Sample records for block type core

  1. The Shock and Vibration Digest. Volume 17, Number 2

    DTIC Science & Technology

    1985-02-01

    phenomena relative to A computer program has been developed to -.- buildings, bridges, dams, and other struc- simulate the motions of bodies subjected to...1982). (57) Ikushima, T., Honma, T., and Ishiz- uka, H., "Seismic Research on Block-Type (47) Kadle, D.S. and Chwang, A.T., "Hy- HTGR Core ," Nucl...T., "A Seismic Study of High Temperature Gas-Cooled Reactor Core - (48) Yang, C.Y., Chiarito, V., and Dressel, with Block-Type Fuel ; 2nd Rept: An Ana

  2. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  3. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  4. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    NASA Astrophysics Data System (ADS)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  5. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    PubMed

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  6. Soft magnetic characteristics of laminated magnetic block cores assembled with a high Bs nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Yao, Atsushi; Inoue, Masaki; Tsukada, Kouhei; Fujisaki, Keisuke

    2018-05-01

    This paper focuses on an evaluation of core losses in laminated magnetic block cores assembled with a high Bs nanocrystalline alloy in high magnetic flux density region. To discuss the soft magnetic properties of the high Bs block cores, the comparison with amorphous (SA1) block cores is also performed. In the high Bs block core, both low core losses and high saturation flux densities Bs are satisfied in the low frequency region. Furthermore, in the laminated block core made of the high Bs alloy, the rate of increase of iron losses as a function of the magnetic flux density remains small up to around 1.6 T, which cannot be realized in conventional laminated block cores based on amorphous alloy. The block core made of the high Bs alloy exhibits comparable core loss with that of amorphous alloy core in the high-frequency region. Thus, it is expected that this laminated high Bs block core can achieve low core losses and high saturation flux densities in the high-frequency region.

  7. Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEG-b-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions.

    PubMed

    Ahmadkhani, Lida; Abbasian, Mojtaba; Akbarzadeh, Abolfazl

    2017-01-01

    Sharply thermo- and pH-responsive pentablock terpolymer with a core-shell-corona structure was prepared by RAFT polymerization of N-isopropylacrylamide and methacrylic acid monomers using PEG-based benzoate-type of RAFT agent. The PEG-based RAFT agent could be easily synthesized by dihydroxyl-capped PEG with 4-cyano-4-(thiobenzoyl) sulfanylpentanoic acids, using esterification reaction. This pentablock terpolymer was characterized by 1 H NMR, FT-IR, and GPC. The PDI was obtained by GPC, indicating that the molecular weight distribution was narrow and the polymerization was well controlled. The thermo- and pH-responsive micellization of the pentablock terpolymer in aqueous solution was investigated using fluorescence spectroscopy technique, UV-vis transmittance, and TEM. The LCST of pentablock terpolymer increased (over 50 °C) compared to the NIPAM homopolymer (~32 °C), due to the incorporation of the hydrophilic PEG and PMA blocks in pentablock terpolymer (PNIPAM block as the core, PEG the block and the hydrophilic PMA block as the shell and the corona). Also, pH-dependent phase transition behavior shows at a pH value of about ~5.8, according to pKa of MAA. Thus, in acidic solution at room temperature, the pentablock terpolymer self-assembled to form core-shell-corona micelles, with the hydrophobic PMA block as the core, the PNIPAM block and the hydrophilic PEG block as the shell and the corona, respectively.

  8. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  9. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    PubMed

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-10-01

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside.

    PubMed

    Filippov, Sergey K; Verbraeken, Bart; Konarev, Petr V; Svergun, Dmitri I; Angelov, Borislav; Vishnevetskaya, Natalya S; Papadakis, Christine M; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C; Starovoytova, Larisa; Hruby, Martin; Stepanek, Petr; Kravchenko, Vitaly S; Potemkin, Igor I; Hoogenboom, Richard

    2017-08-17

    Herein, we provide a direct proof for differences in the micellar structure of amphiphilic diblock and gradient copolymers, thereby unambiguously demonstrating the influence of monomer distribution along the polymer chains on the micellization behavior. The internal structure of amphiphilic block and gradient co poly(2-oxazolines) based on the hydrophilic poly(2-methyl-2-oxazoline) (PMeOx) and the hydrophobic poly(2-phenyl-2-oxazoline) (PPhOx) was studied in water and water-ethanol mixtures by small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), static and dynamic light scattering (SLS/DLS), and 1 H NMR spectroscopy. Contrast matching SANS experiments revealed that block copolymers form micelles with a uniform density profile of the core. In contrast to popular assumption, the outer part of the core of the gradient copolymer micelles has a distinctly higher density than the middle of the core. We attribute the latter finding to back-folding of chains resulting from hydrophilic-hydrophobic interactions, leading to a new type of micelles that we refer to as micelles with a "bitterball-core" structure.

  11. Influence of intra-tumoral heterogeneity on the evaluation of BCL2, E-cadherin, EGFR, EMMPRIN, and Ki-67 expression in tissue microarrays from breast cancer.

    PubMed

    Tramm, Trine; Kyndi, Marianne; Sørensen, Flemming B; Overgaard, Jens; Alsner, Jan

    2018-01-01

    The influence of intra-tumoral heterogeneity on the evaluation of immunohistochemical (IHC) biomarker expression may affect the analytical validity of new biomarkers substantially and hence compromise the clinical utility. The aim of this study was to examine the influence of intra-tumoral heterogeneity as well as inter-observer variability on the evaluation of various IHC markers with potential prognostic impact in breast cancer (BCL2, E-cadherin, EGFR, EMMPRIN and Ki-67). From each of 27 breast cancer patients, two tumor-containing paraffin blocks were chosen. Intra-tumoral heterogeneity was evaluated (1) within a single tumor-containing paraffin block ('intra-block agreement') by comparing information from a central, a peripheral tissue microarray (TMA) core and a whole slide section (WS), (2) between two different tumor-containing blocks from the same primary tumor ('inter-block agreement') by comparing information from TMA cores (central/peripheral) and WS. IHC markers on WS and TMA cores were evaluated by two observers independently, and agreements were estimated by Kappa statistics. For BCL2, E-cadherin and EGFR, an almost perfect intra- and inter-block agreement was found. EMMPRIN and Ki-67 showed a more heterogeneous expression with moderate to substantial intra-block agreements. For both stainings, there was a moderate inter-block agreement that improved slightly for EMMPRIN, when using WS instead of TMA cores. Inter-observer agreements were found to be almost perfect for BCL2, E-cadherin and EGFR (WS: κ > 0.82, TMAs: κ > 0.90), substantial for EMMPRIN (κ > 0.63), but only fair to moderate for Ki-67 (WS: κ = 0.54, TMAs: κ = 0.33). BCL2, E-cadherin and EGFR were found to be homogeneously expressed, whereas EMMPRIN and Ki-67 showed a more pronounced degree of intra-tumoral heterogeneity. The results emphasize the importance of securing the analytical validity of new biomarkers by examining the intra-tumoral heterogeneity of immunohistochemical stainings applied to TMA cores individually in each type of cancer.

  12. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  13. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  14. Hepatitis B Virus Core Gene Mutations Which Block Nucleocapsid Envelopment

    PubMed Central

    Koschel, Matthias; Oed, Daniela; Gerelsaikhan, Tudevdagwa; Thomssen, Reiner; Bruss, Volker

    2000-01-01

    Recently we generated a panel of hepatitis B virus core gene mutants carrying single insertions or deletions which allowed efficient expression of the core protein in bacteria and self-assembly of capsids. Eleven of these mutations were introduced into a eukaryotic core gene expression vector and characterized by trans complementation of a core-negative HBV genome in cotransfected human hepatoma HuH7 cells. Surprisingly, four mutants (two insertions [EFGA downstream of A11 and LDTASALYR downstream of R39] and two deletions [Y38-R39-E40 and L42]) produced no detectable capsids. The other seven mutants supported capsid formation and pregenome packaging/viral minus- and plus-strand-DNA synthesis but to different levels. Four of these seven mutants (two insertions [GA downstream of A11 and EHCSP downstream of P50] and two deletions [S44 and A80]) allowed virion morphogenesis and secretion. The mutant carrying a deletion of A80 at the tip of the spike protruding from the capsid was hepatitis B virus core antigen negative but wild type with respect to virion formation, indicating that this site might not be crucial for capsid-surface protein interactions during morphogenesis. The other three nucleocapsid-forming mutants (one insertion [LS downstream of S141] and two deletions [T12 and P134]) were strongly blocked in virion formation. The corresponding sites are located in the part of the protein forming the body of the capsid and not in the spike. These mutations may alter sites on the particle which contact surface proteins during envelopment, or they may block the appearance of a signal for the transport or the maturation of the capsid which is linked to viral DNA synthesis and required for envelopment. PMID:10590084

  15. Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2013-08-01

    To investigate the effects of small aliphatic pendent groups conjugated through an acid-sensitive linker to the core of brushed block copolymer micelles on particle properties. The brushed block copolymers were synthesized by conjugating five types of 2-alkanone (2-butanone, 2-hexanone, 2-octanone, 2-decanone, and 2-dodecanone) through an acid-labile hydrazone linker to poly(ethylene glycol)-poly(aspartate hydrazide) block copolymers. Only block copolymers with 2-hexanone and 2-octanone (PEG-HEX and PEG-OCT) formed micelles with a clinically relevant size (< 50 nm in diameter), low critical micelle concentration (CMC, < 20 μM), and drug entrapment yields (approximately 5 wt.%). Both micelles degraded in aqueous solutions in a pH-dependent manner, while the degradation was accelerated in an acidic condition (pH 5.0) in comparison to pH 7.4. Despite these similar properties, PEG-OCT micelles controlled the entrapment and pH-dependent release of a hydrophobic drug most efficiently, without altering particle size, shape, and stability. The molecular weight of PEG (12 kDa vs 5 kDa) induced no change in pH-controlled drug release rates of PEG-OCT micelles. Acid-labile small aliphatic pendant groups are useful to control the entrapment and release of a hydrophobic drug physically entrapped in the core of brushed block copolymer micelles.

  16. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.

    PubMed

    Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi

    2014-07-01

    Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  18. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  19. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    PubMed

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.

  20. Functional contributions of N- and O-glycans to L-selectin ligands in murine and human lymphoid organs.

    PubMed

    Arata-Kawai, Hanayo; Singer, Mark S; Bistrup, Annette; Zante, Annemieke van; Wang, Yang-Qing; Ito, Yuki; Bao, Xingfeng; Hemmerich, Stefan; Fukuda, Minoru; Rosen, Steven D

    2011-01-01

    L-selectin initiates lymphocyte interactions with high endothelial venules (HEVs) of lymphoid organs through binding to ligands with specific glycosylation modifications. 6-Sulfo sLe(x), a sulfated carbohydrate determinant for L-selectin, is carried on core 2 and extended core 1 O-glycans of HEV-expressed glycoproteins. The MECA-79 monoclonal antibody recognizes sulfated extended core 1 O-glycans and partially blocks lymphocyte-HEV interactions in lymphoid organs. Recent evidence has identified the contribution of 6-sulfo sLe(x) carried on N-glycans to lymphocyte homing in mice. Here, we characterize CL40, a novel IgG monoclonal antibody. CL40 equaled or surpassed MECA-79 as a histochemical staining reagent for HEVs and HEV-like vessels in mouse and human. Using synthetic carbohydrates, we found that CL40 bound to 6-sulfo sLe(x) structures, on both core 2 and extended core 1 structures, with an absolute dependency on 6-O-sulfation. Using transfected CHO cells and gene-targeted mice, we observed that CL40 bound its epitope on both N-glycans and O-glycans. Consistent with its broader glycan-binding, CL40 was superior to MECA-79 in blocking lymphocyte-HEV interactions in both wild-type mice and mice deficient in forming O-glycans. This superiority was more marked in human, as CL40 completely blocked lymphocyte binding to tonsillar HEVs, whereas MECA-79 inhibited only 60%. These findings extend the evidence for the importance of N-glycans in lymphocyte homing in mouse and indicate that this dependency also applies to human lymphoid organs. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to obtain different micelle sizes for the same block copolymer, by the choices we can make of the common solvent and the mode of solvent substitution. Published by Elsevier Inc.

  2. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  3. Diverse mineral compositions, textures, and metamorphic P-T conditions of the glaucophane-bearing rocks in the Tamayen mélange, Yuli belt, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Ho; Iizuka, Yoshiyuki; Ernst, W. G.

    2013-02-01

    This paper presents new petrologic data for high-pressure, low-temperature (HP-LT) metamorphic rocks at Juisui. We reinterpret the so-called "Tamayen block" (Yang and Wang, 1985) or "Juisui block" (Liou, 1981; Beyssac et al., 2008) as a tectonic mélange. It is not a coherent sheet but rather a mixture dominated by greenschist and pelitic schist with pods of serpentinite, epidote amphibolite, and rare blueschist. Four types of glaucophane-bearing rocks are newly recognized in this mélange. Type I is in contact with greenschist lacking glaucophane and garnet. Glaucophane is present only as rare inclusions within pargasite. This type records metamorphic evolution from epidote blueschists-, epidote amphibolite-, to greenschist-facies. Type II contains characteristic zoned amphiboles from barroisite core to Mg-katophorite mantle and glaucophane rim, implying an epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Type III includes winchite and indicates P-T conditions of about 6-8 kbar, approaching 400 °C. Type IV contains paragonite but lacks garnet; amphibole shows a Na-Ca core surrounded by a glaucophane rim. This type shows a high-pressure (?) epidote amphibolite-facies stage overprinted by an epidote blueschists-facies one. Amphibole zoning trends and mineral assemblages imply contradictory P-T paths for the four types of glaucophane-bearing rocks—consistent with the nature of a tectonic mélange. The new P-T constraints and petrologic findings differ from previous studies (Liou et al., 1975; Beyssac et al., 2008).

  4. High quality tissue miniarray technique using a conventional TV/radio telescopic antenna.

    PubMed

    Elkablawy, Mohamed A; Albasri, Abdulkader M

    2015-01-01

    The tissue microarray (TMA) is widely accepted as a fast and cost-effective research tool for in situ tissue analysis in modern pathology. However, the current automated and manual TMA techniques have some drawbacks restricting their productivity. Our study aimed to introduce an improved manual tissue miniarray (TmA) technique that is simple and readily applicable to a broad range of tissue samples. In this study, a conventional TV/radio telescopic antenna was used to punch tissue cores manually from donor paraffin embedded tissue blocks which were pre-incubated at 40oC. The cores were manually transferred, organized and attached to a standard block mould, and filled with liquid paraffin to construct TmA blocks without any use of recipient paraffin blocks. By using a conventional TV/radio antenna, it was possible to construct TmA paraffin blocks with variable formats of array size and number (2-mm x 42, 2.5-mm x 30, 3-mm x 24, 4-mm x 20 and 5-mm x 12 cores). Up to 2-mm x 84 cores could be mounted and stained on a standard microscopic slide by cutting two sections from two different blocks and mounting them beside each other. The technique was simple and caused minimal damage to the donor blocks. H and E and immunostained slides showed well-defined tissue morphology and array configuration. This technique is easy to reproduce, quick, inexpensive and creates uniform blocks with abundant tissues without specialized equipment. It was found to improve the stability of the cores within the paraffin block and facilitated no losses during cutting and immunostaining.

  5. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  6. Effect of different surface treatments on microtensile bond strength of two resin cements to aged simulated composite core materials.

    PubMed

    Esmaeili, Behnaz; Alaghehmand, Homayoon; Shakerian, Mohadese

    2015-01-01

    Roughening of the aged composite resin core (CRC) surface seems essential for durable adhesion. The aim of this study was to investigate the influence of various surface treatments and different resin cements on microtensile bond strength (µ TBS) between two aged core build-up composites (CBCs) and feldspathic ceramic. A total of 16 composite blocks made of two CBCs, Core.it and Build-it were randomly assigned to four surface treatment groups after water storage and thermocycling (2 weeks and 500 cycles). Experimental groups included surface roughening with air abrasion (AA), hydrofluoric acid, pumice, and laser and then were bonded to computer-aided design/computer-aided manufacturing feldspathic ceramic blocks using two resin cements, Panavia F2 (PF), and Duo-link (DL). The µ TBS was tested, and the fracture mode was assessed. The data were analyzed with multiple analysis of variance to estimate the contribution of different surface treatments, resin cements, and two aged CRCs on µ TBS. Statistical significance level was set at α < 0.05. Surface treatment and cement type significantly affected bond strength (P < 0.001) but the type of CRC did not (P = 0.468). Between roughening methods, the highest and the lowest values of µ TBS were sequentially obtained in AA and Er.YAG laser groups. The highest bond strength was in AA group cemented with PF (31.83 MPa). The most common failure mode was cohesive fracture in the cement. Different surface treatments had different effects on µ TBS of aged CRCs to feldspathic ceramics. PF was significantly better than DL.

  7. Synthesis of poly(N-isopropylacrylamide)-co-poly(phenylboronate ester) acrylate and study on their glucose-responsive behavior.

    PubMed

    Yao, Yuan; Shen, Heyun; Zhang, Guanghui; Yang, Jing; Jin, Xu

    2014-10-01

    We introduced thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) into the polymer structure of poly(ethylene glycol)-block-poly(phenylboronate ester) acrylate (MPEG-block-PPBDEMA) by block and random polymerization pathways in order to investigate the effect of polymer architecture on the glucose-responsiveness and enhance their insulin release controllability. By following the structure, the continuous PNIPAM shell of the triblock polymer MPEG-block-PNIPAM-block-PPBDEMA collapsing on the glucose-responsive PPBDEMA core formed the polymeric micelles with a core-shell-corona structure, and MPEG-block-(PNIPAM-rand-PPBDEMA) exhibited core-corona micelles in which the hydrophobic core consisted of PNIPAM and PPBDEMA segments when the environmental temperature was increased above low critical solution temperature (LCST) of PNIPAM. The micellar morphologies can be precisely controlled by temperature change between 15 and 37°C. As a result, the introduction of PNIPAM greatly enhanced the overall stability of insulin encapsulated in the polymeric micelles in the absence of glucose over incubation 80 h at 37°C. Comparing to MPEG-block-PNIPAM-block-PPBDEMA, the nanocarriers from MPEG-block-(PNIPAM-rand-PPBDEMA) showed great insulin release behavior which is zero insulin release without glucose, low release at normal blood glucose concentration (1.0 mg/mL). Therefore, these nanocarriers may be served as promising self-regulated insulin delivery system for diabetes treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.

    PubMed

    Bianchin, M; Smith, L; Beckie, R

    2015-01-01

    The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. © 2014, National Ground Water Association.

  9. Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Viswanathan, Karthik; Lodge, Timothy P.; Park, Moon Jeong; Char, Kookheon

    2004-12-01

    The temperature dependence of the micelle structures formed by poly(styrene-b-isoprene) (SI) diblock copolymers in the selective solvents diethyl phthalate (DEP) and tetradecane (C14), which are selective for the PS and PI blocks, respectively, have been investigated by small angle neutron scattering (SANS). Two nearly symmetric SI diblock copolymers, one with a perdeuterated PS block and the other with a perdeuterated PI block, were examined in both DEP and C14. The SANS scattering length density of the solvent was matched closely to either the core or the corona block. The resulting core and corona contrast data were fitted with a detailed model developed by Pedersen and co-workers. The fits provide quantitative information on micellar characteristics such as aggregation number, core size, overall size, solvent fraction in the core, and corona thickness. As temperature increases, the solvent selectivity decreases, leading to substantial solvent swelling of the core and a decrease in the aggregation number and core size. Both core and corona chains are able to relax their conformations near the critical micelle temperature due to a decrease in the interfacial tension, even though the corona chains are always under good solvent conditions.

  10. Comparative Evaluation of Fracture Strength of Different Types of Composite Core Build-up Materials: An in vitro Study.

    PubMed

    Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu

    2018-05-01

    The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.

  11. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  12. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B [Greensburg, PA; Singleton, Norman R [Murrysville, PA

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  13. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  14. The Core of the Stuttering Block

    ERIC Educational Resources Information Center

    Schwartz, Martin F.

    1974-01-01

    A model of the core of the stuttering block is presented, based on evidence that the disorder is essentially an inappropriate, vigorous contraction of the posterior cricoarytenoid in response to the subglottal air pressures required for speech. (Author)

  15. Let there be light: photo-cross-linked block copolymer nanoparticles.

    PubMed

    Roy, Debashish; Sumerlin, Brent S

    2014-01-01

    Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Larger core size has superior technical and analytical accuracy in bladder tissue microarray.

    PubMed

    Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries

    2017-03-01

    The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.

  17. Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.

    PubMed

    Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A

    2017-11-01

    Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.

  18. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. Composite sandwich structure and method for making same

    NASA Technical Reports Server (NTRS)

    Magurany, Charles J. (Inventor)

    1995-01-01

    A core for a sandwich structure which has multi-ply laminate ribs separated by voids is made as an integral unit in one single curing step. Tooling blocks corresponding to the voids are first wrapped by strips of prepreg layup equal to one half of each rib laminate so a continuous wall of prepreg material is formed around the tooling blocks. The wrapped tooling blocks are next pressed together laterally, like tiles, so adjoining walls from two tooling blocks are joined. The assembly is then cured by conventional methods, and afterwards the tooling blocks are removed so voids are formed. The ribs can be provided with integral tabs forming bonding areas for face sheets, and face sheets may be co-cured with the core ribs. The new core design is suitable for discrete ribcores used in space telescopes and reflector panels, where quasiisotropic properties and zero coefficient of thermal expansion are required.

  20. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    The uniaxial compressive strength (UCS) of rock material is a crucial parameter to be used for design stages of slopes, tunnels and foundations to be constructed in/on geological medium. However, preparation of high quality cores from geological mixtures or fragmented rocks such as melanges, fault rocks, coarse pyroclastic rocks, breccias and sheared serpentinites is often extremely difficult. According to the studies performed in literature, this type of geological materials may be grouped as welded and unwelded birmocks. Success of preparation of core samples from welded bimrocks is slightly better than unwelded ones. Therefore, some studies performed on the welded bimrocks to understand the mechanical behavior of geological mixture materials composed of stronger and weaker components (Gokceoglu, 2002; Sonmez et al., 2004; Sonmez et al., 2006; Kahraman, et al., 2008). The overall strength of bimrocks are generally depends on strength contrast between blocks and matrix; types and strength of matrix; type, size, strength, shape and orientation of blocks and volumetric block proportion. In previously proposed prediction models, while UCS of unwelded bimrocks may be determined by decreasing the UCS of matrix considering the volumetric block proportion, the welded ones can be predicted by considering both UCS of matrix and blocks together (Lindquist, 1994; Lindquist and Goodman, 1994; Sonmez et al., 2006 and Sonmez et al., 2009). However, there is a few attempts were performed about the effect of blocks shape and orientation on the strength of bimrock (Linqduist, 1994 and Kahraman, et al., 2008). In this study, Ankara agglomerate, which is composed of andesite blocks and surrounded weak tuff matrix, was selected as study material. Image analyses were performed on bottom, top and side faces of cores to identify volumetric block portions. In addition to the image analyses, andesite blocks on bottom, top and side faces were digitized for determination of fractal dimensions. To determine fractal dimensions of more than hundred andesite blocks in cores, a computer program namely FRACRUN were developed. Fractal geometry has been used as practical and popular tool to define particularly irregular shaped bodies in literature since the theory of fractal was developed by Mandelbrot (1967) (Hyslip and Vallejo, 1997; Kruhl and Nega, 1996; Bagde etal., 2002; Gulbin and Evangulova, 2003; Pardini, 2003; Kolay and Kayabali, 2006; Hamdi, 2008; Zorlu, 2009 and Sezer, 2009). Although there are some methods to determine fractal dimensions, square grid-cell count method for 2D and segment count method for 1D were followed in the algorithm of FRACRUN. FRACRUN has capable of determine fractal dimensions of many closed polygons on a single surface. In the study, a database composed of uniaxial compressive strength, volumetric block proportion, fractal dimensions and number of blocks for each core was established. Finally, prediction models were developed by regression analyses and compared with the empirical equations proposed by Sonmez et al. (2006). Acknowledgement This study is a product of ongoing project supported by TUBITAK (The Scientific and Technological Research Council of Turkey - Project No: 108Y002). References Bagde, M.N., Raina, A.K., Chakraborty, A.K., Jethwa, J.L., 2002. Rock mass characterization by fractal dimension. Engineering Geology 63, 141-155. Gokceoglu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66 (1-2), 39-51. Gulbin, Y.L., Evangulova, E.B., 2003. Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Mathematical Geology 35 (7), 819-833 Hamdi, E., 2008. A fractal description of simulated 3D discontinuity networks. Rock Mechanics and Rock Engineering 41, 587-599. Hyslip, J.P., Vallejo, L.E., 1997. Fractals analysis of the roughness and size distribution of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  1. The tissue micro-array data exchange specification: a web based experience browsing imported data

    PubMed Central

    Nohle, David G; Hackman, Barbara A; Ayers, Leona W

    2005-01-01

    Background The AIDS and Cancer Specimen Resource (ACSR) is an HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers to approved researchers HIV infected biologic samples and uninfected control tissues including tissue cores in micro-arrays (TMA) accompanied by de-identified clinical data. Researchers interested in the type and quality of TMA tissue cores and the associated clinical data need an efficient method for viewing available TMA materials. Because each of the tissue samples within a TMA has separate data including a core tissue digital image and clinical data, an organized, standard approach to producing, navigating and publishing such data is necessary. The Association for Pathology Informatics (API) extensible mark-up language (XML) TMA data exchange specification (TMA DES) proposed in April 2003 provides a common format for TMA data. Exporting TMA data into the proposed format offers an opportunity to implement the API TMA DES. Using our public BrowseTMA tool, we created a web site that organizes and cross references TMA lists, digital "virtual slide" images, TMA DES export data, linked legends and clinical details for researchers. Microsoft Excel® and Microsoft Word® are used to convert tabular clinical data and produce an XML file in the TMA DES format. The BrowseTMA tool contains Extensible Stylesheet Language Transformation (XSLT) scripts that convert XML data into Hyper-Text Mark-up Language (HTML) web pages with hyperlinks automatically added to allow rapid navigation. Results Block lists, virtual slide images, legends, clinical details and exports have been placed on the ACSR web site for 14 blocks with 1623 cores of 2.0, 1.0 and 0.6 mm sizes. Our virtual microscope can be used to view and annotate these TMA images. Researchers can readily navigate from TMA block lists to TMA legends and to clinical details for a selected tissue core. Exports for 11 blocks with 3812 cores from three other institutions were processed with the BrowseTMA tool. Fifty common data elements (CDE) from the TMA DES were used and 42 more created for site-specific data. Researchers can download TMA clinical data in the TMA DES format. Conclusion Virtual TMAs with clinical data can be viewed on the Internet by interested researchers using the BrowseTMA tool. We have organized our approach to producing, sorting, navigating and publishing TMA information to facilitate such review. We have converted Excel TMA data into TMA DES XML, and imported it and TMA DES XML from another institution into BrowseTMA to produce web pages that allow us to browse through the merged data. We proposed enhancements to the TMA DES as a result of this experience. We implemented improvements to the API TMA DES as a result of using exported data from several institutions. A document type definition was written for the API TMA DES (that optionally includes proposed enhancements). Independent validators can be used to check exports against the DTD (with or without the proposed enhancements). Linking tissue core images to readily navigable clinical data greatly improves the value of the TMA. PMID:16086837

  2. A high-voltage pulse transformer with a modular ferrite core

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Winands, G. J. J.; Yan, K.; Pemen, A. J. M.; Van Heesch, E. J. M.

    2008-01-01

    A high ratio (winding ratio of 1:80) pulse transformer with a modular ferrite core was developed for a repetitive resonant charging system. The magnetic core is constructed from 68 small blocks of ferrites, glued together by epoxy resin. This allows a high degree of freedom in choosing core shape and size. Critical issues related to this modular design are the size tolerance of the individual ferrite blocks, the unavoidable air gap between the blocks, and the saturation of the core. To evaluate the swing of the flux density inside the core during the charging process, an equivalent circuit model was introduced. It was found that when a transformer is used in a resonant charging circuit, the minimal required volume of the magnetic material to keep the core unsaturated depends on the coupling coefficient of the transformer and is independent of the number of turns of the primary winding. Along the flux path, 17 small air gaps are present due to the inevitable joints between the ferrite blocks. The total air gap distance is about 0.67mm. The primary and secondary windings have 16 turns and 1280 turns, respectively, and the actually obtained ratio is about 1:75.4. A coupling coefficient of 99.6% was obtained. Experimental results are in good agreement with the model, and the modular ferrite core works well. Using this transformer, the high-voltage capacitors can be charged up to more than 70kV from a low-voltage capacitor with an initial charging voltage of about 965V. With 26.9J energy transfer, the increased flux density inside the core was about 0.23T, and the core remains unsaturated. The energy transfer efficiency from the primary to the secondary was around 92%.

  3. The Shock and Vibration Digest. Volume 15, Number 3

    DTIC Science & Technology

    1983-03-01

    High Temperature Gas-Cooled Reactor Core with Block-type Fuel (2nd Report: An Analytical Method of Two-dmentmnal Vibration of Interacting CohunM) T...Computer-aided techniquei, Detign techniquei A wite of computer programs hat been developed which allow« advanced fatigue analyiit procedures to be...valuei with those developed by bearing analysis computer programs were used to formulate an understanding of the mechanisms that induce ball skidding

  4. Cost Differences in Public and Private Shipyards

    DTIC Science & Technology

    1981-01-01

    block number) coefficients, costs, maintenance, naval shore facilities, naval vessels, nuclear powered ships, regression analysis, repair, salaries...of overhauls of nucler submarines, we mnight exp.,_t to find both production costs and the price of labor to be higher in naval shipyardi than in...about 18 months; in addition to the type of work done during regular overhauls, they include replacement of the nuclear core which powers the submarine

  5. Hepatitis C virus core protein subverts the antiviral activities of human Kupffer cells.

    PubMed

    Tu, Zhengkun; Pierce, Robert H; Kurtis, Jonathan; Kuroki, Yoshio; Crispe, I Nicholas; Orloff, Mark S

    2010-01-01

    Kupffer cells (KC) are important innate immune cells of the liver, functioning as scavenging sinusoidal phagocytes and transducers of pattern recognition signals, including those of toll-like receptors (TLRs). The hepatitis C virus core protein (HCVc) engages TLR2 on peripheral blood monocytes and induces production of multiple inflammatory cytokines. We examined the effects of HCVc on human primary KC functions. KC were isolated from living donor allografts and stimulated with HCVc and/or ligands for TLRs. KC were examined for production of cytokines, expression of programmed death-ligand 1 (PD-L1), secretion of type 1 interferons (IFNs), and expression of the apoptosis-inducing protein tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). HCVc acts as a ligand for TLR2 on human KC, inducing them to secrete interleukin (IL)-1beta, TNF-alpha, and IL-10 and up-regulate cell surface PD-L1. HCVc blocked TLR3-mediated secretion of IFN-alpha, IFN-beta, and cell surface expression of the cytotoxic molecule TRAIL. Inhibition of phosphoinositide 3 kinase with LY294002 blocked the up-regulation of PD-L1 by TLR ligands and the TLR3-specific induction of TRAIL and type 1 IFNs. KC are intravascular macrophages that are continuously exposed to, and tolerant of, bacterial TLR ligands, which are delivered via the portal circulation. By mimicking a bacterial TLR2 ligand and effectively blocking the TLR3-mediated, double-stranded RNA-induced antiviral response, HCVc might appear to exploit this unique aspect of immunity in the liver. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Software Defined Radio with Parallelized Software Architecture

    NASA Technical Reports Server (NTRS)

    Heckler, Greg

    2013-01-01

    This software implements software-defined radio procession over multi-core, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to .50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.

  7. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs.

    PubMed

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-07-22

    Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  8. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    NASA Astrophysics Data System (ADS)

    Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.

    2018-01-01

    We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.

  9. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    PubMed Central

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-01-01

    Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal. PMID:18647397

  10. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  11. Synthesis of size-controlled acid-resistant hybrid calcium carbonate microparticles as templates for fabricating "micelles-enhanced" polyelectrolyte capsules by the LBL technique.

    PubMed

    Li, Xiaodong; Hu, Qiaoling; Yue, Linhai; Shen, Jiacong

    2006-07-24

    Size-controlled, low-dispersed calcium carbonate microparticles were synthesized in the presence of the amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) by modulating the concentration of block copolymer in the reactive system. This type of hybrid microparticles have acid-resistant properties. By investigating the aggregation behaviors of PS-b-PAA micelles by transmission electron microscopy (TEM), the mechanism of hybrid calcium carbonate formation illustrated that the block copolymer served not only as "pseudonuclei" for the growth of calcium carbonate nanocrystals, but also forms the supramicelle congeries, a spherical framework, as templates for calcium carbonate nanocrystal growth into hybrid CaCO(3) particles. Moreover, this pilot study shows that the hybrid microparticle is a novel candidate as a template for fabricating multilayer polyelectrolyte capsules, in which the block copolymer is retained within the capsule interior after core removal under soft conditions. This not only facilitates the encapsulation of special materials, but also provides "micelles-enhanced" polyelectrolyte capsules.

  12. Stimuli-sensitive polymeric micelles as anticancer drug carriers.

    PubMed

    Na, Kun; Sethuraman, Vijay T; Bae, You Han

    2006-11-01

    Amphiphilic block copolymers often form core-shell type micelles by self-organization of the blocks in an aqueous medium or under specific experimental conditions. Polymeric micelles constructed from these polymers that contain a segment whose physical or chemical properties respond to small changes in environmental conditions are collectively called 'stimuli-sensitive' micelles. This class of nano-scaled constructs has been investigated as a promising anti-cancer drug carrier because the micelles are able to utilize small environmental changes and modify drug release kinetics, biodistribution and the interactions with tissues and cells. This review summarizes the recent progress in stimuli-sensitive micelles for tumor chemotherapy, particularly for those responding to hyperthermic conditions, tumor pH and endosomal/lysosomal pH.

  13. Block-Parallel Data Analysis with DIY2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Peterka, Tom

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less

  14. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  15. Core microstructure, morphology and chain arrangement of block copolymer self-assemblies as investigated by thermal field-flow fractionation.

