wall. Among the mononuclear cell types recruited to the lesions, specialized dendritic cells (DCs) have gained increasing attention, and their secretory products and interactions shape the progression of atherosclerotic plaques. The regulation of DC functions by microRNAs (miRNAs) may thus be of primary importance in disease. We here systematically summarize the biogenesis and functions of miRNAs and provide an overview of miRNAs in DCs, their targets, and potential implications for atherosclerosis, with a particular focus on the best characterized miRNAs in DCs, namely, miR-155 and miR-146. MiRNA functions in DCs range from regulation of lipid uptake to cytokine production and T cell responses with a complex picture emerging, in which miRNAs cooperate or antagonize DC behavior, thereby promoting or counterbalancing inflammatory responses. As miRNAs regulate key functions of DCs known to control atherosclerotic vascular disease, their potential as a therapeutic target holds promise and should be attended to in future research.

  6. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.

    PubMed

    Heishima, Kazuki; Mori, Takashi; Sakai, Hiroki; Sugito, Nobuhiko; Murakami, Mami; Yamada, Nami; Akao, Yukihiro; Maruo, Kohji

    2015-01-01

    MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.

  7. Microprocessor Recruitment to Elongating RNA Polymerase II Is Required for Differential Expression of MicroRNAs.

    PubMed

    Church, Victoria A; Pressman, Sigal; Isaji, Mamiko; Truscott, Mary; Cizmecioglu, Nihal Terzi; Buratowski, Stephen; Frolov, Maxim V; Carthew, Richard W

    2017-09-26

    The cellular abundance of mature microRNAs (miRNAs) is dictated by the efficiency of nuclear processing of primary miRNA transcripts (pri-miRNAs) into pre-miRNA intermediates. The Microprocessor complex of Drosha and DGCR8 carries this out, but it has been unclear what controls Microprocessor's differential processing of various pri-miRNAs. Here, we show that Drosophila DGCR8 (Pasha) directly associates with the C-terminal domain of the RNA polymerase II elongation complex when it is phosphorylated by the Cdk9 kinase (pTEFb). When association is blocked by loss of Cdk9 activity, a global change in pri-miRNA processing is detected. Processing of pri-miRNAs with a UGU sequence motif in their apical junction domain increases, while processing of pri-miRNAs lacking this motif decreases. Therefore, phosphorylation of RNA polymerase II recruits Microprocessor for co-transcriptional processing of non-UGU pri-miRNAs that would otherwise be poorly processed. In contrast, UGU-positive pri-miRNAs are robustly processed by Microprocessor independent of RNA polymerase association. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain.

    PubMed

    Hopp, Sarah C; Bihlmeyer, Nathan A; Corradi, John P; Vanderburg, Charles; Cacace, Angela M; Das, Sudeshna; Clark, Timothy W; Betensky, Rebecca A; Hyman, Bradley T; Hudry, Eloise

    2018-05-28

    Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN overexpression on neuronal gene expression in vivo. We found dramatic transcriptional downregulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells (NFAT) and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to downregulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy.

    PubMed

    Mironova, Nadezhda; Patutina, Olga; Brenner, Evgenyi; Kurilshikov, Alexander; Vlassov, Valentin; Zenkova, Marina

    2013-01-01

    Novel data showing an important role of microRNAs in mediating tumour progression opened a new field of possible molecular targets for cytotoxic ribonucleases. Recently, antitumour and antimetastatic activities of pancreatic ribonuclease A were demonstrated and here genome-wide profiles of microRNAs in the tumour and blood of mice bearing Lewis lung carcinoma after treatment with RNase A were analysed by high-throughput Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) sequencing technology. Sequencing data showed that RNase A therapy resulted in the boost of 116 microRNAs in tumour tissue and a significant drop of 137 microRNAs in the bloodstream that were confirmed by qPCR. The microRNA boost in the tumour was accompanied by the overexpression of microRNA processing genes: RNASEN (Drosha), xpo5, dicer1, and eif2c2 (Ago2). Ribonuclease activity of RNase A was shown to be crucial for the activation of both microRNA synthesis and expression of the microRNA processing genes. In the tumour tissue, RNase A caused the upregulation of both oncomirs and tumour-suppressor microRNAs, including microRNAs of the let-7 family, known to negatively regulate tumour progression. Our results suggest that the alteration of microRNA signature caused by RNase A treatment leads to the attenuation of tumour malignancy.

  10. MicroRNAs Are Mediators of Androgen Action in Prostate and Muscle

    PubMed Central

    Narayanan, Ramesh; Jiang, Jinmai; Gusev, Yuriy; Jones, Amanda; Kearbey, Jeffrey D.; Miller, Duane D.; Schmittgen, Thomas D.; Dalton, James T.

    2010-01-01

    Androgen receptor (AR) function is critical for the development of male reproductive organs, muscle, bone and other tissues. Functionally impaired AR results in androgen insensitivity syndrome (AIS). The interaction between AR and microRNA (miR) signaling pathways was examined to understand the role of miRs in AR function. Reduction of androgen levels in Sprague-Dawley rats by castration inhibited the expression of a large set of miRs in prostate and muscle, which was reversed by treatment of castrated rats with 3 mg/day dihydrotestosterone (DHT) or selective androgen receptor modulators. Knockout of the miR processing enzyme, DICER, in LNCaP prostate cancer cells or tissue specifically in mice inhibited AR function leading to AIS. Since the only function of miRs is to bind to 3′ UTR and inhibit translation of target genes, androgens might induce miRs to inhibit repressors of AR function. In concordance, knock-down of DICER in LNCaP cells and in tissues in mice induced the expression of corepressors, NCoR and SMRT. These studies demonstrate a feedback loop between miRs, corepressors and AR and the imperative role of miRs in AR function in non-cancerous androgen-responsive tissues. PMID:21048966

  11. METHOD FOR MICRORNA ISOLATION FROM CLINICAL SERUM SAMPLES

    PubMed Central

    Li, Yu; Kowdley, Kris V.

    2012-01-01

    MicroRNAs are a group of intracellular non-coding RNA molecules that have been implicated in a variety of human diseases. Due to their high stability in blood, microRNAs released into circulation could be potentially utilized as non-invasive biomarkers for diagnosis or prognosis. Current microRNA isolation protocols are specifically designed for solid tissues and are impractical for biomarker development utilizing small-volume serum samples on a large scale. Thus, a protocol for microRNA isolation from serum is needed to accommodate these conditions in biomarker development. To establish such a protocol, we developed a simplified approach to normalize sample input by using single synthetic spike-in microRNA. We evaluated three commonly used commercial microRNA isolation kits for the best performance by comparing RNA quality and yield. The manufacturer’s protocol was further modified to improve the microRNA yield from 200 μL of human serum. MicroRNAs isolated from a large set of clinical serum samples were tested on the miRCURY LNA real-time PCR panel and confirmed to be suitable for high-throughput microRNA profiling. In conclusion, we have established a proven method for microRNA isolation from clinical serum samples suitable for microRNA biomarker development. PMID:22982505

  12. Translational study of microRNAs and its application in kidney disease and hypertension research

    PubMed Central

    KRIEGEL, Alison J.; MLADINOV, Domagoj; LIANG, Mingyu

    2015-01-01

    MicroRNA research in humans and mammalian model organisms is in a crucial stage of development. Diagnostic and therapeutic values of microRNAs appear promising, but remain to be established. The physiological and pathophysiological significance of microRNAs is generally recognized, but much better understood in some organ systems and disease areas than others. In the present paper, we review several translational studies of microRNAs, including those showing the potential value of therapeutic agents targeting microRNAs and diagnostic or prognostic microRNA markers detectable in body fluids. We discuss the lessons learned and the experience gained from these studies. Several recent studies have begun to explore translational microRNA research in kidney disease and hypertension. Translational research of microRNAs in the kidney faces unique challenges, but provides many opportunities to develop and apply new methods, and to merge complementary basic and clinical approaches. PMID:22283365

  13. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  14. MicroRNA-33 promotes the replicative senescence of mouse embryonic fibroblasts by suppressing CDK6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shun; Huang, Haijiao; Li, Nanhong

    2016-05-13

    MicroRNAs are a large class of tiny noncoding RNAs, which have emerged as critical regulators of gene expression, and thus are involved in multiple cellular processes, including cellular senescence. MicroRNA-33 has previously been established to exert crucial effect on cell proliferation, lipid metabolism and cholesterol metabolism. Nonetheless, the association between microRNA-33 and cellular senescence and its underlying molecular mechanism are far to be elucidated. The present study has attempted to probe into the effect of microRNA-33 on MEFs senescence. Our data unveiled that microRNA-33 was dramatically down-regulated in senescent MEFs compared to the young MEFs, and ectopic expression of microRNA-33more » promoted MEFs senescence, while knock-down of microRNA-33 exhibited a protective effect against senescence phenotype. Moreover, we verified CDK6 as a direct target of microRNA-33 in mouse. Silencing of CDK6 induced the premature senescence phenotype of MEFs similarly as microRNA-33, while enforced expression of CDK6 significantly reverse the senescence-induction effect of microRNA-33. Taken together, our results suggested that microRNA-33 enhanced the replicative senescence of MEFs potentially by suppressing CDK6 expression. -- Highlights: •MicroRNA-33 was dramatically down-regulated in senescent MEF cells. •Altered expression of microRNA-33 exerted a critical role in MEFs senescence. •MicroRNA-33 promoted the replicative senescence of MEFs via targeting of CDK6.« less

  15. Listeria monocytogenes Induces a Virulence-Dependent microRNA Signature That Regulates the Immune Response in Galleria mellonella

    PubMed Central

    Mannala, Gopala K.; Izar, Benjamin; Rupp, Oliver; Schultze, Tilman; Goesmann, Alexander; Chakraborty, Trinad; Hain, Torsten

    2017-01-01

    microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates. PMID:29312175

  16. Identification of MicroRNAs in the Coral Stylophora pistillata

    PubMed Central

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways. PMID:24658574

  17. KSHV MicroRNAs Repress Tropomyosin 1 and Increase Anchorage-Independent Growth and Endothelial Tube Formation

    PubMed Central

    Kieffer-Kwon, Philippe; Happel, Christine; Uldrick, Thomas S.; Ramalingam, Dhivya; Ziegelbauer, Joseph M.

    2015-01-01

    Kaposi’s sarcoma (KS) is characterized by highly vascularized spindle-cell tumors induced after infection of endothelial cells by Kaposi’s sarcoma-associated herpesvirus (KSHV). In KS tumors, KSHV expresses only a few latent proteins together with 12 pre-microRNAs. Previous microarray and proteomic studies predicted that multiple splice variants of the tumor suppressor protein tropomyosin 1 (TPM1) were targets of KSHV microRNAs. Here we show that at least two microRNAs of KSHV, miR-K2 and miR-K5, repress protein levels of specific isoforms of TPM1. We identified a functional miR-K5 binding site in the 3’ untranslated region (UTR) of one TPM1 isoform. Furthermore, the inhibition or loss of miR-K2 or miR-K5 restores expression of TPM1 in KSHV-infected cells. TPM1 protein levels were also repressed in KSHV-infected clinical samples compared to uninfected samples. Functionally, miR-K2 increases viability of unanchored human umbilical vein endothelial cells (HUVEC) by inhibiting anoikis (apoptosis after cell detachment), enhances tube formation of HUVECs, and enhances VEGFA expression. Taken together, KSHV miR-K2 and miR-K5 may facilitate KSHV pathogenesis. PMID:26263384

  18. microRNA-145 regulates the RLR signaling pathway in miiuy croaker after poly(I:C) stimulation via targeting MDA5.

    PubMed

    Han, Jingjing; Sun, Yuena; Song, Weihua; Xu, Tianjun

    2017-03-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via degrading the target mRNAs or repressing translation. In this study, the regulation of miRNA to the RLR (RIG-I-like receptor) signaling pathway by degrading the target mRNAs was researched in miiuy croaker. MDA5, a microRNA-145-5p (miR-145-5p) putative target gene, was predicted by bioinformatics, and the target sites from the 3'untranslated region of MDA5 transcripts were confirmed using luciferase reporter assays. Pre-miR-145 was more effective in inhibiting MDA5 than miR-145-5p mimic, and the effect was dose- and time-dependent. The expression patterns of miR-145-5p and MDA5 were analyzed in liver and kidney from miiuy croaker. Results implied that miR-145-5p may function via degrading the MDA5 mRNAs, thereby regulating the RLR signaling pathway. Studies on miR-145-5p will enrich knowledge of its functions in immune response regulation in fish, as well as offer a basis for regulatory networks that are composed of numerous miRNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liang; Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010; Tang, Yanping

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box proteinmore » O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.« less

  20. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization.

    PubMed

    Chen, Xin; Ying, Xiang; Wang, Xinjing; Wu, Xiaoli; Zhu, Qinyi; Wang, Xipeng

    2017-07-01

    Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.

  1. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2.

    PubMed

    Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei

    2016-06-03

    Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  3. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  4. MicroRNAs as Regulators of Endothelial Cell Functions in Cardiometabolic Diseases

    PubMed Central

    Araldi, Elisa; Suárez, Yajaira

    2016-01-01

    Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. PMID:26825686

  5. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  6. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output.

    PubMed

    O'Connell, Ryan M; Chaudhuri, Aadel A; Rao, Dinesh S; Gibson, William S J; Balazs, Alejandro B; Baltimore, David

    2010-08-10

    The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.

  7. Sonic hedgehog-Dependent Induction of MicroRNA 31 and MicroRNA 150 Regulates Mycobacterium bovis BCG-Driven Toll-Like Receptor 2 Signaling

    PubMed Central

    Ghorpade, Devram Sampat; Holla, Sahana; Kaveri, Srini V.; Bayry, Jagadeesh; Patil, Shripad A.

    2013-01-01

    Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α−/− macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions. PMID:23166298

  8. An Optimized Transient Dual Luciferase Assay for Quantifying MicroRNA Directed Repression of Targeted Sequences

    PubMed Central

    Moyle, Richard L.; Carvalhais, Lilia C.; Pretorius, Lara-Simone; Nowak, Ekaterina; Subramaniam, Gayathery; Dalton-Morgan, Jessica; Schenk, Peer M.

    2017-01-01

    Studies investigating the action of small RNAs on computationally predicted target genes require some form of experimental validation. Classical molecular methods of validating microRNA action on target genes are laborious, while approaches that tag predicted target sequences to qualitative reporter genes encounter technical limitations. The aim of this study was to address the challenge of experimentally validating large numbers of computationally predicted microRNA-target transcript interactions using an optimized, quantitative, cost-effective, and scalable approach. The presented method combines transient expression via agroinfiltration of Nicotiana benthamiana leaves with a quantitative dual luciferase reporter system, where firefly luciferase is used to report the microRNA-target sequence interaction and Renilla luciferase is used as an internal standard to normalize expression between replicates. We report the appropriate concentration of N. benthamiana leaf extracts and dilution factor to apply in order to avoid inhibition of firefly LUC activity. Furthermore, the optimal ratio of microRNA precursor expression construct to reporter construct and duration of the incubation period post-agroinfiltration were determined. The optimized dual luciferase assay provides an efficient, repeatable and scalable method to validate and quantify microRNA action on predicted target sequences. The optimized assay was used to validate five predicted targets of rice microRNA miR529b, with as few as six technical replicates. The assay can be extended to assess other small RNA-target sequence interactions, including assessing the functionality of an artificial miRNA or an RNAi construct on a targeted sequence. PMID:28979287

  9. Interaction of microRNA-21/145 and Smad3 domain-specific phosphorylation in hepatocellular carcinoma

    PubMed Central

    Wang, Ji Yu; Fang, Meng; Boye, Alex; Wu, Chao; Wu, Jia Jun; Ma, Ying; Hou, Shu; Kan, Yue; Yang, Yan

    2017-01-01

    MicroRNAs 21 and 145 exhibit inverse expression in Hepatocellular carcinoma (HCC), but how they relate to Smad3 C-terminal and Link region phosphorylation (pSmad3C and pSmad3L) downstream of TGF-β/MAPK signaling, remains inconclusive. Our results suggest microRNA-145 targets Smad3 in HepG2 cells. Decreased tumor volume and increased apoptosis were produced in both microRNA-21 antagomir and microRNA-145 agomir groups compared to controls. Inhibition of TβRI and MAPK (ERK, JNK, and p38) activation respectively produced decreased microRNA-21 but increased microRNA-145 expression. Correspondingly, the expression level of pSmad3C obviously increased while pSmad3L decreased in microRNA-145 agomir-group and the expression of pSmad3C/3L were not markedly changed but pERK, pJNK, pp38 decreased in microRNA-21 antagomir-group compared to controls. On the other hand, microRNA-145 and 21 increased respectively in xenografts of HepG2 cells transfected with Smad3 EPSM and 3S-A plasmid, and this correlated with the overexpression of pSmad3C and pSmad3L respectively compared to control. To conclude, microRNA-21 promotes tumor progression in a MAPK-dependent manner while microRNA-145 suppresses it via domain-specific phosphorylation of Smad3 in HCC. Meanwhile, increased pSmad3C/3L lead to the up-regulation of microRNA-145/21 respectively. The interaction between pSmad3C/3L and microRNA-145/21 regulates HCC progression and the switch of pSmad3C/3L may serve as an important target for HCC therapy. PMID:29156696

  10. Blood and lung microRNAs as biomarkers of pulmonary tumorigenesis in cigarette smoke-exposed mice

    PubMed Central

    Izzotti, Alberto; Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Longobardi, Mariagrazia; Pulliero, Alessandra; Geretto, Marta; Micale, Rosanna T.; La Maestra, Sebastiano; Miller, Mark Steven; Steele, Vernon E.; De Flora, Silvio

    2016-01-01

    Cigarette smoke (CS) is known to dysregulate microRNA expression profiles in the lungs of mice, rats, and humans, thereby modulating several pathways involved in lung carcinogenesis and other CS-related diseases. We designed a study aimed at evaluating (a) the expression of 1135 microRNAs in the lung of Swiss H mice exposed to mainstream CS during the first 4 months of life and thereafter kept in filtered air for an additional 3.5 months, (b) the relationship between lung microRNA profiles and histopathological alterations in the lung, (c) intergender differences in microRNA expression, and (d) the comparison with microRNA profiles in blood serum. CS caused multiple histopathological alterations in the lung, which were almost absent in sham-exposed mice. An extensive microRNA dysregulation was detected in the lung of CS-exposed mice. Modulation of microRNA profiles was specifically related to the histopathological picture, no effect being detected in lung fragments with non-neoplastic lung diseases (emphysema or alveolar epithelial hyperplasia), whereas a close association occurred with the presence and multiplicity of preneoplastic lesions (microadenomas) and benign lung tumors (adenomas). Three microRNAs regulating estrogen and HER2-dependent mechanisms were modulated in the lung of adenoma-bearing female mice. Blood microRNAs were also modulated in mice affected by early neoplastic lesions. However, there was a poor association between lung microRNAs and circulating microRNAs, which can be ascribed to an impaired release of mature microRNAs from the damaged lung. Studies in progress are evaluating the feasibility of analyzing blood microRNAs as a molecular tool for lung cancer secondary prevention. PMID:27713172

  11. Expression of MicroRNA-146a and MicroRNA-155 in Placental Villi in Early- and Late-Onset Preeclampsia.

    PubMed

    Nizyaeva, N V; Kulikova, G V; Nagovitsyna, M N; Kan, N E; Prozorovskaya, K N; Shchegolev, A I; Sukhikh, G T

    2017-07-01

    We studied the expression of microRNA-146a and microRNA-155 in placental villi from 18 women (26-39 weeks of gestation) of reproductive age with early- or late-onset preeclampsia. The reference group consisted of women with physiological pregnancy and full-term gestation and with preterm birth after caesarian section on gestation week 26-31. MicroRNA-146a and microRNA-155 were detected by in situ hybridization with digoxigenin on paraffin sections. It was found that the expression of microRNA-146a in both syncytiotrophoblast of the intermediate villi and syncytial knots was lower at late-onset preeclampsia than at physiologic pregnancy of full-term period (p=0.037 and p=0.001 respectively). The expression of microRNA-155 in syncytiotrophoblast of intermediate placental villi in early-onset preeclampsia was higher than in group with preterm delivery (p=0.003). However, in syncytiotrophoblast of intermediate villi and in syncytial knots, the expression of microRNA-155 was lower at late-onset preeclampsia in comparison with full-term physiological pregnancy (p=0.005). In addition, the expression of microRNA-146a and microRNA-155 did not increase in the later terms in preeclampsia, while in the reference groups demonstrating gradual increase in the expression of these markers with increasing gestational age. Expression microRNA-146a and microRNA-155 little differed in early- and late-onset preeclampsia. These findings suggest that different variants of preeclampsia are probably characterized by common pathogenetic pathways. Damaged trophoblast cannot maintain of microRNAs synthesis at the required level, which determines the formation of a vicious circle in preeclampsia and further progression of the disease.

  12. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells.

    PubMed

    Lodge, Robert; Gilmore, Julian C; Ferreira Barbosa, Jérémy A; Lombard-Vadnais, Félix; Cohen, Éric A

    2017-12-30

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4 R ) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4 R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary.

