Superconducting magnet and fabrication method
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1994-01-01
A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.
El-Remessy, Azza B.; Franklin, Telina; Ghaley, Nagla; Yang, Jinling; Brands, Michael W.; Caldwell, Ruth B.; Behzadian, Mohamed Ali
2013-01-01
Diabetes-induced breakdown of the blood-retinal barrier (BRB) has been linked to hyperglycemia-induced expression of vascular endothelial growth factor (VEGF) and is likely mediated by an increase in oxidative stress. We have shown that VEGF increases permeability of retinal endothelial cells (REC) by inducing expression of urokinase plasminogen activator receptor (uPAR). The purpose of this study was to define the role of superoxide anion in VEGF/uPAR expression and BRB breakdown in diabetes. Studies were performed in streptozotocin diabetic rats and mice and high glucose (HG) treated REC. The superoxide dismutase (SOD) mimetic tempol blocked diabetes-induced permeability and uPAR expression in rats and the cell permeable SOD inhibited HG-induced expression of uPAR and VEGF in REC. Inhibiting VEGFR blocked HG-induced expression of VEGF and uPAR and GSK-3β phosphorylation in REC. HG caused β-catenin translocation from the plasma membrane into the cytosol and nucleus. Treatment with HG-conditioned media increased REC paracellular permeability that was blocked by anti-uPA or anti-uPAR antibodies. Moreover, deletion of uPAR blocked diabetes-induced BRB breakdown and activation of MMP-9 in mice. Together, these data indicate that diabetes-induced oxidative stress triggers BRB breakdown by a mechanism involving uPAR expression through VEGF-induced activation of the GSK3β/β-catenin signaling pathway. PMID:23951261
CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS
Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...
Jamaluddin, Md Saha; Lin, Peter H.; Yao, Qizhi; Chen, Changyi
2009-01-01
Highly active antiretroviral therapy (HAART) is often associated with endothelial dysfunction and cardiovascular complications. In this study, we determined whether HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) could increase endothelial permeability. Human coronary artery endothelial cells (HCAECs) were treated with EFV (1, 5 and 10 µg/ml) and endothelial permeability was determined by a transwell system with a fluorescence-labeled dextran tracer. HCAECs treated with EFV showed a significant increase of endothelial permeability in a concentration-dependent manner. With real time PCR analysis, EFV significantly reduced the mRNA levels of tight junction proteins claudin-1, occludin, zonula occluden-1 and junctional adhesion molecule-1 compared with controls (P < 0.05). Protein levels of these tight junction molecules were also reduced substantially in the EFV-treated cells by western blot and flow cytometry analyses. In addition, EFV also increased superoxide anion production with dihydroethidium and cellular glutathione assays, while it decreased mitochondrial membrane potential with JC-staining. Antioxidants (ginkgolide B and MnTBAP) effectively blocked EFV-induced endothelial permeability and mitochondrial dysfunction. Furthermore, EFV increased the phosphorylation of MAPK JNK and IκBα, thereby increasing NFκB translocation to the nucleus. Chemical JNK inhibitor and dominant negative mutant JNK and IkBa adenoviruses effectively blocked the effects of EFV on HCAECs. Thus, EFV increases endothelial permeability which may be due to the decrease of tight junction proteins and the increase of superoxide anion. JNK and NFκB activation may be directly involved in the signal transduction pathway of EFV action in HCAECs. PMID:19674747
Nociceptive inhibition prevents inflammatory pain induced changes in the blood-brain barrier
Campos, Christopher R.; Ocheltree, Scott M.; Hom, Sharon; Egleton, Richard D.; Davis, Thomas P.
2008-01-01
Previous studies by our group have shown that peripheral inflammatory insult, using the λ-carrageenan inflammatory pain (CIP) model, induced alterations in the molecular and functional properties of the blood-brain barrier (BBB). The question remained whether these changes were mediated via an inflammatory and/or neuronal mechanism. In this study, we investigated the involvement of neuronal input from pain activity on alterations in BBB integrity by peripheral inhibition of nociceptive input. A perineural injection of 0.75% bupivacaine into the right hind leg prior to CIP was used for peripheral nerve block. Upon nerve block, there was a significant decrease in thermal allodynia induced by CIP, but no effect on edema formation 1 h post CIP. BBB permeability was increased 1 h post CIP treatment as determined by in situ brain perfusion of [14C] sucrose; bupivacaine nerve block of CIP caused an attenuation of [14C] sucrose permeability, back to saline control levels. Paralleling the changes in [14C] sucrose permeability, we also report increased expression of three tight junction (TJ) proteins, zonula occluden-1 (ZO-1), occludin and claudin-5 with CIP. Upon bupivacaine nerve block, changes in expression were prevented. These data show that the λ-carrageenan induced changes in [14C] sucrose permeability and protein expression of ZO-1, occludin and claudin-5 are prevented with inhibition of nociceptive input. Therefore, we suggest that nociceptive signaling is in part responsible for the alteration in BBB integrity under CIP. PMID:18554577
NASA Astrophysics Data System (ADS)
HAN, K.; Hong, U.; Yeum, Y.; Yoon, J.; Lee, J.; Song, K.; Kwon, S.; Kim, Y.
2016-12-01
Permeable block as low impact development (LID) management can reduce storm water runoff, improve surface water quality and increase groundwater recharge. Recently, in Korea, application of the permeable block has growing trend for urban planning. However, few studies have evaluated how infiltrated rainfall through permeable block affect groundwater quality. Therefore, we conducted monitoring and evaluating of contaminants transport from permeable block surface to aquifer at LID installed three test-bed site. Pollutant materials as total nitrogen (T-N), nitrate (NO3-), ammonium (NH4+), total phosphorus (T-P), phosphate (PO42-), total organic carbon (TOC), sodium (Na+) and bromide (Br-) such as nonreactive tracer were sprinkled under permeable block and sprayed artificial precipitation of 100 mm/hr intensity during a 4 hours by rainfall simulator. All the test-bed area is 2 m x 2 m and monitoring wells were drilled a maximum depth of 10 m. Test-bed 1,2 and 3 groundwater level was approximately 1.9 m, 3.6 m and 4.6 m below ground surface, respectively. Test-bed 1 and 2, time to maximum concentration of Br- as tracer were 0.15 day and 1.71 day after simulated rainfall. In the test-bed 1, average normalized concentration (C* = Cmonitoring/C0, C0 is mass of sprinkled pollutant divide by sprayed water volume) of Br-, T-N, NO3-, NH4+, T-P, PO42-, TOC and Na+ were observed 0.26, 0.08, 0.14, N.D(not detected), 0.05, 0.05, 0.13 and 0.11, respectively. C* of tracer and other solutes on test-bed 2 were 0.52, 0.15, 0.25, N.D, 0.02, 0.02, 0.16 and 0.15, respectively. These phenomena that distinctions between C* of Br-and other solutes indicate to occur retardation by physical/chemical and biological process while pollutant containing water permeate from unsaturated soil to saturated aquifer. However, at the test-bed 3 distinct concentration of all solutes were not detected until 40 days. In this study evaluated the effects of groundwater quality by rainfall leachate from permeable block. Infiltration rate of solutes were measured NO3- > TOC > Na+ >>> PO42- > NH4+. Especially, these results suggested that organic N and T-P (PO42-) need not consideration for groundwater quality at permeable LID system.
NASA Astrophysics Data System (ADS)
Zhu, Weiyao; Li, Jianhui; Lou, Yu
2018-02-01
Polymer flooding has become an effective way to improve the sweep efficiency in many oil fields. Many scholars have carried out a lot of researches on the mechanism of polymer flooding. In this paper, the effect of polymer on seepage is analyzed. The blocking effect of polymer particles was studied experimentally, and the residual resistance coefficient (RRF) were used to represent the blocking effect. We also build a mathematical model for heterogeneous concentration distribution of polymer particles. Furthermore, the effects of polymer particles on reservoir permeability, fluid viscosity and relative permeability are considered, and a two-phase flow model of oil and polymer particles is established. In addition, the model was tested in the heterogeneous stratum model, and three influencing factors, such as particle concentration, injection volume and PPD (short for polymer particle dispersion) injection time, were analyzed. Simulation results show that PPD can effectively improve sweep efficiency and especially improve oil recovery of low permeability layer. Oil recovery increases with the increase of particle concentration, but oil recovery increase rate gradually decreases with that. The greater the injected amount of PPD, the greater oil recovery and the smaller oil recovery increase rate. And there is an optimal timing to inject PPD for specific reservoir.
Permeability Evolution of Slowly Slipping Faults in Shale Reservoirs
NASA Astrophysics Data System (ADS)
Wu, Wei; Reece, Julia S.; Gensterblum, Yves; Zoback, Mark D.
2017-11-01
Slow slip on preexisting faults during hydraulic fracturing is a process that significantly influences shale gas production in extremely low permeability "shale" (unconventional) reservoirs. We experimentally examined the impacts of mineralogy, surface roughness, and effective stress on permeability evolution of slowly slipping faults in Eagle Ford shale samples. Our results show that fault permeability decreases with slip at higher effective stress but increases with slip at lower effective stress. The permeabilities of saw cut faults fully recover after cycling effective stress from 2.5 to 17.5 to 2.5 MPa and increase with slip at constant effective stress due to asperity damage and dilation associated with slip. However, the permeabilities of natural faults only partially recover after cycling effective stress returns to 2.5 MPa and decrease with slip due to produced gouge blocking fluid flow pathways. Our results suggest that slowly slipping faults have the potential to enhance reservoir stimulation in extremely low permeability reservoirs.
NASA Astrophysics Data System (ADS)
Vaute, L.; Drogue, C.; Garrelly, L.; Ghelfenstein, M.
1997-12-01
Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow flow takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karst studied covers 110 km 2. It is fed by an interrupted stream draining a 35 km 2 non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m 3 s -1, after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge. This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the impact of potential pollution.
Sukumaran, Sunil K; Prasadarao, Nemani V
2003-11-01
We investigated the permeability changes that occur in the human brain microvascular endothelial cell (HBMEC) monolayer, an in vitro model of the blood-brain barrier, during Escherichia coli K1 infection. An increase in permeability of HBMECs and a decrease in transendothelial electrical resistance were observed. These permeability changes occurred only when HBMECs were infected with E. coli expressing outer membrane protein A (OmpA) and preceded the traversal of bacteria across the monolayer. Activated protein kinase C (PKC)-alpha interacts with vascular-endothelial cadherins (VECs) at the tight junctions of HBMECs, resulting in the dissociation of beta-catenins from VECs and leading to the increased permeability of the HBMEC monolayer. Overexpression of a dominant negative form of PKC-alpha in HBMECs blocked the E. coli-induced increase in permeability of HBMECs. Anti-OmpA and anti-OmpA receptor antibodies exerted inhibition of E. coli-induced permeability of HBMEC monolayers. This inhibition was the result of the absence of PKC-alpha activation in HBMECs treated with the antibodies.
Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.
1983-01-01
Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alex A. Vadie; Lewis R. Brown
1998-04-20
The use of indigenous microbes as a method of profile control in waterfloods is investigated. It is expected that as the microbial population is induced to increase the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency.
Xie, Yanting; Zhang, Hongmin; Liu, Susu; Chen, Guoming; He, Siyu; Li, Zhijie; Wang, Liya
2018-05-30
The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.
Eotaxin increases monolayer permeability of human coronary artery endothelial cells.
Jamaluddin, Md Saha; Wang, Xinwen; Wang, Hao; Rafael, Cubas; Yao, Qizhi; Chen, Changyi
2009-12-01
The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs). Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner. In addition, eotaxin treatment significantly decreased the mRNA and protein levels of endothelial junction molecules including zonula occludens-1 (ZO-1), occludin, and claudin-1 in a concentration-dependent manner as determined by real-time RT-PCR and Western blot analysis, respectively. Increased oxidative stress was observed in eotaxin-treated HCAECs by analysis of cellular glutathione levels. Furthermore, eotaxin treatment substantially activated the phosphorylation of MAPK p38. HCAECs expressed CCR3. Consequently, antioxidants (ginkgolide B and MnTBAP), specific p38 inhibitor SB203580, and anti-CCR3 antibody effectively blocked the eotaxin-induced permeability increase in HCAECs. Eotaxin also increased the phosphorylation of Stat3 and nuclear translocation of NF-kappaB in HCAECs. Eotaxin increases vascular permeability through CCR3, the downregulation of tight junction proteins, increase of oxidative stress, and activation of MAPK p38, Stat3, and NF-kB pathways in HCAECs.
Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min
2016-01-20
The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.
Clogging in permeable concrete: A review.
Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R
2017-05-15
Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress.
Arredondo Zamarripa, David; Díaz-Lezama, Nundehui; Meléndez García, Rodrigo; Chávez Balderas, Jesús; Adán, Norma; Ledesma-Colunga, Maria G; Arnold, Edith; Clapp, Carmen; Thebault, Stéphanie
2014-01-01
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.
Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress
Arredondo Zamarripa, David; Díaz-Lezama, Nundehui; Meléndez García, Rodrigo; Chávez Balderas, Jesús; Adán, Norma; Ledesma-Colunga, Maria G.; Arnold, Edith; Clapp, Carmen; Thebault, Stéphanie
2014-01-01
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies. PMID:25368550
Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012
Hevesi, Joseph A.; Christensen, Allen H.
2015-12-21
The SGPWM was used to simulate a 100-year water budget, including recharge and runoff, for water years 1913 through 2012. Results indicated that most recharge came from episodic infiltration of surface-water runoff in the larger stream channels. Results also indicated periods of great variability in recharge and runoff in response to variability in precipitation. More recharge was simulated for the area of the groundwater basin underlying the more permeable alluvial fill of the valley floor compared to recharge in the neighboring upland areas of the less permeable mountain blocks. The greater recharge was in response to the episodic streamflow that discharged from the mountain block areas and quickly infiltrated the permeable alluvial fill of the groundwater basin. Although precipitation at the higher altitudes of the mountain block was more than double precipitation at the lower altitudes of the valley floor, recharge for inter-channel areas of the mountain block was limited by the lower permeability bedrock underlying the thin soil cover, and most of the recharge in the mountain block was limited to the main stream channels underlain by alluvial fill.
Eotaxin Increases Monolayer Permeability of Human Coronary Artery Endothelial Cells
Jamaluddin, Md Saha; Wang, Xinwen; Wang, Hao; Rafael, Cubas; Yao, Qizhi; Chen, Changyi
2009-01-01
Objective The objective of this study was to determine the effects and molecular mechanisms of eotaxin, a newly discovered chemokine (CCL11), on endothelial permeability in the human coronary artery endothelial cells (HCAECs). Methods and Results Cells were treated with eotaxin, and the monolayer permeability was studied by using a costar transwell system with a Texas-Red-labeled dextran tracer. Eotaxin significantly increased monolayer permeability in a concentration-dependent manner. In addition, eotaxin treatment significantly decreased the mRNA and protein levels of endothelial junction molecules including zonula occludens-1 (ZO-1), occludin and claudin-1 in a concentration-dependent manner as determined by real time RT-PCR and Western blot analysis, respectively. Increased oxidative stress was observed in eotaxin-treated HCAECs by analysis of cellular glutathione levels. Furthermore, eotaxin treatment substantially activated the phosphorylation of MAPK p38. HCAECs expressed CCR3. Consequently, antioxidants (ginkgolide B and MnTBAP), specific p38 inhibitor SB203580 and anti-CCR3 antibody effectively blocked the eotaxin-induced permeability increase in HCAECs. Eotaxin also increased phosphorylation of Stat3 and nuclear translocation of NF-κB in HCAECs. Conclusions Eotaxin increases vascular permeability through CCR3, the down regulation of tight junction proteins, increase of oxidative stress and activation of MAPK p38, Stat3 and NF-kB pathways in HCAECs. PMID:19778943
Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min
2016-01-01
The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.
Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO 2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less
Conditions and timescales for welding block-and-ash flow deposits
NASA Astrophysics Data System (ADS)
Heap, M. J.; Kolzenburg, S.; Russell, J. K.; Campbell, M. E.; Welles, J.; Farquharson, J. I.; Ryan, A.
2014-12-01
Welding of pyroclastic deposits to reform a coherent rock mass is a common phenomenon, especially for pumiceous pyroclastic density current deposits (i.e., ignimbrites). However, and despite the pervasive abundance of block-and-ash flow (BAF) deposits in the geological and modern record, instances of strongly welded BAF deposits are few. Here, we present a series of high-temperature (800-900 °C) compaction experiments designed to map the conditions (deposit thickness/stress and temperature/viscosity) and timescales that permit or inhibit the welding of BAF deposits. Our experiments were performed on unconsolidated aggregates (containing an ash and lapilli component) derived from crushed and sieved lava blocks (containing 25% crystals) taken from the well-documented welded BAF deposit at Mount Meager volcano (British Columbia, Canada). The experiments demonstrate that welding efficiency increases with increasing time and temperature. Progressive welding is expressed by increasing axial strain, porosity loss, and bulk density. The rate of change of each of these physical properties reduces as welding progresses. Microstructural analysis of the experimental products shows that the loss of interclast porosity during welding results from the progressive sintering and amalgamation of vitric fragments, and that the pore shape changes from sub-equant pores to stretched lenses sandwiched between vitric and crystal fragments. The coincidence between the microstructure and rock physical properties of the natural and experimental samples highlight that we have successfully reproduced welded BAF in the laboratory. Furthermore, our permeability measurements highlight a hysteresis in the return journey of the "there-and-back-again" volcanic permeability cycle (expressed by an increase in permeability due to vesiculation and fragmentation followed by a decrease due to welding). This hysteresis cannot be described by a single porosity-permeability power law relationship and reflects the change in pore shape and connectivity during welding. Finally, we show that a simple model for welding can accurately forecast the welding timescales of the BAF deposit at Mount Meager (as reconstructed from the collapse of the Lillooet River valley dam) using our experimental data. We use this validation as a platform to provide a universal window for the welding of BAF deposits, also applicable for comparable welded deposits (e.g., welded autobreccias in block-lavas and lava domes), for a broad range of deposit thickness (or stress) and effective viscosity.
Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.; ...
2017-01-05
Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO 2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less
Joiner, C H; Platt, O S; Lux, S E
1986-01-01
The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation. PMID:2430999
Joiner, C H; Platt, O S; Lux, S E
1986-12-01
The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.
NASA Astrophysics Data System (ADS)
Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei
2017-12-01
The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.
VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer
Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.
2016-01-01
Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229
Ascorbic Acid Prevents VEGF-induced Increases in Endothelial Barrier Permeability
Ulker, Esad; Parker, William H.; Raj, Amita; Qu, Zhi-chao; May, James M.
2015-01-01
Vascular endothelial growth factor (VEGF) increases endothelial barrier permeability, an effect that may contribute to macular edema in diabetic retinopathy. Since vitamin C, or ascorbic acid, can tighten the endothelial permeability barrier, we examined whether it could prevent the increase in permeability due to VEGF in human umbilical vein endothelial cells (HUVECs). As previously observed, VEGF increased HUVEC permeability to radiolabeled inulin within 60 min in a concentration-dependent manner. Loading the cells with increasing concentrations of ascorbate progressively prevented the leakage caused by 100 ng/ml VEGF, with a significant inhibition at 13 μM and complete inhibition at 50 μM. Loading cells with 100 μM ascorbate also decreased basal generation of reactive oxygen species and prevented the increase caused by both 100 ng/ml VEGF. VEGF treatment decreased intracellular ascorbate by 25%, thus linking ascorbate oxidation to its prevention of VEGF-induced barrier leakage. The latter was blocked by treating the cells with 60 μM L-NAME (but not D-NAME) as well as by 30 μM sepiapterin, a precursor of tetrahydrobiopterin that is required for proper function of endothelial nitric oxide synthase (eNOS). These findings suggest that VEGF-induced barrier leakage uncouples eNOS. Ascorbate inhibition of the VEGF effect could thus be due either to scavenging superoxide or to peroxynitrite generated by the uncoupled eNOS, or more likely to its ability to recycle tetrahydrobiopterin, thus avoiding enzyme uncoupling in the first place. Ascorbate prevention of VEGF-induced increases in endothelial permeability opens the possibility that its repletion could benefit diabetic macular edema. PMID:26590088
Comparison of permeable pavement types : hydrology, design, installation, maintenance and cost.
DOT National Transportation Integrated Search
2012-01-13
"WisDOTs regional storm water engineer for the Southeast Region is interested in developing a park-and-ride with : porous pavement, possibly with the PaveDrain brand of permeable block. Research was needed to determine how : well permeable pavemen...
Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y
2017-02-01
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.
Possibilities of fish passage through the block ramp: Model-based estimation of permeability.
Plesiński, Karol; Bylak, Aneta; Radecki-Pawlik, Artur; Mikołajczyk, Tomasz; Kukuła, Krzysztof
2018-08-01
Block ramps offer an opportunity to combine hydrotechnical structures with fish passages. The primary study objective was to evaluate the effectiveness of a block ramp for upstream fish movement in a mountain stream. Geodetic measurements of the bottom surface and water level were taken for three cross-sections. The description of the geometric and hydrodynamic parameters of the block ramp was supplemented with information on the width and length of crevices between boulders. Measurements of the geometric and hydrodynamic parameters of the block ramp were performed at 76 measurement sites, at three different types of discharge. Ichthyological data were collected in the analyzed stream. Measurements covered among others total length, width, and height of caught fish. Salmonid, cottid, balitorid, and cyprinid fish were studied. The determination of the main effects of the geometric and hydrodynamic parameters of the block ramp on the possibilities of use by target fish species employed generalized linear models (GLMs). The study shows that the block ramp cannot provide longitudinal connectivity and migration of fish occurring in the mountain stream. According to estimates, the block ramp did not meet the permeability expectations. The reason for low usefulness of the ramp for fish is particularly excessively strong water current. The stream concentration constituted an unsurmountable velocity barrier for fish moving upstream for each of the analyzed discharges. The developed model suggests that some crevices in the side zones of the ramp could be parts of the migration corridor, but only for small and medium-sized fish. At medium and high water stages, movement of fish in crevices was difficult due to fast water current, and at low and very low discharges, some crevices lost their permeability, and could become ecological traps for fish. The necessity of estimation of ramp permeability during pre-construction phase was emphasized. Copyright © 2018 Elsevier B.V. All rights reserved.
Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation.
Kesler, Cristina T; Pereira, Ethel R; Cui, Cheryl H; Nelson, Gregory M; Masuck, David J; Baish, James W; Padera, Timothy P
2015-09-01
The angiopoietin (Ang) ligands are potential therapeutic targets for lymphatic related diseases, which include lymphedema and cancer. Ang-1 and Ang-2 functions are established, but those of Ang-4 are poorly understood. We used intravital fluorescence microscopy to characterize Ang-4 actions on T241 murine fibrosarcoma-associated vessels in mice. The diameters of lymphatic vessels draining Ang-4- or VEGF-C (positive control)-expressing tumors increased to 123 and 135 μm, respectively, and parental, mock-transduced (negative controls) and tumors expressing Ang-1 or Ang-2 remained at baseline (∼60 μm). Ang-4 decreased human dermal lymphatic endothelial cell (LEC) monolayer permeability by 27% while increasing human dermal blood endothelial cell (BEC) monolayer permeability by 200%. In vivo, Ang-4 stimulated a 4.5-fold increase in tumor-associated blood vessel permeability compared with control when measured using intravital quantitative multiphoton microscopy. Ang-4 activated receptor signaling in both LECs and BECs, evidenced by tyrosine kinase with Ig and endothelial growth factor homology domains-2 (TIE2) receptor, protein kinase B, and Erk1,2 phosphorylation detectable by immunoblotting. These data suggest that Ang-4 actions are mediated through cell-type-specific networks and that lymphatic vessel dilation occurs secondarily to increased vascular leakage. Ang-4 also promoted survival of LECs. Thus, blocking Ang-4 may prune the draining lymphatic vasculature and decrease interstitial fluid pressure (IFP) by reducing vascular permeability. © FASEB.
Sayeed, Iqbal; Parvez, Suhel; Winkler-Stuck, Kirstin; Seitz, Gordon; Trieu, Isabelle; Wallesch, Claus-Werner; Schönfeld, Peter; Siemen, Detlef
2006-03-01
The dopamine-D2-agonist pramipexole (PPX) was tested for blocking mitochondrial permeability transition (PT) in order to give a possible explanation for its neuroprotective effect seen in PPX-treated Parkinson's disease patients. Patch-clamp techniques for studying single-channel currents in the inner mitochondrial membrane and large-amplitude swelling of energized mitochondria were used to study PPX action on the permeability transition pore (PTP), a key player in the mitochondrial route of the apoptotic cascade. Identity of the PTP was proven by measuring the concentration-response relation for cyclosporin A-blockade (IC50=26 nM). PPX inhibits the PTP reversibly with an IC50 of 500 nM, which is close to the values determined earlier as plasma concentrations after PPX medication in patients. Interaction of PPX with the PTP is further supported by demonstrating that it abolished Ca2+-triggered swelling in functionally intact mitochondria. Blockade of the PTP by PPX was attenuated by increasing concentrations of inorganic phosphate and by acidification. We suggest that PPX could exert part of its neuroprotective effect by inhibition of the PTP and thus, probably, blocking of the mitochondrial pathway of the apoptosis cascade.
Permeability Evolution With Shearing of Simulated Faults in Unconventional Shale Reservoirs
NASA Astrophysics Data System (ADS)
Wu, W.; Gensterblum, Y.; Reece, J. S.; Zoback, M. D.
2016-12-01
Horizontal drilling and multi-stage hydraulic fracturing can lead to fault reactivation, a process thought to influence production from extremely low-permeability unconventional reservoir. A fundamental understanding of permeability changes with shear could be helpful for optimizing reservoir stimulation strategies. We examined the effects of confining pressure and frictional sliding on fault permeability in Eagle Ford shale samples. We performed shear-flow experiments in a triaxial apparatus on four shale samples: (1) clay-rich sample with sawcut fault, (2) calcite-rich sample with sawcut fault, (3) clay-rich sample with natural fault, and (4) calcite-rich sample with natural fault. We used pressure pulse-decay and steady-state flow techniques to measure fault permeability. Initial pore and confining pressures are set to 2.5 MPa and 5.0 MPa, respectively. To investigate the influence of confining pressure on fault permeability, we incrementally raised and lowered the confining pressure and measure permeability at different effective stresses. To examine the effect of frictional sliding on fault permeability, we slide the samples four times at a constant shear displacement rate of 0.043 mm/min for 10 minutes each and measure fault permeability before and after frictional sliding. We used a 3D Laser Scanner to image fault surface topography before and after the experiment. Our results show that frictional sliding can enhance fault permeability at low confining pressures (e.g., ≥5.0 MPa) and reduce fault permeability at high confining pressures (e.g., ≥7.5 MPa). The permeability of sawcut faults almost fully recovers when confining pressure returns to the initial value, and increases with sliding due to asperity damage and subsequent dilation at low confining pressures. In contrast, the permeability of natural faults does not fully recover. It initially increases with sliding, but then decreases with further sliding most likely due to fault gouge blocking fluid pathways.
Mundschau, Michael V.
2005-05-31
Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.
Lu, Lianjun; Xu, Hui; Wang, Xiaowu; Guo, Guozhen
2009-04-06
To examine whether electromagnetic pulses (EMPs) affected the permeability of the blood-retinal barrier (BRB), gene expression of occludin and activity of nitric oxide synthase (NOS). Sprague-Dawley (SD) rats were used and randomized into EMP and control groups. Retinas were removed immediately, and 2 h or 24 h after EMP radiation. BRB permeability was analyzed by transmission electron microscopy and Evans Blue staining. Retinal NOS activity and concentrations of nitrite and nitrate were measured. Occludin mRNA and protein levels were detected by RT-PCR and Western blotting. Exposure of SD rats to EMP resulted in increased BRB permeability, with the greatest decrease in occludin at 24 h. Moreover, this permeability defect was also correlated with significant increases in the formation of NO and induction of NOS activity in SD rats. Furthermore, we found that treatment with NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME) blocked BRB breakdown and prevented the increase in NO formation and induction of NOS activity, as well as the decrease in occluding expression. Taken together, these results support the view that NOS-dependent NO production is an important factor that contributes to EMP-induced BRB dysfunction, and suggests that NOS induction may play an important role in BRB breakdown.
Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.
Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe
2006-10-01
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.
Ding, An; Wang, Jinlong; Lin, Dachao; Tang, Xiaobin; Cheng, Xiaoxiang; Li, Guibai; Ren, Nanqi; Liang, Heng
2017-12-01
Gravity-driven membrane filtration systems are promising for decentralized sewage treatment due to their low energy consumption and low maintenance. However, the low stable permeability/flux is currently limiting their wider application. With the ultimate goal of increasing permeability, the aim of this study was to evaluate the effect of coagulation (in situ coagulation and pre-coagulation) on the performance of a gravity-driven membrane bioreactor (GDMBR) during treatment of synthetic sewage. Results show that in situ coagulation significantly increased permeability (more than two-fold); however, no stabilization of permeability occurred over the whole operation, when non-coagulated and pre-coagulated reactors were compared. The high permeability observed was attributed to the accumulated aluminium floc in the reactor, which prevented formation of fluorescent microbial metabolites (aromatic and tryptophan proteins, as well as fulvic acids), and further avoided membrane pore blocking. In addition, the surface porosity of the fouling layer was improved (from 11.2% to 32.4% for non-coagulated and in situ coagulated reactors). The unstable permeability was possibly associated with lower biological processes within the fouling layer. These might include lower adenosine triphosphate (ATP) content and lower fluorescent metabolites from the extracellular polymeric substances (EPS) caused by the accumulated Al (compared with the control). On the other hand, pre-coagulation improved the level of stable permeability compared with the control (80 versus 40 L/m 2 h bar), mainly because pre-coagulation decreased the EPS content and also maintained high ATP content of the fouling layer. In addition, both coagulation processes reduced the total filtration resistance, mainly the hydraulically reversible resistance and cake layer resistance, which could lower the cleaning frequency. Overall, coagulation could greatly increase the removal efficiency and improve the GDMBR permeability, which would make the process suitable for decentralized wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Doublier, Sophie; Zennaro, Cristina; Spatola, Tiziana; Lupia, Enrico; Bottelli, Antonella; Deregibus, Maria Chiara; Carraro, Michele; Conaldi, Pier Giulio; Camussi, Giovanni
2007-02-19
To determine whether HIV-1 Tat may directly alter glomerular permeability in HIV-associated nephropathy (HIVAN). Heavy proteinuria is a hallmark of HIVAN. The slit diaphragm is the ultimate glomerular filtration barrier critical for maintaining the efficiency of the ultrafiltration unit of the kidney. In this study, we evaluated the direct effect of Tat protein on the permeability of isolated glomeruli and on the expression of nephrin, the main slit diaphragm component, by human cultured podocytes. Permeability was studied by measuring the permeability to albumin in isolated rat glomeruli. We also evaluated the expression of nephrin in human cultured podocytes by using immunofluorescence and Western blot. We found that Tat increased albumin permeability in isolated glomeruli, and rapidly induced the redistribution and loss of nephrin in cultured podocytes. Pretreatment of glomeruli and podocytes with blocking antibodies showed that Tat reduced nephrin expression by engaging vascular endothelial growth factor receptors types 2 and 3 and the integrin alphavbeta3. Pre-incubation of podocytes with two platelet-activating factor (PAF) receptor antagonists prevented the loss and redistribution of nephrin induced by Tat, suggesting that PAF is an intracellular mediator of Tat action. Tat induced a rapid PAF synthesis by podocytes. When podocytes transfected to overexpress PAF-acetylhydrolase, the main catabolic enzyme of PAF, were stimulated with Tat, the redistribution and loss of nephrin was abrogated. The present results define a mechanism by which Tat may reduce nephrin expression in podocytes, thus increasing glomerular permeability. This provides new insights in the understanding of HIVAN pathogenesis.
Reactive transport under stress: Permeability evolution by chemo-mechanical deformation
NASA Astrophysics Data System (ADS)
Roded, R.; Holtzman, R.
2017-12-01
The transport of reactive fluids in porous media is important in many natural and engineering processes. Reaction with the solid matrix—e.g. dissolution—changes the transport properties, which in turn affect the rate of reagent transport and hence the reaction. The importance of this highly nonlinear problem has motivated intensive research. Specifically, there have been numerous studies concerning the permeability evolution, especially the process of "wormholing", where preferential dissolution of the most conductive regions leads to a runaway permeability increase. Much less attention, however, has been given to the effect of geomechanics; that is, how the fact that the medium is under stress changes the permeability evolution. Here, we present a novel, mechanistic pore-scale model, simulating the interplay between pore opening by matrix dissolution and pore closure by mechanical compaction, facilitated by weakening caused by the very same process of dissolution. We combine a pore network model of reactive transport with a block-spring model that captures the effect of geomechanics through the update of the network properties. Our simulations show that permeability enhancement is inhibited by stress concentration downstream, in the less dissolved (hence stiffer) regions. Higher stresses lead to stronger inhibition, in agreement with experiments. The effect of stress also depends on the Damkohler number (Da)—the ratio between the flow and the reaction rate. At rapid injection (small Da), where dissolution is relatively uniform, stress has a significant effect on permeability. At slower flow rates (high Da, wormholing regime), stress affects the permeability evolution mostly in early stages, with a much smaller effect on the injected volume required for a significant permeability increase (breakthrough) than at low Da. Interestingly, at higher Da, stress concentration downstream induced by the more heterogeneous dissolution leads to a more homogeneous reagent transport, promoting wormhole competition.
Chao, Chiao-Hsuan; Chen, Hong-Ru; Chuang, Yung-Chun; Yeh, Trai-Ming
2018-07-01
Vascular leakage contributes to the high morbidity and mortality associated with sepsis. Exposure of the endothelium to inflammatory mediators, such as thrombin and cytokines, during sepsis leads to hyperpermeability. We recently observed that autophagy, a cellular process for protein turnover, is involved in macrophage migration inhibitory factor (MIF)-induced endothelial hyperpermeability. Even though it is known that thrombin induces endothelial cells to secrete MIF and to increase vascular permeability, the possible role of autophagy in this process is unknown. In this study, we proposed and tested the hypothesis that MIF-induced autophagy plays an important role in thrombin-induced endothelial hyperpermeability. We evaluated the effects of thrombin on endothelial permeability, autophagy induction, and MIF secretion in vitro using the human microvascular endothelial cell line-1 and human umbilical vein endothelial cells. Several mechanisms/read outs of endothelial permeability and autophagy formation were examined. We observed that blocking autophagy attenuated thrombin-induced endothelial hyperpermeability. Furthermore, thrombin-induced MIF secretion was involved in this process because MIF inhibition reduced thrombin-induced autophagy and hyperpermeability. Finally, we showed that blocking MIF or autophagy effectively alleviated vascular leakage and mortality in endotoxemic mice. Thus, MIF-induced autophagy may represent a common mechanism causing vascular leakage in sepsis.
Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y
2001-09-01
Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, B.; Lacoste, I.; Ehrenfeld, J.
1991-04-01
We have compared the response of proton and water transport to oxytocin treatment in isolated frog skin and urinary bladder epithelia to provide further insights into the nature of water flow and H+ flux across individual apical and basolateral cell membranes. In isolated spontaneous sodium-transporting frog skin epithelia, lowering the pH of the apical solution from 7.4 to 6.4, 5.5, or 4.5 produced a fall in pHi in principal cells which was completely blocked by amiloride, indicating that apical Na+ channels are permeable to protons. When sodium transport was blocked by amiloride, the H+ permeability of the apical membranes ofmore » principal cells was negligible but increased dramatically after treatment with antidiuretic hormone (ADH). In the latter condition, lowering the pH of the apical solution caused a voltage-dependent intracellular acidification, accompanied by membrane depolarization, and an increase in membrane conductance and transepithelial current. These effects were inhibited by adding Hg2+ (100 microM) or dicyclohexylcarbodiimide (DCCD, 10(-5) M) to the apical bath. Net titratable H+ flux across frog skin was increased from 30 +/- 8 to 115 +/- 18 neq.h-1.cm-2 (n = 8) after oxytocin treatment (at apical pH 5.5 and serosal pH 7.4) and was completely inhibited by DCCD (10(-5) M). The basolateral membranes of the principal cells in frog skin epithelium were found to be spontaneously permeable to H+ and passive electrogenic H+ transport across this membrane was not affected by oxytocin. Lowering the pH of the basolateral bathing solution (pHb) produced an intracellular acidification and membrane depolarization (and an increase in conductance when the normal dominant K+ conductance of this membrane was abolished by Ba2+ 1 mM). These effects of low pHb were blocked by micromolar concentrations of heavy metals (Zn2+, Ni2+, Co2+, Cd2+, and Hg2+).« less
Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.
2016-01-01
Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450
Rutqvist, J.
2014-09-19
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, J.
The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less
Ribonucleic Acid Synthesis and Glutamate Excretion in Escherichia coli
Broda, Paul
1968-01-01
Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RCrel strains or when it was blocked with chloramphenicol in either RCstr or RCrel strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RCstr and RCrel strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane. PMID:4973126
Experimental Measurements of Permeability Evolution along Faults during Progressive Slip
NASA Astrophysics Data System (ADS)
Strutz, M.; Mitchell, T. M.; Renner, J.
2010-12-01
Little is currently known about the dynamic changes in fault-parallel permeability along rough faults during progressive slip. With increasing slip, asperities are worn to produce gouge which can dramatically reduce along fault permeability within the slip zone. However, faults can have a range of roughness which can affect both the porosity and both the amount and distribution of fault wear material produced in the slipping zone during the early stages of fault evolution. In this novel study we investigate experimentally the evolution of permeability along a fault plane in granite sawcut sliding blocks with a variety of intial roughnesses in a triaxial apparatus. Drillholes in the samples allow the permeability to be measured along the fault plane during loading and subsequent fault displacement. Use of the pore pressure oscillation technique (PPO) allows the continuous measurement of permeability without having to stop loading. To achieve a range of intial starting roughnesses, faults sawcut surfaces were prepared using a variety of corundum powders ranging from 10 µm to 220 µm, and for coarser roughness were air-blasted with glass beads up to 800µm in size. Fault roughness has been quantified with a laser profileometer. During sliding, we measure the acoustic emissions in order to detect grain cracking and asperity shearing which may relate to both the mechanical and permeability data. Permeability shows relative reductions of up to over 4 orders of magnitude during stable sliding as asperities are sheared to produce a fine fault gouge. This variation in permeability is greatest for the roughest faults, reducing as fault roughness decreases. The onset of permeability reduction is contemporaneous with a dramatic reduction in the amount of detected acoustic emissions, where a continuous layer of fault gouge has developed. The amount of fault gouge produced is related to the initial roughness, with the rough faults showing larger fault gouge layers at the end of slip. Following large stress drops and stick slip events, permeability can both increase and decrease due to dynamic changes in pore pressure during fast sliding events. We present a summary of preliminary data to date, and discuss some of the problems and unknowns when using the PPO method to measure permeability.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Sepulveda-Orengo, Marian T; Lopez, Ana V; Soler-Cedeño, Omar; Porter, James T
2013-04-24
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Compartmentalization and Transport in Synthetic Vesicles
Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.
2016-01-01
Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834
Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.
2006-01-01
In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981
Navaratna, Deepti; Menicucci, Gina; Maestas, Joann; Srinivasan, Ramprasad; McGuire, Paul; Das, Arup
2008-09-01
One of the major complications of diabetes is the alteration of the blood-retinal barrier, leading to retinal edema and consequent vision loss. The aim of this study was to evaluate the role of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system in the regulation of retinal vascular permeability. Biochemical, molecular, and histological techniques were used to examine the role of uPA and uPAR in the regulation of retinal vascular permeability in diabetic rats and cultured retinal endothelial cells. The increased retinal vascular permeability in diabetic rats was associated with a decrease in vascular endothelial (VE) -cadherin expression in retinal vessels. Treatment with the uPA/uPAR-inhibiting peptide (A6) was shown to reduce diabetes-induced permeability and the loss of VE-cadherin. The increased permeability of cultured cells in response to advanced glycation end products (AGEs) was significantly inhibited with A6. Treatment of endothelial cells with specific matrix metalloproteinases or AGEs resulted in loss of VE-cadherin from the cell surface, which could be inhibited by A6. uPA/uPAR physically interacts with AGEs/receptor for advanced glycation end products on the cell surface and regulates its activity. uPA and its receptor uPAR play important roles in the alteration of the blood-retinal barrier through proteolytic degradation of VE-cadherin. The ability of A6 to block retinal vascular permeability in diabetes suggests a potential therapeutic approach for the treatment of diabetic macular edema.
Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G
1995-06-01
We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.
Claudin-2-mediated cation and water transport share a common pore
Rosenthal, Rita; Günzel, Dorothee; Krug, Susanne M.; Schulzke, Jörg-Dieter; Fromm, Michael; Yu, Alan S.L.
2016-01-01
Aim Claudin-2 is a tight junction protein typically located in “leaky” epithelia exhibiting large paracellular permeabilities like small intestine and proximal kidney tubule. Former studies revealed that claudin-2 forms paracellular channels for small cations like sodium and potassium and also paracellular channels for water. This study analyzes whether the diffusive transport of sodium and water occurs through a common pore of the claudin-2 channel. Methods Wild-type claudin-2 and different claudin-2 mutants were expressed in MDCK I kidney tubule cells using an inducible system. Ion and water permeability and the effect of blocking reagents on both were investigated on different clones of the mutants. Results Neutralization of a negatively charged cation interaction site in the pore with the mutation, D65N, decreased both, sodium permeability and water permeability. Claudin-2 mutants (I66C and S68C) with substitution of the pore-lining amino acids with cysteine were used to test the effect of steric blocking of the claudin-2 pore by thiol-reactive reagents. Addition of thiol-reactive reagents to these mutants simultaneously decreased conductance and water permeability. Remarkably, all experimental perturbations caused parallel changes in ion conductance and water permeability, disproving different or independent passage pathways. Conclusion Our results indicate that claudin-2-mediated cation and water transport are frictionally coupled and share a common pore. This pore is lined and determined in permeability by amino acid residues of the first extracellular loop of claudin-2. PMID:27359349
Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling
Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.
2007-01-01
Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, B.; Bagherpour, H.; Nioc, A.
1995-08-01
The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less
Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun
2015-01-01
Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265
Shiu, Carlum; Barbier, Elisabeth; Di Cello, Francescopaolo; Choi, Hee Jung; Stins, Monique
2007-01-01
HIV-1 infection commonly leads to serious HIV-1-associated neurological disorders, such as HIV-1-associated encephalopathy and dementia. In addition, alcohol is commonly used and/or abused among AIDS patients, but it is unclear whether alcohol affects the disease progression and if it affects it, how this occurs. We hypothesized that alcohol could affect the blood-brain barrier (BBB) integrity and thus could affect the onset and/or progression of HIV-associated neurological disorders. Human brain microvascular endothelial cells (HBMEC) in a BBB model system were pretreated with alcohol (17 and 68 mM) and subsequently coexposed with HIV-1 gp120. Expression of chemokine receptors CCR3, CCR5, and CXCR4 was assessed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Changes in the permeability of the HBMEC monolayer were assessed using paracellular markers [(3)H]inulin or propidium iodide. Actin rearrangements in HBMEC were visualized by fluorescence microscopy and viability assessed using Live/Dead stain. Both gp120 and alcohol increased the permeability of the BBB model by up to 141%, without affecting HBMEC viability. Cotreatment with alcohol and gp120 did not result in a significant synergistic effect. Gp120 permeability involved chemokine receptor CCR5. Alcohol did not affect chemokine receptor expression on brain endothelial cells. Both gp120 and alcohol reorganized the cytoskeleton and induced stress fiber formation. Inhibition of reactive oxygen species (ROS) formation through NADPH blocked the effects of both gp120 and alcohol on permeability and stress fiber formation. These results indicate that both HIV-1 gp120 and alcohol induce stress fibers, causing increased permeability of the human BBB endothelium. Alcohol (68 mM)-mediated permeability increase was linked to ROS formation. The alcohol-mediated physiological changes in the HBMEC monolayers may increase diffusion of plasma components and viral penetration across the BBB. This suggests that alcohol, especially at levels attained in heavy drinkers, can potentially contribute in a negative fashion to HIV-1 neuropathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Jie; Hou, Zhangshuan; Fang, Yilin
2015-06-01
A series of numerical test cases reflecting broad and realistic ranges of geological formation and preexisting fault properties was developed to systematically evaluate the impacts of preexisting faults on pressure buildup and ground surface uplift during CO₂ injection. Numerical test cases were conducted using a coupled hydro-geomechanical simulator, eSTOMP (extreme-scale Subsurface Transport over Multiple Phases). For efficient sensitivity analysis and reliable construction of a reduced-order model, a quasi-Monte Carlo sampling method was applied to effectively sample a high-dimensional input parameter space to explore uncertainties associated with hydrologic, geologic, and geomechanical properties. The uncertainty quantification results show that the impacts onmore » geomechanical response from the pre-existing faults mainly depend on reservoir and fault permeability. When the fault permeability is two to three orders of magnitude smaller than the reservoir permeability, the fault can be considered as an impermeable block that resists fluid transport in the reservoir, which causes pressure increase near the fault. When the fault permeability is close to the reservoir permeability, or higher than 10⁻¹⁵ m² in this study, the fault can be considered as a conduit that penetrates the caprock, connecting the fluid flow between the reservoir and the upper rock.« less
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; Higgins, Daniel A; Ito, Takashi
2016-12-01
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent molecules (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT ) and transverse variance of the 1D trajectories (σ δ 2 ), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. These results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less
Sapkota, Dol Raj; Tran-Ba, Khanh-Hoa; Elwell-Cuddy, Trevor; ...
2016-11-04
Understanding the properties of solvent-swollen block copolymer (BCP) microdomains is important for better solvent-based control of microdomain morphology, orientation, and permeability. In this study, single-molecule tracking (SMT) was explored to assess the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene- block-poly(ethylene oxide) (PS-b-PEO) films. PS-b-PEO films comprising shear-elongated cylindrical PEO microdomains were prepared by sandwiching its benzene or tetrahydrofuran (THF) solution between two glass substrates. In this paper, SMT measurements were performed at different drying times to investigate the effects of solvent evaporation on the microdomain properties. SMT data showed one-dimensional (1D) motions of single fluorescent moleculesmore » (sulforhodamine B) based on their diffusion within the cylindrical microdomains. Microdomain permeability and transverse width were assessed from the single-molecule diffusion coefficients (D SMT) and transverse variance of the 1D trajectories (σ δ 2), respectively. The D SMT and σ δ 2 values from individual 1D trajectories were widely distributed with no evidence of correlation on a single molecule basis, possibly because the individual microdomains in a film were swollen to different extents. On average, microdomain permeability (D) and effective radius (r) gradually decreased within the first 3 days of drying due to solvent evaporation, and changed negligibly thereafter. PS-b-PEO films prepared from THF solutions exhibited larger changes in D and r as compared with those from benzene solutions due to the better swelling of the PEO microdomains by THF. Importantly, changes in D were more prominent than those in r, suggesting that the permeability of the PEO microdomains is very susceptible to the presence of solvent. Finally, these results reveal the unique capability of SMT to assess the properties of individual cylindrical microdomains in a solvent-swollen BCP film.« less
Stranahan, Alexis M; Hao, Shuai; Dey, Aditi; Yu, Xiaolin; Baban, Babak
2016-12-01
Accumulating evidence indicates that obesity accelerates the onset of cognitive decline. While mechanisms are still being identified, obesity promotes peripheral inflammation and increases blood-brain barrier (BBB) permeability. However, no studies have manipulated vascular permeability in obesity to determine whether BBB breakdown underlies memory deficits. Protein kinase Cβ (PKCβ) activation destabilizes the BBB, and we used a PKCβ inhibitor (Enzastaurin) to block BBB leakiness in leptin receptor-deficient (db/db) mice. Enzastaurin reversed BBB breakdown in db/db mice and normalized hippocampal function without affecting obesity or metabolism. Flow cytometric analysis of forebrain mononuclear cells (FMCs) from db/db mice revealed macrophage infiltration and induction of the activation marker MHCII in microglia and macrophages. Enzastaurin eliminated macrophage infiltration and MHCII induction, and protein array profiling revealed parallel reductions in IL1β, IL6, MCP1, and TNFα. To investigate whether these signals attract peripheral monocytes, FMCs from Wt and db/db mice were plated below migration inserts containing peritoneal macrophages. Peritoneal macrophages from db/db mice exhibit increases in transmigration that were blocked by recombinant IL1RA. These studies indicate that BBB breakdown impairs cognition in obesity and diabetes by allowing macrophage infiltration, with a potential role for IL1β in trafficking of peripheral monocytes into the brain. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Pakzad, R.; Wang, S. Y.; Sloan, S. W.
2018-04-01
In this study, an elastic-brittle-damage constitutive model was incorporated into the coupled fluid/solid analysis of ABAQUS to iteratively calculate the equilibrium effective stress of Biot's theory of consolidation. The Young's modulus, strength and permeability parameter of the material were randomly assigned to the representative volume elements of finite element models following the Weibull distribution function. The hydraulic conductivity of elements was associated with their hydrostatic effective stress and damage level. The steady-state permeability test results for sandstone specimens under different triaxial loading conditions were reproduced by employing the same set of material parameters in coupled transient flow/stress analyses of plane-strain models, thereby indicating the reliability of the numerical model. The influence of heterogeneity on the failure response and the absolute permeability was investigated, and the post-peak permeability was found to decrease with the heterogeneity level in the coupled analysis with transient flow. The proposed model was applied to the plane-strain simulation of the fluid pressurization of a cavity within a large-scale block under different conditions. Regardless of the heterogeneity level, the hydraulically driven fractures propagated perpendicular to the minimum principal far-field stress direction for high-permeability models under anisotropic far-field stress conditions. Scattered damage elements appeared in the models with higher degrees of heterogeneity. The partially saturated areas around propagating fractures were simulated by relating the saturation degree to the negative pore pressure in low-permeability blocks under high pressure. By replicating previously reported trends in the fracture initiation and breakdown pressure for different pressurization rates and hydraulic conductivities, the results showed that the proposed model for hydraulic fracture problems is reliable for a wide range of pressurization rates and permeability conditions.
Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao
2015-07-01
A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method.
1995-01-01
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel. PMID:7561740
Anti-inflammatory activity of Arnica montana 6cH: preclinical study in animals.
Macêdo, S B; Ferreira, L R; Perazzo, F F; Carvalho, J C
2004-04-01
The anti-inflammatory effect of Arnica montana 6cH was evaluated using acute and chronic inflammation models. In the acute, model, carrageenin-induced rat paw oedema, the group treated with Arnica montana 6cH showed 30% inhibition compared to control (P < 0.05). Treatment with Arnica 6cH, 30 min prior to carrageenin, did not produce any inhibition of the inflammatory process. In the chronic model, Nystatin-induced oedema, the group treated 3 days previously with Arnica montana 6cH had reduced inflammation 6 h after the inflammatory agent was applied (P < 0.05). When treatment was given 6 h after Nystatin treatment, there was no significant inhibitory effect. In a model based on histamine-induced increase of vascular permeability, pretreatment with Arnica montana 6cH blocked the action of histamine in increasing vascular permeability.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons
Sepulveda-Orengo, Marian T.; Lopez, Ana V.; Soler-Cedeño, Omar; Porter, James T.
2013-01-01
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPA receptors into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPA receptors into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPA receptors with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. Together, these findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPA receptors in IL synapses. Consequently, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders. PMID:23616528
The role of protein kinase C in the opening of blood-brain barrier induced by electromagnetic pulse.
Qiu, Lian-Bo; Ding, Gui-Rong; Li, Kang-Chu; Wang, Xiao-Wu; Zhou, Yan; Zhou, Yong-Chun; Li, Yu-Rong; Guo, Guo-Zhen
2010-06-29
The aim of this study was to determine the role of protein kinase C signaling in electromagnetic pulse (EMP)-induced blood-brain barrier (BBB) permeability change in rats. The protein level of total PKC and two PKC isoforms (PKC-alpha, and PKC-beta II) were determined in brain cerebral cortex microvessels by Western blot after exposing rats to EMP at 200kV/m for 200 pulses with 1Hz repetition rate. It was found that the protein level of PKC and PKC-betaII (but not PKC-alpha) in cerebral cortex microvessels increased significantly at 0.5h and 1h after EMP exposure compared with sham-exposed animals and then recovered at 3h. A specific PKC antagonist (H7) almost blocked EMP-induced BBB permeability change. EMP-induced BBB tight junction protein ZO-1 translocation was also inhibited. Our data indicated that PKC signaling was involved in EMP-induced BBB permeability change and ZO-1 translocation in rat.
Sato, Motohiko; Jiao, Qibin; Honda, Takashi; Kurotani, Reiko; Toyota, Eiji; Okumura, Satoshi; Takeya, Tatsuo; Minamisawa, Susumu; Lanier, Stephen M.; Ishikawa, Yoshihiro
2009-01-01
Ischemic injury of the heart is associated with activation of multiple signal transduction systems including the heterotrimeric G-protein system. Here, we report a role of the ischemia-inducible regulator of Gβγ subunit, AGS8, in survival of cardiomyocytes under hypoxia. Cultured rat neonatal cardiomyocytes (NCM) were exposed to hypoxia or hypoxia/reoxygenation following transfection of AGS8siRNA or pcDNA::AGS8. Hypoxia-induced apoptosis of NCM was completely blocked by AGS8siRNA, whereas overexpression of AGS8 increased apoptosis. AGS8 formed complexes with G-proteins and channel protein connexin 43 (CX43), which regulates the permeability of small molecules under hypoxic stress. AGS8 initiated CX43 phosphorylation in a Gβγ-dependent manner by providing a scaffold composed of Gβγ and CX43. AGS8siRNA blocked internalization of CX43 following exposure of NCM to repetitive hypoxia; however it did not influence epidermal growth factor-mediated internalization of CX43. The decreased dye flux through CX43 that occurred with hypoxic stress was also prevented by AGS8siRNA. Interestingly, the Gβγ inhibitor Gallein mimicked the effect of AGS8 knockdown on both the CX43 internalization and the changes in cell permeability elicited by hypoxic stress. These data indicate that AGS8 is required for hypoxia-induced apoptosis of NCM, and that AGS8-Gβγ signal input increased the sensitivity of cells to hypoxic stress by influencing CX43 regulation and associated cell permeability. Under hypoxic stress, this unrecognized response program plays a critical role in the fate of NCM. PMID:19723622
Muthard, Ryan W; Diamond, Scott L
2012-12-01
Blood clots form under flow during intravascular thrombosis or vessel leakage. Prevailing hemodynamics influence thrombus structure and may regulate contraction processes. A microfluidic device capable of flowing human blood over a side channel plugged with collagen (± tissue factor) was used to measure thrombus permeability (κ) and contraction at controlled transthrombus pressure drops. The collagen (κ(collagen)=1.98 × 10(-11) cm(2)) supported formation of a 20-µm thick platelet layer, which unexpectedly underwent massive platelet retraction on flow arrest. This contraction resulted in a 5.34-fold increase in permeability because of collagen restructuring. Without stopping flow, platelet deposits (no fibrin) had a permeability of κ(platelet)=5.45 × 10(-14) cm(2) and platelet-fibrin thrombi had κ(thrombus)=2.71 × 10(-14) cm(2) for ΔP=20.7 to 23.4 mm Hg, the first ever measurements for clots formed under arterial flow (1130 s(-1) wall shear rate). Platelet sensing of flow cessation triggered a 4.6- to 6.5-fold (n=3, P<0.05) increase in contraction rate, which was also observed in a rigid, impermeable parallel-plate microfluidic device. This triggered contraction was blocked by the myosin IIA inhibitor blebbistatin and by inhibitors of thromboxane A2 (TXA(2)) and ADP signaling. In addition, flow arrest triggered platelet intracellular calcium mobilization, which was blocked by TXA(2)/ADP inhibitors. As clots become occlusive or blood pools following vessel leakage, the flow diminishes, consequently allowing full platelet retraction. Flow dilution of ADP and thromboxane regulates platelet contractility with prevailing hemodynamics, a newly defined flow-sensing mechanism to regulate clot function.
Muthard, Ryan W.; Diamond, Scott L.
2012-01-01
Objective Blood clots form under flow during intravascular thrombosis or vessel leakage. Prevailing hemodynamics influence thrombus structure and may regulate contraction processes. A microfluidic device capable of flowing human blood over a side channel plugged with collagen (± tissue factor) was used to measure thrombus permeability (κ) and contraction at controlled transthrombus pressure drops. Methods and Results The collagen (κcollagen = 1.98 × 10−11 cm2) supported formation of a 20-μm thick platelet layer, which unexpectedly underwent massive platelet retraction upon flow arrest. This contraction resulted in a 5.34-fold increase in permeability due to collagen restructuring. Without stopping flow, platelet deposits (no fibrin) had a permeability of κplatelet = 5.45 × 10−14 cm2 and platelet-fibrin thrombi had κthrombus = 2.71 × 10−14 cm2 for ΔP = 20.7 to 23.4 mm-Hg, the first ever measurements for clots formed under arterial flow (1130 s−1 wall shear rate). Platelet sensing of flow cessation triggered a 4.6 to 6.5-fold (n=3, P<0.05) increase in contraction rate, which was also observed in a rigid, impermeable parallel-plate microfluidic device. This triggered contraction was blocked by the myosin IIA inhibitor blebbistatin and by inhibitors of thromboxane (TXA2) and ADP signaling. In addition, flow arrest triggered platelet intracellular calcium mobilization, which was blocked by TXA2/ADP inhibitors. As clots become occlusive or vessels rupture, flow around developed clots diminishes facilitating full platelet retraction and hemostasis. Conclusion Flow dilution of ADP and thromboxane regulates platelet contractility with prevailing hemodynamics, a newly defined flow sensing mechanism to regulate clot function. PMID:23087356
Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente
2014-06-01
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.
Li, Hai-Juan; Guo, Liang-Mei; Yang, Long-Long; Zhou, Yong-Chun; Zhang, Yan-Jun; Guo, Juan; Xie, Xue-Jun; Guo, Guo-Zhen
2013-06-20
The blood-retinal barrier (BRB) is critical for maintaining retina homeostasis and low permeability. In this study, we evaluated the effects of electromagnetic pulse (EMP) exposure on the permeability of BRB, alterations of tight junction (TJ) proteins of BRB and if any, involvement of mitogen-activated protein kinase (MAPK) pathway. Male Sprague-Dawley (SD) rats and RF/6A cells which were pretreated with or without MAPKs inhibitors were sham exposed or exposed to EMP at 200kV/m for 200 pulses. The alteration of BRB permeability was examined through fluorescence microscope and quantitatively assessed using Evans blue (EB) and endogenous albumin as tracers. The expressions of TJ proteins and some signaling molecules of MAPK pathway were measured by Western blots. The observations were that EMP exposure resulted in increased BRB permeability concurrent with the decreased expressions of occludin and claudin-5, which were correlated with the increased expressions of phospho-p38, phospho-JNK and phospho-ERK and could be blocked when pretreated with p38 MAPK inhibitor. Thus, the results suggested that the alterations of occludin and claudin-5 may play an important role in the disruption of TJs, which may lead to the transient breakdown of BRB after EMP exposure with the involvement of p38 MAPK pathway through phosphorylation of signaling molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine
2017-05-01
Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease even in the absence of signs of fluid retention. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-08-10
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-01-01
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764
Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels.
Matthewman, Cristina; Miller-Fleming, Tyne W; Miller, David M; Bianchi, Laura
2016-12-01
Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca 2+ overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na + and Ca 2+ , raising the possibility that direct Ca 2+ influx through these channels contributes to intracellular Ca 2+ overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca 2+ permeable, yet it is neurotoxic, suggesting that Na + influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca 2+ block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca 2+ permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na + conductance vs. Ca 2+ permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca 2+ -permeable DEG/ENaC channels, both Ca 2+ permeability and Na + conductance contribute to toxicity. However, for Ca 2+ -impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na + conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels. Copyright © 2016 the American Physiological Society.
Ca2+ permeability and Na+ conductance in cellular toxicity caused by hyperactive DEG/ENaC channels
Matthewman, Cristina; Miller-Fleming, Tyne W.; Miller, David M.
2016-01-01
Hyperactivated DEG/ENaC channels cause neuronal death mediated by intracellular Ca2+ overload. Mammalian ASIC1a channels and MEC-4(d) neurotoxic channels in Caenorhabditis elegans both conduct Na+ and Ca2+, raising the possibility that direct Ca2+ influx through these channels contributes to intracellular Ca2+ overload. However, we showed that the homologous C. elegans DEG/ENaC channel UNC-8(d) is not Ca2+ permeable, yet it is neurotoxic, suggesting that Na+ influx is sufficient to induce cell death. Interestingly, UNC-8(d) shows small currents due to extracellular Ca2+ block in the Xenopus oocyte expression system. Thus, MEC-4(d) and UNC-8(d) differ both in current amplitude and Ca2+ permeability. Given that these two channels show a striking difference in toxicity, we wondered how Na+ conductance vs. Ca2+ permeability contributes to cell death. To address this question, we built an UNC-8/MEC-4 chimeric channel that retains the calcium permeability of MEC-4 and characterized its properties in Xenopus oocytes. Our data support the hypothesis that for Ca2+-permeable DEG/ENaC channels, both Ca2+ permeability and Na+ conductance contribute to toxicity. However, for Ca2+-impermeable DEG/ENaCs (e.g., UNC-8), our evidence shows that constitutive Na+ conductance is sufficient to induce toxicity, and that this effect is enhanced as current amplitude increases. Our work further refines the contribution of different channel properties to cellular toxicity induced by hyperactive DEG/ENaC channels. PMID:27760755
Permeability evolution governed by shear: An example during spine extrusion at Unzen volcano, Japan
NASA Astrophysics Data System (ADS)
Ashworth, James; Lavallée, Yan; Wallace, Paul; Kendrick, Jackie; Coats, Rebecca; Miwa, Takahiro; Hess, Kai-Uwe
2017-04-01
A volcano's eruptive style is strongly controlled by the permeability of the magma and the surrounding edifice rock - explosive activity is more likely if exsolved gases cannot escape the system. In this study, we investigate how shear strain causes variations in permeability within a volcanic conduit, and discuss how spatio-temporal variation in shear regimes may develop. The eruption of Unzen volcano, Japan, which occurred between 1990 - 1995, culminated in the extrusion of a 60 metre-high dacitic spine. The spine, left exposed at the lava dome surface, displays the petrographic architecture of the magma in the shallow conduit. Observations and measurements made in the field are combined with laboratory experiments to understand the distribution of permeability in the shallow conduit. Examination of the lava dome led to the selection of two sites for detailed investigation. First, we examined a section of extruded spine 6 metres in width, which displays a transition from apparently unsheared rock in the conduit core to rocks exhibiting increasing shear towards the conduit margin, bounded by a fault gouge zone. Laboratory characterisation (mineralogy, porosity, permeability, X-ray tomography) was undertaken on these samples. In contrast, a second section of spine (extruded later during the eruption) exhibited a large tensile fracture, and this area was investigated using non-destructive in-situ permeability measurements. Our lab measurements show that in the first outcrop, permeability decreases across the shear zone from core to gouge by approximately one order of magnitude perpendicular to shear; a similar decrease is observed parallel to shear, but is less severe. The lowest permeability is observed in the most highly sheared block; here, permeability is 2.5 x10-14 m2 in the plane of shear and 9 x10-15 m2 perpendicular to shear. Our measurements clearly demonstrate the influence of shear on conduit permeability, with significant anisotropy in the shear zone. The sheared rocks are strongly micro-fractured, resulting in a porosity decrease of up to 4% and permeability decrease of over one order of magnitude with increasing effective pressure (effective pressure = confining pressure - pore pressure) between 5 - 100 MPa, representative of increasing lithostatic pressure from 200 m to 4 km depth in the crust. In contrast, our field study of the second spine section, which features a 2 cm wide by 3 metre-long tensile fracture flanked by a 40-cm wide shear damage zone, reveals that dilational shear can result in an increase in permeability of approximately three orders of magnitude. The contrasting shear zone characteristics can be attributed to different shear regimes, which likely occur at different depths in the conduit. At greater depth in the system, where lithostatic pressures largely exceed pore pressure, compactional shear appears to dominate, reducing the permeable porous network as magma strains along the conduit margin, whereas at shallower levels, where the effective pressure is low, dilational shear becomes dominant, resulting in the creation of permeable pathways. We conclude that contrasting shearing regimes may simultaneously affect magma ascent dynamics in volcanic conduits, causing a range of dynamic permeability variations (positive and negative), which dictate eruptive behaviour.
McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut
2015-01-01
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. Published by Elsevier Inc.
McCarthy, Ellen T.; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J.; Sharma, Mukut
2014-01-01
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. PMID:25447342
Zhang, Haiyang; Guo, Ruili; Hou, Jinpeng; Wei, Zhong; Li, Xueqin
2016-10-26
In this study, a carbon nanotubes composite coated with N-isopropylacrylamide hydrogel (NIPAM-CNTs) was synthesized. Mixed-matrix membranes (MMMs) were fabricated by incorporating NIPAM-CNTs composite filler into poly(ether-block-amide) (Pebax MH 1657) matrix for efficient CO 2 separation. The as-prepared NIPAM-CNTs composite filler mainly plays two roles: (i) The extraordinary smooth one-dimensional nanochannels of CNTs act as the highways to accelerate CO 2 transport through membranes, increasing CO 2 permeability; (ii) The NIPAM hydrogel layer coated on the outer walls of CNTs acts as the super water absorbent to increase water content of membranes, appealing both CO 2 permeability and CO 2 /gas selectivity. MMM containing 5 wt % NIPAM-CNTs exhibited the highest CO 2 permeability of 567 barrer, CO 2 /CH 4 selectivity of 35, and CO 2 /N 2 selectivity of 70, transcending 2008 Robeson upper bound line. The improved CO 2 separation performance of MMMs is mainly attributed to the construction of the efficient CO 2 transport pathways by NIPAM-CNTs. Thus, MMMs incorporated with NIPAM-CNTs composite filler can be used as an excellent membrane material for efficient CO 2 separation.
Burckhardt, B C; Cassola, A C; Frömter, E
1984-05-01
Cell membrane potentials of rat kidney proximal tubules were measured in response to peritubular ion substitutions in vivo with conventional and Cl- sensitive microelectrodes in order to test possible alternative explanations of the bicarbonate dependent cell potential transients reported in the preceding paper. Significant direct effects of bicarbonate on peritubular K+, Na+, and Cl- conductances could be largely excluded by blocking K+ permeability with Ba2+ and replacing all Na+ and Cl- by choline or respectively SO4(2-) isethionate, or gluconate. Under those conditions the cell membrane response to HCO3- was essentially preserved. In addition it was observed that peritubular Cl- conductance is negligibly small, that Cl-/HCO3- exchange - if present at all - is insignificant, and that rheogenic HCO3- flow with coupling to Na+ flow is also absent or insignificant. A transient disturbance of the Na+ pump or a transient unspecific increase of the membrane permeability was also excluded by experiments with ouabain and by the observation that SITS (4-acetamido-4'-isothiocyano-2,2' disulphonic stilbene) blocked the HCO3- response instantaneously. The data strongly support the notion that the potential changes in response to peritubular HCO3- concentration changes arise from passive rheogenic bicarbonate transfer across the peritubular cell membrane, and hence that this membrane has a high conductance for bicarbonate buffer.
Study of moso bamboo’s permeability and mechanical properties
Todd F. Shupe; Chung-Yun Hse; Xiao-dong Huang
2015-01-01
In this article, moso bamboo blocks were first treated with hydrochloric acid solvents with different concentrations or microwave treatments with various microwave output power and treatment durations. The results showed that the crystalliferous region of cellulose of moso bamboo blocks formed porous or swelling type structures under hydrochloric acid pretreatment...
NASA Astrophysics Data System (ADS)
Chen, Liping; Guo, Yi; Peng, Xinsheng
2017-10-01
Particulate matter (PM2.5) pollution in air seriously affects public health. However, both bulk thickness and the accumulation of PM particles typically lead to a quick decline in the air permeability and large pressure drops of the conventional air clean membranes. In this work, we choose cellulose nanofibers (CNFs, a low cost, biodegradable and sustainable material) to form a hydrophobic and porous CNF thin layer on a stainless steel screen (300 mesh with pore size of 48 µm) through a simple filtration-assisted gelation process and subsequent polydimethylsiloxane modification. The prepared hydrophobic CNFs/stainless steel screen demonstrates highly efficient PM2.5 blocking based on size-sieving effect, fast air permeability and long-term durability under natural ventilation conditions in the relative humidity range from 45% to 93%. This technique holds great potential for indoor PM2.5 blocking under natural ventilation conditions.
Mathison, R; Davison, J S
1994-05-02
The effects of intravenous injection of prostaglandin E2 (PGE2), substance P (SP) and a metabolically stable SP analogue, [pGlu5,Me-Phe8,Sar9]-SP (5-11) on plasma extravasation of albumin in the rat after blockade of prostaglandin synthesis with indomethacin or chemical sympathectomy with guanethidine were studied. Blood pressure was decreased by all agonists, but only the hypotensive effects of SP were enhanced by pretreatment with indomethacin and guanethidine. The increase in plasma extravasation induced by PGE2 in the tongue, skin and lungs was blocked by both guanethidine and indomethacin. Pretreatment of the rats with guanethidine or indomethacin increased extravasation induced by SP in the tongue-tip, dorsal skin and foot, but decreased the enhanced permeability in the pinna, and did not alter the actions of the peptide in other tissues. In contrast, both guanethidine and indomethacin pretreatment increased vascular permeability responses to [pGlu5,Me-Phe8,Sar9]-SP (5-11) administration in 9 and 14 of 16 tissues examined, respectively. Thus, intact sympathetic nerves and functional cycloxygenase activity exert inhibitory constraints on the vascular permeability effects of intravenously administered SP or its analogue. On the other hand the integrity of the sympathetic nerves and prostaglandin synthesis are required for PGE2-induced increases in vascular leak.
Nano filter from sintered rice husk silica membrane.
Lee, Soo Young; Han, Chong Soo
2006-11-01
A nano filter showing the Knudsen flow was demonstrated by a modification of a membrane constructed from rice husk silica. The membrane was prepared by pressing and sintering micron sized rice husk silica with 4 nm pores. The membrane showed a permeability of 5.2 x 10(-8) mol m(-1) sec(-1) Pa(-1) for H2 and ratios of gas permeability 2.1 and 3.2 for k(H2)/k(CH4) and k(H2)/k(CO2), respectively. When the membrane was treated by filtration of approximately 100 nm sized rice husk silica particles, the permeability decreased to 4.9 x 10(-8) mol m(-1) sec(-1) Pa(-1) and the ratios increased to 2.2 and 3.4. In the case of the membrane after treatments with the dispersion and chemical deposition of tetraethylorthosilicate (TEOS), the corresponding permeability and ratios of the membrane were 1.8 x 10(-8) mol m(-1) sec(-1) Pa(-1), and 2.9 and 4.5, respectively. From the change of the ratio of gas permeability for the membrane with modifications, it is suggested that approximately 100 nm sized rice husk silica particles pack the large pores among the micron sized rice husk silica particles while the chemical deposition of tetraethylorthosilicate (TEOS) reveals the gas flow through 4 nm pores in the rice husk silica by blocking large pores.
Parvez, Suhel; Winkler-Stuck, Kirstin; Hertel, Silvia; Schönfeld, Peter; Siemen, Detlef
2010-01-01
Ropinirole, an agonist of the post-synaptic dopamine D2-receptor, exerts neuroprotective activity. The mechanism is still under discussion. Assuming that this neuroprotection might be associated with inhibition of the apoptotic cascade underlying cell death, we examined a possible effect of ropinirole on the permeability transition pore (mtPTP) in the mitochondrial inner membrane. Using isolated rat liver mitochondria, the effect of ropinirole was studied on Ca2+-triggered large amplitude swelling, membrane depolarization and cytochrome c release. In addition, the effect of ropinirole on oxidation of added, membrane-impermeable NADH was investigated. The results revealed doubtlessly, that ropinirole can inhibit permeability transition. In patch-clamp experiments on mitoplasts, we show directly that ropinirole interacts with the mtPTP. Thus, ropinirole reversibly inhibits the opening of mtPTP with an IC50 of 3.4 microM and a Hill coefficient of 1.3. In both systems (i.e. energized mitochondria and mitoplasts) the inhibitory effect on permeability transition was attenuated by increasing concentrations of inorganic phosphate. In addition, we showed with antimycin A-treated mitochondria that ropinirole failed to suppress respiratory chain-linked reactive oxygen species release. In conclusion, our data suggest that the neuroprotective activity of ropinirole is due to the blockade of the Ca2+-triggered permeability transition. Copyright © 2010 Elsevier B.V. All rights reserved.
Xue, Qi; Hopkins, Benjamin; Perruzzi, Carole; Udayakumar, Durga; Sherris, David; Benjamin, Laura E.
2009-01-01
It has become clear that the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is central for promoting both tumor and tumor stroma and is therefore a major target for anticancer drug development. First- and second-generation rapalogs (prototypical mTOR inhibitors) have shown promise but, due to the complex nature of mTOR signaling, can result in counterproductive feedback signaling to potentiate upstream Akt signaling. We present a novel PI3K/Akt/mTOR inhibitor, Palomid 529 (P529), which inhibits the TORC1 and TORC2 complexes and shows both inhibition of Akt signaling and mTOR signaling similarly in tumor and vasculature. We show that P529 inhibits tumor growth, angiogenesis, and vascular permeability. It retains the beneficial aspects of tumor vascular normalization that rapamycin boasts. However, P529 has the additional benefit of blocking pAktS473 signaling consistent with blocking TORC2 in all cells and thus bypassing feedback loops that lead to increased Akt signaling in some tumor cells. [Cancer Res 2008;68(22):9551–7] PMID:19010932
Microfracture development and foam collapse during lava dome growth
NASA Astrophysics Data System (ADS)
Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.
2012-12-01
The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, F.P.; Dai, J.; Kerans, C.
1998-11-01
In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less
Nguyen, Binh Cao Quan; Takahashi, Hideaki; Uto, Yoshihiro; Shahinozzaman, M D; Tawata, Shinkichi; Maruta, Hiroshi
2017-01-27
An old anti-inflammatory/analgesic drug called Toradol is a racemic form of Ketorolac (50% R-form and 50% S-form) that blocks the oncogenic RAC-PAK1-COX-2 (cyclooxygenase-2) signaling, through the direct inhibition of RAC by the R-form and of COX-2 by the S-form, eventually down-regulating the production of prostaglandins. However, due to its COOH moiety which is clearly repulsive to negatively-charged phospholipid-based plasma membrane, its cell-permeability is rather poor (the IC 50 against the growth of human cancer cells such as A549 is around 13 μM). In an attempt to boost its anti-cancer activity, hopefully by increasing its cell-permeability through abolishing the negative charge, yet keeping its water-solubility, here we synthesized a 1,2,3-triazolyl ester of Toradol through "Click Chemistry". The resultant water-soluble "azo" derivative called "15K" was found to be over 500 times more potent than Toradol with the IC 50 around 24 nM against the PAK1-dependent growth of A549 cancer cells, inactivating PAK1 in cell culture with the apparent IC 50 around 65 nM, and inhibiting COX-2 in vitro with the IC 50 around 6 nM. Furthermore, the Click Chemistry boosts the anti-cancer activity of Ketorolac by 5000 times against the PAK1-independent growth of B16F10 melanoma cells. Using a multi-drug-resistant (MDR) cancer cell line (EMT6), we found that the esterization of Ketorolac boosts its cell-permeability by at least 10 folds. Thus, the Click Chemistry dramatically boosts the anti-cancer activity of Ketorolac, at least in three ways: increasing its cell-permeability, the anti-PAK1 activity of R-form and anti-COX-2 activity of S-form. The resultant "15K" is so far among the most potent PAK1-blockers, and therefore would be potentially useful for the therapy of many different PAK1-dependent diseases/disorders such as cancers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tichet, Mélanie; Prod'Homme, Virginie; Fenouille, Nina; Ambrosetti, Damien; Mallavialle, Aude; Cerezo, Michael; Ohanna, Mickaël; Audebert, Stéphane; Rocchi, Stéphane; Giacchero, Damien; Boukari, Fériel; Allegra, Maryline; Chambard, Jean-Claude; Lacour, Jean-Philippe; Michiels, Jean-François; Borg, Jean-Paul; Deckert, Marcel; Tartare-Deckert, Sophie
2015-04-30
Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.
Pathophysiological consequences of VEGF-induced vascular permeability
NASA Astrophysics Data System (ADS)
Weis, Sara M.; Cheresh, David A.
2005-09-01
Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.
A calcium-permeable cGMP-activated cation conductance in hippocampal neurons
NASA Technical Reports Server (NTRS)
Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.
1995-01-01
Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.
Nylander, O; Hällgren, A; Sababi, M
2001-11-01
In anesthetized rats, the cyclooxygenase (COX) inhibitor indomethacin induces duodenal motility, increases duodenal mucosal alkaline secretion (DMAS), and evokes a transient increase in duodenal paracellular permeability (DPP). To examine whether enteric nerves influence these responses, the duodenum was perfused with lidocaine. Motility was assessed by measuring intraluminal pressure, and DPP was determined as blood-to-lumen clearance of (51)Cr-EDTA. DMAS was assessed by titration. In control animals, few contractions occurred during saline perfusion and lidocaine did not alter this condition. Perfusion with 0.03-0.1% lidocaine did not affect DMAS or DPP whereas 0.3-1% lidocaine reduced DMAS and increased DPP. Indomethacin induced motility and doubled DMAS. Application of 0.03% lidocaine on the duodenal serosa reduced motility and DMAS whereas 0.03% lidocaine applied luminally inhibited DMAS only. Higher concentrations of lidocaine abolished the increase in DMAS and changed the motility pattern to numerous low-amplitude contractions, the latter effect being blocked by iloprost. The lidocaine-induced increases in DPP were markedly higher than in controls. We conclude that indomethacin activates enteric nerves that induce motility, increase DMAS, and decrease DPP.
Monitoring and modulating ion traffic in hybrid lipid/polymer vesicles
Paxton, Walter F.; McAninch, Patrick T.; Achyuthan, Komandoor E.; ...
2017-08-01
Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this study, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H +/OH -) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the puremore » lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K +) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Finally, strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.« less
Buck, D P; Howitt, S M; Clements, J D
2000-01-01
N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating. PMID:11053122
NASA Astrophysics Data System (ADS)
Turco, Michele; Kodešová, Radka; Brunetti, Giuseppe; Nikodem, Antonín; Fér, Miroslav; Piro, Patrizia
2017-11-01
An adequate hydrological description of water flow in permeable pavement systems relies heavily on the knowledge of the unsaturated hydraulic properties of the construction materials. Although several modeling tools and many laboratory methods already exist in the literature to determine the hydraulic properties of soils, the importance of an accurate materials hydraulic description of the permeable pavement system, is increasingly recognized in the fields of urban hydrology. Thus, the aim of this study is to propose techniques/procedures on how to interpret water flow through the construction system using the HYDRUS model. The overall analysis includes experimental and mathematical procedures for model calibration and validation to assess the suitability of the HYDRUS-2D model to interpret the hydraulic behaviour of a lab-scale permeable pavement system. The system consists of three porous materials: a wear layer of porous concrete blocks, a bedding layers of fine gravel, and a sub-base layer of coarse gravel. The water regime in this system, i.e. outflow at the bottom and water contents in the middle of the bedding layer, was monitored during ten irrigation events of various durations and intensities. The hydraulic properties of porous concrete blocks and fine gravel described by the van Genuchten functions were measured using the clay tank and the multistep outflow experiments, respectively. Coarse gravel properties were set at literature values. In addition, some of the parameters (Ks of the concrete blocks layer, and α, n and Ks of the bedding layer) were optimized with the HYDRUS-2D model from water fluxes and soil water contents measured during irrigation events. The measured and modeled hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index (varied between 0.95 and 0.99) while the coefficient of determination R2 was used to assess the measured water content versus the modelled water content in the bedding layer (R2 = 0.81 ÷ 0.87) . The parameters were validated using the remaining sets of measurements resulting in NSE values greater than 0.90 (0.91 ÷ 0.99) and R2 between 0.63 and 0.91. Results have confirmed the applicability of HYDRUS-2D to describe correctly the hydraulic behaviour of the lab-scale system.
Contributions of visible and ultraviolet parts of sunlight to photoinhibition.
Hakala-Yatkin, Marja; Mäntysaari, Mika; Mattila, Heta; Tyystjärvi, Esa
2010-10-01
Photoinhibition is light-induced inactivation of PSII, and action spectrum measurements have shown that UV light causes photoinhibition much more efficiently than visible light. In the present study, we quantified the contribution of the UV part of sunlight in photoinhibition of PSII in leaves. Greenhouse-grown pumpkin leaves were pretreated with lincomycin to block the repair of photoinhibited PSII, and exposed to sunlight behind a UV-permeable or UV-blocking filter. Oxygen evolution and Chl fluorescence measurements showed that photoinhibition proceeds 35% more slowly under the UV-blocking than under the UV-permeable filter. Experiments with a filter that blocks UV-B but transmits UV-A and visible light revealed that UV-A light is almost fully responsible for the UV effect. The difference between leaves illuminated through a UV-blocking and UV-transparent filter disappeared when leaves of field-grown pumpkin plants were used. Thylakoids isolated from field-grown and greenhouse-grown plants were equally sensitive to UV light, and measurements of UV-induced fluorescence from leaves indicated that the protection of the field-grown plants was caused by substances that block the passage of UV light to the chloroplasts. Thus, the UV part of sunlight, especially the UV-A part, is potentially highly important in photoinhibition of PSII but the UV-screening compounds of plant leaves may offer almost complete protection against UV-induced photoinhibition.
Performance prediction using geostatistics and window reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.
1995-11-01
This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite.more » Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.« less
Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.
2013-01-01
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198
Lee, Eun Young; Chung, Choon Hee; Khoury, Charbel C; Yeo, Tet Kin; Pyagay, Petr E; Wang, Amy; Chen, Sheldon
2009-07-01
The role of monocyte chemoattractant protein-1 (MCP-1) in diabetic nephropathy is typically viewed through the lens of inflammation, but MCP-1 might exert noninflammatory effects on the kidney cells directly. Glomerular podocytes in culture, verified to express the marker nephrin, were exposed to diabetic mediators such as high glucose or angiotensin II and assayed for MCP-1. Only transforming growth factor-beta (TGF-beta) significantly increased MCP-1 production, which was prevented by SB431542 and LY294002, indicating that signaling proceeded through the TGF-beta type I receptor kinase and the phosphatidylinositol 3-kinase pathway. The TGF-beta-induced MCP-1 was found to activate the podocyte's cysteine-cysteine chemokine receptor 2 (CCR2) and, as a result, enhance the cellular motility, cause rearrangement of the actin cytoskeleton, and increase podocyte permeability to albumin in a Transwell assay. The preceding effects of TGF-beta were replicated by treatment with recombinant MCP-1 and blocked by a neutralizing anti-MCP-1 antibody or a specific CCR2 inhibitor, RS102895. In conclusion, this is the first description that TGF-beta signaling through PI3K induces the podocyte expression of MCP-1 that can then operate via CCR2 to increase cellular migration and alter albumin permeability characteristics. The pleiotropic effects of MCP-1 on the resident kidney cells such as the podocyte may exacerbate the disease process of diabetic albuminuria.
Ionic mechanism of a two-component cholinergic inhibition in Aplysia neurones
Kehoe, Jacsue
1972-01-01
1. A two-component inhibition, consisting of a rapid and slow i.p.s.p., has been observed in the medial cells of the pleural ganglion of Aplysia. Each i.p.s.p. has been shown to be mediated by a distinct cholinergic receptor. The ionic mechanisms of the two components of the inhibitory response (whether elicited synaptically or by ACh injection) are analysed in this paper. 2. The inversion potential (typically -60 mV) of the rapid i.p.s.p. and of the rapid response to ACh injection is selectively altered by an intracellular injection of chloride or by partial substitution of the external chloride by impermeant anions. The shift caused by this last procedure is similar to that predicted for the chloride equilibrium potential (ECl) by the Nernst equation. 3. The slow i.p.s.p. and the slow response to ACh injection (both of which invert around -80 mV) are insensitive to changes in either internal or external chloride concentrations; on the contrary, with alterations of the concentration of potassium in the external medium, the inversion potential of the slow responses is altered in a way similar to that expected for the potassium equilibrium potential (EK). 4. It is concluded that the rapid i.p.s.p. and the corresponding ACh potential are due to a change in chloride permeability of the post-synaptic membrane, whereas the slow responses are due to a selective change in potassium permeability. 5. Additional data suggest that the fast, `chloride' channel is impermeable to sulphate and methylsulphate, but slightly permeable to propionate and isethionate. The slow, `potassium' channel is impermeable to caesium ions, whereas its permeability to rubidium ions is half that to potassium. 6. The potassium permeability of both the non-synaptic and synaptic membrane is markedly reduced by an intracellular injection of either tetraethylammonium (TEA) or caesium. These ions not only block the cholinergic potassium currents (whether inward or outward) but likewise block the potassium currents activated in the same cells by an iontophoretic injection of dopamine. 7. The potassium dependent synaptic potentials are also selectively affected by manipulations known to block the electrogenic sodium pump. In the presence of ouabain or in sea water in which sodium has been replaced by lithium, there is an apparent reduction of these potentials which was shown to be simply a reflexion of the movement of EK towards a less polarized level. This shift in inversion potential was not seen for the potassium dependent response to ACh iontophoretic injection. These results are interpreted in terms of accumulation of potassium ions assumed to occur in the extracellular spaces of the neuropile, but not in the thoroughly dissected somatic region. 8. Cooling was shown to eliminate, selectively, the synaptic and ACh potential changes caused by an increase in potassium permeability. PMID:4679686
Marín, N.; Zamorano, P.; Carrasco, R.; Mujica, P.; González, FG.; Quezada, C.; Meininger, CJ.; Boric, MP.; Durán, WN.; Sánchez, FA.
2014-01-01
Rationale Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of eNOS to cytosol and stimulation of eNOS-derived NO signaling cascade. The mechanisms by which NO signaling regulates permeability at adherens junctions are still incompletely understood. Objective We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. Methods and Results We measured PAF-stimulated S-nitrosation of β-catenin and p120-catenin (p120) in three cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein) and CVEC (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of β-catenin and p120 at the adherens junction and with hyperpermeability. TNF-α increased NO production and caused similar increase in S-nitrosation as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced S-nitrosation of β-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of NO production and of S-nitrosation blocked PAF-induced S-nitrosation and hyperpermeability whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with VE-cadherin. Conclusions Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability. PMID:22777005
Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B
2017-06-02
Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in pulmonary microvascular endothelial cells.
Amphiphilic block copolymer membrane for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena
2013-11-01
An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.
State-dependent block of CNG channels by dequalinium.
Rosenbaum, Tamara; Gordon-Shaag, Ariela; Islas, León D; Cooper, Jeremy; Munari, Mika; Gordon, Sharona E
2004-03-01
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.
Influence of fiber packing structure on permeability
NASA Technical Reports Server (NTRS)
Cai, Zhong; Berdichevsky, Alexander L.
1993-01-01
The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.
NASA Astrophysics Data System (ADS)
Wong, Louis Ngai Yuen; Li, Diyuan; Liu, Gang
2013-01-01
Three different types of permeability tests were conducted on 23 intact and singly jointed rock specimens, which were cored from rock blocks collected from a rock cavern under construction in Singapore. The studied rock types belong to inter-bedded meta-sandstone and meta-siltstone with very low porosity and high uniaxial compressive strength. The transient pulse water flow method was employed to measure the permeability of intact meta-sandstone under a confining pressure up to 30 MPa. It showed that the magnitude order of meta-sandstone's intrinsic permeability is about 10-18 m2. The steady-state gas flow method was used to measure the permeability of both intact meta-siltstone and meta-sandstone in a triaxial cell under different confining pressures spanning from 2.5 to 10 MPa. The measured permeability of both rock types ranged from 10-21 to 10-20 m2. The influence of a single natural joint on the permeability of both rock types was studied by using the steady-state water flow method under different confining pressures spanning from 1.25 to 5.0 MPa, including loading and unloading phases. The measured permeability of both jointed rocks ranged from 10-13 to 10-11 m2, where the permeability of jointed meta-siltstone was usually slightly lower than that of jointed meta-sandstone. The permeability of jointed rocks decreases with increasing confining pressure, which can be well fitted by an empirical power law relationship between the permeability and confining pressure or effective pressure. The permeability of partly open cracked specimens is lower than that of open cracked specimens, but it is higher than that of the specimen with a dominant vein for the meta-sandstone under the same confining pressure. The permeability of open cracked rock specimens will partially recover during the unloading confining pressure process. The equivalent crack (joint) aperture is as narrow as a magnitude order of 10-6 m (1 μm) in the rock specimens under confining pressures spanning from 1.25 to 5.0 MPa, which represent the typical ground stress conditions in the cavern. The in situ hydraulic conductivity measurements conducted in six boreholes by the injection test showed that the in situ permeability of rock mass varies between 10-18 and 10-11 m2. The lower bound of the in situ permeability is larger than that of the present laboratory-tested intact rock specimens, while the upper bound of the in situ permeability is less than that of the present laboratory-tested jointed rock specimens. The in situ permeability test results were thus compatible with our present laboratory permeability results of both intact and jointed rock specimens.
NASA Astrophysics Data System (ADS)
Najdahmadi, Avid; Lakey, Jonathan R. T.; Botvinick, Elliot
2018-02-01
Pancreatic islet transplantation is a promising approach of providing insulin in type 1 diabetes. One strategy to protect islets from the host immune system is encapsulation within a porous biocompatible alginate membrane. This encapsulation provides mechanical support to the cells and allows selective diffusion of oxygen, nutrients and insulin while blocking immunoglobulins. These hydrogels form by diffusion of calcium ions into the polymer network and therefore they are highly sensitive to environmental changes and fluctuations in temperature. We investigated the effects of gel concentration, crosslinking time and ambient conditions on material permeability, volume, and rigidity, all of which may change the immunoisolating characteristics of alginate. To measure diffusion coefficient as a method to capture structural changes we studied the diffusion of fluorescently tagged dextrans of different molecular weight into the midplane of alginate microcapsules, the diffusion coefficient is then calculated by fitting observed fluorescence dynamics to the mathematical solution of 1-D diffusion into a sphere. These measurements were performed after incubation in different conditions as well as after an in vivo experiment in six immunocompetent mice for seven days. Additionally, the changes in gel volume after incubation at different temperatures and environmental conditions as well as changes in compression modulus of alginate gels during crosslinking were investigated. Our result show that increase of polymer concentration and crosslinking time leads to a decrease in volume and increase in compression modulus. Furthermore, we found that samples crosslinked and placed in physiological environment, experience an increase in volume. As expected, these volume changes affect diffusion rates of fluorescent dextrans, where volume expansion is correlated with higher calculated diffusion coefficient. This observation is critical to islet protection since higher permeability due to the expansion in vivo may lead to increased permeability to immunoglobulins. Capsules from the in vivo study showed similar volume expansion and increased permeability, indicating our in vitro assay is a good predictor of volume change in vivo.
Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels
Hunt, Jonathan
2013-01-31
In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent for subsurface applications. Colloidal silica solutions exist as low-viscosity fluids during their “induction period” but then undergo a rapid increase in viscosity (gelation) to form a solid gel. The length of the induction period can be manipulated by varying the properties of the solution, such as silica concentration and colloid size. We believe it is possible to produce colloidal silica gels suitable for use as diverting agents for blocking undesirable fast-paths which result in short-circuiting the EGS once hydraulic fracturing has been deployed. In addition, the gels could be used in conventional geothermal fields to increase overall energy recovery by modifying flow.
Targeted polymeric micelles for delivery of poorly soluble drugs.
Torchilin, V P
2004-10-01
Polymeric micelles (micelles formed by amphiphilic block copolymers) demonstrate a series of attractive properties as drug carriers, such as high stability both in vitro and in vivo and good biocompatibility, and can be successfully used for the solubilization of various poorly soluble pharmaceuticals. These micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. Immunomicelles prepared with cancer-specific monoclonal antibody 2C5 specifically bind to different cancer cells in vitro and demonstrate increased therapeutic activity in vivo. This new family of pharmaceutical carriers can be used for the solubilization and targeted delivery of poorly soluble drugs to various pathological sites in the body.
Human Disc Nucleus Properties and Vertebral Endplate Permeability
Rodriguez, Azucena G.; Slichter, Chloe K.; Acosta, Frank L.; Rodriguez-Soto, Ana E.; Burghardt, Andrew J.; Majumdar, Sharmila; Lotz, Jeffrey C.
2010-01-01
Study of human cadaveric discs quantifying endplate permeability and porosity and correlating these with measures of disc quality: cell density, proteoglycan content, and overall degeneration. Permeability and porosity increased with age and were not correlated with cell density or overall degeneration, suggesting that endplate calcification may not accelerate disc degeneration. Study Design Experimental quantification of relationships between vertebral endplate morphology, permeability, disc cell density, glycosaminoglycan content and degeneration in samples harvested from human cadaveric spines. Objective To test the hypothesis that variation in endplate permeability and porosity contribute to changes in intervertebral disc cell density and overall degeneration. Summary of Background Data Cells within the intervertebral disc are dependent on diffusive exchange with capillaries in the adjacent vertebral bone. Previous findings suggest that blocked routes of transport negatively affect disc quality, yet there are no quantitative relationships between human vertebral endplate permeability, porosity, cell density and disc degeneration. Such relationships would be valuable for clarifying degeneration risk factors, and patient features that may impede efforts at disc tissue engineering. Methods Fifty-one motion segments were harvested from 13 frozen cadaveric human lumbar spines (32 to 85 years) and classified for degeneration using the MRI-based Pfirrmann scale. A cylindrical core was harvested from the center of each motion segment that included vertebral bony and cartilage endplates along with adjacent nucleus tissue. The endplate mobility, a type of permeability, was measured directly using a custom-made permeameter before and after the cartilage endplate was removed. Cell density within the nucleus tissue was estimated using the picogreen method while the nuclear GAG content was quantified using the DMMB technique. Specimens were imaged at 8 μm resolution using microCT, bony porosity was calculated. Analysis of variance, linear regression, and multiple comparison tests were used to analyze the data. Results Nucleus cell density increased as the disc height decreased (R2=0.13; p=0.01) but was not related to subchondral bone porosity (p>0.5), total mobility (p>0.4) or age (p>0.2). When controlling for disc height however, a significant, negative effect of age on cell density was observed (p=0.03). In addition to this, GAG content decreased with age non-linearly (R2=0.83, p<0.0001) and a cell function measurement, GAGs/cell decreased with degeneration (R2=0.24; p<0.0001). Total mobility (R2=0.14; p<0.01) and porosity (R2=0.1, p<0.01) had a positive correlation with age. Conclusion Although cell density increased with degeneration, cell function indicated that GAGs/cell decreased. Since permeability and porosity increase with age and degeneration, this implies that cell dysfunction, rather than physical barriers to transport, accelerate disc disease. PMID:21240044
Schnoor, Michael; Lai, Frank P L; Zarbock, Alexander; Kläver, Ruth; Polaschegg, Christian; Schulte, Dörte; Weich, Herbert A; Oelkers, J Margit; Rottner, Klemens; Vestweber, Dietmar
2011-08-01
Neutrophil extravasation and the regulation of vascular permeability require dynamic actin rearrangements in the endothelium. In this study, we analyzed in vivo whether these processes require the function of the actin nucleation-promoting factor cortactin. Basal vascular permeability for high molecular weight substances was enhanced in cortactin-deficient mice. Despite this leakiness, neutrophil extravasation in the tumor necrosis factor-stimulated cremaster was inhibited by the loss of cortactin. The permeability defect was caused by reduced levels of activated Rap1 (Ras-related protein 1) in endothelial cells and could be rescued by activating Rap1 via the guanosine triphosphatase (GTPase) exchange factor EPAC (exchange protein directly activated by cAMP). The defect in neutrophil extravasation was caused by enhanced rolling velocity and reduced adhesion in postcapillary venules. Impaired rolling interactions were linked to contributions of β(2)-integrin ligands, and firm adhesion was compromised by reduced ICAM-1 (intercellular adhesion molecule 1) clustering around neutrophils. A signaling process known to be critical for the formation of ICAM-1-enriched contact areas and for transendothelial migration, the ICAM-1-mediated activation of the GTPase RhoG was blocked in cortactin-deficient endothelial cells. Our results represent the first physiological evidence that cortactin is crucial for orchestrating the molecular events leading to proper endothelial barrier function and leukocyte recruitment in vivo.
Role of claudins in renal calcium handling.
Negri, Armando Luis
2015-01-01
Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH) is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR), which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline. Copyright © 2015 The Author. Published by Elsevier España, S.L.U. All rights reserved.
Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens
2009-05-01
To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.
Boldine Prevents Renal Alterations in Diabetic Rats
Hernández-Salinas, Romina; Vielma, Alejandra Z.; Arismendi, Marlene N.; Boric, Mauricio P.; Sáez, Juan C.; Velarde, Victoria
2013-01-01
Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects. PMID:24416726
Boldine prevents renal alterations in diabetic rats.
Hernández-Salinas, Romina; Vielma, Alejandra Z; Arismendi, Marlene N; Boric, Mauricio P; Sáez, Juan C; Velarde, Victoria
2013-01-01
Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.
NASA Astrophysics Data System (ADS)
Enayati, Hooman; Braun, Minel J.; Chandy, Abhilash J.
2018-02-01
This paper presents an investigation of flow and heat transfer in a large diameter (6.25 in) cylindrical enclosure heated laterally and containing a porous block that simulates the basket of nutrients used in a crystal growth reactor. The numerical model entails the use of a commercially available computational engine provided by ANSYS FLUENT, and based on a two-dimensional (2D) axisymmetric Reynolds-averaged Navier Stokes (RANS) equations. The porous medium is simulated using the Brinkman-extended model accounting for the Darcy and Forchheimer induced pressure drops. The porous 'plug' effects are analyzed as both its permeability/inertial resistance and locations in the reactor are changed on a parametric basis, while the Rayleigh number (Ra = gβΔTL3/να) is kept constant at 1.98 × 109. Additionally, the effect of different ratios of the hot to the cold zone lengths are investigated as a part of the current effort. For all cases, the velocity and temperature distributions in the reactor are analyzed together with the flow patterns in, and around the porous block. A comprehensive discussion is provided with regard to the effects of the position of the porous block and its permeability on both the immediately adjacent, and far flows. The consequences on the temperature distribution in the enclosure, when the ratio of the length of the hot-to-cold zones is changed, are also analyzed.
Vorob'ev, Vladimir N; Mirziev, Samat I; Alexandrov, Evgeniy A; Sibgatullin, Timur A
2016-12-01
Changes of diffusive permeability of membranes of Elodea nuttallii cells following a short-term (60 min) treatment with high concentrations of lanthanides were recorded by the 1 H NMR-diffusometry and conductometry methods. The 1-h infiltration of segments of Elodea nuttallii internodes in 10 mM solutions of nitrates of La, Nd and Lu resulted in the increased leakage of electrolytes from cells, but has no effect on a water diffusive permeability of membranes. In samples subjected to a 30 min pretreatment with a water channel inhibitor HgCl 2 the water diffusive permeability of membranes (P d ) drops down under the influence of lanthanides, as well as an outcome of electrolytes. To explain the observed effects the change of spontaneous curvature of membrane lipid layer has been taken into consideration. The interaction of lanthanides with lipids of plasmalemma leads to the negative spontaneous curvature of lipid layer at which membrane channels are unclosed. Blocking of the ionic and water channels by mercury ions compensate the effect of change of spontaneous curvature of lipid layer. Copyright © 2016 Elsevier Ltd. All rights reserved.