    PubMed

    Muza, U L; Greyling, G; Pasch, H

    2018-08-10

    The self-assembly of block copolymers (BCPs), as a result of solvent selectivity for one block, has recently received significant attention due to novel applications of BCPs in pharmaceuticals, biomedicine, cosmetics, electronics and nanotechnology. The correlation of BCP microstructure and the structure of the resulting self-assemblies requires advanced analytical methods. However, traditional bulk characterization techniques are limited in the quest of providing detailed information regarding molar mass (M w ), hydrodynamic size (D h ), chemical composition, and morphology for these self-assemblies. In the present study, thermal field-flow fractionation (ThFFF) is utilised to investigate the impact of core microstructure on the resultant solution properties of vesicles prepared from polystyrene-polybutadiene block copolymers (PS-b-PBd) with 1.2- and 1.4-polybutadiene blocks, respectively. As compared to investigations on the impact of the corona microstructure, the impact of core microstructure on micellar properties has largely been neglected in previous work. In N,N-dimethylacetamide (DMAc) these BCPs form vesicles having PS shells and PBd cores. D h , M w , aggregation number, and critical micelle concentration of these micelles are shown to be sensitive to the core microstructure, therefore, demonstrating the potential of microstructural differences to be used for providing tuneable pathways to specific self-assemblies. It is shown that micelles prepared from BCPs of similar PS and PBd block sizes are successfully separated by ThFFF. It is further demonstrated in this study that PS-b-PBd vesicles and PS homopolymers of identical surface chemistry (PS) and comparable D h in DMAc, can be separated by ThFFF. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. CORE SATURATION BLOCKING OSCILLATOR

    DOEpatents

    Spinrad, R.J.

    1961-10-17

    A blocking oscillator which relies on core saturation regulation to control the output pulse width is described. In this arrangement an external magnetic loop is provided in which a saturable portion forms the core of a feedback transformer used with the thermionic or semi-conductor active element. A first stationary magnetic loop establishes a level of flux through the saturation portion of the loop. A second adjustable magnet moves the flux level to select a saturation point giving the desired output pulse width. (AEC)

  17. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats.

    PubMed

    Li, Longkai; Shen, Nan; Wang, Nan; Wang, Weidong; Tang, Qingzhu; Du, Xiangning; Carrero, Juan Jesus; Wang, Keping; Deng, Yiyao; Li, Zhitong; Lin, Hongli; Wu, Taihua

    2018-06-01

    Ultrafiltration failure is a major complication of long-term peritoneal dialysis, resulting in dialysis failure. Peritoneal fibrosis induced by continuous exposure to high glucose dialysate is the major contributor of ultrafiltration failure, for which there is no effective treatment. Overactivation of several signaling pathways, including transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) pathways, contribute to the development of peritoneal fibrosis. Therefore, simultaneously blocking multiple signaling pathways might be a potential novel method of treating peritoneal fibrosis. Previously, we showed that core fucosylation, an important posttranslational modification of the TGF-β1 receptors, can regulate the activation of TGF-β1 signaling in renal interstitial fibrosis. However, it remains unclear whether core fucosylation affects the progression of peritoneal fibrosis. Herein, we show that core fucosylation was enriched in the peritoneal membrane of rats accompanied by peritoneal fibrosis induced by a high glucose dialysate. Blocking core fucosylation dramatically attenuated peritoneal fibrosis in the rat model achieved by simultaneously inactivating the TGF-β1 and PDGF signaling pathways. Next the protective effects of blocking core fucosylation and imatinib (a selective PDGF receptor inhibitor) on peritoneal fibrosis were compared and found to exhibit a greater inhibitory effect over imatinib alone, suggesting that blocking activation of multiple signaling pathways may have superior inhibitory effects on the development of peritoneal fibrosis. Thus, core fucosylation is essential for the development of peritoneal fibrosis by regulating the activation of multiple signaling pathways. This may be a potential novel target for drug development to treat peritoneal fibrosis. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  19. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    PubMed

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  20. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  1. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  2. Oil migration in a major growth fault: Structural analysis of the Pathfinder core, South Eugene Island Block 330, offshore Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Losh, S.

    1998-09-01

    The Pathfinder core, collected in the South Eugene Island Block 330 field, offshore Louisiana, provides an outstanding sample of structures associated with a major growth fault that abuts a giant oil field and that is thought to have acted as a conduit for hydrocarbon migration into the producing reservoirs. The fault zone in the core consists of three structural domains, each characterized by a distinct rock type, distribution of fault dips and dip azimuths, and distribution of spacing between adjacent faults and fractures. Although all of the domains contain oil-bearing sands, only faults and fractures in the deepest domain containmore » oil, even though the oil-barren fault domains contain numerous faults and fractures that are parallel to those containing oil in the deepest domain. The deepest domain is also distinguished from the other two domains by a greater degree of structural complexity and by a well-defined power-law distribution of fault and fracture spacings. Even though oil is present in sands throughout the core, its restriction to faults and fractures in the youngest sampled portion of the fault zone implies that oil migrated only through that part of the fault that was active during the time when oil had access to it. The absence of oil in fractures or faults in the other, probably older, fault domains indicates that the oil was never sufficiently pressured to flow up the fault zone on its own, either by hydraulic fracture or by increased permeability as a result of decreased effective stress. Instead, fluid migration along faults and fractures in the Pathfinder core was enhanced by permeability created in response to relatively far-field stresses related to minibasin subsidence.« less

  3. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  4. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    DOE PAGES

    Shao, Meiyue; Aktulga, H.  Metin; Yang, Chao; ...

    2017-09-14

    In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less

  5. Ballistic blocks around Kīlauea Caldera: Their vent locations and number of eruptions in the late 18th century

    USGS Publications Warehouse

    Swanson, Donald A.; Zolkos, Scott P.; Haravitch, Ben

    2012-01-01

    Thousands of ballistic blocks occur around Kīlauea Caldera and record part of the latest major period of explosive activity on the volcano, in late 1790 or within a few years thereafter. The sizes of the blocks – the largest of which is more than 2 m in nominal diameter – and differences in rock types allow the definition of at least 6 dispersal lobes of mostly undetermined relative age. The orientations of the lobes help approximate the locations of vents or explosion sources on the floor of the caldera, now deeply buried by younger lava flows. The vents may have been distributed northward for about 2 km from near the site of the modern Halema'uma'u Crater and were apparently confined to the western half of the caldera. The blocks are entirely lithic except for those in one dispersal lobe, which contains cored bombs and blocks as well as juvenile lapilli. Eruption parameters calculated from EJECT! suggest that the phreatic and phreatomagmatic explosions could have been generated at the water table, about 600 m below the high point on the caldera rim.

  6. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Meiyue; Aktulga, H.  Metin; Yang, Chao

    In this paper, we describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. Themore » use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. Finally, we also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.« less

  7. Thermo- and light-regulated formation and disintegration of double hydrophilic block copolymer assemblies with tunable fluorescence emissions.

    PubMed

    Wu, Yonghao; Hu, Huamin; Hu, Jinming; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2013-03-19

    We report on thermo- and light-regulated formation and disintegration of double hydrophilic block copolymer (DHBC) micelles associated with tunable fluorescence emissions by employing two types of DHBCs covalently labeled with fluorescence resonance energy transfer (FRET) donor and acceptor moieties, respectively, within the light and temperature dually responsive block. Both DHBCs are molecularly soluble at room temperature in their aqueous mixture, whereas, upon heating to above the critical micellization temperature (CMT, ~31 °C), they coassemble into mixed micelles possessing hydrophilic coronas and mixed cores containing FRET donors and acceptors. Accordingly, the closer spatial proximity between the FRET pair (NBDAE and RhBEA moieties) within micellar cores leads to substantially enhanced FRET efficiency, compared to that in the non-aggregated unimer state. Moreover, upon UV irradiation, the light-reactive moieties undergo light-cleavage reaction and transform into negatively charged carboxylate residues, leading to elevated CMT (∼46 °C). Thus, thermo-induced mixed micelles in the intermediate temperature range (31 °C < T < 46 °C) undergo light-triggered disintegration into unimers, accompanied with the decrease of FRET efficiency. Overall, the coassembly and disassembly occurring in the mixed DHBC solution can be dually regulated by temperature and UV irradiation, and most importantly, these processes can be facilely monitored via changes in FRET efficiency and distinct emission colors.

  8. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    PubMed

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  9. Effect of Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    NASA Astrophysics Data System (ADS)

    Petrie, J. D.; Fredrickson, G. H.; Kramer, E. J.

    2009-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize either in the PS domains of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σc has been shown to scale as σc˜ ((R + Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σc as a function of R.

  10. Effect of Ligand Molecular Weight and Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    NASA Astrophysics Data System (ADS)

    Petrie, Joshua; Kim, Bumjoon; Fredrickson, Glenn; Kramer, Ed

    2008-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize in either domain of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σchas been shown to scale as σc˜ ((R+Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σcas a function of R.

  11. Temperature tunable micellization of polystyrene-block-poly(2-vinylpyridine) at Si-ionic liquid interface.

    PubMed

    Lu, Haiyun; Lee, Dong Hyun; Russell, Thomas P

    2010-11-16

    Highly ordered and stable micelles formed from both symmetric and asymmetric block copolymers of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) at the Si-ionic liquid (IL) interface have been investigated by scanning force microscopy (SFM) and transmission electron microscopy (TEM). The 1-butyl-3-methylimidazolium trifluoromethanesulfonate IL, a selective and temperature-tunable solvent for the P2VP block, was used and gave rise to block copolymer micelles having different morphologies that strongly depended on the annealing temperature. The effects of film thickness, molecular weight of block copolymers, and experimental conditions, such as preannealing, rinsing, and substrate properties, on the morphologies of block copolymer micelles were also studied. In addition, spherical micelles consisting of PS core and P2VP shell could also be obtained by core-corona inversion by annealing the as-coated micellar film in the IL at high temperatures. The possible mechanism for micelle formation is discussed.

  12. Low load, high repetition resistance training program increases bone mineral density in untrained adults.

    PubMed

    Petersen, Bailey A; Hastings, Bryce; Gottschall, Jinger S

    2017-01-01

    High load, low repetition resistance training increases BMD in untrained adults; however, many older and untrained adults cannot maintain this type of strenuous program. Our goal was to evaluate whether a low load, high repetition resistance training program would increase BMD in untrained adults. Twenty sedentary, but otherwise healthy, adults (6 men and 14 women, age 28-63 yrs) completed a 27-week group exercise program. The participants were randomly assigned to one of two strength groups: one group completed full body, low load, high repetition weight training classes (S-WEIGHT), while the other group completed core focused fusion classes (S-CORE). Both groups also completed indoor cycling classes for cardiovascular conditioning. After a 3-week familiarization period, all participants completed a 12-week block of 5 fitness classes per week (3 cycling + 2 strength) and concluded with another 12-week block of 6 classes per week (3 cycling + 3 strength). We completed iDXA scans at baseline (week 3) and final (week 28). Compared to baseline, BMD significantly increased for S-WEIGHT in the arms (+4%, P<0.001), legs (+8%, P<0.01), pelvis (+6%, P<0.01) and lumbar spine (+4%, P<0.05), whereas BMD did not significantly change for S-CORE at any site. These results suggest that a low load, high repetition resistance training program may be an effective method to improve bone mass in adults.

  13. Association of a multifunctional ionic block copolymer in a selective solvent

    DOE PAGES

    Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; ...

    2016-11-14

    The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shellmore » micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. As a result, in dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration.« less

  14. Core-Shell-Corona Micelles with a Responsive Shell.

    PubMed

    Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert

    2001-09-03

    A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  15. MIGRATION AND GROWTH OF PROTOPLANETARY EMBRYOS. II. EMERGENCE OF PROTO-GAS-GIANT CORES VERSUS SUPER EARTH PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.

    2015-01-01

    Nearly 15%-20% of solar type stars contain one or more gas giant planets. According to the core-accretion scenario, the acquisition of their gaseous envelope must be preceded by the formation of super-critical cores with masses 10 times or larger than that of the Earth. It is natural to link the formation probability of gas giant planets with the supply of gases and solids in their natal disks. However, a much richer population of super Earths suggests that (1) there is no shortage of planetary building block material, (2) a gas giant's growth barrier is probably associated with whether it can mergemore » into super-critical cores, and (3) super Earths are probably failed cores that did not attain sufficient mass to initiate efficient accretion of gas before it is severely depleted. Here we construct a model based on the hypothesis that protoplanetary embryos migrated extensively before they were assembled into bona fide planets. We construct a Hermite-Embryo code based on a unified viscous-irradiation disk model and a prescription for the embryo-disk tidal interaction. This code is used to simulate the convergent migration of embryos, and their close encounters and coagulation. Around the progenitors of solar-type stars, the progenitor super-critical-mass cores of gas giant planets primarily form in protostellar disks with relatively high (≳ 10{sup –7} M {sub ☉} yr{sup –1}) mass accretion rates, whereas systems of super Earths (failed cores) are more likely to emerge out of natal disks with modest mass accretion rates, due to the mean motion resonance barrier and retention efficiency.« less

  16. Well pattern optimization in a low permeability sandstone reservoir: a case study from Erlian Basin in China

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Fu, Lixia; Yan, Aihua; Guo, Fajun; Wu, Cong; Chen, Hong; Wang, Xinying; Lu, Ming

    2018-02-01

    Study on optimization of development well patterns is the core content of oilfield development and is a prerequisite for rational and effective development of oilfield. The study on well pattern optimization mainly includes types of well patterns and density of well patterns. This paper takes the Aer-3 fault block as an example. Firstly, models were built for diamond-shaped inverted 9-spot patterns, rectangular 5-spot patterns, square inverted 9-spot patterns and inverted 7-spot patterns under the same well pattern density to correlate the effect of different well patterns on development; secondly, comprehensive analysis was conducted to well pattern density in terms of economy and technology using such methods as oil reservoir engineering, numerical simulation, economic limits and economic rationality. Finally, the development mode of vertical well + horizontal well was presented according to the characteristics of oil reservoirs in some well blocks, which has realized efficient development of this fault block.

  17. A new route to prepare multiresponsive organogels from a block ionomer via charge-driven assembly.

    PubMed

    Zhang, Tao; Guo, Qipeng

    2013-06-04

    We report a novel route to prepare multiresponsive organogels through charge-driven assembly between a block ionomer and a diblock copolymer. The ionic complex aggregates to form spherical cores, which are connected by the middle block of the block ionomer to form gels. The organogels are responsive to acids, amines and salts.

  18. No-cost manual method for preparation of tissue microarrays having high quality comparable to semiautomated methods.

    PubMed

    Foda, Abd Al-Rahman Mohammad

    2013-05-01

    Manual tissue microarray (TMA) construction had been introduced to avoid the high cost of automated and semiautomated techniques. The cheapest and simplest technique for constructing manual TMA was that of using mechanical pencil tips. This study was carried out to modify this method, aiming to raise its quality to reach that of expensive ones. Some modifications were introduced to Shebl's technique. Two conventional mechanical pencil tips of different diameters were used to construct the recipient blocks. A source of mild heat was used, and blocks were incubated at 38°C overnight. With our modifications, 3 high-density TMA blocks were constructed. We successfully performed immunostaining without substantial tissue loss. Our modifications increased the number of cores per block and improved the stability of the cores within the paraffin block. This new, modified technique is a good alternative for expensive machines in many laboratories.

  19. Polymer nano-particle hybrid micelles: Encapsulation of POSS into semi-fluorinated polymer micelles

    NASA Astrophysics Data System (ADS)

    Ratnaweera, Dilru; Perahia, Dvora; Iacono, Scott; Mabry, Joseph; Smith, Dennis

    2012-02-01

    Self-assembly of block copolymers in selective solvents was used to form a nanoparticle (NP)/polymer hybrid micelles. These micelles can be used as a cargo vehicle for other substances such as drug delivery, and as building blocks for polymer-nanocomposites with controlled NP distribution. Association of NPs into specific blocks of the copolymer depends on the compatibility between the NPs and the block as well as their preference to the solvent that micellization takes place. The current work introduces a small angle neutron scattering study of association of Polyhedral Oligomeric Silsesquioxane (POSS) NPs into micelles of a highly segregating random copolymer, Biphenyl Perfluorocyclobutane (BPh-PFCB), in toluene, which is a good solvent for BPh. Incompatibility between the blocks drives copolymer into micelles with PFCB in the core and BPh in swollen corona. Modification of NPs with polymer chains drives POSS cages into the micelle core and prevents the micelle dissociation at higher temperatures.

  20. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  1. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    PubMed

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  2. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.

    PubMed

    Yu, Aifang; Pu, Xiong; Wen, Rongmei; Liu, Mengmeng; Zhou, Tao; Zhang, Ke; Zhang, Yang; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2017-12-26

    Although textile-based triboelectric nanogenerators (TENGs) are highly promising because they scavenge energy from their working environment to sustainably power wearable/mobile electronics, the challenge of simultaneously possessing the qualities of cloth remains. In this work, we propose a strategy for TENG textiles as power cloths in which core-shell yarns with core conductive fibers as the electrode and artificial polymer fibers or natural fibrous materials tightly twined around core conductive fibers are applied as the building blocks. The resulting TENG textiles are comfortable, flexible, and fashionable, and their production processes are compatible with industrial, large-scale textile manufacturing. More importantly, the comfortable TENG textiles demonstrate excellent washability and tailorability and can be fully applied in further garment processing. TENG textiles worn under the arm or foot have also been demonstrated to scavenge various types of energy from human motion, such as patting, walking, and running. All of these merits of proposed TENG textiles for clothing uses suggest their great potentials for viable applications in wearable electronics or smart textiles in the near future.

  3. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane

    PubMed Central

    2016-01-01

    Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups. PMID:27003358

  4. Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion

    NASA Astrophysics Data System (ADS)

    Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.

    Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.

  5. Managing Security in FPGA-Based Embedded Systems

    DTIC Science & Technology

    2008-01-01

    Trans. De- sign Automation of Electronic Systems (TODAES), vol. 13, no. 3, July 2008, article 44. c©2008 ACM with permission.5) of the function would need...in the finished design. In addition, the life cycle can be subverted when engineers inject unintended functionality, some of which might be malicious...cores and a moat size of two. There are several different drawbridge configurations between the cores. (IOB: I/O block; CLB: configuration logic block

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ramazan Sonat; Hummel, Andrew John; Hiruta, Hikaru

    The deterministic full core simulators require homogenized group constants covering the operating and transient conditions over the entire lifetime. Traditionally, the homogenized group constants are generated using lattice physics code over an assembly or block in the case of prismatic high temperature reactors (HTR). For the case of strong absorbers that causes strong local depressions on the flux profile require special techniques during homogenization over a large volume. Fuel blocks with burnable poisons or control rod blocks are example of such cases. Over past several decades, there have been a tremendous number of studies performed for improving the accuracy ofmore » full-core calculations through the homogenization procedure. However, those studies were mostly performed for light water reactor (LWR) analyses, thus, may not be directly applicable to advanced thermal reactors such as HTRs. This report presents the application of SuPer-Homogenization correction method to a hypothetical HTR core.« less

  7. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    PubMed

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  8. Multilayer nanoparticles with a magnetite core and a polycation inner shell as pH-responsive carriers for drug delivery

    NASA Astrophysics Data System (ADS)

    Guo, Miao; Yan, Yu; Liu, Xiaozhou; Yan, Husheng; Liu, Keliang; Zhang, Hongkai; Cao, Youjia

    2010-03-01

    Nanocarriers with multilayer core-shell architecture were prepared by coating a superparamagnetic Fe3O4 core with a triblock copolymer. The first block of the copolymer formed the biocompatible outermost shell of the nanocarrier. The second block that contains amino groups and hydrophobic moiety formed the inner shell. The third block bound tightly onto the Fe3O4 core. Chlorambucil (an anticancer agent) and indomethacin (an anti-inflammation agent), each containing a carboxyl group and a hydrophobic moiety, were loaded into the amino-group-containing inner shell by a combination of ionic and hydrophobic interactions. The release rate of the loaded drugs was slow at pH 7.4, mimicking the blood environment, whereas the release rate increased significantly at acidic pH, mimicking the intracellular conditions in the endosome/lysosome. This can be attributed to the disruption of the ionic bond caused by protonation of the carboxylate anion of the drugs and the swelling of the inner shell caused by protonation of the amino groups.

  9. Hg2+-reactive double hydrophilic block copolymer assemblies as novel multifunctional fluorescent probes with improved performance.

    PubMed

    Hu, Jinming; Li, Changhua; Liu, Shiyong

    2010-01-19

    We report on novel type of responsive double hydrophilic block copolymer (DHBC)-based multifunctional chemosensors to Hg(2+) ions, pH, and temperatures and investigate the effects of thermo-induced micellization on the detection sensitivity. Well-defined DHBCs bearing rhodamine B-based Hg(2+)-reactive moieties (RhBHA) in the thermo-responsive block, poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-RhBHA) (PEO-b-P(NIPAM-co-RhBHA)), were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Nonfluorescent RhBHA moieties are subjected to selective ring-opening reaction upon addition of Hg(2+) ions or lowering solution pH, producing highly fluorescent acyclic species. Thus, at room temperature PEO-b-P(NIPAM-co-RhBHA) DHBCs can serve as water-soluble multifunctional and efficient fluorescent chemosensors to Hg(2+) ions and pH. Upon heating above the lower critical solution temperature (approximately 36 degrees C) of the PNIPAM block, they self-assemble into micelles possessing P(NIPAM-co-RhBHA) cores and well-solvated PEO coronas, which were fully characterized by dynamic and static laser light scattering. It was found that the detection sensitivity to Hg(2+) ions and pH could be dramatically improved at elevated temperatures due to fluorescence enhancement of RhBHA residues in the acyclic form, which were embedded within hydrophobic cores of thermo-induced micellar aggregates. This work represents a proof-of-concept example of responsive DHBC-based multifunctional fluorescent chemosensors for the highly efficient detection of Hg(2+) ions, pH, and temperatures with tunable detection sensitivity. Compared to reaction-based small molecule Hg(2+) probes in previous literature reports, the integration of stimuli-responsive block copolymers with well-developed small molecule-based selective sensing moieties in the current study are expected to exhibit preferred advantages including enhanced detection sensitivity, water dispersibility, biocompatibility, facile incorporation into devices, and the ability of further functionalization for targeted imaging and detection.

  10. An IO block array in a radiation-hardened SOI SRAM-based FPGA

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Lihua, Wu; Xiaowei, Han; Yan, Li; Qianli, Zhang; Liang, Chen; Guoquan, Zhang; Jianzhong, Li; Bo, Yang; Jiantou, Gao; Jian, Wang; Ming, Li; Guizhai, Liu; Feng, Zhang; Xufeng, Guo; Kai, Zhao; Chen, Stanley L.; Fang, Yu; Zhongli, Liu

    2012-01-01

    We present an input/output block (IOB) array used in the radiation-hardened SRAM-based field-programmable gate array (FPGA) VS1000, which is designed and fabricated with a 0.5 μm partially depleted silicon-on-insulator (SOI) logic process at the CETC 58th Institute. Corresponding with the characteristics of the FPGA, each IOB includes a local routing pool and two IO cells composed of a signal path circuit, configurable input/output buffers and an ESD protection network. A boundary-scan path circuit can be used between the programmable buffers and the input/output circuit or as a transparent circuit when the IOB is applied in different modes. Programmable IO buffers can be used at TTL/CMOS standard levels. The local routing pool enhances the flexibility and routability of the connection between the IOB array and the core logic. Radiation-hardened designs, including A-type and H-type body-tied transistors and special D-type registers, improve the anti-radiation performance. The ESD protection network, which provides a high-impulse discharge path on a pad, prevents the breakdown of the core logic caused by the immense current. These design strategies facilitate the design of FPGAs with different capacities or architectures to form a series of FPGAs. The functionality and performance of the IOB array is proved after a functional test. The radiation test indicates that the proposed VS1000 chip with an IOB array has a total dose tolerance of 100 krad(Si), a dose survivability rate of 1.5 × 1011 rad(Si)/s, and a neutron fluence immunity of 1 × 1014 n/cm2.

  11. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(L-lactide).

    PubMed

    Lim, Young H; Tiemann, Kristin M; Heo, Gyu Seong; Wagers, Patrick O; Rezenom, Yohannes H; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J; Hunstad, David A; Wooley, Karen L

    2015-02-24

    The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.

  12. Climatology of tracked persistent maxima of 500-hPa geopotential height

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zhu, Yuejian; Zhang, Qin; Gottschalck, Jon; Zhang, Minghua; Melhauser, Christopher; Li, Wei; Guan, Hong; Zhou, Xiaqiong; Hou, Dingchen; Peña, Malaquias; Wu, Guoxiong; Liu, Yimin; Zhou, Linjiong; He, Bian; Hu, Wenting; Sukhdeo, Raymond

    2017-10-01

    Persistent open ridges and blocking highs (maxima) of 500-hPa geopotential height (Z500; PMZ) adjacent in space and time are identified and tracked as one event with a Lagrangian objective approach to derive their climatological statistics with some dynamical reasoning. A PMZ starts with a core that contains a local eddy maximum of Z500 and its neighboring grid points whose eddy values decrease radially to about 20 geopotential meters (GPMs) smaller than the maximum. It connects two consecutive cores that share at least one grid point and are within 10° of longitude of each other using an intensity-weighted location. The PMZ ends at the core without a successor. On each day, the PMZ impacts an area of grid points contiguous to the core and with eddy values decreasing radially to 100 GPMs. The PMZs identified and tracked consist of persistent ridges, omega blockings and blocked anticyclones either connected or as individual events. For example, the PMZ during 2-13 August 2003 corresponds to persistent open ridges that caused the extreme heatwave in Western Europe. Climatological statistics based on the PMZs longer than 3 days generally agree with those of blockings. In the Northern Hemisphere, more PMZs occur in DJF season than in JJA and their duration both exhibit a log-linear distribution. Because more omega-shape blocking highs and open ridges are counted, the PMZs occur more frequently over Northeast Pacific than over Atlantic-Europe during cool seasons. Similar results are obtained using the 200-hPa geopotential height (in place of Z500), indicating the quasi-barotropic nature of the PMZ.

  13. NUCLEAR REACTOR CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, G.E.; Bell, F.R.; Page, R.W.

    1963-03-01

    A nuclear reactor core is described. It contains fuel in the form of blocks or pellets that have a grooved, wrinkled, or corrugated surface to provide a greater radiating surface area. The surfaces of spaces in the core are correspondingly corrugated for maximum heat exchange area. (C.E.S.)

  14. Planning and Execution of a Marine Methane Hydrate Pressure Coring Program for the Walker Ridge and Green Canyon Areas of the Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, Gary

    The objective of this project (and report) is to produce a guide to developing scientific, operational, and logistical plans for a future methane hydrate-focused offshore pressure coring program. This report focuses primarily on a potential coring program in the Walker Ridge 313 and Green Canyon 955 blocks where previous investigations were undertaken as part of the 2009 Department of Energy JIP Leg II expedition, however, the approach to designing a pressure coring program that was utilized for this project may also serve as a useful model for planning pressure coring programs for hydrates in other areas. The initial portion ofmore » the report provides a brief overview of prior investigations related to gas hydrates in general and at the Walker Ridge 313 and Green Canyon 955 blocks in particular. The main content of the report provides guidance for various criteria that will come into play when designing a pressure coring program.« less

  15. A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies

    PubMed Central

    Zlobec, Inti; Suter, Guido; Perren, Aurel; Lugli, Alessandro

    2014-01-01

    Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research. PMID:25285857

  16. Generating global network structures by triad types

    PubMed Central

    Ferligoj, Anuška; Žiberna, Aleš

    2018-01-01

    This paper addresses the question of whether one can generate networks with a given global structure (defined by selected blockmodels, i.e., cohesive, core-periphery, hierarchical, and transitivity), considering only different types of triads. Two methods are used to generate networks: (i) the newly proposed method of relocating links; and (ii) the Monte Carlo Multi Chain algorithm implemented in the ergm package in R. Most of the selected blockmodel types can be generated by considering all types of triads. The selection of only a subset of triads can improve the generated networks’ blockmodel structure. Yet, in the case of a hierarchical blockmodel without complete blocks on the diagonal, additional local structures are needed to achieve the desired global structure of generated networks. This shows that blockmodels can emerge based only on local processes that do not take attributes into account. PMID:29847563

  17. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo.

    PubMed

    Jeronimo, Célia; Langelier, Marie-France; Bataille, Alain R; Pascal, John M; Pugh, B Franklin; Robert, François

    2016-11-03

    Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures.

    PubMed

    Ten Hove, J B; Wang, J; van Leeuwen, F W B; Velders, A H

    2017-12-07

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.

  19. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  20. Alanine scan of core positions in ubiquitin reveals links between dynamics, stability, and function

    PubMed Central

    Lee, Shirley Y.; Pullen, Lester; Virgil, Daniel J.; Castañeda, Carlos A.; Abeykoon, Dulith; Bolon, Daniel N. A.; Fushman, David

    2014-01-01

    Mutations at solvent inaccessible core positions in proteins can impact function through many biophysical mechanisms including alterations to thermodynamic stability and protein dynamics. As these properties of proteins are difficult to investigate, the impacts of core mutations on protein function are poorly understood for most systems. Here, we determined the effects of alanine mutations at all 15 core positions in ubiquitin on function in yeast. The majority (13 of 15) of alanine substitutions supported yeast growth as the sole ubiquitin. The two null mutants (I30A and L43A) were both less stable to temperature-induced unfolding in vitro than wild-type, but were well folded at physiological temperatures. Heteronuclear NMR studies indicated that the L43A mutation reduces temperature stability while retaining a ground-state structure similar to wild-type. This structure enables L43A to bind to common ubiquitin receptors in vitro. Many of the core alanine ubiquitin mutants, including one of the null variants (I30A), exhibited an increased accumulation of high molecular weight species, suggesting that these mutants caused a defect in the processing of ubiquitin-substrate conjugates. In contrast, L43A exhibited a unique accumulation pattern with reduced levels of high molecular weight species and undetectable levels of free ubiquitin. When conjugation to other proteins was blocked, L43A ubiquitin accumulated as free ubiquitin in yeast. Based on these findings we speculate that ubiquitin's stability to unfolding may be required for efficient recycling during proteasome-mediated substrate degradation. PMID:24361330

  1. Software Defined Radio with Parallelized Software Architecture

    NASA Technical Reports Server (NTRS)

    Heckler, Greg

    2013-01-01

    This software implements software-defined radio procession over multicore, multi-CPU systems in a way that maximizes the use of CPU resources in the system. The software treats each processing step in either a communications or navigation modulator or demodulator system as an independent, threaded block. Each threaded block is defined with a programmable number of input or output buffers; these buffers are implemented using POSIX pipes. In addition, each threaded block is assigned a unique thread upon block installation. A modulator or demodulator system is built by assembly of the threaded blocks into a flow graph, which assembles the processing blocks to accomplish the desired signal processing. This software architecture allows the software to scale effortlessly between single CPU/single-core computers or multi-CPU/multi-core computers without recompilation. NASA spaceflight and ground communications systems currently rely exclusively on ASICs or FPGAs. This software allows low- and medium-bandwidth (100 bps to approx.50 Mbps) software defined radios to be designed and implemented solely in C/C++ software, while lowering development costs and facilitating reuse and extensibility.

  2. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  3. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  4. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.

    PubMed

    Lungu, Iulia Ioana; Rădulescu, Marius; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2016-01-01

    In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and shape are synthesized by various modern methods, such as homogeneous precipitation, coprecipitation, microemulsion or polyol approaches, high temperature and hydrothermal reactions, sol-gel reactions, aerosol÷vapor processes and sonolysis. Due to their unique combined physico-chemical and biological properties (such as higher dispensability, chemical and thermal stability, biocompatibility), pH responsive core-shell magnetic NPs are widely investigated for controlled release of cytostatic drugs into the tumor site by means of pH change: magnetite@silicon dioxide (Fe3O4@SiO2), Fe3O4@titanium dioxide (TiO2), β-thiopropionate-polyethylene glycol (PEG)-modified Fe3O4@mSiO2, Fe3O4 NPs core coated with SiO2 with an imidazole group modified PEG-polypeptide (mPEG-poly-L-Asparagine), polyacrylic acid (PAA) and folic acid (FA) coating of the iron oxide NP core, methoxy polyethylene glycol-block-polymethacrylic acid-block-polyglycerol monomethacrylate (MPEG-b-PMAA-b-PGMA) attached by a PGMA block to a Fe3O4 core, PEG-modified polyamidoamine (PAMAM) dendrimer shell with Fe3O4 core and mesoporous silica coated on Fe3O4, mostly coated with an anticancer drug. This review paper highlights the modern research directions currently employed to demonstrate the utility of the pH responsive core-shell magnetic NPs in diagnosis and treatment of oncological diseases.