  13. Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells

    PubMed Central

    Gilmore, Julian C.; Ferreira Barbosa, Jérémy A.; Lombard-Vadnais, Félix

    2017-01-01

    Human immunodeficiency virus type-1 (HIV-1) infection of monocyte/macrophages is modulated by the levels of entry receptors cluster of differentiation 4 (CD4) and C-C chemokine receptor type 5 (CCR5), as well as by host antiviral restriction factors, which mediate several post-entry blocks. We recently identified two microRNAs, miR-221 and miR-222, which limit HIV-1 entry during infection of monocyte-derived macrophages (MDMs) by down-regulating CD4 expression. Interestingly, CD4 is also down-regulated during the differentiation of monocytes into macrophages. In this study, we compared microRNA expression profiles in primary monocytes and macrophages by RNAseq and found that miR-221/miR-222 are enhanced in macrophages. We took advantage of the monocytic THP-1 cell line that, once differentiated, is poorly susceptible to HIV-1. Accordingly, we found that CD4 levels are very low in THP-1 differentiated cells and that this down-regulation of the virus receptor is the result of miR-221/miR-222 up-regulation during differentiation. We thus established a THP-1 cell line stably expressing a modified CD4 (THP-1-CD4R) that is not modulated by miR-221/miR-222. We show that in contrast to parental THP-1, this line is productively infected by HIV-1 following differentiation, sustaining efficient HIV-1 CD4-dependent replication and spread. This new THP-1-CD4R cell line represents a useful tool for the study of HIV-1-macrophage interactions particularly in contexts where spreading of viral infection is necessary. PMID:29301198

  14. Lactic Acid Downregulates Viral MicroRNA To Promote Epstein-Barr Virus-Immortalized B Lymphoblastic Cell Adhesion and Growth.

    PubMed

    Mo, Xiaohui; Wei, Fang; Tong, Yin; Ding, Ling; Zhu, Qing; Du, Shujuan; Tan, Fei; Zhu, Caixia; Wang, Yuyan; Yu, Qian; Liu, Yeqiang; Robertson, Erle S; Yuan, Zhenghong; Cai, Qiliang

    2018-05-01

    High plasma lactate is associated with poor prognosis of many malignancies, but its role in virally mediated cancer progression and underlying molecular mechanisms are unclear. Epstein-Barr virus (EBV), the first human oncogenic virus, causes several cancers, including B-cell lymphoma. Here, we report that lactate dehydrogenase A (LDH-A) expression and lactate production are elevated in EBV-immortalized B lymphoblastic cells, and lactic acid (LA; acidic lactate) at low concentration triggers EBV-infected B-cell adhesion, morphological changes, and proliferation in vitro and in vivo Moreover, LA-induced responses of EBV-infected B cells uniquely occurs in viral latency type III, and it is dramatically associated with the inhibition of global viral microRNAs, particularly the miR-BHRF1 cluster, and the high expression of SMAD3 , JUN , and COL1A genes. The introduction of miR-BHRF1-1 blocks the LA-induced effects of EBV-infected B cells. Thus, this may be a novel mechanism to explain EBV-immortalized B lymphoblastic cell malignancy in an LA microenvironment. IMPORTANCE The tumor microenvironment is complicated, and lactate, which is created by cell metabolism, contributes to an acidic microenvironment that facilitates cancer progression. However, how LA operates in virus-associated cancers is unclear. Thus, we studied how EBV (the first tumor virus identified in humans; it is associated with many cancers) upregulates the expression of LDH-A and lactate production in B lymphoma cells. Elevated LA induces adhesion and the growth of EBV-infected B cells by inhibiting viral microRNA transcription. Thus, we offer a novel understanding of how EBV utilizes an acidic microenvironment to promote cancer development. Copyright © 2018 American Society for Microbiology.

  15. SIRT1 inhibition restores apoptotic sensitivity in p53-mutated human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Katharine J.; Cook, Anthony L., E-mail: Anthony.Cook@utas.edu.au; Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au

    2014-06-15

    Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutatedmore » (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment. - Highlights: • Impaired microRNA biogenesis promotes apoptotic resistance in HaCaT keratinocytes. • TP53 mutations suppress miR-34a-mediated regulation of SIRT1 expression. • SIRT1 inhibition increases p53 acetylation in HaCaTs, restoring apoptosis.« less

  16. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles

    PubMed Central

    Kuo, Cheng-Hsiang; Leon, Lorraine; Chung, Eun Ji; Huang, Ru-Ting; Sontag, Timothy J.; Reardon, Catherine A.; Getz, Godfrey S.; Tirrell, Matthew; Fang, Yun

    2015-01-01

    Polyelectrolyte complex micelles have great potential as gene delivery vehicles because of their ability to encapsulate charged nucleic acids forming a core by neutralizing their charge, while simultaneously protecting the nucleic acids from non-specific interactions and enzymatic degradation. Furthermore, to enhance specificity and transfection efficiency, polyelectrolyte complex micelles can be modified to include targeting capabilities. Here, we describe the design of targeted polyelectrolyte complex micelles containing inhibitors against dys-regulated microRNAs (miRNAs) that promote atherosclerosis, a leading cause of human mortality and morbidity. Inhibition of dys-regulated miRNAs in diseased cells associated with atherosclerosis has resulted in therapeutic efficacy in animal models and has been proposed to treat human diseases. However, the non-specific targeting of microRNA inhibitors via systemic delivery has remained an issue that may cause unwanted side effects. For this reason, we incorporated two different peptide sequences to our miRNA inhibitor containing polyelectrolyte complex micelles. One of the peptides (Arginine-Glutamic Acid-Lysine-Alanine or REKA) was used in another micellar system that demonstrated lesion-specific targeting in a mouse model of atherosclerosis. The other peptide (Valine-Histidine-Proline-Lysine-Glutamine-Histidine-Arginine or VHPKQHR) was identified via phage display and targets vascular endothelial cells through the vascular cell adhesion molecule-1 (VCAM-1). In this study we have tested the in vitro efficacy and efficiency of lesion- and cell-specific delivery of microRNA inhibitors to the cells associated with atherosclerotic lesions via peptide-targeted polyelectrolyte complex micelles. Our results show that REKA-containing micelles (fibrin-targeting) and VHPKQHR-containing micelles (VCAM-1 targeting) can be used to carry and deliver microRNA inhibitors into macrophages and human endothelial cells, respectively. Additionally, the functionality of miRNA inhibitors in cells was demonstrated by analyzing miRNA expression as well as the expression or the biological function of its downstream target protein. Our study provides the first demonstration of targeting dys-regulated miRNAs in atherosclerosis using targeted polyelectrolyte complex micelles and holds promising potential for translational applications. PMID:25685357

  17. MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.

    PubMed

    Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S

    2015-04-27

    Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.

  18. Regulation of body growth by microRNAs.

    PubMed

    Lui, Julian C

    2017-11-15

    Regulation of body growth remains a fascinating and unresolved biological mystery. One key component of body growth is skeletal and longitudinal bone growth. Children grow taller because their bones grew longer, and the predominant driver of longitudinal bone growth is a cartilaginous structure found near the ends of long bone named the growth plate. Numerous recent studies have started to unveil the importance of microRNAs in regulation of growth plate functions, therefore contributing to regulation of linear growth. In addition to longitudinal growth, other organs in our body need to increase in size and cell number as we grow, and the regulation of organ growth involves both systemic factors like hormones; and other intrinsic mechanisms, which we are just beginning to understand. This review aims to summarize some recent important findings on how microRNAs are involved in both of these processes: the regulation of longitudinal bone growth, and the regulation of organs and overall body growth. Published by Elsevier B.V.

  19. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC

    PubMed Central

    Castanotto, Daniela; Sakurai, Kumi; Lingeman, Robert; Li, Haitang; Shively, Louise; Aagaard, Lars; Soifer, Harris; Gatignol, Anne; Riggs, Arthur; Rossi, John J.

    2007-01-01

    Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs. PMID:17660190

  20. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    PubMed

    Favaro, Elena; Ramachandran, Anassuya; McCormick, Robert; Gee, Harriet; Blancher, Christine; Crosby, Meredith; Devlin, Cecilia; Blick, Christopher; Buffa, Francesca; Li, Ji-Liang; Vojnovic, Borivoj; Pires das Neves, Ricardo; Glazer, Peter; Iborra, Francisco; Ivan, Mircea; Ragoussis, Jiannis; Harris, Adrian L

    2010-04-26

    Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1) and a microRNA, hsa-miR-210 (miR-210) which is associated with a poor prognosis. In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS) in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis. Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  1. Isolation and Characterization of a microRNA-size Secretable Small RNA in Streptococcus sanguinis.

    PubMed

    Choi, Ji-Woong; Kwon, Tae-Yub; Hong, Su-Hyung; Lee, Heon-Jin

    2018-06-01

    MicroRNAs in eukaryotic cells are thought to control highly complex signal transduction and other biological processes by regulating coding transcripts, accounting for their important role in cellular events in eukaryotes. Recently, a novel class of bacterial RNAs similar in size [18-22 nucleotides (nt)] to microRNAs has been reported. Herein, we describe microRNAs, small RNAs from the oral pathogen Streptococcus sanguinis. The bacteria are normally present in the oral cavities and cause endocarditis by contaminating bloodstreams. Small RNAs were analyzed by deep sequencing. Selected highly expressed small RNAs were further validated by real-time polymerase chain reaction and northern blot analyses. We found that skim milk supplement changed the expression of small RNAs S.S-1964 in tandem with the nearby SSA_0513 gene involved in vitamin B 12 conversion. We furthermore observed small RNAs secreted via bacterial membrane vesicles. Although their precise function remains unclear, secretable small RNAs may represent an entirely new area of study in bacterial genetics.

  2. Blood-Derived RNA- and microRNA-Hydrolyzing IgG Antibodies in Schizophrenia Patients.

    PubMed

    Ermakov, E A; Ivanova, S A; Buneva, V N; Nevinsky, G A

    2018-05-01

    Abzymes with various catalytic activities are the earliest statistically significant markers of existing and developing autoimmune diseases (AIDs). Currently, schizophrenia (SCZD) is not considered to be a typical AID. It was demonstrated recently that antibodies from SCZD patients efficiently hydrolyze DNA and myelin basic protein. Here, we showed for the first time that autoantibodies from 35 SCZD patients efficiently hydrolyze RNA (cCMP > poly(C) > poly(A) > yeast RNA) and analyzed site-specific hydrolysis of microRNAs involved in the regulation of several genes in SCZD (miR-137, miR-9-5p, miR-219-2-3p, and miR-219a-5p). All four microRNAs were cleaved by IgG preparations (n = 21) from SCZD patients in a site-specific manner. The RNase activity of the abzymes correlated with SCZD clinical parameters. The data obtained showed that SCZD patients might display signs of typical autoimmune processes associated with impaired functioning of microRNAs resulting from their hydrolysis by the abzymes.

  3. MicroRNAs in hereditary diffuse gastric cancer.

    PubMed

    Suárez-Arriaga, Mayra-Cecilia; Ribas-Aparicio, Rosa-María; Ruiz-Tachiquín, Martha-Eugenia

    2016-08-01

    In 2012, gastric cancer (GC) was the third cause of mortality due to cancer in men and women. In Central and South America, high mortality rates have been reported. A total of 95% of tumors developed in the stomach are of epithelial origin; thus, these are denominated adenocarcinomas of the stomach. Diverse classification systems have been established, among which two types of GC based on histological type and growth pattern have been described as follows: Intestinal (IGC) and diffuse (DGC). Approximately 1-3% of GC cases are associated with heredity. Hereditary-DGC (HDGC), with 80% penetrance, is an autosomal-type, dominant syndrome in which 40% of cases are carriers of diverse mutations of the CDH1 gene, which encodes for the cadherin protein. By contrast, microRNA are non-encoded, single-chain RNA molecules. These molecules regulate the majority of cellular functions at the post-transcriptional level. However, analysis of these interactions by means of Systems Biology has allowed the understanding of complex and heterogeneous diseases, such as cancer. These molecules are ubiquitous; however, their expression can be specific in different tissues either temporarily or permanently, depending on the stage of the cell. Due to the participation of microRNA in the processes of cellular proliferation, cell cycle control, apoptosis, differentiation and metabolism, these have been indicated to have a role in the development of cancerous processes, finding specific patterns of expression in different neoplasms, including GC, in which the microRNA expression profile is different in samples of non-cancerous versus cancerous tissues. A difference has been observed in the expression patterns of DGC and IGC. However, the role of microRNA in HDGC has not yet been established. The present study reviews the investigations that describe the participation of microRNA in the regulation of genes CDH1 , RHOA , CTNNA1 , INSR and TGF -β in different neoplasms, such as HDGC.

  4. Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a

    PubMed Central

    Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.

    2009-01-01

    MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148

  5. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1

    PubMed Central

    Wu, Di; Murashov, Alexander K.

    2013-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that function as key post-transcriptional regulators in neural development, brain function, and neurological diseases. Growing evidence indicates that miRNAs are also important mediators of nerve regeneration, however, the affected signaling mechanisms are not clearly understood. In the present study, we show that nerve injury-induced miR-431 stimulates regenerative axon growth by silencing Kremen1, an antagonist of Wnt/beta-catenin signaling. Both the gain-of-function of miR-431 and knockdown of Kremen1 significantly enhance axon outgrowth in murine dorsal root ganglion neuronal cultures. Using cross-linking with AGO-2 immunoprecipitation, and 3′-untranslated region (UTR) luciferase reporter assay we demonstrate miR-431 direct interaction on the 3′-UTR of Kremen1 mRNA. Together, our results identify miR-431 as an important regulator of axonal regeneration and a promising therapeutic target. PMID:24167472

  6. MicroRNA Regulation of Lipid Metabolism

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2012-01-01

    MicroRNA are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis. PMID:22607769

  7. A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.

    PubMed

    Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W

    2012-04-01

    A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.

  8. MicroRNAs in thyroid development, function and tumorigenesis.

    PubMed

    Fuziwara, Cesar Seigi; Kimura, Edna Teruko

    2017-11-15

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that modulate the vast majority of cellular processes. During development, the correct timing and expression of miRNAs in the tissue differentiation is essential for organogenesis and functionality. In thyroid gland, DICER and miRNAs are necessary for accurately establishing thyroid follicles and hormone synthesis. Moreover, DICER1 mutations and miRNA deregulation observed in human goiter influence thyroid tumorigenesis. The thyroid malignant transformation by MAPK oncogenes is accompanied by global miRNA changes, with a marked reduction of "tumor-suppressor" miRNAs and activation of oncogenic miRNAs. Loss of thyroid cell differentiation/function, and consequently iodine trapping impairment, is an important clinical characteristic of radioiodine-refractory thyroid cancer. However, few studies have addressed the direct role of miRNAs in thyroid gland physiology. Here, we focus on what we have learned in the thyroid follicular cell differentiation and function as revealed by cell and animal models and miRNA modulation in thyroid tumorigenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A transgenic resource for conditional competitive inhibition of conserved Drosophila microRNAs

    PubMed Central

    Fulga, Tudor A.; McNeill, Elizabeth M.; Binari, Richard; Yelick, Julia; Blanche, Alexandra; Booker, Matthew; Steinkraus, Bruno R.; Schnall-Levin, Michael; Zhao, Yong; DeLuca, Todd; Bejarano, Fernando; Han, Zhe; Lai, Eric C.; Wall, Dennis P.; Perrimon, Norbert; Van Vactor, David

    2015-01-01

    Although the impact of microRNAs (miRNAs) in development and disease is well established, understanding the function of individual miRNAs remains challenging. Development of competitive inhibitor molecules such as miRNA sponges has allowed the community to address individual miRNA function in vivo. However, the application of these loss-of-function strategies has been limited. Here we offer a comprehensive library of 141 conditional miRNA sponges targeting well-conserved miRNAs in Drosophila. Ubiquitous miRNA sponge delivery and consequent systemic miRNA inhibition uncovers a relatively small number of miRNA families underlying viability and gross morphogenesis, with false discovery rates in the 4–8% range. In contrast, tissue-specific silencing of muscle-enriched miRNAs reveals a surprisingly large number of novel miRNA contributions to the maintenance of adult indirect flight muscle structure and function. A strong correlation between miRNA abundance and physiological relevance is not observed, underscoring the importance of unbiased screens when assessing the contributions of miRNAs to complex biological processes. PMID:26081261

  10. TAM 2.0: tool for MicroRNA set analysis.

    PubMed

    Li, Jianwei; Han, Xiaofen; Wan, Yanping; Zhang, Shan; Zhao, Yingshu; Fan, Rui; Cui, Qinghua; Zhou, Yuan

    2018-06-06

    With the rapid accumulation of high-throughput microRNA (miRNA) expression profile, the up-to-date resource for analyzing the functional and disease associations of miRNAs is increasingly demanded. We here describe the updated server TAM 2.0 for miRNA set enrichment analysis. Through manual curation of over 9000 papers, a more than two-fold growth of reference miRNA sets has been achieved in comparison with previous TAM, which covers 9945 and 1584 newly collected miRNA-disease and miRNA-function associations, respectively. Moreover, TAM 2.0 allows users not only to test the functional and disease annotations of miRNAs by overrepresentation analysis, but also to compare the input de-regulated miRNAs with those de-regulated in other disease conditions via correlation analysis. Finally, the functions for miRNA set query and result visualization are also enabled in the TAM 2.0 server to facilitate the community. The TAM 2.0 web server is freely accessible at http://www.scse.hebut.edu.cn/tam/ or http://www.lirmed.com/tam2/.

  11. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia

    PubMed Central

    Wang, Xiao-Shuang; Zhang, Jun-Wu

    2008-01-01

    Abstract MicroRNAs (miRNAs) are endogenously expressed, functional RNAs that interact with native coding mRNAs to cleave mRNA or repress translation. Several miRNAs contribute to normal haematopoietic processes and some miRNAs act both as tumour suppressors and oncogenes in the pathology of haematological malignancies. While most effort is engaged in identifying and investigating the target genes of miRNAs, miRNA gene promoter methylation or transcriptional regulation is another important field of investigation, since these two main mechanisms can form a regulatory circuit. This review focuses on recent researches on miRNAs with important roles in myeloid cells. PMID:18554315

  12. MicroRNAs – Important Molecules in Lung Cancer Research

    PubMed Central

    Leidinger, Petra; Keller, Andreas; Meese, Eckart

    2011-01-01

    MicroRNAs (miRNA) are important regulators of gene expression. They are involved in many physiological processes ensuring the cellular homeostasis of human cells. Alterations of the miRNA expression have increasingly been associated with pathophysiologic changes of cancer cells making miRNAs currently to one of the most analyzed molecules in cancer research. Here, we provide an overview of miRNAs in lung cancer. Specifically, we address biological functions of miRNAs in lung cancer cells, miRNA signatures generated from tumor tissue and from patients’ body fluids, the potential of miRNAs as diagnostic and prognostic biomarker for lung cancer, and its role as therapeutic target. PMID:22303398

  13. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  14. Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Single-Nucleotide Polymorphisms Identified in Clinical Samples Can Affect MicroRNA Processing, Level of Expression, and Silencing Activity

    PubMed Central

    Han, Soo-Jin; Marshall, Vickie; Barsov, Eugene; Quiñones, Octavio; Ray, Alex; Labo, Nazzarena; Trivett, Matthew; Ott, David; Renne, Rolf

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs that can produce 25 KSHV mature microRNAs. We previously reported single-nucleotide polymorphisms (SNPs) in KSHV-encoded pre-microRNA and mature microRNA sequences from clinical samples (V. Marshall et al., J. Infect. Dis., 195:645–659, 2007). To determine whether microRNA SNPs affect pre-microRNA processing and, ultimately, mature microRNA expression levels, we performed a detailed comparative analysis of (i) mature microRNA expression levels, (ii) in vitro Drosha/Dicer processing, and (iii) RNA-induced silencing complex-dependent targeting of wild-type (wt) and variant microRNA genes. Expression of pairs of wt and variant pre-microRNAs from retroviral vectors and measurement of KSHV mature microRNA expression by real-time reverse transcription-PCR (RT-PCR) revealed differential expression levels that correlated with the presence of specific sequence polymorphisms. Measurement of KSHV mature microRNA expression in a panel of primary effusion lymphoma cell lines by real-time RT-PCR recapitulated some observed expression differences but suggested a more complex relationship between sequence differences and expression of mature microRNA. Furthermore, in vitro maturation assays demonstrated significant SNP-associated changes in Drosha/DGCR8 and/or Dicer processing. These data demonstrate that SNPs within KSHV-encoded pre-microRNAs are associated with differential microRNA expression levels. Given the multiple reports on the involvement of microRNAs in cancer, the biological significance of these phenotypic and genotypic variants merits further studies in patients with KSHV-associated malignancies. PMID:24006441

  15. Complex Patterns of Altered MicroRNA Expression during the Adenoma-Adenocarcinoma Sequence for Microsatellite-Stable Colorectal Cancer

    PubMed Central

    Bartley, Angela N.; Yao, Hui; Barkoh, Bedia A.; Ivan, Cristina; Mishra, Bal M.; Rashid, Asif; Calin, George A.; Luthra, Rajyalakshmi; Hamilton, Stanley R.