The permeability evolution of tuffisites and outgassing from dense rhyolitic magma
NASA Astrophysics Data System (ADS)
Heap, M. J.; Tuffen, H.; Wadsworth, F. B.; Reuschlé, T.; Castro, J. M.; Schipper, C. I.
2017-12-01
Recent observations of rhyolitic lava effusion from eruptions in Chile indicate that simultaneous pyroclastic venting facilitates outgassing. Venting from conduit-plugging lava domes is pulsatory and occurs through shallow fracture networks that deliver pyroclastic debris and exsolved gases to the surface. However, these fractures become blocked as the particulate fracture infill sinters viscously, thus drastically reducing permeability. Tuffisites, fossilized debris-filled fractures of this venting process, are abundant in pyroclastic material ejected during hybrid explosive-effusive activity. Dense tuffisite-hosting obsidian bombs ejected from Volcán Chaitén (Chile) in 2008 afford an opportunity to better understand the permeability evolution of tuffisites within low-permeability conduit plugs, wherein gas mobility is reliant upon fracture pathways. We use laboratory measurements of the permeability and porosity of tuffisites that preserve different degrees of sintering, combined with a grainsize-based sintering model and constraints on pressure-time paths from H2O diffusion, to place first-order constraints on tuffisite permeability evolution. Inferred timescales of sintering-driven tuffisite compaction and permeability loss, spanning minutes to hours, coincide with observed vent pulsations during hybrid rhyolitic activity and, more broadly, timescales of pressurization accompanying silicic lava dome extrusion. We therefore conclude that sintering exerts a first-order control on fracture-assisted outgassing from low-permeability, conduit-plugging silicic magma.
Garcia, C. Amanda; Fenelon, Joseph M.; Halford, Keith J.; Reiner, Steven R.; Laczniak, Randell J.
2011-01-01
A maximum water-level drawdown of nearly 0.4 foot in well UE-20bh 1, which is more than 1 mile from the pumping well, was detected across a major fault. Drawdown estimates in the observation well nearest to (ER-20-6 #3, less than 1 mile) and within the same structural block as the pumping well were less than detection (<0.1 foot). Minimal drawdown within the same structural block indicates that lava units are likely separated by bedded tuff confining units. Hydraulic property estimates indicate that wells U-20 WW, UE-20bh 1, and ER-20-6 #3 produce water from moderately permeable fractured lava, as hydraulic conductivity and specific storage estimates average 4.8 feet per day and 2.1×10–6 per foot, respectively, and transmissivity estimates range from 1,200 to 3,600 feet squared per day. Sensitivity analyses indicate that the major fault is hydraulically similar to the permeable host rock and connects flow between structural blocks.
Ortiz-Pomales, Yan T; Krzyzaniak, Michael; Coimbra, Raul; Baird, Andrew; Eliceiri, Brian P.
2012-01-01
Recent studies have shown that vagus nerve stimulation (VNS) can block the burn injury-induced systemic inflammatory response (SIRS). In this study we examined the potential for VNS to modulate vascular permeability (VP) in local sites (i.e. skin) and in secondary sites (i.e. lung) following burn injury. In a 30% total body surface area burn injury model, VP was measured using intravascular fluorescent dextran for quantification of the VP response in skin and lung. A peak in VP of the skin was observed 24 hours post-burn injury, that was blocked by VNS. Moreover, in the lung, VNS led to a reduction in burn-induced VP compared to sham-treated animals subjected to burn injury alone. The protective effects of VNS in this model were independent of the spleen, suggesting that the spleen was not a direct mediator of VNS. These studies identify a role for VNS in the regulation of VP in burns, with the translational potential of attenuating lung complications following burn injury. PMID:22694873
LIU, MING-WEI; SU, MEI-XIAN; ZHANG, WEI; WANG, YUN HUI; QIN, LAN-FANG; LIU, XU; TIAN, MAO-LI; QIAN, CHUAN-YUN
2015-01-01
A typical indicator of sepsis is the development of progressive subcutaneous and body-cavity edema, which is caused by the breakdown of endothelial barrier function, leading to a marked increase in vascular permeability. Microvascular leakage predisposes to microvascular thrombosis, breakdown of microcirculatory flow and organ failure, which are common events preceding mortality in patients with severe sepsis. Melilotus suaveolens (M. suaveolens) is a Traditional Tibetan Medicine. Previous pharmacological studies have demonstrated that an ethanolic extract of M. suaveolens has powerful anti-inflammatory activity and leads to an improvement in capillary permeability. However, the mechanisms underlying its pharmacological activity remain elusive. The present study aimed to assess the impact of M. suaveolens extract tablets on pulmonary vascular permeability, and their effect on regulating lung inflammation and the expression of vascular endothelial growth factor (VEGF) in the lung tissue of rats with sepsis. A cecal ligation and puncture (CLP) sepsis model was established for both the control and treatment groups. ~2 h prior to surgery, 25 mg/kg of M. suaveolens extract tablet was administered to the treatment group. Polymerase chain reaction and western blot analyses were used to assess the expression of nuclear factor (NF)-κB and VEGF in the lung tissue, and ELISA was applied to detect changes in serum tumor necrosis factor-α as well as interleukins (IL) -1, -4, -6, and -10. The lung permeability, wet/dry weight ratio and lung pathology were determined. The results demonstrated that in the lung tissue of CLP-rats with sepsis, M. suaveolens extract inhibited the expression of NF-κB, reduced the inflammatory response and blocked the expression of VEGF, and thus significantly decreased lung microvascular permeability. The effects of M. Suaveolens extract may be of potential use in the treatment of CLP-mediated lung microvascular permeability. PMID:25571852
Yang, Lu; Chen, Xufeng; Simet, Samantha M.; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee
2016-01-01
Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell–substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2–related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism(s) by which cocaine mediates barrier dysfunction could provide insights into the development of potential therapeutic targets for cocaine-mediated pulmonary hypertension. PMID:27391108
Chichger, Havovi; Braza, Julie; Duong, Huetran; Harrington, Elizabeth O
2015-06-01
Enhanced protein tyrosine phosphorylation is associated with changes in vascular permeability through formation and dissolution of adherens junctions and regulation of stress fiber formation. Inhibition of the protein tyrosine phosphorylase SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases tyrosine phosphorylation of vascular endothelial cadherin and β-catenin, resulting in disruption of the endothelial monolayer and edema formation in the pulmonary endothelium. Vascular permeability is a hallmark of acute lung injury (ALI); thus, enhanced SHP2 activity offers potential therapeutic value for the pulmonary vasculature in diseases such as ALI, but this has not been characterized. To assess whether SHP2 activity mediates protection against edema in the endothelium, we assessed the effect of molecular activation of SHP2 on lung endothelial barrier function in response to the edemagenic agents LPS and thrombin. Both LPS and thrombin reduced SHP2 activity, correlated with decreased focal adhesion kinase (FAK) phosphorylation (Y(397) and Y(925)) and diminished SHP2 protein-protein associations with FAK. Overexpression of constitutively active SHP2 (SHP2(D61A)) enhanced baseline endothelial monolayer resistance and completely blocked LPS- and thrombin-induced permeability in vitro and significantly blunted pulmonary edema formation induced by either endotoxin (LPS) or Pseudomonas aeruginosa exposure in vivo. Chemical inhibition of FAK decreased SHP2 protein-protein interactions with FAK concomitant with increased permeability; however, overexpression of SHP2(D61A) rescued the endothelium and maintained FAK activity and FAK-SHP2 protein interactions. Our data suggest that SHP2 activation offers the pulmonary endothelium protection against barrier permeability mediators downstream of the FAK signaling pathway. We postulate that further studies into the promotion of SHP2 activation in the pulmonary endothelium may offer a therapeutic approach for patients suffering from ALI.
Study on the integration of layered water injection technology and subdivision adjustment
NASA Astrophysics Data System (ADS)
Zhang, Yancui
2018-06-01
With oil many infillings, thin and poor reservoir exploitation changes gradually to low permeability, thin and poor reservoir development characteristics of multiple layers thickness, low permeability, in the actual development process, the General Department of oil layers of encryption perforation long thin and poor mining, interlayer contradiction more prominent, by conventional layered water injection that can alleviate the contradiction between layers to a certain extent, by the injection interval and other factors can not fundamentally solve the problem, leading to the potential well area key strata or layers is difficult to determine, the layering test and slicing technology is difficult to adapt to the need of tap water control block. This paper through numerical simulation using the conceptual model and the actual block, it has a great influence on the low permeability reservoir of different stratified water permeability combination of permeability technology and application limits, profit and loss balance principle, low oil prices on the lower series of subdivision technical and economic limit, so the reservoir subdivision reorganization, narrow wells mining, reduce the interference between layers, from the maximum fundamental improvement of layered water injection efficiency. At the same time, in order to meet the needs of reservoir subdivision adjustment, subdividing distance with water, a small interlayer wells subdivision technology for further research in the pickup, solved using two ordinary bridge eccentric water regulator with injection of two layers, by throwing exercise distance limit card from the larger problem, the water distribution card size from 7.0m to 1.0m, and the testing efficiency is improved, and provide technical support for further subdivision water injection wells.
Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation.
Brochiero, E; Banderali, U; Lindenthal, S; Raschi, C; Ehrenfeld, J
1995-11-01
The permeability to Cl- of the basolateral membrane (blm) was investigated in renal (A6) epithelial cells, assessing their role in transepithelial ion transport under steady-state conditions (isoosmotic) and following a hypoosmotic shock (i.e. in a regulatory volume decrease, RVD). Three different complementary studies were made by measuring: (1) the Cl- transport rates (delta F/Fo s-1 (x10(-3))), where F is the fluorescence of N-(6-methoxyquinoyl) acetoethyl ester, MQAE, and Fo the maximal fluorescence (x10(-3)) of both membranes by following the intracellular Cl- activities (ai Cl-, measured with MQAE) after extracellular Cl- substitution (2) the blm 86Rb and 36Cl uptakes and (3) the cellular potential and Cl- current using the whole-cell patch-clamp technique to differentiate between the different Cl- transport mechanisms. The permeability of the blm to Cl- was found to be much greater than that of the apical membranes under resting conditions: aiCl- changes were 5.3 +/- 0.7 mM and 25.5 +/- 1.05 mM (n = 79) when Cl- was substituted by NO3(-) in the media bathing apical and basolateral membranes. The Cl- transport rate of the blm was blocked by bumetanide (100 microM) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 50 microM) but not by N-phenylanthranilic acid (DPC, 100 microM). 86Rb and 36Cl uptake experiments confirmed the presence of a bumetanide- and a NPPB-sensitive Cl- pathway, the latter being approximately three times more important than the former (Na/K/2Cl cotransporter). Appli-cation of a hypoosmotic medium to the serosal side of the cell increased delta F/Fo s-1 (x10(-3)) after extracellular Cl- substitution (1.03 +/- 0.10 and 2.45 +/- 0.17 arbitrary fluorescent units s-1 for isoosmotic and hypoosmotic conditions respectively, n = 11); this delta F/Fo s-1 (x10(-3)) increase was totally blocked by serosal NPPB application; on the other hand, cotransporter activity was decreased by the hypoosmotic shock. Cellular Ca2+ depletion had no effect on delta F/Fo s-1 (x10(-3)) under isoosmotic conditions, but blocked the delta F/Fo s-1 (x10(-3)) increase induced by a hypoosmotic stress. Under isotonic conditions the measured cellular potential at rest was -37.2 +/- 4.0 mV but reached a maximal and transient depolarization of -25.1 +/- 3.7 mV (n = 9) under hypoosmotic conditions. The cellular current at a patch-clamping cellular potential of -85 mV (close to the Nernst equilibrium potential for K+) was blocked by NPPB and transiently increased by hypoosmotic shock (≈50% maximum increase). This study demonstrates that the major component of Cl- transport through the blm of the A6 monolayer is a conductive pathway (NPPB-sensitive Cl- channels) and not a Na/K/2Cl cotransporter. These channels could play a role in transepithelial Cl- absorption and cell volume regulation. The increase in the blm Cl- conductance, inducing a depolarization of these membranes, is proposed as one of the early events responsible for the stimulation of the 86Rb efflux involved in cell volume regulation.
Membrane permeable local anesthetics modulate NaV1.5 mechanosensitivity
Beyder, Arthur; Strege, Peter R.; Bernard, Cheryl; Farrugia, Gianrico
2012-01-01
Voltage-gated sodium selective ion channel NaV1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. NaV1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon NaV1.5 to modulate activity by multiple mechanisms. This study examined whether NaV1.5 mechanosensitivity is modulated by local anesthetics. NaV1.5 channels wereexpressed in HEK-293 cells, and mechanosensitivity was tested in cell-attached and excised inside-out configurations. Using a novel protocol with paired voltage ladders and short pressure pulses, negative patch pressure (-30 mmHg) in both configurations produced a hyperpolarizing shift in the half-point of the voltage-dependence of activation (V1/2a) and inactivation (V1/2i) by about -10 mV. Lidocaine (50 µM) inhibited the pressure-induced shift of V1/2a but not V1/2i. Lidocaine inhibited the tonic increase in pressure-induced peak current in a use-dependence protocol, but it did not otherwise affect use-dependent block. The local anesthetic benzocaine, which does not show use-dependent block, also effectively blocked a pressure-induced shift in V1/2a. Lidocaine inhibited mechanosensitivity in NaV1.5 at the local anesthetic binding site mutated (F1760A). However, a membrane impermeable lidocaine analog QX-314 did not affect mechanosensitivity of F1760A NaV1.5 when applied from either side of the membrane. These data suggest that the mechanism of lidocaine inhibition of the pressure-induced shift in the half-point of voltage-dependence of activation is separate from the mechanisms of use-dependent block. Modulation of NaV1.5 mechanosensitivity by the membrane permeable local anesthetics may require hydrophobic access and may involve membrane-protein interactions. PMID:22874086
Monovalent Cation Permeation through the Connexin40 Gap Junction Channel
Beblo, Dolores A.; Veenstra, Richard D.
1997-01-01
The unitary conductances and permeability sequences of the rat connexin40 (rCx40) gap junction channels to seven monovalent cations and anions were studied in rCx40-transfected neuroblastoma 2A (N2A) cell pairs using the dual whole cell recording technique. Chloride salt cation substitutions (115 mM principal salt) resulted in the following junctional maximal single channel current-voltage relationship slope conductances (γj in pS): CsCl (153), RbCl (148), KCl (142), NaCl (115), LiCl (86), TMACl (71), TEACl (63). Reversible block of the rCx40 channel was observed with TBA. Potassium anion salt γj are: Kglutamate (160), Kacetate (160), Kaspartate (158), KNO3 (157), KF (148), KCl (142), and KBr (132). Ion selectivity was verified by measuring reversal potentials for current in rCx40 gap junction channels with asymmetric salt solutions in the two electrodes and using the Goldman-Hodgkin-Katz equation to calculate relative permeabilities. The permeabilities relative to Li+ are: Cs+ (1.38), Rb+ (1.32), K+ (1.31), Na+ (1.16), TMA+ (0.53), TEA+ (0.45), TBA+ (0.03), Cl− (0.19), glutamate− (0.04), and NO3− (0.14), assuming that the monovalent anions permeate the channel by forming ion pairs with permeant monovalent cations within the pore thereby causing proportionate decreases in the channel conductance. This hypothesis can account for why the predicted increasing conductances with increasing ion mobilities in an essentially aqueous channel were not observed for anions in the rCx40 channel. The rCx40 effective channel radius is estimated to be 6.6 Å from a theoretical fit of the relationship of relative permeability and cation radius. PMID:9101408
Stress-dependent permeability evolution in sandstones with anisotropic physical properties
NASA Astrophysics Data System (ADS)
Metz, V.; David, C.; Louis, L.; Rodriguez Rey, A.; Ruiz de Argandona, V. G.
2003-04-01
Fluid flow in reservoir rocks is strongly dependent on stress path and rock microstructure which may present a significant anisotropy. We present recent experimental data on the evolution of permeability with applied stress for three sandstones tested under triaxial conditions in the low confining pressure range (<10 MPa). Samples with diameter 40 mm and length 80 mm were cored in three orthogonal directions in blocks retrieved from quarries. One coring direction was perpendicular to the bedding plane whereas the other directions were arbitrarily chosen within the bedding plane. The selected rocks are the Bentheim sandstone (BNT), a quartz-rich cretaceous sandstone from Germany with 24% porosity, and two different varieties of a same jurassic formation in Northern Spain, the La Marina sandstone. The Yellow La Marina sandstone (YLM) with porosity 28% has a low cohesion and is the weathered form of the well-consolidated Grey La Marina sandstone (GLM) with porosity 17%. When loaded up to the failure stress, the more porous sandstones (BNT, YLM) exhibited a monotonic decrease of permeability even when the rock was dilating at deviatoric stresses close to the failure stress. On the other hand the permeability of the less porous sandstone (GLM) increased during the dilating phase. These results are in agreement with previous studies. In addition we observed that all three sandstones are anisotropic with respect to several physical properties including permeability. We systematically found a lower permeability in the direction perpendicular to the bedding plane, but the ratio of "vertical" to "horizontal" permeability varies from one sandstone to the other. The permeability anisotropy is compared to the anisotropy of electrical conductivity, acoustic velocity, capillary imbibition and elastic moduli: in general good correlations are found for all the properties. For the Bentheim sandstone, a microstructural study on thin sections revealed that the rock anisotropy is due to the anisotropy of intergranular pores which statistically are found to be elongated within the bedding plane. This result is in agreement with the prediction of Kachanov's model for the anisotropy of acoustic velocity in Bentheim sandstone.
Membrane stress increases cation permeability in red cells.
Johnson, R M
1994-11-01
The human red cell is known to increase its cation permeability when deformed by mechanical forces. Light-scattering measurements were used to quantitate the cell deformation, as ellipticity under shear. Permeability to sodium and potassium was not proportional to the cell deformation. An ellipticity of 0.75 was required to increase the permeability of the membrane to cations, and flux thereafter increased rapidly as the limits of cell extension were reached. Induction of membrane curvature by chemical agents also did not increase cation permeability. These results indicate that membrane deformation per se does not increase permeability, and that membrane tension is the effector for increased cation permeability. This may be relevant to some cation permeabilities observed by patch clamping.
Guglielmi, Y; Mudry, J
2001-01-01
The hydrodynamic behavior of fissured media relies on the relationships between a few very conductive fractures (channels) and the remaining low-conductivity fractures and matrix (blocks). We made a quantitative measurement of those relationships and their effect on water drainage and storage in a 19,000 m3 natural reservoir consisting of karstified limestones. This reservoir was artificially saturated with water by closing a water gate on the main outlet during a varying time (delta t) fixed by the operator. The water gate was completely or partly closed until the water pressure reached a particular specified value. If the water gate was left completely closed long enough, the water pressure was fixed by the elevation of temporary outlets at the site boundaries. The water elevation within the reservoir was monitored by means of pressure cells located on single fractures representative of the bedding plane and the two families of fractures of the massif network. The comparison of pressure variations with the network geometry allows us to identify a typical double permeability characterized by a few very conductive channels along 10 vertical faults. These channels limit blocks consisting of low-conductivity bedding planes and a rather impervious matrix. Depending on the closure interval, delta t, of the water gate, the total volume of water stored in the reservoir can vary from 0.8 m3 (delta t = 5 minutes) to 18.6 m3 (delta t = 2 days). Such a variance of storage versus closure time is explained by the reservoir's double permeability that is characterized by blocks that saturate much more slowly than channels. If plotted versus time, this injected volume fits a power relationship, according to the saturation state of the blocks. In less than 34 minutes, storage is close to zero in the blocks and to 1.6 to 2 m3 in the channels. For closing times shorter than 1 hour, only 1% of the volume that flows in the channels is stored into the blocks. Depending on the water pressure and for a given delta t = 3000 minutes, the volume of water stored is controlled by the geometry of the joint network and of the aquifer boundaries. Such an experiment shows that the flow is concentrated in about 10% of the fractured network (channels). The water storage that takes place in the 90% remaining fractures (blocks) depends mainly on time during which pressure remains high into the 10% channels. The accurate modeling of such typical double-permeability media needs a careful study of the geometry of the channels whose narrowings modify the flow and induce dam effects that maintain a high pressure gradient with surrounding blocks.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.
2017-02-01
Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic hydrothermal system can result in increases (due to alteration-induced dissolution and fracturing) and decreases (due to hydrothermal precipitation) to permeability. Importantly, a decrease in permeability-be it due to fracture sealing in lava, pore-filling alunite precipitation in tuff, near-vent cementation by sulphur, and/or well-sorted layers of fine ash-can result in pore pressure augmentation. An increase in pore pressure could result in ground deformation, seismicity, jeopardise the stability of the volcanic slopes, and/or drive the wide variety of eruptions observed at Whakaari. Our systematic study offers the most complete porosity-permeability dataset for a volcanic hydrothermal system to date. These new data will inform and support modelling, unrest monitoring, and eruption characterisation at Whakaari and other hydrothermally modified volcanic systems worldwide.
Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni
2017-01-01
CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability. PMID:29155846
Doublier, Sophie; Zennaro, Cristina; Musante, Luca; Spatola, Tiziana; Candiano, Giovanni; Bruschi, Maurizio; Besso, Luca; Cedrino, Massimo; Carraro, Michele; Ghiggeri, Gian Marco; Camussi, Giovanni; Lupia, Enrico
2017-01-01
CD40/CD40 ligand (CD40L) dyad, a co-stimulatory bi-molecular complex involved in the adaptive immune response, has also potent pro-inflammatory actions in haematopoietic and non-haematopoietic cells. We describe here a novel role for soluble CD40L (sCD40L) as modifier of glomerular permselectivity directly acting on glomerular epithelial cells (GECs). We found that stimulation of CD40, constitutively expressed on GEC cell membrane, by the sCD40L rapidly induced redistribution and loss of nephrin in GECs, and increased albumin permeability in isolated rat glomeruli. Pre-treatment with inhibitors of CD40-CD40L interaction completely prevented these effects. Furthermore, in vivo injection of sCD40L induced a significant reduction of nephrin and podocin expression in mouse glomeruli, although no significant increase of urine protein/creatinine ratio was observed after in vivo injection. The same effects were induced by plasma factors partially purified from post-transplant plasma exchange eluates of patients with focal segmental glomerulosclerosis (FSGS), and were blocked by CD40-CD40L inhibitors. Moreover, 17 and 34 kDa sCD40L isoforms were detected in the same plasmapheresis eluates by Western blotting. Finally, the levels of sCD40Lwere significantly increased in serum of children both with steroid-sensitive and steroid-resistant nephrotic syndrome (NS), and in adult patients with biopsy-proven FSGS, compared to healthy subjects, but neither in children with congenital NS nor in patients with membranous nephropathy. Our results demonstrate that sCD40L directly modifies nephrin and podocin distribution in GECs. Moreover, they suggest that sCD40L contained in plasmapheresis eluates from FSGS patients with post-transplant recurrence may contribute, presumably cooperating with other mediators, to FSGS pathogenesis by modulating glomerular permeability.
Activation of phospholipase activity during Semliki Forest virus infection.
Pérez, L; Irurzun, A; Carrasco, L
1993-05-01
Infection of animal cells by a number of cytolytic viruses leads to increased membrane permeability. Thus, Semliki Forest virus (SFV) infection of susceptible cells modifies the permeability of the membrane for a number of cations and metabolites (Muñoz et al. (1985), Virology 146, 203-212). The molecular basis of this modification of the cell membrane has not been investigated in detail. We report that during the infection of HeLa cells with SFV, or BHK cells with vesicular stomatitis virus, there is a significant increase in the release of choline and arachidonic acid into the culture medium, suggesting that both phospholipases (PLases) C and A2 become activated during infection. Both choline and phosphorylcholine are released into the medium as expected when PLase C is activated. Cells prelabeled with arachidonic acid release a significant amount of radioactivity from the third hour postinfection. Most of this radioactivity is present in the medium of SFV-infected cells in the form of free fatty acid, suggesting that phospholipid hydrolysis has occurred; no intact phospholipids are detected in the culture medium. Finally, the action of several inhibitors of PLases, such as zinc and cadmium ions, chloroquine, chlorpromazine, amantadine, and dansylcadaverine were assayed. Our findings indicate that the release of choline or arachidonic acid is potently blocked by some of these lipase inhibitors. Following infection by SFV HeLa cells become susceptible to the inhibition of protein synthesis by hygromycin B due to increased uptake of this antibiotic. Entry of hygromycin B was prevented by zinc ions or chloroquine, suggesting that the increase in membrane permeability in SFV-infected cells may be mediated in part by lipase activation.
Simulation of photobioreaction for hydrogen production in membrane bioreactor with an optical fiber
NASA Astrophysics Data System (ADS)
Yang, Yanxia; Li, Jing
2018-05-01
A generalized lattice Boltzmann (LB) model for porous media is adopted to simulate the hydrodynamics and mass transport combined with biodegradation in membrane bioreactor with a circular optical fiber. The LB model is coupled with a multi-block scheme, as well as non-equilibrium extrapolation method for boundary condition treatment. The effect of porosity and permeability (represented by Darcy number Da) of biofilm on flow and concentration fields are investigated. The performance of biodegradation is evaluated by substrate consumption efficiency. Higher porosity and permeability of biofilm facilitate mass transport of substance and enhance the metabolic activity of bacteria in biofilm, which results in the optimal biodegradation performance is obtained under the condition of Da = 0.001 and ɛ =0.3. For further increasing of these parameters, the substrate consumption efficiency decreases due to the inhibition effect of substrate and shorter hydraulic retention time. Furthermore, the LB results coincide with experimental results, demonstrating that the LB model for porous media is available to optimize the membrane bioreactor for efficient biodegradation.
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.
Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk
2016-09-29
The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly
Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk
2016-01-01
The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077
Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V
2016-04-11
Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion Permeability of a Microtubule in Neuron Environment.
Shen, Chun; Guo, Wanlin
2018-04-19
Microtubules, constituted by end-to-end negatively charged α- and β-tubulin dimers, are long, hollow, pseudohelical cylinders with internal and external diameters of about 16 and 26 nm, respectively, and widely exist in cell cytoplasm, neuron axons, and dendrites. Although their structural functions in physiological processes, such as cell mitosis, cell motility, and motor protein transport, have been widely accepted, their role in neuron activity remains attractively elusive. Here we show a new function of microtubules: they can generate instant response to a calcium pulse because of their specific permeability for ions. Our comprehensive simulations from all-atom molecular dynamics to potential of mean force and continuum modeling reveal that K + and Na + ions can permeate through the nanopores in the microtubule wall easily, while Ca 2+ ions are blocked by the wall with a much higher free energy barrier. These cations are adsorbed to the surfaces of the wall with affinity decreasing in the sequence Ca 2+ , Na + , and K + . As a result, when the concentration of Ca 2+ ions increases outside the microtubule during neuronal excitation, K + and Na + ions will be driven into the microtubule, triggering subsequent axial ion redistribution within the microtubule. The results shed light on the possibility of the ion-permeable microtubules being involved in neural signal processing.
Roe, Kelsey; Orillo, Beverly; Verma, Saguna
2014-01-01
Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.
A Block Iterative Finite Element Model for Nonlinear Leaky Aquifer Systems
NASA Astrophysics Data System (ADS)
Gambolati, Giuseppe; Teatini, Pietro
1996-01-01
A new quasi three-dimensional finite element model of groundwater flow is developed for highly compressible multiaquifer systems where aquitard permeability and elastic storage are dependent on hydraulic drawdown. The model is solved by a block iterative strategy, which is naturally suggested by the geological structure of the porous medium and can be shown to be mathematically equivalent to a block Gauss-Seidel procedure. As such it can be generalized into a block overrelaxation procedure and greatly accelerated by the use of the optimum overrelaxation factor. Results for both linear and nonlinear multiaquifer systems emphasize the excellent computational performance of the model and indicate that convergence in leaky systems can be improved up to as much as one order of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, M.L.; Cole, R.D.
1996-01-01
The Tocito Sandstone Member of the Mancos Shale is an Upper Cretaceous shallow-marine sandstone and mudrock complex deposited along the western margin of the Western Interior seaway. The Tocito is a major hydrocarbon producer in the San Juan Basin (approximately 117 million barrels of oil and 79 billion cubic feet of gas). Because of reservoir heterogeneity, ultimate Tocito oil recovery factors are low, generally between 10 and 20 percent. To enhance understanding of permeability heterogeneity in the Tocito, we have undertaken a detailed surface and subsurface investigation. A total of 2,697 permeability measurements have been made using minipermeameters. Permeability variationmore » within the Tocito is controlled by two principal factors: lithofacies and burial/diagenetic history. Coarser grained and better sorted lithofacies have the highest permeability. The permeability values from outcrop and shallow subsurface cores are dramatically higher than those from deep subsurface cores. This is due to dissolution of grains and calcite cement, and decompaction that preferentially affected the outcrop and shallow subsurface. Correlation lengths for permeability values along horizontal transacts are typically less than 3 m, whereas those for vertical transacts are usually less than 0.6 m. These data suggest that small grid block sizes should be used during reservoir simulations if the investigator wishes to accurately capture the reservoir heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, M.L.; Cole, R.D.
1996-12-31
The Tocito Sandstone Member of the Mancos Shale is an Upper Cretaceous shallow-marine sandstone and mudrock complex deposited along the western margin of the Western Interior seaway. The Tocito is a major hydrocarbon producer in the San Juan Basin (approximately 117 million barrels of oil and 79 billion cubic feet of gas). Because of reservoir heterogeneity, ultimate Tocito oil recovery factors are low, generally between 10 and 20 percent. To enhance understanding of permeability heterogeneity in the Tocito, we have undertaken a detailed surface and subsurface investigation. A total of 2,697 permeability measurements have been made using minipermeameters. Permeability variationmore » within the Tocito is controlled by two principal factors: lithofacies and burial/diagenetic history. Coarser grained and better sorted lithofacies have the highest permeability. The permeability values from outcrop and shallow subsurface cores are dramatically higher than those from deep subsurface cores. This is due to dissolution of grains and calcite cement, and decompaction that preferentially affected the outcrop and shallow subsurface. Correlation lengths for permeability values along horizontal transacts are typically less than 3 m, whereas those for vertical transacts are usually less than 0.6 m. These data suggest that small grid block sizes should be used during reservoir simulations if the investigator wishes to accurately capture the reservoir heterogeneity.« less
2014-01-01
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887
NASA Astrophysics Data System (ADS)
Rutter, Ernest H.; Mecklenburgh, Julian
2018-02-01
Transmissivity of fluids along fractures in rocks is reduced by increasing normal stress acting across them, demonstrated here through gas flow experiments on Bowland shale, and oil flow experiments on Pennant sandstone and Westerly granite. Additionally, the effect of imposing shear stress at constant normal stress was determined, until frictional sliding started. In all cases, increasing shear stress causes an accelerating reduction of transmissivity by 1 to 3 orders of magnitude as slip initiated, as a result of the formation of wear products that block fluid pathways. Only in the case of granite, and to a lesser extent in the sandstone, was there a minor amount of initial increase of transmissivity prior to the onset of slip. These results cast into doubt the commonly applied presumption that cracks with high resolved shear stresses are the most conductive. In the shale, crack transmissivity is commensurate with matrix permeability, such that shales are expected always to be good seals. For the sandstone and granite, unsheared crack transmissivity was respectively 2 and 2.5 orders of magnitude greater than matrix permeability. For these rocks crack transmissivity can dominate fluid flow in the upper crust, potentially enough to permit maintenance of a hydrostatic fluid pressure gradient in a normal (extensional) faulting regime.
Chen, Wei; Zhao, Minjie; Zhao, Shuzhi; Lu, Qianyi; Ni, Lisha; Zou, Chen; Lu, Li; Xu, Xun; Guan, Huaijin; Zheng, Zhi; Qiu, Qinghua
2017-02-01
Chronic low-grade inflammation occurs in diabetic retinopathy (DR), but the underlying mechanism(s) remains (remain) unclear. NLRP3 inflammasome activation is involved in several other inflammatory diseases. Thus, we investigated the role of the NLRP3 inflammasome signaling pathway in the pathogenesis of DR. Diabetes was induced in rats by streptozotocin treatment for 8 weeks. They were treated with NLRP3 shRNA or minocycline during the last 4 weeks. High glucose-exposed human retinal microvascular endothelial cells (HRMECs) were co-incubated with antioxidants or subjected to TXNIP or NLRP3 shRNA interference. In high glucose-exposed HRMECs and retinas of diabetic rats, mRNA and protein expression of NLRP3, ASC, and proinflammatory cytokines were induced significantly by hyperglycemia. Upregulated interleukin (IL)-1β maturation, IL-18 secretion, and caspase-1 cleavage were also observed with increased cell apoptosis and retinal vascular permeability, compared with the control group. NLRP3 silencing blocked these effects in the rat model and HRMECs, confirming that inflammasome activation contributed to inflammation in DR. TXNIP expression was increased by reactive oxygen species (ROS) overproduction in animal and cell models, whereas antioxidant addition or TXNIP silencing blocked IL-1β and IL-18 secretion in high glucose-exposed HRMECs, indicating that the ROS-TXNIP pathway mediates NLRP3 inflammasome activation. Minocycline significantly downregulated ROS generation and reduced TXNIP expression, subsequently inhibited NLRP3 activation, and further decreased inflammatory factors, which were associated with a decrease in retinal vascular permeability and cell apoptosis. Together, our data suggest that the TXNIP/NLRP3 pathway is a potential therapeutic target for the treatment of DR, and the use of minocycline specifically for such therapy may be a new avenue of investigation in inflammatory disease.
He, S; Ekman, G Jacobsson; Hedner, U
2005-02-01
Fibrin gel structure has been shown to be dependent on the thrombin concentration as well as the rate of thrombin generation. Accordingly, factor VIII (FVIII)- and FIX-deficient plasma (hemophilia A and B) form loose fibrin clots with high permeability constants. By adding rFVIIa in vitro to FVIII-deficient plasma containing platelets (frozen and thawed), the fibrin gel permeability constant normalized, indicating that extra rFVIIa (1.2 microg mL(-1) or higher) induced a tight fibrin structure. Thrombin generation is highly dependent on the number of platelets, and in this study it was demonstrated that the addition of rFVIIa (5 microg mL(-1)) normalizes the fibrin gel permeability in samples containing platelets (frozen-thawed) in numbers of at least down to 20 x 10(6) mL(-1). The effect of rFVIIa was not observed when unfrozen platelets instead of frozen-thawed platelets were added. Neither was any effect on the fibrin permeability seen, in the presence of annexin V, known to block the effect of phospholipids on the platelet surface. This indicates an important role of platelet phospholipids for the effect of rFVIIa. A similar effect on the fibrin permeability of rFVIIa was observed when added to platelet-rich plasma from a patient with Glanzmann thrombasthenia. Recombinant FVIIa has been found to induce hemostasis in patients with hemophilia and inhibitors against FVIII/FIX as well as in patients with Glanzmann thrombasthenia, indicating the importance of the formation of a tight fibrin gel structure, more resistant against premature proteolysis, for maintaining hemostasis. In conclusion, the addition of rFVIIa (5 microg mL(-1)) also substantially decreased the permeability constant of fibrin gels formed in FVIII-deficient plasma in the presence of low numbers of frozen-thawed platelets (down to 20 x 10(6) mL(-1)). A similar pattern was obtained in plasma from a Glanzmann patient. No effect was found in the presence of unfrozen instead of frozen-thawed platelets. Annexin V blocked any effect of rFVIIa. A normalization of the overall fibrinolysis potential (OFP) during the same condition supports the effect of rFVIIa on the fibrin permeability in the presence of a limited number of platelets.
Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.
Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Tőke, Orsolya; Horváth, Gergő; Pál, Ildikó; Kardos, Julianna; Héja, László
2013-08-01
Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.
Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul
2017-12-01
A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.
Steinman, Jonathan B; Santarossa, Cristina C; Miller, Rand M; Yu, Lola S; Serpinskaya, Anna S; Furukawa, Hideki; Morimoto, Sachie; Tanaka, Yuta; Nishitani, Mitsuyoshi; Asano, Moriteru; Zalyte, Ruta; Ondrus, Alison E; Johnson, Alex G; Ye, Fan; Nachury, Maxence V; Fukase, Yoshiyuki; Aso, Kazuyoshi; Foley, Michael A; Gelfand, Vladimir I; Chen, James K; Carter, Andrew P; Kapoor, Tarun M
2017-01-01
Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dynein's microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition. DOI: http://dx.doi.org/10.7554/eLife.25174.001 PMID:28524820
Persson, Johan; Morsing, Peter; Grände, Per-Olof
2004-03-01
Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by inhibition of ACE, by a mechanism involving bradykinin.
Pavón, Natalia; Correa, Francisco; Buelna-Chontal, Mabel; Hernández-Esquivel, Luz; Chávez, Edmundo
2015-10-15
Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. At concentrations from 5 to 20 μM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier. Copyright © 2015 Elsevier Inc. All rights reserved.
Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide-gated channels.
Lam, Yee Ling; Zeng, Weizhong; Derebe, Mehabaw Getahun; Jiang, Youxing
2015-09-01
Calcium permeability and the concomitant calcium block of monovalent ion current ("Ca(2+) block") are properties of cyclic nucleotide-gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca(2+) block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca(2+) block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca(2+) block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca(2+) block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca(2+) block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca(2+) block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca(2+) block. © 2015 Lam et al.
NASA Astrophysics Data System (ADS)
Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed
2017-07-01
We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were then entrained by the flow and partially blocked pore-throat connections within the proppant pack. Deformation of proppant packs resulted in significant changes in waterflood residual oil saturation. In-situ contact angles measured using micro-CT images showed that proppant grains had experienced a drastic alteration of wettability (from strong water-wet to weakly oil-wet) after the medium had been subjected to flow of oil and brine for multiple weeks. Nanometer resolution SEM images captured nano-fractures induced in the shale surfaces during the experiments with mono-layer proppant packing. These fractures improved the effective permeability of the medium and shale/fracture interactions.
NASA Astrophysics Data System (ADS)
Wang, Haopeng
With the recent advances in processing and catalyst technology, novel morphologies have been created in crystalline polymers and they are expected to substantially impact the properties. To reveal the structure-property relationships of some of these novel polymeric systems becomes the primary focus of this work. In the first part, using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, dominating "in-plane" lamellar crystals were created when the confined poly(ethylene oxide) (PEO) layers were made progressively thinner. When the thickness was confined to 25 nanometers, the PEO crystallized as single, high-aspect-ratio lamellae that resembled single crystals. This crystallization habit imparted more than two orders of magnitude reduction in the gas permeability. The dramatic decrease in gas permeability was attributed to the reduced diffusion coefficient, because of the increase in gas diffusion path length through the in-plane lamellae. The temperature dependence of lamellar orientation and the crystallization kinetics in the confined nanolayers were also investigated. The novel olefinic block copolymer (OBC) studied in the second part consisted of long crystallizable sequences with low comonomer content alternating with rubbery amorphous blocks with high comonomer content. The crystallizable blocks formed lamellae that organized into space-filling spherulites even when the fraction of crystallizable block was so low that the crystallinity was only 7%. These unusual spherulites were highly elastic and recovered from strains as high as 300%. These "elastic spherulites" imparted higher strain recovery and temperature resistance than the conventional random copolymers that depend on isolated, fringed micellar-like crystals to provide the junctions for the elastomeric network. In the third part, positron annihilation lifetime spectroscopy (PALS) was used to obtain the temperature dependence of the free volume hole size in propylene/ethylene copolymers over a range in comonomer content. Above the glass transition temperature (Tg), the reduced free volume hole size and the densification of the amorphous phase were attributed to constraint imposed on rubbery amorphous chain segments by attached chain segments in crystals. However constant free volume fraction was found at Tg, across the crystallinity range of the copolymers, in agreement with the iso-free volume concept of glass transition.
Study on the antiseepage mechanism of the PBFC slurry for landfill site
NASA Astrophysics Data System (ADS)
Dai, Guozhong; Shi, Weicheng; Jiang, Xiaoshu; Shi, Guicai; Zhang, Yaxing
2017-07-01
In order to develop a kind of slurry with low permeability which has some adsorption and retardation to the pollutants in leachate to be used in antiseepage engineering of leachate for landfill site, experiments based on orthogonal method were performed. The optimal PBFC slurry was selected: bentonite 18-26%, cement 16-24%, fly ash 18-20%, TOJ800-10 water reducing agent 0.01-0.03%, polyvinyl alcohol 0.2-0.8%, sodium carbonate 0.8-1.5% and water 680-780/1000 mL seriflus. The material has good groutability and a concretion stone ratio which is greater than 99.6%. The coefficient of permeability of 28-day concretion body is 0.53 × 10-8-1.86 × 10-8 cm/s and the compressive strength is 0.64-1.04 MPa. The slurry has good adsorption and retardation properties. The block rate of NH4-N and phosphorus reached 98.28%, and the block rate of CODCr and BOD5 reached 85.67%. The block rate of Hg, Pb and other heavy metal ions reached 99.8%. The PBFC slurry improved the retardation capability of the pollutants of the leachate at the landfill site by its infiltration sedimentation and adsorption fixation.
Deryabina, Yulia; Isakova, Elena; Sekova, Varvara; Antipov, Alexey; Saris, Nils-Erik L
2014-12-01
In this study, we investigated the change in the antioxidant enzymes activity, cell respiration, reactive oxygen species (ROS), and impairment of membrane mitochondria permeability in the Endomyces magnusii yeasts during culture growth and aging. We showed that the transition into stationary phase is the key tool to understanding interaction of these processes. This growth stage is distinguished by two-fold increase in ROS production and respiration rate as compared to those in the logarithmic phase. It results in induction of alternative oxidase (AO) in the stationary phase, decline of the main antioxidant enzymes activities, ROS-production, and mitochondria membrane permeability. Significant increase in the share of mitochondrial isoform of superoxide dismutase (SOD2) occurred in the stationary phase from 51.8% (24 h of cultivation) to 68.6% (48 h of cultivation). Upon blocking the essential ROS-scavenging enzymes, SODs and catalases (CATs) some heterogeneity of cell population was observed: 80-90% of cells displayed evident signs of early apoptosis (such as disorientation of mitochondria cristae, mitochondrial fragmentation and deformation of nuclear chromatine). However, 10-20% of the population were definitely healthy. It allowed to draw the conclusion that a complete system of cell antioxidant protection underlies normal mitochondria functioning while the E. magnusii yeasts grow and age. Moreover, this system provides unimpaired cell physiology under oxidative stress during culture aging in the stationary phase. Failures in mitochondria functions due to inhibition of ROS-scavenging enzymes of CATs and SODs could lead to damage of the cells and some signs of early apoptosis.
NASA Astrophysics Data System (ADS)
Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.
2011-12-01
Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the invadable blocks, selects the block connected to the growing cluster with the lowest invasion pressure, and invades it. Our new MIP model incorporates several new features, including an efficient three-dimensional clustering algorithm; simultaneous invasion/reinvasion of water and air phases; hysteresis in water and air drainage curves; capability for distributed porosities and drainage parameters; and gas-phase compression and trapping. We apply this model in simulations representing the WCS site and illustrate the origin of the trapped and compressed gas phase in Dockum mudrocks.
Khan, Niamat; Lenz, Christof; Binder, Lutz; Pantakani, Dasaradha Venkata Krishna; Asif, Abdul R.
2016-01-01
Mycophenolic acid (MPA) is prescribed to maintain allografts in organ-transplanted patients. However, gastrointestinal (GI) complications, particularly diarrhea, are frequently observed as a side effect following MPA therapy. We recently reported that MPA altered the tight junction (TJ)-mediated barrier function in a Caco-2 cell monolayer model system. This study investigates whether MPA induces epigenetic changes which lead to GI complications, especially diarrhea. Methods: We employed a Chromatin Immunoprecipitation-O-Proteomics (ChIP-O-Proteomics) approach to identify proteins associated with active (H3K4me3) as well as repressive (H3K27me3) chromatin histone modifications in MPA-treated cells, and further characterized the role of midkine, a H3K4me3-associated protein, in the context of epithelial monolayer permeability. Results: We identified a total of 333 and 306 proteins associated with active and repressive histone modification marks, respectively. Among them, 241 proteins were common both in active and repressive chromatin, 92 proteins were associated exclusively with the active histone modification mark, while 65 proteins remained specific to repressive chromatin. Our results show that 45 proteins which bind to the active and seven proteins which bind to the repressive chromatin region exhibited significantly altered abundance in MPA-treated cells as compared to DMSO control cells. A number of novel proteins whose function is not known in bowel barrier regulation were among the identified proteins, including midkine. Our functional integrity assays on the Caco-2 cell monolayer showed that the inhibition of midkine expression prior to MPA treatment could completely block the MPA-mediated increase in barrier permeability. Conclusions: The ChIP-O-Proteomics approach delivered a number of novel proteins with potential implications in MPA toxicity. Consequently, it can be proposed that midkine inhibition could be a potent therapeutic approach to prevent the MPA-mediated increase in TJ permeability and leak flux diarrhea in organ transplant patients. PMID:27104530
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide
Scholes, Colin A.; Chen, George Q.; Lu, Hiep T.; Kentish, Sandra E.
2015-01-01
Membrane technology can be used for both post combustion carbon dioxide capture and acidic gas sweetening and dehydration of natural gas. These processes are especially suited for polymeric membranes with polyether functionality, because of the high affinity of this species for both H2O and CO2. Here, both crosslinked polyethylene glycol diacrylate and a polyether-polyamide block copolymer (PEBAX 2533©) are studied for their ability to separate CO2 from CH4 and N2 under single and mixed gas conditions, for both dry and wet feeds, as well as when 500 ppm H2S is present. The solubility of gases within these polymers is shown to be better correlated with the Lennard Jones well depth than with critical temperature. Under dry mixed gas conditions, CO2 permeability is reduced compared to the single gas measurement because of competitive sorption from CH4 or N2. However, selectivity for CO2 is retained in both polymers. The presence of water in the feed is observed to swell the PEG membrane resulting in a significant increase in CO2 permeability relative to the dry gas scenario. Importantly, the selectivity is again retained under wet feed gas conditions. The presence of H2S is observed to only slightly reduce CO2 permeability through both membranes. PMID:26703745
Renault, Christophe; Marchuk, Kyle; Ahn, Hyun S; Titus, Eric J; Kim, Jiyeon; Willets, Katherine A; Bard, Allen J
2015-06-02
We report a method to study electro-active defects in passivated electrodes. This method couples fluorescence microscopy and electrochemistry to localize and size electro-active defects. The method was validated by comparison with a scanning probe technique, scanning electrochemical microscopy. We used our method for studying electro-active defects in thin TiO2 layers electrodeposited on 25 μm diameter Pt ultramicroelectrodes (UMEs). The permeability of the TiO2 layer was estimated by measuring the oxidation of ferrocenemethanol at the UME. Blocking of current ranging from 91.4 to 99.8% was achieved. Electro-active defects with an average radius ranging between 9 and 90 nm were observed in these TiO2 blocking layers. The distribution of electro-active defects over the TiO2 layer is highly inhomogeneous and the number of electro-active defect increases for lower degree of current blocking. The interest of the proposed technique is the possibility to quickly (less than 15 min) image samples as large as several hundreds of μm(2) while being able to detect electro-active defects of only a few tens of nm in radius.
Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng
2014-08-19
A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.
Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide–gated channels
Lam, Yee Ling; Zeng, Weizhong; Derebe, Mehabaw Getahun
2015-01-01
Calcium permeability and the concomitant calcium block of monovalent ion current (“Ca2+ block”) are properties of cyclic nucleotide–gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca2+ block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca2+ block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca2+ block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca2+ block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca2+ block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca2+ block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca2+ block. PMID:26283200
SOSlope: a new slope stability model for vegetated hillslopes
NASA Astrophysics Data System (ADS)
Cohen, D.; Schwarz, M.
2016-12-01
Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of the soil mass, in contrast to what is commonly assumed in models. Simulations with different tree sizes (different magnitude of root reinforcement) indicate that there is a threshold in tree spacing (or tree diameter) above (or below) which root density and root sizes no longer provide sufficient reinforcement to keep the slope stable during a rainfall event.
Mechanism for the Increased Permeability in Endothelial Monolayers Induced by Elastase
Ishii, Y.; Kitamura, S.
1994-01-01
The aim of this study was to investigate the mechanism for the increase in endothelial permeability induced by human neutrophil elastase (HNE). Pretreatment of bovine pulmonary artery endothelial cells (BPAEC) with HNE(0-30 μg/ml) for 1 h produced a concentration dependent increase in 125I-albumin clearance. The effect was reversible and was not due to cytolysis. Pretreatment of BPAEC with sodium tungstate, which depletes xanthine oxidase, or with oxypurinol, did not prevent HNE induced increased permeability. Heparin, which neutralizes the cationic charge of HNE, also had no protective effect. Pretreatment with heat inactivated HNE, which still had positive charge sites, did not result in increased endothelial permeability. Also, ONO-5046, a novel specific inhibitor of HNE, did prevent increased permeability. These results suggest that elastase increases endothelial permeability mainly through its proteolytic effects. PMID:18472917
Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.
1969-01-01
The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758
Intestinal Membrane Permeability and Hypersensitivity In the Irritable Bowel Syndrome
Zhou, QiQi; Zhang, Buyi; Verne, G. Nicholas
2009-01-01
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder in which the underlying pathophysiology is poorly understood; however, increased intestinal permeability in diarrhea-predominant IBS patients has been reported. Here we demonstrate diarrhea-predominant IBS patients (D-IBS) that display increased intestinal permeability. We have also found that increased intestinal membrane permeability is associated with visceral and thermal hypersensitivity in this subset of D-IBS patients. We evaluated 54 D-IBS patients and 22 controls for intestinal membrane permeability using the lactulose / mannitol method. All subjects ingested 5 g laclulose and 2 g mannitol in 100 ml of water after which their urine was collected. We also evaluated the mean mechanical visual analogue (MVAS) pain rating to nociceptive thermal and visceral stimulation in all subjects. All study participants also completed the FBDSI scale. Approximately 39% of diarrhea-predominant IBS patients have increased intestinal membrane permeability as measured by the lactulose / mannitol ratio. These IBS patients also demonstrated higher M-VAS pain intensity reading scale. Interestingly, the IBS patients with hypersensitivity and increased intestinal permeability had a higher FBDSI score (100.8±5.4) compared to IBS patients with normal membrane permeability and sensitivity (51.6±12.7) and controls (6.1 ± 5.6) (p<0.001). A subset of D-IBS patients have increased intestinal membrane permeability that is associated with an increased FBDSI score and increased hypersensitivity to visceral and thermal nociceptive pain stimuli. Thus, increased intestinal membrane permeability in D-IBS patients may lead to more severe IBS symptoms and hypersensitivity to somatic and visceral stimuli. PMID:19595511
NASA Astrophysics Data System (ADS)
Jayne, R., Jr.; Pollyea, R.