  5. EDITSPEC: System Manual. Volume IV. Data Handler.

    DTIC Science & Technology

    1980-11-01

    PRINTS AND ABORTS OR RETURNS WITHOUT SAYING ANYTHING DKFBF FILL BUFFER ROUTINE: BT ENTRY AT IBTAD IS IN D GET BLOCK NBL OF DATA SET NSW IN AND WAIT FOR...READ COMPLETION DKFND ROUTINE TO LOCATE BLOCK NBL SEGMENT NSG OF DATA SET NSW. N SEARCHES BT’S FIRST’THEN READS INTO CORE RETURNS IBTAD=THE BT ENTRY...WHICH IS RETURNED IN NBL . DKMIC ROUTINE TO SEARCH IN CORE BUFFER TABLES FOR ONE WITH DATA SET NOS FILENAME FILNM AND RETURN THE ONE WITH THE MOST

  6. Transport Corrections in Nodal Diffusion Codes for HTR Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abderrafi M. Ougouag; Frederick N. Gleicher

    2010-08-01

    The cores and reflectors of High Temperature Reactors (HTRs) of the Next Generation Nuclear Plant (NGNP) type are dominantly diffusive media from the point of view of behavior of the neutrons and their migration between the various structures of the reactor. This means that neutron diffusion theory is sufficient for modeling most features of such reactors and transport theory may not be needed for most applications. Of course, the above statement assumes the availability of homogenized diffusion theory data. The statement is true for most situations but not all. Two features of NGNP-type HTRs require that the diffusion theory-based solutionmore » be corrected for local transport effects. These two cases are the treatment of burnable poisons (BP) in the case of the prismatic block reactors and, for both pebble bed reactor (PBR) and prismatic block reactor (PMR) designs, that of control rods (CR) embedded in non-multiplying regions near the interface between fueled zones and said non-multiplying zones. The need for transport correction arises because diffusion theory-based solutions appear not to provide sufficient fidelity in these situations.« less

  7. A new needle on the block: EchoTip ProCore endobronchial ultrasound needle

    PubMed Central

    Dincer, H Erhan; Andrade, Rafael; Zamora, Felix; Podgaetz, Eitan

    2016-01-01

    Endobronchial ultrasound has become the first choice standard of care procedure to diagnose benign or malignant lesions involving mediastinum and lung parenchyma adjacent to the airways owing to its characteristics of being real-time and minimally invasive. Although the incidence of lung cancer has been decreasing, it is and will be the leading cause of cancer-related mortality in the next few decades. When compared to other cancers, lung cancer kills more females than breast and colon cancers combined and more males than colon and prostate cancers combined. The type of lung cancer has changed in recent decades and adenocarcinoma has become the most frequent cell type. Prognosis of lung cancer depends upon the cell type and the staging at the time of diagnosis. The cell type and molecular characteristics of adenocarcinoma may allow individualized targeted treatment. Other malignant conditions in the mediastinum and lung (eg, metastatic lung cancers and lymphoma) can be biopsied using endobronchial ultrasound needles. Endobronchial ultrasound needle biopsies provides mostly cytology specimens due to its small sizes of needles (22 gauge or larger) which may not give enough tissue to make a definitive diagnosis in malignant (eg, lymphoma) or benign conditions (eg, sarcoidosis). EchoTip ProCore endobronchial needle released in early 2014 provides histologic biopsy material. Larger tissue biopsies may potentially provide a higher diagnostic yield and it eliminates mediastinoscopy or other surgical interventions. Here we aim to review bronchoscopic approach in the diagnosis of mediastinal lesions with emphasis of EchoTip ProCore needles. PMID:27099535

  8. Tailor-made polyfluoroacrylate and its block copolymer by RAFT polymerization in miniemulsion; improved hydrophobicity in the core-shell block copolymer.

    PubMed

    Chakrabarty, Arindam; Singha, Nikhil K

    2013-10-15

    Controlled/living radical polymerization (CRP) of a fluoroacrylate was successfully carried out in miniemulsion by Reversible Addition Fragmentation chain Transfer (RAFT) process. In this case, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) was polymerized using 2-cyanopropyl dodecyl trithiocarbonate (CPDTC) as RAFT agent, Triton X-405 and sodium dodecyl sulfonate (SDS) as surfactant, and potassium persulphate (KPS) or 2,2'-azobis isobutyronitrile (AIBN) as initiator. Being compatible with hydrophobic fluoroacrylate, this RAFT agent offered very high conversion and good control over the molecular weight of the polymer. The miniemulsion was stable without any costabilizer. The long chain dodecyl group (-C12H25) (Z-group in the RAFT agent) had beneficial effect in stabilizing the miniemulsion. When 2-cyano 2-propyl benzodithioate (CPBD) (Z=-C6H5) was used as RAFT agent, the conversion was less and particle size distribution was very broad. Block copolymerization with butyl acrylate (BA) using PHFBA as macro-RAFT agent showed core-shell morphology with the aggregation of PHFBA segment in the shell. GPC as well as DSC analysis confirmed the formation of block copolymer. The core-shell morphology was confirmed by TEM analysis. The block copolymers (PHFBA-b-PBA) showed significantly higher water contact angle (WCA) showing much better hydrophobicity compared to PHFBA alone. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less

  10. Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells.

    PubMed

    Koh, Haeng-Deog; Changez, Mohammad; Lee, Jae-Suk

    2010-10-18

    A polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core-shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell-embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS-b-P2VP hybrid NPs is confirmed by transmission electron microscopy, energy-dispersive X-ray, and UV-Vis absorption. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.

    PubMed

    Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong

    2018-05-01

    In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.

  12. Exploiting Vector and Multicore Parallelsim for Recursive, Data- and Task-Parallel Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Bin; Krishnamoorthy, Sriram; Agrawal, Kunal

    Modern hardware contains parallel execution resources that are well-suited for data-parallelism-vector units-and task parallelism-multicores. However, most work on parallel scheduling focuses on one type of hardware or the other. In this work, we present a scheduling framework that allows for a unified treatment of task- and data-parallelism. Our key insight is an abstraction, task blocks, that uniformly handles data-parallel iterations and task-parallel tasks, allowing them to be scheduled on vector units or executed independently as multicores. Our framework allows us to define schedulers that can dynamically select between executing task- blocks on vector units or multicores. We show that thesemore » schedulers are asymptotically optimal, and deliver the maximum amount of parallelism available in computation trees. To evaluate our schedulers, we develop program transformations that can convert mixed data- and task-parallel pro- grams into task block-based programs. Using a prototype instantiation of our scheduling framework, we show that, on an 8-core system, we can simultaneously exploit vector and multicore parallelism to achieve 14×-108× speedup over sequential baselines.« less

  13. On the role of horizontal displacements in the exhumation of high pressure metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Brun, J.-P.; Tirel, C.; Philippon, M.; Burov, E.; Faccenna, C.; Gueydan, F.; Lebedev, S.

    2012-04-01

    High pressure metamorphic rocks exposed in the core of many mountain belts correspond to various types of upper crustal materials that have been buried to mantle depths and, soon after, brought back to surface at mean displacement rates up to few cm/y, comparable to those of plate boundaries. The vertical component of HP rock exhumation velocity back to surface is commonly well constrained by pressure estimates from petrology and geochronological data whereas the horizontal component remains generally difficult or impossible to estimate. Consequently, most available models, if not all, attempt to simulate exhumation with a minimal horizontal component of displacement. Such models, require that the viscosity of HP rocks is low and/or the erosion rate large -i.e. at least equal to the rate of exhumation. However, in some regions like the Aegean, where the exhumation of blueschists and eclogites is driven by slab rollback, it can be shown that the horizontal component of exhumation related displacement, obtained from map view restoration, is 5 to 7 times larger than the vertical one, deduced from metamorphic pressure estimates. Using finite element models performed with FLAMAR, we show that such a situation simply results from the subduction of small continental blocks (< 500km) that stimulate subduction rollback. The continental block is dragged downward and sheared off the downgoing mantle slab by buoyancy force. Exhumation of the crustal block occurs through a one step Caterpillar-type walk, with the block's tail slipping along a basal décollement, approaching the head and making a large buckle, which then unrolls at surface as soon as the entire block is delaminated. Finally, the crustal block emplaces at surface in the space created by trench retreat. This process of exhumation requires neither rheological weakening of HP rocks nor high rates of erosion.

  14. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.

    2010-09-01

    We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.

  15. A study of the parallel algorithm for large-scale DC simulation of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Cortés Udave, Diego Ernesto; Ogrodzki, Jan; Gutiérrez de Anda, Miguel Angel

    Newton-Raphson DC analysis of large-scale nonlinear circuits may be an extremely time consuming process even if sparse matrix techniques and bypassing of nonlinear models calculation are used. A slight decrease in the time required for this task may be enabled on multi-core, multithread computers if the calculation of the mathematical models for the nonlinear elements as well as the stamp management of the sparse matrix entries are managed through concurrent processes. This numerical complexity can be further reduced via the circuit decomposition and parallel solution of blocks taking as a departure point the BBD matrix structure. This block-parallel approach may give a considerable profit though it is strongly dependent on the system topology and, of course, on the processor type. This contribution presents the easy-parallelizable decomposition-based algorithm for DC simulation and provides a detailed study of its effectiveness.

  16. Results from the direct combination of satellite and gravimetric data. [orbit analysis and gravity anomalies

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1974-01-01

    Results have been obtained for the solution of 184 15-deg equal-area blocks directly from the analysis of satellite orbits, and from a combination of the satellite results with terrestrial gravity material. This test computation, made to verify the method, used 17,632 optical observations from ten satellites in 29 arcs averaging in length seven days. Analysis of the satellite results were made by comparing the solved for anomalies with the terrestrial anomaly set, and by developing the solved for anomalies into potential coefficients which were compared to the GEM 3 set of potential coefficients to degree 12. These comparisons indicated improvement in each solution as more arcs were added. The programs used in this solution can easily be used to solve for smaller size blocks and handle additional data types. The only limitation will be computer core availability and computer time.

  17. Low-Power Embedded DSP Core for Communication Systems

    NASA Astrophysics Data System (ADS)

    Tsao, Ya-Lan; Chen, Wei-Hao; Tan, Ming Hsuan; Lin, Maw-Ching; Jou, Shyh-Jye

    2003-12-01

    This paper proposes a parameterized digital signal processor (DSP) core for an embedded digital signal processing system designed to achieve demodulation/synchronization with better performance and flexibility. The features of this DSP core include parameterized data path, dual MAC unit, subword MAC, and optional function-specific blocks for accelerating communication system modulation operations. This DSP core also has a low-power structure, which includes the gray-code addressing mode, pipeline sharing, and advanced hardware looping. Users can select the parameters and special functional blocks based on the character of their applications and then generating a DSP core. The DSP core has been implemented via a cell-based design method using a synthesizable Verilog code with TSMC 0.35[InlineEquation not available: see fulltext.]m SPQM and 0.25[InlineEquation not available: see fulltext.]m 1P5M library. The equivalent gate count of the core area without memory is approximately 50 k. Moreover, the maximum operating frequency of a[InlineEquation not available: see fulltext.] version is 100 MHz (0.35[InlineEquation not available: see fulltext.]m) and 140 MHz (0.25[InlineEquation not available: see fulltext.]m).

  18. Polydispersity effects in poly(isoprene-b-styrene-b-ethylene oxide) triblock terpolymers

    NASA Astrophysics Data System (ADS)

    Meuler, Adam J.; Ellison, Christopher J.; Qin, Jian; Evans, Christopher M.; Hillmyer, Marc A.; Bates, Frank S.

    2009-06-01

    Four hydroxyl-terminated poly(isoprene-b-styrene) diblock copolymers with comparable molecular weights and compositions (equivalent volume fractions of polyisoprene and polystyrene) but different polystyrene block polydispersity indices (Mw/Mn=1.06,1.16,1.31,1.44) were synthesized by anionic polymerization using either sec-butyllithium or the functional organolithium 3-triisopropylsilyloxy-1-propyllithium. Poly(ethylene oxide) (PEO) blocks were grown from the end of each of these parent diblocks to yield four series of poly(isoprene-b-styrene-b-ethylene oxide) (ISO) triblock terpolymers that were used to interrogate the effects of varying the polydispersity of the middle bridged polystyrene block. In addition to the neat triblock samples, 13 multicomponent blends were prepared at four different compositions from the ISO materials containing a polystyrene segment with Mw/Mn=1.06; these blends were used to probe the effects of increasing the polydispersity of the terminal PEO block. The melt-phase behavior of all samples was characterized using small-angle X-ray scattering and dynamic mechanical spectroscopy. Numerous polydispersity-driven morphological transitions are reported, including transitions from lamellae to core-shell gyroid, from core-shell gyroid to hexagonally packed cylinders, and from network morphologies [either O70 (the orthorhombic Fddd network) or core-shell gyroid] to lamellae. Domain periodicities and order-disorder transition temperatures also vary with block polydispersities. Self-consistent field theory calculations were performed to supplement the experimental investigations and help elucidate the molecular factors underlying the polydispersity effects. The consequences of varying the polydispersity of the terminal PEO block are comparable to the polydispersity effects previously reported in AB diblock copolymers. Namely, domain periodicities increase with increasing polydispersity and domain interfaces tend to curve toward polydisperse blocks. The changes in phase behavior that are associated with variations in the polydispersity of the middle bridged polystyrene block, however, are not analogous to those reported in AB diblock copolymers, as increases in this middle block polydispersity are not always accompanied by (i) increased domain periodicities and (ii) a tendency for domain interfaces to curve toward the polydisperse domain. These results highlight the utility of polydispersity as a tool to tune the phase behavior of ABC block terpolymers.

  19. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  20. NanoSIMS U-Pb dating of hydrothermally altered monazite: Constraints on the Timing of LaoZaiWan Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    PI, Q.

    2017-12-01

    Abstract: Direct dating of Carlin-type Au deposits was restricted due to the absence of a geochronometer. Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in gold-rich ore samples from the LaoZaiWan Au deposit in SW China, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. The monazite grain is considered to be the product of fluid-aided coupled dissolution-reprecipitation during Au mineralization via prograde metamorphic reactions. We present results of in situ NonSIMS U-Pb dating applied to the rims of monazite . NonSIMS U-Pb age of hydrothermal monazite gave ages of 228 ± 9 Ma(2σ) and 230 ± 16 Ma(2σ) for LaoZaiWan Au deposit. These ages are interpreted as Au mineralization ages, which consistent with the Re-Os age of arsenopyite for JinYa Au deposit, the U-Pb age of rutile for and 40Ar-39Ar age of sericite for Zhesang Au deposit. We postulate that the formation of the Carlin-type Au deposits in the Golden Triangle region was triggered by the Indosinian Orogen, related to collision of the Indochina Block with South China Block.

  1. Identification of tectonically controlled serpentinite intrusion: Examples from Franciscan serpentinites, Gorda, California

    NASA Astrophysics Data System (ADS)

    Hirauchi, K.

    2006-12-01

    Serpentinite bodies, zonally occurring as a component of fault zones, without any association with ophiolitic rocks might be a mantle in origin tectonically intruded from a considerable depth. Typical occurrences of serpentinites that experienced a unique emplacement process different from surrounding rocks are found in the Sand Dollar Beach, Gorda, California. The serpentinite bodies are widely outcropped in the Franciscan Complex. All the serpentinites exhibit a block-in-matrix fabric, the blocks of which are classified into either massive or schistose types. The former retains relict minerals such as olivine, orthopyroxene and clinopyroxene and chromian spinel, and has serpentine minerals (lizardite and chrysotile) of mesh texture and bastite. The latter is characterized by ribbon textures as ductilely deformed mesh textures. The matrix is composed of aligned tabular lizardite, penetrating into the interior core of the blocks. The schistosities in the blocks and the attitude of the foliated matrix are both consistent with the elongate direction of the larger serpentinite bodies. The massive mesh textures is converted by the schistose ribbon textures with ductile deformation, further penetrated by tabular lizardite of the matrix. These series of the continuous deformation and recrystallization may occur along a regional deep fault zone, after undergoing partial serpentinization at lower crust and upper mantle.

  2. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  3. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1992-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  4. Tiltrotor research aircraft composite blade repairs: Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  5. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    PubMed

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  6. Block-Module Electric Machines of Alternating Current

    NASA Astrophysics Data System (ADS)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  7. Pair Formation of Hard Core Bosons in Flat Band Systems

    NASA Astrophysics Data System (ADS)

    Mielke, Andreas

    2018-05-01

    Hard core bosons in a large class of one or two dimensional flat band systems have an upper critical density, below which the ground states can be described completely. At the critical density, the ground states are Wigner crystals. If one adds a particle to the system at the critical density, the ground state and the low lying multi particle states of the system can be described as a Wigner crystal with an additional pair of particles. The energy band for the pair is separated from the rest of the multi-particle spectrum. The proofs use a Gerschgorin type of argument for block diagonally dominant matrices. In certain one-dimensional or tree-like structures one can show that the pair is localised, for example in the chequerboard chain. For this one-dimensional system with periodic boundary condition the energy band for the pair is flat, the pair is localised.

  8. Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F

    2012-03-07

    Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society

  9. Prostate needle biopsy processing: a survey of laboratory practice across Europe.

    PubMed

    Varma, Murali; Berney, Daniel M; Algaba, Ferran; Camparo, Philippe; Compérat, Eva; Griffiths, David F R; Kristiansen, Glen; Lopez-Beltran, Antonio; Montironi, Rodolfo; Egevad, Lars

    2013-02-01

    To determine the degree of variation in the handling of prostate needle biopsies (PBNx) in laboratories across Europe. A web based survey was emailed to members of the European Network of Uropathology and the British Association of Urological Pathologists. Responses were received from 241 laboratories in 15 countries. PNBx were generally taken by urologists (93.8%) or radiologists (23.7%) but in 8.7% were also taken by non-medical personnel such as radiographers, nurses or biomedical assistants. Of the responding laboratories, 40.8% received cores in separate containers, 42.3% processed one core/block, 54.2% examined three levels/block, 49.4% examined one H&E section/level and 56.1% retained spare sections for potential immunohistochemistry. Of the laboratories, 40.9% retained unstained spares for over a year while 36.2% discarded spares within 1 month of reporting. Only two (0.8%) respondents routinely performed immunohistochemistry on all PNBx. There were differences in laboratory practice between the UK and the rest of Europe (RE). Procurement of PNBx by non-medical personnel was more common in the UK. RE laboratories more commonly received each core in a separate container, processed one core/block, examined fewer levels/block and examined more H&E sections/level. RE laboratories also retained spares for potential immunohistochemistry less often and for shorter periods. Use of p63 as the sole basal cell marker was more common in RE. There are marked differences in procurement, handling and processing of PNBx in laboratories across Europe. This data can help the development of best practice guidelines.

  10. Block Copolymer Micelles as Nanocontainers for Controlled Release of Proteins from Biocompatible Oil Phases

    PubMed Central

    2009-01-01

    Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil−water interface. Self-assembly of the block copolymer, poly(ϵ-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12−30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene. PMID:19235932

  11. Development of experimental approach to examine U occurrence continuity over the extended area reconnoitory boreholes: Lostoin Block, West Khasi Hills district, Meghalaya (India).

    PubMed

    Kukreti, B M; Kumar, Pramod; Sharma, G K

    2015-10-01

    Exploratory drilling was undertaken in the Lostoin block, West Khasi Hills district of Meghalaya based on the geological extension to the major uranium deposit in the basin. Gamma ray logging of drilled boreholes shows considerable subsurface mineralization in the block. However, environmental and exploration related challenges such as climatic, logistic, limited core drilling and poor core recovery etc. in the block severely restricted the study of uranium exploration related index parameters for the block with a high degree confidence. The present study examines these exploration related challenges and develops an integrated approach using representative sampling of reconnoitory boreholes in the block. Experimental findings validate a similar geochemically coherent nature of radio elements (K, Ra and Th) in the Lostoin block uranium hosting environment with respect to the known block of Mahadek basin and uranium enrichment is confirmed by the lower U to Th correlation index (0.268) of hosting environment. A mineralized zone investigation in the block shows parent (refers to the actual parent uranium concentration at a location and not a secondary concentration such as the daughter elements which produce the signal from a total gamma ray measurement) favoring uranium mineralization. The confidence parameters generated under the present study have implications for the assessment of the inferred category of uranium ore in the block and setting up a road map for the systematic exploration of large uranium potential occurring over extended areas in the basin amid prevailing environmental and exploratory impediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    PubMed

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  13. Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell.

    PubMed

    Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui

    2018-05-11

    Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure of block copolymer micelles in the presence of co-solvents

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis

    2015-03-01

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  15. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  16. Predator selection of prairie landscape features and its relation to duck nest success

    USGS Publications Warehouse

    Phillips, M.L.; Clark, W.R.; Sovada, M.A.; Horn, D.J.; Koford, Rolf R.; Greenwood, R.J.

    2003-01-01

    Mammalian predation is a major cause of mortality for breeding waterfowl in the U.S. Northern Great Plains, and yet we know little about the selection of prairie habitats by predators or how this influences nest success in grassland nesting cover. We selected 2 41.4-km2 study areas in both 1996 and 1997 in North Dakota, USA, with contrasting compositions of perennial grassland. A study area contained either 15-20% perennial grassland (Low Grassland Composition [LGC]) or 45-55% perennial grassland (High Grassland Composition [HGC]). We used radiotelemetry to investigate the selection of 9 landscape cover types by red fox (Vulpes vulpes) and striped skunk (Mephitis mephitis), while simultaneously recording duck nest success within planted cover. The cover types included the edge and core areas of planted cover, wetland edges within planted cover or surrounded by cropland, pastureland, hayland, cropland, roads, and miscellaneous cover types. Striped skunks selected wetland edges surrounded by agriculture over all other cover types in LGC landscapes (P-values for all pairwise comparisons were <0.05). Striped skunks also selected wetland edges surrounded by agriculture over all other cover types in HGC landscapes (P < 0.05), except for wetland edges within planted cover (P = 0.12). Red foxes selected the edge and core areas of planted cover, as well as wetland edges within planted cover in LGC landscapes (i.e., they were attracted to the more isolated patches of planted cover). However, in HGC landscapes, red foxes did not select interior areas of planted cover (i.e., core areas of planted cover and wetland edges in planted cover) as frequently as edges of planted cover (P < 0.05). Red foxes selected core areas of planted cover more frequently in LGC than in HGC landscapes (P < 0.05) and selected pastureland more frequently in HGC than in LGC landscapes (P < 0.05). Furthermore, red foxes selected the isolated patches of planted cover more than pastureland in LGC landscapes (P < 0.05). Duck nest success was greater in HGC landscapes than in LGC landscapes for planted-cover core (P < 0.0001), planted-cover edge (P < 0.001) and planted cover-wetland edge (P < 0.001). Both the increased amount of planted-cover core area and the increased pastureland selection in HGC landscapes may have diluted predator foraging efficiency in the interior areas of planted cover and contributed to higher nest success in HGC landscapes. Our observations of predator cover-type selection not only support the restoration and management of large blocks of grassland but also indicate the influence of alternative cover types for mitigating nest predation in the Prairie Pothole Region.

  17. Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores

    NASA Astrophysics Data System (ADS)

    Kegel, Philipp; Schellmann, Maraike; Gorlatch, Sergei

    We compare two parallel programming approaches for multi-core systems: the well-known OpenMP and the recently introduced Threading Building Blocks (TBB) library by Intel®. The comparison is made using the parallelization of a real-world numerical algorithm for medical imaging. We develop several parallel implementations, and compare them w.r.t. programming effort, programming style and abstraction, and runtime performance. We show that TBB requires a considerable program re-design, whereas with OpenMP simple compiler directives are sufficient. While TBB appears to be less appropriate for parallelizing existing implementations, it fosters a good programming style and higher abstraction level for newly developed parallel programs. Our experimental measurements on a dual quad-core system demonstrate that OpenMP slightly outperforms TBB in our implementation.

  18. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps

    NASA Astrophysics Data System (ADS)

    Möller, Karin; Müller, Katharina; Engelke, Hanna; Bräuchle, Christoph; Wagner, Ernst; Bein, Thomas

    2016-02-01

    A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well.A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well. Electronic supplementary information (ESI) available: MSN synthesis and analysis, sample preparation for cell transfections as well as additional studies including experiments with a second cell line and a toxicity assay. See DOI: 10.1039/c5nr06246b

  19. The core domain as the force sensor of the yeast mechanosensitive TRP channel.

    PubMed

    Su, Zhenwei; Anishkin, Andriy; Kung, Ching; Saimi, Yoshiro

    2011-12-01

    Stretch-activated conductances are commonly encountered in careful electric recordings. Those of known proteins (TRP, MscL, MscS, K(2p), Kv, etc.) all share a core, which houses the ion pathway and the gate, but no recognizable force-sensing domain. Like animal TRPs, the yeast TRPY1 is polymodal, activated by stretch force, Ca(2+), etc. To test whether its S5-S6 core senses the stretch force, we tried to uncouple it from the peripheral domains by strategic peptide insertions to block the covalent core-periphery interactions. Insertion of long unstructured peptides should distort, if not disrupt, protein structures that transmit force. Such insertions between S6 and the C-terminal tail largely removed Ca(2+) activation, showing their effectiveness. However, such insertions as well as those between S5 and the N-terminal region, which includes S1-S4, did not significantly alter mechanosensitivity. Even insertions at both locations flanking the S5-S6 core did not much alter mechanosensitivity. Tryptophan scanning mutations in S5 were also constructed to perturb possible noncovalent core-periphery contacts. The testable tryptophan mutations also have little or no effects on mechanosensitivity. Boltzmann fits of the wild-type force-response curves agree with a structural homology model for a stretch-induced core expansion of ~2 nm(2) upon opening. We hypothesize that membrane tension pulls on S5-S6, expanding the core and opening the TRPY1 gate. The core being the major force sensor offers the simplest, though not the only, explanation of why so many channels of disparate designs are mechanically sensitive. Compared with the bacterial MscL, TRPY1 is much less sensitive to force, befitting a polymodal channel that relies on multiple stimuli.

  20. Amalgamation of East Eurasia Since Late Paleozoic: Constraints from the Apparent Polar Wander Paths of the Major China Blocks

    NASA Astrophysics Data System (ADS)

    Wu, L.; Kravchinsky, V. A.; Potter, D. K.

    2014-12-01

    It has been a longstanding challenge in the last few decades to quantitatively reconstruct the paleogeographic evolution of East Eurasia because of its great tectonic complexities. As the core region, the major China cratons including North China Block, South China Block and Tarim Block hold the key clues for the understanding of the amalgamation history, tectonic activities and biological affinity among the component blocks and terranes in East Eurasia. Compared with the major Gondwana and Laurentia plates, however, the apparent polar wander paths of China are not well constrained due to the outdated paleomagnetic database and relatively loose pole selection process. With the recruitment of the new high-fidelity poles published in the last decade, the rejection of the low quality data and the strict implementation of Voo's grading scheme, we build an updated paleomagnetic database for the three blocks from which three types of apparent polar wander paths (APWP) are computed. Version 1 running mean paths are constructed during the pole selection and compared with those from the previous publications. Version 2 running mean and spline paths with different sliding time windows are computed from the thoroughly examined poles to find the optimal paths with the steady trend, reasonable speed for the polar drift and plate rotation. The spline paths are recommended for the plate reconstructions, however, considering the poor data coverage during certain periods. Our new China APWPs, together with the latest European reference path, the geological, geochronological and biological evidence from the studied Asian plates allow us to reevaluate the paleogeographic and tectonic history of East Eurasia.

  1. Low Cost SoC Design of H.264/AVC Decoder for Handheld Video Player

    NASA Astrophysics Data System (ADS)

    Wisayataksin, Sumek; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki

    We propose a low cost and stand-alone platform-based SoC for H.264/AVC decoder, whose target is practical mobile applications such as a handheld video player. Both low cost and stand-alone solutions are particularly emphasized. The SoC, consisting of RISC core and decoder core, has advantages in terms of flexibility, testability and various I/O interfaces. For decoder core design, the proposed H.264/AVC coprocessor in the SoC employs a new block pipelining scheme instead of a conventional macroblock or a hybrid one, which greatly contribute to reducing drastically the size of the core and its pipelining buffer. In addition, the decoder schedule is optimized to block level which is easy to be programmed. Actually, the core size is reduced to 138 KGate with 3.5 kbyte memory. In our practical development, a single external SDRAM is sufficient for both reference frame buffer and display buffer. Various peripheral interfaces such as a compact flash, a digital broadcast receiver and a LCD driver are also provided on a chip.

  2. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials.

    PubMed

    Yokoyama, Masayuki

    2010-02-01

    A polymeric micelle is a macromolecular assembly composed of an inner core and an outer shell, and most typically is formed from block copolymers. In the last two decades, polymeric micelles have been actively studied as a new type of drug carrier system, in particular for drug targeting of anticancer drugs to solid tumors. In this review, polymeric micelle drug carrier systems are discussed with a focus on toxicities of the polymeric micelle carrier systems and on pharmacological activities of the block copolymers. In the first section, the importance of the above-mentioned evaluation of these properties is explained, as this importance does not seem to be well recognized compared with the importance of targeting and enhanced pharmacological activity of drugs, particularly in the basic studies. Then, designs, types and classifications of the polymeric micelle system are briefly summarized and explained, followed by a detailed discussion regarding several examples of polymeric micelle carrier systems. Readers will gain a strategy of drug delivery with polymeric carriers as well as recent progress of the polymeric micelle carrier systems in their basic studies and clinical trials. The purpose of this review is to achieve tight connections between the basic studies and clinical trials.

  3. Preparation and in vitro Antimicrobial Activity of Silver-Bearing Degradable Polymeric Nanoparticles of Polyphosphoester-block-Poly(L-lactide)

    PubMed Central

    Lim, Young H.; Tiemann, Kristin M.; Heo, Gyu Seong; Wagers, Patrick O.; Rezenom, Yohannes H.; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J.; Hunstad, David A.; Wooley, Karen L.

    2015-01-01

    The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials – silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5–5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against ten contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract. PMID:25621868

  4. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    Miller, D B; O'Callaghan, J P

    1994-08-01

    In the companion paper we demonstrated that d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA) and d-methylenedioxymethamephetamine (d-MDMA), but not d-fenfluramine (d-FEN), appear to damage dopaminergic projections to the striatum of the mouse. An elevation in core temperature also was associated with exposure to d-METH, d-MDA and d-MDMA, whereas exposure to d-FEN lowered core temperature. Given these findings, we examined the effects of temperature on substituted amphetamine (AMP)-induced neurotoxicity in the C57BL/6J mouse. Levels of striatal dopamine (DA) and glial fibrillary acidic protein (GFAP) were taken as indicators of neurotoxicity. Alterations in ambient temperature, pretreatment with drugs reported to cause hypothermia in the mouse and hypothermia induced by restraint stress were used to affect AMP-induced neurotoxicity. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg) or d-MDMA (20 mg/kg) every 2 hr for a total of four s.c. injections. All three AMPs increased core temperature and caused large (> 75%) decreases in striatal dopamine and large (> 300%) increases in striatal glial fibrillary acidic protein 72 hr after the last injection. Lowering ambient temperature from 22 degrees C to 15 degrees C blocked (d-MDA and d-MDMA) or severely attenuated (d-METH) these effects. Pretreatment with MK-801 lowered core temperature and blocked AMP-induced neurotoxicity; elevation of ambient temperature during this regimen elevated core temperature and markedly attenuated the neuroprotective effects of MK-801. Pretreatment with MK-801 also lowered core temperature in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice but did not block 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  6. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    PubMed

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  7. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  8. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    PubMed

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  9. Fabrication of gold dot, ring, and corpuscle arrays from block copolymer templates via a simple modification of surface energy

    NASA Astrophysics Data System (ADS)

    Cho, Heesook; Choi, Sinho; Kim, Jin Young; Park, Soojin

    2011-12-01

    We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films.We demonstrate a simple method for tuning the morphologies of as-spun micellar thin films by modifying the surface energy of silicon substrates. When a polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymer dissolved in o-xylene was spin-coated onto a PS-modified surface, a dimple-type structure consisting of a thick PS shell and P2VP core was obtained. Subsequently, when the films were immersed in metal precursor solutions at certain periods of time and followed by plasma treatment, metal individual dots in a ring-shaped structure, metal nanoring, and metal corpuscle arrays were fabricated, depending on the loading amount of metal precursors. In contrast, when PS-b-P2VP films cast onto silicon substrates with a native oxide were used as templates, only metal dotted arrays were obtained. The combination of micellar thin film and surface energy modification offers an effective way to fabricate various nanostructured metal or metal oxide films. Electronic supplementary information (ESI) available: AFM images of Au nanorings prepared from a mixed solvent and characterization of PS-b-P2VP micellar films. See DOI: 10.1039/c1nr11075f

  10. Ballistic Blocks Surrounding Kilauea's Caldera

    NASA Astrophysics Data System (ADS)

    Swanson, D.; Zolkos, S.; Haravitch, B.

    2010-12-01

    Thousands of lithic blocks dot the surface around Kilauea’s caldera, erupted ballistically at the end of the 1790 eruption or soon thereafter. Most of the blocks occur in the western and southern sectors, probably reflecting the proximity of vents on the caldera floor. We mapped the ejecta field, measuring most of the blocks with nominal diameters ((a+b+c)/3) more than 75 cm and many of the smaller ones, noting distinctive lithologies. The distributions, sizes, and lithologies suggest 7-8 different ballistic bursts from 3-4 generalized vent areas. We measured 15 blocks with nominal diameters (ND) of 150-201 cm, 169 blocks with ND 100-149 cm, 308 blocks with ND 75-99 cm, 684 blocks with ND 50-74 cm, and 545 blocks with ND 25-49 cm. The smaller blocks were measured only in outlying areas, where they were the largest in the neighborhood, but they occur throughout the field. Twelve blocks with ND >150 cm lie within 1.7 km west and south of the center of Halema`uma`u; a vent near this location likely erupted the blocks. Three of the largest blocks, however, are 2.2-2.7 km north of Halema`uma`u and probably came from a more northerly vent. This interpretation is supported by the distributions of all blocks with ND >100 cm, which define at least 4, and possibly 5, different dispersal lobes; three cluster near Halema`uma`u, one is slightly north, and the one with the three large blocks is still farther north. The blocks have typical lithologies for Kilauea’s summit, including coarse basalt or fine gabbro derived from the centers of thick flows, solidified lakes, or small intrusions. Three lithologies are distinctive and help define 3, possibly 4, discrete bursts. Blocks of fine-grained basalt riddled with segregation veins occur only in a lobe 1.3 km wide reaching as far as 1.8 km southwest of Halema`uma`u; this lobe overlaps slightly with one defined by block size but is mostly distinct and probably indicates a separate burst. A cluster of blocks with puffy, somewhat fluidal rinds forms a distinct lobe 800 m wide out to 1.8 km southeast of Halema`uma`u. The cluster also contains many cored bombs and a few juvenile bombs and lapilli without cores. This is the only ballistic lobe that contains much juvenile material, though older fall and surge deposits of 1790 and pre1790 vintage also carry cored bombs and juvenile lapilli. This lobe is coextensive with one defined by block size. The largest ballistic lobe has abundant, commonly oxidized blocks of olivine-rich basalt, some verging on picrite. The main lobe, about 900 m wide, extends 0.9-3.6 km southeast of Halema`uma`u; three olivine-rich blocks between 100 and 150 cm ND occur 2.4 to 3.3 km out. A possible second lobe of olivine-rich blocks occurs out to 1.6 km due south of Halema`uma`u. The lobes indicate a directionality and inclined ejection angle for at least some of the ballistic eruptions, as was true for the observed, but much smaller, ballistic eruptions in 1924. The scarcity of juvenile ejecta argues for phreatic eruptions that were likely initiated at or below the water table, today about 600 m below the caldera rim. If so, some ballistic blocks weighing a few tonnes were thrown at least 600 m above the vent. The dynamics of these explosive eruptions are under study.