    2012-01-01

    Purpose MicroRNAs are short noncoding RNAs that regulate gene expression and are over- or under-expressed in most tumors, including colorectal adenocarcinoma. MicroRNAs are potential biomarkers and therapeutic targets and agents, but limited information on microRNAome alterations during progression in the well-known adenoma-adenocarcinoma sequence is available to guide their usage. Experimental Design We profiled 866 human microRNAs by microarray analysis in 69 matched specimens of microsatellite-stable adenocarcinomas, adjoining precursor adenomas including areas of high- and low-grade dysplasia, and nonneoplastic mucosa. Results We found 230 microRNAs that were significantly differentially expressed during progression, including 19 not reported previously. Altered microRNAs clustered into two major patterns of early (type I) and late (type II) differential expression. The largest number (n = 108) was altered at the earliest step from mucosa to low-grade dysplasia (subtype IA) prior to major nuclear localization of β-catenin, including 36 microRNAs that had persistent differential expression throughout the entire sequence to adenocarcinoma. Twenty microRNAs were intermittently altered (subtype IB), and six were transiently altered (subtype IC). In contrast, 33 microRNAs were altered late in high-grade dysplasia and adenocarcinoma (subtype IIA), and 63 in adenocarcinoma only (subtype IIB). Predicted targets in 12 molecular pathways were identified for highly altered microRNAs, including the Wnt signaling pathway leading to low-grade dysplasia. β-catenin expression correlated with downregulated microRNAs. Conclusions Our findings suggest that numerous microRNAs play roles in the sequence of molecular events, especially early events, resulting in colorectal adenocarcinoma. The temporal patterns and complexity of microRNAome alterations during progression will influence the efficacy of microRNAs for clinical purposes. PMID:21948089

  16. Breast cancer stem-like cells are sensitized to tamoxifen induction of self-renewal inhibition with enforced Let-7c dependent on Wnt blocking

    PubMed Central

    Meng, Jinying; Wang, Jichang; Tang, Shou-Ching; Qin, Sida; Du, Ning; Li, Gang

    2018-01-01

    Let-7 microRNAs have been reported to have tumor suppressive functions; however, the effect of Let-7 when used in combination with chemotherapies is uncertain, but may have potential for use in clinical practice. In this study, we used RT-qPCR, western blot analysis, cell proliferation assay, flow cytometry analysis, immunohistochemistry (IHC) staining, luciferase assays, cell sorting analysis and xenografted tumor model to explore the role of Let-7 in the chemotherapy sensitivity of breast cancer stem cells. The findings of the current study indicated that Let-7 enhances the effects of endocrine therapy potentially by regulating the self-renewal of cancer stem cells. Let-7c increased the anticancer functions of tamoxifen and reduced the ratio of cancer stem-like cells (CSCs), sensitizing cells to therapy-induced repression in an estrogen receptor (ER)-dependent manner. Notably, Let-7 decreased the tumor formation ability of estrogen-treated breast CSCs in vivo and suppressed Wnt signaling, which further consolidated the previously hypothesis that Let-7 decreases the self-renewal ability, contributing to reduced tumor formation ability of stem cells. The suppressive effects exerted by Let-7 on stem-like cells involved Let-7c/ER/Wnt signaling, and the functions of Let-7c exerted with tamoxifen were dependent on ER. Taken together, the findings identified a biochemical and functional link between Let-7 and endocrine therapy in breast CSCs, which may facilitate clinical treatment in the future using delivery of suppressive Let-7. PMID:29336465

  17. Repression of Lateral Organ Boundary Genes by PENNYWISE and POUND-FOOLISH Is Essential for Meristem Maintenance and Flowering in Arabidopsis1[OPEN

    PubMed Central

    Khan, Madiha; Ragni, Laura; Tabb, Paul; Salasini, Brenda C.; Chatfield, Steven; Datla, Raju; Lock, John; Kuai, Xiahezi; Després, Charles; Proveniers, Marcel; Yongguo, Cao; Xiang, Daoquan; Morin, Halima; Rullière, Jean-Pierre; Citerne, Sylvie; Hepworth, Shelley R.; Pautot, Véronique

    2015-01-01

    In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering. PMID:26417006

  18. Toward the human cellular microRNAome.

    PubMed

    McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K

    2017-10-01

    MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.

  19. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S.; Theis, Fabian J.

    2015-01-01

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method “miRlastic”, which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic. PMID:26694379

  20. MicroRNA-Target Network Inference and Local Network Enrichment Analysis Identify Two microRNA Clusters with Distinct Functions in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Sass, Steffen; Pitea, Adriana; Unger, Kristian; Hess, Julia; Mueller, Nikola S; Theis, Fabian J

    2015-12-18

    MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method "miRlastic", which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic.

  1. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids.

    PubMed

    Liang, Hongwei; Gong, Fei; Zhang, Suyang; Zhang, Chen-Yu; Zen, Ke; Chen, Xi

    2014-01-01

    Recently, numerous studies have documented the importance of microRNAs (miRNAs) as an essential cornerstone of the genetic system. Although RNA is usually considered an unstable molecule because of the ubiquitous ribonuclease, miRNAs are now known to circulate in the bloodstream and other body fluids in a stable, cell-free form. Importantly, extracellular miRNAs are aberrantly present in plasma, serum, and other body fluids during the pathogenesis of many diseases and, thus, are promising noninvasive or minimally invasive biomarkers to assess the pathological status of the body. However, the origin and biological function of extracellular miRNAs remains incompletely understood. In this review, we summarize the recent literature on the biogenesis and working models of extracellular miRNAs, and we highlight the impact of extending these ongoing extracellular miRNA studies to clinical applications. © 2013 John Wiley & Sons, Ltd.

  2. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  3. [The role of microRNAs in molecular pathology of esophageal cancer and their potential usage in clinical oncology].

    PubMed

    Kovaříková, A; Héžová, R; Srovnal, J; Rédová-Lojová, M; Slabý, O

    2014-01-01

    MicroRNAs are an abundant class of noncoding RNAs (approx. 18- 25 nucleotides in length) that suppress translation through binding to their target mRNAs, eventually leading to mRNAs degradation. Sequences of these endogenous RNA molecules are highly conserved, even among unrelated species, indicating their involvement in basic bio-logical processes, such as development, differentiation, proliferation or apoptosis. MiRNAs also participate on regulation of cancer stem cell functioning, immune system and malignant transformation. This review provides a comprehensive overview of miRNAs functions in esophageal cancer, their roles in key pathogenetic pathways and disease development, as well as their potential usage in clinical routine as bio-markers improving dia-gnosis, prognosis and prediction of therapeutic response. Through regulation of signaling pathways important in malignant transformation, miRNAs present also promising therapeutic targets.

  4. Transcriptional and post-transcriptional regulation of NK cell development and function

    PubMed Central

    Leong, Jeffrey W.; Wagner, Julia A.; Ireland, Aaron R.; Fehniger, Todd A.

    2016-01-01

    Natural killer (NK) cells are specialized innate lymphoid cells that survey against viral infections and malignancy. Numerous advances have improved our understanding of the molecular mechanisms that control NK cell development and function over the past decade. These include both studies on the regulatory effects of transcription factors and translational repression via microRNAs. In this review, we summarize our current knowledge of DNA-binding transcription factors that regulate gene expression and thereby orchestrate NK cell development and activation, with an emphasis on recent discoveries. Additionally, we highlight our understanding of how RNA-bindings microRNAs fine tune the NK cell molecular program. We also underscore the large number of open questions in field that are now being addressed using new technological approaches and genetically engineered model organisms. Ultimately, a deeper understanding of the basic molecular biology of NK cells will facilitate new strategies to manipulate NK cells for the treatment of human disease. PMID:26948928

  5. Involvement of MicroRNAs in Lung Cancer Biology and Therapy

    PubMed Central

    Liu, Xi; Sempere, Lorenzo F.; Guo, Yongli; Korc, Murray; Kauppinen, Sakari; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2011-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification and even provided prognostic information in many human cancers, including lung cancer. Tumor suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were recently validated in well characterized cellular, murine transgenic as well as transplantable lung cancer models and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis, but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and could improve lung cancer therapy are discussed in this article. PMID:21420030

  6. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy

    PubMed Central

    Godard, Patrice; van Eyll, Jonathan

    2015-01-01

    MicroRNAs (miRNAs) are involved in the regulation of gene expression at a post-transcriptional level. As such, monitoring miRNA expression has been increasingly used to assess their role in regulatory mechanisms of biological processes. In large scale studies, once miRNAs of interest have been identified, the target genes they regulate are often inferred using algorithms or databases. A pathway analysis is then often performed in order to generate hypotheses about the relevant biological functions controlled by the miRNA signature. Here we show that the method widely used in scientific literature to identify these pathways is biased and leads to inaccurate results. In addition to describing the bias and its origin we present an alternative strategy to identify potential biological functions specifically impacted by a miRNA signature. More generally, our study exemplifies the crucial need of relevant negative controls when developing, and using, bioinformatics methods. PMID:25800743

  7. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration.

    PubMed

    Jung, SeungWoo; Bohan, Amy

    2018-02-01

    OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.

  8. microRNA-874 suppresses tumor proliferation and metastasis in hepatocellular carcinoma by targeting the DOR/EGFR/ERK pathway.

    PubMed

    Zhang, Yi; Wei, Yangchao; Li, Xuan; Liang, Xingsi; Wang, Liming; Song, Jun; Zhang, Xiuzhong; Zhang, Chong; Niu, Jian; Zhang, Pengbo; Ren, Zeqiang; Tang, Bo

    2018-01-26

    The δ opioid receptor (DOR) is involved in the regulation of malignant transformation and tumor progression of hepatocellular carcinoma (HCC). However, regulation of the DOR in HCC remains poorly defined. We found that miR-874 was identified as a negative regulator of the DOR, which is a direct and functional target of miR-874 via its 3' untranslated region (UTR). Moreover, miR-874 was downregulated in HCC and its expression was inversely correlated with DOR expression. Downregulation of miR-874 was also associated with larger tumor size, more vascular invasion, a poor TNM stage, poor tumor differentiation, and inferior patient outcomes. Functionally, overexpression of miR-874 in the HCC cell line SK-hep-1 inhibited cell growth, migration, in vitro invasion, and in vivo tumorigenicity. Furthermore, miR-874 overexpression suppressed the DOR, resulting in a downregulated epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK) phosphorylation. The EGFR activator-epidermal growth factor (EGF)-can rescue the proliferation and migration suppression induced by miR-874 overexpression, and the rescue effects of the EGF were blocked by an ERK inhibitor. Our study results suggest that miRNA-874 is a negative regulator of the DOR that can suppress tumor proliferation and metastasis in HCC by targeting the DOR/EGFR/ERK pathway, which may be a potential target for HCC treatment.

  9. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID:24896088

  10. MicroRNA-320 involves in the cardioprotective effect of insulin against myocardial ischemia by targeting survivin.

    PubMed

    Yang, Ni; Wu, Liuzhong; Zhao, Ying; Zou, Ning; Liu, Chunfeng

    2018-04-01

    It is generally accepted that insulin exerts an antiapoptotic effect against ischemia/reperfusion through the activation of PI3K/Akt/mTOR pathway. MicroRNAs involve in multiple cardiac pathophysiological processes, including ischemia/reperfusion-induced cardiac injury. However, the regulation of microRNAs in the cardioprotective effect of insulin is rarely discussed. In this study, using a cell model of ischemia through culturing H9C2 cardiac myocytes in serum-free medium with hypoxia, we demonstrated that pretreatment with insulin significantly inhibited cell apoptosis and downregulated microRNA-320 (miR-320) expression. Interestingly, miR-320 mimic impaired the cardioprotective effect of insulin against myocardial ischemia injury by targeting survivin, which is a member of the family of inhibitor of apoptosis proteins. Suppression miR-320 expression by miR-320 inhibitor in H9C2 cells with myocardial ischemia mimics the cardioprotective effect of insulin by maintaining survivin expression. Taken together, miR-320-mediated survivin expression involves in cardioprotective effect of insulin against myocardial ischemia injury. Myocardial ischemia/reperfusion (I/R) injury remains an important clinical problem with extremely deficient clinical therapies. Insulin exerts an antiapoptotic effect against I/R through the activation of PI3K/Akt/mTOR pathway. Here, we provided evidences to show that microRNA-320 involves in the cardioprotective effect of insulin by targeting survivin, which is an inhibitor of apoptosis protein and functions as a key regulator in cell apoptosis and involves in the tumour genesis and progression. Our findings may provide a new potential therapeutic strategy for I/R injury and ischemic heart disease. Copyright © 2018 John Wiley & Sons, Ltd.

  11. A data-driven, knowledge-based approach to biomarker discovery: application to circulating microRNA markers of colorectal cancer prognosis.

    PubMed

    Vafaee, Fatemeh; Diakos, Connie; Kirschner, Michaela B; Reid, Glen; Michael, Michael Z; Horvath, Lisa G; Alinejad-Rokny, Hamid; Cheng, Zhangkai Jason; Kuncic, Zdenka; Clarke, Stephen

    2018-01-01

    Recent advances in high-throughput technologies have provided an unprecedented opportunity to identify molecular markers of disease processes. This plethora of complex-omics data has simultaneously complicated the problem of extracting meaningful molecular signatures and opened up new opportunities for more sophisticated integrative and holistic approaches. In this era, effective integration of data-driven and knowledge-based approaches for biomarker identification has been recognised as key to improving the identification of high-performance biomarkers, and necessary for translational applications. Here, we have evaluated the role of circulating microRNA as a means of predicting the prognosis of patients with colorectal cancer, which is the second leading cause of cancer-related death worldwide. We have developed a multi-objective optimisation method that effectively integrates a data-driven approach with the knowledge obtained from the microRNA-mediated regulatory network to identify robust plasma microRNA signatures which are reliable in terms of predictive power as well as functional relevance. The proposed multi-objective framework has the capacity to adjust for conflicting biomarker objectives and to incorporate heterogeneous information facilitating systems approaches to biomarker discovery. We have found a prognostic signature of colorectal cancer comprising 11 circulating microRNAs. The identified signature predicts the patients' survival outcome and targets pathways underlying colorectal cancer progression. The altered expression of the identified microRNAs was confirmed in an independent public data set of plasma samples of patients in early stage vs advanced colorectal cancer. Furthermore, the generality of the proposed method was demonstrated across three publicly available miRNA data sets associated with biomarker studies in other diseases.

  12. Sponge Transgenic Mouse Model Reveals Important Roles for the MicroRNA-183 (miR-183)/96/182 Cluster in Postmitotic Photoreceptors of the Retina*

    PubMed Central

    Zhu, Qubo; Sun, Wenyu; Okano, Kiichiro; Chen, Yu; Zhang, Ning; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    MicroRNA-183 (miR-183), miR-96, and miR-182 comprising the miR-183/96/182 cluster are highly expressed in photoreceptor cells. Although in vitro data have indicated an important role for this cluster in the retina, details of its in vivo biological activity are still unknown. To observe the impact of the miR-183/96/182 cluster on retinal maintenance and light adaptation, we generated a sponge transgenic mouse model that disrupted the activities of the three-component microRNAs simultaneously and selectively in the retina. Although our morphological and functional studies showed no differences between transgenic and wild type mice under normal laboratory lighting conditions, sponge transgenic mice displayed severe retinal degeneration after 30 min of exposure to 10,000 lux light. Histological studies showed that the outer nuclear layer thickness was dramatically reduced in the superior retina of transgenic mice. Real time PCR experiments in both the sponge transgenic mouse model and different microRNA stable cell lines identified Arrdc3, Neurod4, and caspase-2 (Casp2) as probable downstream targets of this cluster, a result also supported by luciferase assay and immunoblotting analyses. Further studies indicated that expression of both the cluster and Casp2 increased in response to light exposure. Importantly, Casp2 expression was enhanced in transgenic mice, and inhibition of Casp2 partially rescued their light-induced retinal degeneration. By connecting the microRNA and apoptotic pathways, these findings imply an important role for the miR-183/96/182 cluster in acute light-induced retinal degeneration of mice. This study demonstrates a clear involvement of miRs in the physiology of postmitotic cells in vivo. PMID:21768104

  13. MicroRNA-31 is a positive modulator of endothelial-mesenchymal transition and associated secretory phenotype induced by TGF-β.

    PubMed

    Katsura, Akihiro; Suzuki, Hiroshi I; Ueno, Toshihide; Mihira, Hajime; Yamazaki, Tomoko; Yasuda, Takahiko; Watabe, Tetsuro; Mano, Hiroyuki; Yamada, Yoshitsugu; Miyazono, Kohei

    2016-01-01

    Transforming growth factor-β (TGF-β) plays central roles in endothelial-mesenchymal transition (EndMT) involved in development and pathogenesis. Although EndMT and epithelial-mesenchymal transition are similar processes, roles of microRNAs in EndMT are largely unknown. Here, we report that constitutively active microRNA-31 (miR-31) is a positive regulator of TGF-β-induced EndMT. Although the expression is not induced by TGF-β, miR-31 is required for induction of mesenchymal genes including α-SMA, actin reorganization and MRTF-A activation during EndMT. We identified VAV3, a regulator of actin remodeling and MRTF-A activity, as a miR-31 target. Global transcriptome analysis further showed that miR-31 positively regulates EndMT-associated unique secretory phenotype (EndMT-SP) characterized by induction of multiple inflammatory chemokines and cytokines including CCL17, CX3CL1, CXCL16, IL-6 and Angptl2. As a mechanism for this phenomenon, TGF-β and miR-31 suppress Stk40, a negative regulator of NF-κB pathway. Interestingly, TGF-β induces alternative polyadenylation (APA)-coupled miR-31-dependent Stk40 suppression without concomitant miR-31 induction, and APA-mediated exclusion of internal poly(A) sequence in Stk40 3'UTR enhances target efficiency of Stk40. Finally, miR-31 functions as a molecular hub to integrate TGF-β and TNF-α signaling to enhance EndMT. These data confirm that constitutively active microRNAs, as well as inducible microRNAs, serve as phenotypic modifiers interconnected with transcriptome dynamics during EndMT. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  14. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; ...

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  15. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paugh, Steven W.; Coss, David R.; Bao, Ju

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  16. MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin

    PubMed Central

    Zhang, Lei; Yang, Hai-Ping; Wang, Lei; Ding, Di; Chen, Qi; Yang, Wen-Lin; Ren, Ke-Han; Zhou, Dan-Mei; Zou, Qiang; Jin, Yi-Ting; Liu, Xiu-Ping

    2016-01-01

    Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3′-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer. PMID:27229534

  17. MicroRNA-134 plasma levels before and after treatment with valproic acid for epilepsy patients

    PubMed Central

    Wang, Xiaofeng; Luo, Yifeng; Liu, Shuangxi; Tan, Liming; Wang, Sanhu; Man, Rongyong

    2017-01-01

    Background Temporal lobe epilepsy is the second most common neurological disorders characterized by recurrent spontaneous seizures. MicroRNAs play a vital role in regulating synaptic plasticity, brain development and post-transcriptional expression of proteins. In both animal models of epilepsy and human patients, miR-134, a brain-specific microRNA has recently been identified as a potential regulator of epileptogenesis. Methods microRNA identified as targets for the actions of valproic acid (VPA) are known to have important effects in brain function. In this study, 59 new-onset epilepsy patients and 20 controls matched by sex and age were enrolled. Patients with a score < 3 were allocated into the mild group, 3-5 into the moderate group and >5 into the severe group. The plasma miRNA-134 level was quantitatively measured using real-time PCR. Results Plasma miRNA-134 level in new-onset epilepsy patients was significantly up-regulated when compared with that in healthy controls, and then considerably down-regulated after oral intake of valproic acid medication. The up-regulated plasma miRNA-134 levels may be directly associated with the pathophysiology and severity of epilepsy. Conclusion Plasma miRNA-134 in epilepsy may be considered as a potential peripheral biomarker that responds to the incidence of epilepsy and associates with use of anti-epilepsy drugs. PMID:29069823

  18. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression.

    PubMed

    Jiang, J-J; Liu, C-M; Zhang, B-Y; Wang, X-W; Zhang, M; Saijilafu; Zhang, S-R; Hall, P; Hu, Y-W; Zhou, F-Q

    2015-08-27

    MicroRNAs are emerging to be important epigenetic factors that control axon regeneration. Here, we report that microRNA-26a (miR-26a) is a physiological regulator of mammalian axon regeneration in vivo. We demonstrated that endogenous miR-26a acted to target specifically glycogen synthase kinase 3β (GSK3β) in adult mouse sensory neurons in vitro and in vivo. Inhibition of endogenous miR-26a in sensory neurons impaired axon regeneration in vitro and in vivo. Moreover, the regulatory effect of miR-26a was mediated by increased expression of GSK3β because downregulation or pharmacological inhibition of GSK3β fully rescued axon regeneration. Our results also suggested that the miR-26a-GSK3β pathway regulated axon regeneration at the neuronal soma by controlling gene expression. We provided biochemical and functional evidences that the regeneration-associated transcription factor Smad1 acted downstream of miR-26a and GSK3β to control sensory axon regeneration. Our study reveals a novel miR-26a-GSK3β-Smad1 signaling pathway in the regulation of mammalian axon regeneration. Moreover, we provide the first evidence that, in addition to inhibition of GSK3β kinase activity, maintaining a lower protein level of GSK3β in neurons by the microRNA is necessary for efficient axon regeneration.

  19. Role of Dicer1 in thyroid cell proliferation and differentiation.

    PubMed

    Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2017-01-01

    DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.

  20. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    PubMed Central

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  1. Identification of miRNAs during mouse postnatal ovarian development and superovulation.

    PubMed

    Khan, Hamid Ali; Zhao, Yi; Wang, Li; Li, Qian; Du, Yu-Ai; Dan, Yi; Huo, Li-Jun

    2015-07-08

    MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. Therefore, tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes. To investigate the role of microRNAs during ovarian development and folliculogenesis we sequenced eight different libraries using Illumina deep sequencing technology. Different developmental stages were selected to explore miRNAs expression pattern at different stages of gonadal maturation with/without treatment of PMSG/hCG for superovulation. From massive sequencing reads, clean reads of 16-26 bp were selected for further analysis of differential expression analysis and novel microRNA annotation. Expression analysis of all miRNAs at different developmental stages showed that some miRNAs were present ubiquitously while others were differentially expressed at different stages. Among differentially expressed miRNAs we reported 61 miRNAs with a fold change of more than 2 at different developmental stages among all libraries. Among the up-regulated miRNAs, mmu-mir-1298 had the highest fold change with 4.025 while mmu-mir-150 was down-regulated more than 3 fold. Furthermore, we found 2659 target genes for 20 differentially expressed microRNAs using seven different target predictions programs (DIANA-mT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR5, TargetScan). Analysis of the predicted targets showed certain ovary specific genes targeted by single or multiple microRNAs. Furthermore, pathway annotation and Gene ontology showed involvement of these microRNAs in basic cellular process. These results suggest the presence of different miRNAs at different stages of ovarian development and superovulation. Potential role of these microRNAs was elucidated using bioinformatics tools in regulation of different pathways, biological functions and cellular components underlying ovarian development and superovulation. These results provide a framework for extended analysis of miRNAs and their roles during ovarian development and superovulation. Furthermore, this study provides a base for characterization of individual miRNAs to discover their role in ovarian development and female fertility.