2016-12-01
Carbon capture and sequestration (CCS) in geologic reservoirs is one strategy for reducing anthropogenic CO2 emissions from large-scale point-source emitters. Recent developments at the CarbFix CCS pilot in Iceland have shown that basalt reservoirs are highly effective for permanent mineral trapping on the basis of CO2-water-rock interactions, which result in the formation of carbonates minerals. In order to advance our understanding of basalt sequestration in large igneous provinces, this research uses numerical simulation to evaluate the feasibility of industrial-scale CO2 injections in the Columbia River Basalt Group (CRBG). Although bulk reservoir properties are well constrained on the basis of field and laboratory testing from the Wallula Basalt Sequestration Pilot Project, there remains significant uncertainty in the spatial distribution of permeability at the scale of individual basalt flows. Geostatistical analysis of hydrologic data from 540 wells illustrates that CRBG reservoirs are reasonably modeled as layered heterogeneous systems on the basis of basalt flow morphology; however, the regional dataset is insufficient to constrain permeability variability at the scale of an individual basalt flow. As a result, permeability distribution for this modeling study is established by centering the lognormal permeability distribution in the regional dataset over the bulk permeability measured at Wallula site, which results in a spatially random permeability distribution within the target reservoir. In order to quantify the effects of this permeability uncertainty, CO2 injections are simulated within 50 equally probable synthetic reservoir domains. Each model domain comprises three-dimensional geometry with 530,000 grid blocks, and fracture-matrix interaction is simulated as interacting continua for the two low permeability layers (flow interiors) bounding the injection zone. Results from this research illustrate that permeability uncertainty at the scale of individual basalt flows may significantly impact both injection pressure accumulation and CO2 distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Lewis R.; Stephens, James O.; Vadie, Alex A.
The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zonemore » of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique.« less
Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine
2011-01-01
Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855
Rosenberg, Philip; Hoskin, F. C. G.
1963-01-01
D-Tubocurarine (curare) and acetylcholine (ACh) had been found to block electrical activity after treatment of squid giant axons with cottonmouth moccasin venom at a concentration which had no effect on conduction. It has now been demonstrated that this effect is attributable to reduction of permeability barriers. The penetration of externally applied C14-labeled dimethylcurare, ACh, choline, and trimethylamine into the axoplasm of the squid giant axon was determined in axons treated with either cottonmouth, rattlesnake, or bee venom, and in untreated control axons. The lipid-soluble tertiary nitrogen compound trimethylamine readily penetrated into the axoplasm of untreated axons. In contrast, after exposure of the axons to the lipid-insoluble quaternary nitrogen compounds for 1 hour their presence in the axoplasm was hardly detectable (less than 1 per cent). However, following 15µg/ml cottonmouth venom 1 to 5 per cent of their external concentration is found within the axoplasm while following 50µg/ml venom 10 to 50 per cent enters. The penetration of dimethylcurare is also increased by 10 µg/ml bee venom but not by 1 µg/ml bee venom nor 1000 µg/ml rattlesnake venom. The experiments show that when ACh and curare, following venom treatment, affect electrical activity, they also penetrate into the axon. Treatments which do not increase penetration are also ineffective in rendering the compounds active. PMID:13974908
Jiang, Chao; Luo, Caijun; Liu, Xiaolin; Shao, Lei; Dong, Youqing; Zhang, Yingwei; Shi, Feng
2015-05-27
The layer-by-layer (LbL) assembled multilayer has been widely used as good barrier film or capsule due to the advantages of its flexible tailoring of film permeability and compactness. Although many specific systems have been proposed for film design, developing a versatile strategy to control film compactness remains a challenge. We introduced the simple mechanical energy of a high gravity field to the LbL assembly process to tailor the multilayer permeability through adjusting film compactness. By taking poly(diallyldimethylammonium chloride) (PDDA) and poly{1-4[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl sodium salt} (PAzo) as a model system, we investigated the LbL assembly process under a high gravity field. The results showed that the high gravity field introduced effectively accelerated the multilayer deposition process by 20-fold compared with conventional dipping assembly; the adsorption rate was positively dependent on the rotating speed of the high gravity equipment and the concentration of the building block solutions. More interestingly, the film compactness of the PDDA/PAzo multilayer prepared under the high gravity field increased remarkably with the growing rotational speed of the high gravity equipment, as demonstrated through comparisons of surface morphology, cyclic voltammetry curves, and photoisomerization kinetics of PDDA/PAzo multilayers fabricated through the conventional dipping method and through LbL assembly under a high gravity field, respectively. In this way, we have introduced a simple and versatile external form of mechanical energy into the LbL assembling process to improve film compactness, which should be useful for further applications in controlled ion permeability, anticorrosion, and drug loading.
Aman, Teresa K.; Maki, Bruce A.; Ruffino, Thomas J.; Kasperek, Eileen M.; Popescu, Gabriela K.
2014-01-01
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability. PMID:24847051
NASA Astrophysics Data System (ADS)
Tao, Meng; Yechao, You; Jie, Chen; Yaoqing, Hu
2017-08-01
The permeability of the surrounding rock is a critical parameter for the designing and assessment of radioactive waste disposal repositories in the rock salt. Generally, in the locations that are chosen for radioactive waste storage, the bedded rock salt is a sedimentary rock that contains NaCl and Na2SO4. Most likely, there are also layers of gypsum ( {CaSO}_{ 4} \\cdot 2 {H}_{ 2} {O)} present in the salt deposit. Radioactive wastes emit a large amount of heat and hydrogen during the process of disposal, which may result in thermal damage of the surrounding rocks and cause a great change in their permeability and tightness. Therefore, it is necessary to investigate the permeability evolution of the gypsum interlayer under high temperature and high pressure in order to evaluate the tightness and security of the nuclear waste repositories in bedded rock salt. In this study, a self-designed rock triaxial testing system by which high temperature and pressure can be applied is used; the μCT225kVFCB micro-CT system is also employed to investigate the permeability and microstructure of gypsum specimens under a constant hydrostatic pressure of 25 MPa, an increasing temperature (ranging from 20 to 650 °C), and a variable inlet gas pressure (1, 2, 4, 6 MPa). The experimental results show: (a) the maximum permeability measured during the whole experiment is less than 10-17 m2, which indicates that the gypsum interlayer has low permeability under high temperature and pressure that meet the requirements for radioactive waste repository. (b) Under the same temperature, the permeability of the gypsum specimen decreases at the beginning and then increases as the pore pressure elevates. When the inlet gas pressure is between 0 and 2 MPa, the Klinkenberg effect is very pronounced. Then, as the pore pressure increases, the movement behavior of gas molecules gradually changes from free motion to forced directional motion. So the role of free movement of gas molecules gradually reduced, which eventually leads to a decrease in permeability. When the inlet gas pressure is between 2 and 6 MPa, the Klinkenberg effect dribbles away, and the gas flow gradually obeys to the Darcy's law. Hence, the permeability increased with the increase in inlet gas pressure. (c) The curve of permeability versus temperature is divided into five stages based on its gradient. In the temperature range of 20-100 °C, the permeability of gypsum decreased slowly when the temperature decreased. From 100 to 200 °C, the permeability of gypsum increased dramatically when the temperature increased. However, a dramatic increase in permeability was observed from 200 to 450 °C. Subsequently, in the temperature range of 450-550 °C, due to closure of pores and fractures, the permeability of the specimens slowly lessened when the temperature increased. From 550 to 650 °C, the permeability of gypsum slightly increased when the temperature increased; (d) the micro-cracks and porosity obtained from the CT images show a high degree of consistency to the permeability evolution; (e) when compared to the permeability evolutions of sandstone, granite, and lignite, gypsum exhibits a stable evolution trend of permeability and has a much greater threshold temperature when its permeability increases sharply. The results of the paper may provide essential and valuable references for the design and construction of high-level radioactive wastes repository in bedded salt rock containing gypsum interlayers.
Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daigle, Hugh; Cook, Ann; Malinverno, Alberto
Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less
Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico
Daigle, Hugh; Cook, Ann; Malinverno, Alberto
2015-10-14
Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less
Sumagin, Ronen; Robin, Alex Z.; Nusrat, Asma; Parkos, Charles A.
2014-01-01
Neutrophil (PMN) transepithelial migration (TEM) and accumulation in luminal spaces is a hallmark of mucosal inflammation. TEM has been extensively modeled, however the functional consequences and molecular basis of PMN interactions with luminal epithelial ligands are not clear. Here we report that cytokine-induced expression of a PMN ligand, intercellular adhesion molecule-1 (ICAM-1), exclusively on the luminal (apical) membrane of the intestinal epithelium results in accumulation and enhanced motility of transmigrated PMN on the apical epithelial surface. Using complementary in-vitro and in-vivo approaches we demonstrate that ligation of epithelial ICAM-1 by PMN or with specific antibodies results in myosin light chain kinase (MLCK)-dependent increases in epithelial permeability that are associated with enhanced PMN TEM. Effects of ICAM-1 ligation on epithelial permeability and PMN migration in-vivo were blocked after intraluminal addition of peptides derived from the cytoplasmic domain of ICAM-1. These findings provide new evidence for functional interactions between PMN and epithelial cells after migration into the intestinal lumen. While such interactions may aid in clearance of invading microorganisms by promoting PMN recruitment, engagement of ICAM-1 under pathologic conditions would increase accumulation of epithelial-associated PMN, thus contributing to mucosal injury as observed in conditions including ulcerative colitis. PMID:24345805
Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors.
Rifaie-Graham, Omar; Ulrich, Sebastian; Galensowske, Nikolas F B; Balog, Sandor; Chami, Mohamed; Rentsch, Daniel; Hemmer, James R; Read de Alaniz, Javier; Boesel, Luciano F; Bruns, Nico
2018-06-27
Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.
Vardhana, Pratibhasri A.; Julius, Martin A.; Pollak, Susan V.; Lustbader, Evan G.; Trousdale, Rhonda K.; Lustbader, Joyce W.
2009-01-01
Ovarian hyperstimulation syndrome (OHSS) is a complication of in vitro fertilization associated with physiological changes after hCG administration to induce final oocyte maturation. It presents as widespread increases in vascular permeability and, in rare cases, results in cycle cancellation, multi-organ dysfunction, and pregnancy termination. These physiological changes are due primarily to activation of the vascular endothelial growth factor (VEGF) system in response to exogenous human chorionic gonadotropin (hCG). An hCG antagonist (hCG-Ant) could attenuate these effects by competitively binding to the LH/CG receptor, thereby blocking LH activity in vivo. We expressed a form of hCG that lacks three of its four N-linked glycosylation sites and tested its efficacy as an antagonist. The hCG-Ant binds the LH receptor with an affinity similar to native hCG and inhibits cAMP response in vitro. In a rat model for ovarian stimulation, hCG-Ant dramatically reduces ovulation and steroid hormone production. In a well-established rat OHSS model, vascular permeability and vascular endothelial growth factor (VEGF) expression are dramatically reduced after hCG-Ant treatment. Finally, hCG-Ant does not appear to alter blastocyst development when given after hCG in mice. These studies demonstrate that removing specific glycosylation sites on native hCG can produce an hCG-Ant that is capable of binding without activating the LH receptor and blocking the actions of hCG. Thus hCG-Ant will be investigated as a potential therapy for OHSS. PMID:19443574
Büning, Carsten; Geissler, Nora; Prager, Matthias; Sturm, Andreas; Baumgart, Daniel C; Büttner, Janine; Bühner, Sabine; Haas, Verena; Lochs, Herbert
2012-10-01
A disturbed epithelial barrier could play a pivotal role in ulcerative colitis (UC). We performed a family-based study analyzing in vivo gastrointestinal permeability in patients with UC, their healthy relatives, spouses, and controls. In total, 89 patients with UC in remission, 35 first-degree relatives (UC-R), 24 nonrelated spouses (UC-NR), and 99 healthy controls (HC) were studied. Permeability was assessed by a sugar-drink test using sucrose (gastroduodenal permeability), lactulose/mannitol (intestinal permeability), and sucralose (colonic permeability). Data were correlated with clinical characteristics including medical treatment. Increased intestinal permeability was detected significantly more often in UC patients in remission (25/89, 28.1%) compared with HC (6/99, 6.1%; P < 0.001). Similar results were obtained in UC-R (7/35, 20.0%; P = 0.01 compared with HC) regardless of sharing the same household with the patients or not. No difference was found between UC-NR (3/24, 12.5%) and HC. Notably, in UC patients increased intestinal permeability was found in 12/28 patients (42.9%) with pancolitis, 7/30 (23.3%) patients with left-sided colitis, and in 2/19 (10.5%) patients with proctitis (P = 0.04). Gastroduodenal and colonic permeability were similar in all groups. Among patients on azathioprine, increased intestinal permeability was only seen in 1/18 (5.6%) patients. In contrast, in 24/70 (34.3%) patients without azathioprine, an increased intestinal permeability was found (P = 0.005). An increased intestinal but not colonic permeability was found in UC patients in clinical remission that could mark a new risk factor for extensive disease location. Similar findings in healthy relatives but not spouses suggest that this barrier defect is genetically determined. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.
Williams, Christie E.; Nemacheck, Jill A.; Shukle, John T.; Subramanyam, Subhashree; Saltzmann, Kurt D.; Shukle, Richard H.
2011-01-01
Salivary secretions of neonate Hessian fly larvae initiate a two-way exchange of molecules with their wheat host. Changes in properties of the leaf surface allow larval effectors to enter the plant where they trigger plant processes leading to resistance and delivery of defence molecules, or susceptibility and delivery of nutrients. To increase understanding of the host plant's response, the timing and characteristics of the induced epidermal permeability were investigated. Resistant plant permeability was transient and limited in area, persisting just long enough to deliver defence molecules before gene expression and permeability reverted to pre-infestation levels. The abundance of transcripts for GDSL-motif lipase/hydrolase, thought to contribute to cuticle reorganization and increased permeability, followed the same temporal profile as permeability in resistant plants. In contrast, susceptible plants continued to increase in permeability over time until the entire crown of the plant became a nutrient sink. Permeability increased with higher infestation levels in susceptible but not in resistant plants. The ramifications of induced plant permeability on Hessian fly populations are discussed. PMID:21659664
Active intestinal drug absorption and the solubility-permeability interplay.
Porat, Daniel; Dahan, Arik
2018-02-15
The solubility-permeability interplay deals with the question: what is the concomitant effect on the drug's apparent permeability when increasing the apparent solubility with a solubility-enabling formulation? The solubility and the permeability are closely related, exhibit certain interplay between them, and ongoing research throughout the past decade shows that treating the one irrespectively of the other may be insufficient. The aim of this article is to provide an overview of the current knowledge on the solubility-permeability interplay when using solubility-enabling formulations for oral lipophilic drugs, highlighting active permeability aspects. A solubility-enabling formulation may affect the permeability in opposite directions; the passive permeability may decrease as a result of the apparent solubility increase, according to the solubility-permeability tradeoff, but at the same time, certain components of the formulation may inhibit/saturate efflux transporters (when relevant), resulting in significant apparent permeability increase. In these cases, excipients with both solubilizing and e.g. P-gp inhibitory properties may lead to concomitant increase of both the solubility and the permeability. Intelligent development of such formulation will account for the simultaneous effects of the excipients' nature/concentrations on the two arms composing the overall permeability: the passive and the active arms. Overall, thorough mechanistic understanding of the various factors involved in the solubility-permeability interplay may allow developing better solubility-enabling formulations, thereby exploiting the advantages analyzed in this article, offering oral delivery solution even for BCS class IV drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lowe, Kevin; Alvarez, Diego; King, Judy; Stevens, Troy
2007-11-01
In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability. We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability. Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding. Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.
Wang, Yanhua; Klein, Janet D; Froehlich, Otto; Sands, Jeff M
2013-01-15
The kidney's ability to concentrate urine is vitally important to our quality of life. In the hypertonic environment of the kidney, urea transporters must be regulated to optimize function. We previously showed that hypertonicity increases urea permeability and that the protein kinase C (PKC) blockers chelerythrine and rottlerin decreased hypertonicity-stimulated urea permeability in rat inner medullary collecting ducts (IMCDs). Because PKCα knockout (PKCα(-/-)) mice have a urine-concentrating defect, we tested the effect of hypertonicity on urea permeability in isolated perfused mouse IMCDs. Increasing the osmolality of perfusate and bath from 290 to 690 mosmol/kgH(2)O did not change urea permeability in PKCα(-/-) mice but significantly increased urea permeability in wild-type mice. To determine whether the response to protein kinase A was also missing in IMCDs of PKCα(-/-) mice, tubules were treated with vasopressin and subsequently with the PKC stimulator phorbol dibutyrate (PDBu). Vasopressin stimulated urea permeability in PKCα(-/-) mice. Like vasopressin, forskolin stimulated urea permeability in PKCα(-/-) mice. We previously showed that, in rats, vasopressin and PDBu have additive stimulatory effects on urea permeability. In contrast, in PKCα(-/-) mice, PDBu did not further increase vasopressin-stimulated urea permeability. Western blot analysis showed that expression of the UT-A1 urea transporter in IMCDs was increased in response to vasopressin in wild-type mice as well as PKCα(-/-) mice. Hypertonicity increased UT-A1 phosphorylation in wild-type mice but not in PKCα(-/-) mice. We conclude that PKCα mediates hypertonicity-stimulated urea transport but is not necessary for vasopressin stimulation of urea permeability in mouse IMCDs.
Use of DMPC and DSPC lipids for verapamil and naproxen permeability studies by PAMPA.
Alvarez-Figueroa, M J; Contreras-Garrido, B C; Soto-Arriaza, M A
2015-04-01
Verapamil and naproxen Parallel Artificial Membrane Permeability Assay (PAMPA) permeability was studied using lipids not yet reported for this model in order to facilitate the quantification of drug permeability. These lipids are 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an equimolar mixture of DMPC/DSPC, both in the absence and in the presence of 33.3 mol% of cholesterol. PAMPA drug permeability using the lipids mentioned above was compared with lecithin-PC. The results show that verapamil permeability depends on the kind of lipid used, in the order DMPC > DMPC/DSPC > DSPC. The permeability of the drugs was between 1.3 and 3.5-times larger than those obtained in lecithin-PC for all the concentrations of the drug used. Naproxen shows similar permeability than verapamil; however, the permeability increased with respect to lecithin-PC only when DMPC and DMPC/DSPC were used. This behavior could be explained by a difference between the drug net charge at pH 7.4. On the other hand, in the presence of cholesterol, verapamil permeability increases in all lipid systems; however, the relative verapamil permeability respect to lecithin-PC did not show any significant increase. This result is likely due to the promoting effect of cholesterol, which is not able to compensate for the large increase in verapamil permeability observed in lecithin-PC. With respect to naproxen, its permeability value and relative permeability respect lecithin-PC not always increased in the presence of cholesterol. This result is probably attributed to the negative charge of naproxen rather than its molecular weight. The lipid systems studied have an advantage in drug permeability quantification, which is mainly related to the charge of the molecule and not to its molecular weight or to cholesterol used as an absorption promoter.
127. Photographic copy of historic photo, September 29, 1929 (original ...
127. Photographic copy of historic photo, September 29, 1929 (original print filed in Record Group 115, National Archives, Washington, D.C.). PERMEABILITY TEST BLOCK OF CONCRETE UNDER 340 HEAD WATER PRESSURE, SHOWING CALCIUM DEPOSIT ON DAMP FACE, WHICH LATER SEALED AND DRIED. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Control of apical membrane chloride permeability in the renal A6 cell line by nucleotides
Banderali, U; Brochiero, E; Lindenthal, S; Raschi, C; Bogliolo, S; Ehrenfeld, J
1999-01-01
The effect of extracellular nucleotides applied on the apical side of polarised A6 cells grown on permeant filters was investigated by measuring the changes in (i) the 36Cl efflux through the apical membranes, (ii) the intracellular chloride concentrations (aCli, measured with N-(6-methoxyquinolyl) acetoethyl ester, MQAE), (iii) ICl, the short-circuit current in the absence of Na+ transport and (iv) the characteristics of the apical chloride channels using a patch-clamp approach. ATP or UTP (0.1-500 μm) transiently stimulated ICl. The sequence of purinergic agonist potencies was UTP = ATP > ADP >> the P2X-selective agonist β,γ-methylene ATP = the P2Y-selective agonist 2-methylthioATP. Suramin (100 μm) as the P2Y antagonist Reactive Blue 2 (10 μm) had no effect on the UTP (or ATP)-stimulated current. These findings are consistent with the presence of P2Y2-like receptors located on the apical membranes of A6 cells. Apical application of adenosine also transiently increased ICl. This effect was blocked by theophylline while the UTP-stimulated ICl was not. The existence of a second receptor, of the P1 type is proposed. ATP (or UTP)-stimulated ICl was blocked by apical application of 200 μmN-phenylanthranilic acid (DPC) or 100 μm niflumic acid while 100 μm glibenclamide was ineffective. Ionomycin and thapsigargin both transiently stimulated ICl; the nucleotide stimulation of ICl was not suppressed by pre-treatment with these agents. Chlorpromazin (50 μm), a Ca2+-calmodulin inhibitor strongly inhibited the stimulation of ICl induced either by apical UTP or by ionomycin application. BAPTA-AM pre-treatment of A6 cells blocked the UTP-stimulated ICl. Niflumic acid also blocked the ionomycin stimulated ICl. A fourfold increase in 36Cl effluxes through the apical membranes was observed after ATP or UTP application. These increases of the apical chloride permeability could also be observed when following aCli changes. Apical application of DPC (1 mm) or 5-nitro-2(3-phenylpropylamino)benzoic acid (NPPB; 500 μm) produced an incomplete inhibition of 36Cl effluxes through the apical membranes in ATP-stimulated and in untreated monolayers. In single channel patch-clamp experiments, an apical chloride channel with a unitary single channel conductance of 7.3 ± 0.6 pS (n = 12) was usually observed. ATP application induced the activation of one or more of these channels within a few minutes. These results indicate that multiple purinergic receptor subtypes are present in the apical membranes of A6 cells and that nucleotides can act as modulators of Cl− secretion in renal cells. PMID:10457087
Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurel, O.; Reess, T.; Matallah, M.
2010-12-15
This article discusses the influence of compressive shock waves on the permeability of cementitious materials. Shock waves are generated in water by Pulsed Arc Electrohydraulic Discharges (PAED). The practical aim is to increase the intrinsic permeability of the specimens. The maximum pressure amplitude of the shock wave is 250 MPa. It generates damage in the specimens and the evolution of damage is correlated with the intrinsic permeability of the mortar. A threshold of pressure is observed. From this threshold, the increase of permeability is linear in a semi-log plot. The influence of repeated shocks on permeability is also discussed. Qualitativemore » X Ray Tomography illustrates the evolution of the microstructure of the material leading to the increase of permeability. Comparative results from mercury intrusion porosimetry (MIP) show that the micro-structural damage process starts at the sub-micrometric level and that the characteristic size of pores of growing volume increases.« less
Barygin, Oleg I; Komarova, Margarita S; Tikhonova, Tatiana B; Tikhonov, Denis B
2015-04-01
Antidepressants have many targets in the central nervous system. A growing body of data demonstrates the influence of antidepressants on glutamatergic neurotransmission. In the present work, we studied the inhibition of native Ca(2+)-permeable and Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rat brain neurons by fluoxetine. The Ca(2+)-impermeable AMPA receptors in CA1 hippocampal pyramidal neurons were weakly affected. The IC50 value for the inhibition of Ca(2+)-permeable AMPA receptors in giant striatal interneurons was 43 ± 7 μM. The inhibition of Ca(2+)-permeable AMPA receptors was voltage dependent, suggesting deep binding in the pore. However, the use dependence of fluoxetine action differed markedly from that of classical AMPA receptor open-channel blockers. Moreover, fluoxetine did not compete with other channel blockers. In contrast to fluoxetine, its membrane-impermeant quaternary analog demonstrated all of the features of channel inhibition typical for open-channel blockers. It is suggested that fluoxetine reaches the binding site through a hydrophobic access pathway. Such a mechanism of block is described for ligands of sodium and calcium channels, but was never found in AMPA receptors. Molecular modeling suggests binding of fluoxetine in the subunit interface; analogous binding was proposed for local anesthetics in closed sodium channels and for benzothiazepines in calcium channels. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Li, Jing; Xue, Shuwen; He, Chunqiu; Qi, Huixia; Chen, Fulin; Ma, Yanling
2018-03-20
Pseudomonas aeruginosa DN1 strain and Bacillus subtilis QHQ110 strain were chosen as rhamnolipid and lipopeptide producer respectively, to evaluate the efficiency of exogenous inoculants on enhancing oil recovery (EOR) and to explore the relationship between injected bacteria and indigenous bacterial community dynamics in long-term filed pilot of Hujianshan low permeability water-flooded reservoir for 26 months. Core-flooding tests showed that the oil displacement efficiency increased by 18.46% with addition of exogenous consortia. Bacterial community dynamics using quantitative PCR and high-throughput sequencing revealed that the exogenous inoculants survived and could live together with indigenous bacterial populations. They gradually became the dominant community after the initial activation, while their comparative advantage weakened continually after 3 months of the first injection. The bacterial populations did not exert an observable change in the process of the second injection of exogenous inoculants. On account of facilitating oil emulsification and accelerating bacterial growth with oil as the carbon source by the injection of exogenous consortia, γ-proteobacteria was finally the prominent bacterial community at class level varying from 25.55 to 32.67%, and the dominant bacterial populations were increased by 2-3 orders of magnitude during the whole processes. The content of organic acids and rhamnolipids in reservoir were promoted with the change of bacterial community diversity, respectively. Cumulative oil increments reached 26,190 barrels for 13 months after the first injection, and 55,947 barrels of oil had been accumulated in all of A20 wells block through two rounds of bacterial consortia injection. The performance of EOR has a cumulative improvement by the injection of exogenous inoculants without observable inhibitory effect on the indigenous bacterial populations, demonstrating the application potential in low permeability water-flooded reservoirs.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio
2017-04-01
In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude respect to the undeformed domains. Structural and petrophysical data suggest that the Rocca di Neto fault zone may compartmentalize the footwall block due to both juxtaposition of clay-rich lithology in the hangingwall and the development of low permeability fault core rocks.
Transport characteristics of urea transporter-B.
Yang, Baoxue
2014-01-01
UT-B represents the major urea transporter in erythrocytes, in addition to being expressed in kidney descending vasa recta, brain, spleen, ureter, bladder, and testis. Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes are also permeable to various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. UT-B is highly permeable to urea and the chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with a Ps > 5.0 × 10(-6) cm/s at 10 °C. The amides formamide, acetamide, acrylamide, and butyramide efficiently diffuse across lipid bilayers. The urea analogues dimethylurea, acryalmide, methylurea, thiourea, and methylformamide inhibit UT-B-mediated urea transport by >60 % by a pore-blocking mechanism. UT-B is also a water channel in erythrocytes and has a single-channel water permeability that is similar to aquaporin-1. Whether UT-B is an NH3 channel still needs further study. Urea permeability (Purea) in erythrocytes differs between different mammals. Carnivores (dog, fox, cat) exhibit high Purea. In contrast, herbivores (cow, donkey, sheep) show much lower Purea. Erythrocyte Purea in human and pig (omnivores) was intermediate. Rodents and lagomorphs (mouse, rat, rabbit) have Purea intermediate between carnivores and omnivores. Birds that do not excrete urea and do not express UT-B in their erythrocytes have very low values. In contrast to Purea, water permeability is relatively similar in all mammals studied. This chapter will provide information about the transporter characteristics of UT-B.
Improved techniques for fluid diversion in oil recovery. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seright, R.
This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective inmore » entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.« less
Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S
2013-03-28
Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.
NASA Astrophysics Data System (ADS)
Gibanov, Nikita S.; Sheremet, Mikhail A.; Oztop, Hakan F.; Al-Salem, Khaled
2018-04-01
In this study, natural convection combined with entropy generation of Fe3O4-water nanofluid within a square open cavity filled with two different porous blocks under the influence of uniform horizontal magnetic field is numerically studied. Porous blocks of different thermal properties, permeability and porosity are located on the bottom wall. The bottom wall of the cavity is kept at hot temperature Th, while upper open boundary is at constant cold temperature Tc and other walls of the cavity are supposed to be adiabatic. Governing equations with corresponding boundary conditions formulated in dimensionless stream function and vorticity using Brinkman-extended Darcy model for porous blocks have been solved numerically using finite difference method. Numerical analysis has been carried out for wide ranges of Hartmann number, nanoparticles volume fraction and length of the porous blocks. It has been found that an addition of spherical ferric oxide nanoparticles can order the flow structures inside the cavity.
Method and apparatus for determining two-phase flow in rock fracture
Persoff, Peter; Pruess, Karsten; Myer, Larry
1994-01-01
An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.
Klein, Janet D.; Froehlich, Otto; Sands, Jeff M.
2013-01-01
The kidney's ability to concentrate urine is vitally important to our quality of life. In the hypertonic environment of the kidney, urea transporters must be regulated to optimize function. We previously showed that hypertonicity increases urea permeability and that the protein kinase C (PKC) blockers chelerythrine and rottlerin decreased hypertonicity-stimulated urea permeability in rat inner medullary collecting ducts (IMCDs). Because PKCα knockout (PKCα−/−) mice have a urine-concentrating defect, we tested the effect of hypertonicity on urea permeability in isolated perfused mouse IMCDs. Increasing the osmolality of perfusate and bath from 290 to 690 mosmol/kgH2O did not change urea permeability in PKCα−/− mice but significantly increased urea permeability in wild-type mice. To determine whether the response to protein kinase A was also missing in IMCDs of PKCα−/− mice, tubules were treated with vasopressin and subsequently with the PKC stimulator phorbol dibutyrate (PDBu). Vasopressin stimulated urea permeability in PKCα−/− mice. Like vasopressin, forskolin stimulated urea permeability in PKCα−/− mice. We previously showed that, in rats, vasopressin and PDBu have additive stimulatory effects on urea permeability. In contrast, in PKCα−/− mice, PDBu did not further increase vasopressin-stimulated urea permeability. Western blot analysis showed that expression of the UT-A1 urea transporter in IMCDs was increased in response to vasopressin in wild-type mice as well as PKCα−/− mice. Hypertonicity increased UT-A1 phosphorylation in wild-type mice but not in PKCα−/− mice. We conclude that PKCα mediates hypertonicity-stimulated urea transport but is not necessary for vasopressin stimulation of urea permeability in mouse IMCDs. PMID:23097465
The permeability of fractured rocks in pressurised volcanic and geothermal systems.
Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y
2017-07-21
The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.
NASA Astrophysics Data System (ADS)
Gu, Yang; Ding, Wenlong; Yin, Shuai; Wang, Ruyue; Mei, Yonggui; Liu, Jianjun
2017-03-01
The coalbed gas reservoirs in the Qinshui Basin in central China are highly heterogeneous; thus, the reservoir characteristics are difficult to assess. Research on the pore structure of a reservoir can provide a basis for understanding the occurrence and seepage mechanisms of coal reservoirs, rock physics modeling and the formulation of rational development plans. Therefore, the pore structure characteristics of the coalbed gas reservoirs in the high rank bituminous coal in the No. 15 coal seam of the Carboniferous Taiyuan Group in the Heshun coalbed methane (CBM) blocks in the northeastern Qinshui Basin were analyzed based on pressure mercury and scanning electron microscopy data. The results showed that the effective porosity system of the coal reservoir was mainly composed of pores and microfractures and that the pore throat configuration of the coal reservoir was composed of pores and microthroats. A model was developed based on the porosity and microfractures of the high rank coal rock and the mercury injection and drainage curves. The mercury injection curve model and the coal permeability are well correlated and were more reliable for the analysis of coal and rock pore system connectivity than the mercury drainage curve model. Coal rocks with developed microfractures are highly permeable; the production levels are often high during the initial drainage stages, but they decrease rapidly. A significant portion of the natural gas remains in the strata and cannot be exploited; therefore, the ultimate recovery is rather low. Coal samples with underdeveloped microfractures have lower permeabilities. While the initial production levels are lower, the production cycle is longer, and the ultimate recovery is higher. Therefore, the initial production levels of coal reservoirs with poorly developed microfractures in some regions of China may be low. However, over the long term, due to their higher ultimate recoveries and longer production cycles, the total gas production levels will increase. This understanding can provide an important reference for developing appropriate CBM development plans.
Pore-scale mechanisms of gas flow in tight sand reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.
2010-11-30
Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Evaluation of the permeability of agricultural films to various fumigants.
Qian, Yaorong; Kamel, Alaa; Stafford, Charles; Nguyen, Thuy; Chism, William J; Dawson, Jeffrey; Smith, Charles W
2011-11-15
A variety of agricultural films are commercially available for managing emissions and enhancing pest control during soil fumigation. These films are manufactured using different materials and processes which can ultimately result in different permeability to fumigants. A systematic laboratory study of the permeability of the agricultural films to nine fumigants was conducted to evaluate the performance of commonly used film products, including polyethylene, metalized, and high-barrier films. The permeability, as expressed by mass transfer coefficient (cm/h), of 27 different films from 13 manufacturers ranged from below 1 × 10(-4) cm/h to above 10 cm/h at 25 °C under ambient relative humidity test conditions. The wide range in permeability of commercially available films demonstrates the need to use films which are appropriate for the fumigation application. The effects of environmental factors, such as temperature and humidity, on the film permeability were also investigated. It was found that high relative humidity could drastically increase the permeability of the high-barrier films. The permeability of some high-barrier films was increased by 2-3 orders of magnitude when the films were tested at high relative humidity. Increasing the temperature from 25 to 40 °C increased the permeability for some high-barrier films up to 10 times more than the permeability at 25 °C, although the effect was minimal for several of these films. Analysis of the distribution of the permeability of the films under ambient humidity conditions to nine fumigants indicated that the 27 films largely followed the material type, although the permeability varied considerably among the films of similar material.
The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...
NASA Astrophysics Data System (ADS)
Ferebee, Rachel L.
The broader technical objective of this work is to contribute to the development of enzyme-functionalized nanoporous membranes that can function as autonomous and target selective dynamic separators. The scientific objective of the research performed within this thesis is to elucidate the parameters that control the mixing of proteins in organic host materials and in block copolymers templates in particular. A "biomimetic" membrane system that uses enzymes to selectively neutralize targets and trigger a change in permeability of nanopores lined with a pH-responsive polymer has been fabricated and characterized. Mechanical and functional stability, as well as scalability, have been demonstrated for this system. Additional research has focused on the role of polymeric ligands on the solubility characteristics of the model protein, Bovine Serum Albumin (BSA). For this purpose BSA was conjugated with poly(ethylene glycol) (PEG) ligands of varied degree of polymerization and grafting density. Combined static and dynamic light scattering was used (in conjunction with MALDI-TOF) to determine the second virial coefficient in PBS solutions. At a given mass fraction PEG or average number of grafts, the solubility of BSA-PEG conjugates is found to increase with the degree of polymerization of conjugated PEG. This result informs the synthesis of protein-conjugate systems that are optimized for the fabrication of block copolymer blend materials with maximum protein loading. Blends of BSA-PEG conjugates and block copolymer (BCP) matrices were fabricated to evaluate the dispersion morphology and solubility limits in a model system. Electron microscopy was used to evaluate the changes in lamellar spacing with increased filling fraction of BSA-PEG conjugates.
Panickar, Kiran S; Polansky, Marilyn M; Anderson, Richard A
2009-04-01
Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of cinnamon polyphenol extract (CPE) that has anti-oxidant and insulin-potentiating effects on cell swelling and depolarization of the inner mitochondrial membrane potential (DeltaPsi(m)) in ischemic injury. C6 glial cells were subjected to oxygen-glucose deprivation (OGD) and cell volume determined using the 3-O-methyl-[3H]-glucose method at 90 min after the end of OGD. When compared with controls, OGD increased cell volume by 34%. This increase was blocked by CPE or insulin but not by blockers of oxidative/nitrosative stress including vitamin E, resveratrol, N-nitro-L-arginine methyl ester (L-NAME) or uric acid. Mitochondrial dysfunction, a key component of ischemic injury, contributes to cell swelling. Changes in DeltaPsi(m) were assessed at the end of OGD with tetramethylrhodamine ethyl ester (TMRE), a potentiometric dye. OGD induced a 39% decline in DeltaPsi(m) and this decline was blocked by CPE as well as insulin. To test the involvement of the mitochondrial permeability transition (mPT), we used Cyclosporin A (CsA), an immunosuppressant and a blocker of the mPT pore. CsA blocked cell swelling and the decline in DeltaPsi(m) but FK506, an immunosuppressant that does not block the mPT, did not. Our results show that CPE reduces OGD-induced cell swelling as well as the decline in DeltaPsi(m) in cultures and some of its protective effects may be through inhibiting the mPT.
The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile
NASA Astrophysics Data System (ADS)
Pérez-Flores, P.; Wang, G.; Mitchell, T. M.; Meredith, P. G.; Nara, Y.; Sarkar, V.; Cembrano, J.
2017-11-01
The Southern Andes Volcanic Zone (SVZ) represents one of the largest undeveloped geothermal provinces in the world. Development of the geothermal potential requires a detailed understanding of fluid transport properties of its main lithologies. The permeability of SVZ rocks is altered by the presence of fracture damage zones produced by the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). We have therefore measured the permeability of four representative lithologies from the volcanic basement in this area: crystalline tuff, andesitic dike, altered andesite and granodiorite. For comparative purposes, we have also measured the permeability of samples of Seljadalur basalt, an Icelandic rock with widely studied and reported hydraulic properties. Specifically, we present the results of a systematic study of the effect of fractures and fracture offsets on permeability as a function of increasing effective pressure. Baseline measurements on intact samples of SVZ rocks show that the granodiorite has a permeability (10-18 m2), two orders of magnitude higher than that of the volcanic rocks (10-20 m2). The presence of throughgoing mated macro-fractures increases permeability by between four and six orders of magnitude, with the highest permeability recorded for the crystalline tuff. Increasing fracture offset to produce unmated fractures results in large increases in permeability up to some characteristic value of offset, beyond which permeability changes only marginally. The increase in permeability with offset appears to depend on fracture roughness and aperture, and these are different for each lithology. Overall, fractured SVZ rocks with finite offsets record permeability values consistent with those commonly found in geothermal reservoirs (>10-16 m2), which potentially allow convective/advective flow to develop. Hence, our results demonstrate that the fracture damage zones developed within the SVZ produce permeable regions, especially within the transtensional NE-striking fault zones, that have major importance for geothermal energy resource potential.
Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik
2016-01-01
Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241
NASA Astrophysics Data System (ADS)
Yao, Zhen-Yu; Shen, Yan; Huang, Hai-Qun; Xu, Ji-Cang
2016-05-01
Cigarette smoke analysis of tipping paper with different permeability was carried out. The infrared thermal imager was used to measure burning temperature of cigarette with different permeability tipping paper. The results indicated that with the increase of tipping paper permeability, Tar, CO and nicotine in cigarette mainstream were significantly linear decreased, puff count was increased. Tipping paper permeability had a great influence on cigarette burning temperature. With the increase of tipping paper permeability, the third puff burning temperature and the average peak temperature values were dropped obviously, but the changes of smoldering temperature were not obvious. In addition, smoldering average temperature was significantly lower than the third puff burning temperature and peak temperature.
Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo.
Sommansson, Anna; Saudi, Wan Salman Wan; Nylander, Olof; Sjöblom, Markus
2013-07-01
Increased intestinal permeability is often associated with epithelial inflammation, leaky gut, or other pathological conditions in the gastrointestinal tract. We recently found that melatonin decreases basal duodenal mucosal permeability, suggesting a mucosal protective mode of action of this agent. The aim of the present study was to elucidate the effects of melatonin on ethanol-, wine-, and HCl-induced changes of duodenal mucosal paracellular permeability and motility. Rats were anesthetized with thiobarbiturate and a ~30-mm segment of the proximal duodenum was perfused in situ. Effects on duodenal mucosal paracellular permeability, assessed by measuring the blood-to-lumen clearance of ⁵¹Cr-EDTA, motility, and morphology, were investigated. Perfusing the duodenal segment with ethanol (10 or 15% alcohol by volume), red wine, or HCl (25-100 mM) induced concentration-dependent increases in paracellular permeability. Luminal ethanol and wine increased, whereas HCl transiently decreased duodenal motility. Administration of melatonin significantly reduced ethanol- and wine-induced increases in permeability by a mechanism abolished by the nicotinic receptor antagonists hexamethonium (iv) or mecamylamine (luminally). Signs of mucosal injury (edema and beginning of desquamation of the epithelium) in response to ethanol exposure were seen only in a few villi, an effect that was histologically not changed by melatonin. Melatonin did not affect HCl-induced increases in mucosal permeability or decreases in motility. Our results show that melatonin reduces ethanol- and wine-induced increases in duodenal paracellular permeability partly via an enteric inhibitory nicotinic-receptor dependent neural pathway. In addition, melatonin inhibits ethanol-induced increases in duodenal motor activity. These results suggest that melatonin may serve important gastrointestinal barrier functions.
2013-01-01
The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293
Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik
2015-09-01
The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences
Purohit, Vishnudutt; Bode, J. Christian; Bode, Christiane; Brenner, David A.; Choudhry, Mashkoor A.; Hamilton, Frank; Kang, Y. James; Keshavarzian, Ali; Rao, Radhakrishna; Sartor, R. Balfour; Swanson, Christine; Turner, Jerrold R.
2008-01-01
This report is a summary of the symposium on Alcohol, Intestinal Bacterial Growth, Intestinal Permeability to Endotoxin, and Medical Consequences, organized by National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, and National Institute of Diabetes and Digestive and Kidney Diseases of National Institutes of Health in Rockville, Maryland, October 11, 2006. Alcohol exposure can promote the growth of Gram negative bacteria in the intestine which may result in accumulation of endotoxin. In addition, alcohol metabolism by Gram negative bacteria and intestinal epithelial cells can result in accumulation of acetaldehyde, which in turn can increase intestinal permeability to endotoxin by increasing tyrosine phosphorylation of tight junction and adherens junction proteins. Alcohol-induced generation of nitric oxide may also contribute to increased permeability to endotoxin by reacting with tubulin, which may cause damage to microtubule cytoskeleton and subsequent disruption of intestinal barrier function. Increased intestinal permeability can lead to increased transfer of endotoxin from the intestine to the liver and general circulation where endotoxin may trigger inflammatory changes in the liver and other organs. Alcohol may also increase intestinal permeability to peptidoglycan which can initiate inflammatory response in liver and other organs. In addition, acute alcohol exposure may potentiate the effect of burn injury on intestinal bacterial growth and permeability. Decreasing the number of Gram negative bacteria in the intestine can result in decreased production of endotoxin as well as acetaldehyde which is expected to decrease intestinal permeability to endotoxin. In addition, intestinal permeability may be preserved by administering epidermal growth factor, L-glutamine, oats supplementation, or zinc thereby preventing the transfer of endotoxin to the general circulation. Thus reducing the number of intestinal Gram negative bacteria and preserving intestinal permeability to endotoxin may attenuate alcoholic liver and other organ injuries. PMID:18504085
Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton
NASA Astrophysics Data System (ADS)
Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui
2009-05-01
This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.
Dabigatran abrogates brain endothelial cell permeability in response to thrombin
Hawkins, Brian Thomas; Gu, Yu-Huan; Izawa, Yoshikane; del Zoppo, Gregory John
2015-01-01
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge. PMID:25669912
Effect of proinflammatory interleukins on jejunal nutrient transport
Hardin, J; Kroeker, K; Chung, B; Gall, D
2000-01-01
AIM—We examined the effect of proinflammatory and anti-inflammatory interleukins on jejunal nutrient transport and expression of the sodium-glucose linked cotransporter (SGLT-1). METHODS—3-O-methyl glucose and L-proline transport rates were examined in New Zealand White rabbit stripped, short circuited jejunal tissue. The effects of the proinflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8, IL-1α plus the specific IL-1 antagonist, IL-1ra, and the anti-inflammatory cytokine IL-10 were investigated. In separate experiments, passive tissue permeability was assessed and brush border SGLT-1 expression was measured by western blot in tissues exposed to proinflammatory interleukins. RESULTS—The proinflammatory interleukins IL-6, IL-1α, and IL-8 significantly increased glucose absorption compared with control levels. This increase in glucose absorption was due to an increase in mucosal to serosal flux. IL-1α and IL-8 also significantly increased L-proline absorption due to an increase in absorptive flux. The anti-inflammatory IL-10 had no effect on glucose transport. The receptor antagonist IL-1ra blocked the ability of IL-1α to stimulate glucose transport. IL-8 had no effect on passive tissue permeability. SGLT-1 content did not differ in brush border membrane vesicles (BBMV) from control or interleukin treated tissue. CONCLUSIONS—These findings suggest that intestinal inflammation and release of inflammatory mediators such as interleukins increase nutrient absorption in the gut. The increase in glucose transport does not appear to be due to changes in BBMV SGLT-1 content. Keywords: glucose transport; small intestine; intestinal inflammation; inflammation PMID:10896908
CO2 exsolution - challenges and opportunities in subsurface flow management
NASA Astrophysics Data System (ADS)
Zuo, Lin; Benson, Sally
2014-05-01
In geological carbon sequestration, a large amount of injected CO2 will dissolve in brine over time. Exsolution occurs when pore pressures decline and CO2 solubility in brine decreases, resulting in the formation of a separate CO2 phase. This scenario occurs in storage reservoirs by upward migration of carbonated brine, through faults, leaking boreholes or even seals, driven by a reverse pressure gradient from CO2 injection or ground water extraction. In this way, dissolved CO2 could migrate out of storage reservoirs and form a gas phase at shallower depths. This paper summarizes the results of a 4-year study regarding the implications of exsolution on storage security, including core-flood experiments, micromodel studies, and numerical simulation. Micromodel studies have shown that, different from an injected CO2 phase, where the gas remains interconnected, exsolved CO2 nucleates in various locations of a porous medium, forms disconnected bubbles and propagates by a repeated process of bubble expansion and snap-off [Zuo et al., 2013]. A good correlation between bubble size distribution and pore size distribution is observed, indicating that geometry of the pore space plays an important role in controlling the mobility of brine and exsolved CO2. Core-scale experiments demonstrate that as the exsolved gas saturation increases, the water relative permeability drops significantly and is disproportionately reduced compared to drainage relative permeability [Zuo et al., 2012]. The CO2 relative permeability remains very low, 10-5~10-3, even when the exsolved CO2 saturation increases to over 40%. Furthermore, during imbibition with CO2 saturated brines, CO2 remains trapped even under relatively high capillary numbers (uv/σ~10-6) [Zuo et al., submitted]. The water relative permeability at the imbibition endpoint is 1/3~1/2 of that with carbonated water displacing injected CO2. Based on the experimental evidence, CO2 exsolution does not appear to create significant risks for storage security. Falta et al. [2013] show that if carbonated brine migrates upwards and exsolution occurs, brine migration would be greatly reduced and limited by the presence of exsolved CO2 and the consequent low relatively permeability to brine. Similarly, if an exsolved CO2 phase were to evolve in seals, for example, after CO2 injection stops, the effect would be to reduce the permeability to brine and the CO2 would have very low mobility. This flow blocking effect is also studied with water/oil/CO2 [Zuo et al., 2013]. Experiments show that exsolved CO2 performs as a secondary residual phase in porous media that effectively blocks established water flow paths and deviates water to residual oil zones, thereby increasing recovery. Overall, our studies suggest that CO2 exsolution provides an opportunity for mobility control in subsurface processes. However, the lack of simulation capability that accounts for differences between gas injection and gas exsolution creates challenges for modeling and hence, designing studies to exploit the mobility reduction capabilities of CO2 exsolution. Using traditional drainage multiphase flow parameterization in simulations involving exsolution will lead to large errors in transport rates. Development of process dependent parameterizations of multiphase flow properties will be a key next step and will help to unlock the benefits from gas exsolution. ACKNOWLEDGEMENT This work is funded by the Global Climate and Energy Project (GCEP) at Stanford University. This work was also supported by U.S. EPA, Science To Achieve Results (STAR) Program, Grant #: 834383, 2010-2012. REFERENCES Falta, R., L. Zuo and S.M. Benson (2013). Migration of exsolved CO2 following depressurization of saturated brines. Journal of Greenhouse Gas Science and Technology, 3(6), 503-515. Zuo, L., S.C.M. Krevor, R.W. Falta, and S.M. Benson (2012). An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization. Transp. Porous Media, 91(2), 459-478. Zuo, L., C. Zhang, R.W. Falta, and S.M. Benson (2013). Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Res., 53, 188-197. Zuo, L., and S.M. Benson (2013). Exsolution enhanced oil recovery with concurrent CO2 sequestration. Energy Procedia, 37, 6957-6963. Zuo, L., and S.M. Benson. Different Effects of Imbibed and Exsolved Residually Trapped CO2 in Sandstone. Submitted to Geophysical Research Letters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Losh, S.