  11. Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth

    USGS Publications Warehouse

    Edwards, L.E.; Powars, D.S.; Gohn, G.S.; Dypvik, H.

    2009-01-01

    The Eyreville A and B cores, recovered from the "moat" of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ??867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ??867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ??855-618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940-??760 m) allows recognition of local similarities and differences in the breccias. ?? 2009 The Geological Society of America.

  12. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells.

    PubMed

    Tsunoo, A; Yoshii, M; Narahashi, T

    1986-12-01

    Leucine-enkephalin, methionine-enkephalin, and morphine caused a reversible block of Ca2+ channel currents in neuroblastoma-glioma hybrid cells (NG108-15). The long-lasting (type 2) component of the Ca2+ channel current was blocked by leucine-enkephalin, while the transient (type 1) component was not affected. The enkephalin-induced blocking action was antagonized by naloxone and appears to be mediated by delta-opiate receptors. Two different aspects of the blocking effect were detected, a resting block and a recovery from block during prolonged depolarizing pulses. Recovery from block was more complete, and its time course was more rapid, with depolarization to more positive potentials. The dose dependence of the type 2 channel block at rest indicated a one-to-one binding stoichiometry, with an apparent dissociation constant of 8.8 nM. Somatostatin exerted a similar selective blocking action on the type 2 Ca2+ channel. The time- and voltage-dependent block of type 2 Ca2+ channels may provide a mechanism underlying the enkephalinergic presynaptic inhibition of transmitter release and the somatostatin block of pituitary growth hormone release.

  13. Heat pipe nuclear reactor for space power

    NASA Technical Reports Server (NTRS)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  14. 8. Detail Showing Band Wheel Core With Name of Manufacturer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail Showing Band Wheel Core With Name of Manufacturer (Oil Well Supply Co.), Bearing Block, Wrist Pin, Hewin Wooden Pitman, Looking Southeast - David Renfrew Oil Rig, East side of Connoquenessing Creek, 0.4 mile North of confluence with Thorn Creek, Renfrew, Butler County, PA

  15. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors

    NASA Astrophysics Data System (ADS)

    Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha

    2013-11-01

    Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k) template for SPR biosensing, corresponding ImageJ-analyzed images by varying the Au NP deposition time and results of image analysis. See DOI: 10.1039/c3nr03860b

  16. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In contrast, the second type of garnet amphibolite recorded a single prograde evolution along a hotter thermal gradient. These different PT paths suggest multiple metamorphic events that may be related to subduction initiation, partial exhumation and storage of HP-LT rocks, subduction of buoyant crust, final exhumation and obduction.

  17. DynEarthSol3D: numerical studies of basal crevasses and calving blocks

    NASA Astrophysics Data System (ADS)

    Logan, E.; Lavier, L. L.; Choi, E.; Tan, E.; Catania, G. A.

    2014-12-01

    DynEarthSol3D (DES) is a thermomechanical model for the simulation of dynamic ice flow. We present the application of DES toward two case studies - basal crevasses and calving blocks - to illustrate the potential of the model to aid in understanding calving processes. Among the advantages of using DES are: its unstructured meshes which adaptively resolve zones of high interest; its use of multiple rheologies to simulate different types of dynamic behavior; and its explicit and parallel numerical core which both make the implementation of different boundary conditions easy and the model highly scalable. We examine the initiation and development of both basal crevasses and calving blocks through time using visco-elasto-plastic rheology. Employing a brittle-to-ductile transition zone (BDTZ) based on local strain rate shows that the style and development of brittle features like crevasses differs markedly on the rheological parameters. Brittle and ductile behavior are captured by Mohr-Coulomb elastoplasticity and Maxwell viscoelasticity, respectively. We explore the parameter spaces which define these rheologies (including temperature) as well as the BDTZ threshold (shown in the literature as 10-7 Pa s), using time-to-failure as a metric for accuracy within the model. As the time it takes for a block of ice to fail can determine an iceberg's size, this work has implications for calving laws.

  18. Hepatitis C Virus Core Protein Modulates Endoglin (CD105) Signaling Pathway for Liver Pathogenesis.

    PubMed

    Kwon, Young-Chan; Sasaki, Reina; Meyer, Keith; Ray, Ranjit

    2017-11-01

    Endoglin is part of the TGF-β receptor complex and has a crucial role in fibrogenesis and angiogenesis. It is also an important protein for tumor growth, survival, and cancer cell metastasis. In a previous study, we have shown that hepatitis C virus (HCV) infection induces epithelial-mesenchymal transition (EMT) state and cancer stem-like cell (CSC) properties in human hepatocytes. Our array data suggested that endoglin (CD105) mRNA is significantly upregulated in HCV-associated CSCs. In this study, we have observed increased endoglin expression on the cell surface of an HCV core-expressing hepatocellular carcinoma (HepG2) cell line or immortalized human hepatocytes (IHH) and activation of its downstream signaling molecules. The status of phospho-SMAD1/5 and the expression of inhibitor of DNA binding protein 1 (ID1) were upregulated in HCV-infected cells or viral core gene-transfected cells. Additionally, we observed upregulation of endoglin/ID1 mRNA expression in chronic HCV patient liver biopsy samples. CSC generation by HCV core protein was dependent on the endoglin signaling pathway using activin receptor-like kinase 1 (ALK1) Fc blocking peptide and endoglin small interfering RNA (siRNA). Further, follow-up from in vitro analysis suggested that the antiapoptosis Bcl2 protein, proliferation-related cyclin D1 protein, and CSC-associated Hes1, Notch1, Nanog, and Sox2 proteins are enhanced during infection or ectopic expression of HCV core protein. IMPORTANCE Endoglin plays a crucial role in fibrogenesis and angiogenesis and is an important protein for tumor growth, survival, and cancer cell metastasis. Endoglin enhances ALK1-SMAD1/5 signaling in different cell types, leading to increased proliferation and migration responses. We have observed endoglin expression on the HCV core-expressing cell surface of human hepatocyte origin and activation of phospho-SMAD1/5 and ID1 downstream signaling molecules. ID1 protein plays a role in CSC properties, and we found that this pathway is important for antiapoptotic and cell proliferation signaling. Blocking of endoglin-ALK1-SMAD1/5 might be a good candidate for therapy for liver cancer stem cells together with liver cirrhosis. Copyright © 2017 American Society for Microbiology.

  19. Block-Time Classes and the Core Program in the Junior High School. Bulletin, 1958, No. 6

    ERIC Educational Resources Information Center

    Wright, Grace S.

    1958-01-01

    By this study, as by several it has issued in the past few years the Office of Education recognizes the interest of many educators in the core program as a means of achieving some of the objectives of general education at the secondary level. Its first publication, Bulletin 1950, No. 5 entitled "Core Curriculum in Public High Schools," a study of…

  20. Magnetic Heating of Iron Oxide Nanoparticles and Magnetic Micelles for Cancer Therapy.

    PubMed

    Glover, Amanda L; Bennett, James B; Pritchett, Jeremy S; Nikles, Sarah M; Nikles, David E; Nikles, Jacqueline A; Brazel, Christopher S

    2013-01-01

    The inclusion of magnetic nanoparticles into block copolymer micelles was studied towards the development of a targeted, magnetically triggered drug delivery system for cancer therapy. Herein, we report the synthesis of magnetic nanoparticles and poly(ethylene glycol-b-caprolactone) block copolymers, and experimental verification of magnetic heating of the nanoparticles, self-assembly of the block copolymers to form magnetic micelles, and thermally-enhanced drug release. The semicrystalline core of the micelles melted at temperatures just above physiological conditions, indicating that they could be used to release a chemotherapy agent from a thermo-responsive polymer system. The magnetic nanoparticles were shown to heat effectively in high frequency magnetic fields ranging from 30-70 kA/m. Magnetic micelles also showed heating properties, that when combined with a chemotherapeutic agent and a targeting ligand could be developed for localized, triggered drug delivery. During the magnetic heating experiments, a time lag was observed in the temperature profile for magnetic micelles, likely due to the heat of fusion of melting of polycaprolactone micelle cores before bulk solution temperatures increased. Doxorubicin, incorporated into the micelles, released faster when the micelles were heated above the core melting point.

  1. Metamorphic P-T path and zircon U-Pb dating of HP mafic granulites in the Yushugou granulite-peridotite complex, Chinese South Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Zhang, Lifei; Xia, Bin; Lü, Zeng

    2018-03-01

    Co-existing granulite and peridotite may represent relics of the paleo-suture zone and provides an optimal opportunity for better understanding of orogeny between two blocks. In this study, we carried out petrological and U-Pb zircon dating investigation on the HP mafic granulites associated with peridotite complex at Yushugou in Chinese South Tianshan. The studied samples include garnet-bearing high-pressure mafic granulites which can be subdivided into two types: Type I orthopyroxene-free and Type II orthopyroxene-bearing granulites and amphibolite. Type I granulite (Y21-2) has a mineral assemblage of garnet (33 vol.%), clinopyroxene (32 vol.%) and plagioclase (30 vol.%); and Type II granulite (Y18-8) has a mineral assemblage of garnet (22 vol.%), clinopyroxene (10 vol.%), orthopyroxene (14 vol.%), plagioclase (45 vol.%) and quartz. Garnet in both granulites exhibits core-rim structure characterized by increasing grossular and decreasing pyrope from core to rim. Petrographic observations and phase equilibrium modeling using THERMOCALC in the NCFMASHTO system for the mafic granulites (Y21-2 and Y18-8) show three stages of metamorphism: Stage I (granulite facies) was recognized by the large porphyroblastic garnet core, with P-T conditions of 9.8-10.4 Kbar and 860-900 °C (Y21-2) and 9.9-10.6 Kbar and 875-890 °C (Y18-8), respectively; Stage II (HP granulite facies) has peak P-T conditions of 12.1 Kbar at 755 °C (Y21-2) and 13.8 Kbar at 815 °C (Y18-8) using mineral assemblages combining with garnet rim compositions with maximum grossular and minimum pyrope contents; Stage III (amphibolite facies) was characterized by the development of calcic amphibole in granulites with temperature of 446-563 °C. Therefore, an anticlockwise P-T path characterized by simultaneous temperature-decreasing and pressure-increasing was inferred for the Yushugou HP mafic granulite. Studies of zircon morphology and inclusions, combined with zircon U-Pb dating and REE geochemistry indicate that their protolith's ages of the mafic granulites were ∼430 Ma, while the metamorphism could occur at three stages with ages of ∼390 Ma, ∼340 Ma and ∼320 Ma, which may correspond to Stage I, II and III, respectively. We interpret the HP mafic granulites from the Yushugou granulite-peridotite complex to be formed by the cooling subduction of the lower crustal rocks from the hanging wall of central Tianshan block during the northward subduction of the south Tianshan paleo-ocean from Devonian to Carboniferous.

  2. Second-degree atrioventricular block.

    PubMed

    Zipes, D P

    1979-09-01

    1) While it is possible only one type of second-degree AV block exists electrophysiologically, the available data do not justify such a conclusion and it would seem more appropriate to remain a "splitter," and advocate separation and definition of multiple mechanisms, than to be a "lumper," and embrace a unitary concept. 2) The clinical classification of type I and type II AV block, based on present scalar electrocardiographic criteria, for the most part accurately differentiates clinically important categories of patients. Such a classification is descriptive, but serves a useful function and should be preserved, taking into account the caveats mentioned above. The site of block generally determines the clinical course for the patient. For most examples of AV block, the type I and type II classification in present use is based on the site of block. Because block in the His-Purkinje system is preceded by small or nonmeasurable increments, it is called type II AV block; but the very fact that it is preceded by small increments is because it occurs in the His-Purkinje system. Similar logic can be applied to type I AV block in the AV node. Exceptions do occur. If the site of AV block cannot be distinguished with certainity from the scalar ECG, an electrophysiologic study will generally reveal the answer.

  3. Blocking CRT: How the Emotionality of Whiteness Blocks CRT in Urban Teacher Education

    ERIC Educational Resources Information Center

    Matias, Cheryl E.; Montoya, Roberto; Nishi, Naomi W. M.

    2016-01-01

    Although Critical Race Theory (CRT) has been applied to teacher education, it has yet to be meaningfully integrated into the core of urban teacher education programs. The reticence to embrace CRT is largely due to the overwhelming presence of Whiteness, despite Sleeter's (2001) demand for diversification. This theoretically interpretative article…

  4. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  5. Effects of brefeldin A on oligosaccharide processing. Evidence for decreased branching of complex-type glycans and increased formation of hybrid-type glycans.

    PubMed

    Chawla, D; Hughes, R C

    1991-10-01

    Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.

  6. Planetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chin; Mac Low, M.; Menou, K.

    2010-01-01

    In core accretion scenario of planet formation, kilometer-sized planetesimals are the building blocks toward planetary cores. Their dynamics, however, are strongly influenced by their natal protoplanetary gas disks. It is generally believed that these disks are turbulent, most likely due to magnetorotational instability. The resulting density perturbations in the gas render the movement of the particles a random process. Depending on its strength, this process might cause several interesting consequences in the course of planet formation, specifically the survivability of objects under rapid inward type-I migration and/or collisional destruction. Using the local-shearing-box approximation, we conduct numerical simulations of planetesimals moving in a turbulent, magnetized gas disk, either unstratified or vertically stratified. We produce a fiducial disk model with turbulent accretion of Shakura-Sunyaev alpha about 10-2 and root-mean-square density perturbation of about 10% and statistically characterize the evolution of the orbital properties of the particles moving in the disk. These measurements result in accurate calibration of the random process of particle orbital change, indicating noticeably smaller magnitudes than predicted by global simulations, although the results may depend on the size of the shearing box. We apply these results to revisit the survivability of planetesimals under collisional destruction or protoplanets under type-I migration. Planetesimals are probably secure from collisional destruction, except for kilometer-sized objects situated in the outer regions of a young protoplanetary disk. On the other hand, we confirm earlier studies of local models in that type-I migration probably dominates diffusive migration due to stochastic torques for most planetary cores and terrestrial planets. Discrepancies in the derived magnitude of turbulence between local and global simulations of magnetorotationally unstable disks remains an open issue, with important consequences for planet formation scenarios.

  7. Hashimoto's thyroiditis with heterogeneous antithyrotropin receptor antibodies: unique epitopes may contribute to the regulation of thyroid function by the antibodies.

    PubMed

    Akamizu, T; Kohn, L D; Hiratani, H; Saijo, M; Tahara, K; Nakao, K

    2000-06-01

    Blocking-type TSH-binding inhibitor Igs (TBIIs) are known to cause hypothyroidism and an atrophic thyroid gland in patients with primary myxedema. They can block the activity of thyroid-stimulating antibodies (TSAbs) in Graves' patients as well as the activity of TSH. The majority of the epitopes for these blocking-type TBIIs have been, and are shown herein, to be present on the C-terminal region of the extracellular domain of the human TSH receptor (TSHR), whereas those for Graves' TSAbs are on the N-terminus. We report on a patient with Hashimoto's thyroiditis who suffered from mild hypothyroidism and a moderately sized goiter. Her serum had a potent blocking-type TBII and a weak TSAb in human and porcine TSHR systems. Using human TSHR/lutropin-CG receptor chimeras, we determined that the functional epitope of her blocking-type TBII was uniquely present on the N-terminal, rather than the C-terminal, region of the extracellular domain of the TSHR, unlike the case for blocking-type TBIIs in primary myxedema patients. The epitope of her TSAb was also unusual. Although the functional epitopes of most TSAbs are known to involve the N-terminal region of the receptor, her TSAb epitope did not seem to be present solely on the N- or C-terminus of the extracellular domain of the receptor. Blocking-type TBIIs from patients with primary myxedema blocked her TSAb activity as well as stimulation by TSH; her blocking-type TBII was able to only partially block her TSAb. In contrast, her blocking-type TBII almost completely blocked TSAbs from Graves' patients. Thus, we suggest that the unique epitopes of this patient's heterogeneous population of TSH receptor antibodies, at least in part, contribute to regulation of her thyroid function.

  8. Dimensional control of block copolymer nanofibers with a π-conjugated core: crystallization-driven solution self-assembly of amphiphilic poly(3-hexylthiophene)-b-poly(2-vinylpyridine).

    PubMed

    Gwyther, Jessica; Gilroy, Joe B; Rupar, Paul A; Lunn, David J; Kynaston, Emily; Patra, Sanjib K; Whittell, George R; Winnik, Mitchell A; Manners, Ian

    2013-07-08

    With the aim of accessing colloidally stable, fiberlike, π-conjugated nanostructures of controlled length, we have studied the solution self-assembly of two asymmetric crystalline-coil, regioregular poly(3-hexylthiophene)-b-poly(2-vinylpyridine) (P3HT-b-P2VP) diblock copolymers, P3HT23-b-P2VP115 (block ratio=1:5) and P3HT44-b-P2VP115 (block ratio=ca. 1:3). The self-assembly studies were performed under a variety of solvent conditions that were selective for the P2VP block. The block copolymers were prepared by using Cu-catalyzed azide-alkyne cycloaddition reactions of azide-terminated P2VP and alkyne end-functionalized P3HT homopolymers. When the block copolymers were self-assembled in a solution of a 50% (v/v) mixture of THF (a good solvent for both blocks) and an alcohol (a selective solvent for the P2VP block) by means of the slow evaporation of the common solvent; fiberlike micelles with a P3HT core and a P2VP corona were observed by transmission electron microscopy (TEM). The average lengths of the micelles were found to increase as the length of the hydrocarbon chain increased in the P2VP-selective alcoholic solvent (MeOH3 μm) fiberlike micelles were prepared by the dialysis of solutions of the block copolymers in THF against iPrOH. Furthermore the widths of the fibers were dependent on the degree of polymerization of the chain-extended P3HT blocks. The crystallinity and π-conjugated nature of the P3HT core in the fiberlike micelles was confirmed by a combination of UV/Vis spectroscopy, photoluminescence (PL) measurements, and wide-angle X-ray scattering (WAXS). Intense sonication (iPrOH, 1 h, 0 °C) of the fiberlike micelles formed by P3HT23-b-P2VP115 resulted in small (ca. 25 nm long) stublike fragments that were subsequently used as initiators in seeded growth experiments. Addition of P3HT23-b-P2VP115 unimers to the seeds allowed the preparation of fiberlike micelles with narrow length distributions (L(w)/L(n) < 1.11) and lengths from about 100-300 nm, that were dependent on the unimer-to-seed micelle ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ductile and Brittle Neogene Deformation of Late Permian Orthogneiss in the Northern Ailao Shan-Red River Shear Zone: View from the Xuelong Shan Block

    NASA Astrophysics Data System (ADS)

    Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.

    2014-12-01

    The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the ASRRSZ based on data obtained in the southern Diancang Shan block. Permian granitoids were intruded and ductily deformed in the Early Triassic. The left lateral shearing that brought these blocks to the surface was delayed until the Neogene extrusion of the Indochina block.

  10. Implications of Multi-Core Architectures on the Development of Multiple Independent Levels of Security (MILS) Compliant Systems

    DTIC Science & Technology

    2012-10-01

    REPORT 3. DATES COVERED (From - To) MAR 2010 – APR 2012 4 . TITLE AND SUBTITLE IMPLICATIONS OF MULT-CORE ARCHITECTURES ON THE DEVELOPMENT OF...Framework for Multicore Information Flow Analysis ...................................... 23 4 4.1 A Hypothetical Reference Architecture... 4 Figure 2: Pentium II Block Diagram

  11. United States Army Command and General Staff Officers Course Preparatory Curriculum Evaluation

    DTIC Science & Technology

    2015-06-12

    However, there are no studies from CGSOC to evaluate this assertion. Several studies show that upbringing and experience play more of a role in...... exercises during the Common Core and AOC blocks of instruction. The Common Core Curriculum and AOC comprise the forty-four-week resident course designed

  12. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less

  13. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  14. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols

    PubMed Central

    Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H.; Bates, Frank S.; Gruner, Sol M; DiSalvo, Francis J.; Wiesner, Ulrich

    2009-01-01

    We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒI=ƒS isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials. PMID:20209023

  15. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols.

    PubMed

    Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H; Bates, Frank S; Gruner, Sol M; Disalvo, Francis J; Wiesner, Ulrich

    2009-11-24

    We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒ(I)=ƒ(S) isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials.

  16. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent

    PubMed Central

    COTES, Caroline; CARDOSO, Mayra; de MELO, Renata Marques; VALANDRO, Luiz Felipe; BOTTINO, Marco Antonio

    2015-01-01

    Objective The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). Results The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement. PMID:25760269

  17. The effectiveness of inking needle core prostate biopsies for preventing patient specimen identification errors: a technique to address Joint Commission patient safety goals in specialty laboratories.

    PubMed

    Raff, Lester J; Engel, George; Beck, Kenneth R; O'Brien, Andrea S; Bauer, Meagan E

    2009-02-01

    The elimination or reduction of medical errors has been a main focus of health care enterprises in the United States since the year 2000. Elimination of errors in patient and specimen identification is a key component of this focus and is the number one goal in the Joint Commission's 2008 National Patient Safety Goals Laboratory Services Program. To evaluate the effectiveness of using permanent inks to maintain specimen identity in sequentially submitted prostate needle biopsies. For a 12-month period, a grossing technician stained each prostate core with permanent ink developed for inking of pathology specimens. A different color was used for each patient, with all the prostate cores from all vials for a particular patient inked with the same color. Five colors were used sequentially: green, blue, yellow, orange, and black. The ink was diluted with distilled water to a consistency that allowed application of a thin, uniform coating of ink along the edges of the prostate core. The time required to ink patient specimens comprising different numbers of vials and prostate biopsies was timed. The number and type of inked specimen discrepancies were evaluated. The identified discrepancy rate for prostate biopsy patients was 0.13%. The discrepancy rate in terms of total number of prostate blocks was 0.014%. Diluted inks adhered to biopsy contours throughout tissue processing. The tissue showed no untoward reactions to the inks. Inking did not affect staining (histochemical or immunohistochemical) or pathologic evaluation. On average, inking prostate needle biopsies increases grossing time by 20%. Inking of all prostate core biopsies with colored inks, in sequential order, is an aid in maintaining specimen identity. It is a simple and effective method of addressing Joint Commission patient safety goals by maintaining specimen identity during processing of similar types of gross specimens. This technique may be applicable in other specialty laboratories and high-volume laboratories, where many similar tissue specimens are processed.

  18. Mississippi Curriculum Framework for Brick, Block, and Stonemasonry (Program CIP: 46.0101--Mason and Tile Setter). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for two secondary-level courses in brick, block, and stonemasonry: brick,…

  19. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  20. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells. Electronic supplementary information (ESI) available: TGA profile and DSC thermogram of all polymers, DLS data, AFM image, 1H-NMR, 13C-NMR, and MALDI spectra of all polymers and monomers. See DOI: 10.1039/c5nr04963f

  1. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  2. Synthesis, characterization and magnetic properties of CoxCu1-x (x ∼ 0.01 - 0.3) granular alloys

    NASA Astrophysics Data System (ADS)

    Dhara, S.; Roy Chowdhury, R.; Lahiri, S.; Ray, P.; Bandyopadhyay, B.

    2015-01-01

    Nanostructured CoCu granular alloys have been prepared by borohydride reduction of CuCl2 and CoCl2 salt solutions using cetyltrimethylammonium bromide (CTAB) as a surfactant. Characterization by inductively coupled plasma optical emission spectroscopy (ICPOES), X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies yields spherical particles of CoxCu1-x (x ∼ 0.01 - 0.3) of average size 8-25 nm formed in a face-centered-cubic (fcc) lattice as in copper. Studies of zero-field-cooled/field-cooled (ZFC/FC) magnetization and thermoremanent magnetization (TRM) have been performed in the temperature range 4-300 K, and the results have been analyzed by independent particle model. At the lowest cobalt concentration (x ∼ 0.01), the alloy is superparamagnetic and there is no blocking of magnetization down to 4 K. For all other samples, the magnetization at low magnetic field is characterized by a blocking temperature distribution which is not influenced by the Co content in samples. Study of hysteresis loops shows that the magnetization at any temperature 4-300 K is a sum of ferromagnetic (FM), superparamagnetic (SPM) and paramagnetic (PM) contributions. The FM part increases and SPM part decreases with increase in Co content. However, the values of coercivity and magnetic anisotropy constant do not depend on Co content. The results suggest that CoxCu1-x alloys are formed in a spherical core-shell type structure with cobalt being concentrated near the core of particles.

  3. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less

  4. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less

  5. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  6. Build Engagement and Knowledge One Block at a Time with Minecraft

    ERIC Educational Resources Information Center

    Tromba, Peter

    2013-01-01

    The core of instruction is the interaction between the student, the content, and the teacher. Good instructional design accounts for the students' needs and interests by personalizing the core to each student. Video games and simulations are one way to meet student needs and leverage their interests for increased student learning. In the 2011-12…

  7. A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry.

    PubMed

    Banerjee, Sovan Lal; Singha, Nikhil K

    2017-12-06

    Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by FTIR and 1 H NMR analyses. In water, the amphiphilic diblock copolymers, (PFMA-b-PMTAC) and (PFMA-b-PSS), formed micelles with PFMA in the core and the rest of the hydrophilic polymers like PMTAC and PSS in the corona. The PFMA core was crosslinked by using Diels-Alder (DA) "Click" chemistry in water at 60 °C where bismaleimide acted as a crosslinker. Afterwards, both the core crosslinked micelles were mixed at an almost equal charge ratio which was determined by zeta potential analysis to prepare the self-assembled hydrogel. The de-crosslinking of the hydrophobic PFMA core in the self-assembled hydrogel via rDA reaction took place at 165 °C as determined from DSC analysis. This hydrogel showed self-healing behavior using ionic interaction (in the presence of water) and DA chemistry (in the presence of heat).

  8. Testing block subdivision algorithms on block designs

    NASA Astrophysics Data System (ADS)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  9. Recovery and Lithologic Analysis of Sediment from Hole UT-GOM2-1-H002, Green Canyon 955, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.

    2017-12-01

    In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within intact core sections. On microscope images, the drilling mud also appears to saturate the pores in some silt intervals. Further analysis of the unpressurized cores is planned, including X-ray diffraction, grain size analysis and porosity measurements. These results will be compared to the pressurized cores to understand if further lithologic factors could have affected core recovery.

  10. "Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement

    ERIC Educational Resources Information Center

    D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.

    2012-01-01

    The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…

  11. Integrated Array/Metadata Analytics

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  12. Noncovalent Molecular Electronics.

    PubMed

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  13. Preparation and Structural Studies on Hybrid Core-Shell Nanoparticles Consisting of Silica Core and Conjugated Block Copolymer Shell Prepared by Surface-Initiated Polymerization

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni

    Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.

  14. Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise

    USGS Publications Warehouse

    Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.

    2008-01-01

    In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.

  15. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  16. A role of nucleus accumbens dopamine receptors in the nucleus accumbens core, but not shell, in fear prediction error.

    PubMed

    Li, Susan S Y; McNally, Gavan P

    2015-08-01

    Two experiments used an associative blocking design to study the role of dopamine receptors in the nucleus accumbens shell (AcbSh) and core (AcbC) in fear prediction error. Rats in the experimental groups were trained to a visual fear-conditioned stimulus (conditional stimulus [CS]) A in Stage I, whereas rats in the control groups were not. In Stage II, all rats received compound fear conditioning of the visual CSA and an auditory CSB. Rats were later tested for their fear responses to CSB. All rats received microinjections of saline or the D1-D2 receptor antagonist cis-(z)-flupenthixol prior to Stage II. These microinjections targeted either the AcbSh (Experiment 1) or the AcbC (Experiment 2). In each experiment, Stage I fear conditioning of CSA blocked fear learning to CSB. Microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbSh (Experiment 1) had no effect on fear learning or associative blocking. In contrast, microinjection of cis-(z)-flupenthixol (10 or 20 μg) into the AcbC (Experiment 2) attenuated blocking and so enabled fear learning to CSB. These results identify the AcbC as the critical locus for dopamine receptor contributions to fear prediction error and the associative blocking of fear learning. (c) 2015 APA, all rights reserved).

  17. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  18. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  19. Ice Core Records of West Greenland Melt and Climate Forcing

    NASA Astrophysics Data System (ADS)

    Graeter, K. A.; Osterberg, E. C.; Ferris, D. G.; Hawley, R. L.; Marshall, H. P.; Lewis, G.; Meehan, T.; McCarthy, F.; Overly, T.; Birkel, S. D.

    2018-04-01

    Remote sensing observations and climate models indicate that the Greenland Ice Sheet (GrIS) has been losing mass since the late 1990s, mostly due to enhanced surface melting from rising summer temperatures. However, in situ observational records of GrIS melt rates over recent decades are rare. Here we develop a record of frozen meltwater in the west GrIS percolation zone preserved in seven firn cores. Quantifying ice layer distribution as a melt feature percentage (MFP), we find significant increases in MFP in the southernmost five cores over the past 50 years to unprecedented modern levels (since 1550 CE). Annual to decadal changes in summer temperatures and MFP are closely tied to changes in Greenland summer blocking activity and North Atlantic sea surface temperatures since 1870. However, summer warming of 1.2°C since 1870-1900, in addition to warming attributable to recent sea surface temperature and blocking variability, is a critical driver of high modern MFP levels.

  20. Calculating Path-Dependent Travel Time Prediction Variance and Covariance for the SALSA3D Global Tomographic P-Velocity Model with a Distributed Parallel Multi-Core Computer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.

    2011-12-01

    Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. 31 CFR 500.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOREIGN ASSETS CONTROL REGULATIONS Prohibitions § 500.205 Holding of certain types of blocked property in... amounts involved. (h) The following types of property are subject to paragraphs (a) and (b) of this... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked...

  2. Mode I Toughness Measurements of Core/Facesheet Bonds in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Ratcliffe, James G.

    2006-01-01

    Composite sandwich structures will be used in many future applications in aerospace, marine and offshore industries due to the fact that the strength and stiffness to mass ratios surpass any other structural type. Sandwich structure also offers advantages over traditional stiffened panels such as ease of manufacturing and repair. During the last three decades, sandwich structure has been used extensively for secondary structure in aircraft (fuselage floors, rudders and radome structure). Sandwich structure is also used as primary structure in rotorcraft, the most common example being the trailing edge of rotor blades. As with other types of composite construction, sandwich structure exhibits several types of failure mode such as facesheet wrinkling, core crushing and sandwich buckling. Facesheet/core debonding has also been observed in the marine and aerospace industry. During this failure mode, peel stresses applied to an existing facesheet/core debond or an interface low in toughness, results in the facesheet being peeled from the core material, possibly leading to a significant loss in structural integrity of the sandwich panel. In an incident during a test on a liquid hydrogen fuel tank of the X-33 prototype vehicle, the outer graphite/epoxy facesheet and honeycomb core became debonded from the inner facesheet along significant areas, leading to failure of the tank. As a consequence of the accident; significant efforts were made to characterize the toughness of the facesheet/core bond. Currently, the only standardized method available for assessing the quality of the facesheet/core interface is the climbing drum peel test (ASTM D1781). During this test a sandwich beam is removed from a panel and the lip of one of the facesheets is attached to a drum, as shown in Fig. 1. The drum is then rotated along the sandwich beam, causing the facesheet to peel from the core. This method has two major drawbacks. First, it is not possible to obtain quantitative fracture data from the test and so the results can only be used in a qualitative manner. Second, only sandwich structure with thin facesheets can be tested (to facilitate wrapping of the facesheet around the climbing drum). In recognition of the need for a more quantitative facesheet/core fracture test, several workers have devised experimental techniques for characterizing the toughness of the facesheet/core interface. In all of these cases, the tests are designed to yield a mode I-dominated fracture toughness of the facesheet/core interface in a manner similar to that used to determine mode I fracture toughness of composite laminates. In the current work, a modified double cantilever beam is used to measure the mode I-dominated fracture toughness of the interface in a sandwich consisting of glass/phenolic honeycomb core reinforced with graphite epoxy facesheets. Two specimen configurations were tested as shown in Fig 2. The first configuration consisted of reinforcing the facesheets with aluminum blocks (Fig. 2a). In the second configuration unreinforced specimens were tested (Fig. 2b). Climbing drum peel tests were also conducted to compare the fracture behavior observed between this test and the modified double cantilever beam. This paper outlines the test procedures and data reduction strategies used to compute fracture toughness values from the tests. The effect of specimen reinforcement on fracture toughness of the facesheet/core interface is discussed.

  3. Simulating Air-Entrapment in Low Permeability Mudrocks using a Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.

    2011-12-01

    Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the invadable blocks, selects the block connected to the growing cluster with the lowest invasion pressure, and invades it. Our new MIP model incorporates several new features, including an efficient three-dimensional clustering algorithm; simultaneous invasion/reinvasion of water and air phases; hysteresis in water and air drainage curves; capability for distributed porosities and drainage parameters; and gas-phase compression and trapping. We apply this model in simulations representing the WCS site and illustrate the origin of the trapped and compressed gas phase in Dockum mudrocks.