  2. Physiological Adjustments and Circulating MicroRNA Reprogramming Are Involved in Early Acclimatization to High Altitude in Chinese Han Males

    PubMed Central

    Liu, Bao; Huang, He; Wang, Shou-Xian; Wu, Gang; Xu, Gang; Sun, Bing-Da; Zhang, Er-Long; Gao, Yu-Qi

    2016-01-01

    Background: Altitude acclimatization is a physiological process that restores oxygen delivery to the tissues and promotes oxygen use under high altitude hypoxia. High altitude sickness occurs in individuals without acclimatization. Unraveling the molecular underpinnings of altitude acclimatization could help understand the beneficial body responses to high altitude hypoxia as well as the altered biological events in un-acclimatized individuals. This study assessed physiological adjustments and circulating microRNA (cmiRNA) profiles in individuals exposed to high altitude, aiming to explore altitude acclimatization in humans. Methods: Ninety volunteers were enrolled in this study. Among them, 22 individuals provided samples for microRNA arrays; 68 additional individuals constituted the validation set. Un-acclimatized individuals were identified by the Lake Louise Scoring System. Thirty-three phenotypes were recorded pre- and post-exposure to high altitude, including stress hormones, lipid profiles, hematological indices, myocardial enzyme spectrum, and liver and kidney function related enzymes. CmiRNA expression profiles were assessed using miRCURYTM LNA Array (v.18.0) screening, with data validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Then, associations of plasma microRNA expression with physiological adjustments were evaluated. The biological relevance of the main differentially expressed cmiRNAs was explored by bioinformatics prediction. Results: Nineteen of the 33 phenotypes were significantly altered during early altitude acclimatization, including hematological indices, lipid profiles, and stress hormones; meanwhile, 86 cmiRNAs (79 up-regulated and 7 down-regulated) showed differential expression with statistical significance. Among them, 32 and 25 microRNAs were strongly correlated with low-density lipoprotein-cholesterol and total cholesterol elevations, respectively. In addition, 22 microRNAs were closely correlated with cortisol increase. In un-acclimatized individuals, 55 cmiRNAs were up-regulated and 36 down-regulated, compared with acclimatized individuals. The HIF signaling pathway was suppressed in un-acclimatized individuals. Conclusion: Physiological adjustments, including the hematological system, stress hormones, and lipid molecules contributed to early altitude acclimatization, and showed strong correlations with cmiRNA reprogramming. Moreover, acclimatized and un-acclimatized individuals showed different cmiRNA profile. Suppression of the HIF-1 signaling pathway by microRNA regulation may play a key role in the pathogenesis of un-acclimatization with high altitude hypoxia. PMID:27994555

  3. A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2017-01-01

    MicroRNAs (miRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of miRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of miRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of miRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian miRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how miRNAs contribute to differentiation of stem cells and how dysregulation of miRNAs contributes to the development of malignancy, by providing examples of specific miRNAs that function as oncogenes or tumor suppressors, as well as of defects in miRNA processing. Finally, we will discuss the promise of miRNA-based therapeutics and challenges for the future study of disease-causing miRNAs. PMID:28838543

  4. Evaluation of microRNA Stability in Plasma and Serum from Healthy Dogs.

    PubMed

    Enelund, Lars; Nielsen, Lise N; Cirera, Susanna

    2017-01-01

    Early and specific detection of cancer is of great importance for successful treatment of the disease. New biomarkers, such as microRNAs, could improve treatment efficiency and survival ratio. In human medicine, deregulation of microRNA profiles in circulation has shown great potential as a new type of biomarker for cancer diagnostics. There are, however, few studies of circulating microRNAs in dogs. Extracellular circulating microRNAs have shown a high level of stability in human blood and other body fluids. Nevertheless, there are still important issues to be solved before microRNAs can be applied routinely as a clinical tool, one of them being their stability over time in media commonly used for blood sampling. Evaluation of the stability of microRNA levels in plasma and serum from healthy dogs after storage at room temperature for different time points before being processed. The levels of four microRNAs (cfa-let-7a, cfa-miR-16, cfa-miR-23a and cfa-miR-26a) known to be stably expressed from other canine studies, have been measured by quantitative real-time PCR (qPCR). MicroRNA levels were found sufficiently stable for gene profiling in serum- and plasma stored at room temperature for 1 hour but not for samples stored at room temperature for 24 hours. Storage at room temperature of serum and plasma samples intended for microRNA profiling should be kept for a minimum period of time before proceeding with RNA isolation. For the four microRNAs investigated in the present study, we did not find significant differences in microRNA levels between serum and plasma samples from the same time point. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer.

    PubMed

    de Foucher, Tiphaine; Sbeih, Maria; Uzan, Jenifer; Bendifallah, Sofiane; Lefevre, Marine; Chabbert-Buffet, Nathalie; Aractingi, Selim; Uzan, Catherine; Abd Alsalam, Issam; Mitri, Rana; Fontaine, Romain H; Daraï, Emile; Haddad, Bassam; Méhats, Céline; Ballester, Marcos; Canlorbe, Geoffroy; Touboul, Cyril

    2018-05-21

    Actual European pathological classification of early-stage endometrial cancer (EC) may show insufficient accuracy to precisely stratify recurrence risk, leading to potential over or under treatment. Micro-RNAs are post-transcriptional regulators involved in carcinogenic mechanisms, with some micro-RNA patterns of expression associated with EC characteristics and prognosis. We previously demonstrated that downregulation of micro-RNA-184 was associated with lymph node involvement in low-risk EC (LREC). The aim of this study was to evaluate whether micro-RNA signature in tumor tissues from LREC women can be correlated with the occurrence of recurrences. MicroRNA expression was assessed by chip analysis and qRT-PCR in 7 formalin-fixed paraffin-embedded (FFPE) LREC primary tumors from women whose follow up showed recurrences (R+) and in 14 FFPE LREC primary tumors from women whose follow up did not show any recurrence (R-), matched for grade and age. Various statistical analyses, including enrichment analysis and a minimum p-value approach, were performed. The expression levels of micro-RNAs-184, -497-5p, and -196b-3p were significantly lower in R+ compared to R- women. Women with a micro-RNA-184 fold change < 0.083 were more likely to show recurrence (n = 6; 66%) compared to those with a micro-RNA-184 fold change > 0.083 (n = 1; 8%), p = 0.016. Women with a micro-RNA-196 fold change < 0.56 were more likely to show recurrence (n = 5; 100%) compared to those with a micro-RNA-196 fold change > 0.56 (n = 2; 13%), p = 0.001. These findings confirm the great interest of micro-RNA-184 as a prognostic tool to improve the management of LREC women.

  6. Upregulation of MicroRNA-4262 Targets Kaiso (ZBTB33) to Inhibit the Proliferation and EMT of Cervical Cancer Cells.

    PubMed

    Feng, Jing

    2017-08-11

    More and more studies have reported that dysregulation of microRNAs (miRNAs) lead to the proliferation and EMT of multiple cancers. Recently, several reports have demonstrated that dysregulation of miR-4262 is in numerous cancers. However, its role and precise mechanism in human cervical cancer (CC) have not been well clarified. Hence, my study was aim to explore the biological roles and precise mechanisms of miR-4262 in CC cell lines. In my study, I found that the level of miR-4262 is significantly decreased in CC tissues and cell lines. Moreover, decreased expression of miR-4262 was closely related to increased expression of Kaiso (ZBTB33) that belongs to the BTB/POZ family in CC tissues and cell lines. The proliferation and EMT of CC cells were inhibited by miR-4262 mimic. However, down-regulation of miR-4262 enhanced the proliferation and EMT of CC cells. Next, bioinformatics analysis predicted that miR-4262 might directly target the Kaiso gene. Besides, luciferase reporter assay had confirmed this result. Moreover, introduction of Kaiso in CC cells partially blocked the effects of miR-4262 mimic. In conclusion, miR-4262 suppressed the proliferation and EMT of CC cells by directly down-regulation of Kaiso.

  7. Inhibition of microRNA-153 protects neurons against ischemia/reperfusion injury in an oxygen-glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO-1 signaling.

    PubMed

    Ji, Qiong; Gao, Jianbo; Zheng, Yan; Liu, Xueli; Zhou, Qiangqiang; Shi, Canxia; Yao, Meng; Chen, Xia

    2017-07-01

    MicroRNAs are emerging as critical regulators in cerebral ischemia/reperfusion injury; however, their exact roles remain poorly understood. miR-153 is reported to be a neuron-related miRNA involved in neuroprotection. In this study, we aimed to investigate the precise role of miR-153 in regulating neuron survival during cerebral ischemia/reperfusion injury using an oxygen-glucose deprivation and reoxygenation (OGD/R) cellular model. We found that miR-153 was significantly upregulated in neurons subjected to OGD/R treatment. Inhibition of miR-153 significantly attenuated OGD/R-induced injury and oxidative stress in neurons. Nuclear factor erythroid 2-related factor 2 (Nrf2) was identified as a target gene of miR-153. Inhibition of miR-153 significantly promoted the expression of Nrf2 and heme oxygenase-1 (HO-1). However, silencing of Nrf2 significantly blocked the protective effects of miR-153 inhibition. Our study indicates that the inhibition of miR-153 protects neurons against OGD/R-induced injury by regulating Nrf2/HO-1 signaling and suggests a potential therapeutic target for cerebral ischemia/reperfusion injury. © 2017 Wiley Periodicals, Inc.

  8. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond.

    PubMed

    Bakshi, Anshika; Chaudhary, Sandeep C; Rana, Mehtab; Elmets, Craig A; Athar, Mohammad

    2017-12-01

    Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. © 2017 Wiley Periodicals, Inc.

  9. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond

    PubMed Central

    Bakshi, Anshika; Chaudhary, Sandeep C.; Rana, Mehtab; Elmets, Craig A.; Athar, Mohammad

    2018-01-01

    Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10–100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. PMID:28574612

  10. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice.

    PubMed

    Feng, Chunlai; Tan, Mingming; Sun, Wenkui; Shi, Yi; Xing, Zheng

    2015-09-01

    The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites.

    PubMed

    Sheng, Peike; Fields, Christopher; Aadland, Kelsey; Wei, Tianqi; Kolaczkowski, Oralia; Gu, Tongjun; Kolaczkowski, Bryan; Xie, Mingyi

    2018-05-09

    MicroRNAs (miRNAs) are approximately 22 nucleotide (nt) long and play important roles in post-transcriptional regulation in both plants and animals. In animals, precursor (pre-) miRNAs are ∼70 nt hairpins produced by Drosha cleavage of long primary (pri-) miRNAs in the nucleus. Exportin-5 (XPO5) transports pre-miRNAs into the cytoplasm for Dicer processing. Alternatively, pre-miRNAs containing a 5' 7-methylguanine (m7G-) cap can be generated independently of Drosha and XPO5. Here we identify a class of m7G-capped pre-miRNAs with 5' extensions up to 39 nt long. The 5'-extended pre-miRNAs are transported by Exportin-1 (XPO1). Unexpectedly, a long 5' extension does not block Dicer processing. Rather, Dicer directly cleaves 5'-extended pre-miRNAs by recognizing its 3' end to produce mature 3p miRNA and extended 5p miRNA both in vivo and in vitro. The recognition of 5'-extended pre-miRNAs by the Dicer Platform-PAZ-Connector (PPC) domain can be traced back to ancestral animal Dicers, suggesting that this previously unrecognized Dicer reaction mode is evolutionarily conserved. Our work reveals additional genetic sources for small regulatory RNAs and substantiates Dicer's essential role in RNAi-based gene regulation.

  12. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  13. [Association between hypertension and serum microRNA21 and microRNA133a in ocean seamen].

    PubMed

    Lin, J B; Chai, W L; Zhang, J M; Wang, Y P; Lin, S W; Li, H Y; Wu, S Y

    2016-06-20

    To investigate the prevalence of hypertension in ocean seamen and major influencing factors, as well as the association between hypertension and serum microRNA21 and microRNA133a. Health examination and a questionnaire survey were performed for 780 ocean seamen who underwent physical examination in an international travel healthcare center in Fujian, China from January to June, 2014. TaqMan RT-qPCR was used to measure the serum levels of microRNA21 and microRNA133a in seamen with hypertension. The prevalence of hypertension differed significantly between the ocean seamen with different ages, education levels, marital status, body mass index (BMI) values, drinking frequencies, and numbers of sailing years (P<0.05). The prevalence rate of hypertension in the ocean seamen increased with the increasing drinking frequency (χ(2)=9.02, P<0.05) , decreased with the increase in degree of education (χ(2)=11.578, P<0.05) , and increased with the increase in the number of sailing years (χ(2)=28.06, P<0.05). The hypertensive ocean seamen had significantly higher expression levels of microRNA21 and MicroRNA133a than the healthy ocean seamen (microRNA21: 7.87±5.46 vs 1.03±0.80, P<0.05; MicroRNA133a: 7.45±1.94 vs 4.52±1.15, P<0.05). The multivariate analysis showed that a high level of microRNA21 (OR=1.61, 95% CI: 1.22~2.11) , a high level of microRNA133a (OR=1.52, 95% CI: 1.24~1.87) , drinking (OR=1.64, 95% CI: 1.08~2.50) , overweight based on BMI (OR=1.18, 95%CI: 1.07~1.30) , and many sailing years (OR=2.89, 95% CI: 1.14~7.30) were risk factors for hypertension. The prevention and treatment of hypertension in ocean seamen should be enhanced. Excessive drinking should be controlled, and sailing time should be arranged reasonably. The microRNA21 and microRNA133a may be associated with the development and progression of hypertension in ocean seamen.

  14. Computational analysis of microRNA function in heart development.

    PubMed

    Liu, Ganqiang; Ding, Min; Chen, Jiajia; Huang, Jinyan; Wang, Haiyun; Jing, Qing; Shen, Bairong

    2010-09-01

    Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.

  15. Post-transcriptional Regulation of Genes Related to Biological Behaviors of Gastric Cancer by Long Noncoding RNAs and MicroRNAs

    PubMed Central

    Liu, Wenjing; Ma, Rui; Yuan, Yuan

    2017-01-01

    Noncoding RNAs play critical roles in regulating protein-coding genes and comprise two major classes: long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs regulate gene expression at transcriptional, post-transcriptional, and epigenetic levels via multiple action modes. LncRNAs can also function as endogenous competitive RNAs for miRNAs and indirectly regulate gene expression post-transcriptionally. By binding to the 3'-untranslated regions (3'-UTR) of target genes, miRNAs post-transcriptionally regulate gene expression. Herein, we conducted a review of post-transcriptional regulation by lncRNAs and miRNAs of genes associated with biological behaviors of gastric cancer. PMID:29187891

  16. Overview of research on Bombyx mori microRNA

    PubMed Central

    Wang, Xin; Tang, Shun-ming; Shen, Xing-jia

    2014-01-01

    Abstract MicroRNAs (miRNAs) constitute some of the most significant regulatory factors involved at the post-transcriptional level after gene expression, contributing to the modulation of a large number of physiological processes such as development, metabolism, and disease occurrence. This review comprehensively and retrospectively explores the literature investigating silkworm, Bombyx mori L. (Lepidoptera: Bombicidae), miRNAs published to date, including discovery, identification, expression profiling analysis, target gene prediction, and the functional analysis of both miRNAs and their targets. It may provide experimental considerations and approaches for future study of miRNAs and benefit elucidation of the mechanisms of miRNAs involved in silkworm developmental processes and intracellular activities of other unknown non-coding RNAs. PMID:25368077

  17. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain

    PubMed Central

    Fukunaga, Ryuya; Colpan, Cansu; Han, Bo W; Zamore, Phillip D

    2014-01-01

    In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5′ terminal phosphate and a two-nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme. PMID:24488111

  18. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  19. In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA

    PubMed Central

    La Rocca, Gaspare; Olejniczak, Scott H.; González, Alvaro J.; Briskin, Daniel; Vidigal, Joana A.; Spraggon, Lee; DeMatteo, Raymond G.; Radler, Megan R.; Lindsten, Tullia; Ventura, Andrea; Tuschl, Thomas; Leslie, Christina S.; Thompson, Craig B.

    2015-01-01

    MicroRNAs repress mRNA translation by guiding Argonaute proteins to partially complementary binding sites, primarily within the 3′ untranslated region (UTR) of target mRNAs. In cell lines, Argonaute-bound microRNAs exist mainly in high molecular weight RNA-induced silencing complexes (HMW-RISC) associated with target mRNA. Here we demonstrate that most adult tissues contain reservoirs of microRNAs in low molecular weight RISC (LMW-RISC) not bound to mRNA, suggesting that these microRNAs are not actively engaged in target repression. Consistent with this observation, the majority of individual microRNAs in primary T cells were enriched in LMW-RISC. During T-cell activation, signal transduction through the phosphoinositide-3 kinase–RAC-alpha serine/threonine-protein kinase–mechanistic target of rapamycin pathway increased the assembly of microRNAs into HMW-RISC, enhanced expression of the glycine-tryptophan protein of 182 kDa, an essential component of HMW-RISC, and improved the ability of microRNAs to repress partially complementary reporters, even when expression of targeting microRNAs did not increase. Overall, data presented here demonstrate that microRNA-mediated target repression in nontransformed cells depends not only on abundance of specific microRNAs, but also on regulation of RISC assembly by intracellular signaling. PMID:25568082

  20. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus.

    PubMed

    Wang, Jie-Mei; Tao, Jun; Chen, Dan-Dan; Cai, Jing-Jing; Irani, Kaikobad; Wang, Qinde; Yuan, Hong; Chen, Alex F

    2014-01-01

    Vascular precursor cells with angiogenic potentials are important for tissue repair, which is impaired in diabetes mellitus. MicroRNAs are recently discovered key regulators of gene expression, but their role in vascular precursor cell-mediated angiogenesis in diabetes mellitus is unknown. We tested the hypothesis that the microRNA miR-27b rescues impaired bone marrow-derived angiogenic cell (BMAC) function in vitro and in vivo in type 2 diabetic mice. BMACs from adult male type 2 diabetic db/db and from normal littermate db/+ mice were used. miR-27b expression was decreased in db/db BMACs. miR-27b mimic improved db/db BMAC function, including proliferation, adhesion, tube formation, and delayed apoptosis, but it did not affect migration. Elevated thrombospondin-1 (TSP-1) protein in db/db BMACs was suppressed on miR-27b mimic transfection. Inhibition of miR-27b in db/+ BMACs reduced angiogenesis, which was reversed by TSP-1 small interfering RNA (siRNA). miR-27b suppressed the pro-oxidant protein p66(shc) and mitochondrial oxidative stress, contributing to its protection of BMAC function. miR-27b also suppressed semaphorin 6A to improve BMAC function in diabetes mellitus. Luciferase binding assay suggested that miR-27b directly targeted TSP-1, TSP-2, p66(shc), and semaphorin 6A. miR-27b improved topical cell therapy of diabetic BMACs on diabetic skin wound closure, with a concomitant augmentation of wound perfusion and capillary formation. Normal BMAC therapy with miR-27b inhibition demonstrated reduced efficacy in wound closure, perfusion, and capillary formation. Local miR-27b delivery partly improved wound healing in diabetic mice. miR-27b rescues impaired BMAC angiogenesis via TSP-1 suppression, semaphorin 6A expression, and p66shc-dependent mitochondrial oxidative stress and improves BMAC therapy in wound healing in type 2 diabetic mice.

  1. 7-Ketocholesterol inhibits isocitrate dehydrogenase 2 expression and impairs endothelial function via microRNA-144.

    PubMed

    Fu, Xiaodong; Huang, Xiuwei; Li, Ping; Chen, Weiyu; Xia, Min

    2014-06-01

    Oxysterol is associated with the induction of endothelial oxidative stress and impaired endothelial function. Mitochondria play a central role in oxidative energy metabolism and the maintenance of proper redox status. The purpose of this study was to determine the effects and mechanisms of 7-ketocholesterol (7-KC) on isocitrate dehydrogenase 2 (IDH2) and its impact on endothelial function in both human aortic endothelial cells (HAECs) and C57BL/6J mice. HAECs treated with 7-KC showed significant reductions of IDH2 mRNA and protein levels and enzyme activity, leading to decreased NADPH concentration and an increased ratio of reduced-to-oxidized glutathione in the mitochondria. 7-KC induced the expression of a specific microRNA, miR-144, which in turn targets and downregulates IDH2. In silico analysis predicted that miR-144 could bind to the 3'-untranslated region of IDH2 mRNA. Overexpression of miR-144 decreased the expression of IDH2 and the levels of NADPH. A complementary finding is that a miR-144 inhibitor increased the mRNA and protein expression levels of IDH2. Furthermore, miR-144 level was elevated in HAECs in response to 7-KC. Anti-Ago1/2 immunoprecipitation coupled with a real-time polymerase chain reaction assay revealed that 7-KC increased the functional targeting of miR-144/IDH2 mRNA in HAECs. Infusion of 7-KC in vivo decreased vascular IDH2 expression and impaired vascular reactivity via miR-144. 7-KC controls miR-144 expression, which in turn decreases IDH2 expression and attenuates NO bioavailability to impair endothelial homeostasis. The newly identified 7-KC-miR-144-IDH2 pathway may contribute to atherosclerosis progression and provides new insight into 7-KC function and microRNA biology in cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo

    PubMed Central

    Harvey, Jackson D.; Jena, Prakrit V.; Baker, Hanan A.; Zerze, Gül H.; Williams, Ryan M.; Galassi, Thomas V.; Roxbury, Daniel; Mittal, Jeetain

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice. PMID:28845337

  4. Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass (Panicum virgatum).