1998-09-01
The Pathfinder core, collected in the South Eugene Island Block 330 field, offshore Louisiana, provides an outstanding sample of structures associated with a major growth fault that abuts a giant oil field and that is thought to have acted as a conduit for hydrocarbon migration into the producing reservoirs. The fault zone in the core consists of three structural domains, each characterized by a distinct rock type, distribution of fault dips and dip azimuths, and distribution of spacing between adjacent faults and fractures. Although all of the domains contain oil-bearing sands, only faults and fractures in the deepest domain containmore » oil, even though the oil-barren fault domains contain numerous faults and fractures that are parallel to those containing oil in the deepest domain. The deepest domain is also distinguished from the other two domains by a greater degree of structural complexity and by a well-defined power-law distribution of fault and fracture spacings. Even though oil is present in sands throughout the core, its restriction to faults and fractures in the youngest sampled portion of the fault zone implies that oil migrated only through that part of the fault that was active during the time when oil had access to it. The absence of oil in fractures or faults in the other, probably older, fault domains indicates that the oil was never sufficiently pressured to flow up the fault zone on its own, either by hydraulic fracture or by increased permeability as a result of decreased effective stress. Instead, fluid migration along faults and fractures in the Pathfinder core was enhanced by permeability created in response to relatively far-field stresses related to minibasin subsidence.« less
Bubik, Martin F; Willer, Elisabeth A; Bihari, Peter; Jürgenliemk, Guido; Ammer, Hermann; Krombach, Fritz; Zahler, Stefan; Vollmar, Angelika M; Fürst, Robert
2012-01-01
Endothelial hyperpermeability followed by edema formation is a hallmark of many severe disorders. Effective drugs directly targeting endothelial barrier function are widely lacking. We hypothesized that the hawthorn (Crataegus spp.) extract WS® 1442, a proven multi-component drug against moderate forms of heart failure, would prevent vascular leakage by affecting endothelial barrier-regulating systems. In vivo, WS® 1442 inhibited the histamine-evoked extravasation of FITC-dextran from mouse cremaster muscle venules. In cultured human endothelial cells, WS® 1442 blocked the thrombin-induced FITC-dextran permeability. By applying biochemical and microscopic techniques, we revealed that WS® 1442 abrogates detrimental effects of thrombin on adherens junctions (vascular endothelial-cadherin), the F-actin cytoskeleton, and the contractile apparatus (myosin light chain). Mechanistically, WS® 1442 inhibited the thrombin-induced rise of intracellular calcium (ratiometric measurement), followed by an inactivation of PKC and RhoA (pulldown assay). Moreover, WS® 1442 increased endothelial cAMP levels (ELISA), which consequently activated PKA and Rap1 (pulldown assay). Utilizing pharmacological inhibitors or siRNA, we found that PKA is not involved in barrier protection, whereas Epac1, Rap1, and Rac1 play a crucial role in the WS® 1442-induced activation of cortactin, which triggers a strong cortical actin rearrangement. In summary, WS® 1442 effectively protects against endothelial barrier dysfunction in vitro and in vivo. It specifically interacts with endothelial permeability-regulating systems by blocking the Ca(2+)/PKC/RhoA and activating the cAMP/Epac1/Rap1 pathway. As a proven safe herbal drug, WS® 1442 opens a novel pharmacological approach to treat hyperpermeability-associated diseases. This in-depth mechanistic work contributes to a better acceptance of this herbal remedy. Copyright © 2011 Elsevier Ltd. All rights reserved.
Valinsky, William C; Touyz, Rhian M; Shrier, Alvin
2017-08-01
Thiazides block Na + reabsorption while enhancing Ca 2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca 2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl - channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl - channels, however the nature of these Cl - channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl - current at extracellular pH7.4. This constitutive Cl - current was more permeable to larger anions (Eisenman sequence I; I - >Br - ≥Cl - ) and was substantially inhibited by >100mM [Ca 2+ ] o , which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl - current was blocked by NPPB, along with other Cl - channel inhibitors (4,4'-diisothiocyanatostilbene-2,2'-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH<5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl - current. This acid-induced Cl - current was also anion permeable (I - >Br - >Cl - ), but was distinguished from the constitutive Cl - current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl - current would be particularly relevant in the acidic IMCD (pH<5.5). To our knowledge, the properties of these Cl - currents are unique and provide the mechanisms to account for the Cl - efflux previously speculated to be present in MDCT cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.
Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru
2009-01-01
Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.
Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2012-04-01
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.
Gaspard, Jeffery; Casey, Liam M.; Rozin, Matt; Munoz-Pinto, Dany J.; Silas, James A.; Hahn, Mariah S.
2016-01-01
Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted. PMID:26999148
Pressure sensitivity of low permeability sandstones
Kilmer, N.H.; Morrow, N.R.; Pitman, Janet K.
1987-01-01
Detailed core analysis has been carried out on 32 tight sandstones with permeabilities ranging over four orders of magnitude (0.0002 to 4.8 mD at 5000 psi confining pressure). Relationships between gas permeability and net confining pressure were measured for cycles of loading and unloading. For some samples, permeabilities were measured both along and across bedding planes. Large variations in stress sensitivity of permeability were observed from one sample to another. The ratio of permeability at a nominal confining pressure of 500 psi to that at 5000 psi was used to define a stress sensitivity ratio. For a given sample, confining pressure vs permeability followed a linear log-log relationship, the slope of which provided an index of pressure sensitivity. This index, as obtained for first unloading data, was used in testing relationships between stress sensitivity and other measured rock properties. Pressure sensitivity tended to increase with increase in carbonate content and depth, and with decrease in porosity, permeability and sodium feldspar. However, scatter in these relationships increased as permeability decreased. Tests for correlations between pressure sensitivity and various linear combinations of variables are reported. Details of pore structure related to diagenetic changes appears to be of much greater significance to pressure sensitivity than mineral composition. ?? 1987.
Geometric Analysis of Vein Fracture Networks From the Awibengkok Core, Indonesia
NASA Astrophysics Data System (ADS)
Khatwa, A.; Bruhn, R. L.; Brown, S. R.
2003-12-01
Fracture network systems within rocks are important features for the transportation and remediation of hazardous waste, oil and gas production, geothermal energy extraction and the formation of vein fillings and ore deposits. A variety of methods, including computational and laboratory modeling have been employed to further understand the dynamic nature of fractures and fracture systems (e.g. Ebel and Brown, this session). To substantiate these studies, it is also necessary to analyze the characteristics and morphology of naturally occurring vein systems. The Awibengkok core from a geothermal system in West Java, Indonesia provided an excellent opportunity to study geometric and petrologic characteristics of vein systems in volcanic rock. Vein minerals included chlorite, calcite, quartz, zeolites and sulphides. To obtain geometric data on the veins, we employed a neural net image processing technique to analyze high-resolution digital photography of the veins. We trained a neural net processor to map the extent of the vein using RGB pixel training classes. The resulting classification image was then converted to a binary image file and processed through a MatLab program that we designed to calculate vein geometric statistics, including aperture and roughness. We also performed detailed petrographic and microscopic geometric analysis on the veins to determine the history of mineralization and fracturing. We found that multi-phase mineralization due to chemical dissolution and re-precipitation as well as mechanical fracturing was a common feature in many of the veins and that it had a significant role for interpreting vein tortuosity and history of permeability. We used our micro- and macro-scale observations to construct four hypothetical permeability models that compliment the numerical and laboratory modeled data reported by Ebel and Brown. In each model, permeability changes, and in most cases fluctuates, differently over time as the tortuosity and aperture of veins are affected by the precipitation, dissolution, and re-precipitation of minerals, and also by mechanical fracturing. In all of our cases we interpret a first-phase mineral dissolution stage where permeability gradually declines as the vein is blocked by inward growing minerals. Hereafter, permeability may briefly increase with the onset of internal fracturing within the vein or by a phase of mineral dissolution opening up new pathways for fluid flow. Eventually we infer that permeability will decline again as second stage minerals are deposited in the fluid flow pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, E.K.; French, M.R.
East Cameron Block 278 Well B-12 was the first horizontal well drilled in the Gulf of Mexico. This gas well, located in the Texaco Inc. operated Eat Cameron 265 field, was drilled and completed in May 1990. The objective formation was a high-permeability, shallow, unconsolidated gas sand located about 1,450 ft below the mudline (BML). The success of this well proved that horizontal wells are viable alternatives to extended-reach development wells from offshore platforms in the Gulf of Mexico. The cost to drill and complete this horizontal well was less than comparable extended-reach development wells drilled in the same field.more » A minimal increase in drilling costs accompanied by considerable savings in completion costs resulted in favorable economics for the project. Drilling a shallow horizontal well in the Gulf of Mexico presented several challenges. This paper discusses prewell planning, formulation of contingency plans, and implementation of a drilling/completion program designed to meet these challenges.« less
Regulation of AQP0 water permeability is enhanced by cooperativity
Németh-Cahalan, Karin L.; Clemens, Daniel M.
2013-01-01
Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens. PMID:23440275
NASA Astrophysics Data System (ADS)
Riahi, A.; Damjanac, B.
2013-12-01
Viability of an enhanced or engineered geothermal reservoir is determined by the rate of produced fluid at production wells and the rate of temperature drawdown in the reservoir as well as that of the produced fluid. Meeting required targets demands sufficient permeability and flow circulation in a relatively large volume of rock mass. In-situ conditions such overall permeability of the bedrock formation, magnitude and orientation of stresses, and the characteristics of the existing Discrete Fracture Network (DFN) greatly affect sustainable heat production. Because much of the EGS resources are in formations with low permeability, different stimulation techniques are required prior to the production phase to enhance fluid circulation. Shear stimulation or hydro-shearing is the method of injecting a fluid into the reservoir with the aim of increasing the fluid pressure in the naturally fractured rock and inducing shear failure or slip events. This mechanism can enhance the system's permeability through permanent dilatational opening of the sheared fractures. Using a computational modeling approach, the correlation between heat production and DFN statistical characteristics, namely the fracture length distribution, fracture orientation, and also fracture density is studied in this paper. Numerical analyses were completed using two-dimensional distinct element code UDEC (Itasca, 2011), which represents rock masses as an assembly of interacting blocks separated by fractures. UDEC allows for simulation of fracture propagation along the predefined planes only (i.e., the trajectory of the hydraulic fracture is not part of the solution of the problem). Thus, the hydraulic fracture is assumed to be planar, aligned with the direction of the major principal stress. The pre-existing fractures were represented explicitly. They are discontinuities which deform elastically, but also can open and slip (Coulomb slip law) as a function of pressure and total stress changes. The fluid injection into the reservoir during stimulation phase was simulated using a fully coupled hydro-mechanical model. The heat production phase was simulated using a coupled thermo-hydro-mechanical model. In these simulations, both advective heat transfer by fluid flow and the conductive heat transfer within the rock blocks were modeled. The effect of temperature change on stresses and fracture aperture, and thus flow rates was considered. The response of formations with different DFN characteristics are analyzed by evaluating the production rate, produced power, and total energy extracted from the system over a period of five years. By simulating a full cycle of stimulation and production, the numerical modeling approach represents a realistic estimate of evolving permeability and evaluates how stimulation can be beneficial to the production phase. It is believed that these numerical sensitivity studies can provide valuable insight in evaluation of the potential of success of an EGS project, and can be used to better design the operational parameters in order to optimize heat production. Keywords: Numerical modeling, rock mechanics, discrete fracture network, stimulation, engineered geothermal reservoirs, heat production
Investigation of Kevlar fabric based materials for use with inflatable structures
NASA Technical Reports Server (NTRS)
Niccum, R. J.; Munson, J. B.
1974-01-01
Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported in detail. The practicality of using Kevlar in aerostat materials is demonstrated and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar based materials are compared with conventional, Dacron reinforced counterparts. A comprehensive test and qualification program is discussed and quantitative biaxial tensile and shear test data are provided. The investigation shows that single ply laminates of Kevlar and plastic films offer significant strength to weight improvements, are less permeable than two ply coated materials, but have a lower flex life.
Theoretical study of strength of elastic-plastic water-saturated interface under constrained shear
NASA Astrophysics Data System (ADS)
Dimaki, Andrey V.; Shilko, Evgeny V.; Psakhie, Sergey G.
2016-11-01
This paper presents a theoretical study of shear strength of an elastic-plastic water-filled interface between elastic permeable blocks under compression. The medium is described within the discrete element method. The relationship between the stress-strain state of the solid skeleton and pore pressure of a liquid is described in the framework of the Biot's model of poroelasticity. The simulation demonstrates that shear strength of an elastic-plastic interface depends non-linearly on the values of permeability and loading to a great extent. We have proposed an empirical relation that approximates the obtained results of the numerical simulation in assumption of the interplay of dilation of the material and mass transfer of the liquid.
Yang, Diansen; Wang, Wei; Chen, Weizhong; Wang, Shugang; Wang, Xiaoqiong
2017-03-17
Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Increasing gas pressure during tests reduces gas slippage effect, but it also decreases the effective stress which in turn influences the permeability. The coupled effect of gas slippage and effective stress on shale permeability remains unclear. Here we perform laboratory experiments on Longmaxi shale specimens to explore the coupled effect. We use the pressure transient method to measure permeability under different stress and pressure conditions. Our results reveal that the apparent measured permeability is controlled by these two competing effects. With increasing gas pressure, there exists a pressure threshold at which the dominant effect on permeability switches from gas slippage to effective stress. Based on the Klinkenberg model, we propose a new conceptual model that incorporates both competing effects. Combining microstructure analysis, we further discuss the roles of stress, gas pressure and water contents on gas permeability of shale.
Negative modulation of presynaptic activity by zinc released from Schaffer collaterals.
Takeda, Atsushi; Fuke, Sayuri; Tsutsumi, Wataru; Oku, Naoto
2007-12-01
The role of zinc in excitation of Schaffer collateral-CA1 pyramidal cell synapses is poorly understood. Schaffer collaterals stained with ZnAF-2 or ZnAF-2DA, a membrane-impermeable or a membrane-permeable zinc indicator, respectively, were treated by tetanic stimulation (200 Hz, 1 sec). Extracellular and intracellular ZnAF-2 signals were increased in the stratum radiatum of the CA1, in which Schaffer collateral synapses exist. Both the increases were completely blocked in the presence of 1 mM CaEDAT, a membrane-impermeable zinc chelator, suggesting that 1 mM CaEDTA is effective for chelating zinc released from Schaffer collaterals. The role of Schaffer collateral zinc in presynaptic activity was examined by using FM4-64, a fluorescent indicator for vesicular exocytosis. The decrease in FM4-64 signal during tetanic stimulation (10 Hz, 180 sec) was enhanced in Schaffer collaterals in the presence of 1 mM CaEDTA but suppressed in the presence of 5 microM ZnC1(2), suggesting that zinc released from Schaffer collaterals suppresses presynaptic activity during tetanic stimulation. When Schaffer collateral synapses stained with calcium orange AM, a membrane-permeable calcium indicator, were regionally stimulated with 1 mM glutamate, calcium orange signal was increased in the CA1 pyramidal cell layer. This increase was enhanced in the presence of CaEDTA and attenuated in the presence of zinc. These results suggest that zinc attenuates excitation of Schaffer collateral synapses elicited with glutamate via suppression of presynaptic activity. (c) 2007 Wiley-Liss, Inc.
Birukova, Anna A; Arce, Fernando T; Moldobaeva, Nurgul; Dudek, Steven M; Garcia, Joe G N; Lal, Ratnesh; Birukov, Konstantin G
2009-03-01
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.
Characterization of the mississippian chat in South-central Kansas
Watney, W.L.; Guy, W.J.; Byrnes, A.P.
2001-01-01
To understand production from low resistivity-high porosity Mississippian chat reservoirs in south-central Kansas it is necessary to understand the nature of deposition and diagenesis, how tectonics is a factor, the lithofacies controls on petrophysical properties, and log response to these properties. The initial mudstones to sponge-spicule wacke-packstones were deposited in transgressive-regressive (T-R) cycles on a shelf to shelf margin setting, resulting in a series of shallowing-upward cycles. Sponge-spicule content appears to increase upward with increasing cycle thickness. After early silicification, inter- and post-Mississippian subaerial exposure resulted in further diagenesis, including sponge-spicule dissolution, vuggy porosity development in moldic-rich rocks, and autobrecciation. Meteoric water infiltration is limited in depth below the exposure surface and in distance downdip into unaltered, cherty Cowley Formation facies. Areas of thicker preserved chat and increased diagenesis can be correlated with structural lineaments and, in some areas, with recurrent basement block movement. Combination of folding or block fault movement prior to or during development of the basal Pennsylvanian unconformity, sponge-spicule concentration, and possibly thickness of overlying bioclastic wacke-grainstones resulted in variable reservoir properties and the creation of pods of production separated by nonproductive cherty dolomite mudstones. These events also resulted in alteration of the depositional cycles to produce a series of lithofacies that exhibit unique petrophysical properties. From bottom to top in a complete cycle seven lithofacies are present: (1) argillaceous dolomite mudstone, (2) argillaceous dolomite mudstone that has chert nodules, (3) clean dolomite mudstone that has nodular chert, (4) nodular to bedded chert, (5) autoclastic chert, (6) autoclastic chert that has clay infill, and (7) bioclastic wacke-grainstone. The uppermost cycle was terminated by another lithofacies, a chert conglomerate of Mississippian and/or Pennsylvanian age. The chert facies exhibit porosities ranging from 25 to 50% and permeabilities greater than 5 md. The cherty dolomite mudstones, argillaceous dolomite mudstones, and bioclastic wacke-grainstones exhibit nonreservoir properties. Reservoir production, numerical simulation, and whole core data indicate fracturing can be present in chat reservoirs and can enhance permeability by as much as an order of magnitude. Capillary pressure data indicate the presence of microporosity and can explain high water saturations and low resistivity observed in wire-line logs. Relative permeabilities to oil decrease rapidly for saturations greater than 60% and may be influenced by dual pore systems. Archie cementation exponents increase from 1.8 for mudstones to more than 2.5 in the cherts that have increasing sponge-spicule mold and vug content. Detailed modified Pickett plot analysis of logs reveals critical aspects of chat character and can provide reliable indices of reservoir properties and pay delineation. Models developed provide additional insight into the chat of south-central Kansas and understanding of the nature of controls on shallow-shelf chert reservoir properties.
The transition from brittle faulting to cataclastic flow: Permeability evolution
NASA Astrophysics Data System (ADS)
Zhu, Wenlu; Wong, Teng-Fong
1997-02-01
Triaxial compression experiments were conducted to investigate influences of stress and failure mode on axial permeability of five sandstones with porosities ranging from 15% to 35%. In the cataclastic flow regime, permeability and porosity changes closely track one another. A drastic decrease in permeability was triggered by the onset of shear-enhanced compaction caused by grain crushing and pore collapse. The compactive yield stress C* maps out a boundary in stress space separating two different types of permeability evolution. Before C* is attained, permeability and porosity both decrease with increasing effective mean stress, but they are independent of deviatoric stresses. However, with loading beyond C*, both permeability and porosity changes are strongly dependent on the deviatoric and effective mean stresses. In the brittle faulting regime, permeability and porosity changes are more complex. Before the onset of shear-induced dilation C', both permeability and porosity decrease with increasing effective mean stress. Beyond C', permeability may actually decrease in a dilating rock prior to brittle failure. After the peak stress has been attained, the development of a relatively impermeable shear band causes an accelerated decrease of permeability. Permeability evolution in porous sandstones is compared with that in low-porosity crystalline rocks. A conceptual model for the coupling of deformation and fluid transport is proposed in the form of a deformation-permeability map.
Bao, Lingzhi; Shi, Honglian
2010-11-15
As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.
Li, Yuk Mun; Srinivasan, Divya; Vaidya, Parth; Gu, Yibei; Wiesner, Ulrich
2016-10-01
Deviating from the traditional formation of block copolymer derived isoporous membranes from one block copolymer chemistry, here asymmetric membranes with isoporous surface structure are derived from two chemically distinct block copolymers blended during standard membrane fabrication. As a first proof of principle, the fabrication of asymmetric membranes is reported, which are blended from two chemically distinct triblock terpolymers, poly(isoprene-b-styrene-b-(4-vinyl)pyridine) (ISV) and poly(isoprene-b-styrene-b-(dimethylamino)ethyl methacrylate) (ISA), differing in the pH-responsive hydrophilic segment. Using block copolymer self-assembly and nonsolvent induced phase separation process, pure and blended membranes are prepared by varying weight ratios of ISV to ISA. Pure and blended membranes exhibit a thin, selective layer of pores above a macroporous substructure. Observed permeabilities at varying pH values of blended membranes depend on relative triblock terpolymer composition. These results open a new direction for membrane fabrication through the use of mixtures of chemically distinct block copolymers enabling the tailoring of membrane surface chemistries and functionalities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aveleira, Célia A.; Lin, Cheng-Mao; Abcouwer, Steven F.; Ambrósio, António F.; Antonetti, David A.
2010-01-01
OBJECTIVE Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNF-α increases cell permeability were elucidated. RESEARCH DESIGN AND METHODS Cytokine-induced retinal vascular permeability was measured in bovine retinal endothelial cells (BRECs) and rat retinas. Western blotting, quantitative real-time PCR, and immunocytochemistry were performed to determine tight junction protein expression and localization. RESULTS IL-1β and TNF-α increased BREC permeability, and TNF-α was more potent. TNF-α decreased the protein and mRNA content of the tight junction proteins ZO-1 and claudin-5 and altered the cellular localization of these tight junction proteins. Dexamethasone prevented TNF-α–induced cell permeability through glucocorticoid receptor transactivation and nuclear factor-kappaB (NF-κB) transrepression. Preventing NF-κB activation with an inhibitor κB kinase (IKK) chemical inhibitor or adenoviral overexpression of inhibitor κB alpha (IκBα) reduced TNF-α–stimulated permeability. Finally, inhibiting protein kinase C zeta (PKCζ) using both a peptide and a novel chemical inhibitor reduced NF-κB activation and completely prevented the alterations in the tight junction complex and cell permeability induced by TNF-α in cell culture and rat retinas. CONCLUSIONS These results suggest that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF-α, including diabetic retinopathy. PMID:20693346
Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M
2017-12-20
A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.
Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik
2017-05-01
Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.
van Wijck, Kim; Bessems, Babs Afm; van Eijk, Hans Mh; Buurman, Wim A; Dejong, Cornelis Hc; Lenaerts, Kaatje
2012-01-01
Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting.
Characterization of vascular permeability using a biomimetic microfluidic blood vessel model
Thomas, Antony; Wang, Shunqiang; Sohrabi, Salman; Orr, Colin; He, Ran; Shi, Wentao; Liu, Yaling
2017-01-01
The inflammatory response in endothelial cells (ECs) leads to an increase in vascular permeability through the formation of gaps. However, the dynamic nature of vascular permeability and external factors involved is still elusive. In this work, we use a biomimetic blood vessel (BBV) microfluidic model to measure in real-time the change in permeability of the EC layer under culture in physiologically relevant flow conditions. This platform studies the dynamics and characterizes vascular permeability when the EC layer is triggered with an inflammatory agent using tracer molecules of three different sizes, and the results are compared to a transwell insert study. We also apply an analytical model to compare the permeability data from the different tracer molecules to understand the physiological and bio-transport significance of endothelial permeability based on the molecule of interest. A computational model of the BBV model is also built to understand the factors influencing transport of molecules of different sizes under flow. The endothelial monolayer cultured under flow in the BBV model was treated with thrombin, a serine protease that induces a rapid and reversible increase in endothelium permeability. On analysis of permeability data, it is found that the transport characteristics for fluorescein isothiocyanate (FITC) dye and FITC Dextran 4k Da molecules are similar in both BBV and transwell models, but FITC Dextran 70k Da molecules show increased permeability in the BBV model as convection flow (Peclet number > 1) influences the molecule transport in the BBV model. We also calculated from permeability data the relative increase in intercellular gap area during thrombin treatment for ECs in the BBV and transwell insert models to be between 12% and 15%. This relative increase was found to be within range of what we quantified from F-actin stained EC layer images. The work highlights the importance of incorporating flow in in vitro vascular models, especially in studies involving transport of large size objects such as antibodies, proteins, nano/micro particles, and cells. PMID:28344727
Permeability, storage and hydraulic diffusivity controlled by earthquakes
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; Fulton, P. M.; Xue, L.
2016-12-01
Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones may evolve to a preferred diffusivity in a dynamic equilibrium.
Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty
2017-11-07
Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.
Fox, A P; Nowycky, M C; Tsien, R W
1987-01-01
1. Calcium currents in cultured dorsal root ganglion (d.r.g.) cells were studied with the whole-cell patch-clamp technique. Using experimental conditions that suppressed Na+ and K+ currents, and 3-10 mM-external Ca2+ or Ba2+, we distinguished three distinct types of calcium currents (L, T and N) on the basis of voltage-dependent kinetics and pharmacology. 2. Component L activates at relatively positive test potentials (t.p. greater than -10 mV) and shows little inactivation during a 200 ms depolarization. It is completely reprimed at a holding potential (h.p.) of -60 mV, and can be isolated by using a more depolarized h.p. (-40 mV) to inactivate the other two types of calcium currents. 3. Component T can be seen in isolation with weak test pulses. It begins activating at potentials more positive than -70 mV and inactivates quickly and completely during a maintained depolarization (time constant, tau approximately 20-50 ms). The current amplitude and the rate of decay increase with stronger depolarizations until both reach a maximum at approximately -40 mV. Inactivation is complete at h.p. greater than -60 mV and is progressively removed between -60 and -95 mV. 4. Component N activates at relatively strong depolarizations (t.p. greater than -20 mV) and decays with time constants ranging from 50 to 110 ms. Inactivation is removed over a very broad range of holding potentials (h.p. between -40 and -110 mV). 5. With 10 mM-EGTA in the pipette solution, substitution of Ba2+ for Ca2+ as the charge carrier does not alter the rates of activation or relaxation of any component. However, T-type channels are approximately equally permeable to Ca2+ and Ba2+, while L-type and N-type channels are both much more permeable to Ba2+. 6. Component N cannot be explained by current-dependent inactivation of L current resulting from recruitment of extra L-type channels at negative holding potentials: raising the external Ba2+ concentration to 110 mM greatly increases the amplitude of L current evoked from h.p. = -30 mV but produces little inactivation. 7. Cadmium ions (20-50 microM) virtually eliminate both N and L currents (greater than 90% block) but leave T relatively unaffected (less than 50% block). 200 microM-Cd2+ blocks all three components. 8. Nickel ions (100 microM) strongly reduce T current but leave N and L current little changed. 9. The dihydropyridine antagonist nifedipine (10 microM) inhibits L current (approximately 60% block) at a holding potential that inactivates half the L-type channels.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2451016
Increased capillary permeability mediated by a dengue virus-induced lymphokine.
Khanna, M; Chaturvedi, U C; Sharma, M C; Pandey, V C; Mathur, A
1990-01-01
The mechanism of increased capillary permeability, seen in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), is not known. Dengue type 2 virus (DV) is known to induce production of a lymphokine, the cytotoxic factor (CF), by the T lymphocytes of mouse spleen. The data presented here show that intraperitoneal inoculation of CF in mice results in increased capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radiolabelled iodine (125I) or Evans blue dye. Peak leakage occurred 30 min after inoculation of CF and the vascular integrity was restored by 2 hr. The increase in capillary permeability was abrogated by pretreatment of mice with anti-CF antibodies, avil (H1 receptor blocker) or ranitidine (H2 receptor blocker). The findings thus show that a DV-induced lymphokine, the CF, increases the capillary permeability via release of histamine. PMID:2312168
Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand
2012-01-01
Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.
Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand
2012-01-01
Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T 1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites. PMID:22629405
Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition
Hyndman, Roy D.; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay
2015-01-01
In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.
Yang, Diansen; Wang, Wei; Chen, Weizhong; Wang, Shugang; Wang, Xiaoqiong
2017-01-01
Permeability is one of the most important parameters to evaluate gas production in shale reservoirs. Because shale permeability is extremely low, gas is often used in the laboratory to measure permeability. However, the measured apparent gas permeability is higher than the intrinsic permeability due to the gas slippage effect, which could be even more dominant for materials with nanopores. Increasing gas pressure during tests reduces gas slippage effect, but it also decreases the effective stress which in turn influences the permeability. The coupled effect of gas slippage and effective stress on shale permeability remains unclear. Here we perform laboratory experiments on Longmaxi shale specimens to explore the coupled effect. We use the pressure transient method to measure permeability under different stress and pressure conditions. Our results reveal that the apparent measured permeability is controlled by these two competing effects. With increasing gas pressure, there exists a pressure threshold at which the dominant effect on permeability switches from gas slippage to effective stress. Based on the Klinkenberg model, we propose a new conceptual model that incorporates both competing effects. Combining microstructure analysis, we further discuss the roles of stress, gas pressure and water contents on gas permeability of shale. PMID:28304395
NASA Astrophysics Data System (ADS)
Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong
2015-11-01
Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.
Aman, Teresa K; Maki, Bruce A; Ruffino, Thomas J; Kasperek, Eileen M; Popescu, Gabriela K
2014-07-04
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers.
Kang, Hongyan; Cancel, Limary M; Tarbell, John M
2014-04-01
Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 h elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by an NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers
Kang, Hongyan; Cancel, Limary M.; Tarbell, John M.
2014-01-01
Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with a NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 hours elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by a NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells. PMID:24583416
Stack, A M; Saladino, R A; Siber, G R; Thompson, C; Marra, M N; Novitsky, T J; Fleisher, G R
1997-01-01
To compare a recombinant bactericidal/permeability-increasing protein variant and a recombinant endotoxin-neutralizing protein. Randomized, blinded, controlled study, using a rat model of sepsis. Animal research facility. Male Wistar rats. An inoculum of 1.5 x 10(7) to 1.8 x 10(8) Escherichia coli O18ac K1, implanted in the peritoneum, produced bacteremia in 95% of animals after 1 hr. One hour after E. coli challenge, animals received recombinant bactericidal/permeability-increasing protein variant, recombinant endotoxin-neutralizing protein, or saline intravenously, followed by ceftriaxone and gentamicin intramuscularly. Twenty-four (85.7%) of 28 animals receiving recombinant endotoxin-neutralizing protein (p < .001 vs. control) survived 7 days compared with nine (33.3%) of 27 recombinant bactericidal/permeability-increasing protein variant-treated (p < .001 vs. control) and two (6.5%) of 31 control animals. Both recombinant endotoxin-neutralizing protein and recombinant bactericidal/permeability-increasing protein variant improved survival. Recombinant endotoxin-neutralizing protein was superior to recombinant bactericidal/permeability-increasing protein variant in its protective effect at the doses tested. Our results suggest that both proteins may be useful in the treatment of human Gram-negative sepsis.
Shukla, Pradeep K.; Gangwar, Ruchika; Manda, Bhargavi; Meena, Avtar S.; Yadav, Nikki; Szabo, Erzsebet; Balogh, Andrea; Lee, Sue Chin; Tigyi, Gabor
2016-01-01
The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2–24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding. PMID:26822914
Seismic waves increase permeability.
Elkhoury, Jean E; Brodsky, Emily E; Agnew, Duncan C
2006-06-29
Earthquakes have been observed to affect hydrological systems in a variety of ways--water well levels can change dramatically, streams can become fuller and spring discharges can increase at the time of earthquakes. Distant earthquakes may even increase the permeability in faults. Most of these hydrological observations can be explained by some form of permeability increase. Here we use the response of water well levels to solid Earth tides to measure permeability over a 20-year period. At the time of each of seven earthquakes in Southern California, we observe transient changes of up to 24 degrees in the phase of the water level response to the dilatational volumetric strain of the semidiurnal tidal components of wells at the Piñon Flat Observatory in Southern California. After the earthquakes, the phase gradually returns to the background value at a rate of less than 0.1 degrees per day. We use a model of axisymmetric flow driven by an imposed head oscillation through a single, laterally extensive, confined, homogeneous and isotropic aquifer to relate the phase response to aquifer properties. We interpret the changes in phase response as due to changes in permeability. At the time of the earthquakes, the permeability at the site increases by a factor as high as three. The permeability increase depends roughly linearly on the amplitude of seismic-wave peak ground velocity in the range of 0.21-2.1 cm s(-1). Such permeability increases are of interest to hydrologists and oil reservoir engineers as they affect fluid flow and might determine long-term evolution of hydrological and oil-bearing systems. They may also be interesting to seismologists, as the resulting pore pressure changes can affect earthquakes by changing normal stresses on faults.
Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys
NASA Technical Reports Server (NTRS)
Schuon, S. R.; Misencik, J. A.
1981-01-01
The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)
1994-01-01
The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.
Effects of Aspirin on Gastroduodenal Permeability in Alcoholics and Controls
Farhadi, Ashkan; Keshavarzian, Ali; Kwasny, Mary J.; Shaikh, Maliha; Fogg, Louis; Lau, Cynthia; Fields, Jeremy Z.; Forsyth, Christopher B.
2010-01-01
Alcohol and non-steroidal anti-inflammatory drugs (NSAIDS) are noxious agents that can disrupt the integrity of the gastroduodenal mucosal and damage the epithelial barrier, and lead to increased gastroduodenal permeability. Moreover, it is not uncommon that patients are exposed to these two barrier stressors at the same time. It is thus important to know how simultaneous exposure affects the gastroduodenal barrier, and acquiring that knowledge was the goal of this study. We used a method that has been widely used for the assessment of injury to the gastroduodenal barrier induced by these noxious agents – measurement of gastroduodenal permeability as indicated by urinary excretion of ingested sucrose. We used gas chromatography to measure the amount of sucrose excreted in the urine over the 5–12 h following ingestion of a bolus of sucrose. The 148 participants in the study included 92 alcoholics and 56 healthy controls. All study subjects had a baseline permeability test. To determine whether addition of a second noxious agent, in addition to chronic alcohol, further decreases gastroduodenal barrier integrity, a subset of 118 study subjects participated in another permeability test in which they were exposed to aspirin. For this test, participants ingested 1300 mg aspirin twice, 12 hours and 1 hour before the final permeability test. The baseline permeability test showed that alcoholics have significantly higher gastroduodenal permeability than controls. Aspirin caused a significant within group absolute increase in gastroduodenal permeability in both alcoholics and controls (+7.72%, p=0.003 and +2.25%, p = 0.011, respectively) but the magnitude of these increases were not significantly different from each other. Baseline permeability did vary by gender, self-reported illegal drug use, and employment type. The extent of the permeability increase after aspirin ingestion varied with illegal drug use and recruitment site (a surrogate marker of socioeconomic status). Our data show that alcoholics have greater gastroduodenal permeability than healthy controls. This difference was independent of the duration of any preceding period of sobriety, gender, smoking history, or illicit drug abuse. The injurious effects of alcohol on the gastroduodenal epithelial barrier are long lasting, persisting even after 7 days of sobriety. Although, acute aspirin and chronic alcohol each increase intestinal permeability in alcoholics, their effects appear to be additive rather than synergistic. PMID:20598487
Stress does not increase blood–brain barrier permeability in mice
Roszkowski, Martin
2016-01-01
Several studies have reported that exposure to acute psychophysiological stressors can lead to an increase in blood–brain barrier permeability, but these findings remain controversial and disputed. We thoroughly examined this issue by assessing the effect of several well-established paradigms of acute stress and chronic stress on blood–brain barrier permeability in several brain areas of adult mice. Using cerebral extraction ratio for the small molecule tracer sodium fluorescein (NaF, 376 Da) as a sensitive measure of blood–brain barrier permeability, we find that neither acute swim nor restraint stress lead to increased cerebral extraction ratio. Daily 6-h restraint stress for 21 days, a model for the severe detrimental impact of chronic stress on brain function, also does not alter cerebral extraction ratio. In contrast, we find that cold forced swim and cold restraint stress both lead to a transient, pronounced decrease of cerebral extraction ratio in hippocampus and cortex, suggesting that body temperature can be an important confounding factor in studies of blood–brain barrier permeability. To additionally assess if stress could change blood–brain barrier permeability for macromolecules, we measured cerebral extraction ratio for fluorescein isothiocyanate-dextran (70 kDa). We find that neither acute restraint nor cold swim stress affected blood–brain barrier permeability for macromolecules, thus corroborating our findings that various stressors do not increase blood–brain barrier permeability. PMID:27146513
Bouskela, E; Cyrino, F Z; Marcelon, G
1993-08-01
The Ruscus extract and the flavonoid hesperidine methylchalcone (HMC) are used in treatment of venous insufficiency. In the present study, we used the hamster cheek pouch preparation and investigated the effects of these substances on increased microvascular permeability induced by bradykinin, histamine, and leukotriene B4 (LTB4) applied topically. Experiments were performed on male hamsters; 30 min after completion of the cheek pouch preparation, fluorescein-labeled dextran [molecular weight (mol wt) 150,000] was given intravenously (i.v.). Bradykinin, histamine, and LTB4 increased the number of fluorescent vascular leakage sites from postcapillary venules, evidence for an increase in macromolecular permeability, which was quantified in ultraviolet (UV)-light microscope as the number of leaky sites in the prepared area. Ruscus extract and HMC, given i.v., significantly inhibited the macromolecular permeability-increasing effect of bradykinin, LTB4, and histamine. Ruscus extract, applied topically, dose dependently inhibited the macromolecular permeability-increasing effect of histamine. Our results show that Ruscus extract and HMC have a protective effect against leakage of FITC-dextran in the cheek pouch after administration of various permeability-increasing substances, which further supports data previously reported on patients with venous insufficiency.
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.
2011-12-01
Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism based on rapid sealing of faults. Nature 358, 574-576 Sibson, R.H., 1973. Interactions between temperature and pore fluid pressure during earthquake faulting: A mechanism for partial or total stress relief. Nature 243, 66-68. Sleep, N.H., Blanpied, M.L., 1992. Creep, compaction and the weak rheology of major faults. Nature 359, 687-692.
NASA Technical Reports Server (NTRS)
Gorizontova, M. P.
1980-01-01
It was shown that a reduction in the amount of mast cells in the mesentery and an increase in their degranulation was accompanied by an increase in vascular permeability of rat mesentery. It is supposed that immobilization and electrostimulation causing degranulation of mast cells prompted histamine and serotonin release from them, thus increasing the permeability of the venular portion of the microvascular bed. Prophylactic use of esculamin preparation with P-vitaminic activity decreased mast cell degranulation, which apparently prolonged the release of histamine and serotonin from them and normalized vascular permeability.
Permeability Asymmetry in Composite Porous Ceramic Membranes
NASA Astrophysics Data System (ADS)
Kurcharov, I. M.; Laguntsov, N. I.; Uvarov, V. I.; Kurchatova, O. V.
The results from the investigation of transport characteristics and gas transport asymmetry in bilayer composite membranes are submitted. These membranes are produced by SHS method. Asymmetric effect and hysteresis of permeability in nanoporous membranes are detected. It's shown, that permeability ratio (asymmetry value of permeability) increases up to several times. The asymmetry of permeability usually decreases monotonically with the pressure decrease.
Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen
2012-01-01
Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.
Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration
Cortes-Canteli, Marta; Mattei, Larissa; Richards, Allison T.; Norris, Erin H.; Strickland, Sidney
2014-01-01
Alzheimer’s disease (AD) is the most common form of dementia and has no effective treatment. Besides the well-known pathological characteristics, this disease also has a vascular component, and substantial evidence shows increased thrombosis as well as a critical role for fibrin(ogen) in AD. This molecule has been implicated in neuroinflammation, neurovascular damage, blood brain barrier permeability, vascular amyloid deposition, and memory deficits that are observed in AD. Here we present evidence demonstrating that fibrin deposition increases in the AD brain and correlates with the degree of pathology. Moreover, we show that fibrin(ogen) is present in areas of dystrophic neurites and that a modest decrease in fibrinogen levels improves neuronal health and ameliorates amyloid pathology in the subiculum of AD mice. Our results further characterize the important role of fibrin(ogen) in this disease and support the design of therapeutic strategies aimed at blocking the interaction between fibrinogen and Aβ and/or normalizing the increased thrombosis present in AD. PMID:25475538
Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions
NASA Astrophysics Data System (ADS)
Li, Xiangchen; Yan, Xiaopeng; Kang, Yili
2018-04-01
The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.
Petrophysics of low-permeability medina sandstone, northwestern Pennsylvania, Appalachian Basin
Castle, J.W.; Byrnes, A.P.
1998-01-01
Petrophysical core testing combined with geophysical log analysis of low-permeability, Lower Silurian sandstones of the Appalachian basin provides guidelines and equations for predicting gas producibility. Permeability values are predictable from the borehole logs by applying empirically derived equations based on correlation between in-situ porosity and in-situ effective gas permeability. An Archie-form equation provides reasonable accuracy of log-derived water saturations because of saturated brine salinities and low clay content in the sands. Although measured porosity and permeability average less than 6% and 0.1 mD, infrequent values as high as 18% and 1,048 mD occur. Values of effective gas permeability at irreducible water saturation (Swi) range from 60% to 99% of routine values for the highest permeability rocks to several orders of magnitude less for the lowest permeability rocks. Sandstones having porosity greater than 6% and effective gas permeability greater than 0.01 mD exhibit Swi less than 20%. With decreasing porosity, Swi sharply increases to values near 40% at 3 porosity%. Analysis of cumulative storage and flow capacity indicates zones with porosity greater than 6% generally contain over 90% of flow capacity and hold a major portion of storage capacity. For rocks with Swi < 20%, gas relative permeabilities exceed 45%. Gas relative permeability and hydrocarbon volume decrease rapidly with increasing Swi as porosity drops below 6%. At Swi above 40%, gas relative permeabilities are less than approximately 10%.
Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish
2018-06-12
Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2 h -1 bar -1 compared with 4-7 L m -2 h -1 bar -1 ) over similarly rated commercial membranes.
Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick
2016-01-01
We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Armitage, P. J.
2011-12-01
Geothermal fields rely on permeable fracture networks that can act for significant periods of time. In crystalline rocks, permeability may be stimulated by injections of fluid pressure at depth. We show how high-pressure laboratory experiments can be used to quantify the effects of different stress states on the permeability of two rocks; Darley Dale sandstone (~10-16 m2 permeability) and Westerly granite (~10-20 m2 permeability). It is well known that microfractures start to grow at stresses around one half of the failure stress. Failure in the experiments was reproduced in several ways: (1) by fixing σ3 and increasing σ1 - equivalent to a compressive or strike-slip tectonic regime (2) by fixing σ1 and decreasing σ3 - equivalent to an extensional tectonic regime (3) by increasing the pore fluid pressure at a fixed differential stress to simulate high pore fluid pressure failure, and (4) by fixing the mean stress while increasing σ1 and decreasing σ3 in sympathy. Permeability was monitored during all of these tests. From these tests we are able to quantify the relative contributions of mean stress, differential stress and pore fluid pressure on the permeability in the pre-failure region. This provides key data on the development of microfracture permeability that might be produced during the stimulation of geothermal fields during injection within different tectonic environments.
Study on road surface source pollution controlled by permeable pavement
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2018-06-01
The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.
Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Mitchell, T. M.
2017-12-01
Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.
Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner
Zheng, Gen; Wu, Shu-Pei; Hu, Yongjun; Smith, David E; Wiley, John W.; Hong, Shuangsong
2012-01-01
Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORT-injected rats demonstrated a 3-fold increase in permeability for PEG-400 (MW) in colon but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4,000 and PEG-35,000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low-molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium. PMID:23336591
Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California
NASA Astrophysics Data System (ADS)
Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.
2016-12-01
Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low resistivity zones ( 1Ωm), suggestive of a fluid pathway. In order to refine these models and extend them to greater depths, we have deployed long-period (0.002Hz-10Hz) MT instruments in three locations. The data were collected over several weeks and are currently being processed and analyzed.
Perchellet, Elisabeth M; Wang, Yang; Lou, Kaiyan; Zhao, Huiping; Battina, Srinivas K; Hua, Duy H; Perchellet, Jean-Pierre H
2007-11-01
Synthetic analogs of 1,4-anthraquinone (AQ code number), which block nucleoside transport, decrease DNA, RNA and protein syntheses, trigger cytochrome c release without caspase activation, induce apoptotic DNA fragmentation and inhibit the proliferation of wild-type and multidrug resistant tumor cells in the nM range in vitro, rapidly cause the collapse of mitochondrial transmembrane potential in cell and cell-free systems. Because mitochondrial permeability transition (MPT) requires more than depolarization to occur, antitumor AQs were tested for their ability to directly trigger specific markers of MPT in isolated mitochondria. In contrast to a spectrum of conventional anticancer drugs that are inactive, various AQs interact with isolated mitochondria in a concentration- and time-dependent manner to rapidly cause large amplitude swelling and Ca2+ release in relation with their effectiveness against L1210, HL-60 and LL/2 tumor cells in vitro. Indeed, the lead antitumor AQ8, AQ9 and AQ17 are also the most effective inducers of MPT in isolated mitochondria, whereas all AQ derivatives devoid of anti-proliferative activity also fail to trigger mitochondrial swelling and Ca2+ release. Moreover, the ability of 4 microM AQ17 to maximally induce mitochondrial swelling and Ca2+ release within 15 min is similar to that of classic MPT-inducing agents, such as 5 microg/ml alamethicin, 200 microM atractyloside, 5 microM phenylarsine oxide, 100 microM arsenic trioxide and a 100 microM Ca2+ overload. Interestingly, AQ17 requires a priming concentration of 20 microM Ca2+ to trigger mitochondrial swelling and Ca2+ release and these 0.1 microM ruthenium red-sensitive MPT events are abolished by 1 microM cyclosporin A, 2 mM ADP and 20 microM bongkrekic acid, which block components of the permeability transition pore (PTP), and also inhibited by 50-100 microM of various ubiquinones, which interact with the quinone binding site of the PTP and raise the Ca2+ load required for PTP opening. Hence, antitumor AQs that target isolated mitochondria and trigger MPT might directly interact with components of the PTP to induce conformational changes that increase its Ca2+ sensitivity and transition from the closed to the open state.
van Wijck, Kim; Bessems, Babs AFM; van Eijk, Hans MH; Buurman, Wim A; Dejong, Cornelis HC; Lenaerts, Kaatje
2012-01-01
Background Increased intestinal permeability is an important measure of disease activity and prognosis. Currently, many permeability tests are available and no consensus has been reached as to which test is most suitable. The aim of this study was to compare urinary probe excretion and accuracy of a polyethylene glycol (PEG) assay and dual sugar assay in a double-blinded crossover study to evaluate probe excretion and the accuracy of both tests. Methods Gastrointestinal permeability was measured in nine volunteers using PEG 400, PEG 1500, and PEG 3350 or lactulose-rhamnose. On 4 separate days, permeability was analyzed after oral intake of placebo or indomethacin, a drug known to increase intestinal permeability. Plasma intestinal fatty acid binding protein and calprotectin levels were determined to verify compromised intestinal integrity after indomethacin consumption. Urinary samples were collected at baseline, hourly up to 5 hours after probe intake, and between 5 and 24 hours. Urinary excretion of PEG and sugars was determined using high-pressure liquid chromatography-evaporative light scattering detection and liquid chromatography-mass spectrometry, respectively. Results Intake of indomethacin increased plasma intestinal fatty acid-binding protein and calprotectin levels, reflecting loss of intestinal integrity and inflammation. In this state of indomethacin-induced gastrointestinal compromise, urinary excretion of the three PEG probes and lactulose increased compared with placebo. Urinary PEG 400 excretion, the PEG 3350/PEG 400 ratio, and the lactulose/rhamnose ratio could accurately detect indomethacin-induced increases in gastrointestinal permeability, especially within 2 hours of probe intake. Conclusion Hourly urinary excretion and diagnostic accuracy of PEG and sugar probes show high concordance for detection of indomethacin-induced increases in gastrointestinal permeability. This comparative study improves our knowledge of permeability analysis in man by providing a clear overview of both tests and demonstrates equivalent performance in the current setting. PMID:22888267
Understanding the Effect of Biomineralization on Subsurface Injection Processes
NASA Astrophysics Data System (ADS)
Zamani, A.; Montoya, B.; Gabr, M.
2017-12-01
Microbial induced calcium carbonate precipitation (MICP) is a natural soil improvement technique. The calcium carbonate cementation increases the soil's shear strength, stiffness, and dilative tendencies; however, it may also reduce the permeability of the soil due to the reduction in pore space. Reduction in permeability can lead to an increase in treatment injection pressures or decrease in injection distance. Therefore, an investigation of the extent of permeability reduction is necessary to understand the effect on in situ injection procedures. A suite of soil column experiments were conducted on clean loose silica sand and loose silty sand (i.e., 15% non-plastic silt) by inducing MICP to incrementally higher levels of biomineralization (e.g., from an untreated state to a moderately cemented state for each soil type). The level of biomineralization was assessed using shear wave velocity measurements. Once the target levels of shear wave velocity were reached, the MICP treatments were terminated, and constant head permeability tests were conducted. The experimental results provided a relationship between permeability reduction and level of biomineralization. Upon completion of the permeability tests, the calcium carbonate minerals were evaluated with scanning electron microscopy and the distribution of cementation along the soil column height was assessed using gravimetric acid washing. The changes in permeability are upscaled towards in situ treatment by evaluating the resulting changes in allowable injection rate and radius of influence due to the MICP implementation by numerically modeling the groundwater flow using the finite element programs Seep/W and Sigma/W. The numerical results indicate the allowable injection rate and radius of influence are affected by both the reduction in permeability and the increase in stiffness from the MICP process. The injection simulations with clean sand indicate the reduction of permeability is overshadowed by the increase in stiffness of the material, and the allowable injection rate can increase as biomineralization occurs. However, the injection simulations with silty sand indicate the increase in stiffness compensates for the reduction in permeability, and allowable injection rate remains constant during the treatment.
Rapid and reversible enhancement of blood–brain barrier permeability using lysophosphatidic acid
On, Ngoc H; Savant, Sanjot; Toews, Myron; Miller, Donald W
2013-01-01
The present study characterizes the effects of lysophosphatidic acid (LPA) on blood–brain barrier (BBB) permeability focusing specifically on the time of onset, duration, and magnitude of LPA-induced changes in cerebrovascular permeability in the mouse using both magnetic resonance imaging (MRI) and near infrared fluorescence imaging (NIFR). Furthermore, potential application of LPA for enhanced drug delivery to the brain was also examined by measuring the brain accumulation of radiolabeled methotrexate. Exposure of primary cultured brain microvessel endothelial cells (BMECs) to LPA produced concentration-dependent increases in permeability that were completely abolished by clostridium toxin B. Administration of LPA disrupted BBB integrity and enhanced the permeability of small molecular weight marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRdye800cwPEG, and the P-glycoprotein efflux transporter probe, Rhodamine 800 (R800). The increase in BBB permeability occurred within 3 minutes after LPA injection and barrier integrity was restored within 20 minutes. A decreased response to LPA on large macromolecule BBB permeability was observed after repeated administration. The administration of LPA also resulted in 20-fold enhancement of radiolabeled methotrexate in the brain. These studies indicate that administration of LPA in combination with therapeutic agents may increase drug delivery to the brain. PMID:24045401
Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean
2012-01-01
Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868
Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong
2010-10-01
To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor.
Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors
Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong
2010-01-01
Aim: To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Methods: Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Results: Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. Conclusion: These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor. PMID:20871620
Anisotropy of permeability of reservoir rocks over Miaoli area, NW Taiwan.
NASA Astrophysics Data System (ADS)
Bo-Siang, Xiong; Loung-Yie, Tsai
2013-04-01
The amount of the CO2 has risen since the Industrial Evolution. In order to reduce the amount of CO2 in atmosphere, CO2 sequestration is considered to be the most effective way. In recent years, research about subsurface storage of CO2 into geological formations has increased rapidly. Assessment of storage capability is needed before selecting a site for sequestration. Porosity and permeability are important assessment factors for CO2 sequestration in reservoir rocks. In order to improve the assessment, reservoir rock properties are important and need to be evaluated in advance. Porosity of sandstone is controlled by texture and degree of cementation, whereas permeability is controlled by pore-throat size, pore types and connectivity of pore throat. Sandstones of Miocene to Pleistocene in Miaoli area, NW Taiwan, were collected in this study. YOKO2 porosity/permeability detector is used to measure their permeability perpendicular and parallel to bedding planes under 3 to 60MPa confining pressure with Helium as media. Optical microscope and scanning electron microscope (SEM) were then used to observe the mineral composition, lithology, texture and pore type of sandstones, so as to explore the influence of rock properties on porosity and anisotropy of permeability, as well as the storage potential for CO2 sequestration in the future. The experimental results show that most of the horizontal permeability exceeds the vertical permeability and the anisotropy increases with increasing confining pressure. Mineral composition of sandstones studied were mainly quartz and lithic with little feldspar content. The pore types were mainly primary pores and micropores in this study. The correlation between quantity of macropores and permeability were higher than total porosity and permeability, mainly due to total porosity contains micropores which contribute little to permeability.
Improving maraviroc oral bioavailability by formation of solid drug nanoparticles.
Savage, Alison C; Tatham, Lee M; Siccardi, Marco; Scott, Trevor; Vourvahis, Manoli; Clark, Andrew; Rannard, Steve P; Owen, Andrew
2018-05-17
Oral drug administration remains the preferred approach for treatment of HIV in most patients. Maraviroc (MVC) is the first in class co-receptor antagonist, which blocks HIV entry into host cells. MVC has an oral bioavailability of approximately 33%, which is limited by poor permeability as well as affinity for CYP3A and several drug transporters. While once-daily doses are now the favoured option for HIV therapy, dose-limiting postural hypotension has been of theoretical concern when administering doses high enough to achieve this for MVC (particularly during coadministration of enzyme inhibitors). To overcome low bioavailability and modify the pharmacokinetic profile, a series of 70 wt% MVC solid drug nanoparticle (SDN) formulations (containing 30 wt% of various polymer/surfactant excipients) were generated using emulsion templated freeze-drying. The lead formulation contained PVA and AOT excipients ( MVC SDN PVA/AOT ), and was demonstrated to be fully water-dispersible to release drug nanoparticles with z-average diameter of 728 nm and polydispersity index of 0.3. In vitro and in vivo studies of MVC SDN PVA/AOT showed increased apparent permeability of MVC, compared to a conventional MVC preparation, with in vivo studies in rats showing a 2.5-fold increase in AUC (145.33 vs. 58.71 ng h ml -1 ). MVC tissue distribution was similar or slightly increased in tissues examined compared to the conventional MVC preparation, with the exception of the liver, spleen and kidneys, which showed statistically significant increases in MVC for MVC SDN PVA/AOT . These data support a novel oral format with the potential for dose reduction while maintaining therapeutic MVC exposure and potentially enabling a once-daily fixed dose combination product. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K.
2018-05-01
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers.
1986-02-01
reverse side If necessary md identify by block number) Adaptive mechanisms Evapotranspiration Saturation Comunity FTI numbers Soil permeability Delineation...distribution and the fre- quency and duration of inundation/ soil saturation. The numerical expression (Flood Tolerance Index (FTI) number) of this...inundation, a strong correlation may exist between the distribution of a species and its associated hydrologic and soil -moisture conditions (Bedinger
Balakirev, M Y; Zimmer, G
1998-08-01
Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.
Measurements on stress dependent permeability
NASA Astrophysics Data System (ADS)
Risnes, R.; Faldaas, I.; Korsnes, R. I.; Norland, T.
2003-04-01
Hydrostatic loading is the conventional test procedure to determine the stress dependence of permeability. However, hydrostatic tests do not truly reflect the deviatoric stress state that exists in most reservoirs. The main objective of the present project was to study permeability changes under deviatoric stresses, like encountered in standard triaxial tests. However in measuring permeability in a triaxial cell, end effects may be important. The friction between the axial steel pistons and the sample may cause stress concentrations and thereby a non-homogeneous strain pattern towards the sample ends. To overcome this problem, the cell was modified to have pressure outlets from the mid-section of the sample, with the pressure tubes connected to the outside of the cell for pressure recording. The cell was designed for 1.5 in plugs with plug lengths of about 80 mm. Tests have been performed on two types of high porosity outcrop chalk: Liège chalk with porosity around 40 percent and permeability 1-2 millidarcy, and Aalborg chalk with porosity around 45 percent and permeability in the range 3-5 millidarcy. Methanol was used as saturating fluid for the chalks. In addition some sandstone samples from core material were included. The porosity values were rather high, around 30 percent, and the permeability ranged from around 50 millidarcy to over one Darcy. Synthetic oil was used as saturating fluid for the sandstone samples, to avoid any reactions with clay minerals. The results so far can be summarized as follows:(1) In almost all the tests, the permeability calculated by the overall pressure drop is smaller than the mid-section permeability. The reduction could typically be around 20 percent. This means that end-effects play an important role.(2) The permeability generally decrease with increasing hydrostatic stresses. This is in agreement with observations from other sources.(3) During deviatoric phases the average stress level is increasing, but the changes in permeability are rather small, even if the tests are run beyond yield. The mid-section permeability seems to show a small increasing trend with increasing deviatoric stresses after yield. But the yield point does not seem to have any drastic effect on the permeability.(4) The overall permeability seems in general to show a decreasing trend under deviatoric stresses. The results indicate that permeability changes with pressure depletion under reservoir conditions may be much less than expected from hydrostatic tests or tests uncorrected for end-effects.
Lundberg, A H; Fukatsu, K; Gaber, L; Callicutt, S; Kotb, M; Wilcox, H; Kudsk, K; Gaber, A O
2001-02-01
To determine whether blocking the cell surface expression of intracellular adhesion molecules (ICAM-1) in established severe acute pancreatitis (AP) would ameliorate pulmonary injury. Lung injury in AP is in part mediated by infiltrating leukocytes, which are directed to lung tissue by ICAM-l. The authors' laboratory has previously demonstrated that AP results in overproduction of inflammatory cytokines, upregulation of pulmonary ICAM-1 expression, and a concomitant infiltration of neutrophils, which results in lung injury. Young female mice were fed a choline-deficient/ethionine-supplemented diet to induce AP and were treated with a blocking dose of monoclonal antibody specific to the ICAM-1 receptor. Antibody treatment was administered at 72, 96, and 120 hours after beginning the diet, and all animals were killed at 144 hours. The degree of pancreatitis was evaluated by serum biochemical and tumor necrosis factor alpha levels as well as histology. The dual radiolabeled monoclonal antibody method was used to quantitate ICAM-1 cell surface expression in pulmonary tissue. Lung injury was assessed histologically and by determining lung microvascular permeability by measuring accumulated 125I-radiolabeled albumin. Pulmonary neutrophil sequestration was determined by the myeloperoxidase assay. All mice developed severe AP, and pancreatic injury was equally severe in both treated and untreated groups. Pulmonary ICAM-1 expression was significantly upregulated in animals with AP compared with controls. Treatment with a blocking dose of anti-ICAM-1 antibody after the induction of AP resulted in inhibited ICAM-1 cell surface expression to near control levels. Compared to untreated animals with AP, mice treated with anti-ICAM-1 mice had significantly reduced histologic lung injury and neutrophil sequestration, and a decreased microvascular permeability by more than twofold. These results demonstrate for the first time that treatment targeting the cell surface expression of ICAM-1 after the induction of AP ameliorates pulmonary injury, even in the face of severe pancreatic disease.
Kim, D Y; Kam, Y; Koo, S K; Joe, C O
1999-02-26
The regulation of gap junctional permeability by phosphorylation was examined in a model system in which connexin 43 (Cx43) gap junction hemichannels were reconstituted in lipid vesicles. Cx43 was immunoaffinity-purified from rat brain, and Cx43 channels were reconstituted into unilamellar phospholipid liposomes. The activities of the reconstituted channels were measured by monitoring liposome permeability. Liposomes containing the Cx43 protein were fractionated on the basis of permeability to sucrose using sedimentation in an iso-osmolar density gradient. The gradient allowed separation of the sucrose-permeable and -impermeable liposomes. Liposomes that were permeable to sucrose were also permeable to the communicating dye molecule lucifer yellow. Permeability, and therefore activity of the reconstituted Cx43 channels, were directly dependent on the state of Cx43 phosphorylation. The permeability of liposomes containing Cx43 channels was increased by treatment of liposomes with calf intestinal phosphatase. Moreover, liposomes formed with Cx43 that had been dephosphorylated by calf intestinal phosphatase treatment showed increased permeability to sucrose. The role of phosphorylation in the gating mechanism of Cx43 channels was supported further by the observation that phosphorylation of Cx43 by mitogen-activated protein kinase reversibly reduced the permeability of liposomes containing dephosphorylated Cx43. Our results show a direct correlation between gap junctional permeability and the phosphorylation state of Cx43.
High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes
NASA Astrophysics Data System (ADS)
Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew
Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.
Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika
2018-07-01
On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6 cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be <5% and trans-conjunctival systemic absorption was 34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.
Measuring accessibility of sustainable transportation using space syntax in Bojonggede area
NASA Astrophysics Data System (ADS)
Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.
2017-12-01
Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem
2016-08-06
We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.
Endothelial barrier dysfunction caused by LPS correlates with phosphorylation of HSP27 in vivo.
Hirano, S; Rees, R S; Yancy, S L; Welsh, M J; Remick, D G; Yamada, T; Hata, J; Gilmont, R R
2004-02-01
Lung edema during sepsis is triggered by formation of gaps between endothelial cells followed by macrophage infiltration. Endothelial gap formation has been proposed to involve changes in the structure of the actin filament cytoskeleton. Heat shock protein 27 (HSP27) is believed to modulate actin filament dynamics or structure, in a manner dependent on its phosphorylation status. We hypothesized that HSP27 may play a role in endothelial gap formation, by affecting actin dependent events in endothelial cells. As there has been no report concerning HSP27 in lung edema in vivo, we examined induction and phosphorylation of HSP27 in lung following LPS injection, as a model of sepsis. In lung, HSP27 mainly localized in capillary endothelial cells of the alveolus, and in smooth muscle cells of pulmonary arteries. HSP27 became significantly more phosphorylated at 3 h after LPS treatment, while the distribution of HSP27 remained unchanged. Pre-treatment with anti-TNFalpha antibody, which has been shown to reduce lung injury, blocked increases in HSP27 phosphorylation at 3 h. HSP27 phosphorylation was also increased in cultured rat pulmonary arterial endothelial cells (RPAEC) by treatment with TNFalpha, LPS, or H2O2. This phosphorylation was blocked by pre-treatment with SB203580, an inhibitor of the upstream kinase, p38 MAP kinase. Increased endothelial permeability caused by H2O2 in vitro was also blocked by SB203580. The amount of actin associated with HSP27 was reduced after treatment with LPS, or H2O2. In summary, HSP27 phosphorylation temporally correlated with LPS induced pathological endothelial cell gap formation in vivo and in a cell culture model system. This is the first report of increased HSP27 phosphorylation associated with pathological lung injury in an animal model of sepsis.
NASA Astrophysics Data System (ADS)
Riffault, J.; Dempsey, D. E.; Karra, S.; Archer, R.
2016-12-01
To create an Enhanced Geothermal System (EGS), high pressure injection is undertaken to reactivate pre-existing fractures and enhance their permeability. During the 2011 Paralana-2 EGS stimulation in South Australia, both injectivity, the ratio of the injection rate to wellhead pressure, and seismicity were recorded. An increase in injectivity indicates that permeability has been enhanced, although it does not constrain the location or magnitude of the change. Induced earthquakes, a spatiotemporal dataset, can confine the range of possible scenarios for permeability evolution. We consider a model in which the number of hypocenters recorded per unit of area of the injection plane (the hypocenter density) is proportional to fluid pressure increase. Then an inverse modelling approach is employed to recover the permeability enhancement distribution that is consistent with both the recorded changes in injectivity and seismicity. Our forward model is radial Darcy-flow with permeability a prescribed function of time and distance, i.e., k(r,t). Initially, we identify a range of permeability evolution scenarios that reproduce the observed injectivity increase with time. Thus, injectivity observations on their own are insufficient to constrain k(r,t). Then, we calibrate k(r,t) for a close match between the modelled pressure distribution and that inferred from the hypocenter density observations using a simple proportionality constant. The resulting permeability model is the one most likely to approximate permeability evolution during the Paralana stimulation.
Naderkhani, Elenaz; Erber, Astrid; Škalko-Basnet, Nataša; Flaten, Gøril Eide
2014-02-01
The antiviral drug acyclovir (ACV) suffers from poor solubility both in lipophilic and hydrophilic environment, leading to low and highly variable bioavailability. To overcome these limitations, this study aimed at designing mucoadhesive ACV-containing liposomes to improve its permeability. Liposomes were prepared from egg phosphatidylcholine (E-PC) and E-PC/egg phosphatidylglycerol (E-PC/E-PG) and their surfaces coated with Carbopol. All liposomal formulations were fully characterized and for the first time the phospholipid vesicle-based permeation assay (PVPA) was used for testing in vitro permeability of drug from mucoadhesive liposome formulations. The negatively charged E-PC/E-PG liposomes could encapsulate more ACV than neutral E-PC liposomes. Coating with Carbopol increased the entrapment in the neutral E-PC liposomes. The incorporation of ACV into liposomes exhibited significant increase in its in vitro permeability, compared with its aqueous solution. The neutral E-PC liposomal formulations exhibited higher ACV permeability values compared with charged E-PC/E-PG formulations. Coating with Carbopol significantly enhanced the permeability from the E-PC/E-PG liposomes, as well as sonicated E-PC liposomes, which showed the highest permeability of all tested formulations. The increased permeability was according to the formulations' mucoadhesive properties. This indicates that the PVPA is suitable to distinguish between permeability of ACV from different mucoadhesive liposome formulations developed for various routes of administration. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Cancel, Limary M; Tarbell, John M; Ben-Jebria, Abdellaziz
2004-09-01
Transdermal drug delivery offers an alternative to injections and oral medication but is limited by the low skin permeability of most drugs. The use of low-frequency ultrasound over long periods of time, typically over an hour, has been shown to enhance skin permeability, a phenomenon referred to as sonophoresis. In this study, we investigated the effects of short time sonication of human skin at 20 kHz and at variable intensities and duty cycles on the dynamics of fluorescein transport across the skin (permeability) as well as the changes in the skin's structural integrity (electrical resistance). We found that a short application of ultrasound enhanced the transport of fluorescein across human skin by a factor in the range of 2-9 for full thickness skin samples and by a factor in the range of 2-28 000 for heat-stripped stratum corneum samples (however, samples with very high (10(3)) enhancement were likely to have been damaged by ultrasound). The electrical resistance of the skin decreased by an average of 20% for full thickness samples and 58% for stratum corneum samples. Increasing the duty cycle from 10 to 60% caused a significant increase in permeability enhancement from 2.3 to 9.1, and an increase in intensity from 8 to 23 mW cm(-2) induced a significant increase in permeability enhancement from 2 to 7.4, indicating a clear dependence of the permeability on both duty cycle and intensity. The increase in solute flux upon ultrasound exposure was immediate, demonstrating for the first time the fast response dynamics of sonophoretic enhancement. In addition, a quantitative analysis of the thermal and convective dispersion effects associated with ultrasound application showed that each contributes significantly to the overall permeability enhancement observed.
García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2014-03-01
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.
Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang
2007-01-01
The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364
Shimojima, Naoki; Eckman, Christopher B; McKinney, Michael; Sevlever, Daniel; Yamamoto, Satoshi; Lin, Wenlang; Dickson, Dennis W; Nguyen, Justin H
2008-01-01
Brain edema secondary to increased blood-brain barrier (BBB) permeability is a lethal complication in fulminant hepatic failure (FHF). Intact tight junctions (TJ) between brain capillary endothelial cells are critical for normal BBB function. However, the role of TJ in FHF has not been explored. We hypothesized that alterations in the composition of TJ proteins would result in increased BBB permeability in FHF. In this study, FHF was induced in C57BL/6J mice by using azoxymethane. BBB permeability was assessed with sodium fluorescein. Expression of TJ proteins was determined by Western blot, and their cellular distribution was examined using immunofluorescent microscopy. Comatose FHF mice had significant cerebral sodium fluorescein extravasation compared with control and precoma FHF mice, indicating increased BBB permeability. Western blot analysis showed a significant decrease in zonula occludens (ZO)-2 expression starting in the precoma stage. Immunofluorescent microscopy showed a significantly altered distribution pattern of ZO-2 in isolated microvessels from precoma FHF mice. These changes were more prominent in comatose FHF animals. Significant alterations in ZO-2 expression and distribution in the tight junctions preceded the increased BBB permeability in FHF mice. These results suggest that ZO-2 may play an important role in the pathogenesis of brain edema in FHF.
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Cornaton, F. J.; Normani, S. D.; Sykes, J. F.; Sudicky, E. A.
2008-04-01
F. J. Cornaton et al. (2008) introduced the concept of lifetime expectancy as a performance measure of the safety of subsurface repositories, on the basis of the travel time for contaminants released at a certain point in the subsurface to reach the biosphere or compliance area. The methodologies are applied to a hypothetical but realistic Canadian Shield crystalline rock environment, which is considered to be one of the most geologically stable areas on Earth. In an approximately 10 × 10 × 1.5 km3 hypothetical study area, up to 1000 major and intermediate fracture zones are generated from surface lineament analyses and subsurface surveys. In the study area, mean and probability density of lifetime expectancy are analyzed with realistic geologic and hydrologic shield settings in order to demonstrate the applicability of the theory and the numerical model for optimally locating a deep subsurface repository for the safe storage of spent nuclear fuel. The results demonstrate that, in general, groundwater lifetime expectancy increases with depth and it is greatest inside major matrix blocks. Various sources and aspects of uncertainty are considered, specifically geometric and hydraulic parameters of permeable fracture zones. Sensitivity analyses indicate that the existence and location of permeable fracture zones and the relationship between fracture zone permeability and depth from ground surface are the most significant factors for lifetime expectancy distribution in such a crystalline rock environment. As a consequence, it is successfully demonstrated that the concept of lifetime expectancy can be applied to siting and performance assessment studies for deep geologic repositories in crystalline fractured rock settings.
Wu, Juyou; Wang, Su; Gu, Yuchun; Zhang, Shaoling; Publicover, Stephen J.; Franklin-Tong, Vernonica E.
2011-01-01
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow “self” recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba2+ ≥ Ca2+ > Mg2+) and the monovalent ions K+ and NH4+ and is enhanced at voltages negative to −100 mV. The Ca2+ conductance is blocked by La3+ but not by verapamil; the K+ currents are tetraethylammonium chloride insensitive and do not require Ca2+. We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity. PMID:21177472
Duration of ultrasound-mediated enhanced plasma membrane permeability.
Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens
2015-03-30
Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investigated systematically using an endothelial- and two breast cancer cell lines. Model drug uptake was measured as a function of time after sonication, in the presence of SonoVue™ microbubbles, in HUVEC, MDA-MB-468 and 4T1 cells. In addition, US pressure amplitude was varied in MDA-MB-468 cells to investigate its effect on the temporal window. Cell membrane permeability of HUVEC and MDA-MB-468 cells returned to control level within 1-2 h post-sonication, while 4T1 cells needed over 3h. US pressure affected the number of cells with increased membrane permeability, as well as the temporal window in MDA-MB-468 cells. This study shows that the duration of increased membrane permeability differed between the cell lines and US pressures used here. However, all were consistently in the order of 1-3 h after sonication. Copyright © 2014 Elsevier B.V. All rights reserved.
Wijnen, M H W A; Vader, H L; Roumen, R M H
2002-01-01
An increase in gut permeability can have serious consequences leading to sepsis and multiple organ failure. After lower torso ischemia an increase in gut permeability is seen in both animals and humans. There is proof that this can be modified by antioxidant supplementation. In this prospective, randomized study we have looked at the influence of a multiantioxidant supplementation regime, using allopurinol, vitamins E and C, mannitol and N-acetylcysteine, perioperatively. Twenty-two patients received standard treatment and 20 patients received supplementation. Gut permeability was determined using a double sugar test with lactulose and rhamnose. A significant increase in gut permeability was found neither in the non-treatment group (p = 0.012) nor in the treatment group (p = 0.006) after 6 and 24 h. No difference was found between the group receiving antioxidants and the standard treatment group. p = 0.93 6 h post clamp; p = 0.97 24 h post clamp. In this study we have not found an influence of multiantioxidant supplementation on gut permeability after lower torso ischemia. Possible explanations for this negative result are being discussed. Copyright 2002 S. Karger AG, Basel
Strain-dependent permeability of volcanic rocks.
NASA Astrophysics Data System (ADS)
Farquharson, Jamie; Heap, Michael; Baud, Patrick
2016-04-01
We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10-5 s-1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is correlated to the degree of strain to which is subjected. Volcanic processes such as dome extrusion, which involve progressive strain on complex fault systems, have been seen to cause fault sliding and the prolific generation of fault gouge. Our results indicate that the permeability of these faults will tend to remain constant or increase during continued extrusion, allowing magmatic gases to readily outgas through permeable fault architectures despite the generation and accumulation of gouge. On the other hand, deeper regions of the edifice that will typically be compacting due to the relatively higher confining pressures, will exhibit a continuous decrease in permeability. The interplay between permeability-increasing and permeability-decreasing processes within the edifice is likely to influence outgassing and eruptive cycles at active volcanoes.
Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability
Alhamoruni, A; Wright, KL; Larvin, M; O'Sullivan, SE
2012-01-01
BACKGROUND AND PURPOSE Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion and intestinal motility. The ability to modulate intestinal permeability in inflammation may be important in therapy aimed at maintaining epithelial barrier integrity. The aim of the present study was to determine whether cannabinoids modulate the increased permeability associated with inflammation in vitro. EXPERIMENTAL APPROACH Confluent Caco-2 cell monolayers were treated for 24 h with IFNγ and TNFα (10 ng·mL−1). Monolayer permeability was measured using transepithelial electrical resistance and flux measurements. Cannabinoids were applied either apically or basolaterally after inflammation was established. Potential mechanisms of action were investigated using antagonists for CB1, CB2, TRPV1, PPARγ and PPARα. A role for the endocannabinoid system was established using inhibitors of the synthesis and degradation of endocannabinoids. KEY RESULTS Δ9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability. Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated, the increased permeability associated with inflammation. CONCLUSIONS AND IMPLICATIONS These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal permeability associated with inflammation. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21745190
Mujagic, Z; Ludidi, S; Keszthelyi, D; Hesselink, M A M; Kruimel, J W; Lenaerts, K; Hanssen, N M J; Conchillo, J M; Jonkers, D M A E; Masclee, A A M
2014-08-01
Intestinal permeability has been studied in small groups of IBS patients with contrasting findings. To assess intestinal permeability at different sites of the GI tract in different subtypes of well-characterised IBS patients and healthy controls (HC), and to assess potential confounding factors. IBS patients and HC underwent a multi-sugar test to assess site-specific intestinal permeability. Sucrose excretion and lactulose/rhamnose ratio in 0-5 h urine indicated gastroduodenal and small intestinal permeability, respectively. Sucralose/erythritol ratio in 0-24 h and 5-24 h urine indicated whole gut and colonic permeability, respectively. Linear regression analysis was used to assess the association between IBS groups and intestinal permeability and to adjust for age, sex, BMI, anxiety or depression, smoking, alcohol intake and use of medication. Ninety-one IBS patients, i.e. 37% IBS-D, 23% IBS-C, 33% IBS-M and 7% IBS-U and 94 HC were enrolled. Urinary sucrose excretion was significantly increased in the total IBS group [μmol, median (Q1;Q3): 5.26 (1.82;11.03) vs. 2.44 (0.91;5.85), P < 0.05], as well as in IBS-C and IBS-D vs. HC. However, differences attenuated when adjusting for confounders. The lactulose/rhamnose ratio was increased in IBS-D vs. HC [0.023 (0.013;0.038) vs. 0.014 (0.008;0.025), P < 0.05], which remained significant after adjustment for confounders. No difference was found in 0-24 and 5-24 h sucralose/erythritol ratio between groups. Small intestinal permeability is increased in patients with IBS-D compared to healthy controls, irrespective of confounding factors. Adjustment for confounders is necessary when studying intestinal permeability, especially in a heterogeneous disorder such as IBS. © 2014 John Wiley & Sons Ltd.
Osteopontin Signals through Calcium and Nuclear Factor of Activated T Cells (NFAT) in Osteoclasts
Tanabe, Natsuko; Wheal, Benjamin D.; Kwon, Jiyun; Chen, Hong H.; Shugg, Ryan P. P.; Sims, Stephen M.; Goldberg, Harvey A.; Dixon, S. Jeffrey
2011-01-01
Osteopontin (OPN), an integrin-binding extracellular matrix glycoprotein, enhances osteoclast activity; however, its mechanisms of action are elusive. The Ca2+-dependent transcription factor NFATc1 is essential for osteoclast differentiation. We assessed the effects of OPN on NFATc1, which translocates to nuclei upon activation. Osteoclasts from neonatal rabbits and rats were plated on coverslips, uncoated or coated with OPN or bovine albumin. OPN enhanced the proportion of osteoclasts exhibiting nuclear NFATc1. An RGD-containing, integrin-blocking peptide prevented the translocation of NFATc1 induced by OPN. Moreover, mutant OPN lacking RGD failed to induce translocation of NFATc1. Thus, activation of NFATc1 is dependent on integrin binding through RGD. Using fluorescence imaging, OPN was found to increase the proportion of osteoclasts exhibiting transient elevations in cytosolic Ca2+ (oscillations). OPN also enhanced osteoclast survival. The intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) suppressed Ca2+ oscillations and inhibited increases in NFATc1 translocation and survival induced by OPN. Furthermore, a specific, cell-permeable peptide inhibitor of NFAT activation blocked the effects of OPN on NFATc1 translocation and osteoclast survival. This is the first demonstration that OPN activates NFATc1 and enhances osteoclast survival through a Ca2+-NFAT-dependent pathway. Increased NFATc1 activity and enhanced osteoclast survival may account for the stimulatory effects of OPN on osteoclast function in vivo. PMID:21940634
Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans.
Lozhechnikova, Alina; Dax, Daniel; Vartiainen, Jari; Willför, Stefan; Xu, Chunlin; Österberg, Monika
2014-09-22
Nanofibrillated cellulose (NFC) and hemicelluloses have shown to be highly promising renewable components both as barrier materials and in novel biocomposites. However, the hydrophilic nature of these materials restricts their use in some applications. In this work, the usability of modified O-acetyl galactoglucomannan (GGM) for modification of NFC surface properties was studied. Four GGM-block-structured, amphiphilic derivatives were synthesized using either fatty acids or polydimethylsiloxane as hydrophobic tails. The adsorption of these GGM derivatives was consecutively examined in aqueous solution using a quartz crystal microbalance with dissipation monitoring (QCM-D). It was found that the hydrophobic tails did not hinder adsorption of the GGM derivatives to cellulose, which was concluded to be due to the presence of the native GGM-block with high affinity to cellulose. The layer properties of the adsorbed block-co-polymers were discussed and evaluated. Self-standing NFC films were further prepared and coated with the GGM derivatives and the effect of the surface modification on wetting properties and oxygen permeability (OP) of the modified films was assessed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Permeability After Impact Testing of Composite Laminates
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
2003-01-01
Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.
Permeability After Impact Testing of Composite Laminates
NASA Technical Reports Server (NTRS)
Nettles, A.T.; Munafo, Paul (Technical Monitor)
2002-01-01
Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.
Double-porosity models for a fissured groundwater reservoir with fracture skin
Moench, Allen F.
1984-01-01
Theories of flow to a well in a double-porosity groundwater reservoir are modified to incorporate effects of a thin layer of low-permeability material or fracture skin that may be present at fracture-block interfaces as a result of mineral deposition or alteration. The commonly used theory for flow in double- porosity formations that is based upon the assumption of pseudo–steady state block-to-fissure flow is shown to be a special case of the theory presented in this paper. The latter is based on the assumption of transient block-to-fissure flow with fracture skin. Under conditions where fracture skin has a hydraulic conductivity that is less than that of the matrix rock, it may be assumed to impede the interchange of fluid between the fissures and blocks. Resistance to flow at fracture-block interfaces tends to reduce spatial variation of hydraulic head gradients within the blocks. This provides theoretical justification for neglecting the divergence of flow in the blocks as required by the pseudo–steady state flow model. Coupled boundary value problems for flow to a well discharging at a constant rate were solved in the Laplace domain. Both slab-shaped and sphere-shaped blocks were considered, as were effects of well bore storage and well bore skin. Results obtained by numerical inversion were used to construct dimensionless-type curves that were applied to well test data, for a pumped well and for an observation well, from the fractured volcanic rock terrane of the Nevada Test Site.
Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D
2010-01-01
Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.
Phillips, Brett E.; Cancel, Limary; Tarbell, John M.; Antonetti, David A.
2008-01-01
Purpose The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. Methods Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. Results Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. Conclusions The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein. PMID:18263810
Permeability of ferret trachea in vitro to {sup 99m}{Tc}-DTPA and [{sup 14}C]antipyrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanafi, Z.; Webber, S.E.; Widdicombe, J.G.
1994-09-01
Platelet-activating factor (PAF) and vasoactive drugs were tested on permeability of ferret trachea in vitro by measuring fluxes of {sup 99m}{Tc}-diethylenetriamine pentaacetic acid ({sup 99m}{Tc}-DTPA; hydrophilic) and [{sup 14}C]antipyrine ([{sup 14}C]AP; lipophilic) across the tracheal wall. Tracheae were bathed on both sides with Krebs-Henseleit buffer, with luminal buffer containing either {sup 99m}{Tc}-DTPA or [{sup 14}C]AP. Luminal and abluminal radioactivities, potential difference, and tracheal smooth muscle tone were measured. Baseline {sup 99m}{Tc}-DTPA and [{sup 14}C]AP permeability coefficients were - 4.7 {+-} 0.6 (SE) x 10{sup {minus}7} and -2.2 {+-} 0.1 x 10{sup {minus}5} cm/s, respectively. PAF (10 {mu}M) increased permeability tomore » {sup 99m}{Tc}-DTPA to -35.3 {+-} 7.6 x 10{sup {minus}7} cm/s (P < 0.05), but permeability to [{sup 14}C]AP did not change, suggesting that paracellular but not transcellular transport was affected. Abluminal and luminal applications of methacholine (MCh, 20 {mu}M), phenylephrine (PE, 100 {mu}M), and albuterol (Alb, 100 {mu}M) caused no change in permeability to {sup 99m}{Tc}-DTPA before or after exposure to luminal PAF, but abluminal histamine (Hist, 10 {mu}M) significantly increased permeability. Abluminal Hist decreased permeability to [{sup 14}C]AP before and after exposure to PAF. MCh, PE, and Hist increased smooth muscle tone; Alb and PAF had no effect. Thus, only PAF and Hist altered permeability to {sup 99m}{Tc}-DTPA, and MCh, PE, and Hist changed smooth muscle tone. Tracheal permeability changes were greater for the hydrophilic than for the lipophilic agent. 37 refs., 11 figs., 1 tab.« less
Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric
NASA Astrophysics Data System (ADS)
Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.
2013-11-01
In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.
Dahan, Arik; Miller, Jonathan M
2012-06-01
While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.
Rodríguez, Isabel; Vázquez, José Antonio; Pastrana, Lorenzo; Khutoryanskiy, Vitaliy V
2017-08-30
This study investigates how both bioadhesive polymers (chitosan, hyaluronic acid and alginate) and permeability enhancers (ethylene glycol- bis(2-aminoethylether)- N, N, N', N'- tetraacetic acid (EGTA) and hydroxypropyl-ß-cyclodextrin) influence the permeability of the anti-glaucoma drug timolol maleate through ex vivo bovine corneas. Our results showed that only the permeability enhancers alone were able to increase drug permeability, whereas the polymers significantly reduced drug permeation, and however, they increased the pre-corneal residence of timolol. Ternary systems (polymer-enhancer-drug) showed a reduced drug permeability compared to the polymers alone. Fluorescence microscopy analysis of the epithelium surface confirmed there was no evidence of epithelial disruption caused by these formulations, suggesting that polymer-enhancer interactions reduce drug solubilization and counteract the disruptive effect of the permeability enhancers on the surface of the cornea. Further mucoadhesive tests, revealed a stable interaction of chitosan and hyaluronic acid with the epithelium, while alginate showed poor mucoadhesive properties. The differences in mucoadhesion correlated with the permeability of timolol maleate observed, i.e. formulations containing mucoadhesive polymers showed lower drug permeabilities. The results of the present study indicate polymers acting as an additional barrier towards drug permeability which is even more evident in the presence of permeability enhancers like EGTA and hydroxypropyl-ß-cyclodextrin. Then, this study highlights the need to adequately select additives intended for ocular applications since interactions between them can have opposite results to what expected in terms of drug permeability. Copyright © 2017 Elsevier B.V. All rights reserved.
Doxycycline Attenuates Lipopolysaccharide-Induced Microvascular Endothelial Cell Derangements.
Wiggins-Dohlvik, Katie; Stagg, Hayden W; Han, Min Suk; Alluri, Himakarnika; Oakley, Ryan P; Anasooya Shaji, Chinchusha; Davis, Matthew L; Tharakan, Binu
2016-06-01
Lipopolysaccharide (LPS) is known to induce vascular derangements. The pathophysiology involved therein is unknown, but matrix metalloproteinases (MMPs) may be an important mediator. We hypothesized that in vitro LPS provokes vascular permeability, damages endothelial structural proteins, and increases MMP activity; that in vivo LPS increases permeability and fluid requirements; and that the MMP inhibitor doxycycline mitigates such changes. Rat lung microvascular endothelial cells were divided into four groups: control, LPS, LPS plus doxycycline, and doxycycline. Permeability, structural proteins β-catenin and Filamentous-actin, and MMP-9 activity were examined. Sprauge Dawley rats were divided into sham, IV LPS, and IV LPS plus IV doxycycline groups. Mesenteric postcapillary venules were observed. Blood pressure was measured as animals were resuscitated and fluid requirements were compared. Statistical analysis was conducted using Student's t-test and ANOVA. In vitro LPS increased permeability, damaged adherens junctions, induced actin stress fiber formation, and increased MMP-9 enzyme activity. In vivo, IV LPS administration induced vascular permeability. During resuscitation, significantly more fluid was necessary to maintain normotension in the IV LPS group. Doxycycline mitigated all derangements observed. We conclude that LPS increases permeability, damages structural proteins, and increases MMP-9 activity in endothelial cells. Additionally, endotoxemia induces hyperpermeability and increases the amount of IV fluid required to maintain normotension in vivo. Doxycycline mitigates such changes both in vitro and in vivo. Our findings illuminate the possible role of matrix metalloproteinases in the pathophysiology of lipopolysaccharide-induced microvascular hyperpermeability and pave the way for better understanding and treatment of this process.
NASA Astrophysics Data System (ADS)
Collettini, C.; de Paola, N.; Faulkner, D.
2007-12-01
We have taken an experimental approach to understand and quantify the deformation processes and fluid flow within anhydrite-bearing fault damage zones during the seismic cycle. Triaxial loading tests have been performed on borehole samples of anhydrites at room temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The tests were conducted on samples with different grain sizes (10 microns to 1 mm) that were cored in different directions relative to the macroscopic foliation. Static permeability measurements have been carried out to determine the permeability anisotropy and sensitivity of the permeability on the effective pressure (Pc - Pf). Our results show that the brittle-ductile transition occurs for effective pressures (Pe) between 20 to 40 MPa and is almost independent of fabric orientation and grain size. Brittle failure is localized along discrete fractures and is always associated with a sudden stress drop. Conversely, ductile failure occurs by distributed deformation along cataclastic bands. In this case no stress drop is observed. Static permeability measurements show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests, the evolution of the permeability is controlled by the failure mode: permeability begins to increase significantly at 40% and 80% of the max load for samples displaying brittle and ductile behaviour, respectively. The permeability values, immediately prior to failure, are about three orders of magnitude higher than the initial values. Multiple cycling tests, within the ductile field, show that permeability starts increasing at only 40% and 30% of the max load during the second and third loading cycle, respectively. Our results show that the history of deformation and the mode of deformation can control the evolution of the permeability, and that they are more significant than other factors such as fabric and grain size. In natural environments, fluid pressure fluctuations, such as might be experienced during the seismic cycle, can promote a switch from localized (brittle behaviour) to more distributed (ductile behaviour) deformation, leading to complex permeability patterns.
Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas
2012-06-01
In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.
Li, Yi-Ching; Yeh, Chung-Hsin; Yang, Ming-Ling; Kuan, Yu-Hsiang
2012-01-01
Acute lung injury (ALI), instilled by lipopolysaccharide (LPS), is a severe illness with excessive mortality and has no specific treatment strategy. Luteolin is an anti-inflammatory flavonoid and widely distributed in the plants. Pretreatment with luteolin inhibited LPS-induced histological changes of ALI and lung tissue edema. In addition, LPS-induced inflammatory responses, including increased vascular permeability, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), were also reduced by luteolin in a concentration-dependent manner. Furthermore, luteolin suppressed activation of NFκB and its upstream molecular factor, Akt. These results suggest that the protection mechanism of luteolin is by inhibition of NFκB activation possibly via Akt.
Gensure, Rebekah H.; Zeidel, Mark L.; Hill, Warren G.
2006-01-01
H+/OH− permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH− and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH− permeability from a baseline of 2.4×10−2 cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH− permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH− permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484–1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH− conductivity, (iii) H+/OH− fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH− permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results. PMID:16706750
Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen
2018-05-01
The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.
Dahan, Arik; Beig, Avital; Lindley, David; Miller, Jonathan M
2016-06-01
Poor aqueous solubility is a major challenge in today's biopharmaceutics. While solubility-enabling formulations can significantly increase the apparent solubility of the drug, the concomitant effect on the drug's apparent permeability has been largely overlooked. The mathematical equation to describe the membrane permeability of a drug comprises the membrane/aqueous partition coefficient, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggesting that the solubility and the permeability are closely related, exhibit a certain interplay between them, and treating the one irrespectively of the other may be insufficient. In this article, an overview of this solubility-permeability interplay is provided, and the available data is analyzed in the context of the effort to maximize the overall drug exposure. Overall, depending on the type of solubility-permeability interplay, the permeability may decrease, remain unchanged, and even increase, in a way that may critically affect the formulation capability to improve the overall absorption. Therefore, an intelligent design of solubility-enabling formulation needs to consider both the solubility afforded by the formulation and the permeability in the new luminal environment resulting from the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Z Z; Zsirai, T; Connery, K; Fabiyi, M; Larrea, A; Li, J; Judd, S J
2014-01-01
This study aimed to investigate the influence of biomass properties and high mixed liquor suspended solids (MLSS) concentrations on membrane permeability in a pilot-scale hollow fibre membrane bioreactor treating domestic wastewater. Auxiliary molasses solution was added to maintain system operation at constant food-to-microorganisms ratio (F/M = 0.13). Various physicochemical and biological biomass parameters were measured throughout the trial, comprising pre-thickening, thickening and post-thickening periods with reference to the sludge concentration and with aerobic biotreatment continuing throughout. Correlations between dynamic changes in biomass characteristics and membrane permeability decline as well as permeability recovery were further assessed by statistical analyses. Results showed the MLSS concentration to exert the greatest influence on sustainable membrane permeability, with a weaker correlation with particle size distribution. The strong dependence of absolute recovered permeability on wet accumulated solids (WACS) concentration, or clogging propensity, revealed clogging to deleteriously affect membrane permeability decline and recovery (from mechanical declogging and chemical cleaning), with WACS levels increasing with increasing MLSS. Evidence from the study indicated clogging may permanently reduce membrane permeability post declogging and chemical cleaning, corroborating previously reported findings.
Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion
Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.
2015-01-01
cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564
Permeability of canine vocal fold lamina propria.
Meyer, Jacob P; Kvit, Anton A; Devine, Erin E; Jiang, Jack
2015-04-01
Determine the permeability of excised canine vocal fold lamina propria. Basic science. Vocal folds were excised from canine larynges and mounted within a device to measure the flow of 0.9% saline through the tissue over time. The resultant fluid volume displaced over time was then used in a variation of Darcy's law to calculate the permeability of the tissue. Permeability was found through each anatomical plane of the vocal fold, with five samples per plane. Permeability was also found for lamina propria stretched to 10%, 20%, and 30% of its initial length to determine the effects of tensile strain on permeability, with five samples per level of strain. Permeability was found to be 1.40 × 10(-13) m(3) s/kg through the sagittal plane, 1.00 × 10(-13) m(3) s/kg through the coronal plane, and 4.02 × 10(-13) m(3) s/kg through the axial plane. It was significantly greater through the axial plane than both the sagittal (P = .025) and coronal (P = .009) planes. Permeability under strain through the sagittal plane was found to be 1.94 × 10(-13) m(3) s/kg under 10% strain, 3.35 × 10(-13) m(3) s/kg under 20% strain, and 4.80 × 10(-13) m(3) s/kg under 30% strain. The permeability significantly increased after 20% strain (P < .05). Permeability in canine vocal fold lamina propria was found to be increased along the anterior-posterior axis, following the length of the vocal folds. This may influence fluid distribution within the lamina propria during and after vibration. Similarly, permeability increased after 20% strain was imposed on the lamina propria, and may influence vocal fold dynamics during certain phonation tasks. NA Laryngoscope, 125:941-945, 2015. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Combet, S; Ferrier, M L; Van Landschoot, M; Stoenoiu, M; Moulin, P; Miyata, T; Lameire, N; Devuyst, O
2001-10-01
Advanced glycation end products (AGE), growth factors, and nitric oxide contribute to alterations of the peritoneum during peritoneal dialysis (PD). These mediators are also involved in chronic uremia, a condition associated with increased permeability of serosal membranes. It is unknown whether chronic uremia per se modifies the peritoneum before PD initiation. A rat model of subtotal nephrectomy was used to measure peritoneal permeability after 3, 6, and 9 wk, in parallel with peritoneal nitric oxide synthase (NOS) isoform expression and activity and structural changes. Uremic rats were characterized by a higher peritoneal permeability for small solutes and an increased NOS activity due to the up-regulation of endothelial and neuronal NOS. The permeability changes and increased NOS activities correlated with the degree of renal failure. Focal areas of vascular proliferation and fibrosis were detected in uremic rats, in relation with a transient up-regulation of vascular endothelial growth factor and basic fibroblast growth factor, as well as vascular deposits of the AGE carboxymethyllysine and pentosidine. Correction of anemia with erythropoietin did not prevent the permeability or structural changes in uremic rats. Thus, in this rat model, uremia induces permeability and structural changes in the peritoneum, in parallel with AGE deposits and up-regulation of specific NOS isoforms and growth factors. These data suggest an independent contribution of uremia in the peritoneal changes during PD and offer a paradigm to better understand the modifications of serosal membranes in uremia.
Mechanisms of Visceral Organ Crosstalk: Importance of Alterations in Permeability in Rodent Models
Greenwood-Van Meerveld, B; Mohammadi, E; Tyler, K; Van Gordon, S; Parker, A; Towner, R; Hurst, R
2015-01-01
Purpose The pathophysiology of painful bladder syndrome (PBS) is poorly understood; however, there is evidence of female predominance and comorbidity with irritable bowel syndrome (IBS). Our hypothesis is that cross-sensitization between the bladder and colon is due to altered permeability in one organ affecting the other organ. Materials and methods Experiments were performed in anesthetized, ovariectomized (OVX) female rats. In separate groups, protamine sulfate was infused into the bladder or TNBS was infused into the colon, with untreated rats serving as controls. Both bladder and colonic tissue were harvested for all rats at 1, 3, and 5 days post-treatment. Permeability was assessed in vitro in Ussing chambers via measurements of transepithelial electrical resistance (TEER) and macromolecular flux of Fluorescein isothiocyanate (FITC)-4 dextran. Results Exposing the bladder to protamine sulfate induced a significant (p<0.05) decrease in bladder TEER and an increase in the translocation of FITC across the tissue compared to controls at 1 and 3 days. Colonic tissue from rats with enhanced bladder permeability exhibited a significant (p<0.05) decrease in TEER and increase in FITC when compared to untreated controls at all time points. Conversely, when colonic permeability was increased with TNBS, we observed an increase in bladder permeability in the absence of any changes to the bladder urothelium. Conclusions Changes in epithelial permeability may represent a novel mechanism for visceral organ crosstalk and may explain the overlapping symptomology of PBS and IBS. PMID:25776913
Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li
2012-03-14
To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.
Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li
2012-01-01
AIM: To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. METHODS: Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. RESULTS: Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. CONCLUSION: Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function. PMID:22416180
Zhou, Wenchang; Marinelli, Fabrizio; Nief, Corrine; Faraldo-Gómez, José D
2017-01-01
Pathological metabolic conditions such as ischemia induce the rupture of the mitochondrial envelope and the release of pro-apoptotic proteins, leading to cell death. At the onset of this process, the inner mitochondrial membrane becomes depolarized and permeable to osmolytes, proposedly due to the opening of a non-selective protein channel of unknown molecular identity. A recent study purports that this channel, referred to as Mitochondrial Permeability Transition Pore (MPTP), is formed within the c-subunit ring of the ATP synthase, upon its dissociation from the catalytic domain of the enzyme. Here, we examine this claim for two c-rings of different lumen width, through calculations of their ion conductance and selectivity based on all-atom molecular dynamics simulations. We also quantify the likelihood that the lumen of these c-rings is in a hydrated, potentially conducting state rather than empty or blocked by lipid molecules. These calculations demonstrate that the structure and biophysical properties of a correctly assembled c-ring are inconsistent with those attributed to the MPTP. DOI: http://dx.doi.org/10.7554/eLife.23781.001 PMID:28186490
ROS-activated calcium signaling mechanisms regulating endothelial barrier function.
Di, Anke; Mehta, Dolly; Malik, Asrar B
2016-09-01
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Loma, P; Guzman-Aranguez, A; Pérez de Lara, M J; Pintor, J
2015-02-01
Here, we have studied the effects of the dinucleotide P(1), P(4)-Di (adenosine-5') tetraphosphate (Ap4 A) on corneal barrier function conferred by the tight junction (TJ) proteins and its possible involvement in ocular drug delivery and therapeutic efficiency. Experiments in vitro were performed using human corneal epithelial cells (HCLEs) treated with Ap4 A (100 μM) for 5 min. Western blot analysis and transepithelial electrical resistance (TEER) were performed to study the TJ protein levels and barrier function respectively. Intracellular pathways involved were determined using an ERK inhibitor and P2Y(2) receptor siRNAs. In in vivo assays with New Zealand rabbits, TJ integrity was examined by zonula occludens-1 (ZO-1) staining. The hypotensive compound 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) was used to assess improved delivery, measuring its levels by HPLC and measuring intraocular pressure using 5-MCA-NAT, P2Y receptor antagonists and P2Y2 siRNAs. Two hours after Ap4 A pretreatment, TJ protein levels in HCLE cells were reduced around 40% compared with control. TEER values were significantly reduced at 2 and 4 h (68 and 52% respectively). TJ reduction and ERK activation were blocked by the ERK inhibitor U012 and P2Y(2) siRNAs. In vivo, topical application of Ap4 A disrupted ZO-1 membrane distribution. 5-MCA-NAT levels in the aqueous humour were higher when Ap4 A was previously instilled and its hypotensive effect was also increased. This action was reversed by P2Y receptor antagonists and P2Y(2) siRNA. Ap4 A increased corneal epithelial barrier permeability. Its application could improve ocular drug delivery and consequently therapeutic efficiency. © 2014 The British Pharmacological Society.
Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos
2013-02-01
Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime
2012-08-01
Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.
Stevens, Patrick R; Gawryluk, Jeremy W; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D
2014-01-01
HIV-1 infected individuals live longer but experience a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells lead to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat(1-72)-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND.
NASA Astrophysics Data System (ADS)
Chequer, L.; Russell, T.; Behr, A.; Genolet, L.; Kowollik, P.; Badalyan, A.; Zeinijahromi, A.; Bedrikovetsky, P.
2018-02-01
Permeability decline associated with the migration of natural reservoir fines impairs the well index of injection and production wells in aquifers and oilfields. In this study, we perform laboratory corefloods using aqueous solutions with different salinities in engineered rocks with different kaolinite content, yielding fines migration and permeability alteration. Unusual permeability growth has been observed at high salinities in rocks with low kaolinite concentrations. This has been attributed to permeability increase during particle detachment and re-attachment of already mobilised fines by electrostatic attraction to the rock in stagnant zones of the porous space. We refine the traditional model for fines migration by adding mathematical expressions for the particle re-attachment rate, particle detachment with delay relative to salinity decrease, and the attached-concentration-dependency of permeability. A one-dimensional flow problem that accounts for those three effects allows for an exact analytical solution. The modified model captures the observed effect of permeability increase at high water salinities in rocks with low kaolinite concentrations. The developed model matches the coreflooding data with high accuracy, and the obtained model coefficients vary within their usual intervals.