  4. Petrography, mineralogy, and geochemistry of deep gravelly sands in the Eyreville B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Bartosova, Katerina; Gier, Susanne; Horton, J. Wright; Koeberl, Christian; Mader, Dieter; Dypvik, Henning

    2010-01-01

    The ICDP–USGS Eyreville drill cores in the Chesapeake Bay impact structure reached a total depth of 1766 m and comprise (from the bottom upwards) basement-derived schists and granites/pegmatites, impact breccias, mostly poorly lithified gravelly sand and crystalline blocks, a granitic slab, sedimentary breccias, and postimpact sediments. The gravelly sand and crystalline block section forms an approximately 26 m thick interval that includes an amphibolite block and boulders of cataclastic gneiss and suevite. Three gravelly sands (basal, middle, and upper) are distinguished within this interval. The gravelly sands are poorly sorted, clast supported, and generally massive, but crude size-sorting and subtle, discontinuous layers occur locally. Quartz and K-feldspar are the main sand-size minerals and smectite and kaolinite are the principal clay minerals. Other mineral grains occur only in accessory amounts and lithic clasts are sparse (only a few vol%). The gravelly sands are silica rich (~80 wt% SiO2). Trends with depth include a slight decrease in SiO2 and slight increase in Fe2O3. The basal gravelly sand (below the cataclasite boulder) has a lower SiO2 content, less K-feldspar, and more mica than the higher sands, and it contains more lithic clasts and melt particles that are probably reworked from the underlying suevite. The middle gravelly sand (below the amphibolite block) is finer-grained, contains more abundant clay minerals, and displays more variable chemical compositions than upper gravelly sand (above the block). Our mineralogical and geochemical results suggest that the gravelly sands are avalanche deposits derived probably from the nonmarine Potomac Formation in the lower part of the target sediment layer, in contrast to polymict diamictons higher in the core that have been interpreted as ocean-resurge debris flows, which is in agreement with previous interpretations. The mineralogy and geochemistry of the gravelly sands are typical for a passive continental margin source. There is no discernible mixing with marine sediments (no glauconite or Paleogene marine microfossils noted) during the impact remobilization and redeposition. The unshocked amphibolite block and cataclasite boulder might have originated from the outer parts of the transient crater.

  5. 31 CFR 515.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CUBAN ASSETS CONTROL REGULATIONS Prohibitions § 515.205 Holding of certain types of blocked property in... involved. (h) The following types of property are subject to paragraphs (a) and (b) of this section: (1... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Holding of certain types of blocked...

  6. 31 CFR 515.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CUBAN ASSETS CONTROL REGULATIONS Prohibitions § 515.205 Holding of certain types of blocked property in... involved. (h) The following types of property are subject to paragraphs (a) and (b) of this section: (1... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked...

  7. 31 CFR 515.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CUBAN ASSETS CONTROL REGULATIONS Prohibitions § 515.205 Holding of certain types of blocked property in... involved. (h) The following types of property are subject to paragraphs (a) and (b) of this section: (1... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Holding of certain types of blocked...

  8. 31 CFR 515.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CUBAN ASSETS CONTROL REGULATIONS Prohibitions § 515.205 Holding of certain types of blocked property in... involved. (h) The following types of property are subject to paragraphs (a) and (b) of this section: (1... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Holding of certain types of blocked...

  9. 31 CFR 515.205 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CUBAN ASSETS CONTROL REGULATIONS Prohibitions § 515.205 Holding of certain types of blocked property in... involved. (h) The following types of property are subject to paragraphs (a) and (b) of this section: (1... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Holding of certain types of blocked...

  10. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  11. Improved 3-D turbomachinery CFD algorithm

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1988-01-01

    The building blocks of a computer algorithm developed for the time-accurate flow analysis of rotating machines are described. The flow model is a finite volume method utilizing a high resolution approximate Riemann solver for interface flux definitions. This block LU implicit numerical scheme possesses apparent unconditional stability. Multi-block composite gridding is used to orderly partition the field into a specified arrangement. Block interfaces, including dynamic interfaces, are treated such as to mimic interior block communication. Special attention is given to the reduction of in-core memory requirements by placing the burden on secondary storage media. Broad applicability is implied, although the results presented are restricted to that of an even blade count configuration. Several other configurations are presently under investigation, the results of which will appear in subsequent publications.

  12. A preliminary study of genetic diversity of MSP-1 types in Plasmodium falciparum in southern province of Sistan Baluchistan of Iran.

    PubMed

    Zahra, Zamani; Reza, Razavi Mohammad; Mehdi, Assmar; Sedigheh, Sadeghi; Fatemeh, Pourfallah; Nikoo, Nasoohi; Ashraf, Sheibani; Mohammad, Raisi

    2007-02-01

    Plasmodiumfalciparum merozoite surface protein-1 (MSP-1) shows extensive antigenic diversity. This is due to the presence of seven variable blocks, five semi-conserved and also five conserved blocks. The variable blocks in the MSP-1 gene are principally dimorphic, displaying either K1 or MAD20 type; except for the block 2 region which is represented by three alleles, an RO33 type in addition to the other two. Allelic diversity is reported to be generated by intra-genic recombination between the variable blocks. A study of allelic variation of MSP-1 gene in Plasmodium falciparum was carried out in the southern province of Sistan Baluchistan in Iran in 2001-2003. Samples were obtained from 30 febrile patients and DNA was extracted and association types between blocks 2 and 6 was identified on each block using specific primers and compared with those from Vietnam, Brazil and Africa. The association types obtained, were similar though less in number than the ones from Vietnam, but more than those from Africa and Brazil.

  13. Petrogenesis of granitoids and associated xenoliths in the early Paleozoic Baoxu and Enping plutons, South China: Implications for the evolution of the Wuyi-Yunkai intracontinental orogen

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Huang, Xiao-Long; Sun, Min; He, Peng-Li

    2018-05-01

    The early Paleozoic Wuyi-Yunkai orogen was associated with extensive felsic magmatic activities and the orogenic core was mainly distributed in the Yunkai and Wugong domains located in the western Cathaysia block and in the Wuyi domain located in the central part of the Cathaysia block. In order to investigate the evolution of the Wuyi-Yunkai orogen, elemental and Sr-Nd isotopic analyses were performed for granites from the Baoxu pluton in the Yunkai domain and from the Enping pluton in the central part of the Cathaysia block. The Baoxu pluton consists of biotite granite with abundant xenoliths of gneissic granite, granodiorite and diorite, and the Enping pluton is mainly composed of massive granodiorite. Biotite granites (441 ± 5 Ma) and gneissic granite xenolith (443 ± 4 Ma) of the Baoxu pluton are all weakly peraluminous (A/CNK = 1.05-1.10). They show high Sr/Y and La/Yb ratios and have negative bulk-rock εNd(t) values (-7.0 to -4.4), which are similar to coeval gneissic S-type granites in the Yunkai domain and were probably derived from dehydration melting of a sedimentary source with garnet residue in the source. Granodiorites (429 ± 3 Ma) from Enping and granodiorite xenolith (442 ± 4 Ma) from Baoxu are metaluminous and have REE patterns with enriched light REE and flat middle to heavy REE, possibly generated by the dehydration melting of an igneous basement at middle to lower crustal level. Diorite xenolith from Baoxu is ultrapotassic (K2O = 4.9 wt%), has high contents of MgO (7.0 wt%), Cr (379 ppm) and Ni (171 ppm) and shows pronounced negative Nb, Ta and Ti anomalies. This xenolith also has negative εNd(t) value (-3.6) and low Rb/Ba and high Ba/Sr ratios, and is thus interpreted to be derived from an enriched lithospheric mantle with the breakdown of phlogopite. Early Paleozoic I- and S-type granites in the Wuyi-Yunkai orogen mostly have negative εNd(t) values and do not have juvenile components, consistent with genesis by an intracontinental orogenic event. These early Paleozoic granites occur near the ancient suture zone between the Yangtze and Cathaysia blocks and have high La/Yb and Sr/Y ratios, likely due to the existence of residual garnet in the source, suggesting the thickened crust at ca. 440 Ma. The 450-440 Ma gneissic S-type granites near the suture zone are earlier than those in the central part of the Cathaysia block (∼430 Ma). The crustal thickening along the ancient suture zone at 440 Ma propagated into the central part of the Cathaysia block as evidenced by the 430 Ma granites. Early Paleozoic I-type granites near the suture zone clearly show involvement of significant mantle-derived materials, in contrast to granites in the central part of the Cathaysia block. The ancient suture zone may have acted as channels for the emplacement of mafic magmas during the collapse of an intracontinental orogen.

  14. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  15. RAFT Dispersion Alternating Copolymerization of Styrene with N-Phenylmaleimide: Morphology Control and Application as an Aqueous Foam Stabilizer

    PubMed Central

    2016-01-01

    We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition–fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with N-phenylmaleimide using a nonionic poly(N,N-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [YangP.; Macromolecules2013, 46, 8545−8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (Tg), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high Tg of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles. PMID:27708458

  16. 31 CFR 536.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 536.203 Section 536.203 Money and Finance: Treasury Regulations... NARCOTICS TRAFFICKING SANCTIONS REGULATIONS Prohibitions § 536.203 Holding of certain types of blocked...

  17. 31 CFR 536.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 536.203 Section 536.203 Money and Finance: Treasury Regulations... NARCOTICS TRAFFICKING SANCTIONS REGULATIONS Prohibitions § 536.203 Holding of certain types of blocked...

  18. 31 CFR 536.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 536.203 Section 536.203 Money and Finance: Treasury Regulations... NARCOTICS TRAFFICKING SANCTIONS REGULATIONS Prohibitions § 536.203 Holding of certain types of blocked...

  19. 31 CFR 536.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 536.203 Section 536.203 Money and Finance: Treasury Regulations... NARCOTICS TRAFFICKING SANCTIONS REGULATIONS Prohibitions § 536.203 Holding of certain types of blocked...

  20. 31 CFR 536.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 536.203 Section 536.203 Money and Finance: Treasury Regulations... NARCOTICS TRAFFICKING SANCTIONS REGULATIONS Prohibitions § 536.203 Holding of certain types of blocked...

  1. [Effect of spatial location on the generality of block-wise conflict adaptation between different types of scripts].

    PubMed

    Watanabe, Yurina; Yoshizaki, Kazuhito

    2014-10-01

    This study aimed to investigate the generality of conflict adaptation associated with block-wise conflict frequency between two types of stimulus scripts (Kanji and Hiragana). To this end, we examined whether the modulation of the compatibility effect with one type of script depending on block-wise conflict frequency (75% versus 25% generalized to the other type of script whose block-wise conflict frequency was kept constant (50%), using the Spatial Stroop task. In Experiment 1, 16 participants were required to identify the target orientation (up or down) presented in the upper or lower visual-field. The results showed that block-wise conflict adaptation with one type of stimulus script generalized to the other. The procedure in Experiment 2 was the same as that in Experiment 1, except that the presentation location differed between the two types of stimulus scripts. We did not find a generalization from one script to the other. These results suggest that presentation location is a critical factor contributing to the generality of block-wise conflict adaptation.

  2. Bivalent O-glycoside mimetics with S/disulfide/Se substitutions and aromatic core: Synthesis, molecular modeling and inhibitory activity on biomedically relevant lectins in assays of increasing physiological relevance.

    PubMed

    Kaltner, Herbert; Szabó, Tamás; Fehér, Krisztina; André, Sabine; Balla, Sára; Manning, Joachim C; Szilágyi, László; Gabius, Hans-Joachim

    2017-06-15

    The emerging significance of recognition of cellular glycans by lectins for diverse aspects of pathophysiology is a strong incentive for considering development of bioactive and non-hydrolyzable glycoside derivatives, for example by introducing S/Se atoms and the disulfide group instead of oxygen into the glycosidic linkage. We report the synthesis of 12 bivalent thio-, disulfido- and selenoglycosides attached to benzene/naphthalene cores. They present galactose, for blocking a plant toxin, or lactose, the canonical ligand of adhesion/growth-regulatory galectins. Modeling reveals unrestrained flexibility and inter-headgroup distances too small to bridge two sites in the same lectin. Inhibitory activity was first detected by solid-phase assays using a surface-presented glycoprotein, with relative activity enhancements per sugar unit relative to free cognate sugar up to nearly 10fold. Inhibitory activity was also seen on lectin binding to surfaces of human carcinoma cells. In order to proceed to characterize this capacity in the tissue context monitoring of lectin binding in the presence of inhibitors was extended to sections of three types of murine organs as models. This procedure proved to be well-suited to determine relative activity levels of the glycocompounds to block binding of the toxin and different human galectins to natural glycoconjugates at different sites in sections. The results on most effective inhibition by two naphthalene-based disulfides and a selenide raise the perspective for broad applicability of the histochemical assay in testing glycoclusters that target biomedically relevant lectins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. O-glycans direct selectin ligands to lipid rafts on leukocytes.

    PubMed

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D'souza, Padmaja; Fu, Jianxin; Crocker, Paul R; Rodgers, William; Xia, Lijun; McEver, Rodger P

    2015-07-14

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.

  4. Spontaneous Evolution of Nanostructure in Composite Films Consisting of Mixtures of Two Different Block Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok

    2010-03-01

    Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.

  5. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities.

    PubMed

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-20

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) μm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.

  6. Tuning Structural Properties of Biocompatible Block Copolymer Micelles by Varying Solvent Composition

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Mai Le, Kim; Wang, Shu; Kelley, Elizabeth; He, Lilin; Vajjala Kesava, Sameer; Gomez, Enrique; Kidd, Bryce; Madsen, Louis; Robertson, Megan

    The self-assembly of block copolymers into micelles when introduced to selective solvents enables a wide array of applications, ranging from drug delivery to personal care products to nanoreactors. In order to probe the assembly and dynamics of micellar systems, the structural properties and solvent uptake of biocompatible poly(ethylene oxide-b- ɛ-caprolactone) (PEO-PCL) diblock copolymers in deuterated water (D2O) / tetrahydrofuran (THFd8) mixtures were investigated using small-angle neutron scattering in combination with nuclear magnetic resonance. PEO-PCL block copolymers, of varying molecular weight yet constant block ratio, formed spherical micelles through a wide range of solvent compositions. Varying the composition from 10 to 60 % by volume THFd8\\ in D2O / THFd8 mixtures was a means of varying the core-corona interfacial tension in the micelle system. An increase in THFd8 content in the bulk solvent increased the solvent uptake within the micelle core, which was comparable for the two series, irrespective of the polymer molecular weight. Differences in the behaviors of the micelle size parameters as the solvent composition varied originated from the differing trends in aggregation number for the two micelle series. Incorporation of the known unimer content determined from NMR allowed refinement of extracted micelle parameters.

  7. Polypeptide-Based Gold Nanoshells for Photothermal Therapy.

    PubMed

    Mayle, Kristine M; Dern, Kathryn R; Wong, Vincent K; Sung, Shijun; Ding, Ke; Rodriguez, April R; Taylor, Zachary; Zhou, Z Hong; Grundfest, Warren S; Deming, Timothy J; Kamei, Daniel T

    2017-02-01

    Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine) 60 - block-poly(L-leucine) 20 (K 60 L 20 ) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K 60 L 20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.

  8. Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery.

    PubMed

    Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei

    2017-03-01

    Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

    NASA Astrophysics Data System (ADS)

    Huang, Xiaomeng; Tang, Qiang; Tseng, Yuheng; Hu, Yong; Baker, Allison H.; Bryan, Frank O.; Dennis, John; Fu, Haohuan; Yang, Guangwen

    2016-11-01

    In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.

  10. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs.

    PubMed

    Nachtigall, Olaf; Spandl, Johann

    2018-02-21

    We report the synthesis, post-functionalization, and redox behavior of two organically functionalized aggregates, [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-CH 2 N 3 }] and [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-NH 2 }]. All twelve μ 2 -oxo groups on the edges of the Lindqvist-type {V 6 O 19 } core were replaced by alkoxo ligands. The absence of a negative charge and the closed organic shell make these neutral mixed-valence compounds very stable towards hydrolysis and well soluble in almost all common organic solvents. These are important advantages over classical POMs. By post-functionalization through copper(I)-catalyzed Huisgen cycloaddition or imine formation, various organic moieties could be introduced. Even a well-soluble trimer composed of three hexanuclear vanadium units connected through an aromatic triimino core was synthesized and studied. The diverse redox behavior, the versatile reactivity, the good stability, and the excellent solubility make our vanadium compounds highly interesting for applications as building blocks in macromolecular chemistry as well as redox labels in biochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro.

    PubMed

    Yi, Young-Joo; Manandhar, Gaurishankar; Sutovsky, Miriam; Jonáková, Vera; Park, Chang-Sik; Sutovsky, Peter

    2010-03-01

    The 26S proteoasome is a multi-subunit protease specific to ubiquitinated substrate proteins. It is composed of a 20S proteasomal core with substrate degradation activity, and a 19S regulatory complex that acts in substrate recognition, deubiquitination, priming and transport to the 20S core. Inhibition of proteolytic activities associated with the sperm acrosome-borne 20S core prevents fertilization in mammals, ascidians and echinoderms. Less is known about the function of the proteasomal 19S complex during fertilization. The present study examined the role of PSMD8, an essential non-ATPase subunit of the 19S complex, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Immunofluorescence localized PSMD8 to the outer acrosomal membrane, acrosomal matrix and the inner acrosomal membrane. Colloidal gold transmission electron microscopy detected PSMD8 on the surface of vesicles in the acrosomal shroud, formed as a result of zona pellucida-induced acrosomal exocytosis. Contrary to the inhibition of fertilization by blocking of the 20S core activities, fertilization and polyspermy rates were increased by adding anti-PSMD8 antibody to fertilization medium. This observation is consistent with a possible role of PSMD8 in substrate deubiquitination, a process which when blocked, may actually accelerate substrate proteolysis by the 26S proteasome. Subunit PSMD8 co-immunoprecipitated with acrosomal surface-associated spermadhesin AQN1. This association indicates that the sperm acrosome-borne proteasomes become exposed onto the sperm surface following the acrosomal exocytosis. Since immunological blocking of subunit PSMD8 increases the rate of polyspermy during porcine fertilization, the activity of the 19S complex may be a rate-limiting factor contributing to anti-polyspermy defense during porcine fertilization. Copyright 2009. Published by Elsevier Ireland Ltd.

  12. Gyroid structure via highly asymmetric ABC and AB blends

    NASA Astrophysics Data System (ADS)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; Kim, Jin Kon

    Gyroid structures are very important because of their co-continuous and network structures. However, a block copolymer shows gyroid structures only at 35 % volume fraction of one block. In this study, we designed ABC/AB blend system. B (polystyrene (PS)) is the matrix, while A (polyisoprene (PI)) and C (poly(2-vinyl pridine (P2VP)) are the core part. This blend shows gyroid structures at 20 % volume fraction, that is smaller than that observed at diblock copolymer. Morphologies of neat block copolymers and blends were characterized by TEM and small angle X-ray scattering.

  13. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  14. SUMMARY OF EQUATIONS FOR EFFECT OF SHIP ATTITUDE AND SHIP MOTION ON PRIMARY COOLANT SYSTEM FLOW RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, H.E. Jr.

    1960-02-16

    SYNFAR, the buckling, reflector saviags, flux, and reactivity segments of the pilot code, was assembled, checked out, and placed in production status. A reduction of 50% in the computation time required for SYNFAR was achieved through incorporation of a convergence acceleration technique. Modification of SYNFAR to perrait computation of dynamic flux and reactivity was raade and the option was prepared for checkout. Retails of the APWRC Error and Exit Diagnosis package and the APWRC Library Tape System are given. The latter was checked out except for the simultaneous tape shifting fuaction. Digitalization of basic cross section data was completed formore » fifteen materials. The portion of the Cross Section Data Program which converts the punched card data to magnetic tape form, interpolating as necessary to obtain data at 1001 energy levels, was completed and checked out. The Breit-Wigner Analysis Program, used with the Cross Section Data Program, was checked out. A listing of the Fortran source program, containing definitions of terms used, fiow diagrams, input data forms, and a sample caloulation is contained. The theory and equations developed to compute the scattering parametera, mu and xi , also used by the Croas Section Data Program, were developed. Checkout of the corresponding program, XIMU, was started. Theory and equations for computing an inelastic scattering matrix, for use with the Cross Section Data Program, were developed and a FORTRAN program for evaluating them was started. An aralysis of the results of the experimental program was started using SYNFAR. Multiplication factors for the two cores studied, Nos. 453 and 454, agreed with the experimental value of 1.00 within 0.6%. The experimental program on Core 454 was completed. Experiments performed were determination of temperature coefficient (--8.9 x 10/sup -5/ DELTA k/k per degree centigrade at 35 deg C), per cent fiasions by subcadmium neutrons (18%), intracell thermal flux measurements, and buckling measuremerts. Core 453 was assembled. The cold clean critical mass for this core was 17.5 kg of U/sup 235/ with 134.63 grams of natural boron in the core. A complete series of clean core experiments was performed on this core. Core 452 was also assembled. The critical mass for this core was 14.4 kg of U/sup 235/ with 83.14 grams of natural boron in the core. The critical experiment control rods were calibrated. Material and dimensional specifications of the homogeneous fuel elements were prepared. A number of saruple blocks containing powdered stainless steel and lucite was pressed. Improvements in the process are being made in an attempt to minimize dimensioral variations from block to block. (See also MND-E-2119.) (auth)« less

  15. Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes' Milk Cheeses

    PubMed Central

    De Pasquale, Ilaria; Di Cagno, Raffaella; Buchin, Solange; De Angelis, Maria; Gobbetti, Marco

    2016-01-01

    Italian PDO (Protected Designation of Origin) Fiore Sardo (FS), Pecorino Siciliano (PS) and Pecorino Toscano (PT) ewes’ milk cheeses were chosen as hard cheese model systems to investigate the spatial distribution of the metabolically active microbiota and the related effects on proteolysis and synthesis of volatile components (VOC). Cheese slices were divided in nine sub-blocks, each one separately subjected to analysis and compared to whole cheese slice (control). Gradients for moisture, and concentrations of salt, fat and protein distinguished sub-blocks, while the cell density of the main microbial groups did not differ. Secondary proteolysis differed between sub-blocks of each cheese, especially when the number and area of hydrophilic and hydrophobic peptide peaks were assessed. The concentration of free amino acids (FAA) agreed with these data. As determined through Purge and Trap (PT) coupled with Gas Chromatography-Mass Spectrometry (PT-GC/MS), and regardless of the cheese variety, the profile with the lowest level of VOC was restricted to the region identified by the letter E defined as core. As shown through pyrosequencing of the 16S rRNA targeting RNA, the spatial distribution of the metabolically active microbiota agreed with the VOC distribution. Differences were highlighted between core and the rest of the cheese. Top and bottom under rind sub-blocks of all three cheeses harbored the widest biodiversity. The cheese sub-block analysis revealed the presence of a microbiota statistically correlated with secondary proteolysis events and/or synthesis of VOC. PMID:27073835

  16. 31 CFR 595.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... TERRORISM SANCTIONS REGULATIONS Prohibitions § 595.203 Holding of certain types of blocked property in... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 595.203 Section 595.203 Money and Finance: Treasury Regulations...

  17. 31 CFR 575.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... IRAQI SANCTIONS REGULATIONS Prohibitions § 575.203 Holding of certain types of blocked property in... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 575.203 Section 575.203 Money and Finance: Treasury Regulations...

  18. 31 CFR 595.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TERRORISM SANCTIONS REGULATIONS Prohibitions § 595.203 Holding of certain types of blocked property in... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 595.203 Section 595.203 Money and Finance: Treasury Regulations...

  19. 31 CFR 595.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TERRORISM SANCTIONS REGULATIONS Prohibitions § 595.203 Holding of certain types of blocked property in... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 595.203 Section 595.203 Money and Finance: Treasury Regulations...

  20. 31 CFR 595.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TERRORISM SANCTIONS REGULATIONS Prohibitions § 595.203 Holding of certain types of blocked property in... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 595.203 Section 595.203 Money and Finance: Treasury Regulations...

  1. 31 CFR 595.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TERRORISM SANCTIONS REGULATIONS Prohibitions § 595.203 Holding of certain types of blocked property in... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 595.203 Section 595.203 Money and Finance: Treasury Regulations...

  2. A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.

    PubMed

    Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D

    2014-08-28

    It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.

  3. Multicompartmental Microcapsules with Orthogonal Programmable Two-Way Sequencing of Hydrophobic and Hydrophilic Cargo Release.

    PubMed

    Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V

    2016-04-11

    Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Parallel Adjective High-Order CFD Simulations Characterizing SOFIA Cavity Acoustics

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2016-01-01

    This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A temporally fourth-order accurate Runge-Kutta, and spatially fth-order accurate WENO- 5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.

  5. Parallel Adaptive High-Order CFD Simulations Characterizing SOFIA Cavitiy Acoustics

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2015-01-01

    This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A tempo- rally fourth-order accurate Runge-Kutta, and a spatially fth-order accurate WENO-5Z scheme were used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.

  6. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobyshev, A.; Lamore, D.; Demar, P.

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has anmore » interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.« less

  7. Lateral restraint assembly for reactor core

    DOEpatents

    Gorholt, Wilhelm; Luci, Raymond K.

    1986-01-01

    A restraint assembly for use in restraining lateral movement of a reactor core relative to a reactor vessel wherein a plurality of restraint assemblies are interposed between the reactor core and the reactor vessel in circumferentially spaced relation about the core. Each lateral restraint assembly includes a face plate urged against the outer periphery of the core by a plurality of compression springs which enable radial preloading of outer reflector blocks about the core and resist low-level lateral motion of the core. A fixed radial key member cooperates with each face plate in a manner enabling vertical movement of the face plate relative to the key member but restraining movement of the face plate transverse to the key member in a plane transverse to the center axis of the core. In this manner, the key members which have their axes transverse to or subtending acute angles with the direction of a high energy force tending to move the core laterally relative to the reactor vessel restrain such lateral movement.

  8. Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1

    PubMed Central

    Razawi, Hanieh; Kinlough, Carol L; Staubach, Simon; Poland, Paul A; Rbaibi, Youssef; Weisz, Ora A; Hughey, Rebecca P; Hanisch, Franz-Georg

    2013-01-01

    The apical transmembrane glycoprotein MUC1 is endocytosed to recycle through the trans-Golgi network (TGN) or Golgi complex to the plasma membrane. We followed the hypothesis that not only the known follow-up sialylation of MUC1 in the TGN is associated with this process, but also a remodeling of O-glycan core structures, which would explain the previously described differential core 2- vs core 1-based O-glycosylation of secreted, single Golgi passage and recycling membrane MUC1 isoforms (Engelmann K, Kinlough CL, Müller S, Razawi H, Baldus SE, Hughey RP, Hanisch F-G. 2005. Glycobiology. 15:1111–1124). Transmembrane and secreted MUC1 probes show trafficking-dependent changes in O-glycan core profiles. To address this novel observation, we used recombinant epitope-tagged MUC1 (MUC1-M) and mutant forms with abrogated clathrin-mediated endocytosis (MUC1-M-Y20,60N) or blocked recycling (palmitoylation-defective MUC1-M-CQC/AQA). We show that the CQC/AQA mutant transits the TGN at significantly lower levels, concomitant with a strongly reduced shedding from the plasma membrane and its accumulation in endosomal compartments. Intriguingly, the O-glycosylation of the shed MUC1 ectodomain subunit changes from preponderant sialylated core 1 (MUC1-M) to core 2 glycans on the non-recycling CQC/AQA mutant. The O-glycoprofile of the non-recycling CQC/AQA mutant resembles the core 2 glycoprofile on a secretory MUC1 probe that transits the Golgi complex only once. In contrast, the MUC1-M-Y20,60N mutant recycles via flotillin-dependent pathways and shows the wild-type phenotype with dominant core 1 expression. Differential radiolabeling of protein with [35S]Met/Cys or glycans with [3H]GlcNH2 in pulse-chase experiments of surface biotinylated MUC1 revealed a significantly shorter half-life of [3H]MUC1 when compared with [35S]MUC1, whereas the same ratio for the CQC/AQA mutant was close to one. This finding further supports the novel possibility of a recycling-associated O-glycan processing from Gal1-4GlcNAc1-6(Gal1-3)GalNAc (core 2) to Gal1-3GalNAc (core 1). PMID:23640779

  9. Block Volume Estimation from the Discontinuity Spacing Measurements of Mesozoic Limestone Quarries, Karaburun Peninsula, Turkey

    PubMed Central

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J v) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V b), the mean volumetric joint count (J vb) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V in) and volumetric joint count (J vi) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements. PMID:24696642

  10. Powered Explicit Guidance Modifications and Enhancements for Space Launch System Block-1 and Block-1B Vehicles

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.

  11. Block volume estimation from the discontinuity spacing measurements of mesozoic limestone quarries, Karaburun Peninsula, Turkey.

    PubMed

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J(v)) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V(b)), the mean volumetric joint count (J(vb)) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V(in)) and volumetric joint count (J(vi)) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements.

  12. FY2012 summary of tasks completed on PROTEUS-thermal work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Smith, M.A.

    2012-06-06

    PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less

  13. Interactive high-resolution isosurface ray casting on multicore processors.

    PubMed

    Wang, Qin; JaJa, Joseph

    2008-01-01

    We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.

  14. Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825

    NASA Astrophysics Data System (ADS)

    Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.

    2010-11-01

    We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.

  15. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.

    PubMed

    Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E

    2012-10-09

    We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.

  16. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    PubMed

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Nonalcoholic fatty liver disease is associated with an increased risk of heart block in hospitalized patients with type 2 diabetes mellitus.

    PubMed

    Mantovani, Alessandro; Rigolon, Riccardo; Pichiri, Isabella; Bonapace, Stefano; Morani, Giovanni; Zoppini, Giacomo; Bonora, Enzo; Targher, Giovanni

    2017-01-01

    Recent studies suggested that nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiac tachyarrhythmias (mainly atrial fibrillation) in patients with and without type 2 diabetes mellitus. The aim of this study was to examine whether an association also exists between NAFLD and heart block. We have retrospectively evaluated a hospital-based cohort of 751 patients with type 2 diabetes discharged from our Division of Diabetes and Endocrinology during years 2007-2014. Standard electrocardiograms were performed on all patients. Diagnosis of NAFLD was based on ultrasonography, whereas the severity of advanced hepatic fibrosis was based on the fibrosis (FIB)-4 score and other non-invasive fibrosis markers. Overall, 524 (69.8%) patients had NAFLD and 202 (26.9%) had heart block (defined as at least one block among first-degree atrio-ventricular block, second-degree block, third-degree block, left bundle branch block, right bundle branch block, left anterior hemi-block or left posterior hemi-block) on electrocardiograms. Patients with NAFLD had a remarkably higher prevalence of any persistent heart block than those without NAFLD (31.3% vs. 16.7%, p<0.001); this prevalence was particularly increased among those with higher FIB-4 score. NAFLD was associated with a threefold increased risk of prevalent heart block (adjusted-odds ratio 3.04, 95% CI 1.81-5.10), independently of age, sex, hypertension, prior ischemic heart disease, hemoglobin A1c, microvascular complication status, use of medications and other potentially confounding factors. In conclusion, this is the largest cross-sectional study to show that NAFLD and its severity are independently associated with an increased risk of prevalent heart block in hospitalized patients with type 2 diabetes.

  18. Thermal characterization of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles based on pyrene excimer formation.

    PubMed

    Jule, Eduardo; Yamamoto, Yuji; Thouvenin, Muriel; Nagasaki, Yukio; Kataoka, Kazunori

    2004-07-07

    Poly(ethylene glycol)--poly(D,L-lactide) (PEG-PDLLA) block copolymers were prepared by anionic ring-opening polymerization, resulting in block sizes effectively controlled by initial monomer/initiator ratios and low molecular weight distributions (<1.12). A pyrene derivative (1-pyrenyl carbonyl cyanide--Py) was conjugated to the end of the hydrophobic block (PDLLA) in a quantitative manner, with coupling efficiencies >95%. The so-obtained PEG-PDLLA-Py copolymers displayed fluorescent properties that were associated with the pyrene monomers, when placed in good solvents for both the hydrophilic and hydrophobic blocks. When placed in selective solvents, these copolymers self-assembled into micelles in the 30-nm range, also with low particle size distributions (<0.09), within which Py could be readily entrapped in the hydrophobic PDLLA core. Py entrapment resulted in the formation of excimers, as evident from fluorescence measurements. Observation of excimer formation/dissociation further conveyed information on the physicochemical properties of the core. Thermal characterization of these systems showed that an increase in the temperature resulted in changes in the properties of excimer fluorescence, an occurrence attributed to a higher mobility of the otherwise glassy PDLLA. This, in turn, greatly affected the inter-molecular distance between pyrene molecules, a crucial factor for excimer formation. The glass transition of the PDLLA block, approximately 38 degrees C, defined the onset for increasing chain mobility and whence excimer dissociation. Excimer fluorescence appeared to be time-dependent. Based on these observations, chain exchange processes were clearly evidenced through the time-dependent dissociation of excimers into unimers, a process that was influenced by changes in temperature.

  19. Effect of Fertilization on Growth and Wood Properties of Thinned and Un-thinned Mid-rotation Loblolly Pine (Pinus taeda L.) Stands

    Treesearch

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark

    2011-01-01

    Growth and wood properties were measured on breast height cores collected from two stands, New Bern and Bertie, located in the lower Coastal Plain of North Carolina. The New Bern site was thinned before fertilizer application, and the Bertie site was not. The study was laid out in a randomized complete block design with each treatment replicated in four blocks at New...

  20. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  1. Keeping the ball rolling: fullerene-like molecular clusters.

    PubMed

    Kong, Xiang-Jian; Long, La-Sheng; Zheng, Zhiping; Huang, Rong-Bin; Zheng, Lan-Sun

    2010-02-16

    The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the cluster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxide-based pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.

  2. Targets of small interfering RNA restriction during human immunodeficiency virus type 1 replication.

    PubMed

    Gao, Yong; Lobritz, Michael A; Roth, Justin; Abreha, Measho; Nelson, Kenneth N; Nankya, Immaculate; Moore-Dudley, Dawn M; Abraha, Awet; Gerson, Stanton L; Arts, Eric J

    2008-03-01

    Small interfering RNAs (siRNAs) have been shown to effectively inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro. The mechanism(s) for this inhibition is poorly understood, as siRNAs may interact with multiple HIV-1 RNA species during different steps of the retroviral life cycle. To define susceptible HIV-1 RNA species, siRNAs were first designed to specifically inhibit two divergent primary HIV-1 isolates via env and gag gene targets. A self-inactivating lentiviral vector harboring these target sequences confirmed that siRNA cannot degrade incoming genomic RNA. Disruption of the incoming core structure by rhesus macaque TRIM5alpha did, however, provide siRNA-RNA-induced silencing complex access to HIV-1 genomic RNA and promoted degradation. In the absence of accelerated core disruption, only newly transcribed HIV-1 mRNA in the cytoplasm is sensitive to siRNA degradation. Inhibitors of HIV-1 mRNA nuclear export, such as leptomycin B and camptothecin, blocked siRNA restriction. All HIV-1 RNA regions and transcripts found 5' of the target sequence, including multiply spliced HIV-1 RNA, were degraded by unidirectional 3'-to-5' siRNA amplification and spreading. In contrast, HIV-1 RNA 3' of the target sequence was not susceptible to siRNA. Even in the presence of siRNA, full-length HIV-1 RNA is still encapsidated into newly assembled viruses. These findings suggest that siRNA can target only a relatively "naked" cytoplasmic HIV-1 RNA despite the involvement of viral RNA at nearly every step in the retroviral life cycle. Protection of HIV-1 RNA within the core following virus entry, during encapsidation/virus assembly, or within the nucleus may reflect virus evolution in response to siRNA, TRIM5alpha, or other host restriction factors.