    PubMed

    Xie, Qi; Liu, Xue; Zhang, Yinbing; Tang, Jinfu; Yin, Dedong; Fan, Bo; Zhu, Lihuang; Han, Liebao; Song, Guilong; Li, Dayong

    2017-01-01

    Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass ( Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a , encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene ( PvPCF5 ) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.

  5. MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells.

    PubMed

    Molnár, Viktor; Érsek, Barbara; Wiener, Zoltán; Tömböl, Zsófia; Szabó, Péter M; Igaz, Péter; Falus, András

    2012-03-01

    MicroRNAs provide an additional layer in the regulation of gene expression acting as repressors with several targets at the posttranscriptional level. This study describes microRNA expression patterns during differentiation and activation of mast cells. The expression levels of 567 different mouse miRNAs were compared by microarray between c-Kit+ committed progenitors, mucosal mast cells, resting and IgE-crosslinked BMMCs in vitro. The strongest upregulation of miR-132 upon IgE-mediated activation was validated in human cord blood-derived mast cells as well. HB-EGF growth factor also upregulated upon activation and was ranked high by more prediction algorithms. Co-transfection of miR-132 mimicking precursor and the 3'UTR of human Hbegf-containing luciferase vector proves that the predicted binding site is functional. In line with this, neutralization of miR-132 by anti-miR inhibitor leads to sustained production of HB-EGF protein in activated mast cells. Our data provide a novel example for negative regulation of a growth factor by an upregulated miRNA. © Springer Basel AG 2011

  6. MicroRNA in Glioblastoma: An Overview

    PubMed Central

    Banelli, Barbara; Forlani, Alessandra; Allemanni, Giorgio; Morabito, Anna; Pistillo, Maria Pia

    2017-01-01

    Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor. PMID:29234674

  7. mirEX: a platform for comparative exploration of plant pri-miRNA expression data.

    PubMed

    Bielewicz, Dawid; Dolata, Jakub; Zielezinski, Andrzej; Alaba, Sylwia; Szarzynska, Bogna; Szczesniak, Michal W; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Karlowski, Wojciech M

    2012-01-01

    mirEX is a comprehensive platform for comparative analysis of primary microRNA expression data. RT-qPCR-based gene expression profiles are stored in a universal and expandable database scheme and wrapped by an intuitive user-friendly interface. A new way of accessing gene expression data in mirEX includes a simple mouse operated querying system and dynamic graphs for data mining analyses. In contrast to other publicly available databases, the mirEX interface allows a simultaneous comparison of expression levels between various microRNA genes in diverse organs and developmental stages. Currently, mirEX integrates information about the expression profile of 190 Arabidopsis thaliana pri-miRNAs in seven different developmental stages: seeds, seedlings and various organs of mature plants. Additionally, by providing RNA structural models, publicly available deep sequencing results, experimental procedure details and careful selection of auxiliary data in the form of web links, mirEX can function as a one-stop solution for Arabidopsis microRNA information. A web-based mirEX interface can be accessed at http://bioinfo.amu.edu.pl/mirex.

  8. A Carbon Nanotube Reporter of miRNA Hybridization Events In Vivo.

    PubMed

    Harvey, Jackson D; Jena, Prakrit V; Baker, Hanan A; Zerze, Gül H; Williams, Ryan M; Galassi, Thomas V; Roxbury, Daniel; Mittal, Jeetain; Heller, Daniel A

    2017-01-01

    MicroRNAs and other small oligonucleotides in biofluids are promising disease biomarkers, yet conventional assays require complex processing steps that are unsuitable for point-of-care testing or for implantable or wearable sensors. Single-walled carbon nanotubes are an ideal material for implantable sensors, owing to their emission in the near-infrared spectral region, photostability and exquisite sensitivity. Here, we report an engineered carbon-nanotube-based sensor capable of real-time optical quantification of hybridization events of microRNA and other oligonucleotides. The mechanism of the sensor arises from competitive effects between displacement of both oligonucleotide charge groups and water from the nanotube surface, which result in a solvatochromism-like response. The sensor, which allows for detection via single-molecule sensor elements and for multiplexing by using multiple nanotube chiralities, can monitor toehold-based strand-displacement events, which reverse the sensor response and regenerate the sensor complex. We also show that the sensor functions in whole urine and serum, and can non-invasively measure DNA and microRNA after implantation in live mice.

  9. A microRNA feedback loop regulates global microRNA abundance during aging.

    PubMed

    Inukai, Sachi; Pincus, Zachary; de Lencastre, Alexandre; Slack, Frank J

    2018-02-01

    Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1 /Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline. © 2018 Inukai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Dissecting microRNA dysregulation in age-related macular degeneration: new targets for eye gene therapy.

    PubMed

    Askou, Anne Louise; Alsing, Sidsel; Holmgaard, Andreas; Bek, Toke; Corydon, Thomas J

    2018-02-01

    MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Developing microRNA therapeutics.

    PubMed

    van Rooij, Eva; Purcell, Angela L; Levin, Arthur A

    2012-02-03

    Rarely a new research area has gotten such an overwhelming amount of attention as have microRNAs. Although several basic questions regarding their biological principles still remain to be answered, many specific characteristics of microRNAs in combination with compelling therapeutic efficacy data and a clear involvement in human disease have triggered the biotechnology community to start exploring the possibilities of viewing microRNAs as therapeutic entities. This review serves to provide some general insight into some of the current microRNAs targets, how one goes from the initial bench discovery to actually developing a therapeutically useful modality, and will briefly summarize the current patent landscape and the companies that have started to explore microRNAs as the next drug target.

  12. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer

    PubMed Central

    Zhao, Zhen-Jun; Shen, Jun

    2017-01-01

    Abstract Circular RNAs (circRNAs) are long, non-coding RNAs that result from the non-canonical splicing of linear pre-mRNAs. However, the characteristics and the critical role of circRNA in co-/post-transcriptional regulation were not well recognized until the “microRNA sponge” function of circRNA is discovered. Recent studies have mainly been devoted to the function of the circular RNA sponge for miR-7 (ciRS-7) and sex-determining region Y (SRY) by targeting microRNA-7 (miR-7) and microRNA-138 (miR-138), respectively. In this review, we illustrate the specific role of circRNAs in a wide variety of cancers and in regulating the biological behavior of cancers via miR-7 or miR-138 regulation. Furthermore, circRNA, together with its gene silencing ability, also shows its potential in RNA interference (RNAi) therapy by binding to target RNAs, which provides a novel perspective in cancer treatment. Thus, this review concerns the biogenesis, biological function, oncogenesis, progression and possible therapies for cancer involving circRNAs. PMID:26649774

  13. MiR-980 is a memory suppressor microRNA that regulates the autism-susceptibility gene, A2bp1

    PubMed Central

    Guven-Ozkan, Tugba; Busto, Germain U.; Schutte, Soleil S.; Cervantes-Sandoval, Isaac; O’Dowd, Diane K.; Davis, Ronald L.

    2016-01-01

    SUMMARY MicroRNAs have been associated with many different biological functions but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement. PMID:26876166

  14. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    PubMed

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  15. microRNA profiles and functions in mosquitoes

    PubMed Central

    Zhou, Shuisen; Wang, Jingwen; Hu, Wei

    2018-01-01

    Mosquitoes are incriminated as vectors for many crippling diseases, including malaria, West Nile fever, Dengue fever, and other neglected tropical diseases (NTDs). microRNAs (miRNAs) can interact with multiple target genes to elicit biological functions in the mosquitoes. However, characterization and function of individual miRNAs and their potential targets have not been fully determined to date. We conducted a systematic review of published literature following PRISMA guidelines. We summarize the information about miRNAs in mosquitoes to better understand their metabolism, development, and responses to microorganisms. Depending on the study, we found that miRNAs were dysregulated in a species-, sex-, stage-, and tissue/organ-specific manner. Aberrant miRNA expressions were observed in development, metabolism, host-pathogen interactions, and insecticide resistance. Of note, many miRNAs were down-regulated upon pathogen infection. The experimental studies have expanded the identification of miRNA target from the 3′ untranslated regions (UTRs) of mRNAs of mosquitoes to the 5′ UTRs of mRNAs of the virus. In addition, we discuss current trends in mosquito miRNA research and offer suggestions for future studies. PMID:29718912

  16. MicroRNAs from the Planarian Schmidtea mediterranea: a model system for stem cell biology.

    PubMed

    Palakodeti, Dasaradhi; Smielewska, Magda; Graveley, Brenton R

    2006-09-01

    MicroRNAs (miRNAs) are approximately 22-nt RNA molecules that typically bind to the 3' untranslated regions of target mRNAs and function to either induce mRNA degradation or repress translation. miRNAs have been shown to play important roles in the function of stem cells and cell lineage decisions in a variety of organisms, including humans. Planarians are bilaterally symmetric metazoans that have the unique ability to completely regenerate lost tissues or organs. This regenerative capacity is facilitated by a population of stem cells known as neoblasts. Planarians are therefore an excellent model system for studying many aspects of stem cell biology. Here we report the cloning and initial characterization of 71 miRNAs from the planarian Schmidtea mediterranea. While several of the S. mediterranea miRNAs are members of miRNA families identified in other species, we also identified a number of planarian-specific miRNAs. This work lays the foundation for functional studies aimed at addressing the role of these miRNAs in regeneration, cell lineage decisions, and basic stem cell biology.

  17. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts

    PubMed Central

    Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C.; Chen, Yuqing; Bertin, Terry; Munivez, Elda; Campeau, Philippe M.; Tao, Jianning; Chen, Rui; Lee, Brendan H.

    2017-01-01

    Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. PMID:28397831

  18. Innovative electrochemical approach for an early detection of microRNAs.

    PubMed

    Lusi, E A; Passamano, M; Guarascio, P; Scarpa, A; Schiavo, L

    2009-04-01

    The recent findings of circulating cell-free tissue specific microRNAs in the systemic circulation and the potential of their use as specific markers of disease highlight the need to make microRNAs testing a routine part of medical care. At the present time, microRNAs are detected by long and laborious techniques such as Northern blot, RT-PCR, and microarrays. The originality of our work consists in performing microRNAs detection through an electrochemical genosensor using a label-free method. We were able to directly detect microRNAs without the need of PCR and a labeling reaction. The test is simple, very fast and ultrasensitive, with a detection limit of 0.1 pmol. Particularly feasible for a routine microRNAs detection in serum and other biological samples, our technical approach would be of great scientific value and become a common method for simple miRNAs routine detection in both clinical and research settings.

  19. TargetSpy: a supervised machine learning approach for microRNA target prediction.

    PubMed

    Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij

    2010-05-28

    Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org.

  20. TargetSpy: a supervised machine learning approach for microRNA target prediction

    PubMed Central

    2010-01-01

    Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila, suggesting that it may be applicable to a broad range of species. Moreover, we have demonstrated that the application of machine learning techniques in combination with upcoming deep sequencing data results in a powerful microRNA target site prediction tool http://www.targetspy.org. PMID:20509939

  1. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis

    PubMed Central

    Sun, Mengge; Zhou, Xiaoya; Chen, Lili; Huang, Shishu; Leung, Victor; Wu, Nan; Pan, Haobo; Zhen, Wanxin; Lu, William; Peng, Songlin

    2016-01-01

    MicroRNAs are involved in many cellular and molecular activities and played important roles in many biological and pathological processes, such as tissue formation, cancer development, diabetes, neurodegenerative diseases, and cardiovascular diseases. Recently, it has been reported that microRNAs can modulate the differentiation and activities of osteoblasts and osteoclasts, the key cells that are involved in bone remodeling process. Meanwhile, the results from our and other research groups showed that the expression profiles of microRNAs in the serum and bone tissues are significantly different in postmenopausal women with or without fractures compared to the control. Therefore, it can be postulated that microRNAs might play important roles in bone remodeling and that they are very likely to be involved in the pathological process of postmenopausal osteoporosis. In this review, we will present the updated research on the regulatory roles of microRNAs in osteoblasts and osteoclasts and the expression profiles of microRNAs in osteoporosis and osteoporotic fracture patients. The perspective of serum microRNAs as novel biomarkers in bone loss disorders such as osteoporosis has also been discussed. PMID:27073801

  2. mESAdb: microRNA Expression and Sequence Analysis Database

    PubMed Central

    Kaya, Koray D.; Karakülah, Gökhan; Yakıcıer, Cengiz M.; Acar, Aybar C.; Konu, Özlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data. PMID:21177657

  3. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  4. mESAdb: microRNA expression and sequence analysis database.

    PubMed

    Kaya, Koray D; Karakülah, Gökhan; Yakicier, Cengiz M; Acar, Aybar C; Konu, Ozlen

    2011-01-01

    microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language. The database primarily comprises mature microRNA sequences and their target data, along with selected human, mouse and zebrafish expression data sets. mESAdb analysis modules allow (i) mining of microRNA expression data sets for subsets of microRNAs selected manually or by motif; (ii) pair-wise multivariate analysis of expression data sets within and between taxa; and (iii) association of microRNA subsets with annotation databases, HUGE Navigator, KEGG and GO. The use of existing and customized R packages facilitates future addition of data sets and analysis tools. Furthermore, the ability to upload and analyze user-specified data sets makes mESAdb an interactive and expandable analysis tool for microRNA sequence and expression data.

  5. HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis.

    PubMed

    Wang, Shijun; Wu, Jian; You, Jieyun; Shi, Hongyu; Xue, Xiaoyu; Huang, Jiayuan; Xu, Lei; Jiang, Guoliang; Yuan, Lingyan; Gong, Xue; Luo, Haiyan; Ge, Junbo; Cui, Zhaoqiang; Zou, Yunzeng

    2018-05-01

    Heat shock transcription factor 1 (HSF1) deficiency aggravates cardiac remodeling under pressure overload. However, the mechanism is still unknown. Here we employed microRNA array analysis of the heart tissue of HSF1-knockout (KO) mice to investigate the potential roles of microRNAs in pressure overload-induced cardiac remodeling under HSF-1 deficiency, and the profiles of 478 microRNAs expressed in the heart tissues of adult HSF1-KO mice were determined. We found that the expression of 5 microRNAs was over 2-fold higher expressed in heart tissues of HSF1-KO mice than in those of wild-type (WT) control mice. Of the overexpressed microRNAs, miR-195a-3p had the highest expression level in HSF1-null endothelial cells (ECs). Induction with miR-195a-3p in ECs significantly suppressed CD31 and VEGF, promoted AngII-induced EC apoptosis, and impaired capillary-like tube formation. In vivo, the upregulation of miR-195a-3p accentuated cardiac hypertrophy, increased the expression of β-MHC and ANP, and compromised systolic function in mice under pressure overload induced by transverse aortic constriction (TAC). By contrast, antagonism of miR-195a-3p had the opposite effect on HSF1-KO mice. Further experiments confirmed that AMPKα2 was the direct target of miR-195a-3p. AMPKα2 overexpression rescued the reduction of eNOS and VEGF, and the impairment of angiogenesis that was induced by miR-195a-3p. In addition, upregulation of AMPKα2 in the myocardium of HSF1-null mice by adenovirus-mediated gene delivery enhanced CD31, eNOS and VEGF, reduced β-MHC and ANP, alleviated pressure overload-mediated cardiac hypertrophy and restored cardiac function. Our findings revealed that the upregulation of miR-195a-3p due to HSF1 deficiency impaired cardiac angiogenesis by regulating AMPKα2/VEGF signaling, which disrupted the coordination between the myocardial blood supply and the adaptive hypertrophic response and accelerated the transition from cardiac hypertrophy to heart failure in response to pressure overload. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Regulation of miRNAs by herbal medicine: An emerging field in cancer therapies.

    PubMed

    Mohammadi, Ali; Mansoori, Behzad; Baradaran, Behzad

    2017-02-01

    MicroRNAs' expression profiles have recently gained major attention as far as cancer research is concerned. MicroRNAs are able to inhibit target gene expression via binding to the 3' UTR of target mRNA, resulting in target mRNA cleavage or translation inhibition. MicroRNAs play significant parts in a myriad of biological processes; studies have proven, on the other hand, that aberrant microRNA expression is, more often than not, associated with the growth and progression of cancers. MicroRNAs could act as oncogenes (oncomir) or tumor suppressors and can also be utilized as biomarkers for diagnosis, prognosis, and cancer therapy. Recent studies have shown that such herbal extracts as Shikonin, Sinomenium acutum, curcumin, Olea europaea, ginseng, and Coptidis Rhizoma could alter microRNA expression profiles through inhibiting cancer cell development, activating the apoptosis pathway, or increasing the efficacy of conventional cancer therapeutics. Such findings patently suggest that the novel specific targeting of microRNAs by herbal extracts could complete the restriction of tumors by killing the cancerous cells so as to recover survival results in patients diagnosed with malignancies. In this review, we summarized the current research about microRNA biogenesis, microRNAs in cancer, herbal compounds with anti-cancer effects and novel strategies for employing herbal extracts in order to target microRNAs for a better treatment of patients diagnosed with cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observedmore » that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.« less

  8. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape.

    PubMed

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem-loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed.

  9. Regulation of Plant Microprocessor Function in Shaping microRNA Landscape

    PubMed Central

    Dolata, Jakub; Taube, Michał; Bajczyk, Mateusz; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia; Bielewicz, Dawid

    2018-01-01

    MicroRNAs are small molecules (∼21 nucleotides long) that are key regulators of gene expression. They originate from long stem–loop RNAs as a product of cleavage by a protein complex called Microprocessor. The core components of the plant Microprocessor are the RNase type III enzyme Dicer-Like 1 (DCL1), the zinc finger protein Serrate (SE), and the double-stranded RNA binding protein Hyponastic Leaves 1 (HYL1). Microprocessor assembly and its processing of microRNA precursors have been reported to occur in discrete nuclear bodies called Dicing bodies. The accessibility of and modifications to Microprocessor components affect microRNA levels and may have dramatic consequences in plant development. Currently, numerous lines of evidence indicate that plant Microprocessor activity is tightly regulated. The cellular localization of HYL1 is dependent on a specific KETCH1 importin, and the E3 ubiquitin ligase COP1 indirectly protects HYL1 from degradation in a light-dependent manner. Furthermore, proper localization of HYL1 in Dicing bodies is regulated by MOS2. On the other hand, the Dicing body localization of DCL1 is regulated by NOT2b, which also interacts with SE in the nucleus. Post-translational modifications are substantial factors that contribute to protein functional diversity and provide a fine-tuning system for the regulation of protein activity. The phosphorylation status of HYL1 is crucial for its activity/stability and is a result of the interplay between kinases (MPK3 and SnRK2) and phosphatases (CPL1 and PP4). Additionally, MPK3 and SnRK2 are known to phosphorylate SE. Several other proteins (e.g., TGH, CDF2, SIC, and RCF3) that interact with Microprocessor have been found to influence its RNA-binding and processing activities. In this minireview, recent findings on the various modes of Microprocessor activity regulation are discussed. PMID:29922322

  10. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis.

    PubMed

    Shelkovnikova, Tatyana A; Kukharsky, Michail S; An, Haiyan; Dimasi, Pasquale; Alexeeva, Svetlana; Shabir, Osman; Heath, Paul R; Buchman, Vladimir L

    2018-06-01

    Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA.

  11. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer.

    PubMed

    Rohan, Thomas; Ye, Kenny; Wang, Yihong; Glass, Andrew G; Ginsberg, Mindy; Loudig, Olivier

    2018-01-01

    MicroRNAs are endogenous, small non-coding RNAs that control gene expression by directing their target mRNAs for degradation and/or posttranscriptional repression. Abnormal expression of microRNAs is thought to contribute to the development and progression of cancer. A history of benign breast disease (BBD) is associated with increased risk of subsequent breast cancer. However, no large-scale study has examined the association between microRNA expression in BBD tissue and risk of subsequent invasive breast cancer (IBC). We conducted discovery and validation case-control studies nested in a cohort of 15,395 women diagnosed with BBD in a large health plan between 1971 and 2006 and followed to mid-2015. Cases were women with BBD who developed subsequent IBC; controls were matched 1:1 to cases on age, age at diagnosis of BBD, and duration of plan membership. The discovery stage (316 case-control pairs) entailed use of the Illumina MicroRNA Expression Profiling Assay (in duplicate) to identify breast cancer-associated microRNAs. MicroRNAs identified at this stage were ranked by the strength of the correlation between Illumina array and quantitative PCR results for 15 case-control pairs. The top ranked 14 microRNAs entered the validation stage (165 case-control pairs) which was conducted using quantitative PCR (in triplicate). In both stages, linear regression was used to evaluate the association between the mean expression level of each microRNA (response variable) and case-control status (independent variable); paired t-tests were also used in the validation stage. None of the 14 validation stage microRNAs was associated with breast cancer risk. The results of this study suggest that microRNA expression in benign breast tissue does not influence the risk of subsequent IBC.