Belcaro, G; D'Aulerio, A; Rulo, A; Candiani, C
1988-01-01
A new system to study capillary permeability, the VSC (vacuum suction chamber) device has been developed to evaluate the variations of capillary permeability in postphlebitic limbs. The VSC device produces by negative pressure [obtained in a plastic chamber applied to the skin at the perimalleolar region] a wheal which disappears in normals in less than one hour. In twelve patients with moderate [superficial] venous hypertension and in twelve patients with postphlebitic limbs the time of disappearance of the wheals was significantly longer in comparison with ten normal limbs. There was also a significantly increased time of disappearance of the wheals in postphlebitic legs in comparison with those with superficial incompetence. The validation of the VSC technique with venous occlusion plethysmography (VOP) showed that the increase of time of disappearance of the wheals is well correlated with the increase of capillary permeability demonstrated by VOP. After 2 weeks treatment with Venoruton (at the dosage of 1000 mg t.i.d.) the time of disappearance of the wheal was significantly reduced in both groups of patients (while it was unchanged in normals). Laser-Doppler parameters used together with the VSC device to evaluate the microcirculatory changes associated with an altered capillary permeability also showed a significant improvement of the laser-Doppler parameters after treatment. In conclusion there is evidence by the VSC device that capillary permeability [which is abnormally increased] in chronic venous hypertension is improved [decreased] after treatment for two weeks with Venoruton. This study demonstrated also the efficacy of the VSC device to study capillary permeability and the effects of drugs active on capillary permeability.
Shalash, Ahmed O; Khalafallah, Nawal M; Molokhia, Abdulla M; Elsayed, Mustafa M A
2018-02-01
The permeability of a powder bed reflects its particle size distribution, shape, packing, porosity, cohesivity, and tensile strength in a manner relevant to powder fluidization. The relationship between the permeability and the performance of carrier-based dry powder inhalation (DPI) mixtures has, however, aroused controversy. The current study sought to gain new insights into the relationship and to explore its potential applications. We studied eight lactose materials as DPI carriers. The carriers covered a broad permeability range of 0.42-13.53 D and moreover differed in particle size distribution, particle shape, crystal form, and/or porosity. We evaluated the performance of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®, a model turbulent-shear inhaler, at a flow rate of 60 L/min. Starting from the high permeability side, the inhalation mixture performance increased as the carrier permeability decreased until optimum performance was reached at permeability of ~ 3.2 D. Increased resistance to air flow strengthens aerodynamic dispersion forces. The inhalation mixture performance then decreased as the carrier permeability further decreased. Very high resistance to air flow restricts powder dispersion. The permeability accounted for effects of carrier size, shape, and macroporosity on the performance. We confirmed the relationship by analysis of two literature permeability-performance datasets, representing measurements that differ from ours in terms of carrier grades, drug, technique used to determine permeability, turbulent-shear inhaler, and/or aerosolization flow rate. Permeability provides useful information that can aid development of DPI mixtures for turbulent-shear inhalers. A practical guidance is provided.
Permeability During Magma Expansion and Compaction
NASA Astrophysics Data System (ADS)
Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.
2017-12-01
Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raduha, S.; Butler, D.; Mozley, P. S.
Here, we examined the potential impact on CO 2 transport of zones of deformation bands in reservoir rock that transition to opening-mode fractures within overlying caprock. Sedimentological and petrophysical measurements were collected along an approximately 5 m × 5 m outcrop of the Slick Rock and Earthy Members of the Entrada Sandstone on the eastern flank of the San Rafael Swell, Utah, USA. Measured deformation band permeability (2 mD) within the reservoir facies is about three orders of magnitude lower than the host sandstone. Average permeability of the caprock facies (0.0005 mD) is about seven orders of magnitude lower thanmore » the host sandstone. Aperture-based permeability estimates of the opening-mode caprock fractures are high (3.3 × 10 7 mD). High-resolution CO 2–H 2O transport models incorporate these permeability data at the millimeter scale. We then varied fault properties at the reservoir/caprock interface between open fractures and deformation bands as part of a sensitivity study. Numerical modeling results suggest that zones of deformation bands within the reservoir strongly compartmentalize reservoir pressures largely blocking lateral, cross-fault flow of supercritical CO 2. Significant vertical CO 2 transport into the caprock occurred in some scenarios along opening-mode fractures. The magnitude of this vertical CO 2 transport depends on the small-scale geometry of the contact between the opening-mode fracture and the zone of deformation bands, as well as the degree to which fractures penetrate caprock. Finally, the presence of relatively permeable units within the caprock allows storage of significant volumes of CO 2, particularly when the fracture network does not extend all the way through the caprock.« less
Jemel, Ikram; Ii, Hiromi; Oslund, Rob C; Payré, Christine; Dabert-Gay, Anne-Sophie; Douguet, Dominique; Chargui, Khaoula; Scarzello, Sabine; Gelb, Michael H; Lambeau, Gérard
2011-10-21
Among mammalian secreted phospholipases A(2) (sPLA(2)s), group X sPLA(2) has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA(2) is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA(2) in HEK293 cells, which have been extensively used to analyze sPLA(2)-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA(2) inhibitors and protease inhibitors, we demonstrate that group X sPLA(2) is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA(2) inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA(2) maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion.
Raduha, S.; Butler, D.; Mozley, P. S.; ...
2016-06-18
Here, we examined the potential impact on CO 2 transport of zones of deformation bands in reservoir rock that transition to opening-mode fractures within overlying caprock. Sedimentological and petrophysical measurements were collected along an approximately 5 m × 5 m outcrop of the Slick Rock and Earthy Members of the Entrada Sandstone on the eastern flank of the San Rafael Swell, Utah, USA. Measured deformation band permeability (2 mD) within the reservoir facies is about three orders of magnitude lower than the host sandstone. Average permeability of the caprock facies (0.0005 mD) is about seven orders of magnitude lower thanmore » the host sandstone. Aperture-based permeability estimates of the opening-mode caprock fractures are high (3.3 × 10 7 mD). High-resolution CO 2–H 2O transport models incorporate these permeability data at the millimeter scale. We then varied fault properties at the reservoir/caprock interface between open fractures and deformation bands as part of a sensitivity study. Numerical modeling results suggest that zones of deformation bands within the reservoir strongly compartmentalize reservoir pressures largely blocking lateral, cross-fault flow of supercritical CO 2. Significant vertical CO 2 transport into the caprock occurred in some scenarios along opening-mode fractures. The magnitude of this vertical CO 2 transport depends on the small-scale geometry of the contact between the opening-mode fracture and the zone of deformation bands, as well as the degree to which fractures penetrate caprock. Finally, the presence of relatively permeable units within the caprock allows storage of significant volumes of CO 2, particularly when the fracture network does not extend all the way through the caprock.« less
Experimental study on the influence of slickwater on shale permeability
NASA Astrophysics Data System (ADS)
Liu, Zhonghua; Bai, Baojun; Zhang, Zheyu; Tang, Jing; Zeng, Shunpeng; Li, Xiaogang
2018-02-01
There are two diametrically opposite views of the influence of slickwater on shale permeability among scholars at home and abroad. We used the shale outcrops rock samples from the Lower Silurian Longmaxi Formation in Sichuan Basin. The permeability of these dry samples before and after immersion in different solution systems were tested by pulse attenuation method. The experimental results show that the impregnation of different slickwater components and standard salt solution can promote the increase of the permeability of shale samples. The stress sensitivity of shale samples after liquid immersion is medium weak to weak. The sample stress sensitivity is weak after soaked by the synergist solution and Drag reducing agent solution, and the sensitivity of the sample stress is medium weak after immersed by the standard saline solution, defoamer solution and antiswelling solution; The Ki/K0 of the shale sample after liquid immersion on σi/σ0 is consistent with the exponential stress sensitive evaluation model. With the increase of soaking time, the increase of sample permeability increases first and then decreases.
NASA Astrophysics Data System (ADS)
Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang
2018-06-01
The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.
England, Jacqueline R; Attiwill, Peter M
2007-08-01
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
Shi, Lingyan; Palacio-Mancheno, Paolo; Badami, Joseph; Shin, Da Wi; Zeng, Min; Cardoso, Luis; Tu, Raymond; Fu, Bingmei M
2014-01-01
Radioimmunotherapy using a radiolabeled monoclonal antibody that targets tumor cells has been shown to be efficient for the treatment of many malignant cancers, with reduced side effects. However, the blood–brain barrier (BBB) inhibits the transport of intravenous antibodies to tumors in the brain. Recent studies have demonstrated that focused ultrasound (FUS) combined with microbubbles (MBs) is a promising method to transiently disrupt the BBB for the drug delivery to the central nervous system. To find the optimal FUS and MBs that can induce reversible increase in the BBB permeability, we employed minimally invasive multiphoton microscopy to quantify the BBB permeability to dextran-155 kDa with similar molecular weight to an antibody by applying different doses of FUS in the presence of MBs with an optimal size and concentration. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a micro-grinder. About 5 minutes after applying the FUS on the thinned skull in the presence of MBs for 1 minute, TRITC (tetramethylrhodamine isothiocyanate)-dextran-155 kDa in 1% bovine serum albumin in mammalian Ringer’s solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump. Simultaneously, the temporal images were collected from the brain parenchyma ~100–200 μm below the pia mater. Permeability was determined from the rate of tissue solute accumulation around individual microvessels. After several trials, we found the optimal dose of FUS. At the optimal dose, permeability increased by ~14-fold after 5 minutes post-FUS, and permeability returned to the control level after 25 minutes. FUS without MBs or MBs injected without FUS did not change the permeability. Our method provides an accurate in vivo assessment for the transient BBB permeability change under the treatment of FUS. The optimal FUS dose found for the reversible BBB permeability increase without BBB disruption is reliable and can be applied to future clinical trials. PMID:25258533
NASA Astrophysics Data System (ADS)
Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie
2018-05-01
A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.
Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.
Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival
2016-10-10
To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.
PREFERENTIAL RADON TRANSPORT THROUGH HIGHLY PERMEABLE CHANNELS IN SOILS
The paper discusses preferential radon transport through highly permeable channels in soils. Indoor radon levels (that can pose a serious health risk) can be dramatically increased by air that is drawn into buildings through pipe penetrations that connect to permeable channels in...
Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.
Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X
2017-05-01
The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Oxygen, water, and sodium chloride transport in soft contact lenses materials.
Gavara, Rafael; Compañ, Vicente
2017-11-01
Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Xia; Fu, Lixia; Yan, Aihua; Guo, Fajun; Wu, Cong; Chen, Hong; Wang, Xinying; Lu, Ming
2018-02-01
Study on optimization of development well patterns is the core content of oilfield development and is a prerequisite for rational and effective development of oilfield. The study on well pattern optimization mainly includes types of well patterns and density of well patterns. This paper takes the Aer-3 fault block as an example. Firstly, models were built for diamond-shaped inverted 9-spot patterns, rectangular 5-spot patterns, square inverted 9-spot patterns and inverted 7-spot patterns under the same well pattern density to correlate the effect of different well patterns on development; secondly, comprehensive analysis was conducted to well pattern density in terms of economy and technology using such methods as oil reservoir engineering, numerical simulation, economic limits and economic rationality. Finally, the development mode of vertical well + horizontal well was presented according to the characteristics of oil reservoirs in some well blocks, which has realized efficient development of this fault block.
Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Nettles, A. T.
2001-01-01
Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.
NASA Astrophysics Data System (ADS)
Alekseev, D. A.; Gokhberg, M. B.
2018-05-01
A 2-D boundary problem formulation in terms of pore pressure in Biot poroelasticity model is discussed, with application to a vertical contact model mechanically excited by a lunar-solar tidal deformation wave, representing a fault zone structure. A problem parametrization in terms of permeability and Biot's modulus contrasts is proposed and its numerical solution is obtained for a series of models differing in the values of the above parameters. The behavior of pore pressure and its gradient is analyzed. From those, the electric field of the electrokinetic nature is calculated. The possibilities of estimation of the elastic properties and permeability of geological formations from the observations of the horizontal and vertical electric field measured inside the medium and at the earth's surface near the block boundary are discussed.
Electroformation of Janus and patchy capsules
NASA Astrophysics Data System (ADS)
Rozynek, Zbigniew; Mikkelsen, Alexander; Dommersnes, Paul; Fossum, Jon Otto
2014-05-01
Janus and patchy particles have designed heterogeneous surfaces that consist of two or several patches with different materials properties. These particles are emerging as building blocks for a new class of soft matter and functional materials. Here we introduce a route for forming heterogeneous capsules by producing highly ordered jammed colloidal shells of various shapes with domains of controlled size and composition. These structures combine the functionalities offered by Janus or patchy particles, and those given by permeable shells such as colloidosomes. The simple assembly route involves the synergetic action of electro-hydrodynamic flow and electro-coalescence. We demonstrate that the method is robust and straightforwardly extendable to production of multi-patchy capsules. This forms a starting point for producing patchy colloidosomes with domains of anisotropic chemical surface properties, permeability or mixed liquid-solid phase domains, which could be exploited to produce functional emulsions, light and hollow supra-colloidosome structures, or scaffolds.
Li+-Permeable Film on Lithium Anode for Lithium Sulfur Battery.
Yang, Yan-Bo; Liu, Yun-Xia; Song, Zhiping; Zhou, Yun-Hong; Zhan, Hui
2017-11-08
Lithium-sulfur (Li-S) battery is an important candidate for next-generation energy storage. However, the reaction between polysulfide and lithium (Li) anode brings poor cycling stability, low Coulombic efficiency, and Li corrosion. Herein, we report a Li protection technology. Li metal was treated in crown ether containing electrolyte, and thus, treated Li was further used as the anode in Li-S cell. Due to the coordination between Li + and crown ether, a Li + -permeable film can be formed on Li, and the film is proved to be able to block the detrimental reaction between Li anode and polysulfide. By using the Li anode pretreated in 2 wt % B15C5-containing electrolyte, Li-S cell exhibits significantly improved cycling stability, such as∼900 mAh g -1 after 100 cycles, and high Coulombic efficiency of>93%. In addition, such effect is also notable when high S loading condition is applied.
Screening for Selective Protein Inhibitors by Using the IANUS Peptide Array.
Erdmann, Frank; Prell, Erik; Jahreis, Günther; Fischer, Gunter; Malešević, Miroslav
2018-04-16
Finding new road blacks: A peptidic inhibitor of calcineurin (CaN)-mediated nuclear factor of activated T cells (NFAT) dephosphorylation, which is developed through a template-assisted IANUS (Induced orgANisation of strUcture by matrix-assisted togethernesS) peptide array, is cell permeable and able to block the translocation of green fluorescent protein-NFAT fusion protein (GFP-NFAT) into the nucleus after stimulation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of abnormal hemoglobins on the membrane regulation of cell hydration.
Clark, M R; Shohet, S B
Several hemoglobinopathies are associated with abnormalities in the permeability of the red cell membrane, in some cases leading to permanent alterations of the intracellular milieu. Homozygous sickle cell disease is the most thoroughly studied example. Deoxygenation of sickle cells causes a transient increase in the permeability to monovalent cations and Ca; prolonged deoxygenation can lead to a permanent accumulation of Ca and loss of total cations and water. Although the mechanisms for the permeability changes are not yet defined, mechanical stress on the membrane, with subsequent damages by excess Ca or membrane-associated hemoglobin have been suggested to play a role. Loss of cell water and increase in mean cell hemoglobin concentration causes massive reduction of cell deformability in the oxygenated state and makes the hemoglobin more likely to undergo sickling because of the strong concentration dependence of the sickling process. Limited evidence suggests the occurrence of permeability defects in other hemoglobinopathies and the thalassemias. The suggested alterations range from a slight increase in K permeability of incubated thalassemia cells to substantial dehydration of cells from patients with homozygous hemoglobin C disease. Oxidative damage to the membrane, involving an abnormal hemoglobin-membrane association, may underly the permeability changes in these cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.
The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport inmore » sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.« less
Brunstein, Flavia; Hoving, Saske; Seynhaeve, Ann L B; van Tiel, Sandra T; Guetens, Gunther; de Bruijn, Ernst A; Eggermont, Alexander M M; ten Hagen, Timo L M
2004-11-03
We have previously shown how tumor response of isolated limb perfusion (ILP) with melphalan was improved when tumor necrosis factor alpha (TNF-alpha) was added. Taking into account that other vasoactive drugs could also improve tumor response to ILP, we evaluated histamine (Hi) as an alternative to TNF-alpha. We used a rat ILP model to assess the combined effects of Hi and melphalan (n = 6) on tumor regression, melphalan uptake (n = 6), and tissue histology (n = 2) compared with Hi or melphalan alone. We also evaluated the growth of BN-175 tumor cells as well as apoptosis, necrosis, cell morphology, and paracellular permeability of human umbilical vein endothelial cells (HUVECs) after Hi treatment alone and in combination with melphalan. The antitumor effect of the combination of Hi and melphalan in vivo was synergistic, and Hi-dependent reduction in tumor volume was blocked by H1 and H2 receptor inhibitors. Tumor regression was observed in 66% of the animals treated with Hi and melphalan, compared with 17% after treatment with Hi or melphalan alone. Tumor melphalan uptake increased and vascular integrity in the surrounding tissue was reduced after ILP treatment with Hi and melphalan compared with melphalan alone. In vitro results paralleled in vivo results. BN-175 tumor cells were more sensitive to the cytotoxicity of combined treatment than HUVECs, and Hi treatment increased the permeability of HUVECs. Hi in combination with melphalan in ILP improved response to that of melphalan alone through direct and indirect mechanisms. These results warrant further evaluation in the clinical ILP setting and, importantly, in organ perfusion.
NASA Astrophysics Data System (ADS)
Marr, Michael; Kesler, Olivera
2012-12-01
Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.
Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.
Monaghan-Benson, Elizabeth; Burridge, Keith
2009-09-18
Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.
Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas
2015-01-01
Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773
Hałasa, Maciej; Maciejewska, Dominika; Baśkiewicz-Hałasa, Magdalena; Machaliński, Bogusław; Safranow, Krzysztof; Stachowska, Ewa
2017-04-08
Increased intestinal permeability has been implicated in various pathologies, has various causes, and can develop during vigorous athletic training. Colostrum bovinum is a natural supplement with a wide range of supposed positive health effects, including reduction of intestine permeability. We assessed influence of colostrum supplementation on intestinal permeability related parameters in a group of 16 athletes during peak training for competition. This double-blind placebo-controlled study compared supplementation for 20 days with 500 mg of colostrum bovinum or placebo (whey). Gut permeability status was assayed by differential absorption of lactulose and mannitol (L/M test) and stool zonulin concentration. Baseline L/M tests found that six of the participants (75%) in the colostrum group had increased intestinal permeability. After supplementation, the test values were within the normal range and were significantly lower than at baseline. The colostrum group Δ values produced by comparing the post-intervention and baseline results were also significantly lower than the placebo group Δ values. The differences in stool zonulin concentration were smaller than those in the L/M test, but were significant when the Δ values due to intervention were compared between the colostrum group and the placebo group. Colostrum bovinum supplementation was safe and effective in decreasing of intestinal permeability in this series of athletes at increased risk of its elevation.
Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois
2015-12-18
Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Alterations in Intestinal Permeability After Thermal Injury,
1992-01-01
intestinal permeability has been documented in the infected group. Our finding of increased intestinal many clinical states, including celiac disease ...Crohn’s permeability before the episode of infection suggests, but disease , and other intestinal mucosal disorders.6,7 It was does not prove, a causal...permeability to sugars in patients with Crohn’s disease ofresult in endotoxemia only in those patients who develop the terminal ileus and colon. Digestion
Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel
2008-05-15
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.
Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.
2010-01-01
In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451
Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites
NASA Astrophysics Data System (ADS)
Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.
2012-03-01
This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.
NASA Astrophysics Data System (ADS)
Lamy-Chappuis, B.; Yardley, B.; Grattoni, C.
2013-12-01
Brine acidification following CO2 dissolution will initiate fluid-rock interactions that could significantly modify porosity, permeability and therefore the capacity and injectivity of a reservoir. We have investigated experimentally the dissolution of calcite in sandstone cores injected with CO2-saturated brine, and the effect this has on permeability. A series of CT (Computerized Tomography) - monitored experiments were conducted on a Jurassic sandstone (porosity = 30%, permeability = 10mD, calcite content = 5% in the form of dispersed shell fragments). Brine saturated with CO2 at pressures up to 1 MPa was injected into 5cm long, 3.75cm diameter cores at a flow rate of 1 ml/min and room temperature. The data showed quasi-instantaneous dissolution of the calcite even at low CO2 concentrations (0.15 Molar) and high fluid interstitial velocities (1mm/s), with the migration of a calcite dissolution front through the core recorded by successive CT scans. The resulting permeability increase was 60 - 80% whereas the predicted permeability change for the observed increase in porosity is only 10 - 20% using the Kozeny-Carman relationship. This result is particularly significant because the effect of porosity increase on permeability is usually modelled with this relationship, irrespective of the mechanism of porosity increase. Micro-CT scans (pixel resolution: 2.5 microns) of unreacted cores were used to generate 3D porosity models with calcite either treated as solid (pre-reaction model) or converted to pores (post-reaction model). FLUENT simulations performed using these models predicted the observed large relative changes in permeability with calcite dissolution but overestimated absolute permeability by an order of magnitude. This was probably due to the scan resolution being too coarse to correctly model pore throats. The observed large change in permeability for a small change in porosity may have resulted from increase in connectivity, focused dissolution at the pore throats or reduction in tortuosity. SEM (Scanning Electron Microscope) imaging demonstrates dissolution of relatively large isolated shell fragments but this had little effect on the overall connectivity. No calcite cement was observed at the pore throats in the unreacted specimens. The micro-CT scans indicate a modest tortuosity decrease from 2.00 to 1.85 when calcite is dissolved, but this change in tortuosity results from the opening of new flow paths as the dissolution of discrete grains opened new flow paths and created shortcuts, not from changes to the sinuosity of existing pathways. We suggest that the marked discrepancy in the effect of calcite dissolution on permeability between our experimental data and standard models arises because of the very different way in which the porosity is increased (new pathways rather than inflation). While our results cast doubt on the general applicability of standard models for porosity-permeability relationships for situations in which porosity changes by grain-specific reactions, it is encouraging that pore scale modelling is able to reproduce the experimental relationships.
Effect of lactobacilli on paracellular permeability in the gut.
Ahrne, Siv; Hagslatt, Marie-Louise Johansson
2011-01-01
Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.
Modelling of Longwall Mining-Induced Strata Permeability Change
NASA Astrophysics Data System (ADS)
Adhikary, D. P.; Guo, H.
2015-01-01
The field measurement of permeability within the strata affected by mining is a challenging and expensive task, thus such tests may not be carried out in large numbers to cover all the overburden strata and coal seams being affected by mining. However, numerical modelling in conjunction with a limited number of targeted field measurements can be used efficiently in assessing the impact of mining on a regional scale. This paper presents the results of underground packer testing undertaken at a mine site in New South Wales in Australia and numerical simulations conducted to assess the mining-induced strata permeability change. The underground packer test results indicated that the drivage of main headings (roadways) had induced a significant change in permeability into the solid coal barrier. Permeability increased by more than 50 times at a distance of 11.2-11.5 m from the roadway rib into the solid coal barrier. The tests conducted in the roof strata above the longwall goaf indicated more than 1,000-fold increase in permeability. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at the 8.2-8.5 m test section in the solid coal barrier showed a decline in permeability value as compared to that at the 11.2-11.5 m section contrary to the expectations. It is envisaged that a number of factors during the tests might have had affected the measured values of permeability: (a) swelling and smearing of the borehole, possibly lowering the permeability values; (b) packer bypass by larger fractures; (c) test section lying in small but intact (without fractures) rock segment, possibly resulting in lower permeability values; and (d) test section lying right at the extensive fractures, possibly measuring higher permeability values. Once the anomalous measurement data were discarded, the numerical model results could be seen to match the remaining field permeability measurement data reasonably well.
NASA Astrophysics Data System (ADS)
Negron, L. M.; Clague, J. W.; Gorski, D.; Amaya, M. A.; Pingitore, N. E.
2013-12-01
Millimeter- and micrometer-scale permeability of fine-grained igneous rocks has generated limited research interest. Nonetheless, the scale and distribution of such micro-permeability determines fluid penetration and pathways, parameters that define both the ability to heap leach a rock and the optimal grain size for such an operation. Texas Rare Earth Resources is evaluating the possibility of heap leaching of yttrium and heavy rare earth elements (YHREE) from the peraluminous rhyolite laccolith that forms one-mile-diameter Round Top Mountain. The YHREEs in this immense, surface-exposed deposit (minimum 1.6 billion tons, Texas Bureau Economic Geology) are dilute and diffuse, suggesting leaching as the best option for recovery. The REE grade is 0.05% and YHREEs comprise more than 70% of the total REE content. The YHREEs are hosted exclusively in micron-scale yttrofluorite grains, which proved soluble in dilute sulfuric acid. Laboratory experiments showed YHREE recoveries of up to 90%. Within limits, recoveries decrease with larger grain sizes, and increase with acid strength and exposure time. Our research question centers on dissolution effectiveness: Is YHREE recovery, relative to grain size, limited by (1) diffusion time of acid into, and dissolved solids, including YHREEs, out of the micro-permeability paths inherent in the rock particles; (2) the effective lengths of the natural micro-permeability paths in the rock; or (3) the putative role of the acid in dissolving new micro-paths into the grains? The maximum grain size should not exceed twice the typical path length (unless acid creates new paths), lest YHREEs in the core of a larger grain than that not be reached by acid. If instead diffusion time is limiting, longer leach time may prove effective. Rather than perform an extensive and expensive series of laboratory leaching experiments--some of which would be several months in duration--to determine optimal grain size, we developed a technique to efficiently determine the limits of penetration of water into the rhyolite. We cut parallel-sided slabs of Round Top rhyolite at staged thickness up to 10 mm. We then wet one side and view the opposite side over time under UV light to detect breakthrough of the fluorescein dye. Because of its extremely low visual detection limits, well below the ppm level, the dye has been widely used in biochemical research, as a tracer in surface and ground water studies, in delineating invisible cracks in such structural material as motor blocks, and in detecting corneal abrasions. We have been successful in detecting breakthrough at different rhyolite thicknesses. Continuing studies focus on mapping of the 2-dimensional distribution of the permeability via hand lens and low-power microscope; use of visible light dyes; and examination of specimens pre- and post-acid leaching to determine whether acid exposure produced significant new micro-permeability.
Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J
2010-04-01
Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.
Beig, Avital; Miller, Jonathan M; Dahan, Arik
2013-11-01
The purpose of this study was to investigate the interaction of 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 2,6-dimethyl-β-cyclodextrin (DMβCD) with the lipophilic drug nifedipine and to investigate the subsequent solubility-permeability interplay. Solubility curves of nifedipine with HPβCD and DMβCD in MES buffer were evaluated using phase solubility methods. Then, the apparent permeability of nifedipine was investigated as a function of increasing HPβCD/DMβCD concentration in the hexadecane-based PAMPA model. The interaction with nifedipine was CD dependent; significantly higher stability constant was obtained for DMβCD in comparison with HPβCD. Moreover, nifedipine displays different type of interaction with these CDs; a 1:1 stoichiometric inclusion complex was apparent with HPβCD, while 1:2 stoichiometry was apparent for DMβCD. In all cases, decreased apparent intestinal permeability of nifedipine as a function of increasing CD level and nifedipine apparent solubility was obtained. A quasi-equilibrium mass transport analysis was developed to explain this solubility-permeability interplay; the model enabled excellent quantitative prediction of nifedipine's permeability as a function of CD concentrations. This work demonstrates that when using CDs in solubility-enabling formulations, a trade-off exists between solubility increase and permeability decrease that must not be overlooked. This trade-off was found to be independent of the type of CD-drug interaction. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. Copyright © 2013 Elsevier B.V. All rights reserved.
Unconventional Tight Reservoirs Characterization with Nuclear Magnetic Resonance
NASA Astrophysics Data System (ADS)
Santiago, C. J. S.; Solatpour, R.; Kantzas, A.
2017-12-01
The increase in tight reservoir exploitation projects causes producing many papers each year on new, modern, and modified methods and techniques on estimating characteristics of these reservoirs. The most ambiguous of all basic reservoir property estimations deals with permeability. One of the logging methods that is advertised to predict permeability but is always met by skepticism is Nuclear Magnetic Resonance (NMR). The ability of NMR to differentiate between bound and movable fluids and providing porosity increased the capability of NMR as a permeability prediction technique. This leads to a multitude of publications and the motivation of a review paper on this subject by Babadagli et al. (2002). The first part of this presentation is dedicated to an extensive review of the existing correlation models for NMR based estimates of tight reservoir permeability to update this topic. On the second part, the collected literature information is used to analyze new experimental data. The data are collected from tight reservoirs from Canada, the Middle East, and China. A case study is created to apply NMR measurement in the prediction of reservoir characterization parameters such as porosity, permeability, cut-offs, irreducible saturations etc. Moreover, permeability correlations are utilized to predict permeability. NMR experiments were conducted on water saturated cores. NMR T2 relaxation times were measured. NMR porosity, the geometric mean relaxation time (T2gm), Irreducible Bulk Volume (BVI), and Movable Bulk Volume (BVM) were calculated. The correlation coefficients were computed based on multiple regression analysis. Results are cross plots of NMR permeability versus the independently measured Klinkenberg corrected permeability. More complicated equations are discussed. Error analysis of models is presented and compared. This presentation is beneficial in understanding existing tight reservoir permeability models. The results can be used as a guide for choosing the best permeability estimation model for tight reservoirs data.
Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei
2015-01-01
Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005
Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K
2017-09-15
Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion and mass transfer limitations, i.e., the exchange of mass between the permeable matrix and the low permeability inclusions. We illustrate the physical meaning of the method and we show how the block longitudinal dispersivity approaches, under certain conditions, the Scheidegger limit at large Péclet numbers. Lastly, we discuss the potential and limitations of the method to accurately describe dispersion in solute transport applications in heterogeneous aquifers. Copyright © 2017. Published by Elsevier B.V.
Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W
2015-03-01
Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Atrial natriuretic factor increases vascular permeability
NASA Technical Reports Server (NTRS)
Lockette, Warren; Brennaman, Bruce
1990-01-01
An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). In this study, it was determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of (I-125)-albumin and (C-14)-dextran of similar molecular size. Blood pressure was monitored, and serial determinations of hematocrits were made. Animals infused with 1.0 microg/kg per min ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of (I-125)-albumin, but not (C-14)-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.
NASA Astrophysics Data System (ADS)
Gehne, Stephan; Benson, Philip M.
2017-08-01
Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the "seasoning" process often used in dynamic reservoir extraction.
Improved Thermoplastic/Iron-Particle Transformer Cores
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min
2004-01-01
A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to the pores in the specimens. The maximum relative permeabilities of cores made without annealing ranged from 30 to 110, while those of cores made with annealing ranged from 900 to 1,400. However, the greater permeabilities of the annealed specimens were not associated with noticeably greater densities. The major practical result of the investigation was the discovery of an optimum distribution of iron-particle sizes: It was found that eddy-current losses in the molded cores were minimized by using 100 mesh (corresponding to particles with diameters less than or equal to 100 m) iron particles. The effect of optimization of particle sizes on eddy-current losses is depicted in the figure.
NASA Astrophysics Data System (ADS)
Chevalier, Laure; Collombet, Marielle; Pinel, Virginie
2017-03-01
Understanding magma degassing evolution during an eruption is essential to improving forecasting of effusive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases, inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma porosity and permeability. Magma flow evolution is associated with ground deflation of a few μrad in the near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy flow model is used to study the impact of pressure and permeability conditions on gas flow in the conduit and surrounding rock. We show that dome permeability has almost no influence on magma degassing. However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.
Improved Tumor Targeting of Polymer-based Nanovesicles Using Polymer-Lipid Blends
Cheng, Zhiliang; Elias, Drew R.; Kamat, Neha P.; Johnston, Eric D.; Poloukhtine, Andrei; Popik, Vladimir; Hammer, Daniel A.; Tsourkas, Andrew
2011-01-01
Block copolymer-based vesicles have recently garnered a great deal of interest as nanoplatforms for drug delivery and molecular imaging applications due to their unique structural properties. These nanovesicles have been shown to direct their cargo to disease sites either through enhanced permeability and retention or even more efficiently via active targeting. Here we show that the efficacy of nanovesicle targeting can be significantly improved when prepared from polymer-lipid blends compared with block copolymer alone. Polymer-lipid hybrid nanovesicles were produced from the aqueous co-assembly of the diblock copolymer, poly(ethylene oxide)-block-polybutadiene (PEO-PBD), and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC). The PEG-based vesicles, 117 nm in diameter, were functionalized with either folic acid or anti-HER2/neu affibodies as targeting ligands to confer specificity for cancer cells. Our results revealed that nanovesicles prepared from polymer-lipid blends led to significant improvement in cell binding compared to nanovesicles prepared from block copolymer alone in both in vitro cell studies and murine tumor models. Therefore, it is envisioned that nanovesicles composed of polymer-lipid blends may constitute a preferred embodiment for targeted drug delivery and molecular imaging applications. PMID:21899335
USDA-ARS?s Scientific Manuscript database
To determine gastrointestinal (GI) permeability and fecal calprotectin concentration in children 7 to 10 years of age with functional abdominal pain and irritable bowel syndrome (FAP/IBS) versus control subjects and ascertain potential relationships with pain symptoms and stooling, GI permeability a...
The investigation of parachute fabric permeability under an unsteady pressure differential
NASA Astrophysics Data System (ADS)
Rondeau, Nichole C.
An apparatus for assessing permeability of textiles subjected to time-varying pressure differentials is presented. A Computer Numerically Controlled Piston Permeability Apparatus (CNC-PPA) that can control the volume flow rate through a fabric has been designed and built. This test device has been developed in an effort to improve the understanding and design choices for aerodynamic decelerators. Preliminary results for a low permeability fabric (PIA-C-44378, Type IV) under both steady and unsteady loads are presented. The results from this investigation do indicate a small effect of unsteady pressure differential on the fabric permeability. The fabric permeability is slightly higher than the static permeability when the pressure differential is increasing with respect to time and the opposite is true when the pressure differential is decreasing. This change in permeability is more pronounced as the pressure is higher and the pressure changes more rapidly with respect to time, suggesting dynamic permeability likely affects highly unsteady phenomena such as parachute opening.
Advanced Materials for PEM-Based Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. McGrath; Donald G. Baird; Michael von Spakovsky
2005-10-26
Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due tomore » their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.« less
2012-02-01
to HBMEC showed increase in ROS levels as compared to control, and this increased in ROS formation was abrogated by the antioxidant uric acid , UA...in HBMEC permeability was observed by ROS and these changes were inhibited in the presence of UA antioxidant, uric acid , indicating the involvement
Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuon, S R; Misencik, J A
1981-01-01
High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of thesemore » gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.« less
Craven, Melanie; Chandler, Marge L; Steiner, Jörg M; Farhadi, Ashkan; Welsh, Elizabeth; Pratschke, Kathryn; Shaw, Darren J; Williams, David A
2007-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently prescribed to dogs for their analgesic, antipyretic, and anti-inflammatory properties. Their beneficial actions can be offset by gastrointestinal (GI) toxicosis. Endoscopy has traditionally been employed to detect GI lesions, but alterations in GI permeability precede the development of mucosal damage. Carprofen and meloxicam alter GI permeability and mucosal absorptive capacity of dogs. Twenty adult dogs treated with an NSAID for >7 days were evaluated by permeability tests while receiving either carprofen (10 dogs) or meloxicam (10 dogs). Prospective, longitudinal observational study. A 6-sugar permeability test (sucrose, lactulose, rhamnose, 3-O-methyl-D-glucose, D-xylose, and sucralose) was performed on the day before NSAID treatment, and after 3 and 8 days of treatment. There were no significant differences in the urinary recovery ratios of lactulose: rhamnose, D-xylose: 3-O-methyl-D-glucose, or sucralose recovery within either group at any time during the study. Sucrose permeability in the meloxicam group did not alter significantly over time. However, sucrose permeability in the carprofen group decreased significantly by day 3 (P = .049) and increased again by day 8 (P = .049), to a level that was not significantly different to permeability before treatment (P = .695). The absence of increased GI permeability and diminished mucosal absorptive capacity in this group of dogs does not support the development of acute GI toxicosis during treatment with either meloxicam or carprofen.
VEGF increases paracellular permeability in brain endothelial cells via upregulation of EphA2.
Miao, Ziwei; Dong, Yanbin; Fang, Wengang; Shang, Deshu; Liu, Dongxin; Zhang, Ke; Li, Bo; Chen, Yu-Hua
2014-05-01
Neurological disorders are associated with an increase in the permeability of human brain microvascular endothelial cells (HBMEC). Our previous findings have indicated that EphA2 could increase the permeability of HBMEC. Recent evidence has linked EphA2 and vascular endothelial growth factor (VEGF) to abnormalities in the vascular response. However, it is unclear whether EphA2 is involved in the VEGF-induced changes in the permeability of HBMEC. Here, changes in permeability were determined by measuring transendothelial electrical resistance (TEER) and the flux of FITC-dextran. We found that knockdown of EphA2 in HBMEC abolished the VEGF-induced reduction in TEER and increase in flux of fluorescent dextran. Moreover, VEGF-induced redistribution of ZO-1 and the recruitment of detergent-soluble occludin and claudin-5 were also prevented. Further results showed that VEGF increased EphA2 expression in a time- and dose-dependent manner, which was inhibited by a neutralizing antibody against VEGFR2 or SU1498. VEGF-induced EphA2 expression was suppressed in the brain endothelium following treatments with the PI3K inhibitor LY294002, Akt inhibitor or transfection with the dominant-negative PI3K mutants (Δp110). Similar results were obtained when ERK1/2 activation was inhibited by PD98059 or ERK1/2 siRNA transfection. Our data suggest that VEGF upregulates the expression of EphA2 in HBMEC through binding to VEGFR2 and subsequently activating the intracellular PI3K/Akt and ERK1/2 signaling pathways, which contribute to an increase in paracellular permeability. These data reveal a novel role for VEGF as a regulator of EphA2 expression in the brain endothelial cells and provide insights into the molecular mechanisms of VEGF-mediated changes in paracellular permeability. Copyright © 2014 Wiley Periodicals, Inc.
Permeability analysis of Asbuton material used as core layers of water resistance in the body of dam
NASA Astrophysics Data System (ADS)
Rahim, H.; Tjaronge, M. W.; Thaha, A.; Djamaluddin, R.
2017-11-01
In order to increase consumption of the local materials and national products, large reserves of Asbuton material about 662.960 million tons in the Buton Islands became an alternative as a waterproof core layer in the body of dam. The Asbuton material was used in this research is Lawele Granular Asphalt (LGA). This study was an experimental study conducted in the laboratory by conducting density testing (content weight) and permeability on Asbuton material. Testing of the Asbuton material used Falling Head method to find out the permeability value of Asbuton material. The data of test result to be analyzed are the relation between compaction energy and density value also relation between density value and permeability value of Asbuton material. The result shows that increases the number of blow apply to the Asbuton material at each layer will increase the density of the Asbuton material. The density value of Asbuton material that satisfies the requirements for use as an impermeable core layer in the dam body is 1.53 grams/cm3. The increase the density value (the weight of the contents) of the Asbuton material will reduce its permeability value of the Asbuton material.
Yu, H; Xue, Y; Wang, P; Liu, X; Ma, J; Zheng, J; Li, Z; Li, Z; Cai, H; Liu, Y
2017-01-01
Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood–tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C–X–C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma. PMID:28287613
NASA Astrophysics Data System (ADS)
Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.
2018-03-01
In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.
Abbott, G W
2014-02-15
Unanticipated complexity of drug-target interactions creates a headache for those attempting to rationalize and create simple models of antiarrhythmic action, but can also introduce opportunities for increased drug specificity, or for potentially advantageous spatial and temporal variation in drug effects. The newest findings reported by Kisselbach et al. in this issue are a case in point. Building upon previous pioneering work demonstrating that neuronal K 2P 2.1 potassium-selective "background" channels can become permeable to sodium ions depending upon alternative translation initiation (ATI) (Thomas et al., 2008), the Thomas lab now shows that ATI of K 2P 2.1 and K 2P 10.1, which are also expressed in the heart, can cause a fivefold shift in sensitivity to block by the β-receptor (and potassium channel) antagonist, carvedilol (Kisselbach et al., 2014). This article is protected by copyright. All rights reserved.
D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V
2011-01-01
p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473
Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon
2016-03-08
A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jiahui; Liu, Libo; Chao, Shuo; Liu, Yunhui; Liu, Xiaobai; Zheng, Jian; Chen, Jiajia; Gong, Wei; Teng, Hao; Li, Zhen; Wang, Ping; Xue, Yixue
2017-01-01
This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB) by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs) by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II) significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1, occludin and claudin-5, and thereby increasing the permeability of BTB. The results can provide a new strategy for the comprehensive treatment of glioma. PMID:29311822
Water permeability is a measure of severity in acute appendicitis.
Pini, Nicola; Pfeifle, Viktoria A; Kym, Urs; Keck, Simone; Galati, Virginie; Holland-Cunz, Stefan; Gros, Stephanie J
2017-12-01
Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.
Permeability of gypsum samples dehydrated in air
NASA Astrophysics Data System (ADS)
Milsch, Harald; Priegnitz, Mike; Blöcher, Guido
2011-09-01
We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.
Effect of Lactobacilli on Paracellular Permeability in the Gut
Ahrne, Siv; Hagslatt, Marie-Louise Johansson
2011-01-01
Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077
The effects of hypoglycemic and alcoholic coma on the blood-brain barrier permeability
Yorulmaz, Hatice; Seker, Fatma Burcu; Oztas, Baria
2011-01-01
In this investigation, the effects of hypoglycemic coma and alcoholic coma on the blood-brain barrier (BBB) permeability have been compared. Female adult Wistar albino rats weighing 180-230 g were divided into three groups: Control group (n=8), Alcoholic Coma Group (n=18), and Hypoglycemic Coma group (n=12). The animals went into coma approximately 3-4 hours after insulin administration and 3-5 minutes after alcohol administration. Evans blue (4mL/kg) was injected intravenously as BBB tracer. It was observed that the alcoholic coma did not significantly increase the BBB permeability in any of the brain regions when compared to control group. Changes in BBB permeability were significantly increased by the hypoglycemic coma in comparison to the control group values (p<0.01). Our findings suggest that hypoglycemic and alcoholic coma have different effects on the BBB permeability depending on the energy metabolism. PMID:21619558
Polymer as Permeability Modifier in Porous Media
NASA Astrophysics Data System (ADS)
Parsa, S.; Weitz, D.
2017-12-01
Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.
Use of Ultrasound to Improve the Effectiveness of a Permeable Treatment Wall
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Reinhart, Debra R. (Inventor); Ruiz, Nancy (Inventor)
2000-01-01
A method for increasing the effectiveness of a permeable treatment wall is described. The method includes the introduction of ultrasonic radiation in or near the wall. A permeable treatment wall is also described which has an ultrasonic radiation generating transducer in or near the wall. Permeable treatment walls are described as having either a well vertically extending into the wall, or a rod vertically extending into the treatment wall. Additionally, a method for adapting a permeable treatment wall to allow for the introduction of ultrasonic radiation in or near the wall is described.
Permeability-Porosity Relationships of Subduction Zone Sediments
NASA Astrophysics Data System (ADS)
Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.
2008-12-01
Permeability-porosity relationships for sediments from Northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on their sediment type and grain size distribution. Greater correlation was observed between permeability and porosity for siliciclastic sediments, diatom oozes, and nannofossil chalk than for nannofossil oozes. For siliciclastic sediments, grouping of sediments by clay content yields relationships that are generally consistent with results from other marine settings and suggest decreasing permeability for a given porosity as clay content increases. Correction of measured porosities for smectite content generally improves the quality of permeability-porosity relationships. The relationship between permeability and porosity for diatom oozes may be controlled by the amount of clay present in the ooze, causing diatom oozes to behave similarly to siliciclastic sediments. For a given porosity the nannofossil oozes have higher permeability values by 1.5 orders of magnitude than the siliciclastic sediments. However, the use of a permeability-porosity relation may not be appropriate for unconsolidated carbonates such as nannofossil oozes. This study provided insight to the effects of porosity correction for smectite, variations in lithology and grain size in permeability-porosity relationships. However, further progress in delineating controls on permeability will require more careful and better documented permeability tests on characterized samples.
Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun
2017-07-01
Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P < 0.001), increased ( P < 0.001) permeability at 6 h, and downregulated ( P < 0.05) TJ protein zonula occludens (ZO)-1 and occludin by 104-123%, as well as Toll-like receptor 2 and PKCζ by 35.1% and 75.2%, respectively. Compared with S. typhimurium- challenged cells, 50 and 100 μM Zn improved TEER by 26.3-60.9% at 4-6 h ( P < 0.001) and decreased ( P < 0.001) permeability and bacterial invasion at 6 h. A total of 100 μM Zn increased ZO-1, occludin, GPR39, and PKCζ 0.72- to 1.34-fold ( P < 0.05); however, 50 μM Zn did not affect ZO-1 or occludin ( P > 0.1). Silencing GPR39 decreased ( P < 0.05) zinc-activated PKCζ and blocked ( P < 0.05) the promotion of zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.
The Influence of Glutamate on Axonal Compound Action Potential In Vitro.
Abouelela, Ahmed; Wieraszko, Andrzej
2016-01-01
Background Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.
Physiological barriers to the oral delivery of curcumin.
Berginc, K; Trontelj, J; Basnet, N Skalko; Kristl, A
2012-06-01
Curcumin, a principal component from Curcuma longa, with antioxidant and anti-inflammatory activities was proposed as a potential candidate for the preventation and/or treatment of cancer and chronic diseases. However, curcumin could not achieve its expected therapeutic outcome in clinical trials due to its low solubility and poor bioavailability. The actual intestinal physiological barriers limiting curcumin absorption after oral administration have not been fully investigated. To identify the main barriers curtailing its absorption, in vitro permeability of curcumin and flux of its glucuronide were monitored in rat jejunum and Transwell grown Caco-2 cells. Curcumin was more permeable under acidic conditions, but the permeability was substantially below the permeability of highly permeable standards. Its efflux could not be inhibited by specific Pgp and MRP inhibitors. BCRP was found to participate in curcumin transport, but the Organic Anion Transporting Polypeptide (OATP) did not. The permeability of curcumin significantly increased when the structure of mucus was compromised. The inhibitor of curcumin metabolism, piperin, failed to act as a permeability enhancer. Piperin inhibited Pgp and MRP transporters and decreased the amount of glucuronide transported back into the intestine. Inclusion of piperin in curcumin-containing formulations is highly recommended as to inhibit curcumin glucuronidation and to increase the transport of formed glucuronides into the plasma, therefore increasing the probability of glucuronide distribution into target tissue and inter-convertion to curcumin. It would also be beneficial, if curcumin delivery systems could reversibly compromise the mucous integrity to minimize the non-specific binding of curcumin to its constituents.
Stender, Michael E; Regueiro, Richard A; Ferguson, Virginia L
2017-02-01
The changes experienced in synovial joints with osteoarthritis involve coupled chemical, biological, and mechanical processes. The aim of this study was to investigate the consequences of increasing permeability in articular cartilage (AC), calcified cartilage (CC), subchondral cortical bone (SCB), and subchondral trabecular bone (STB) as observed with osteoarthritis. Two poroelastic finite element models were developed using a depth-dependent anisotropic model of AC with strain-dependent permeability and poroelastic models of calcified tissues (CC, SCB, and STB). The first model simulated a bone-cartilage unit (BCU) in uniaxial unconfined compression, while the second model simulated spherical indentation of the AC surface. Results indicate that the permeability of AC is the primary determinant of the BCU's poromechanical response while the permeability of calcified tissues exerts no appreciable effect on the force-indentation response of the BCU. In spherical indentation simulations with osteoarthritic permeability properties, fluid velocities were larger in magnitude and distributed over a smaller area compared to normal tissues. In vivo, this phenomenon would likely lead to chondrocyte death, tissue remodeling, alterations in joint lubrication, and the progression of osteoarthritis. For osteoarthritic and normal tissue permeability values, fluid flow was predicted to occur across the osteochondral interface. These results help elucidate the consequences of increases in the permeability of the BCU that occur with osteoarthritis. Furthermore, this study may guide future treatments to counteract osteoarthritis.
De Bock, Marijke; Culot, Maxime; Wang, Nan; Bol, Mélissa; Decrock, Elke; De Vuyst, Elke; da Costa, Anaelle; Dauwe, Ine; Vinken, Mathieu; Simon, Alexander M; Rogiers, Vera; De Ley, Gaspard; Evans, William Howard; Bultynck, Geert; Dupont, Geneviève; Cecchelli, Romeo; Leybaert, Luc
2011-01-01
The cytoplasmic Ca2+ concentration ([Ca2+]i) is an important factor determining the functional state of blood–brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca2+]i changes on BBB function. We applied different agonists that trigger [Ca2+]i oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca2+]i oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca2+]i with BAPTA, indicating that [Ca2+]i oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca2+]i oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca2+]i oscillations provoked by exposure to adenosine 5′ triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations. PMID:21654699
Effect of an acid diet allied to sonic toothbrushing on root dentin permeability: an in vitro study.