  3. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  4. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.

    PubMed

    Rees, Christopher L; Wheeler, Diek W; Hamilton, David J; White, Charise M; Komendantov, Alexander O; Ascoli, Giorgio A

    2016-01-01

    We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.

  5. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    PubMed

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek

    2009-12-01

    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  6. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.

    2011-04-01

    The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.

  7. Nuclear reactor removable radial shielding assembly having a self-bowing feature

    DOEpatents

    Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.

    1978-01-01

    A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.

  8. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to the pores in the specimens. The maximum relative permeabilities of cores made without annealing ranged from 30 to 110, while those of cores made with annealing ranged from 900 to 1,400. However, the greater permeabilities of the annealed specimens were not associated with noticeably greater densities. The major practical result of the investigation was the discovery of an optimum distribution of iron-particle sizes: It was found that eddy-current losses in the molded cores were minimized by using 100 mesh (corresponding to particles with diameters less than or equal to 100 m) iron particles. The effect of optimization of particle sizes on eddy-current losses is depicted in the figure.

  9. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  10. Ya33 ‘give’ as a valency increaser in Jinghpo nuclear serialization: from benefactive to malefactive

    PubMed Central

    Peng, Guozhen; Chappell, Hilary

    2013-01-01

    This paper analyzes serial verb constructions in Jinghpo formed by ya33 ‘give’, arguing that it has the function of a valency–increasing device in nuclear serialization: the use of ya33 allows the licensing of an additional beneficiary argument as a core argument to the lexical verb. In a new twist, however, on the evolution of give verbs, we demonstrate that the benefactive usage is extended to malefactive semantics in a distinct, derived structure, conditioned via the expression of possession, a type of malefactive that is not well-documented in current literature on this domain. Furthermore, the existence of two distinct constructions for the benefactive and the malefactive in Jinghpo conforms to Radetzky & Smith’s claim (2010: 116) that this is an areal feature comprising the Indian subcontinent, Southeast and East Asia, and thus contrasts strongly with the conflation of both types of construction in many European languages. Finally, we propose that the nuclear type of serialization, integral to the typological profile of Jinghpo, a SOV language, is a determining factor in the reanalysis of ya33. This feature is subsequently invoked to explain why the malefactive usage of ya33 constitutes a separate development from the well-attested pathway for give verbs leading to permissive causative verbs and adversative passive markers, which, while blocked in Jinghpo, is commonly found in many other East and Southeast Asian languages with core serialization. The present analysis is based on the variety of Jinghpo spoken in Luxi county, Yunnan province, China, using in the main natural discourse data collected in the field. PMID:24159251

  11. Revisiting Parallel Cyclic Reduction and Parallel Prefix-Based Algorithms for Block Tridiagonal System of Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul

    2013-01-01

    Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less

  12. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the scaffolds' biochemical input and matrix stiffness. It is reported herein that in the hybrid scaffolds, collagen provides essential biochemical cues needed to promote cell attachment and function while SELP imparts matrix stiffness tunability. To obtain tissue-specificity in matrix stiffness that spans over several orders of magnitude covering from soft brain to stiff cartilage, the hybrid SELP-Collagen scaffolds were crosslinked by transglutaminase at physiological conditions compatible for simultaneous cell encapsulation. The effect of the increase in matrix stiffness induced by such enzymatic crosslinking on cellular viability and proliferation was also evaluated using in vitro cell assays.

  13. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    PubMed

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  14. Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2001-01-01

    Present structural concepts for hot static structures are conventional "sheet & stringer" or truss core construction. More weight-efficient concepts such as honeycomb and lattice block are being investigated, in combination with both conventional superalloys and TiAl. Development efforts for components made from TiAl sheet are centered on lower cost methods for sheet and foil production, plus alloy development for higher temperature capability. A low-cost casting technology recently developed for aluminum and steel lattice blocks has demonstrated the required higher strength and stiffness, with weight efficiency approach- ing honeycombs. The current effort is based on extending the temperature capability by developing lattice block materials made from IN-718 and Mar-M247.

  15. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    PubMed

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  16. A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Deng, Yi

    2014-08-01

    Through an agglomerative hierarchical clustering method, cold surges over East Asia are classified into two distinct types based on the spatial pattern of the geopotential height anomalies at 300 hPa. One is the wave-train type that is associated with developing large-scale waves across the Eurasian continent. The other is the blocking type whose occurrence accompanies subarctic blocking. During the wave-train cold surge, growing baroclinic waves induce a southeastward expansion of the Siberian High and strong northerly winds over East Asia. Blocking cold surge, on the other hand, is associated with a southward expansion of the Siberian High and northeasterly winds inherent to a height dipole consisting of the subarctic blocking and the East Asian coastal trough. The blocking cold surge tends to be more intense and last longer compared to the wave-train type. The wave-train cold surge is associated with the formation of a negative upper tropospheric height anomaly southeast of Greenland approximately 12 days before the surge occurrence. Further analysis of isentropic potential vorticity reveals that this height anomaly could originate from the lower stratosphere over the North Atlantic. Cold surge of the blocking type occurs with an amplifying positive geopotential and a negative potential vorticity anomaly over the Arctic and the northern Eurasia in stratosphere. These anomalies resemble the stratospheric signature of a negative phase of the Arctic Oscillation. This stratospheric feature is further demonstrated by the observation that the blocking type cold surge occurs more often when the Arctic Oscillation is in its negative phase.

  17. Peripheral nerve block in patients with Ehlers-Danlos syndrome, hypermobility type: a case series.

    PubMed

    Neice, Andrew E; Stubblefield, Eryn E; Woodworth, Glenn E; Aziz, Michael F

    2016-09-01

    Ehlers-Danlos syndrome (EDS) is an inherited disease characterized by defects in various collagens or their post translational modification, with an incidence estimated at 1 in 5000. Performance of peripheral nerve block in patients with EDS is controversial, due to easy bruising and hematoma formation after injections as well as reports of reduced block efficacy. The objective of this study was to review the charts of EDS patients who had received peripheral nerve block for any evidence of complications or reduced efficacy. Case series, chart review. Academic medical center. Patients with a confirmed or probable diagnosis of EDS who had received a peripheral nerve block in the last 3 years were identified by searching our institutions electronic medical record system. The patients were classified by their subtype of EDS. Patients with no diagnosed subtype were given a probable subtype based on a chart review of the patient's symptoms. Patient charts were reviewed for any evidence of complications or reduced block efficacy. A total of 21 regional anesthetics, on 16 unique patients were identified, 10 of which had a EDS subtype diagnosis. The majority of these patients had a diagnosis of hypermobility-type EDS. No block complications were noted in any patients. Two block failures requiring repeat block were noted, and four patients reported uncontrolled pain on postoperative day one despite successful placement of a peripheral nerve catheter. Additionally, blocks were performed without incident in patients with classical-type and vascular-type EDS although the number was so small that no conclusions can be drawn about relative safety of regional anesthesia in these groups. This series fails to show an increased risk of complications of peripheral nerve blockade in patients with hypermobility-type EDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria

    2015-09-01

    Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.

  19. Chlorine-induced assembly of a cationic coordination cage with a μ5-carbonato-bridged Mn(II)24 core.

    PubMed

    Xiong, Ke-Cai; Jiang, Fei-Long; Gai, Yan-Li; Yuan, Da-Qiang; Han, Dong; Ma, Jie; Zhang, Shu-Quan; Hong, Mao-Chun

    2012-04-27

    Chlorine caged in! The chlorine-induced assembly of six shuttlecock-like tetranuclear Mn(II) building blocks generated in situ based on p-tert-butylthiacalix[4]arene and facial anions gave rise to a novel truncated distorted octahedral cationic coordination cage with a μ(5)-carbonato-bridged Mn(II)(24) core. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  1. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  2. Analysis of bacterial diversity in two oil blocks from two low-permeability reservoirs with high salinities

    PubMed Central

    Xiao, Meng; Sun, Shan-Shan; Zhang, Zhong-Zhi; Wang, Jun-Ming; Qiu, Long-Wei; Sun, Hua-Yang; Song, Zhao-Zheng; Zhang, Bei-Yu; Gao, De-Li; Zhang, Guang-Qing; Wu, Wei-Min

    2016-01-01

    The community diversities of two oil reservoirs with low permeability of 1.81 × 10−3 and 2.29 × 10−3 μm2 in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly. PMID:26786765

  3. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

    PubMed

    Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker

    2016-04-15

    We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore pointing to the possibility to a 'multi-step and multisite' targeting by one nanocarrier. We therefore feel that this could be used for many cellular systems where the combined and orchestrated delivery of components is prerequisite in order to obtain the highest efficiency. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Porous and non-porous water soluble polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Henselwood, Fred William

    Water soluble polymer nanospheres have been prepared from the photo-cross-linking of diblock copolymer micelles formed either in water or in N,N-dimethylformamide/water mixtures. The diblock copolymers utilized in this study were poly(2-cinnamoyl-ethyl methacrylate)-block-poly(acrylic acid), poly ((2-cinnamoylethyl methacrylate)-random-(2-octanoylethyl methacrylate)) -block-poly(acrylic acid), and poly ((2-cinnamoyl-ethyl methacrylate)-random-(2-oleoylethyl methacrylate)) -block-poly(acrylic acid). These polymers were synthesized by the functionalization of diblock copolymers prepared by anionic polymerization. The photo-cross-linking was achieved through the dimerization of cinnamoyl groups by ultraviolet irradiation. Transmission electron microscopy confirmed that the polymer nanospheres had an inner core region formed by the cinnamoyl containing polymer blocks, and an outer shell layer formed by the acrylic acid polymer blocks. The hydrodynamic radius of the polymer nanospheres in water was approximately 50 to 75 nm as determined by dynamic light scattering. It has been found that the polymer nanospheres, when in water, could be readily impregnated with organic molecules. Fluorescence measurements showed that the polymer nanospheres could uptake polyaromatic hydrocarbons by the direct mixing of polyaromatic hydrocarbons with the polymer nanospheres in water. Perylene was found to be between 2.0 × 10sp5 and 4.0 × 10sp5 times more soluble in the core region of the polymer nanospheres than in water. The addition of divalent cations was shown to induce aggregation of the polymer nanospheres and resulted in the precipitation of the polymer nanospheres along with any captured perylene. This suggests that the polymer nanospheres may be useful in water remediation. Porous polymer nanospheres were prepared by the incorporation of low molecular weight polymeric porogens within the core region of the polymer nanospheres. Following photo-cross-linking the polymeric porogens were extracted out of the polymer nanospheres resulting in pore formation. Perylene loading experiments revealed that the loading of the porous polymer nanospheres was 41% higher than that achieved for non-porous polymer nanospheres prepared from the same initial diblock copolymer. This indicates that the porous polymer nanospheres may be preferred over the non-porous polymer nanospheres in applications such as drug delivery.

  5. Study of the NASTRAN input/output systems

    NASA Technical Reports Server (NTRS)

    Brown, W. K.; Schoellmann, W. F.

    1977-01-01

    The basic characteristics of the NASTRAN level 16 I/O subsystem are presented with particular reference to blocking/deblocking aspects, I/O methods used on the IBM, CDC, and UNIVAC machines, definition of basic NASTRAN I/O control tables, and portability of parts of the I/O subsystem to other programs outside the NASTRAN environment are included. An explanation of the IBM primary, secondary, and tertiary files defined by the data definition (DD) cards in the NASTRAN JCL procedure. The explanation is intended to enlighten users as to the purpose of these DD cards, how they relate to one another, and why there are no similar type definition cards required on the CDC and UNIVAC versions. Enhancements designed to increase overall efficiency and decrease core requirements are also recommended.

  6. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  8. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2018-01-16

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  9. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles.

    PubMed

    Ergul Yilmaz, Zeynep; Cordonnier, Thomas; Debuigne, Antoine; Calvignac, Brice; Jerome, Christine; Boury, Frank

    2016-11-20

    Calcium carbonate particles are promising candidates as proteins carriers for their controlled delivery in the body. The present paper aims at investigating the protein encapsulation by in situ precipitation of calcium carbonate particles prepared by a process based on supercritical CO 2 and using a new type of degradable well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and polyphosphoester blocks acting as templating agent for the calcium carbonate. For this study, lysozyme was chosen as a model for therapeutic protein for its availability and ease of detection. It was found that by this green process, loading into the CaCO 3 microparticles with a diameter about 2μm can be obtained as determined by scanning electron microscopy. A protein loading up to 6.5% active lysozyme was measured by a specific bioassay (Micrococcus lysodeikticus). By encapsulating fluorescent-labelled lysozyme (lysozyme-FITC), the confocal microscopy images confirmed its encapsulation and suggested a core-shell distribution of lysozyme into CaCO 3 , leading to a release profile reaching a steady state at 59% of release after 90min. Copyright © 2016. Published by Elsevier B.V.

  10. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  11. The DARHT Phase 2 Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    wolf, Zachary R.

    2000-09-12

    The second phase accelerator for the Dual Axis Hydrodynamic Test facility (DARHT) is designed to provide an electron beam pulse that is 2{mu}s long, 2kA, and 20 MeV in particle energy. The injector provides 3.2 MeV so that the linac need only provide 16.8 MeV. The linac is made with two types of induction accelerator cells. The first block of 8 cells have a 14 in. beam pipe compared to 10 in. in the remaining 80 cells. The other principal difference is that the first 8 cells have reduced volt-sec in their induction cores as a result of a largermore » diameter beam pipe. The cells are designed for very reliable high voltage operation. The insulator is Mycalex. Results from prototype tests are given including results from solenoid measurements. Each cell contains a solenoid for beam transport and a set of x-y correction coils to reduce corkscrew motion. Details of tests to determine RF mode impedances relevant to BBU generation are given. Blocks of cells are separated by intercells some of which contain transport solenoids. The intercells provide vacuum pumping stations as well. Issues of alignment and installation are discussed.« less

  12. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A

    PubMed Central

    Zayas, Margarita; Long, Gang; Madan, Vanesa; Bartenschlager, Ralf

    2016-01-01

    Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC) at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC) mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2). We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core–RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i) SC-dependent recruitment of replication complexes to core protein and (ii) BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles. PMID:26727512

  13. Psyche: The Science of a Metal World

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.

    2016-12-01

    (16) Psyche is a large metallic asteroid orbiting in the outer main belt at 3 AU. Psyche's metal composition is indicated by high radar albedo, thermal inertia, and density. Models show that among the accretionary collisions early in the solar system, some destructive "hit and run" impacts could strip the silicate mantle from differentiated bodies. This is the leading hypothesis for Psyche's formation: it is a bare planetesimal core. It is the only one we can explore for substantial information about a metal core (other metallic asteroids are far smaller and not roughly spherical). If our observations indicate that it is not a core, Psyche may instead be highly reduced, primordial metal-rich materials that accreted closer to the Sun, and never melted. Psyche is also a Discovery-class mission, selected for a Step 2 concept study, to investigate this metal body. The Psyche investigation has three broad goals: Understand a previously unexplored building block of planet formation: iron cores. Look inside the terrestrial planets, including Earth, by directly examining the interior of a differentiated body, which otherwise could not be seen. Explore a new type of world. For the first time, examine a world made not of rock, ice, or gas, but of metal. We will meet our science objectives with three domestic high heritage instruments and radio science: Multispectral imagers with clear and seven color filters map surface morphology and reveal the distribution of residual mantle silicates. A gamma-ray and neutron spectrometer determines elemental composition, particularly the concentrations of iron, nickel, silicon, and potassium. Dual fluxgate magnetometers, in a gradiometer configuration, characterize the magnetic field. Radio science maps the gravity field sufficiently to differentiate among core-formation hypotheses. New models for magnetic dynamo generation and solidification of planetesimal cores make testable predictions for geophysical measurements, and lead as well to predictions about tectonics and surface compositions. In this presentation we will show how measurements from these flight instruments can confirm or disprove hypotheses for Psyche's formation and evolution.

  14. O-glycans direct selectin ligands to lipid rafts on leukocytes

    PubMed Central

    Shao, Bojing; Yago, Tadayuki; Setiadi, Hendra; Wang, Ying; Mehta-D’souza, Padmaja; Fu, Jianxin; Crocker, Paul R.; Rodgers, William; Xia, Lijun; McEver, Rodger P.

    2015-01-01

    Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1−/− neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1−/− neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti–PSGL-1 or anti-CD44 F(ab′)2. Furthermore, C1galt1−/− neutrophils incubated with anti–PSGL-1 F(ab′)2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1−/− neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods. PMID:26124096

  15. Thermal barrier and support for nuclear reactor fuel core

    DOEpatents

    Betts, Jr., William S.; Pickering, J. Larry; Black, William E.

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  16. Transmittance of tinted and UV-blocking disposable contact lenses.

    PubMed

    Harris, M G; Haririfar, M; Hirano, K Y

    1999-03-01

    Tinted and ultraviolet (UV)-blocking disposable contact lenses have become increasingly popular over the last decade. Wearers of UV-blocking contact lenses could benefit greatly by protecting their eyes from potential UV radiation damage. A Uvikon 930 dual beam spectrophotometer was used to measure three enhancement-tinted lenses (royal blue, evergreen, and aqua), two types of UV-blocking lenses, and two types of non-UV-blocking lenses. Enhancement-tinted lenses did show a decrease in transmittance at certain wavelengths on the visible spectrum, but they did not reduce the transmittance of UV radiation to the extent of the UV-blocking lenses designed specifically for this purpose.

  17. Synthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles

    PubMed Central

    Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N

    2011-01-01

    Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers. PMID:22162656

  18. Synthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles.

    PubMed

    Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N

    2011-01-01

    Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.

  19. Wessex Helicopter/Sonar Dynamics Study. ARL Program Description and Operation.

    DTIC Science & Technology

    1979-02-01

    s): 5. Document Date: S illiams, Neil V. February, 1979 Guy, Christopher R. Williams, Maxwell J. 6. Type of Report and Period Covered: Gilbert, Neil...form with the aid of an analog computer type of block diagram, comprising a number of linked modules (called blocks), each one representing a particular...three types of statement, viz. configuration, parameter and function statements. The configuration statements describe the blocks used and specify the

  20. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    PubMed

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the activation of calpain and decreased glutamate receptor interacting protein 1 (GRIP1) expression in the nucleus accumbens (NAc) core. The inhibition of calpain activity in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory that was blocked by prior GRIP1 knock-down. Our findings indicate that calpain-GRIP signaling is essential for the restabilization process that is associated with drug cue memory and the inhibition of calpain activity may be a novel strategy for the prevention of drug relapse. Copyright © 2017 the authors 0270-6474/17/378938-14$15.00/0.

  1. A General Cp*CoIII -Catalyzed Intramolecular C-H Activation Approach for the Efficient Total Syntheses of Aromathecin, Protoberberine, and Tylophora Alkaloids.

    PubMed

    Lerchen, Andreas; Knecht, Tobias; Koy, Maximilian; Daniliuc, Constantin G; Glorius, Frank

    2017-09-07

    Herein, we report a Cp*Co III -catalyzed C-H activation approach as the key step to create highly valuable isoquinolones and pyridones as building blocks that can readily be applied in the total syntheses of a variety of aromathecin, protoberberine, and tylophora alkaloids. This particular C-H activation/annulation reaction was achieved with several terminal as well as internal alkyne coupling partners delivering a broad scope with excellent functional group tolerance. The synthetic applicability of this protocol reported herein was demonstrated in the total syntheses of two Topo-I-Inhibitors and two 8-oxyprotoberberine cores that can be further elaborated into the tetrahydroprotoberberine and the protoberberine alkaloid core. Moreover these building blocks were also transformed to six different tylophora alkaloids in expedient fashion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multifaceted Mechanisms of HIV-1 Entry Inhibition by Human α-Defensin*♦

    PubMed Central

    Demirkhanyan, Lusine H.; Marin, Mariana; Padilla-Parra, Sergi; Zhan, Changyou; Miyauchi, Kosuke; Jean-Baptiste, Maikha; Novitskiy, Gennadiy; Lu, Wuyuan; Melikyan, Gregory B.

    2012-01-01

    The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways. PMID:22733823

  3. A privacy-preserving parallel and homomorphic encryption scheme

    NASA Astrophysics Data System (ADS)

    Min, Zhaoe; Yang, Geng; Shi, Jingqi

    2017-04-01

    In order to protect data privacy whilst allowing efficient access to data in multi-nodes cloud environments, a parallel homomorphic encryption (PHE) scheme is proposed based on the additive homomorphism of the Paillier encryption algorithm. In this paper we propose a PHE algorithm, in which plaintext is divided into several blocks and blocks are encrypted with a parallel mode. Experiment results demonstrate that the encryption algorithm can reach a speed-up ratio at about 7.1 in the MapReduce environment with 16 cores and 4 nodes.

  4. Optimized Lentiviral Vector Design Improves Titer and Transgene Expression of Vectors Containing the Chicken β-Globin Locus HS4 Insulator Element

    PubMed Central

    Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A

    2009-01-01

    Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867

  5. Artificial maturation of oil shale: The Irati Formation from the Parana Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Gayer, James L.

    Oil shale samples from the Irati Formation in Brazil were evaluated from an outcrop block, denoted Block 003. The goals of this thesis include: 1) Characterizing the Irati Formation, 2) Comparing the effects of two different types of pyrolysis, anhydrous and hydrous, and 3) Utilizing a variety of geophysical experiments to determine the changes associated with each type of pyrolysis. Primary work included determining total organic carbon, source rock analysis, mineralogy, computer tomography x-ray scans, and scanning electron microscope images before and after pyrolysis, as well as acoustic properties of the samples during pyrolysis. Two types of pyrolysis (hydrous and anhydrous) were performed on samples cored at three different orientations (0°, 45°, and 90°) with respect to the axis of symmetry, requiring six total experiments. During pyrolysis, the overall effective pressure was maintained at 800 psi, and the holding temperature was 365°C. The changes and deformation in the hydrous pyrolysis samples were greater compared to the anhydrous pyrolysis. The velocities gave the best indication of changes occurring during pyrolysis, but it was difficult to maintain the same amplitude and quality of waveforms at higher temperatures. The velocity changes were due to a combination of factors, including thermal deformation of the samples, fracture porosity development, and the release of adsorbed water and bitumen from the sample. Anhydrous pyrolysis in this study did not reduce TOC, while TOC was reduced due to hydrous pyrolysis by 5%, and velocities in the hydrous pyrolysis decreased by up to 30% at 365°C compared to room temperature. Data from this study and future data that can be acquired with the improved high-temperature, high-pressure experiment will assist in future economic production from oil shale at lower temperatures under hydrous pyrolysis conditions.

  6. Optimization of Blocked Designs in fMRI Studies

    ERIC Educational Resources Information Center

    Maus, Barbel; van Breukelen, Gerard J. P.; Goebel, Rainer; Berger, Martijn P. F.

    2010-01-01

    Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is characterized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest blocks, and the time between…

  7. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    DOEpatents

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  8. pH-responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers.

    PubMed

    Liu, Hao; Li, Changhua; Liu, Hewen; Liu, Shiyong

    2009-04-21

    We report the first example of the synthesis and pH-responsive supramolecular self-assembly of double hydrophilic ABC miktoarm star terpolymers. Well-defined ABC miktoarm star terpolymers consisting of poly(ethylene glycol), poly(tert-butyl methacrylate), and poly(2-(diethylamino)ethyl methacrylate) arms [PEG(-b-PtBMA)-b-PDEA] were synthesized via the combination of consecutive click reactions and atom transfer radical polymerization (ATRP), starting from a trifunctional core molecule, 1-azido-3-chloro-2-propanol (ACP). The click reaction of monoalkynyl-terminated PEG with an excess of ACP afforded difunctional PEG bearing a chlorine and a secondary hydroxyl moiety at the chain end, PEG113(-Cl)-OH (1). After azidation with NaN3, PEG-based macroinitiator PEG113(-N3)-Br (3) was prepared by the esterification of PEG113(-N3)-OH (2) with 2-bromoisobutyryl bromide and then employed in the ATRP of tert-butyl methacrylate (tBMA). The obtained PEG(-N3)-b-PtBMA copolymers (4) possessed an azido moiety at the diblock junction point. The preparation of PEG(-b-PtBMA)-b-PDEA miktoarm star terpolymers was then achieved via the click reaction of 4 with an excess of monoalkynyl-terminated PDEA. The obtained miktoarm star terpolymers were successfully converted into PEG(-b-PMAA)-b-PDEA, where PMAA is poly(methacrylic acid). In aqueous solution, PEG(-b-PMAA)-b-PDEA zwitterionic ABC miktoarm star terpolymers can self-assemble into three types of micellar aggregates by simply adjusting solution pH at room temperature. Above pH 8, PDEA-core micelles stabilized by PEG/ionized PMAA hybrid coronas were formed due to the insolubility of PDEA block. In the range of pH 5-7, micelles possessing polyion complex cores formed as a result of charge compensation between partially ionized PMAA and partially protonated PDEA sequences. At pH<4, hydrogen bonding interactions between fully protonated PMAA and PEG led to the formation of another type of micellar aggregates possessing hydrogen-bonded complex cores stabilized by protonated PDEA coronas. The fully reversible pH-responsive formation of three types of aggregates were characterized by 1H NMR, dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM).

  9. A new dynamical index for classification of cold surge types over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Jeong, Jee-Hoon; Heo, Jin-Woo; Deng, Yi

    2015-11-01

    The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature ( θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index ( WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index ( BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.

  10. Effect of shell thickness on the exchange bias blocking temperature and coercivity in Co-CoO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Reethu, K.; Thanveer, T.; Myint, M. T. Z.; Al-Harthi, S. H.

    2017-08-01

    The exchange bias blocking temperature distribution of naturally oxidized Co-CoO core-shell nanoparticles exhibits two distinct signatures. These are associated with the existence of two magnetic entities which are responsible for the temperature dependence of an exchange bias field. One is from the CoO grains which undergo thermally activated magnetization reversal. The other is from the disordered spins at the Co-CoO interface which exhibits spin-glass-like behavior. We investigated the oxide shell thickness dependence of the exchange bias effect. For particles with a 3 nm thick CoO shell, the predominant contribution to the temperature dependence of exchange bias is the interfacial spin-glass layer. On increasing the shell thickness to 4 nm, the contribution from the spin-glass layer decreases, while upholding the antiferromagnetic grain contribution. For samples with a 4 nm CoO shell, the exchange bias training was minimal. On the other hand, 3 nm samples exhibited both the training effect and a peak in coercivity at an intermediate set temperature Ta. This is explained using a magnetic core-shell model including disordered spins at the interface.

  11. Research core drilling in the Manson impact structure, Iowa

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.; Hartung, J. B.; Roddy, D. J.; Shoemaker, E. M.

    1992-01-01

    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence.

  12. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared to the traditional HA gels prepared by radical crosslinking of HAGMA, HAxBCM gels exhibited improved drug loading and release capacity. Moreover, compressive forces exerted on the gels were transmitted to the crosslinked BCMs, resulting in a force-modulated DEX release on demand. Micelle mobility in the crosslinked networks was analyzed by fluorescence correlation spectroscopy using nile red loaded BCMs. The anti-inflammatory activities of DEX-releasing HAxBCM gels were evaluated via the in vitro culture of lipopolysaccharide-activated macrophages.

  13. Climate-landform effects on lateglacial vegetation pattern in northeastern Tuchola Pinewoods (northern Poland): multiproxy evidence from the Lake Czechowskie catchment, northern Poland.

    NASA Astrophysics Data System (ADS)

    Noryśkiewicz, Agnieszka M.; Kordowski, Jarosław; Tyszkowski, Sebastian; Kramkowski, Mateusz; Zawiska, Izabela; Rzodkiewicz, Monika; Mirosław-Grabowska, Joanna; Ott, Florian; Słowiński, Michał; Obremska, Milena; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-04-01

    The study area is located in northern Poland in the northeastern part of Tuchola Pinewoods in a young glacially formed and diversified landscape. It comprises the entire lake catchment of Lake Czechowskie (19.76 km2), which comprises a second lake upstream as well as a palaeolake (Trzechowskie) located between the two present-day lakes. Biogenic sediments from eight cores were studied by multiproxy analyses to reconstruct the environmental changes and climate signals during the last Late Glacial and early Holocene. The cores were collected along a W-E transect from Głęboczek Lake to the Czechowskie Lake and were located in different topographic positions (deepest and shallow part of the lake, old lake-bed plains and paleolakes) with a maximum distance of 2.2 km. Detailed and high resolution analyses (pollen, diatoms, cladocera, stable isotopes, geochemistry, varve chronology and radiocarbon dating) to identify the main stages in the development of the natural environment were made. Palynological data indicate melting of the buried ice blocks and the following the onset of biogenic lacustrine sedimentation. The general pattern of vegetation changes in all profiles is similar and includes Late Glacial steppe-tundra plant communities at the onset of organic lake sedimentation. The palynological record of the most profiles shows a high participation of seabuckthorn (Hippophae) in the initial stadium of vegetation history. The lack of this succession in the most western core (Głęboczek Lake) indicates a later period of melt-out processes of the buried dead-ice blocks in the Głęboczek Lake basin. The thickness and type of the accumulated sediments differ significantly during the Bolling-Alerod complex and Younger Dryas Period between our sites. These differences are also reflected in variations of plant species among the different sites. The comparison of different profiles within one catchment allows us to distinguish site specific local responses to climate driven by local factors such as slope steepness and exposure and water depth. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association

  14. Blocking contacts for N-type cadmium zinc telluride

    NASA Technical Reports Server (NTRS)

    Stahle, Carl M. (Inventor); Parker, Bradford H. (Inventor); Babu, Sachidananda R. (Inventor)

    2012-01-01

    A process for applying blocking contacts on an n-type CdZnTe specimen includes cleaning the CdZnTe specimen; etching the CdZnTe specimen; chemically surface treating the CdZnTe specimen; and depositing blocking metal on at least one of a cathode surface and an anode surface of the CdZnTe specimen.

  15. Low hydrogen contents in the cores of terrestrial planets.

    PubMed

    Clesi, Vincent; Bouhifd, Mohamed Ali; Bolfan-Casanova, Nathalie; Manthilake, Geeth; Schiavi, Federica; Raepsaet, Caroline; Bureau, Hélène; Khodja, Hicham; Andrault, Denis

    2018-03-01

    Hydrogen has been thought to be an important light element in Earth's core due to possible siderophile behavior during core-mantle segregation. We reproduced planetary differentiation conditions using hydrogen contents of 450 to 1500 parts per million (ppm) in the silicate phase, pressures of 5 to 20 GPa, oxygen fugacity varying within IW-3.7 and IW-0.2 (0.2 to 3.7 log units lower than iron-wüstite buffer), and Fe alloys typical of planetary cores. We report hydrogen metal-silicate partition coefficients of ~2 × 10 -1 , up to two orders of magnitude lower than reported previously, and indicative of lithophile behavior. Our results imply H contents of ~60 ppm in the Earth and Martian cores. A simple water budget suggests that 90% of the water initially present in planetary building blocks was lost during planetary accretion. The retained water segregated preferentially into planetary mantles.

  16. Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome

    PubMed Central

    2013-01-01

    Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. PMID:23834397

  17. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921

    PubMed Central

    Pugsley, Michael K; Goldin, Alan L

    1999-01-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp.RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 μM, whereas the EC50 for block of the IFMQ3 mutant channel was 110±5.5 μM.Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels.RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms.Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with kon equal to 0.11±0.012×106 M−1 s−1 and koff equal to 12.5±2.5 s−1, resulting in KD of 117±31 μM. Recovery from open channel block occurred with a time constant of 14±2.7 s−1.These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia. PMID:10369450

  18. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921.

    PubMed

    Pugsley, M K; Goldin, A L

    1999-05-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp. RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 microM, whereas the EC50 for block of the IFMQ3 mutant channel was 110+5.5 microM. Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels. RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms. Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with k(on) equal to 0.11+/-0.012x10(6) M(-1) s(-1) and k(off) equal to 12.5+/-2.5 s(-1), resulting in KD of 117+/-31 microM. Recovery from open channel block occurred with a time constant of 14+/-2.7 s(-1). These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia.

  19. Transcatheter Heart Valve Selection and Permanent Pacemaker Implantation in Patients With Pre-Existent Right Bundle Branch Block.