  12. MicroRNA expression in benign breast tissue and risk of subsequent invasive breast cancer

    PubMed Central

    Ye, Kenny; Wang, Yihong; Ginsberg, Mindy; Loudig, Olivier

    2018-01-01

    MicroRNAs are endogenous, small non-coding RNAs that control gene expression by directing their target mRNAs for degradation and/or posttranscriptional repression. Abnormal expression of microRNAs is thought to contribute to the development and progression of cancer. A history of benign breast disease (BBD) is associated with increased risk of subsequent breast cancer. However, no large-scale study has examined the association between microRNA expression in BBD tissue and risk of subsequent invasive breast cancer (IBC). We conducted discovery and validation case-control studies nested in a cohort of 15,395 women diagnosed with BBD in a large health plan between 1971 and 2006 and followed to mid-2015. Cases were women with BBD who developed subsequent IBC; controls were matched 1:1 to cases on age, age at diagnosis of BBD, and duration of plan membership. The discovery stage (316 case-control pairs) entailed use of the Illumina MicroRNA Expression Profiling Assay (in duplicate) to identify breast cancer-associated microRNAs. MicroRNAs identified at this stage were ranked by the strength of the correlation between Illumina array and quantitative PCR results for 15 case-control pairs. The top ranked 14 microRNAs entered the validation stage (165 case-control pairs) which was conducted using quantitative PCR (in triplicate). In both stages, linear regression was used to evaluate the association between the mean expression level of each microRNA (response variable) and case-control status (independent variable); paired t-tests were also used in the validation stage. None of the 14 validation stage microRNAs was associated with breast cancer risk. The results of this study suggest that microRNA expression in benign breast tissue does not influence the risk of subsequent IBC. PMID:29432432

  13. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    PubMed

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Identification of direct target genes of miR-7, miR-9, miR-96, and miR-182 in the human breast cancer cell lines MCF-7 and MDA-MB-231.

    PubMed

    Moazzeni, Hamidreza; Najafi, Ali; Khani, Marzieh

    2017-08-01

    Some microRNAs have carcinogenic or tumor suppressive effects in breast cancer, which is the most common cancer in women worldwide. MiR-7 and miR-9 are tumor suppressor microRNAs, which induce apoptosis and inhibit proliferation in breast cancer cells. Moreover, miR-96 and miR-182 are onco-microRNAs that increase proliferation, migration, and tumorigenesis in breast cancer cells. This study aimed to identify the direct target genes of these four microRNAs in the human breast cancer cell lines MCF-7 and MDA-MB-231. Initially, bioinformatics tools were used to identify the target genes that have binding sites for miR-7, MiR-9, MiR-96, and miR-182 and are also associated with breast cancer. Subsequently, the findings of the bioinformatics analysis relating to the effects of these four microRNAs on the 3'-UTR activity of the potential target genes were confirmed using the dual luciferase assay in MCF-7 and MDA-MB-231 cells co-transfected with the vectors containing 3'-UTR segments of the target genes downstream of a luciferase coding gene and each of the microRNAs. Finally, the effects of microRNAs on the endogenous expression of potential target genes were assessed by the overexpression of each of the four microRNAs in MCF-7 and MDA-MB-231 cells. Respectively, three, three, three, and seven genes were found to have binding sites for miR-7, miR-9, miR-96, and miR-182 and were associated with breast cancer. The results of empirical studies including dual luciferase assays and real-time PCR confirmed that miR-7 regulates the expression of BRCA1 and LASP1; MiR-9 regulates the expression of AR; miR-96 regulates the expression of ABCA1; and miR-182 regulates the expression of NBN, TOX3, and LASP1. Taken together, our results suggest that the tumor suppressive effects of miR-7 may be mediated partly by regulating the expression of BRCA1 as a tumor suppressor gene in breast cancer. In addition, this microRNA and miR-182 may have effects on the nodal-positivity and tumor size of breast carcinoma through the regulation of LASP1. The tumor suppressive functions of miR-9 may be mediated partly by suppressing the expression of AR-an oncogene in breast cancer. Moreover, miR-96 may play an oncogenic role in breast cancer by suppressing the apoptosis through the regulation of ABCA1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Role of miRNAs in the Progression of Prostate Cancer from Androgen-Dependent to Androgen-Independent Stages

    DTIC Science & Technology

    2011-09-01

    Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer 2008; 122: 969-77. 4. Tong AW, Fulgham P, Jay C, et al. MicroRNA profile...Dutta A. Muscle-specific microRNA miR- 206 promotes muscle differentiation. J Cell Biol 2006; 174: 677-87. Appendices miR-99 family of microRNAs...2009; 4: 199-227. 3. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer 2008; 122: 969-77. 4. Tong

  16. Evolutionary relationships between miRNA genes and their activity.

    PubMed

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  17. Suppression of forkhead box Q1 by microRNA-506 represses the proliferation and epithelial-mesenchymal transition of cervical cancer cells.

    PubMed

    Zhang, Mingting; Xu, Qingli; Yan, Shufen; Li, Zhigang; Yan, Wei; Jia, Xiaojing

    2016-05-01

    MicroRNAs (miRNAs) play a pivotal role in cancer progression and development, representing novel therapeutic tools for cancer therapy. Forkhead box Q1 (FOXQ1) functions as an oncogene in various cancer types. However, the functional significance of FOXQ1 in cervical cancer remains unknown. In this study, we investigated the biological function of FOXQ1 in cervical cancer and tested whether or not FOXQ1 can be targeted and regulated by specific miRNAs. We found that FOXQ1 was highly expressed in cervical cancer cell lines. Knockdown of FOXQ1 by small interfering RNA (siRNA) significantly suppressed the proliferation and epithelial-mesenchymal transition (EMT) of cervical cancer cells. FOXQ1 was predicted as a target gene of microRNA-506 (miR-506), and this prediction was validated by dual-luciferase reporter assay. Quantitative real-time PCR and western blot analyses demonstrated that mRNA and protein expression was negatively regulated by miR-506. The expression of miR-506 was downregulated in cervical cancer tissues, and miR-506 expression was inversely correlated with FOXQ1 expression in cervical cancer. The overexpression of miR-506 dramatically suppressed the proliferation and EMT of cervical cancer cells that mimicked the suppression of FOXO1 siRNA. Furthermore, the restoration of FOXQ1 expression significantly reversed the inhibitory effect of miR-506. Overall, our study demonstrated that miR-506 inhibited the proliferation and EMT of cervical cancer cells by targeting FOXQ1 and provided evidence that the miR-506/FOXQ1 axis plays an important role in the pathogenesis of cervical cancer, representing potential molecular targets for the development of anticancer agents for cervical cancer treatment.

  18. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer.

    PubMed

    Li, Daojiang; Xia, Lu; Chen, Miao; Lin, Changwei; Wu, Hao; Zhang, Yi; Pan, Songqing; Li, Xiaorong

    2017-07-25

    MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, -133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.

  19. Investigative and extrapolative role of microRNAs' genetic expression in breast carcinoma.

    PubMed

    Usmani, Ambreen; Shoro, Amir Ali; Shirazi, Bushra; Memon, Zahida

    2016-01-01

    MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review.

  20. The expression of the Alzheimer’s Amyloid Precursor Protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans

    PubMed Central

    Niwa, Ryusuke; Zhou, Feng; Li, Chris; Slack, Frank J.

    2008-01-01

    Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by the accumulation of dense plaques in the brain, resulting in progressive dementia. A major plaque component is the β-amyloid peptide, which is a cleavage product of the amyloid precursor protein (APP). Studies of dominant inheritable familial AD support the hypothesis that APP is critical for AD development. On the other hand, the pathogenesis of amyloid plaque deposition in AD is thought to be the result of age-related changes with unknown mechanisms. Here we show that the Caenorhabditis elegans homolog of APP, APP-like-1 (apl-1), functions with and is under the control of molecules regulating developmental progression. In C. elegans, the timing of cell fate determination is controlled by the heterochronic genes, including let-7 microRNAs. C. elegans apl-1 shows significant genetic interactions with let-7 family microRNAs and let-7-targeted heterochronic genes, hbl-1, lin-41 and lin-42. apl-1 expression is upregulated during the last larval stage in hypodermal seam cells which is transcriptionally regulated by hbl-1, lin-41 and lin-42. Moreover, the levels of the apl-1 transcription are modulated by the activity of let-7 family microRNAs. Our works places apl-1 in a developmental timing pathway and may provide new insights into the time-dependent progression of AD. PMID:18262516

  1. Targeting Promoter-Associated Noncoding RNA In Vivo.

    PubMed

    Civenni, Gianluca

    2017-01-01

    There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.

  2. Novel strategies to enforce an epithelial phenotype in mesenchymal cells

    PubMed Central

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-01-01

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definion of several known regulators of E-cadherin expression, including ZEB1, HDAC1 and MMP14. We identified three new regulators (FLASH, CASP7 and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. Additionally, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a post-transcriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through post-transcriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  3. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway

    PubMed Central

    Zhang, Yan; Fan, Kai-Ji; Sun, Qiang; Chen, Ai-Zhong; Shen, Wen-Long; Zhao, Zhi-Hu; Zheng, Xiao-Fei; Yang, Xiao

    2012-01-01

    The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3′-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4. PMID:22821565

  4. miR-28 regulates the germinal center reaction and blocks tumor growth in preclinical models of non-Hodgkin lymphoma

    PubMed Central

    Bartolomé-Izquierdo, Nahikari; Mur, Sonia M.

    2017-01-01

    Non-Hodgkin lymphoma comprises a variety of neoplasms, many of which arise from germinal center (GC)-experienced B cells. microRNA-28 (miR-28) is a GC-specific miRNA whose expression is lost in numerous mature B-cell neoplasms. Here we show that miR-28 regulates the GC reaction in primary B cells by impairing class switch recombination and memory B and plasma cell differentiation. Deep quantitative proteomics combined with transcriptome analysis identified miR-28 targets involved in cell-cycle and B-cell receptor signaling. Accordingly, we found that miR-28 expression diminished proliferation in primary and lymphoma cells in vitro. Importantly, miR-28 reexpression in human Burkitt (BL) and diffuse large B-cell lymphoma (DLBCL) xenografts blocked tumor growth, both when delivered in viral vectors or as synthetic, clinically amenable, molecules. Further, the antitumoral effect of miR-28 is conserved in a primary murine in vivo model of BL. Thus, miR-28 replacement is uncovered as a novel therapeutic strategy for DLBCL and BL treatment. PMID:28188132

  5. COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation.

    PubMed

    Majumder, Mousumi; Landman, Erin; Liu, Ling; Hess, David; Lala, Peeyush K

    2015-06-01

    MicroRNAs (miRs) are small regulatory molecules emerging as potential biomarkers in cancer. Previously, it was shown that COX-2 expression promotes breast cancer progression via multiple mechanisms, including induction of stem-like cells (SLC), owing to activation of the prostaglandin E2 receptor EP4 (PTGER4). COX-2 overexpression also upregulated microRNA-526b (miR-526b), in association with aggressive phenotype. Here, the functional roles of miR-526b in breast cancer and the mechanistic role of EP4 signaling in miR-526b upregulation were examined. A positive correlation was noted between miR-526b and COX-2 mRNA expression in COX-2 disparate breast cancer cell lines. Stable overexpression of miR-526b in poorly metastatic MCF7 and SKBR3 cell lines resulted in increased cellular migration, invasion, EMT phenotype and enhanced tumorsphere formation in vitro, and lung colony formation in vivo in immunodeficient mice. Conversely, knockdown of miR-526b in aggressive MCF7-COX-2 and SKBR3-COX-2 cells reduced oncogenic functions and reversed the EMT phenotype, in vitro. Furthermore, it was determined that miR-526b expression is dependent on EP4 receptor activity and downstream PI3K-AKT and cyclic AMP (cAMP) signaling pathways. PI3K-AKT inhibitors blocked EP4 agonist-mediated miR-526b upregulation and tumorsphere formation in MCF7 and SKBR3 cells. NF-κB inhibitor abrogates EP agonist-stimulated miRNA expression in MCF7 and T47D cells, indicating that the NF-κB pathway is also involved in miR-526b regulation. In addition, inhibition of COX-2, EP4, PI3K, and PKA in COX-2-overexpressing cells downregulated miR-526b and its functions in vitro. Finally, miR-526b expression was significantly higher in cancerous than in noncancerous breast tissues and associated with reduced patient survival. In conclusion, miR-526b promotes breast cancer progression, SLC-phenotype through EP4-mediated signaling, and correlates with breast cancer patient survival. This study presents novel findings that miRNA 526b is a COX-2 upregulated, oncogenic miRNA promoting SLCs, the expression of which follows EP4 receptor-mediated signaling, and is a promising biomarker for monitoring and personalizing breast cancer therapy. ©2015 American Association for Cancer Research.

  6. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke

    PubMed Central

    Izzotti, Alberto; Longobardi, Mariagrazia; La Maestra, Sebastiano; Micale, Rosanna T.; Pulliero, Alessandra; Camoirano, Anna; Geretto, Marta; D'Agostini, Francesco; Balansky, Roumen; Miller, Mark Steven; Steele, Vernon E.; De Flora, Silvio

    2018-01-01

    Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies. PMID:29721069

  7. The prognostic value of a seven-microRNA classifier as a novel biomarker for the prediction and detection of recurrence in glioma patients.

    PubMed

    Chen, Wanghao; Yu, Qiang; Chen, Bo; Lu, Xingyu; Li, Qiaoyu

    2016-08-16

    Glioma is often diagnosed at a later stage, and the high risk of recurrence remains a major challenge. We hypothesized that the microRNA expression profile may serve as a biomarker for the prognosis and prediction of glioblastoma recurrence. We defined microRNAs that were associated with good and poor prognosis in 300 specimens of glioblastoma from the Cancer Genome Atlas. By analyzing microarray gene expression data and clinical information from three random groups, we identified 7 microRNAs that have prognostic and prognostic accuracy: microRNA-124a, microRNA-129, microRNA-139, microRNA-15b, microRNA-21, microRNA-218 and microRNA-7. The differential expression of these miRNAs was verified using an independent set of glioma samples from the Affiliated People's Hospital of Jiangsu University. We used the log-rank test and the Kaplan-Meier method to estimate correlations between the miRNA signature and disease-free survival/overall survival. Using the LASSO model, we observed a uniform significant difference in disease-free survival and overall survival between patients with high-risk and low-risk miRNA signature scores. Furthermore, the prognostic capability of the seven-miRNA signature was demonstrated by receiver operator characteristic curve analysis. A Circos plot was generated to examine the network of genes and pathways predicted to be targeted by the seven-miRNA signature. The seven-miRNA-based classifier should be useful in the stratification and individualized management of patients with glioma.

  8. Inhibiting MicroRNA-503 and MicroRNA-181d with Losartan Ameliorates Diabetic Nephropathy in KKAy Mice.

    PubMed

    Zhu, XinWang; Zhang, CongXiao; Fan, QiuLing; Liu, XiaoDan; Yang, Gang; Jiang, Yi; Wang, LiNing

    2016-10-22

    BACKGROUND Diabetic nephropathy (DN) is the most lethal diabetic microvascular complication; it is a major cause of renal failure, and an increasingly globally prominent healthcare problem. MATERIAL AND METHODS To identify susceptible microRNAs for the pathogenesis of DN and the targets of losartan treatment, microRNA arrays were employed to survey the glomerular microRNA expression profiles of KKAy mice treated with or without losartan. KKAy mice were assigned to either a losartan-treated group or a non-treatment group, with C57BL/6 mice used as a normal control. Twelve weeks after treatment, glomeruli from the mice were isolated. MicroRNA expression profiles were analyzed using microRNA arrays. Real-time PCR was used to confirm the results. RESULTS Losartan treatment improved albuminuria and the pathological lesions of KKAy mice. The expression of 10 microRNAs was higher, and the expression of 12 microRNAs was lower in the glomeruli of the KKAy untreated mice than that of the CL57BL/6 mice. The expression of 4 microRNAs was down-regulated in the glomeruli of the KKAy losartan-treated mice compared to that of the untreated mice. The expression of miRNA-503 and miRNA-181d was apparently higher in the glomeruli of the KKAy untreated mice, and was inhibited by losartan treatment. CONCLUSIONS The over-expression of miR-503 and miR-181d in glomeruli of KKAy mice may be responsible for the pathogenesis of DN and are potential therapeutic targets for DN.

  9. Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis.

    PubMed

    Hutchins, Elizabeth D; Eckalbar, Walter L; Wolter, Justin M; Mangone, Marco; Kusumi, Kenro

    2016-05-05

    Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated. MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip. Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.

  10. Expression patterns of micro-RNAs 146a, 181a, and 155 in subacute sclerosing panencephalitis.

    PubMed

    Yiş, Uluç; Tüfekçi, Uğur Kemal; Genç, Şermin; Çarman, Kürşat Bora; Bayram, Erhan; Topçu, Yasemin; Kurul, Semra Hız

    2015-01-01

    Subacute sclerosing panencephalitis is caused by persistent brain infection of mutated virus, showing inflammation, neurodegeneration, and demyelination. Although many factors are emphasized in the pathogenesis of subacute sclerosing panencephalitis, the exact mechanism of neurodegeneration remains unknown. Micro-RNAs are small, noncoding RNAs that regulate gene expression at the posttranscriptional levels. Micro-RNAs are essential for normal immune system development; besides they are also implicated in the pathogenesis of many chronic inflammatory disorders. The aim of this study is to investigate the expression patterns of micro-RNAs 146a, 181a, and 155 in peripheral blood mononuclear cells of patients with subacute sclerosing panencephalitis. We enrolled 39 patients with subacute sclerosing panencephalitis and 41 healthy controls. Quantitative analysis of micro-RNAs 146a, 181a, and 155 were performed using specific stem-loop primers followed by real-time polymerase chain reaction. All of 3 micro-RNAs were upregulated in subacute sclerosing panencephalitis patients. In addition, the level of micro-RNA 155 expression was higher in stage 3 patients. But, micro-RNA 146a and 181a expression levels showed no association or correlation with clinically relevant data. Alteration of peripheral blood mononuclear cell micro-RNAs in subacute sclerosing panencephalitis may shed new light on the pathogenesis of disease and may contribute to the aberrant systemic rise in mRNA levels in subacute sclerosing panencephalitis. © The Author(s) 2014.

  11. The Role of microRNAs in Bovine Infection and Immunity

    PubMed Central

    Lawless, Nathan; Vegh, Peter; O’Farrelly, Cliona; Lynn, David J.

    2014-01-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defense during infection is critical to understanding the etiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy. PMID:25505900

  12. The role of micro-RNAs in hepatocellular carcinoma: from molecular biology to treatment.

    PubMed

    D'Anzeo, Marco; Faloppi, Luca; Scartozzi, Mario; Giampieri, Riccardo; Bianconi, Maristella; Del Prete, Michela; Silvestris, Nicola; Cascinu, Stefano

    2014-05-19

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer deaths. microRNAs (miRNAs) are evolutionary conserved small non-coding RNA that negatively regulate gene expression and protein translation. Recent evidences have shown that they are involved in many biological processes, from development and cell-cycle regulation to apoptosis. miRNAs can behave as tumor suppressor or promoter of oncogenesis depending on the cellular function of their targets. Moreover, they are frequently dysregulated in HCC. In this review we summarize the latest findings of miRNAs regulation in HCC and their role as potentially diagnostic and prognostic biomarkers for HCC. We highlight development of miRNAs as potential therapeutic targets for HCC.

  13. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer

    PubMed Central

    Cekaite, Lina; Eide, Peter W.; Lind, Guro E.; Skotheim, Rolf I.; Lothe, Ragnhild A.

    2016-01-01

    Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression. PMID:26623728

  14. MicroRNAs in the intracellular space, regulation of organelle specific pathways in health and disease.

    PubMed

    Nguyen, Thao T; Brenu, Ekua W; Staines, Don R; Marshall-Gradisnik, Sonya M

    2014-01-01

    MicroRNAs (miRNA) are small (~22 nucleotide] non-coding RNA molecules originally characterised as nonsense or junk DNA. Emerging research suggests that these molecules have diverse regulatory roles in an array of molecular, cellular and physiological processes. MiRNAs are versatile and highly stable molecules, therefore, they are able to exist as intracellular or extracellular miRNAs. The purpose of this paper is to review the function and role of miRNAs in the intracellular space with specific focus on the interactions between miRNAs and organelles such as the mitochondria and the rough endoplasmic reticulum. Understanding the role of miRNAs in the intracellular space may be vital in understanding the mechanism of certain diseases.

  15. The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review.

    PubMed

    Mazeh, Haggi; Mizrahi, Ido; Ilyayev, Nadia; Halle, David; Brücher, Bjoern; Bilchik, Anton; Protic, Mladjan; Daumer, Martin; Stojadinovic, Alexander; Itzhak, Avital; Nissan, Aviram

    2013-01-01

    The discovery of microRNA, a group of regulatory short RNA fragments, has added a new dimension to the diagnosis and management of neoplastic diseases. Differential expression of microRNA in a unique pattern in a wide range of tumor types enables researches to develop a microRNA-based assay for source identification of metastatic disease of unknown origin. This is just one example of many microRNA-based cancer diagnostic and prognostic assays in various phases of clinical research.Since colorectal cancer (CRC) is a phenotypic expression of multiple molecular pathways including chromosomal instability (CIN), micro-satellite instability (MIS) and CpG islands promoter hypermethylation (CIMP), there is no one-unique pattern of microRNA expression expected in this disease and indeed, there are multiple reports published, describing different patterns of microRNA expression in CRC.The scope of this manuscript is to provide a comprehensive review of the scientific literature describing the dysregulation of and the potential role for microRNA in the management of CRC. A Pubmed search was conducted using the following MeSH terms, "microRNA" and "colorectal cancer". Of the 493 publications screened, there were 57 papers describing dysregulation of microRNA in CRC.