Pinto, Shelon Cristina Souza; Batitucci, Roberta Grasseli; Pinheiro, Michele Carolina; Zandim, Daniela Leal; Spin-Neto, Rubens; Sampaio, José Eduardo Cezar
2010-01-01
This study quantified alterations in root dentin permeability after exposure to different acid beverages. Twenty-five third molars were sectioned below the cementoenamel junction, the root segment was collected, and the pulp tissue was removed. The root segments were connected to a hydraulic pressure apparatus to measure the permeability of root dentin after the following sequential steps, with 5 specimens in each: 1) phosphoric acid etching for 30 s (maximum permeability), 2) root planning to create new smear layer, 3) exposure to different acid substances for 5 min (orange, cola drink, vinegar, white wine, lemon juice), 4) toothbrushing with sonic toothbrush for 3 min, 5) toothbrushing with sonic toothbrush plus dentifrice for 3 min. Considering step I as 100%, the data were converted into percentage and each specimen was its own control. Data were analyzed statistically by Kruskal-Wallis and Dunn's post test at 5% significance level. All acidic substances increased dentin permeability significantly after scraping (p< 0.05). Toothbrushing after exposure to acid substances decreased dentin permeability and the association with dentifrice accentuated the decrease (p< 0.05), except for the specimens treated with cola drink. Thus, it may be concluded that all tested acid fruit juices increased dentin permeability, and toothbrushing with or without dentifrice can decrease root dentin permeability after dentin exposure to acid diet.
The Evolution of Cracks in Maluanshan Granite Subjected to Different Temperature Processing
NASA Astrophysics Data System (ADS)
Jiang, Guanghui; Zuo, Jianping; Li, Liyun; Ma, Teng; Wei, Xu
2018-06-01
The understanding of the change in the physical and mechanical properties of rock before and after heating is of great significance for the site selection of mattamore and the exploitation of geothermal resources. It is known that before and after heating, the changes in wave velocity, wave velocity anisotropy and permeability of rock are due to the evolution of cracks in the rock. In this study, the wave velocity and permeability of granite specimen from the Maluanshan tunnel in Shenzhen, China, were measured after high-temperature processing at atmospheric pressure. The effects of temperature on the properties of rock based on the acoustics and permeability were measured and analyzed. The evolution of the cracks in Maluanshan granite was inverted through the change rule of the cracks, wave velocity anisotropy and permeability with temperature. The main conclusions were as follows: (1) Both granite P and S wave velocities decreased with the increasing temperature, and the thermal cracking occurred in four stages: between 50 and 250 °C, the crack stabilization development stage was in effect; between 250 and 300 °C, an accelerated development stage of the cracks existed; between 300 and 350 °C, a shift stage for the cracks was entered; and finally, from 350 to 700 °C, the cracks continued into a further development stage; (2) The coefficient of variation could be used to reflect the structural feature change of the rocks in the study of the wave velocity anisotropy. The structures of cracks were observed to change before and after 300 °C. (3) The Maluanshan granite permeability increases with the increasing processing temperature. It was observed that the higher the processing temperature, the larger the increase in the permeability rate. A porosity function was used as a variable to analyze the relationship between the porosity function and permeability as follows: from 50 to 200 °C, the permeability was determined by the microcracks; 200-400 °C was the transition stage; and between 400 and 700 °C, the permeability was determined by the macrocracks.
NASA Astrophysics Data System (ADS)
Bertrand, Lionel; Géraud, Yves; Diraison, Marc; Damy, Pierre-Clément
2017-04-01
The Scientific Interest Group (GIS) GEODENERGIES with the REFLET project aims to develop a geological and reservoir model for fault zones that are the main targets for deep geothermal prospects in the West European Rift system. In this project, several areas are studied with an integrated methodology combining field studies, boreholes and geophysical data acquisition and 3D modelling. In this study, we present the results of reservoir rock analogues characterization of one of these prospects in the Valence Graben (Eastern France). The approach used is a structural and petrophysical characterization of the rocks outcropping at the shoulders of the rift in order to model the buried targeted fault zone. The reservoir rocks are composed of fractured granites, gneiss and schists of the Hercynian basement of the graben. The matrix porosity, permeability, P-waves velocities and thermal conductivities have been characterized on hand samples coming from fault zones at the outcrop. Furthermore, fault organization has been mapped with the aim to identify the characteristic fault orientation, spacing and width. The fractures statistics like the orientation, density, and length have been identified in the damaged zones and unfaulted blocks regarding the regional fault pattern. All theses data have been included in a reservoir model with a double porosity model. The field study shows that the fault pattern in the outcrop area can be classified in different fault orders, with first order scale, larger faults distribution controls the first order structural and lithological organization. Between theses faults, the first order blocks are divided in second and third order faults, smaller structures, with characteristic spacing and width. Third order fault zones in granitic rocks show a significant porosity development in the fault cores until 25 % in the most locally altered material, as the damaged zones develop mostly fractures permeabilities. In the gneiss and schists units, the matrix porosity and permeability development is mainly controlled by microcrack density enhancement in the fault zone unlike the granite rocks were it is mostly mineral alteration. Due to the grain size much important in the gneiss, the opening of the cracks is higher than in the schist samples. Thus, the matrix permeability can be two orders higher in the gneiss than in the schists (until 10 mD for gneiss and 0,1 mD for schists for the same porosity around 5%). Combining the regional data with the fault pattern, the fracture and matrix porosity and permeability, we are able to construct a double-porosity model suitable for the prospected graben. This model, combined with seismic data acquisition is a predictable tool for flow modelling in the buried reservoir and helps the prediction of borehole targets and design in the graben.
Vortex rings impinging on permeable boundaries
NASA Astrophysics Data System (ADS)
Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen
2015-01-01
Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.
The role of python eggshell permeability dynamics in a respiration-hydration trade-off.
Stahlschmidt, Zachary R; Heulin, Benoit; DeNardo, Dale F
2010-01-01
Parental care is taxonomically widespread because it improves developmental conditions and thus fitness of offspring. Although relatively simplistic compared with parental behaviors of other taxa, python egg-brooding behavior exemplifies parental care because it mediates a trade-off between embryonic respiration and hydration. However, because egg brooding increases gas-exchange resistance between embryonic and nest environments and because female pythons do not adjust their brooding behavior in response to the increasing metabolic requirements of developing offspring, python egg brooding imposes hypoxic costs on embryos during the late stages of incubation. We conducted a series of experiments to determine whether eggshells coadapted with brooding behavior to minimize the negative effects of developmental hypoxia. We tested the hypotheses that python eggshells (1) increase permeability over time to accommodate increasing embryonic respiration and (2) exhibit permeability plasticity in response to chronic hypoxia. Over incubation, we serially measured the atomic and structural components of Children's python (Antaresia childreni) eggshells as well as in vivo and in vitro gas exchange across eggshells. In support of our first hypothesis, A. childreni eggshells exhibited a reduced fibrous layer, became more permeable, and facilitated greater gas exchange as incubation progressed. Our second hypothesis was not supported, as incubation O(2) concentration did not affect the shells' permeabilities to O(2) and H(2)O vapor. Our results suggest that python eggshell permeability changes during incubation but that the alterations over time are fixed and independent of environmental conditions. These findings are of broad evolutionary interest because they demonstrate that, even in relatively simple parental-care models, successful parent-offspring relationships depend on adjustments made by both the parent (i.e., egg-brooding behavioral shifts) and the offspring (i.e., changes in eggshell permeability).
Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements
NASA Astrophysics Data System (ADS)
Mitchell, T.; Faulkner, D.
2008-12-01
In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.
NASA Astrophysics Data System (ADS)
Rutqvist, Jonny; Börgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son
2009-05-01
This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis’ coefficient, α ≈ 0.2, a porosity of n ≈ 0.007, and a relatively low permeability of k ≈ 2 × 10-22 m2, which is consistent with the very tight, unfractured granite at the site.
Ivanidze, J; Kesavabhotla, K; Kallas, O N; Mir, D; Baradaran, H; Gupta, A; Segal, A Z; Claassen, J; Sanelli, P C
2015-05-01
Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P < .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction. © 2015 by American Journal of Neuroradiology.
A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory
NASA Astrophysics Data System (ADS)
Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.
A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yu, Qingchun
2017-07-01
With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, F.C.
1996-08-01
The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Singh, R.; Olson, M. S.
2011-12-01
Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed to decrease at 9.8 mm and 19.6 mm cross-sections in low permeability regions due to dilution with the injectate from the non-porous channel (Figure 1). However, relative bacterial counts increased in the low permeability region at both downstream cross-sections under chemotactic conditions. A large increase in relative bacterial count in the pore throats just outside the low permeability region was also observed at both cross-sections (Figure 1). The bacterial chemotactic response was observed to decrease linearly with increasing Darcy velocity and at flow rate 0.220 mm/s the chemotactic effect was offset by the advective flow in the porous channel.
NASA Astrophysics Data System (ADS)
Gamage, K.; Screaton, E.
2006-04-01
Elevated fluid pore pressures play a critical role in the development of accretionary complexes, including the development of the décollement zone. In this study, we used measured permeabilities of core samples from Ocean Drilling Program (ODP) Leg 190 to develop a permeability-porosity relationship for hemipelagic sediments at the toe of the Nankai accretionary complex. This permeability-porosity relationship was used in a one-dimensional loading and fluid flow model to simulate excess pore pressures and porosities. Simulated excess pore pressure ratios (as a fraction of lithostatic pressure-hydrostatic pressure) using the best fit permeability-porosity relationship were lower than predicted from previous studies. We then tested sensitivity of excess pore pressure ratios in the underthrust sediments to bulk permeability, lateral stress in the prism, and a hypothetical low-permeability barrier at the décollement. Our results demonstrated significant increase in pore pressures below the décollement with lower bulk permeability, such as obtained by using the lower boundary of permeability-porosity data, or when a low-permeability barrier is added at the décollement. In contrast, pore pressures in the underthrust sediments demonstrated less sensitivity to added lateral stresses in the prism, although the profile of the excess pore pressure ratio is affected. Both simulations with lateral stress and a low-permeability barrier at the décollement resulted in sharp increases in porosity at the décollement, similar to that observed in measured porosities. Furthermore, in both scenarios, maximum excess pore pressure ratios were found at the décollement, suggesting that either of these factors would contribute to stable sliding along the décollement.
Beig, Avital; Agbaria, Riad; Dahan, Arik
2013-01-01
The purpose of this study was to investigate the impact of oral cyclodextrin-based formulation on both the apparent solubility and intestinal permeability of lipophilic drugs. The apparent solubility of the lipophilic drug dexamethasone was measured in the presence of various HPβCD levels. The drug’s permeability was measured in the absence vs. presence of HPβCD in the rat intestinal perfusion model, and across Caco-2 cell monolayers. The role of the unstirred water layer (UWL) in dexamethasone’s absorption was studied, and a simplified mass-transport analysis was developed to describe the solubility-permeability interplay. The PAMPA permeability of dexamethasone was measured in the presence of various HPβCD levels, and the correlation with the theoretical predictions was evaluated. While the solubility of dexamethasone was greatly enhanced by the presence of HPβCD (K1∶1 = 2311 M−1), all experimental models showed that the drug’s permeability was significantly reduced following the cyclodextrin complexation. The UWL was found to have no impact on the absorption of dexamethasone. A mass transport analysis was employed to describe the solubility-permeability interplay. The model enabled excellent quantitative prediction of dexamethasone’s permeability as a function of the HPβCD level. This work demonstrates that when using cyclodextrins in solubility-enabling formulations, a tradeoff exists between solubility increase and permeability decrease that must not be overlooked. This tradeoff was found to be independent of the unstirred water layer. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. PMID:23874557
Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress
Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J.M.
2016-01-01
The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ). PMID:28773376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian
Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaButmore » was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.« less
Regulation of Endothelial Permeability by Glutathione S-Transferase Pi Against Actin Polymerization.
Yang, Yang; Yin, Fangyuan; Hang, Qiyun; Dong, Xiaoliang; Chen, Jiao; Li, Ling; Cao, Peng; Yin, Zhimin; Luo, Lan
2018-01-01
Inflammation-induced injury of the endothelial barrier occurs in several pathological conditions, including atherosclerosis, ischemia, and sepsis. Endothelial cytoskeleton rearrangement is an important pathological mechanism by which inflammatory stimulation triggers an increase of vascular endothelial permeability. However, the mechanism maintaining endothelial cell barrier function against inflammatory stress is not fully understood. Glutathione S-transferase pi (GSTpi) exists in various types of cells and protects them against different stresses. In our previous study, GSTpi was found to act as a negative regulator of inflammatory responses. We used a Transwell permeability assay to test the influence of GSTpi and its transferase activity on the increase of endothelial permeability induced by tumor necrosis factor alpha (TNF-α). TNF-α-induced actin remodeling and the influence of GSTpi were observed by using laser confocal microscopy. Western blotting was used to test the influence of GSTpi on TNF-α-activated p38 mitogen-activated protein kinase (MAPK)/MK2/heat shock protein 27 (HSP27). GSTpi reduced TNF-α-induced stress fiber formation and endothelial permeability increase by restraining actin cytoskeleton rearrangement, and this reduction was unrelated to its transferase activity. We found that GSTpi inhibited p38MAPK phosphorylation by directly binding p38 and influenced downstream substrate HSP27-induced actin remodeling. GSTpi inhibited TNF-α-induced actin remodeling, stress fiber formation and endothelial permeability increase by inhibiting the p38MAPK/HSP27 signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.
Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.
Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M
2016-03-30
The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).
Diamond, J.; Roper, S.; Yasargil, G. M.
1973-01-01
1. Anionic conductance changes in Mauthner neurones of goldfish were measured during synaptically evoked inhibition and inhibition caused by iontophoretic application of the putative inhibitory transmitters glycine and γ-aminobutyric acid (GABA). 2. The effects of either amino acid were indistinguishable from those of the neural inhibitory transmitter(s). The membrane permeability during the neural or drug response was increased to Br-, Cl-, I-, SCN-, NO3-, ClO3-, and formate (HCOO-), but not to HCO3-, BrO3-, IO3-, SO4-, HPO4-, H2PO4-, acetate and citrate. 3. Strychnine was injected intramuscularly, iontophoretically, or applied topically to the exposed brain in order to compare quantitatively its ability to prevent inhibition evoked by synaptic activation and by pharmacological means. Inhibitions were measured by the increase in membrane conductance. 4. Strychnine, at concentrations just adequate to block completely the late collateral inhibition (LCI) and crossed VIII nerve inhibition, had little effect on the pharmacological inhibition caused by glycine, and sometimes there was no detectable effect at all. In one experiment even a local iontophoretic application of strychnine in a sufficient dose to diffuse over the cell and block the LCI almost completely, merely halved the effect of a small dose of glycine applied to the same localized region of the membrane. 5. Higher concentrations of strychnine than those necessary to block synaptically evoked inhibition would reduce the effect of glycine but not that of GABA. The evidence indicated that any apparent effect of strychnine upon GABA could be explained by displacement of the GABA-containing iontophoretic pipette. 6. The glycine-blocking action of iontophoretic pulses of strychnine was of relatively very slow onset and long duration compared to the effects of pulses of glycine and GABA. 7. These findings can be interpreted as either (1) strychnine has a presynaptic action, preventing the release of inhibitory neurotransmitter, in addition to its less potent post-synaptic one in blocking pharmacological inhibition, or (2) strychnine acts entirely post-synaptically, but the physiological transmitter action differs from that of glycine and GABA in being considerably more sensitive to strychnine antagonism. In either case, the use of strychnine as evidence for the claim that glycine is an inhibitory neurotransmitter at the Mauthner cell is questionable. PMID:4354770
Morrison, S Y; Pastor, J J; Quintela, J C; Holst, J J; Hartmann, B; Drackley, J K; Ipharraguerre, I R
2017-03-01
Diarrhea episodes in dairy calves involve profound alterations in the mechanism controlling gut barrier function that ultimately compromise intestinal permeability to macromolecules, including pathogenic bacteria. Intestinal dysfunction models suggest that a key element of intestinal adaptation during the neonatal phase is the nutrient-induced secretion of glucagon-like peptide (GLP)-2 and associated effects on mucosal cell proliferation, barrier function, and inflammatory response. Bioactive molecules found in Olea europaea have been shown to induce the release of regulatory peptides from model enteroendocrine cells. The ability to enhance GLP-2 secretion via the feeding of putative GLP-2 secretagogues is untested in newborn calves. The objectives of this study were to determine whether feeding a bioactive extract from Olea europaea (OBE) mixed in the milk replacer (1) can stimulate GLP-2 secretion beyond the response elicited by enteral nutrients and, thereby, (2) improve intestinal permeability and animal growth as well as (3) reduce the incidence of diarrhea in preweaning dairy calves. Holstein heifer calves (n = 60) were purchased, transported to the research facility, and blocked by body weight and total serum protein and assigned to 1 of 3 treatments. Treatments were control (CON), standard milk replacer (MR) and ad libitum starter; CON plus OBE added into MR at 30 mg/kg of body weight (OBE30); and CON plus OBE added into MR at 60 mg/kg of body weight (OBE60). The concentration of GLP-2 was measured at the end of wk 2. Intestinal permeability was measured at the onset of the study and the end of wk 2 and 6, with lactulose and d-mannitol as markers. Treatments did not affect calf growth and starter intake. Compared with CON, administration of OBE60 increased the nutrient-induced response in GLP-2 by about 1 fold and reduced MR intake during the second week of study. Throughout the study, however, all calves had compromised intestinal permeability and a high incidence of diarrhea. The GLP-2 response elicited by OBE60 did not improve intestinal permeability (lactulose-to-d-mannitol ratio) and incidence of diarrhea over the course of the preweaning period. The response in GLP-2 secretion to the administration of OBE reported herein warrants further research efforts to investigate the possibility of improving intestinal integrity through GLP-2 secretion in newborn calves. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
2017-10-20
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Rapin, Jean Robert; Wiernsperger, Nicolas
2010-01-01
Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic circulation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxidative stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes. PMID:20613941
Evolution of permeability and Biot coefficient at high mean stresses in high porosity sandstone
Ingraham, Mathew D.; Bauer, Stephen J.; Issen, Kathleen A.; ...
2017-05-01
A series of constant mean stress (CMS) and constant shear stress (CSS) tests were performed to investigate the evolution of permeability and Biot coefficient at high mean stresses in a high porosity reservoir analog (Castlegate sandstone). Permeability decreases as expected with increasing mean stress, from about 20 Darcy at the beginning of the tests to between 1.5 and 0.3 Darcy at the end of the tests (mean stresses up to 275 MPa). The application of shear stress causes permeability to drop below that of a hydrostatic test at the same mean stress. Results show a nearly constant rate decrease inmore » the Biot coefficient as the mean stress increases during hydrostatic loading, and as the shear stress increases during CMS loading. In conclusion, CSS tests show a stabilization of the Biot coefficient after the application of shear stress.« less
Evolution of permeability and Biot coefficient at high mean stresses in high porosity sandstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingraham, Mathew D.; Bauer, Stephen J.; Issen, Kathleen A.
A series of constant mean stress (CMS) and constant shear stress (CSS) tests were performed to investigate the evolution of permeability and Biot coefficient at high mean stresses in a high porosity reservoir analog (Castlegate sandstone). Permeability decreases as expected with increasing mean stress, from about 20 Darcy at the beginning of the tests to between 1.5 and 0.3 Darcy at the end of the tests (mean stresses up to 275 MPa). The application of shear stress causes permeability to drop below that of a hydrostatic test at the same mean stress. Results show a nearly constant rate decrease inmore » the Biot coefficient as the mean stress increases during hydrostatic loading, and as the shear stress increases during CMS loading. In conclusion, CSS tests show a stabilization of the Biot coefficient after the application of shear stress.« less
Cell permeability beyond the rule of 5.
Matsson, Pär; Doak, Bradley C; Over, Björn; Kihlberg, Jan
2016-06-01
Drug discovery for difficult targets that have large and flat binding sites is often better suited to compounds beyond the "rule of 5" (bRo5). However, such compounds carry higher pharmacokinetic risks, such as low solubility and permeability, and increased efflux and metabolism. Interestingly, recent drug approvals and studies suggest that cell permeable and orally bioavailable drugs can be discovered far into bRo5 space. Tactics such as reduction or shielding of polarity by N-methylation, bulky side chains and intramolecular hydrogen bonds may be used to increase cell permeability in this space, but often results in decreased solubility. Conformationally flexible compounds can, however, combine high permeability and solubility, properties that are keys for cell permeability and intestinal absorption. Recent developments in computational conformational analysis will aid design of such compounds and hence prediction of cell permeability. Transporter mediated efflux occurs for most investigated drugs in bRo5 space, however it is commonly overcome by high local intestinal concentrations on oral administration. In contrast, there is little data to support significant impact of transporter-mediated intestinal absorption in bRo5 space. Current knowledge of compound properties that govern transporter effects of bRo5 drugs is limited and requires further fundamental and comprehensive studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Stappen, Jeroen F; Meftah, Redouane; Boone, Marijn A; Bultreys, Tom; De Kock, Tim; Blykers, Benjamin K; Senger, Kim; Olaussen, Snorre; Cnudde, Veerle
2018-04-17
On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO 2 sequestration site. The fractures' properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800-1000 m.
NASA Astrophysics Data System (ADS)
Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya
2008-07-01
Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.
Permeability-porosity relationships of subduction zone sediments
Gamage, Kusali; Screaton, Elizabeth; Bekins, B.; Aiello, I.
2011-01-01
Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.
Stress dependence of permeability of intact and fractured shale cores.
NASA Astrophysics Data System (ADS)
van Noort, Reinier; Yarushina, Viktoriya
2016-04-01
Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.
Frictional stability-permeability relationships for fractures in shales
NASA Astrophysics Data System (ADS)
Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.
2017-03-01
There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.
A Simulation Tool for Dynamic Contrast Enhanced MRI
Mauconduit, Franck; Christen, Thomas; Barbier, Emmanuel Luc
2013-01-01
The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the intrinsic and relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the permeability estimates ( for classical blood flow and CA diffusion). The effect of long echo times is investigated. Simulations show that DCE-MRI performed with an echo time may already lead to significant underestimation of the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies. PMID:23516414
NASA Astrophysics Data System (ADS)
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
USDA-ARS?s Scientific Manuscript database
Objective: Microbial dysbiosis and increased intestinal permeability is a target for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO); however, it is not known whether decreased intestinal permeability is necessary or sufficient for weight loss. Prebiotic milk oligos...
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Irtaza, Hassan
2018-06-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Structural and conformational determinants of macrocycle cell permeability.
Over, Björn; Matsson, Pär; Tyrchan, Christian; Artursson, Per; Doak, Bradley C; Foley, Michael A; Hilgendorf, Constanze; Johnston, Stephen E; Lee, Maurice D; Lewis, Richard J; McCarren, Patrick; Muncipinto, Giovanni; Norinder, Ulf; Perry, Matthew W D; Duvall, Jeremy R; Kihlberg, Jan
2016-12-01
Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.
Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak
NASA Astrophysics Data System (ADS)
Agarwal, Ashish; Irtaza, Hassan
2018-04-01
Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.
Leaky gut and mycotoxins: Aflatoxin B1 does not increase gut permeability in broiler chickens
USDA-ARS?s Scientific Manuscript database
Previous studies conducted in our laboratory have demonstrated that intestinal barrier function can be adversely affected by diet ingredients or feed restriction, resulting in increased intestinal inflammation-associated permeability. Two experiments were conducted in broilers to evaluate the effect...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Yi; Elsworth, Derek; Wang, Chaoyi
There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less
Coupled Fracture and Flow in Shale in Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Carey, J. W.; Mori, H.; Viswanathan, H.
2014-12-01
Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.
Ashraf Gandomi, Yasser; Aaron, Doug S; Mench, Matthew M
2017-06-06
One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol -1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol -1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB.
Ashraf Gandomi, Yasser; Aaron, Doug S.; Mench, Matthew M.
2017-01-01
One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol−1 were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization. For non-reinforced membranes, increasing the equivalent weight (EW) from 950 to 1100 g·mol−1 decreases the V(IV) permeability by ~30%, but increases the area-specific resistance (ASR) by ~16%. This increase in ASR and decrease in V(IV) permeability was accompanied by increased through-plane membrane swelling. Comparing the non-reinforced with reinforced membranes, membrane reinforcement increases ASR, but V(IV) permeability decreases. It was also shown that there exists a monotonic correlation between the discharge capacity decay over long-term cycling and V(IV) permeability values. Thus, V(IV) permeability is considered a representative diagnostic for assessing the overall performance of a particular ion-exchange membrane with respect to capacity fade in a VRFB. PMID:28587268
Sensing of Vascular Permeability in Inflamed Vessel of Live Animal.
Park, Sang A; Jeong, Soi; Choe, Young Ho; Hyun, Young-Min
2018-01-01
Increase in vascular permeability is a conclusive response in the progress of inflammation. Under controlled conditions, leukocytes are known to migrate across the vascular barriers to the sites of inflammation without severe vascular rupture. However, when inflammatory state becomes excessive, the leakage of blood components may occur and can be lethal. Basically, vascular permeability can be analyzed based on the intensity of blood outflow. To evaluate the amount and rate of leakage in live mice, we performed cremaster muscle exteriorization to visualize blood flow and neutrophil migration. Using two-photon intravital microscopy of the exteriorized cremaster muscle venules, we found that vascular barrier function is transiently and locally disrupted in the early stage of inflammatory condition induced by N-formylmethionyl-leucyl-phenylalanine (fMLP). Measurement of the concentration of intravenously (i.v.) injected Texas Red dextran inside and outside the vessels resulted in clear visualization of real-time increases in transient and local vascular permeability increase in real-time manner. We successfully demonstrated repeated leakage from a target site on a blood vessel in association with increasing severity of inflammation. Therefore, compared to other methods, two-photon intravital microscopy more accurately visualizes and quantifies vascular permeability even in a small part of blood vessels in live animals in real time.
Le Dréan, Gwenola; Haure-Mirande, Vianney; Ferrier, Laurent; Bonnet, Christian; Hulin, Philippe; de Coppet, Pierre; Segain, Jean-Pierre
2014-03-01
Proinflammatory cytokines produced by immune cells play a central role in the increased intestinal epithelial permeability during inflammation. Expansion of visceral adipose tissue (VAT) is currently considered a consequence of intestinal inflammation. Whether VAT per se plays a role in early modifications of intestinal barrier remains unknown. The aim of this study was to demonstrate the direct role of adipocytes in regulating paracellular permeability of colonic epithelial cells (CECs). We show in adult rats born with intrauterine growth retardation, a model of VAT hypertrophy, and in rats with VAT graft on the colon, that colonic permeability was increased without any inflammation. This effect was associated with altered expression of tight junction (TJ) proteins occludin and ZO-1. In coculture experiments, adipocytes decreased transepithelial resistance (TER) of Caco-2 CECs and induced a disorganization of ZO-1 on TJs. Intraperitoneal administration of leptin to lean rats increased colonic epithelial permeability and altered ZO-1 expression and organization. Treatment of HT29-19A CECs with leptin, but not adiponectin, dose-dependently decreased TER and altered TJ and F-actin cytoskeleton organization through a RhoA-ROCK-dependent pathway. Our data show that adipocytes and leptin directly alter TJ function in CECs and suggest that VAT could impair colonic epithelial barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsen, J.E.; Vatland, A.; Sorheim, R.
1995-12-31
A Norwegian Research Program on Improved Oil Recovery (IOR) in North Sea reservoirs was launched in 1992. Microbial methods, applied in this context, is a part of this program. The scope, the methodological approach, and results from the three first years are presented. Water profile control, using biomass to block high permeable zones of a reservoir, has been investigated using nitrate-reducing bacteria in the injected sea water as plugging agents. Emphasis has been put on developing a process that does not have disadvantages secondary to the process itself, such as souring and impairment of the overall injectivity of the field.more » Data from continuous culture studies indicate that souring may successfully be mitigated by adding nitrite to the injected seawater. The morphology and size of generic-nitrate-reducing seawater bacteria have been investigated. Screening of growth-promoting nutrients has been carried out, and some sources were detected as favorable. Transport and penetration of bacteria in porous media have been given special attention. Investigations with sand packs, core models, and pore micromodels have been carried out. The inherent problems connected with permeability contrasts and flow patterns, versus bacterial behavior, are believed to be critical for the success of this technology. Data from the transport and blocking experiments with the porous matrices confirm this concern. The technology is primarily being developed for temperatures less than 40{degrees}C.« less
Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
Edogawa, Shoko; Peters, Stephanie A; Jenkins, Gregory D; Gurunathan, Sakteesh V; Sundt, Wendy J; Johnson, Stephen; Lennon, Ryan J; Dyer, Roy B; Camilleri, Michael; Kashyap, Purna C; Farrugia, Gianrico; Chen, Jun; Singh, Ravinder J; Grover, Madhusudan
2018-06-13
Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.
NASA Astrophysics Data System (ADS)
Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun
2016-03-01
In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08697c
Regulation of intestinal permeability: The role of proteases
Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y
2017-01-01
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139
Choi, Chunggab; Kim, Hye Min; Shon, Jeeheun; Park, Jiae; Kim, Hyeong-Taek; Oh, Seung-Hun; Kim, Nam Keun; Kim, Ok Joon
2018-03-04
The blood-brain barrier (BBB) is major obstacle in drug or stem cell treatment in chronic stroke. We hypothesized that adding mannitol to temozolomide (TMZ) is a practically applicable method for resolving the low efficacy of intravenous mannitol therapy. In this study, we investigated whether BBB permeability could be increased by this combined treatment. First, we established a chronic ischemic stroke rat model and examined changes in leakage of Evans blue dye within a lesion site, and in expression of tight junction proteins (TJPs), by this combined treatment. Additionally, in an in vitro BBB model using trans-wells, we analyzed changes in diffusion of a fluorescent tracer and in expression of TJPs. Mannitol-TMZ combined treatment not only increased the amount of Evans blue dye within the stroke lesion site, but also reduced occludin expression in rat brain microvessels. The in vitro study also showed that combined treatment increased the permeability for two different-sized fluorescent tracers, especially large size, and decreased expression of TJPs, such as occludin and ZO-1. Increased BBB permeability effects were more prominent with combined than with single treatments. Mannitol-TMZ combined treatment induced a decrease of TJPs with a consequent increase in BBB permeability. This combined treatment is clinically useful and might provide new therapeutic options by enabling efficient intracerebral delivery of various drugs that could not otherwise be used to treat many CNS diseases due to their inability to penetrate the BBB. Copyright © 2018 Elsevier Inc. All rights reserved.
Azuma, Masahiro; Matsuo, Aya; Fujimoto, Yukari; Fukase, Koichi; Hazeki, Kaoru; Hazeki, Osamu; Matsumoto, Misako; Seya, Tsukasa
2007-03-09
Lipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3. Here we showed that chemically synthesized TLR4-agonistic lipid A analogues but not antagonistic lipid A activate IFN-beta promoter in TLR4-expressing HEK293 cells. The amplitude of IFN-beta promoter activation was in parallel with that of NF-kappaB. LPS-binding protein (LBP) was required for efficient IFN-beta induction in this system, and this LBP activity was antagonized by bactericidal/permeability-increasing protein (BPI). Thus, we first show that BPI blocks the TLR4 responses by exogenous administration of BPI to lipid A-sensitive cells. Although the functional mechanism whereby extra-cellular BPI modulates the intra-cellular signal pathways selected by the TLR adaptors, MyD88 and TICAM-1 (TRIF), remains unknown, we infer that the lipid A portion of LPS participates in LBP-amplified IFN-beta induction and that BPI binding to LPS leads to inhibition of the activation of NF-kappaB and IFN-beta by LPS or agonistic lipid A via TLR4 in an extrinsic mode. BPI may serve as a therapeutic potential against endotoxin shock by acting as a regulator for the MyD88- and TICAM-1 pathways in the LPS-TLR4 signaling.
Jian, Jie; Xuan, Feifei; Qin, Feizhang; Huang, Renbin
2015-01-01
This study aimed to determine the effects of Bauhinia championii flavone (BCF) on myocardial ischemia/reperfusion injury (MI/RI) in rats and to explore potential mechanisms. The MI/RI model in rats was established by ligating the left anterior descending coronary artery for 30 minutes, then reperfusing for 3 hours. BCF at 20 mg/kg was given 20 minutes prior to ischemia via sublingual intravenous injection, with 24 μg/kg phosphoinositide 3-kinase inhibitor (PI3K; wortmannin) as a control. The creatine kinase-MB and nitric oxide content were assessed by colorimetry. The levels of mitochondrial permeability transition pores and tumor necrosis factor alpha were determined by an enzyme-linked immunosorbent assay. Cardiomyocyte apoptosis was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Additionally, the expression of PI3K, endothelial nitric oxide synthase, caspase-3, and Beclin1 was analyzed by fluorescence quantitative polymerase chain reaction and Western blotting, respectively. Akt and microtubule-associated protein 1 light chain 3-II protein levels were also evaluated. Pretreatment with BCF significantly decreased the levels of creatine kinase-MB, tumor necrosis factor alpha, and mitochondrial permeability transition pores, but increased the nitric oxide content. Furthermore, BCF inhibited apoptosis, downregulated caspase-3, Beclin1, and microtubule-associated protein 1 light chain 3-II, upregulated PI3K, and increased the protein levels of phosphorylated Akt and endothelial nitric oxide synthase. However, all of the previously mentioned effects of BCF were blocked when BCF was coadministered with wortmannin. In conclusion, these observations indicated that BCF has cardioprotective effects against MI/RI by reducing cell apoptosis and excessive autophagy, which might be related to the activation of the PI3K/Akt signaling pathway. PMID:26604691
Jian, Jie; Xuan, Feifei; Qin, Feizhang; Huang, Renbin
2015-01-01
This study aimed to determine the effects of Bauhinia championii flavone (BCF) on myocardial ischemia/reperfusion injury (MI/RI) in rats and to explore potential mechanisms. The MI/RI model in rats was established by ligating the left anterior descending coronary artery for 30 minutes, then reperfusing for 3 hours. BCF at 20 mg/kg was given 20 minutes prior to ischemia via sublingual intravenous injection, with 24 μg/kg phosphoinositide 3-kinase inhibitor (PI3K; wortmannin) as a control. The creatine kinase-MB and nitric oxide content were assessed by colorimetry. The levels of mitochondrial permeability transition pores and tumor necrosis factor alpha were determined by an enzyme-linked immunosorbent assay. Cardiomyocyte apoptosis was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Additionally, the expression of PI3K, endothelial nitric oxide synthase, caspase-3, and Beclin1 was analyzed by fluorescence quantitative polymerase chain reaction and Western blotting, respectively. Akt and microtubule-associated protein 1 light chain 3-II protein levels were also evaluated. Pretreatment with BCF significantly decreased the levels of creatine kinase-MB, tumor necrosis factor alpha, and mitochondrial permeability transition pores, but increased the nitric oxide content. Furthermore, BCF inhibited apoptosis, downregulated caspase-3, Beclin1, and microtubule-associated protein 1 light chain 3-II, upregulated PI3K, and increased the protein levels of phosphorylated Akt and endothelial nitric oxide synthase. However, all of the previously mentioned effects of BCF were blocked when BCF was coadministered with wortmannin. In conclusion, these observations indicated that BCF has cardioprotective effects against MI/RI by reducing cell apoptosis and excessive autophagy, which might be related to the activation of the PI3K/Akt signaling pathway.
NASA Astrophysics Data System (ADS)
Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John
2016-10-01
We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional weakening was observed during re-activation.
Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia.
Gutbier, Birgitt; Neuhauß, Anne-Kathrin; Reppe, Katrin; Ehrler, Carolin; Santel, Ansgar; Kaufmann, Jörg; Scholz, Markus; Weissmann, Norbert; Morawietz, Lars; Mitchell, Timothy J; Aliberti, Stefano; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2018-02-15
During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2-activation by Angiopoietin-1 reduces, while Tie2-blockade by Angiopoietin-2 increases inflammation and permeability during sepsis. The role of Angiopoietin-1/-2 in pneumonia remains unidentified. To investigate the prognostic and pathogenetic impact of Angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. Serum Angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n=148, n=395). Human post mortem lung tissue, pneumolysin- or Angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. In pneumonia patients, decreased serum Angiopoietin-1 and increased Angiopoietin-2 levels were observed as compared to healthy subjects. Higher Angiopoietin-2 serum levels were found in community-acquired pneumonia patients who died within 28 days after diagnosis compared to survivors. ROC analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment and length of hospital stay if combined with Angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial Angiopoietin-2 release, Angiopoietin-2 increased endothelial permeability, and Angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with Angiopoietin-2-knockdown showed reduced permeability upon pneumolysin stimulation. Increased pulmonary Angiopoietin-2 and reduced Angiopoietin-1 mRNA expression were observed in S. pneumoniae infected mice. Finally, Angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. These data suggest a central role of Angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased Angiopoietin-2 serum levels predicted mortality and length of hospital stay, and Angiopoietin-1 may provide a therapeutic target for severe pneumonia.
A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow
NASA Astrophysics Data System (ADS)
Zhu, Wenlu; MontéSi, Laurent G. J.; Wong, Teng-Fong
2007-10-01
A fundamental understanding of the effect of stress on permeability evolution is important for many fault mechanics and reservoir engineering problems. Recent laboratory measurements demonstrate that in the cataclastic flow regime, the stress-induced anisotropic reduction of permeability in porous rocks can be separated into 3 different stages. In the elastic regime (stage I), permeability and porosity reduction are solely controlled by the effective mean stress, with negligible permeability anisotropy. Stage II starts at the onset of shear-enhanced compaction, when a critical yield stress is attained. In stage II, the deviatoric stress exerts primary control over permeability and porosity evolution. The increase in deviatoric stress results in drastic permeability and porosity reduction and considerable permeability anisotropy. The transition from stage II to stage III takes place progressively during the development of pervasive cataclastic flow. In stage III, permeability and porosity reduction becomes gradual again, and permeability anisotropy diminishes. Microstructural observations on deformed samples using laser confocal microscopy reveal that stress-induced microcracking and pore collapse are the primary forms of damage during cataclastic flow. A probabilistic damage model is formulated to characterize the effects of stress on permeability and its anisotropy. In our model, the effects of both effective mean stress and differential stress on permeability evolution are calculated. By introducing stress sensitivity coefficients, we propose a first-order description of the dependence of permeability evolution on different loading paths. Built upon the micromechanisms of deformation in porous rocks, this unified model provides new insight into the coupling of stress and permeability.
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
2017-05-02
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
Polysulfone - CNT composite membrane with enhanced water permeability
NASA Astrophysics Data System (ADS)
Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.
2018-04-01
Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.
Lévesque, Jean-François; Bleasby, Kelly; Chefson, Amandine; Chen, Austin; Dubé, Daniel; Ducharme, Yves; Fournier, Pierre-André; Gagné, Sébastien; Gallant, Michel; Grimm, Erich; Hafey, Michael; Han, Yongxin; Houle, Robert; Lacombe, Patrick; Laliberté, Sébastien; MacDonald, Dwight; Mackay, Bruce; Papp, Robert; Tschirret-Guth, Richard
2011-09-15
An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ghai, Damanjeet; Sinha, Vivek Ranjan
2012-07-01
To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P < 0.001) increase in drug release, permeability, and in vivo bioavailability as compared to drug suspension. This may be attributed to increased solubility and enhanced permeability of the drug from nanosized emulsion. In this study, a self-nanoemulsifying drug delivery system was utilized to enhance the bioavailability of the poorly water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.
Gundogdu, E; Gonzalez Alvarez, I; Bermejo Sanz, M; Karasulu, E
2011-10-01
The purpose of this study was to estimate the effect of the anionic surfactant sodium dodecyl sulphate (SDS) on the permeability and dissolution of fexofenadine hydrochloride (FEX) and the transepithelial electrical resistance (TEER) with Caco-2 cells. The dissolution profile of FEX was evaluated at different pH values (1.2, 3.2, 4.2, 4.5, 5.2 and 6.8) at 37 +/- 0.5 degrees C and chracterized in presence of SDS. The dissolution of FEX was increased in the presence of SDS. For permeability studies, apical to basolateral and basolateral to apical permeability was assesed with various concentrations of FEX (50, 100, 500, 1000 and 5000 microM) and in the presence of SDS. The FEX transport changed with 10 and 50 microM of SDS and the TEER values, after 120 min, decreased. In conclusion, a low and concentration-dependent permeability was found for FEX across the Caco-2 cells. FEX transport increased and TEER decreased with increasing SDS concentrations. These results supports the use of SDS as anionic surfactant in these concentration; SDS can be used safely as permeation and dissolution enhancer for the oral delivery of FEX.
McDonnell, Marshall T; Greeley, Duncan A; Kit, Kevin M; Keffer, David J
2016-09-01
The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in sustainable, biodegradable chitosan/chitin food packaging films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane has a more homogeneous water distribution with the polymer chains being fully solvated. The diffusivity increased by a factor of 4 for oxygen molecules and by an order of magnitude for water with increasing the humidity. To calculate the Henry's constant and solubility of oxygen in the membranes with changing hydration, the excess chemical potential was calculated via free energy perturbation, thermodynamic integration and direct particle deletion methods. The simulations predicted a higher solubility and permeability for the lower humidity, in contradiction to experimental results. All three methods for calculating the solubility were in good agreement. It was found that the Coulombic interactions in the potential caused the oxygen to bind too strongly to the protonated amine group. Insight from this work will help guide molecular modeling of chitosan/chitin membranes, specifically permeability measurements for small solute molecules. Efforts to chemically tailor chitosan/chitin membranes to favor discrete as opposed to continuous aqueous domains could reduce oxygen permeability.
Gu, Yan-ting; Xue, Yi-xue; Wang, Yan-feng; Wang, Jin-hui; Chen, Xia; ShangGuan, Qian-ru; Lian, Yan; Zhong, Lei; Meng, Ying-nan
2013-12-01
Adenosine 5'-triphosphate-sensitive potassium channel (KATP channel) activator, minoxidil sulfate (MS), can selectively increase the permeability of the blood-tumor barrier (BTB); however, the mechanism by which this occurs is still under investigation. Using a rat brain glioma (C6) model, we first examined the expression levels of occludin and claudin-5 at different time points after intracarotid infusion of MS (30 μg/kg/min) by western blotting. Compared to MS treatment for 0 min group, the protein expression levels of occludin and claudin-5 in brain tumor tissue of rats showed no changes within 1 h and began to decrease significantly after 2 h of MS infusion. Based on these findings, we then used an in vitro BTB model and selective inhibitors of diverse signaling pathways to investigate whether reactive oxygen species (ROS)/RhoA/PI3K/PKB pathway play a key role in the process of the increase of BTB permeability induced by MS. The inhibitor of ROS or RhoA or PI3K or PKB significantly attenuated the expression of tight junction (TJ) protein and the increase of the BTB permeability after 2 h of MS treatment. In addition, the significant increases in RhoA activity and PKB phosphorylation after MS administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine (MPG) or C3 exoenzyme or LY294002 pretreatment. The present study indicates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in BTB was required for the increase of BTB permeability induced by MS. Taken together, all of these results suggested that MS might increase BTB permeability in a time-dependent manner by down-regulating TJ protein expression and this effect could be related to ROS/RhoA/PI3K/PKB signal pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
Honeycomb Core Permeability Under Mechanical Loads
NASA Technical Reports Server (NTRS)
Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.
1997-01-01
A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.
Hamilton, M Kristina; Ronveaux, Charlotte C; Rust, Bret M; Newman, John W; Hawley, Melissa; Barile, Daniela; Mills, David A; Raybould, Helen E
2017-05-01
Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. Copyright © 2017 the American Physiological Society.
Ronveaux, Charlotte C.; Rust, Bret M.; Newman, John W.; Hawley, Melissa; Barile, Daniela; Mills, David A.
2017-01-01
Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. PMID:28280143
Intestinal permeability defects: Is it time to treat?
Odenwald, Matthew A.; Turner, Jerrold R.
2013-01-01
An essential role of the intestinal epithelium is to separate luminal contents from the interstitium, a function primarily determined by the integrity of the epithelium and the tight junction that seals the paracellular space. Intestinal tight junctions are selectively-permeable, and intestinal permeability can be increased physiologically in response to luminal nutrients or pathologically by mucosal immune cells and cytokines, the enteric nervous system, and pathogens. Compromised intestinal barrier function is associated with an array of clinical conditions, both intestinal and systemic. While most available data are correlative, some studies support a model where cycles of increased intestinal permeability, intestinal immune activation, and subsequent immune-mediated barrier loss contribute to disease progression. This model is applicable to intestinal and systemic diseases. However, it has not been proven and both mechanistic and therapeutic studies are ongoing. Nevertheless, the correlation between increased intestinal permeability and disease has caught the attention of the public, leading to a rise in popularity of the diagnosis of “leaky gut syndrome,” which encompasses a range of systemic disorders. Proponents claim that barrier restoration will cure underlying disease, but this has not been demonstrated in clinical trials. Moreover, human and mouse studies show that intestinal barrier loss alone is insufficient to initiate disease. It is therefore uncertain if increased permeability in these patients is a cause or effect of the underlying disorder. Although drug targets that may mediate barrier restoration have been proposed, none have been proven effective. As such, current treatments for barrier dysfunction should target the underlying disease. PMID:23851019
Wu, Richard Licheng; Vazquez-Roque, Maria; Carlson, Paula; Burton, Duane; Grover, Madhusudan; Camilleri, Michael; Turner, Jerrold R.
2016-01-01
The mechanisms underlying diarrhea-predominant irritable bowel syndrome (IBS-D) are poorly understood, but increased intestinal permeability is thought to contribute to symptoms. A recent clinical trial of gluten-free diet (GFD) demonstrated symptomatic improvement, relative to gluten-containing diet (GCD), that was associated with reduced intestinal permeability in non-celiac disease IBS-D patients. The aim of this study was to characterize intestinal epithelial tight junction composition in IBS-D before and after dietary gluten challenge. Biopsies from 27 IBS-D patients (13 GFD; 14 GCD) were examined by H&E staining and semi-quantitative immunohistochemistry for phosphorylated myosin II regulatory light chain (MLC), MLC kinase, claudin-2, claudin-8, and claudin-15. Diet-induced changes were assessed and correlated with urinary mannitol excretion (after oral administration). In the small intestine, epithelial MLC phosphorylation was increased or decreased by GCD or GFD, respectively, and this correlated with increased intestinal permeability (P < 0.03). Colonocyte expression of the paracellular Na+ channel claudin-15 was also markedly augmented following GCD challenge (P < 0.05). Conversely, colonic claudin-2 expression correlated with reduced intestinal permeability (P < 0.03). Claudin-8 expression was not affected by dietary challenge. These data show that alterations in MLC phosphorylation and claudin-15 and claudin-2 expression are associated with gluten-induced symptomatology and intestinal permeability changes in IBS-D. The results provide new insight into IBS-D mechanisms and can explain permeability responses to gluten challenge in these patients. PMID:27869798
Atrial natriuretic factor increases vascular permeability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockette, W.; Brennaman, B.
An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinationsmore » of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.« less
Front gardens to car parks: changes in garden permeability and effects on flood regulation.
Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D
2014-07-01
This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.
Gu, Y; Groome, L J; Alexander, J S; Wang, Y
2012-10-01
PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial-specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gu, Yang; Groome, Lynn J.; Alexander, J. Steven; Wang, Yuping
2014-01-01
PAR-2 is a G-protein coupled protease receptor whose activation in endothelial cells (ECs) is associated with increased solute permeability. VE-cadherin is an endothelial specific junction protein, which exhibits a disorganized distribution at cell junction during inflammation and is a useful indicator of endothelial barrier dysfunction. In the present study, we tested the hypothesis that PAR-2 activation mediates placenta-derived chymotrypsin-like protease (CLP)-induced endothelial junction disturbance and permeability in preeclampsia (PE). PAR-2 and VE-cadherin were examined by immunofluorescent staining. Specific CLP-induced PAR-2 activation and altered VE-cadherin distribution was assessed following depletion of protease chymotrypsin in the placental conditioned medium and after PAR-2 siRNA. VE-cadherin assembly was determined by treating cells with protease chymotrypsin and/or the specific PAR-2 agonist SLIGKV-NH2. Our results showed: 1) placental conditioned medium not only disturbed VE-cadherin distribution at cell junctions but also activated PAR-2 in ECs; 2) PAR-2 siRNA blocked the placental conditioned medium induced PAR-2 upregulation and disorganization of VE-cadherin at cell junctions; 3) PAR-2 agonist induced PAR-2 activation and VE-cadherin reorganization were dose-dependent; and 4) PAR-2 agonist could stimulate ERK1/2 activation. These results strongly suggest that proteases produced by the placenta elicit endothelial barrier dysfunction via a PAR-2 signaling regulatory mechanism in PE. PMID:22840244
Nunbhakdi-Craig, Viyada; Machleidt, Thomas; Ogris, Egon; Bellotto, Dennis; White, Charles L.; Sontag, Estelle
2002-01-01
Tight junctions (TJs) play a crucial role in the establishment of cell polarity and regulation of paracellular permeability in epithelia. Here, we show that upon calcium-induced junction biogenesis in Madin-Darby canine kidney cells, ABαC, a major protein phosphatase (PP)2A holoenzyme, is recruited to the apical membrane where it interacts with the TJ complex. Enhanced PP2A activity induces dephosphorylation of the TJ proteins, ZO-1, occludin, and claudin-1, and is associated with increased paracellular permeability. Expression of PP2A catalytic subunit severely prevents TJ assembly. Conversely, inhibition of PP2A by okadaic acid promotes the phosphorylation and recruitment of ZO-1, occludin, and claudin-1 to the TJ during junctional biogenesis. PP2A negatively regulates TJ assembly without appreciably affecting the organization of F-actin and E-cadherin. Significantly, inhibition of atypical PKC (aPKC) blocks the calcium- and serum-independent membrane redistribution of TJ proteins induced by okadaic acid. Indeed, PP2A associates with and critically regulates the activity and distribution of aPKC during TJ formation. Thus, we provide the first evidence for calcium-dependent targeting of PP2A in epithelial cells, we identify PP2A as the first serine/threonine phosphatase associated with the multiprotein TJ complex, and we unveil a novel role for PP2A in the regulation of epithelial aPKC and TJ assembly and function. PMID:12196510
Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.
2015-01-01
HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139
Kawakami, Takashi; Ishizawa, Takahiro; Murakami, Hiroshi
2013-08-21
Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.