    PubMed

    van Gils, Lennart; Tchetche, Didier; Lhermusier, Thibault; Abawi, Masieh; Dumonteil, Nicolas; Rodriguez Olivares, Ramón; Molina-Martin de Nicolas, Javier; Stella, Pieter R; Carrié, Didier; De Jaegere, Peter P; Van Mieghem, Nicolas M

    2017-03-03

    Right bundle branch block is an established predictor for new conduction disturbances and need for a permanent pacemaker (PPM) after transcatheter aortic valve replacement. The aim of the study was to evaluate the absolute rates of transcatheter aortic valve replacement related PPM implantations in patients with pre-existent right bundle branch block and categorize for different transcatheter heart valves. We pooled data on 306 transcatheter aortic valve replacement patients from 4 high-volume centers in Europe and selected those with right bundle branch block at baseline without a previously implanted PPM. Logistic regression was used to evaluate whether PPM rate differed among transcatheter heart valves after adjustment for confounders. Mean age was 83±7 years and 63% were male. Median Society of Thoracic Surgeons score was 6.3 (interquartile range, 4.1-10.2). The following transcatheter valve designs were used: Medtronic CoreValve (n=130; Medtronic, Minneapolis, MN); Edwards Sapien XT (ES-XT; n=124) and Edwards Sapien 3 (ES-3; n=32; Edwards Lifesciences, Irvine, CA); and Boston Scientific Lotus (n=20; Boston Scientific Corporation, Marlborough, MA). Overall permanent pacemaker implantation rate post-transcatheter aortic valve replacement was 41%, and per valve design: 75% with Lotus, 46% with CoreValve, 32% with ES-XT, and 34% with ES-3. The indication for PPM implantation was total atrioventricular block in 98% of the cases. Lotus was associated with a higher PPM rate than all other valves. PPM rate did not differ between ES-XT and ES-3. Ventricular paced rhythm at 30-day and 1-year follow-up was present in 81% at 89%, respectively. Right bundle branch block at baseline is associated with a high incidence of PPM implantation for all transcatheter heart valves. PPM rate was highest for Lotus and lowest for ES-XT and ES-3. Pacemaker dependency remained high during follow-up. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.

    PubMed

    Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper

    2016-11-01

    We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.

  1. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  2. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  3. Identifying a New Mechanism of HIV Core Formation | Center for Cancer Research

    Cancer.gov

    During the maturation of human immunodeficiency virus 1 (HIV-1), viral particles transition from a noninfectious form to an infectious one, and this conversion requires the cleavage of the HIV-1 Gag polyprotein. Gag is made up of three structural proteins—matrix (MA), capsid (CA), and nucleocapsid (NC)—connected by linkers. MA anchors Gag in the membrane, CA surrounds the HIV-1 core, and NC packages the viral RNA within the core. Current models of the development of HIV-1 suggest that when CA is cleaved from Gag it dissociates from the membrane and moves into the virus interior before nucleating, in a concentration-dependent manner, into the core, which is the last step in virus maturation. The core is thought to grow from its narrow end stopping only when it reaches the opposite side of the virus membrane. Since blocking the formation of infectious viral particles is an important therapeutic strategy, it is critical to understand the detailed mechanism of core maturation.

  4. Preparation and magnetic properties of phthalocyanine-based carbon materials containing transition metals

    NASA Astrophysics Data System (ADS)

    Honda, Z.; Sato, S.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.

    2016-07-01

    A simple method for the preparation of bulk quantities of magnetic carbon materials, which contain uniformly dispersed transition metals (M = Fe, Co, Ni, and Cu) as the magnetic components, is presented. By using highly chlorinated metal phthalocyanine as the building block and potassium as the coupling reagent, phthalocyanine-based carbon materials (PBCMs) containing transition metals were obtained. Our experiments demonstrate the structure of these PBCMs consists of transition metals embedded in graphitic carbon that includes a square planar MN4 magnetic core and the Fe and Co-PBCM possess spontaneous magnetization at room temperature. In addition, carbon-coated transition metal particles were obtained by the Wurtz-type reaction with excess amount of potassium coupling agent. The large transition metal surface area and magnetization of these M-PBCMs are useful for spintronic and catalytic applications.

  5. α-Unsubstituted Pyrroles by NHC-Catalyzed Three-Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative.

    PubMed

    Fleige, Mirco; Glorius, Frank

    2017-08-10

    A practical one-pot cascade reaction protocol provides direct access to valuable 1,2,4-trisubstituted pyrroles. The process involves an N-heterocyclic carbene (NHC)-catalyzed Stetter-type hydroformylation using glycolaldehyde dimer as a novel C1 building-block, followed by a Paal-Knorr condensation with primary amines. The reaction makes use of simple and commercially available starting-materials and catalyst, an important feature regarding applicability and utility. Low catalyst loading under mild reaction conditions afforded a variety of 1,2,4-substituted pyrroles in a transition-metal-free reaction with high step economy and good yields. This methodology is applied in the synthesis of a versatile Atorvastatin precursor, in which a variety of modifications at the pyrrole core structure are possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers

    NASA Astrophysics Data System (ADS)

    Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu

    2018-05-01

    We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

  7. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.

  8. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.

    PubMed

    Pavlovic, Dragana M; Vértes, Petra E; Bullmore, Edward T; Schafer, William R; Nichols, Thomas E

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4-5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the "core-in-modules" decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.

  9. Modeling Transients and Designing a Passive Safety System for a Nuclear Thermal Rocket Using Relap5

    NASA Astrophysics Data System (ADS)

    Khatry, Jivan

    Long-term high payload missions necessitate the need for nuclear space propulsion. Several nuclear reactor types were investigated by the Nuclear Engine for Rocket Vehicle Application (NERVA) program of National Aeronautics and Space Administration (NASA). Study of planned/unplanned transients on nuclear thermal rockets is important due to the need for long-term missions. A NERVA design known as the Pewee I was selected for this purpose. The following transients were run: (i) modeling of corrosion-induced blockages on the peripheral fuel element coolant channels and their impact on radiation heat transfer in the core, and (ii) modeling of loss-of-flow-accidents (LOFAs) and their impact on radiation heat transfer in the core. For part (i), the radiation heat transfer rate of blocked channels increases while their neighbors' decreases. For part (ii), the core radiation heat transfer rate increases while the flow rate through the rocket system is decreased. However, the radiation heat transfer decreased while there was a complete LOFA. In this situation, the peripheral fuel element coolant channels handle the majority of the radiation heat transfer. Recognizing the LOFA as the most severe design basis accident, a passive safety system was designed in order to respond to such a transient. This design utilizes the already existing tie rod tubes and connects them to a radiator in a closed loop. Hence, this is basically a secondary loop. The size of the core is unchanged. During normal steady-state operation, this secondary loop keeps the moderator cool. Results show that the safety system is able to remove the decay heat and prevent the fuel elements from melting, in response to a LOFA and subsequent SCRAM.

  10. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents.

    PubMed

    Huys, Isabelle; Xu, Chen-Qi; Wang, Cheng-Zhong; Vacher, Hélène; Martin-Eauclaire, Marie-France; Chi, Cheng-Wu; Tytgat, Jan

    2004-03-15

    A novel HERG channel blocker was isolated from the venom of the scorpion Buthus martensi Karsch, sequenced and characterized at the pharmacological level after chemical synthesis. According to the determined amino acid sequence, the cDNA and genomic genes were then cloned. The genomic gene consists of two exons interrupted by an intron of 65 bp at position -6 upstream from the mature toxin. The protein sequence of this toxin was completely identical with that of a known A-type K+ current blocker BmTx3, belonging to scorpion alpha-KTx subfamily 15. Thus BmTx3 is the first reported alpha-KTx peptide also showing HERG-blocking activity, like gamma-KTx peptides. Moreover, different from classical alpha-KTx peptides, such as charybdotoxin, BmTx3 cannot block Shaker -type K+ channels. Phylogenetic tree analysis reveals that this toxin takes an intermediate position between classical alpha-KTx and gamma-KTx toxins. From a structural point of view, we propose that two separate functional faces might exist on the BmTx3 molecule, responsible for the two different K+-current-blocking functions. Face A, composed of Arg18 and Lys19 in the alpha-helix side, might correspond to HERG blocking activity, whereas Face B, containing a putative functional dyad (Lys27 and Tyr36) in the beta-sheet side, might correspond to A-type blocking activity. A specific deletion mutant with the disrupted Face B, BmTx3-Y36P37del, loses the A-type current-blocking activity, but keeps a similar HERG-blocking activity, as seen with the wild-type toxin.

  11. Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek

    2017-04-01

    There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.

  12. Role of Hydrophobic/Aromatic Residues on the Stability of Double-Wall β-Sheet Structures Formed by a Triblock Peptide.

    PubMed

    Ozgur, Beytullah; Sayar, Mehmet

    2017-04-27

    Bioinspired self-assembling peptides serve as powerful building blocks in the manufacturing of nanomaterials with tailored features. Because of their ease of synthesis, biocompatibility, and tunable activity, this emerging branch of biomolecules has become very popular. The triblock peptide architecture designed by the Hartgerink group is a versatile system that allows control over its assembly and has been shown to demonstrate tunable bioactivity. Three main forces, Coulomb repulsion, hydrogen bonding and hydrophobicity act together to guide the triblock peptides' assembly into one-dimensional objects and hydrogels. It was shown previously that both the nanofiber morphology (e.g., intersheet spacing, formation of antiparallel/parallel β-sheets) and hydrogel rheology strictly depend on the choice of the core residue where the triblock peptide fibers with aromatic cores in general form shorter fibers and yield poor hydrogels with respect to the ones with aliphatic cores. However, an elaborate understanding of the molecular reasons behind these changes remained unclear. In this study, by using carefully designed computer based free energy calculations, we analyzed the influence of the core residue on the formation of double-wall fibers and single-wall β-sheets. Our results demonstrate that the aromatic substitution impairs the fiber cores and this impairment is mainly associated with a reduced hydrophobic character of the aromatic side chains. Such weakening is most obvious in tryptophan containing peptides where the fiber core absorbs a significant amount of water. We also show that the ability of tyrosine to form side chain hydrogen bonds plays an indispensable role in the fiber stability. As opposed to the impairment of the fiber cores, single-wall β-sheets with aromatic faces become more stable compared to the ones with aliphatic faces suggesting that the choice of the core residue can also affect the underlying assembly mechanism. We also provide an in-depth comparison of competing structures (zero-dimensional aggregates, short and long fibers) in the triblock peptides' assembly and show that by adjusting the length of the terminal blocks, the fiber growth can be turned on or off while keeping the nanofiber morphology intact.

  13. An alternative method for sampling and petrographically characterizing an Eocene coal bed, southeast Kalimantan, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, T.A.

    1990-01-01

    A study undertaken on an Eocene age coal bed in southeast Kalimantan, Indonesia determined that there was a relationship between megascopically determined coal types and kinds and sizes of organic components. The study also concluded that the most efficient way to characterize the seam was from collection of two 3 cm blocks from each layer or bench defined by megascopic character and that a maximum of 125 point counts was needed on each block. Microscopic examination of uncrushed block samples showed the coal to be composed of plant parts and tissues set in a matrix of both fine-grained and amorphousmore » material. The particulate matrix is composed of cell wall and liptinite fragments, resins, spores, algae, and fungal material. The amorphous matrix consists of unstructured (at 400x) huminite and liptinite. Size measurements showed that each particulate component possessed its own size distribution which approached normality when transformed to a log{sub 2} or phi scale. Degradation of the plant material during peat accumulation probably controlled grain size in the coal types. This notion is further supported by the increased concentration of decay resistant resin and cell fillings in the nonbanded and dull coal types. In the sampling design experiment, two blocks from each layer and two layers from each coal type were collected. On each block, 2 to 4 traverses totaling 500 point counts per block were performed to test the minimum number of points needed to characterize a block. A hierarchical analysis of variance showed that most of the petrographic variation occurred between coal types. The results from these analyses also indicated that, within a coal type, sampling should concentrate on the layer level and that only 250 point counts, split between two blocks, were needed to characterize a layer.« less

  14. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  15. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  16. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  17. Organisation and shape of micellar solutions of block copolymers

    NASA Astrophysics Data System (ADS)

    Gaspard, J. P.; Creutz, S.; Bouchat, Ph.; Jérôme, R.; Cohen Stuart, M.

    1997-02-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The micellar core size is in agreement with the theoretical evaluation for copolymers with a short hydrophobic sequence. In contrast, in case of larger hydrophobic blocks, the measured size is incompatible with a star-like model. Various hypotheses are presented for the latter.

  18. Self-assembled electrical materials from contorted aromatics

    NASA Astrophysics Data System (ADS)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity studies of core-cladding HBCs in thin films. Physical properties, such as charge generation, separation/recombination, and transport in HBCs liquid crystalline thin films were discussed. Chapter 8 describes the synthesis and electrical properties of the second generation of contorted aromatics octabenzocircumbiphenyl (OBC). The significant finding about OBCs is that they can be reversibly protonated with Bronsted acids. The significance of those results is that the conductance of the semiconductive thin film could be controlled and attenuated by doping with acid, which can lead to switchable electronics. Chapter 9 presents our studies of extending the HBC synthetic strategies to the formation of other curved aromatics using "wet chemistry". First a series of nonplanar polycyclic aromatic hydrocarbons was made starting from the olefination of pentacenequinone. Then we utilize chemical reactivity, X-ray crystallography, and DFT calculations to explore three types of olefins of increasing structural complexity. Chapter 10 discusses the transformation of HBCs into bowl-shaped molecules on ruthenium metal surfaces. Surface chemistry studies using scanning tunneling microscopy (STM), reflectance absorbance infrared spectroscopy (RAIRS), and temperature-programmed desorption (TPD) characterization methods, referred to as "dry chemistry", showed the formation of an aromatic hemisphere, which is the end cap of a (6,6) arm-chair single-walled carbon nanotube.

  19. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvis-Pareja, David; Centro Estudios Moleculares de la Célula; Zapata-Torres, Gerald

    2014-08-15

    Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca{sup 2+} channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca{sup 2+} channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca{sup 2+} channel-blocking activity and antioxidant properties. The Ca{sup 2+} channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flowmore » cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca{sup 2+} channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca{sup 2+} channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca{sup 2+} entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca{sup 2+} blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca{sup 2+} blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties.« less

  20. Campus Energy Model for Control and Performance Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-09-19

    The core of the modeling platform is an extensible block library for the MATLAB/Simulink software suite. The platform enables true co-simulation (interaction at each simulation time step) with NREL's state-of-the-art modeling tools and other energy modeling software.

  1. Transient left septal and anterior fascicular block associated with type 1 electrocardiographic Brugada pattern.

    PubMed

    Pérez-Riera, Andrés Ricardo; Barbosa-Barros, Raimundo; Penachini da Costa de Rezende Barbosa, Marianne; Daminello-Raimundo, Rodrigo; de Abreu, Luiz Carlos

    The left septal fascicular block (LSFB) or blockage of the middle fibers of the left bundle branch is probably caused mainly by - in the developed world - the proximal obstruction of the left anterior descending artery (LAD) before its first anterior septal perforator branch (S 1 ). The association of transient LSFB and left anterior fascicular block (LAFB) - left bifascicular block - and the electrocardiographic type 1 Brugada pattern (BrP) has not been described in the literature yet. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    PubMed Central

    Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek

    2016-01-01

    A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)–poly(lactic acid)–poly(ethylene imine) triblock copolymer (PEG–PLA–PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270

  3. EqualWrites: Reducing Intra-set Write Variations for Enhancing Lifetime of Non-volatile Caches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Vetter, Jeffrey S.

    Driven by the trends of increasing core-count and bandwidth-wall problem, the size of last level caches (LLCs) has greatly increased and hence, the researchers have explored non-volatile memories (NVMs) which provide high density and consume low-leakage power. Since NVMs have low write-endurance and the existing cache management policies are write variation-unaware, effective wear-leveling techniques are required for achieving reasonable cache lifetimes using NVMs. We present EqualWrites, a technique for mitigating intra-set write variation. In this paper, our technique works by recording the number of writes on a block and changing the cache-block location of a hot data-item to redirect themore » future writes to a cold block to achieve wear-leveling. Simulation experiments have been performed using an x86-64 simulator and benchmarks from SPEC06 and HPC (high-performance computing) field. The results show that for single, dual and quad-core system configurations, EqualWrites improves cache lifetime by 6.31X, 8.74X and 10.54X, respectively. In addition, its implementation overhead is very small and it provides larger improvement in lifetime than three other intra-set wear-leveling techniques and a cache replacement policy.« less

  4. Self-Assembly of Ordered Hybrid Materials with over 100 nm Domain Spacings and up to 15 nm Nanoparticles using Bottle Brush Block Copolymers

    NASA Astrophysics Data System (ADS)

    Song, Dongpo; Lin, Ying; Qian, Gang; Wang, Xinyu; Liu, Xiaohui; Li, Cheng; Watkins, James

    2014-03-01

    The preparation of well-ordered nanocomposites using block copolymers and nanoparticles (NPs) with precise control over their spatial organization at different length scales remains challenging, especially for NP cores up to 10 nm in diameter and for domain spacings greater than 100 nm. In this work, these challenges have been overcome using amphiphilic bottle brush block copolymers as templates for the self-assembly of ordered, periodic hybrid materials with domain spacings more than 130 nm using functionalized NPs with core diameters up to 15 nm. CdSe NPs of 10 nm or gold NPs of 15 nm bearing 11-mercaptoundecyl-hydroquinone or poly(4-vinylphenol) ligands were selectively incorporated within (polynorbornene-g-polystyrene)-b- (polynorbornene-g-polyethylene oxide) copolymers by taking advantage of hydrogen bonding between the ligand and PEO domain. Well-ordered composites with cylindrical and lamellar morphologies and NP loadings of up to 30 wt% in the target domains were achieved. This strategy provides a simple and robust means to create ordered hybrid materials of large domain spacings allowing for relatively large functional nanoparticles. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-1025020).

  5. EqualWrites: Reducing Intra-set Write Variations for Enhancing Lifetime of Non-volatile Caches

    DOE PAGES

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-01-29

    Driven by the trends of increasing core-count and bandwidth-wall problem, the size of last level caches (LLCs) has greatly increased and hence, the researchers have explored non-volatile memories (NVMs) which provide high density and consume low-leakage power. Since NVMs have low write-endurance and the existing cache management policies are write variation-unaware, effective wear-leveling techniques are required for achieving reasonable cache lifetimes using NVMs. We present EqualWrites, a technique for mitigating intra-set write variation. In this paper, our technique works by recording the number of writes on a block and changing the cache-block location of a hot data-item to redirect themore » future writes to a cold block to achieve wear-leveling. Simulation experiments have been performed using an x86-64 simulator and benchmarks from SPEC06 and HPC (high-performance computing) field. The results show that for single, dual and quad-core system configurations, EqualWrites improves cache lifetime by 6.31X, 8.74X and 10.54X, respectively. In addition, its implementation overhead is very small and it provides larger improvement in lifetime than three other intra-set wear-leveling techniques and a cache replacement policy.« less

  6. Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts.

    PubMed

    Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards; Correr, Gisele-Maria

    2018-06-01

    There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey's test (α=0,05). There was no significant difference of bond strength values among groups, regardless the surface treatment ( p >0.05). There was significant difference on bond strength values for the different root thirds ( p <0.05) (coronal>middle=apical). The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words: Post and core technique, cad/cam, shear strength, hydrogen peroxide.

  7. Non-aqueous synthesis of water-dispersible Fe3O4-Ca3(PO4)2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, HongLing; Wu, JunHua; Min, Ji Hyun; Hou, Peng; Song, Ah-Young; Kim, Young Keun

    2011-02-01

    The Fe3O4-Ca3(PO4)2 core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe3O4 and the bioactive functions of Ca3(PO4)2 into single entities. The Fe3O4 nanoparticles were pre-formed first by thermal reduction of Fe(acac)3 and then the Ca3(PO4)2 layer was coated by simultaneous deposition of Ca2 + and PO43 - . The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca3(PO4)2 shell forms an hcp phase (a = 7.490 Å, c = 9.534 Å) on the Fe3O4 surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca3(PO4)2 and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe3O4 and Ca3(PO4)2 in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles.

  8. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  10. PS-b-PMMA/PLA blends for nanoporous templates with hierarchical and tunable pore size

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Hoa; Vayer, Marylène; Sinturel, Christophe

    2018-01-01

    Blends of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) and poly(lactide) (PLA) were deposited in the form of thin films on the surface of modified silicon wafers and exposed to tetrahydrofuran (THF) vapor annealing. It was shown that in specific experimental conditions, a core-shell morphology consisting in cylinders with a PMMA shell and a PLA core, within a continuous matrix of PS, was formed. In this case, PLA naturally segregated in the core of the PMMA cylinders, minimizing the PS/PLA interaction, which constitutes the most incompatible pair (the interaction strength between the various components was confirmed in thin films of the corresponding polymer blends). Compared to other block copolymer/homopolymer blends described in the literature, this system exhibits unexpected high increase of the characteristic lengths of the system (center-to-center distance and diameter). This was attributed to a partial solubilization of the PLA in the PMMA corona (the two polymers are highly compatible), inducing an enhanced level of PS and PLA stretching caused by the strong repulsion between these two polymers. The selective extraction of the PLA yielded to porous domains with small dimensions (6 ± 2.5 nm), reaching the performances that are currently attained in highly incompatible block polymers with low molecular weight. Further PMMA removal revealed a second porosity level, with higher pores diameter and center-to-center distance compared to the neat PS-b-PMMA system. This work highlights how PS-b-PMMA, that currently represents one of the industrial standards nanoporous template precursors, can be modified in an easy and costless approach using PLA homopolymer addition.

  11. Dithieno[3,2-c:2',3'-e]-2,7-diketophosphepin: a unique building block for multifunctional π-conjugated materials.

    PubMed

    He, Xiaoming; Borau-Garcia, Javier; Woo, Alva Y Y; Trudel, Simon; Baumgartner, Thomas

    2013-01-23

    A series of conjugated materials based on the new dithieno[3,2-c:2',3'-e]-2,7-diketophosphepin (DTDKP) building block have been studied for the first time. Theoretical calculations predict DTDKP to be a better electron acceptor than the well-known dithienophosphole and the nitrogen analogue, bithiopheneimide. Cyclic voltammetry studies revealed two reduction processes that support their promising electron-acceptor properties, and modification of the P center with O or gold(I) further reduced the LUMO energy to ca. -3.6 eV. Expansion of the DTDKP core with various aromatic moieties has been realized using the Huisgen alkynyl click reaction, resulting in altered optical and electrochemical properties with compounds showing a high-energy absorption band at ca. 270-290 nm and a low-energy band at ca. 390-460 nm. The acceptor character of the DTDKP core was demonstrated by a red shift following the electron-donating strength of the appended aromatic moiety. Intriguing white-light emission from just a single species with the CIE coordinates of (0.33, 0.34) was observed for some of the extended species as the result of an unexpected dual-emission behavior. The high-energy emission in the blue-to-green region and the low-energy emission in the orange-to-red region are attributed to a π* → π transition of the DTDKP core and charge transfer from the triazole moiety to DTDKP, respectively. Apart from tuning of the molecular properties, this novel building block has also been applied in a self-assembled organogel, which exhibited pronounced luminescence. Scanning electron microscopy confirmed that the gel self-assembled by forming a network of entangled 1D fibrous structures on the micrometer scale.

  12. Effect of colouring green stage zirconia on the adhesion of veneering ceramics with different thermal expansion coefficients.

    PubMed

    Aktas, Guliz; Sahin, Erdal; Vallittu, Pekka; Ozcan, Mutlu; Lassila, Lippo

    2013-12-01

    This study evaluated the adhesion of zirconia core ceramics with their corresponding veneering ceramics, having different thermal expansion coefficients (TECs), when zirconia ceramics were coloured at green stage. Zirconia blocks (N=240; 6 mm×7 mm×7 mm) were manufactured from two materials namely, ICE Zirconia (Group 1) and Prettau Zirconia (Group 2). In their green stage, they were randomly divided into two groups. Half of the specimens were coloured with colouring liquid (shade A2). Three different veneering ceramics with different TEC (ICE Ceramic, GC Initial Zr and IPS e.max Ceram) were fired on both coloured and non-coloured zirconia cores. Specimens of high noble alloys (Esteticor Plus) veneered with ceramic (VM 13) (n=16) acted as the control group. Core-veneer interface of the specimens were subjected to shear force in the Universal Testing Machine (0.5 mm⋅min(-1)). Neither the zirconia core material (P=0.318) nor colouring (P=0.188) significantly affected the results (three-way analysis of variance, Tukey's test). But the results were significantly affected by the veneering ceramic (P=0.000). Control group exhibited significantly higher mean bond strength values (45.7±8) MPa than all other tested groups ((27.1±4.1)-(39.7±4.7) and (27.4±5.6)-(35.9±4.7) MPa with and without colouring, respectively) (P<0.001). While in zirconia-veneer test groups, predominantly mixed type of failures were observed with the veneering ceramic covering <1/3 of the substrate surface, in the metal-ceramic group, veneering ceramic was left adhered >1/3 of the metal surface. Colouring zirconia did not impair adhesion of veneering ceramic, but veneering ceramic had a significant influence on the core-veneer adhesion. Metal-ceramic adhesion was more reliable than all zirconia-veneer ceramics tested.

  13. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood.

    PubMed

    Schrempft, S; van Jaarsveld, C H M; Fisher, A; Wardle, J

    2013-06-01

    To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1-4 months; non-core: 3-8 months), average (core: 5 months; non-core: 9-10 months) and later introduction (core: 6-12 months; non-core: 11-18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Younger maternal age, lower education level and higher maternal body mass index were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types.

  14. Nonlinear saturation of the Rayleigh instability due to oscillatory flow in a liquid-lined tube

    NASA Astrophysics Data System (ADS)

    Halpern, David; Grotberg, James B.

    2003-10-01

    In this paper, the stability of core annular flows consisting of two immiscible fluids in a cylindrical tube with circular cross-section is examined. Such flows are important in a wide range of industrial and biomedical applications. For example, in secondary oil recovery, water is pumped into the well to displace the remaining oil. It is also of relevance in the lung, where a thin liquid film coats the inner surface of the small airways of the lungs. In both cases, the flow is influenced by a surface-tension instability, which may induce the breakup of the core fluid into short plugs, reducing the efficiency of the oil recovery, or blocking the passage of air in the lung thus inducing airway closure. We consider the stability of a thin film coating the inner surface of a rigid cylindrical tube with the less viscous fluid in the core. For thick enough films, the Rayleigh instability forms a liquid bulge that can grow to eventually create a plug blocking the tube. The analysis explores the effect of an oscillatory core flow on the interfacial dynamics and particularly the nonlinear stabilization of the bulge. The oscillatory core flow exerts tangential and normal stresses on the interface between the two fluids that are simplified by uncoupling the core and film analyses in the thin-film high-frequency limit of the governing equations. Lubrication theory is used to derive a nonlinear evolution equation for the position of the air liquid interface which includes the effects of the core flow. It is shown that the core flow can prevent plug formation of the more viscous film layer by nonlinear saturation of the capillary instability. The stabilization mechanism is similar to that of a reversing butter knife, where the core shear wipes the growing liquid bulge back on to the tube wall during the main tidal volume stroke, but allows it to grow back as the stoke and shear turn around. To be successful, the leading film thickness ahead of the bulge must be smaller than the trailing film thickness behind it, a requirement necessitating a large enough core capillary number which promotes a large core shear stress on the interface. The core capillary number is defined to be the ratio of core viscous forces to surface tension forces. When this process is tuned correctly, the two phases balance and there is no net growth of the liquid bulge over one cycle. We find that there is a critical frequency above which plug formation does not occur, and that this critical frequency increases as the tidal volume amplitude of the core flow decreases.

  15. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  16. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  17. Recent Rise in West Greenland Surface Melt and Firn Density Driven by North Atlantic SSTs and Blocking Events

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.

    2017-12-01

    The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and with North Atlantic sea surface temperatures (represented by the Atlantic Multidecadal Oscillation; AMO). Thus, future surface melt rates in Western Greenland depend on the complex evolution of the GBI and AMO under anthropogenic forcing, both of which remain poorly constrained in 21st century model projections.

  18. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  19. Environmental Impact Analysis Process. Environmental Assessment for NAVSTAR Global Positioning System, Block IIR, and Medium Launch Vehicle III, Cape Canaveral Air Station, Florida

    DTIC Science & Technology

    1994-11-01

    59 10 Solid Rocket Motor Combustion Products ...60 11 Core Vehicle First Stage Combustion Products ......................................................60 12 Health Hazard...Qualities of Hazardous Launch Emissions......................................61 13 Atlas II Combustion Products

  20. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  1. Parallel Adaptive High-Order CFD Simulations Characterizing Cavity Acoustics for the Complete SOFIA Aircraft

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak

    2014-01-01

    This paper presents one-of-a-kind MPI-parallel computational fluid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft of a Boeing 747SP. These simulations focus on how the unsteady flow field inside and over the cavity interferes with the optical path and mounting of the telescope. A temporally fourth-order Runge-Kutta, and spatially fifth-order WENO-5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh refinement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32,000 cores and 4 billion cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregularities caused by the highly complex geometry. Limits to scaling beyond 32K cores are identified, and targeted code optimizations are discussed.

  2. Update on Diabetic Nephropathy: Core Curriculum 2018.

    PubMed

    Umanath, Kausik; Lewis, Julia B

    2018-06-01

    Diabetic kidney disease and diabetic nephropathy are the leading cause of end-stage kidney disease in the United States and most developed countries. Diabetes accounts for 30% to 50% of the incident cases of end-stage kidney disease in the United States. Although this represents a significant public health concern, it is important to note that only 30% to 40% of patients with diabetes develop diabetic nephropathy. Specific treatment of patients with diabetic nephropathy can be divided into 4 major arenas: cardiovascular risk reduction, glycemic control, blood pressure control, and inhibition of the renin-angiotensin system (RAS). Recommendations for therapy include targeting a hemoglobin A 1c concentration < 7% and blood pressure < 140/90mmHg with therapy anchored around the use of a RAS-blocking agent. The single best evidence-based therapy for diabetic nephropathy is therapy with a RAS-blocking medication. This Core Curriculum outlines and discusses in detail the epidemiology, pathophysiology, diagnosis, and management of diabetic nephropathy. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Structure of Arabidopsis leaf starch is markedly altered following nocturnal degradation.

    PubMed

    Zhu, Fan; Bertoft, Eric; Wang, You; Emes, Michael; Tetlow, Ian; Seetharaman, Koushik

    2015-03-06

    Little is known about the thermal properties and internal molecular structure of transitory starch. In this study, granule morphology, thermal properties, and the cluster structure of Arabidopsis leaf starch at beginning and end of the light period were explored. The structural properties of building blocks and clusters were evaluated by using diverse chromatographic techniques. On the granular level, starch from end of day had larger granule size, thinner crystalline lamellae thickness, lower free surface energy of crystals, and lower tendency to retrograde than that from end of night. On the molecular level, the starch had lower amylose content, larger cluster size, and higher number of blocks per cluster at the end of day than at end of night. It is concluded that the core of the granules contains a more permanent molecular and less-ordered physical structure different from the transitory layers laid down around the core at daytime. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Complex Coacervate Core Micelles Containing Poly(vinyl alcohol) Inhibit Ice Recrystallization.

    PubMed

    Sproncken, Christian C M; Surís-Valls, Romà; Cingil, Hande E; Detrembleur, Christophe; Voets, Ilja K

    2018-04-10

    Complex coacervate core micelles (C3Ms) form upon complexation of oppositely charged copolymers. These co-assembled structures are widely investigated as promising building blocks for encapsulation, nanoparticle synthesis, multimodal imaging, and coating technology. Here, the impact on ice growth is investigated of C3Ms containing poly(vinyl alcohol), PVA, which is well known for its high ice recrystallization inhibition (IRI) activity. The PVA-based C3Ms are prepared upon co-assembly of poly(4-vinyl-N-methyl-pyridinium iodide) and poly(vinyl alcohol)-block-poly(acrylic acid). Their formation conditions, size, and performance as ice recrystallization inhibitors are studied. It is found that the C3Ms exhibit IRI activity at PVA monomer concentrations as low as 1 × 10 -3 m. The IRI efficacy of PVA-C3Ms is similar to that of linear PVA and PVA graft polymers, underlining the influence of vinyl alcohol monomer concentration rather than polymer architecture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Developing an in vitro technology to study the inflammation potential of ambient particle types

    NASA Astrophysics Data System (ADS)

    Haddrell, Allen E.

    Elevated levels of suspended particles in the troposphere, termed particulate matter, elicit a myriad of adverse health effects in humans, ranging from shortness of breath and wheezing to myocardial infarction and death. It is currently believed that the adverse health effects associated with particulate matter are mediated by the inflammatory response initiated by the lung following particulate matter inhalation. What remains an area of much interest is elucidating the specific properties of particulate matter, physical or chemical, that cause the upregulation of proinflammatory mediators. The basic premise of this thesis was to identify the specific chemical components of particulate matter responsible for its adverse health effects. To address this issue, instrumentation and methodology were developed wherein one could design, create, levitate and deposit particles of both known chemical composition and size onto lung cells, in vitro, followed by the monitoring of the downstream biological response. An initial study focused on the role of the endotoxin component in particulate matter toxicity. Through a series of blocking studies we found that endotoxin acted synergistically with the particle core to elicit upregulation of proinflammatory mediators, including IL-1beta, TNF-alpha and ICAM-1; all of which are associated with the NF-kappaB pathway. Through characterizing this relatively simple system, one observation became apparent: the presence of the insoluble particle core had a profound effect on the cellular response; that is to say, the particle core was not simply a delivery vector, but a determinant factor in the final intracellular location of the toxic chemical. The latter observation held true as other particle types were studied and in addition, it was found that the nature of the actual chemical species itself plays a dual role in particle toxicity; first by retaining its toxic properties and second by altering the physical properties of the particle. It stems from these findings that the toxicity of the chemical components must be studied in concert and not as individual entities.

  6. Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein.