  16. MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine

    PubMed Central

    Smith, Bethany; Agarwal, Priyanka

    2017-01-01

    The high degree of conservation in microRNA from Caenorhabditis elegans to humans has enabled relatively rapid implementation of findings in model systems to the clinic. The convergence of the capacity for genomic screening being implemented in the prevailing precision medicine initiative and the capabilities of microRNA to address these changes holds significant promise. However, prostate, ovarian and breast cancers are heterogeneous and face issues of evolving therapeutic resistance. The transforming growth factor-beta (TGFβ) signaling axis plays an important role in the progression of these cancers by regulating microRNAs. Reciprocally, microRNAs regulate TGFβ actions during cancer progression. One must consider the expression of miRNA in the tumor microenvironment a source of biomarkers of disease progression and a viable target for therapeutic targeting. The differential expression pattern of microRNAs in health and disease, therapeutic response and resistance has resulted in its application as robust biomarkers. With two microRNA mimetics in ongoing restorative clinical trials, the paradigm for future clinical studies rests on the current observational trials to validate microRNA markers of disease progression. Some of today’s biomarkers can be translated to the next generation of microRNA-based therapies. PMID:28289080

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renzeng; Department of Orthopaedics, The No.3 People’s Hospital of Anyang City, Anyang 455000; Wang, Limin, E-mail: gu2keo@163.com

    Fibulin-4, an extracellular glycoprotein implicated in connective tissue development and elastic fiber formation, draws increasing focuses in cancer research. However, little is known about the underlying oncogenic roles of Fibulin-4 in human osteosarcoma (OS). In this study, by immunohistochemical analysis, upregulated expression of Fibulin-4 was found in the OS clinical specimens and cell lines compared to their normal counterparts. Fibulin-4 was positively correlated with the T stage of OS patients, and the proliferation index Ki67. Based on informatics analysis and functional verification, microRNA-137 was identified as a potential upstream regulator of Fibulin-4. Knockdown of Fibulin-4 or introduction of microRNA-137 inhibitedmore » cell proliferation and promoted cell apoptosis, and adverse effects were observed by overexpression of Fibulin-4. Furthermore, the tumor-suppressive functions of microRNA-137 were markedly abolished by restoration of Fibulin-4 expression in OS cells. Mechanistically, Fibulin-4 activated Wnt/β-Catenin pathway and promoted the expression of its downstream targets, including CCND2, c-Myc and VEGF. Taken together, Fibulin-4 plays critical neoplastic roles in tumor growth of human OS by activating Wnt/β-Catenin signaling and may represent a potential therapeutic target. -- Highlights: •Upregulated Fibulin-4 correlates tumor growth in human OS. •MicroRNA-137 is a critical regulator of Fibulin-4 expression. •Deregulated miR-137/Fibulin-4 axis promotes tumor growth of human OS. •Wnt/β-Catenin pathway is activated by Fibulin-4 stimulation.« less

  18. MicroRNA-7: A miRNA with expanding roles in development and disease.

    PubMed

    Horsham, Jessica L; Ganda, Clarissa; Kalinowski, Felicity C; Brown, Rikki A M; Epis, Michael R; Leedman, Peter J

    2015-12-01

    MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.

    PubMed

    Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao

    2017-01-01

    Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Profile of microRNA in Giant Panda Blood: A Resource for Immune-Related and Novel microRNAs

    PubMed Central

    Yang, Mingyu; Du, Lianming; Li, Wujiao; Shen, Fujun; Fan, Zhenxin; Jian, Zuoyi; Hou, Rong; Shen, Yongmei; Yue, Bisong; Zhang, Xiuyue

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world’s most beloved endangered mammals. Although the draft genome of this species had been assembled, little was known about the composition of its microRNAs (miRNAs) or their functional profiles. Recent studies demonstrated that changes in the expression of miRNAs are associated with immunity. In this study, miRNAs were extracted from the blood of four healthy giant pandas and sequenced by Illumina next generation sequencing technology. As determined by miRNA screening, a total of 276 conserved miRNAs and 51 novel putative miRNAs candidates were detected. After differential expression analysis, we noticed that the expressions of 7 miRNAs were significantly up-regulated in young giant pandas compared with that of adults. Moreover, 2 miRNAs were up-regulated in female giant pandas and 1 in the male individuals. Target gene prediction suggested that the miRNAs of giant panda might be relevant to the expressions of 4,602 downstream genes. Subseuqently, the predicted target genes were conducted to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and we found that these genes were mainly involved in host immunity, including the Ras signaling pathway, the PI3K-Akt signaling pathway, and the MAPK signaling pathway. In conclusion, our results provide the first miRNA profiles of giant panda blood, and the predicted functional analyses may open an avenue for further study of giant panda immunity. PMID:26599861

  1. OmniSearch: a semantic search system based on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene interaction data.

    PubMed

    Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan

    2016-01-01

    As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.

  2. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  3. Profile of microRNA in Giant Panda Blood: A Resource for Immune-Related and Novel microRNAs.

    PubMed

    Yang, Mingyu; Du, Lianming; Li, Wujiao; Shen, Fujun; Fan, Zhenxin; Jian, Zuoyi; Hou, Rong; Shen, Yongmei; Yue, Bisong; Zhang, Xiuyue

    2015-01-01

    The giant panda (Ailuropoda melanoleuca) is one of the world's most beloved endangered mammals. Although the draft genome of this species had been assembled, little was known about the composition of its microRNAs (miRNAs) or their functional profiles. Recent studies demonstrated that changes in the expression of miRNAs are associated with immunity. In this study, miRNAs were extracted from the blood of four healthy giant pandas and sequenced by Illumina next generation sequencing technology. As determined by miRNA screening, a total of 276 conserved miRNAs and 51 novel putative miRNAs candidates were detected. After differential expression analysis, we noticed that the expressions of 7 miRNAs were significantly up-regulated in young giant pandas compared with that of adults. Moreover, 2 miRNAs were up-regulated in female giant pandas and 1 in the male individuals. Target gene prediction suggested that the miRNAs of giant panda might be relevant to the expressions of 4,602 downstream genes. Subseuqently, the predicted target genes were conducted to KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis and we found that these genes were mainly involved in host immunity, including the Ras signaling pathway, the PI3K-Akt signaling pathway, and the MAPK signaling pathway. In conclusion, our results provide the first miRNA profiles of giant panda blood, and the predicted functional analyses may open an avenue for further study of giant panda immunity.

  4. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization

    PubMed Central

    García-López, Jesús; Alonso, Lola; Cárdenas, David B.; Artaza-Alvarez, Haydeé; Hourcade, Juan de Dios; Martínez, Sergio; Brieño-Enríquez, Miguel A.; del Mazo, Jesús

    2015-01-01

    The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes. PMID:25805854

  5. miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence.

    PubMed

    Cui, Huachun; Ge, Jing; Xie, Na; Banerjee, Sami; Zhou, Yong; Antony, Veena B; Thannickal, Victor J; Liu, Gang

    2017-02-01

    Cellular senescence has been implicated in diverse pathologies. However, there is conflicting evidence regarding the role of this process in tissue fibrosis. Although dysregulation of microRNAs is a key mechanism in the pathogenesis of lung fibrosis, it is unclear whether microRNAs function by regulating cellular senescence in the disease. In this study, we found that miR-34a demonstrated greater expression in the lungs of patients with idiopathic pulmonary fibrosis and in mice with experimental pulmonary fibrosis, with its primary localization in lung fibroblasts. More importantly, miR-34a was up-regulated significantly in both human and mouse lung myofibroblasts. We found that mice with miR-34a ablation developed more severe pulmonary fibrosis than did wild-type animals after fibrotic lung injury. Mechanistically, we found that miR-34a induced a senescent phenotype in lung fibroblasts because this microRNA increased senescence-associated β-galactosidase activity, enhanced expression of senescence markers, and decreased cell proliferative capacities. Consistently, we found that primary lung fibroblasts from fibrotic lungs of miR-34a-deficient mice had a diminished senescent phenotype and enhanced resistance to apoptosis as compared with those from wild-type animals. We also identified multiple miR-34a targets that likely mediated its activities in inducing senescence in lung fibroblasts. In conclusion, our data suggest that miR-34a functions through a negative feedback mechanism to restrain fibrotic response in the lungs by promoting senescence of pulmonary fibroblasts.

  6. The hot pepper (Capsicum annuum) microRNA transcriptome reveals novel and conserved targets: a foundation for understanding MicroRNA functional roles in hot pepper.

    PubMed

    Hwang, Dong-Gyu; Park, June Hyun; Lim, Jae Yun; Kim, Donghyun; Choi, Yourim; Kim, Soyoung; Reeves, Gregory; Yeom, Seon-In; Lee, Jeong-Soo; Park, Minkyu; Kim, Seungill; Choi, Ik-Young; Choi, Doil; Shin, Chanseok

    2013-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs approximately 21 nt in length which play important roles in regulating gene expression in plants. Although many miRNA studies have focused on a few model plants, miRNAs and their target genes remain largely unknown in hot pepper (Capsicum annuum), one of the most important crops cultivated worldwide. Here, we employed high-throughput sequencing technology to identify miRNAs in pepper extensively from 10 different libraries, including leaf, stem, root, flower, and six developmental stage fruits. Based on a bioinformatics pipeline, we successfully identified 29 and 35 families of conserved and novel miRNAs, respectively. Northern blot analysis was used to validate further the expression of representative miRNAs and to analyze their tissue-specific or developmental stage-specific expression patterns. Moreover, we computationally predicted miRNA targets, many of which were experimentally confirmed using 5' rapid amplification of cDNA ends analysis. One of the validated novel targets of miR-396 was a domain rearranged methyltransferase, the major de novo methylation enzyme, involved in RNA-directed DNA methylation in plants. This work provides the first reliable draft of the pepper miRNA transcriptome. It offers an expanded picture of pepper miRNAs in relation to other plants, providing a basis for understanding the functional roles of miRNAs in pepper.

  7. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia

    PubMed Central

    Kramer, Martha F.; Jurak, Igor; Pesola, Jean M.; Boissel, Sandrine; Knipe, David M.; Coen, Donald M.

    2013-01-01

    Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it. PMID:21782205

  8. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy.

    PubMed

    Farr, Ryan J; Januszewski, Andrzej S; Joglekar, Mugdha V; Liang, Helena; McAulley, Annie K; Hewitt, Alex W; Thomas, Helen E; Loudovaris, Tom; Kay, Thomas W H; Jenkins, Alicia; Hardikar, Anandwardhan A

    2015-06-02

    MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-high content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.

  9. MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease

    PubMed Central

    Millar, Neal L.; Gilchrist, Derek S.; Akbar, Moeed; Reilly, James H.; Kerr, Shauna C.; Campbell, Abigail L.; Murrell, George A. C.; Liew, Foo Y.; Kurowska-Stolarska, Mariola; McInnes, Iain B.

    2015-01-01

    MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury. PMID:25857925

  10. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  11. MicroRNA-2400 promotes bovine preadipocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yao; Cui, Ya Feng; Tong, Hui Li

    MicroRNAs (miRNAs) play critical roles in the proliferation of bovine preadipocytes. miR-2400 is a novel and unique miRNA from bovines. In the present study, we separated and identified preadipocytes from bovine samples. miR-2400 overexpression increased the rate of preadipocyte proliferation, which was analyzed with a combination of EdU and flow cytometry. Simultaneously, functional genes related to proliferation (PCNA, CCND2, CCNB1) were also increased, which was detected by real-time PCR. Furthermore, luciferase reporter assays showed that miR-2400 bound directly to the 3'untranslated regions (3′UTRs) of PRDM11 mRNA. These data suggested that miR-2400 could promote preadipocyte proliferation by targeting PRDM11. - Highlights:more » • miRNAs are important in bovine preadipocyte proliferation. • miR-2400 is a novel miRNA from bovines. • miR-2400 overexpression increased preadipocyte proliferation. • Functional genes related to preadipocyte proliferation were upregulated. • Preadipocyte proliferation was promoted by targeting PRDM11.« less

  12. Biomarker MicroRNAs for Diagnosis, Prognosis and Treatment of Hepatocellular Carcinoma: A Functional Survey and Comparison

    PubMed Central

    Shen, Sijia; Lin, Yuxin; Yuan, Xuye; Shen, Li; Chen, Jiajia; Chen, Luonan; Qin, Lei; Shen, Bairong

    2016-01-01

    Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors with high incidence and mortality rate. Precision and effective biomarkers are therefore urgently needed for the early diagnosis and prognostic estimation. MicroRNAs (miRNAs) are important regulators which play functions in various cellular processes and biological activities. Accumulating evidence indicated that the abnormal expression of miRNAs are closely associated with HCC initiation and progression. Recently, many biomarker miRNAs for HCC have been identified from blood or tissues samples, however, the universality and specificity on clinicopathological features of them are less investigated. In this review, we comprehensively surveyed and compared the diagnostic, prognostic, and therapeutic roles of HCC biomarker miRNAs in blood and tissues based on the cancer hallmarks, etiological factors as well as ethnic groups, which will be helpful to the understanding of the pathogenesis of biomarker miRNAs in HCC development and further provide accurate clinical decisions for HCC diagnosis and treatment. PMID:27917899

  13. Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC.

    PubMed

    Ariyoshi, Jumpei; Momokawa, Daiki; Eimori, Nao; Kobori, Akio; Murakami, Akira; Yamayoshi, Asako

    2015-12-16

    MicroRNAs (miRNAs) are known to be important post-transcription regulators of gene expression. Aberrant miRNA expression is associated with pathological disease processes, including carcinogenesis. Therefore, miRNAs are considered significant therapeutic targets for cancer therapy. MiRNAs do not act alone, but exhibit their functions by forming RNA-induced silencing complex (RISC). Thus, the regulation of RISC activity is a promising approach for cancer therapy. MiRNA is a core component of RISC and is an essential to RISC for recognizing target mRNA. Thereby, it is expected that development of the method to promote the release of miRNA from RISC would be an effective approach for inhibition of RISC activity. In this study, we synthesized novel peptide-conjugated oligonucleotides (RINDA-as) to promote the release of miRNA from RISC. RINDA-as showed a high rate of miRNA release from RISC and high level of inhibitory effect on RISC activity.

  14. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators.

    PubMed

    Arfat, Yasir; Chang, Hui; Gao, Yunfang

    2018-04-01

    Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival. © 2017 Wiley Periodicals, Inc.

  15. Biomarker MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma Identified Based on Gene Expression Data and MicroRNA-mRNA Network Analysis

    PubMed Central

    Zhang, Hui; Li, Tangxin; Zheng, Linqing

    2017-01-01

    Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions. These findings were confirmed by literature verification and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular mechanisms. PMID:29098014

  16. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  17. MicroRNAs in fruit trees: discovery, diversity and future research directions.

    PubMed

    Solofoharivelo, M C; van der Walt, A P; Stephan, D; Burger, J T; Murray, S L

    2014-09-01

    Since the first description of microRNAs (miRNAs) 20 years ago, the number of miRNAs identified in different eukaryotic organisms has exploded, largely due to the recent advances in DNA sequencing technologies. Functional studies, mostly from model species, have revealed that miRNAs are major post-transcriptional regulators of gene expression in eukaryotes. In plants, they are implicated in fundamental biological processes, from plant development and morphogenesis, to regulation of plant pathogen and abiotic stress responses. Although a substantial number of miRNAs have been identified in fruit trees to date, their functions remain largely uncharacterised. The present review aims to summarise the progress made in miRNA research in fruit trees, focusing specifically on the economically important species Prunus persica, Malus domestica, Citrus spp, and Vitis vinifera. We also discuss future miRNA research prospects in these plants and highlight potential applications of miRNAs in the on-going improvement of fruit trees. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.

  19. Plasma exosome microRNAs are indicative of breast cancer.

    PubMed

    Hannafon, Bethany N; Trigoso, Yvonne D; Calloway, Cameron L; Zhao, Y Daniel; Lum, David H; Welm, Alana L; Zhao, Zhizhuang J; Blick, Kenneth E; Dooley, William C; Ding, W Q

    2016-09-08

    microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Takashi; Nohata, Nijiro; Fuse, Miki

    Highlights: Black-Right-Pointing-Pointer Tumor suppressive microRNA-133a regulates moesin (MSN) expression in HNSCC. Black-Right-Pointing-Pointer Silencing of MSN in HNSCC cells suppressed proliferation, migration and invasion. Black-Right-Pointing-Pointer The expression level of MSN was significantly up-regulated in cancer tissues. -- Abstract: Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor.more » Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.« less

  1. Association of the Serotonin Receptor 3E Gene as a Functional Variant in the MicroRNA-510 Target Site with Diarrhea Predominant Irritable Bowel Syndrome in Chinese Women.

    PubMed

    Zhang, Yu; Li, Yaoyao; Hao, Zhenfeng; Li, Xiangming; Bo, Ping; Gong, Weijuan

    2016-04-30

    The functional variant (rs56109847) in the 3'-untranslated regions (3'-UTR) of the serotonin receptor 3E (HTR3E) gene is associated with female diarrhea predominant irritable bowel syndrome (IBS-D) in British populations. However, the relationship of the polymorphism both to HTR3E expression in the intestine and to the occurrence of Chinese functional gastrointestinal disorders has yet to be examined. Polymerase chain reaction amplification and restriction fragment length polymorphism analyses were employed to detect polymorphisms among Chinese Han women, particularly 107 patients with IBS-D, 99 patients with functional dyspepsia (FD), 115 patients with mixed IBS and 69 patients with IBS-D + FD. We also assessed microRNA-510 (miR-510) and HTR3Eexpression in human colonic mucosal tissues with immunohistochemistry and other methods. Dual-luciferase reporter assays were conducted to examine the binding ability of miR-510 and HTR3E 3'-UTR. Genotyping data showed the variant rs56109847 was significantly associated with IBS-D, but not with FD, mixed-IBS, or FD + IBS-D. HTR3E was abundantly expressed around the colonic mucosal glands but less expressed in the stroma. miR-510 expression decreased, whereas HTR3E expression increased in the colonic mucosal tissue of patients with IBS-D compared with those in controls. HTR3E expression was significantly higher in patients with the GA genotype than that in patients with the GG genotype. The single-nucleotide polymorphisms disrupted the binding site of miR-510 and significantly upregulated luciferase expression in HEK293 and HT-29 cells. The single-nucleotide polymorphisms rs56109847 led to reduced microRNA binding and overexpression of the target gene in intestinal cells, thereby increasing IBS-D risk in the Chinese Han population. The decreased expression of miR-510 might contribute to IBS-D.

  2. Interrelation of androgen receptor and miR-30a and miR-30a function in ER-, PR-, AR+ MDA-MB-453 breast cancer cells.

    PubMed

    Lyu, Shuhua; Liu, Han; Liu, Xia; Liu, Shan; Wang, Yahong; Yu, Qi; Niu, Yun

    2017-10-01

    The association between androgen-induced androgen receptor (AR) activating signal and microRNA (miR)-30a was investigated, as well as the function of miR-30a in estrogen receptor-negative (ER - ), progesterone receptor-negative (PR - ), and AR-positive (AR + ) MDA-MB-453 breast cancer cells. Androgen-induced AR activating signal upregulated the expression of AR, and downregulated the expression of miR-30a, b and c. Bioinformatics analysis indicated a putative miR-30a, b and c binding site in the 3'-untranslated region of AR mRNA. It was confirmed that the AR gene is a direct target of miR-30a, whereas AR does not target the miR-30a promoter, and AR activating signal may indirectly downregulate miR-30a through other cell signaling pathways. In this positive feedback mechanism AR is then upregulated through miR-30a. Overexpression of miR-30a inhibited cell proliferation, whereas inhibition of miR-30a expression by specific antisense oligonucleotides, increased cell growth. Previously, androgen-induced AR activating signal was demonstrated to inhibit cell proliferation in ER - , PR - and AR + MDA-MB-453 breast cancer cells, but AR activating signal downregulated the expression of miR-30a, relieving the inhibition of MDA-MB-453 cell growth. Therefore, in MDA-MB-453 breast cancer cells, miR-30a has two different functions regarding cell growth: Inhibition of cell proliferation through a positive feedback signaling pathway; and the relative promotion of cell proliferation through downregulation of miR-30a. Thus, the association between AR activating signal and microRNAs is complex, and microRNAs may possess different functions due to different signaling pathways. Although the results of the present study were obtained in one cell line, they contribute to subsequent studies on ER - , PR - and AR + breast cancer.

  3. Specific and Novel microRNAs Are Regulated as Response to Fungal Infection in Human Dendritic Cells.

    PubMed

    Dix, Andreas; Czakai, Kristin; Leonhardt, Ines; Schäferhoff, Karin; Bonin, Michael; Guthke, Reinhard; Einsele, Hermann; Kurzai, Oliver; Löffler, Jürgen; Linde, Jörg

    2017-01-01

    Within the last two decades, the incidence of invasive fungal infections has been significantly increased. They are characterized by high mortality rates and are often caused by Candida albicans and Aspergillus fumigatus . The increasing number of infections underlines the necessity for additional anti-fungal therapies, which require extended knowledge of gene regulations during fungal infection. MicroRNAs are regulators of important cellular processes, including the immune response. By analyzing their regulation and impact on target genes, novel therapeutic and diagnostic approaches may be developed. Here, we examine the role of microRNAs in human dendritic cells during fungal infection. Dendritic cells represent the bridge between the innate and the adaptive immune systems. Therefore, analysis of gene regulation of dendritic cells is of particular significance. By applying next-generation sequencing of small RNAs, we quantify microRNA expression in monocyte-derived dendritic cells after 6 and 12 h of infection with C. albicans and A. fumigatus as well as treatment with lipopolysaccharides (LPS). We identified 26 microRNAs that are differentially regulated after infection by the fungi or LPS. Three and five of them are specific for fungal infections after 6 and 12 h, respectively. We further validated interactions of miR-132-5p and miR-212-5p with immunological relevant target genes, such as FKBP1B, KLF4 , and SPN , on both RNA and protein level. Our results indicate that these microRNAs fine-tune the expression of immune-related target genes during fungal infection. Beyond that, we identified previously undiscovered microRNAs. We validated three novel microRNAs via qRT-PCR. A comparison with known microRNAs revealed possible relations with the miR-378 family and miR-1260a/b for two of them, while the third one features a unique sequence with no resemblance to known microRNAs. In summary, this study analyzes the effect of known microRNAs in dendritic cells during fungal infections and proposes novel microRNAs that could be experimentally verified.

  4. Identification of host miRNAs that may limit human rhinovirus replication

    PubMed Central

    Bondanese, Victor Paky; Francisco-Garcia, Ana; Bedke, Nicole; Davies, Donna E; Sanchez-Elsner, Tilman

    2014-01-01

    AIM: To test whether the replication of human rhinovirus (HRV) is regulated by microRNAs in human bronchial epithelial cells. METHODS: For the present study, the human cell line BEAS-2B (derived from normal human bronchial epithelial cells) was adopted. DICER knock-down, by siRNA transfection in BEAS-2B cells, was performed in order to inhibit microRNA maturation globally. Alternatively, antisense oligonucleotides (anti-miRs) were transfected to inhibit the activity of specific microRNAs. Cells were infected with HRV-1B. Viral replication was assessed by measuring the genomic viral RNA by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Association between microRNA-induced-silencing-complex and viral RNA was detected by Ago2 co-immunoprecipitation followed by RT-qPCR. Targetscan v.6 was used to predict microRNA target sites on several HRV strains. RESULTS: Here, we show that microRNAs affect replication of HRV-1B. DICER knock-down significantly reduced the expression of mature microRNAs in a bronchial epithelial cell line (BEAS-2B) and in turn, increased the synthesis of HRV-1B RNA. Additionally, HRV-1B RNA co-immunoprecipitated with argonaute 2 protein, an important effector for microRNA activity suggesting that microRNAs bind to viral RNA during infection. In order to identify specific microRNAs involved in this interaction, we employed bioinformatics analysis, and selected a group of microRNAs that have been reported to be under-expressed in asthmatic bronchial epithelial cells and were predicted to target different strains of rhinoviruses (HRV-1B, -16, -14, -27). Our results suggest that, out of this group of microRNAs, miR-128 and miR-155 contribute to the innate defense against HRV-1B: transfection of specific anti-miRs increased viral replication, as anticipated in-silico. CONCLUSION: Taken together, our results suggest that pathological changes in microRNA expression, as already reported for asthma or chronic obstructive pulmonary disease have the potential to affect Rhinovirus replication and therefore may play a role in virus-induced exacerbations. PMID:25426267

  5. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the miRNA-132/212 cluster and affects progranulin pathways

    PubMed Central

    Chen-Plotkin, Alice S.; Unger, Travis L.; Gallagher, Michael D.; Bill, Emily; Kwong, Linda K.; Volpicelli-Daley, Laura; Busch, Johanna I.; Akle, Sebastian; Grossman, Murray; Van Deerlin, Vivianna; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2012-01-01

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a fatal neurodegenerative disease with no available treatments. Mutations in the progranulin gene (GRN) causing impaired production or secretion of progranulin are a common Mendelian cause of FTLD-TDP; additionally, common variants at chromosome 7p21 in the uncharacterized gene TMEM106B were recently linked by genome-wide association to FTLD-TDP with and without GRN mutations. Here we show that TMEM106B is neuronally expressed in postmortem human brain tissue, and that expression levels are increased in FTLD-TDP brain. Furthermore, using an unbiased, microarray-based screen of over 800 microRNAs, we identify microRNA-132 as the top microRNA differentiating FTLD-TDP and control brains, with <50% normal expression levels of three members of the microRNA-132 cluster (microRNA-132, microRNA-132*, and microRNA-212) in disease. Computational analyses, corroborated empirically, demonstrate that the top mRNA target of both microRNA-132 and microRNA-212 is TMEM106B; both microRNAs repress TMEM106B expression through shared microRNA-132/212 binding sites in the TMEM106B 3’UTR. Increasing TMEM106B expression to model disease results in enlargement and poor acidification of endo-lysosomes, as well as impairment of mannose-6-phosphate-receptor trafficking. Finally, endogenous neuronal TMEM106B co-localizes with progranulin in late endo-lysosomes, and TMEM106B over-expression increases intracellular levels of progranulin. Thus, TMEM106B is an FTLD-TDP risk gene, with microRNA-132/212 depression as an event which can lead to aberrant over-expression of TMEM106B, which in turn alters progranulin pathways. Evidence for this pathogenic cascade includes the striking convergence of two independent, genomic-scale screens on a microRNA:mRNA regulatory pair. Our findings open novel directions for elucidating miRNA-based therapies in FTLD-TDP. PMID:22895706

  6. MicroRNA Profile in Patients with Alzheimer's Disease: Analysis of miR-9-5p and miR-598 in Raw and Exosome Enriched Cerebrospinal Fluid Samples.

    PubMed

    Riancho, Javier; Vázquez-Higuera, José Luis; Pozueta, Ana; Lage, Carmen; Kazimierczak, Martha; Bravo, María; Calero, Miguel; Gonalezález, Andrea; Rodríguez, Eloy; Lleó, Alberto; Sánchez-Juan, Pascual

    2017-01-01

    MicroRNAs have been postulated as potential biomarkers for Alzheimer's disease (AD). Exosomes are nanovesicles which transport microRNAs, proteins, and other cargos. It has been hypothesized that the exosome traffic might be increased in neurodegenerative disorders. i) To assess the cerebrospinal fluid (CSF) microRNA profile in a group of AD patients and control subjects and to validate a group of microRNAs previously reported by other authors. ii) To compare microRNA levels in whole CSF and in the exosome-enriched fraction in AD patients. A panel of 760 microRNAs was analyzed in the CSF of 10 AD patients and 10 healthy subjects. Among microRNAs differently expressed, we selected those that had been previously reported by other authors. Candidates were validated in a larger group by individual qPCR assays. MicroRNA expression was also evaluated in exosome-enriched CSF samples of patients with AD and controls. Fifteen microRNAs were differently expressed in AD. MiR-9-5p, miR-134, and miR-598 were selected as candidates for further analysis. MiR-9-5p and miR-598 were detected in 50 and 75% of control CSF samples, respectively, while they were not detected in any AD CSF samples. We observed an opposite pattern when we evaluated the microRNA expression in the exosome-enriched CSF AD samples. No pattern variations were noted among healthy subjects. These data propose miR-9-5p and miR-598 as potential biomarkers for AD. Further studies in plasma and other body fluids will confirm their potential role as easily accessible biomarkers. In addition, our data suggest that exosome trafficking is different between AD and control subjects raising the need to take this phenomenon into consideration in future studies of AD biomarkers.

  7. microRNA Response to Listeria monocytogenes Infection in Epithelial Cells

    PubMed Central

    Izar, Benjamin; Mannala, Gopala Krishna; Mraheil, Mobarak Abu; Chakraborty, Trinad; Hain, Torsten

    2012-01-01

    microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to altered expression of microRNAs involved in the host cell response in epithelial cells. Caco-2 cells were infected with Listeria monocytogenes EGD-e, a mutant strain (ΔinlAB or Δhly) or incubated with purified listeriolysin (LLO). Total RNA was isolated and microRNA and target gene expression was compared to the expression in non-infected cells using microRNA microarrays and qRT-PCR. We identified and validated five microRNAs (miR- 146b, miR-16, let-7a1, miR-145 and miR-155) that were significantly deregulated following listerial infection. We show that expression patterns of particular microRNAs strongly depend on pathogen localization and the presence of bacterial effector proteins. Strikingly, miR-155 which was shown to have an important role in inflammatory responses during infection was induced by wild-type bacteria, by LLO-deficient bacteria and following incubation with purified LLO. It was downregulated following ΔinlAB infection indicating a new potent role for internalins in listerial pathogenicity and miRNA regulation. Concurrently, we observed differences in target transcript expression of the investigated miRNAs. We provide first evidence that L. monocytogenes infection leads to deregulation of a set of microRNAs with important roles in host response. Distinct microRNA expression depends on both LLO and pathogen localization. PMID:22312311

  8. TWIST1-induced microRNA-424 reversibly drives mesenchymal programming while inhibiting tumor initiation

    PubMed Central

    Drasin, David J.; Guarnieri, Anna L.; Neelakantan, Deepika; Kim, Jihye; Cabrera, Joshua H.; Wang, Chu-An; Zaberezhnyy, Vadym; Gasparini, Pierluigi; Cascione, Luciano; Huebner, Kay; Tan, Aik-Choon; Ford, Heide L.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a dynamic process that relies on cellular plasticity. Recently, the process of an oncogenic EMT, followed by a reverse mesenchymal-to-epithelial transition (MET), has been implicated as critical in the metastatic colonization of carcinomas. Unlike governance of epithelial programming, regulation of mesenchymal programming is not well understood in EMT. Here, we describe and characterize the first microRNA that enhances exclusively mesenchymal programming. We demonstrate that microRNA-424 is upregulated early during a TWIST1 or SNAI1-induced EMT, and that it causes cells to express mesenchymal genes without affecting epithelial genes, resulting in a mixed/intermediate EMT. Furthermore, microRNA-424 increases motility, decreases adhesion and induces a growth arrest, changes associated with a complete EMT, that can be reversed when microRNA-424 expression is lowered, concomitant with an MET-like process. Breast cancer patient microRNA-424 levels positively associate with TWIST1/2 and EMT-like gene signatures, and miR-424 is increased in primary tumors versus matched normal breast. However, microRNA-424 is downregulated in patient metastases versus matched primary tumors. Correspondingly, microRNA-424 decreases tumor initiation and is post-transcriptionally downregulated in macrometastases in mice, suggesting the need for biphasic expression of miR-424 to transit the EMT-MET axis. Next-generation RNA sequencing revealed microRNA-424 regulates numerous EMT and cancer stemness-associated genes, including TGFBR3, whose downregulation promotes mesenchymal phenotypes, but not tumor-initiating phenotypes. Instead, we demonstrate that increased MAPK/ERK signaling is critical for miR-424-mediated decreases in tumor-initiating phenotypes. These findings suggest microRNA-424 plays distinct roles in tumor progression, potentially facilitating earlier, but repressing later, stages of metastasis by regulating an EMT-MET axis. PMID:25716682

  9. Two microRNA panels to discriminate three subtypes of lung carcinoma in bronchial brushing specimens.

    PubMed

    Huang, Wei; Hu, Jie; Yang, Da-wei; Fan, Xin-ting; Jin, Yi; Hou, Ying-yong; Wang, Ji-ping; Yuan, Yun-feng; Tan, Yun-shan; Zhu, Xiong-Zeng; Bai, Chun-xue; Wu, Ying; Zhu, Hong-guang; Lu, Shao-hua

    2012-12-01

    Effective treatment for lung cancer requires accuracy in subclassification of carcinoma subtypes. To identify microRNAs in bronchial brushing specimens for discriminating small cell lung cancer (SCLC) from non-small cell lung cancer (NSCLC) and for further differentiating squamous cell carcinoma (SQ) from adenocarcinoma (AC). Microarrays were used to screen 723 microRNAs in laser-captured, microdissected cancer cells from 82 snap-frozen surgical lung specimens. Quantitative reverse-transcriptase polymerase chain reaction was performed on 153 macrodissected formalin-fixed, paraffin-embedded (FFPE) surgical lung specimens to evaluate seven microRNA candidates discovered from microarrays. Two microRNA panels were constructed on the basis of a training cohort (n = 85) and validated using an independent cohort (n = 68). The microRNA panels were applied as differentiators of SCLC from NSCLC and of SQ from AC in 207 bronchial brushing specimens. Two microRNA panels yielded high diagnostic accuracy in discriminating SCLC from NSCLC (miR-29a and miR-375; area under the curve [AUC], 0.991 and 0.982 for training and validation data set, respectively) and in differentiating SQ from AC (miR-205 and miR-34a; AUC, 0.977 and 0.982 for training and validation data set, respectively) in FFPE surgical lung specimens. Moreover, the microRNA panels accurately differentiated SCLC from NSCLC (AUC, 0.947) and SQ from AC (AUC, 0.962) in bronchial brushing specimens. We found two microRNA panels that accurately discriminated between the three subtypes of lung carcinoma in bronchial brushing specimens. The identified microRNA panels may have considerable clinical value in differential diagnosis and optimizing treatment strategies based on lung cancer subtypes.

  10. A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer.

    PubMed

    Daniel, Rhonda; Wu, Qianni; Williams, Vernell; Clark, Gene; Guruli, Georgi; Zehner, Zendra

    2017-06-16

    Prostate cancer is the most common non-cutaneous cancer among men; yet, current diagnostic methods are insufficient, and more reliable diagnostic markers need to be developed. One answer that can bridge this gap may lie in microRNAs. These small RNA molecules impact protein expression at the translational level, regulating important cellular pathways, the dysregulation of which can exert tumorigenic effects contributing to cancer. In this study, high throughput sequencing of small RNAs extracted from blood from 28 prostate cancer patients at initial stages of diagnosis and prior to treatment was used to identify microRNAs that could be utilized as diagnostic biomarkers for prostate cancer compared to 12 healthy controls. In addition, a group of four microRNAs (miR-1468-3p, miR-146a-5p, miR-1538 and miR-197-3p) was identified as normalization standards for subsequent qRT-PCR confirmation. qRT-PCR analysis corroborated microRNA sequencing results for the seven top dysregulated microRNAs. The abundance of four microRNAs (miR-127-3p, miR-204-5p, miR-329-3p and miR-487b-3p) was upregulated in blood, whereas the levels of three microRNAs (miR-32-5p, miR-20a-5p and miR-454-3p) were downregulated. Data analysis of the receiver operating curves for these selected microRNAs exhibited a better correlation with prostate cancer than PSA (prostate-specific antigen), the current gold standard for prostate cancer detection. In summary, a panel of seven microRNAs is proposed, many of which have prostate-specific targets, which may represent a significant improvement over current testing methods.

  11. MicroRNA expression and protein acetylation pattern in respiratory and limb muscles of Parp-1(-/-) and Parp-2(-/-) mice with lung cancer cachexia.

    PubMed

    Chacon-Cabrera, Alba; Fermoselle, Clara; Salmela, Ida; Yelamos, Jose; Barreiro, Esther

    2015-12-01

    Current treatment options for cachexia, which impairs disease prognosis, are limited. Muscle-enriched microRNAs and protein acetylation are involved in muscle wasting including lung cancer (LC) cachexia. Poly(ADP-ribose) polymerases (PARP) are involved in muscle metabolism. We hypothesized that muscle-enriched microRNA, protein hyperacetylation, and expression levels of myogenic transcription factors (MTFs) and downstream targets, muscle loss and function improve in LC cachectic Parp-1(−/−) and Parp-2(−/−) mice. Body and muscle weights, grip strength, muscle phenotype, muscle-enriched microRNAs (miR-1, -133, -206, and -486), protein acetylation, acetylated levels of FoxO1, FoxO3, and PGC-1α, histone deacetylases (HDACs) including SIRT1, MTFs, and downstream targets (α-actin, PGC-1α, and creatine kinase) were evaluated in diaphragm and gastrocnemius of LC (LP07 adenocarcinoma) wild type (WT), Parp-1(−/−) and Parp-2−/− mice. Compared to WT cachectic animals, in both respiratory and limb muscles of Parp-1(−/−) and Parp-2(−/−) cachectic mice: downregulation of muscle-specific microRNAs was counterbalanced especially in gastrocnemius of Parp-1(−/−) mice; increased protein acetylation was attenuated (improvement in HDAC3, SIRT-1, and acetylated FoxO3 levels in both muscles, acetylated FoxO1 levels in the diaphragm); reduced MTFs and creatine kinase levels were mitigated; body and muscle weights, strength, and muscle fiber sizes improved, while tumor weight and growth decreased. These molecular findings may explain the improvements seen in body and muscle weights, limb muscle force and fiber sizes in both Parp-1(−/−) and Parp-2(−/−) cachectic mice. PARP-1 and -2 play a role in cancer-induced cachexia, thus selective pharmacological inhibition of PARP-1 and -2 may be of interest in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Identification and functional analysis of risk-related microRNAs for the prognosis of patients with bladder urothelial carcinoma.

    PubMed

    Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping

    2017-12-01

    The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.

  13. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles.

    PubMed

    Andreasen, Simon; Tan, Qihua; Agander, Tina Klitmøller; Steiner, Petr; Bjørndal, Kristine; Høgdall, Estrid; Larsen, Stine Rosenkilde; Erentaite, Daiva; Olsen, Caroline Holkmann; Ulhøi, Benedicte Parm; von Holstein, Sarah Linéa; Wessel, Irene; Heegaard, Steffen; Homøe, Preben

    2018-02-21

    Adenoid cystic carcinoma is among the most frequent malignancies in the salivary and lacrimal glands and has a grave prognosis characterized by frequent local recurrences, distant metastases, and tumor-related mortality. Conversely, adenoid cystic carcinoma of the breast is a rare type of triple-negative (estrogen and progesterone receptor, HER2) and basal-like carcinoma, which in contrast to other triple-negative and basal-like breast carcinomas has a very favorable prognosis. Irrespective of site, adenoid cystic carcinoma is characterized by gene fusions involving MYB, MYBL1, and NFIB, and the reason for the different clinical outcomes is unknown. In order to identify the molecular mechanisms underlying the discrepancy in clinical outcome, we characterized the phenotypic profiles, pattern of gene rearrangements, and global microRNA expression profiles of 64 salivary gland, 9 lacrimal gland, and 11 breast adenoid cystic carcinomas. All breast and lacrimal gland adenoid cystic carcinomas had triple-negative and basal-like phenotypes, while salivary gland tumors were indeterminate in 13% of cases. Aberrations in MYB and/or NFIB were found in the majority of cases in all three locations, whereas MYBL1 involvement was restricted to tumors in the salivary gland. Global microRNA expression profiling separated salivary and lacrimal gland adenoid cystic carcinoma from their respective normal glands but could not distinguish normal breast adenoid cystic carcinoma from normal breast tissue. Hierarchical clustering separated adenoid cystic carcinomas of salivary gland origin from those of the breast and placed lacrimal gland carcinomas in between these. Functional annotation of the microRNAs differentially expressed between salivary gland and breast adenoid cystic carcinoma showed these as regulating genes involved in metabolism, signal transduction, and genes involved in other cancers. In conclusion, microRNA dysregulation is the first class of molecules separating adenoid cystic carcinoma according to the site of origin. This highlights a novel venue for exploring the biology of adenoid cystic carcinoma.

  14. MicroRNA156: A Potential Graft-Transmissible MicroRNA That Modulates Plant Architecture and Tuberization in Solanum tuberosum ssp. andigena1[C][W][OPEN

    PubMed Central

    Bhogale, Sneha; Mahajan, Ameya S.; Natarajan, Bhavani; Rajabhoj, Mohit; Thulasiram, Hirekodathakallu V.; Banerjee, Anjan K.

    2014-01-01

    MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development. PMID:24351688

  15. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity.

    PubMed

    Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola

    2017-02-17

    Upon T cell receptor stimulation, CD4 + T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4 + T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4 + T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4 + T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity*

    PubMed Central

    Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L.; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola

    2017-01-01

    Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. PMID:28077577

  17. Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells.

    PubMed

    Lin, Jian; Xia, Jing; Zhang, Tian; Zhang, Keyun; Yang, Qian

    2018-05-10

    The antigen-presenting ability of dendritic cells (DCs) plays an important and irreplaceable role in recognising and clearing viruses. Antiviral responses must rapidly defend against infection while minimising inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. MicroRNAs (microRNAs), small non-coding RNAs, can regulate mouse or avian DCs to inhibit the infection and replication of avian influenza virus (AIV). Here, we performed a global analysis to understand how avian DCs respond to H9N2 AIV and provide a potential mechanism to explain how avian microRNAs can defend against H9N2 AIV replication. First, we found that both active and inactive H9N2 AIV enhanced the ability of DCs to present antigens and activate T lymphocytes. Next, total microarray analyses suggested that H9N2 AIV stimulation involved protein localisation, nucleotide binding, leucocyte transendothelial migration and MAPK signalling. Moreover, we constructed 551 transcription factor (TF)-miRNA-mRNA loops based on the above analyses. Furthermore, we found that the haemagglutinin (HA) fragment, neither H5N1-HA or H9N2-HA, could not activate DCs, while truncated HA greatly increased the immune function of DCs by activating ERK and STAT3 signalling pathways. Lastly, our results not only suggested that gga-miR1644 targets muscleblind-like protein 2 (MBNL2) to enhance the ability of avian DCs to inhibit virus replication, but also suggested that gga-miR6675 targets the nuclear localisation sequence of polymerase basic protein 1 (PB1) to trigger the silencing of PB1 genes, resulting in the inhibition of H9N2 AIV replication. Altogether, our innovative study will shed new light on the role of avian microRNAs in evoking avian DCs and inhibiting virus replication.

  18. A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks.

    PubMed

    Peng, Wei; Lan, Wei; Zhong, Jiancheng; Wang, Jianxin; Pan, Yi

    2017-07-15

    MicroRNAs have been reported to have close relationship with diseases due to their deregulation of the expression of target mRNAs. Detecting disease-related microRNAs is helpful for disease therapies. With the development of high throughput experimental techniques, a large number of microRNAs have been sequenced. However, it is still a big challenge to identify which microRNAs are related to diseases. Recently, researchers are interesting in combining multiple-biological information to identify the associations between microRNAs and diseases. In this work, we have proposed a novel method to predict the microRNA-disease associations based on four biological properties. They are microRNA, disease, gene and environment factor. Compared with previous methods, our method makes predictions not only by using the prior knowledge of associations among microRNAs, disease, environment factors and genes, but also by using the internal relationship among these biological properties. We constructed four biological networks based on the similarity of microRNAs, diseases, environment factors and genes, respectively. Then random walking was implemented on the four networks unequally. In the walking course, the associations can be inferred from the neighbors in the same networks. Meanwhile the association information can be transferred from one network to another. The results of experiment showed that our method achieved better prediction performance than other existing state-of-the-art methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer.

    PubMed

    Romero-Cordoba, Sandra; Rodriguez-Cuevas, Sergio; Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.

  20. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex

    PubMed Central

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-01-01

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively. PMID:28423356

Top