    PubMed Central

    Craven, R C; Leure-duPree, A E; Weldon, R A; Wills, J W

    1995-01-01

    The mature cores of all retroviruses contain a major structural protein known as the CA (capsid) protein. Although it appears to form a shell around the ribonucleoprotein complex that contains the viral RNA, its function in viral replication is largely unknown. Little sequence similarity exists between the CA proteins of different retroviruses, except for a region of about 20 amino acids termed the major homology region (MHR). To examine the role of the CA protein in particle assembly and release, mutants of Rous sarcoma virus were created in which segments of CA were deleted or single conserved residues in the MHR were altered. The ability of the deletion mutants to release particles at rates similar to the wild-type protein demonstrated that the CA domain of Gag is not an essential component of the minimal budding machinery. Certain point mutations in the MHR region did block assembly and release in certain cell types, presumably by perturbing the global structure of the Gag precursor. Another group of MHR substitutions produced noninfectious or poorly infectious particles that were normal in their content of gag and pol gene products and viral RNA. The mutants were capable of initiating reverse transcription in vitro; however, the association of CA protein with the core was compromised, as indicated by its sensitivity to extraction with nonionic detergent. Prominent blebs on the virion envelope also indicated a disturbance at the membrane. Finally, an anti-peptide serum directed against MHR was found to react with the uncleaved Gag protein but not with mature CA, suggesting that MHR undergoes a dynamic rearrangement upon liberation from the polyprotein. We conclude that the MHR is involved in the very late steps in maturation of the virion (i.e., ones that occur after budding is initiated) and is essential for proper function of the core upon entry into a new host cell. PMID:7769681

  7. Individual and family environment correlates differ for consumption of core and non-core foods in children.

    PubMed

    Johnson, Laura; van Jaarsveld, Cornelia H M; Wardle, Jane

    2011-03-01

    Children's diets contain too few fruits and vegetables and too many foods high in saturated fat. Food intake is affected by multiple individual and family factors, which may differ for core foods (that are important to a healthy diet) and non-core foods (that are eaten more for pleasure than health). Data came from a sample of twins aged 11 years (n 342) and their parents from the Twins Early Development Study. Foods were categorised into two types: core (e.g. cereals, vegetables and dairy) and non-core (e.g. fats, crisps and biscuits). Parents' and children's intake was assessed by an FFQ. Mothers' and children's preference ratings and home availability were assessed for each food type. Parental feeding practices were assessed with the child feeding questionnaire and child television (TV) watching was maternally reported. Physical activity was measured using accelerometers. Correlates of the child's consumption of each food type were examined using a complex samples general linear model adjusted for potential confounders. Children's non-core food intake was associated with more TV watching, higher availability and greater maternal intake of non-core foods. Children's core food intake was associated with higher preferences for core foods and greater maternal intake of core foods. These results suggest that maternal intake influences both food types, while preferences affect intake of core foods but not of non-core foods, and availability and TV exposure were only important for non-core food intake. Cross-sectional studies cannot determine causality, but the present results suggest that different approaches may be needed to change the balance of core and non-core foods in children's diets.

  8. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  9. Highly flexible transparent self-healing composite based on electrospun core-shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Liou, Minho; Song, Kyo Yong; Jo, Hong Seok; Lee, Min Wook; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2015-10-01

    Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

  10. Metabolomics analysis: Finding out metabolic building blocks

    PubMed Central

    2017-01-01

    In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998

  11. Internal magnetic structure of magnetite nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Borchers, J. A.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Harris, S.; Dedon, L. R.; Rhyne, J. J.; Majetich, S. A.

    2010-05-01

    Small-angle neutron scattering with polarization analysis reveals that Fe3O4 nanoparticles with 90 Å diameters have ferrimagnetic moments significantly reduced from that of bulk Fe3O4 at 10 K, nominal saturation. Combined with previous results for an equivalent applied field at 200 K, a core-disordered shell picture of a spatially reduced ferrimagnetic core emerges, even well below the bulk blocking temperature. Zero-field cooling suggests that this magnetic morphology may be intrinsic to the nanoparticle, rather than field induced, at 10 K.

  12. 31 CFR 585.203 - Holding of certain types of blocked property in interest-bearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Holding of certain types of blocked property in interest-bearing accounts. 585.203 Section 585.203 Money and Finance: Treasury Regulations... OF BOSNIA AND HERZEGOVINA SANCTIONS REGULATIONS Prohibitions § 585.203 Holding of certain types of...

  13. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    PubMed

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P < 0.05) smaller than those in the A genome. Intense selection (domestication and breeding) had a stronger effect on the A than on the B genome chromosomes. Based on the genetic pedigrees, many blocks can be traced back to a well-known Strampelli cross, which was made one century ago. Furthermore, polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  14. Family and infant characteristics associated with timing of core and non-core food introduction in early childhood

    PubMed Central

    Schrempft, Stephanie; van Jaarsveld, Cornelia H.M.; Fisher, Abigail; Wardle, Jane

    2013-01-01

    Objective To identify family and infant characteristics associated with timing of introduction of two food types: core foods (nutrient-dense) and non-core foods (nutrient-poor) in a population-based sample of mothers and infants. Method Participants were 1861 mothers and infants from the Gemini twin birth cohort (one child per family). Family and infant characteristics were assessed when the infants were around 8 months old. Timing of introducing core and non-core foods was assessed at 8 and 15 months. As the distributions of timing were skewed, three similar-sized groups were created for each food type: earlier (core: 1–4 months; non-core: 3–8 months), average (core: 5 months; non-core: 9–10 months), and later introduction (core: 6–12 months; non-core: 11–18 months). Ordinal logistic regression was used to examine predictors of core and non-core food introduction, with bootstrapping to test for differences between the core and non-core models. Results Younger maternal age, lower education level, and higher maternal BMI were associated with earlier core and non-core food introduction. Not breastfeeding for at least 3 months and higher birth weight were specifically associated with earlier introduction of core foods. Having older children was specifically associated with earlier introduction of non-core foods. Conclusion There are similarities and differences in the characteristics associated with earlier introduction of core and non-core foods. Successful interventions may require a combination of approaches to target both food types. PMID:23486509

  15. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  16. Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events.

    PubMed

    Zheng, Chunfang; Santos Muñoz, Daniella; Albert, Victor A; Sankoff, David

    2015-01-01

    Following whole genome duplication (WGD), there is a compact distribution of gene similarities within the genome reflecting duplicate pairs of all the genes in the genome. With time, the distribution broadens and loses volume due to variable decay of duplicate gene similarity and to the process of duplicate gene loss. If there are two WGD, the older one becomes so reduced and broad that it merges with the tail of the distributions resulting from more recent events, and it becomes difficult to distinguish them. The goal of this paper is to advance statistical methods of identifying, or at least counting, the WGD events in the lineage of a given genome. For a set of 15 angiosperm genomes, we analyze all 15 × 14 = 210 ordered pairs of target genome versus reference genome, using SynMap to find syntenic blocks. We consider all sets of B ≥ 2 syntenic blocks in the target genome that overlap in the reference genome as evidence of WGD activity in the target, whether it be one event or several. We hypothesize that in fitting an exponential function to the tail of the empirical distribution f (B) of block multiplicities, the size of the exponent will reflect the amount of WGD in the history of the target genome. By amalgamating the results from all reference genomes, a range of values of SynMap parameters, and alternative cutoff points for the tail, we find a clear pattern whereby multiple-WGD core eudicots have the smallest (negative) exponents, followed by core eudicots with only the single "γ" triplication in their history, followed by a non-core eudicot with a single WGD, followed by the monocots, with a basal angiosperm, the WGD-free Amborella having the largest exponent. The hypothesis that the exponent of the fit to the tail of the multiplicity distribution is a signature of the amount of WGD is verified, but there is also a clear complicating factor in the monocot clade, where a history of multiple WGD is not reflected in a small exponent.

  17. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  18. Modeling study of mecamylamine block of muscle type acetylcholine receptors.

    PubMed

    Ostroumov, Konstantin; Shaikhutdinova, Asya; Skorinkin, Andrey

    2008-04-01

    The blocking action of mecamylamine on different types of nicotinic acetylcholine receptors (nAChRs) has been extensively studied and used as a tool to characterize the nAChRs from different synapses. However, mechanism of mecamylamine action was not fully explored for all types of nAChRs. In the present study, we provide brief description of the mecamylamine action on muscle nAChRs expressed at the frog neuromuscular junction. In this preparation mecamylamine block of nAChRs was accompanied by a use-dependent block relief induced by membrane depolarization combined with the activation of nAChRs by endogenous agonist acetylcholine (ACh). Further, three kinetic models of possible mecamylamine interaction with nAChRs were analyzed including simple open channel block, symmetrical trapping block and asymmetrical trapping block. This analysis suggested that mecamylamine action could be described on the basis of trapping mechanism, when the antagonist remained inside the channel even in the absence of bound agonist. Such receptors with trapped mecamylamine inside were predicted to have a closing rate constant about three times faster than resting one and a fast voltage-dependent unblocking rate constant. Specific experimental conditions and morphological organization of the neuromuscular synapses were considered to simulate time course of the mecamylamine block development. Thus, likewise for the neuronal nAChRs, the trapping mechanism determined the action of mecamylamine on synaptic neuromuscular currents evoked by the endogenous agonist acetylcholine (ACh), however specific morphological organization of the synaptic transmission delayed time development of the currents block.

  19. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1.

    PubMed

    Tetteh, Kevin K A; Conway, David J

    2011-10-13

    Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Seawalls, Bulkheads and Quaywalls. Design Manual 25.4.

    DTIC Science & Technology

    1981-07-01

    slopes, such as concrete block revetment , also can result in a large quantity of water overtopping the wall. Where overtopping is a serious problem...small precast units such as the concrete block revetment shown in Figure 1, type D and the precast stepped walls shown in Figure 1, types E and G, should...16. DISTRIBUTION STATEMENT (of this Report) Unclassified/Unlimited ..... 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different

  1. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  2. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  3. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  4. Geospatial Mapping of Pb, Cr, Cu, Zn, Cd, and Sb in Urban Soil, Cd. Juarez, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Amaya, M. A.; Grimida, S. E.; Elkekli, A. R.; Aldouri, R. K.; Benedict, B. A.; Pingitore, N. E., Jr.

    2015-12-01

    Population-based random stratified sampling of the city of Cd. Juarez, Chihuahua, Mexico provided 500 city blocks for study. We collected soil from the public space (where present) in front of each house on a selected block; equal measured small volumes of these were combined to produce a composite sample for analysis. Such composite samples (1) decrease, by an order of magnitude, laboratory processing and analysis costs, and (2) smooth the data to represent blocks as averages of individual houses. Retention of the unanalyzed samples of the individual houses permits their later analysis should the composites suggest further study of individual houses on an anomalous block. Elemental analysis of 10 mg pressed powders was performed on a Panalytical Epsilon5 EDS-XRF, via 8 secondary targets and 12 USGS and NIST multi-element rock standards. The mean and (range) of concentration for Pb was 43 (13-550) ppm; for Cr, 31 (1.8-76); for Cu, 22 (6-550); for Zn 84 (42-415) ppm; for Cd, 1.9 (0.1-6.2); and for Sb, 5.9 (2.7-29). The old urban core of Cd. Juarez was marked by high levels of Pb, Cr, Cu, and Zn, and, to a smaller degree, of Cd and Sb. This pattern mirrors that of contiguous El Paso, Texas, USA, directly across the narrow Rio Grande. Businesses, industrial facilities, transportation (both railroads and highways), traditional "downtown" shopping, and old residential districts cluster in this urban core. A Pb-Cu-Zn smelter, which operated for more than a century until 1999, is present in the US adjacent to the Rio Grande, about two km away from downtown Cd. Juarez. Thus the city has been subject to both traditional metal sources (e.g., leaded gasoline, highway debris) and smelter emissions. The poplation of Cd. Juarez has exploded in the last few decades to some 1.5 million inhabitants due both to natural growth and in-migration from rural districts for economic opportunity. Most of this growth has been accommodated by radial expansion of the city into the surrounding desert. Metals pollution in these newer areas is much lower than in the city core due to their distance from legacy, traditional, and ongoing sources. Thus there is a strong risk gradient for exposure to heavy metals from contaminated soil from the higher levels in the city core to the lower levels in newer residential neighborhoods. NIEHS Grant 1RO1-ES11367

  5. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  6. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.

  7. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design

    PubMed Central

    Rose, Timothy M.; Henikoff, Jorja G.; Henikoff, Steven

    2003-01-01

    We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3–4 highly conserved amino acids within a 3′ degenerate core. A longer 5′ non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org). PMID:12824413

  8. Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages.

    PubMed

    Khorsand, Behnoush; Lapointe, Gabriel; Brett, Christopher; Oh, Jung Kwon

    2013-06-10

    Self-assembled micelles of amphiphilic block copolymers (ABPs) with stimuli-responsive degradation (SRD) properties have a great promise as nanotherapeutics exhibiting enhanced release of encapsulated therapeutics into targeted cells. Here, thiol-responsive degradable micelles based on a new ABP consisting of a pendant disulfide-labeled methacrylate polymer block (PHMssEt) and a hydrophilic poly(ethylene oxide) (PEO) block were investigated as effective intracellular nanocarriers of anticancer drugs. In response to glutathione (GSH) as a cellular trigger, the cleavage of pendant disulfide linkages in hydrophobic PHMssEt blocks of micellar cores caused the destabilization of self-assembled micelles due to change in hydrophobic/hydrophilic balance. Such GSH-triggered micellar destabilization changed their size distribution with an appearance of large aggregates and led to enhanced release of encapsulated anticancer drugs. Cell culture results from flow cytometry and confocal laser scanning microscopy for cellular uptake as well as cell viability measurements for high anticancer efficacy suggest that new GSH-responsive degradable PEO-b-PHMssEt micelles offer versatility in multifunctional drug delivery applications.

  9. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix

    PubMed Central

    Cui, Xinjiang; Surkus, Annette-Enrica; Junge, Kathrin; Topf, Christoph; Radnik, Jörg; Kreyenschulte, Carsten; Beller, Matthias

    2016-01-01

    Selective hydrogenations of (hetero)arenes represent essential processes in the chemical industry, especially for the production of polymer intermediates and a multitude of fine chemicals. Herein, we describe a new type of well-dispersed Ru nanoparticles supported on a nitrogen-doped carbon material obtained from ruthenium chloride and dicyanamide in a facile and scalable method. These novel catalysts are stable and display both excellent activity and selectivity in the hydrogenation of aromatic ethers, phenols as well as other functionalized substrates to the corresponding alicyclic reaction products. Furthermore, reduction of the aromatic core is preferred over hydrogenolysis of the C–O bond in the case of ether substrates. The selective hydrogenation of biomass-derived arenes, such as lignin building blocks, plays a pivotal role in the exploitation of novel sustainable feedstocks for chemical production and represents a notoriously difficult transformation up to now. PMID:27113087

  10. Fabrication and photoluminescence properties of graphite fiber/ZnO nanorod core-shell structures.

    PubMed

    Liu, Xianbin; Du, Hejun; Liu, Bo; Wang, Jianxiong; Sun, Xiao Wei; Sun, Handong

    2011-08-01

    Graphite fiber/ZnO nanorod core-shell structures were synthesized by thermal evaporation process. The core-shell hybrid architectures were comprised of ZnO nanorods grown on the surface of graphite fiber. In addition, Hollow ZnO hierarchical structure can be obtained by oxidizing the graphite fiber. Room temperature photoluminescence (PL) of the as-made graphite fiber/ZnO nanorod structures shows two UV peaks at around 3.274 eV and 3.181 eV. The temperature-dependent photoluminescence spectra demonstrate the two UV emissions are attributed to the intrinsic optical transitions and extrinsic defect-related emissions in ZnO. These hybrid structures may be used as the building block for fabrication of nanodevices.

  11. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  12. Geodynamic settings of microcontinents, non-volcanic islands and submerged continental marginal plateau formation

    NASA Astrophysics Data System (ADS)

    Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna

    2016-04-01

    Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage, and the transitional zone between Mohns and Gakkel Ridges. The research funded by RFBR, project № 15-05-03486.

  13. Disulfide cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy.

    PubMed

    Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi

    2014-05-01

    Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  15. Method of making hermetic seals for hermetic terminal assemblies

    DOEpatents

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  16. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    PubMed

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  17. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  18. Student-driven courses on the social and ecological responsibilities of engineers : commentary on "student-inspired activities for the teaching and learning of engineering ethics".

    PubMed

    Baier, André

    2013-12-01

    A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.

  19. The rapidly emerging ESBL-producing Escherichia coli O25-ST131 clone carries LPS core synthesis genes of the K-12 type.

    PubMed

    Szijártó, Valéria; Pal, Tibor; Nagy, Gabor; Nagy, Eszter; Ghazawi, Akela; al-Haj, Mohammed; El Kurdi, Sylvia; Sonnevend, Agnes

    2012-07-01

    The clone Escherichia coli O25 ST131, typically producing extended-spectrum beta-lactamases (ESBLs), has spread globally and became the dominant type among extraintestinal isolates at many parts of the world. However, the reasons behind the emergence and success of this clone are only partially understood. We compared the core type genes by PCR of ESBL-producing and ESBL-nonproducing strains isolated from urinary tract infections in the United Arab Emirates and found a surprisingly high frequency of the K-12 core type (44.6%) among members of the former group, while in the latter one, it was as low (3.7%), as reported earlier. The high figure was almost entirely attributable to the presence of members of the clone O25 ST131 among ESBL producers. Strains from the same clone isolated in Europe also carried the K-12 core type genes. Sequencing the entire core operon of an O25 ST131 isolate revealed a high level of similarity to known K-12 core gene sequences and an almost complete identity with a recently sequenced non-O25 ST131 fecal isolate. The exact chemical structure and whether and how this unusual core type contributed to the sudden emergence of ST131 require further investigations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. A comparative study on liquid core formulation on the diameter on the alginate capsules

    NASA Astrophysics Data System (ADS)

    Ong, Hui-Yen; Lee, Boon-Beng; Radzi, AkmalHadi Ma'; Zakaria, Zarina; Chan, Eng-Seng

    2015-08-01

    Liquid core capsule has vast application in biotechnology related industries such as pharmaceutical, medical, agriculture and food. Formulation of different types of capsule was important to determine the performance of the capsule. Generally, the liquid core capsule with different formulations generated different size of capsule.Therefore, the aim of this project is to investigate the effect of different liquid core solution formulations on the diameter of capsule. The capsule produced by extruding liquid core solutions into sodium alginate solution. Three types of liquid core solutions (chitosan, xanthan gum, polyethylene glycol (PEG)) were investigated. The results showed that there is significant change in capsule diameter despite in different types of liquid core solution were used and a series of capsule range in diameter of 3.1 mm to 4.5 mm were produced. Alginate capsule with chitosan formulation appeared to be the largest capsule among all.

  1. Identifying Early Paleozoic tectonic relations in a region affected by post-Taconian transcurrent faulting, an example from the PA-DE Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcock, J.; Wagner, M.E.; Srogi, L.A.

    1993-03-01

    Post-Taconian transcurrent faulting in the Appalachian Piedmont presents a significant problem to workers attempting to reconstruct the Early Paleozoic tectonic history. One solution to the problem is to identify blocks that lie between zones of transcurrent faulting and that retain the Early Paleozoic arrangement of litho-tectonic units. The authors propose that a comparison of metamorphic histories of different units can be used to recognize blocks of this type. The Wilmington Complex (WC) arc terrane, the pre-Taconian Laurentian margin rocks (LM) exposed in basement-cored massifs, and the Wissahickon Group metapelites (WS) that lie between them are three litho-tectonic units in themore » PA-DE Piedmont that comprise a block assembled in the Early Paleozoic. Evidence supporting this interpretation includes: (1) Metamorphic and lithologic differences across the WC-WS contact and detailed geologic mapping of the contact that suggest thrusting of the WC onto the WS; (2) A metamorphic gradient in the WS with highest grade, including spinel-cordierite migmatites, adjacent to the WC indicating that peak metamorphism of the WS resulted from heating by the WC; (3) A metamorphic discontinuity at the WS-LM contact, evidence for emplacement of the WS onto the LM after WS peak metamorphism; (4) A correlation of mineral assemblage in the Cockeysville Marble of the LM with distance from the WS indicating that peak metamorphism of the LM occurred after emplacement of the WS; and (5) Early Paleozoic lower intercept zircon ages for the LM that are interpreted to date Taconian regional metamorphism. Analysis of metamorphism and its timing relative to thrusting suggest that the WS was associated with the WC before the WS was emplaced onto the LM during the Taconian. It follows that these units form a block that has not been significantly disrupted by later transcurrent shear.« less

  2. A volatile rich Earth's core?

    NASA Astrophysics Data System (ADS)

    Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.

    2017-12-01

    The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.

  3. Distributed radiology clerkship for the core clinical year of medical school.

    PubMed

    Chew, Felix S

    2002-11-01

    The central role that diagnostic radiology has in the modern practice of medicine has not always been reflected in radiology's place in the curriculum. We developed a new radiology clerkship for undergraduate medical students during their core clinical year that was supported by Web technology. The assumptions underlying the design of the clerkship were that radiology is best learned from radiologists and that students are most receptive to learning radiology when it is related to concurrent patient care experiences. Beginning in May 2000, a required radiology clerkship experience was incorporated into the core clinical year at Wake Forest University School of Medicine. The core clinical year was organized into three 16-week blocks of clerkships. Two or four independent half-day radiology tutorial sessions were included with each clerkship block, and attended by all students in the block (approximately 35 students), regardless of their specific clerkship assignments. There were ten different radiology tutorials, each given three times during the year as students rotated through the clerkship blocks. Thus, each student attended a radiology tutorial session every four to eight weeks during the year. The topics covered during the tutorials were correlated with the content of the clerkship blocks and included adult and pediatric chest radiology, adult and pediatric abdominal radiology, body CT, neuroradiology, obstetric ultrasound, gynecologic ultrasound, osteoporosis, adult and pediatric fractures, mammography, and cervical spine trauma. The tutorials included pre- and post-test, lectures, case presentations, and sometimes tours of the radiology department. The educational emphasis was on pragmatic case-based learning exercises, development of verbal and visual vocabulary, and learning when and where to seek more information. To provide continuity and organization, Web-based curriculum materials were designed and implemented as a component of the clerkship. The home page of the Web site provided the schedule, faculty names, attendance and grading policies, course overview, and links to individual tutorials. The pages for individual tutorials included educational objectives, glossary of radiology terminology relevant to the subject, lecture slides and handouts, and teaching cases. All students had laptop computers and access to the academic network, but did not use them during the actual tutorial sessions. Implementation of the radiology clerkship required extensive negotiation with directors of other clerkships so that students could be released from their other responsibilities in order to attend the radiology tutorials. The radiology clerkship format has proven to be complex in its administration, with faculty and students on different schedules commuting to the radiology lecture hall from various locations. Extensive use of e-mail and communication via the Web site have been instrumental in reminding faculty and students of upcoming sessions. Preliminary evaluations have indicated that students liked the radiology sessions and learned a great deal, but disliked the scheduling and the lack of continuity. An evaluation of the curriculum and its components is ongoing.

  4. Firming-Up Core: A Collaborative Approach.

    ERIC Educational Resources Information Center

    McInnis, Bernadette

    The Collaborative Probing Model (CPM) is a heuristic approach to writing across the disciplines that stresses discovery, process, and assessment. Faculty input will help the English department design an oral and written communication block that will be unified by a series of interdisciplinary videotaped presentations. CPM also uses flow charting…

  5. A PERIPHERAL CHOLINERGIC PATHWAY MODULATES STRESS-INDUCED HYPERTHERMIA IN THE RAT EXPOSED TO AN OPEN FIELD.

    EPA Science Inventory

    Exposure to an open-field is psychologically stressful and leads to an elevation in core temperature (Tc). This increase in Tc associated with open-field is usually referred to as stress-induced hyperthermia (SIH) and can be blocked centrally with cyclooxygenase inhibitors suc...

  6. Corium protection assembly

    DOEpatents

    Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  7. Basic Concepts of Intercultural Communication: Selected Readings.

    ERIC Educational Resources Information Center

    Bennett, Milton J., Ed.

    This collection of articles, with a developmental learning focus, explores the core building blocks of intercultural communication. The articles in the collection represent the theory-into-practice school of intercultural communication. The collection's goal is to present basic concepts from a variety of perspectives which, when taken together,…

  8. The Development of Trust in Residential Environmental Education Programs

    ERIC Educational Resources Information Center

    Ardoin, Nicole M.; DiGiano, Maria L.; O'Connor, Kathleen; Podkul, Timothy E.

    2017-01-01

    Trust, a relational phenomenon that is an important building block of interpersonal relationships and within society, can also be an intermediary outcome of field-based environmental education programs. Trust creates a foundation for collaboration and decision-making, which are core to many ultimate outcomes of environmental education. Yet,…

  9. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  10. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    NASA Astrophysics Data System (ADS)

    Schultz, A.

    2010-12-01

    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We describe our ongoing efforts to achieve massive parallelization on a novel hybrid GPU testbed machine currently configured with 12 Intel Westmere Xeon CPU cores (or 24 parallel computational threads) with 96 GB DDR3 system memory, 4 GPU subsystems which in aggregate contain 960 NVidia Tesla GPU cores with 16 GB dedicated DDR3 GPU memory, and a second interleved bank of 4 GPU subsystems containing in aggregate 1792 NVidia Fermi GPU cores with 12 GB dedicated DDR5 GPU memory. We are applying domain decomposition methods to a modified version of Weiss' (2001) 3D frequency domain full physics EM finite difference code, an open source GPL licensed f90 code available for download from www.OpenEM.org. This will be the core of a new hybrid 3D inversion that parallelizes frequencies across CPUs and individual forward solutions across GPUs. We describe progress made in modifying the code to use direct solvers in GPU cores dedicated to each small subdomain, iteratively improving the solution by matching adjacent subdomain boundary solutions, rather than iterative Krylov space sparse solvers as currently applied to the whole domain.

  11. Evolution of crystalline target rocks and impactites in the chesapeake bay impact structure, ICDP-USGS eyreville B core

    USGS Publications Warehouse

    Horton, J. Wright; Kunk, Michael J.; Belkin, Harvey E.; Aleinikoff, John N.; Jackson, John C.; Chou, I.-Ming

    2009-01-01

    The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastal-plain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain α-cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ± 7 Ma and 254 ± 3 Ma, respectively. Postimpact heating was <~350 °C in the lower basement-derived section based on undisturbed 40Ar/39Ar plateau ages of muscovite and <~150 °C in sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline.

  12. Blocked versus randomized presentation modes differentially modulate feedback-related negativity and P3b amplitudes

    PubMed Central

    Pfabigan, Daniela M.; Zeiler, Michael; Lamm, Claus; Sailer, Uta

    2014-01-01

    Objective Electrophysiological studies on feedback processing typically use a wide range of feedback stimuli which might not always be comparable. The current study investigated whether two indicators of feedback processing – feedback-related negativity (FRN) and P3b – differ for feedback stimuli with explicit (facial expressions) or assigned valence information (symbols). In addition, we assessed whether presenting feedback in either a trial-by-trial or a block-wise fashion affected these ERPs. Methods EEG was recorded in three experiments while participants performed a time estimation task and received two different types of performance feedback. Results Only P3b amplitudes varied consistently in response to feedback type for both presentation types. Moreover, the blocked feedback type presentation yielded more distinct FRN peaks, higher effect sizes, and a significant relation between FRN amplitudes and behavioral task performance measures. Conclusion Both stimulus type and presentation mode may provoke systematic changes in feedback-related ERPs. The current findings point at important potential confounds that need to be controlled for when designing FRN or P3b studies. Significance Studies investigating P3b amplitudes using mixed types of stimuli have to be interpreted with caution. Furthermore, we suggest implementing a blocked presentation format when presenting different feedback types within the same experiment. PMID:24144779

  13. Effect of Three Different Core Materials on Masking Ability of a Zirconia Ceramic.

    PubMed

    Tabatabaian, Farhad; Masoomi, Faeze; Namdari, Mahshid; Mahshid, Minoo

    2016-09-01

    Masking ability of a restorative material plays a role in hiding colored substructures; however, the masking ability of zirconia ceramic (ZRC) has not yet been clearly understood in zirconia-based restorations. This study evaluated the effect of three different core materials on masking ability of a ZRC. Ten zirconia disc samples, 0.5mm in thickness and 10mm in diameter, were fabricated. A white (W) substrate (control) and three substrates of nickel-chromium alloy (NCA), non-precious gold alloy (NPGA), and ZRC were prepared. The zirconia discs were placed on the four types of substrates for spectrophotometry. The L*, a*, and b* values of the specimens were measured by a spectrophotometer and color change (ΔE) values were calculated to determine color differences between the test and control groups and were then compared with the perceptual threshold. Randomized block ANOVA and Bonferroni test analyzed the data. A significance level of 0.05 was considered. The mean and standard deviation values of ΔE for NCA, NPGA, and ZRC groups were 10.26±2.43, 9.45±1.74, and 6.70±1.91 units, respectively. Significant differences were found in the ΔE values between ZRC and the other two experimental groups (NCA and NPGA; P<0.0001 and P=0.001, respectively). The ΔE values for the groups were more than the predetermined perceptual threshold. Within the limitations of this study, it was concluded that the tested ZRC could not well mask the examined core materials.

  14. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genson, Kirsten Larson

    2005-01-01

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformationmore » which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.« less

  15. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes.

    PubMed

    Galvis-Pareja, David; Zapata-Torres, Gerald; Hidalgo, Jorge; Ayala, Pedro; Pedrozo, Zully; Ibarra, Cristián; Diaz-Araya, Guillermo; Hall, Andrew R; Vicencio, Jose Miguel; Nuñez-Vergara, Luis; Lavandero, Sergio

    2014-08-15

    Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type: a report of 2 cases.

    PubMed

    Patzkowski, Michael S

    2016-03-01

    Ehlers-Danlos syndrome is an inherited disorder of collagen production that results in multiorgan dysfunction. Patients with hypermobility type display skin hyperextensibility and joint laxity, which can result in chronic joint instability, dislocation, peripheral neuropathy, and severe musculoskeletal pain. A bleeding diathesis can be found in all subtypes of varying severity despite a normal coagulation profile. There have also been reports of resistance to local anesthetics in these patients. Several sources advise against the use of regional anesthesia in these patients citing the 2 previous features. There have been reports of successful neuraxial anesthesia, but few concerning peripheral nerve blocks, none of which describe nerves of the lower extremity. This report describes 2 cases of successful peripheral regional anesthesia in the lower extremity. In case 1, a 16-year-old adolescent girl with hypermobility type presented for osteochondral grafting of tibiotalar joint lesions. She underwent a popliteal sciatic (with continuous catheter) and femoral nerve block under ultrasound guidance. She proceeded to surgery and tolerated the procedure under regional block and intravenous sedation. She did not require any analgesics for the following 15 hours. In case 2, an 18-year-old woman with hypermobility type presented for medial patellofemoral ligament reconstruction for chronic patella instability. She underwent a saphenous nerve block above the knee with analgesia in the distribution of the saphenous nerve lasting for approximately 18 hours. There were no complications in either case. Prohibitions against peripheral nerve blocks in patients with Ehlers-Danlos syndrome, hypermobility type, appear unwarranted. Published by Elsevier Inc.

  17. Operating unit time use is associated with anaesthesia type in below-knee surgery in adults.

    PubMed

    Lohela, T J; Chase, R P; Hiekkanen, T A; Kontinen, V K; Hynynen, M J

    2017-03-01

    Peripheral nerve blocks could reduce the operating unit and theatre time spent on high-risk patients who are particularly vulnerable to complications of general anaesthesia or have medications that prevent application of central neuraxial blocks. Medical record data of 617 and 254 elderly adults undergoing below-knee surgery in Jorvi and Meilahti hospitals (Helsinki University Hospital) between January 2010 and December 2012 were used to investigate the influence of anaesthetic technique on operating theatre times and on operating unit times using flexible parametric survival models. We report operating theatre and unit exit ratios (i.e. hazard ratios but using ratios of exit rates) for different types of anaesthesia. Adjusted analyses: In Jorvi Hospital, anaesthesia type was associated with large initial differentials in operating theatre times. The theatre exit ratios remained lower for general anaesthesia and central neuraxial blocks compared to peripheral nerve blocks until 30 min. In Meilahti Hospital, anaesthesia type did not influence theatre time, but was the best predictor of operating unit times. Compared to peripheral nerve blocks, the exit ratio remained lower for general anaesthesia until five operating unit hours in both hospitals and for central neuraxial blocks until 1 h in Meilahti Hospital and until 3 h in Jorvi Hospital. Holding area was used more in Jorvi Hospital compared to Meilahti Hospital. Peripheral nerve block anaesthesia reduces time spent in the operating unit and can reduce time spent in the operating theatre if induced in holding area outside of theatre. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  19. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K.

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observemore » the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.« less

  20. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  1. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  2. Mediterranean dryland Mosaic: The effect of scale on core area metrics

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrababah, Mohammad

    2014-05-01

    Quantifying landscape spatial pattern is essential to understanding the relationship between landscape structure and ecological functions and process. Many landscape metrics have been developed to quantify spatial heterogeneity. Landscape metrics have been employed to measure the impact of humans on landscapes. We examined the response of four core areas metrics to a large range of grain sizes in Mediterranean dryland landscapes. The investigated metrics were (1) mean core area (CORE-MN), (2) area weighted mean core area (CORE-AM) , (3) total core area (TCA) and (4) core area percentage of landscape (CPLAND) within six land use types (urban, agriculture, olive orchids, forestry, shrubland and rangeland). Agriculture areas showed the highest value for minimum TCA (2779.4 ha) within the tested grain sizes, followed by rangeland (1778.3 ha) and Forest (1488.5 ha). On the other hand, shrubland showed the lowest TCA (8.0 ha). The minimum CPLAND values were ranged from 0.002 for shrubland to 0.682 for agriculture land use. The maximum CORE-MN among the tested land use type at all levels of grain sizes was exhibited by agriculture land use type (519.759 ha). The core area metrics showed three types of behavior in response to changing grain size in all landuse types. CORE-MN showed predictable relationship, best explained by non-linear responses to changing grain size (R2=0.99). Both TCA and CPLAND exhibited domain of scale effect in response to changing grain size. The threshold behavior for TCA and CPLAND was at the 4 x 4 grain size (about 1.3 ha). However, CORE-AM exhibited erratic behavior. The unique domain of scale-like behavior may be attributed to the unique characteristics of dryland Mediterranean landscapes; where both natural processes and ancient human activities play a great role in shaping the apparent pattern of the landscape

  3. Tetrapentylammonium block of chloramine-T and veratridine modified rat brain type IIA sodium channels

    PubMed Central

    Ghatpande, A S; Rao, S; Sikdar, S K

    2001-01-01

    Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247

  4. Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. [Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin-Scott, H.M.; Cusack, F.; Costerton, J.W.

    1988-06-01

    Klebsiella pneumoniae, which was reduced in size (0.25 by 0.5 ..mu..m) by carbon deprivation, was injected into a series of sandstone cores and subjected to separate treatments. Scanning electron microscopy of 400-mD cores showed these small starved cells in nearly every core section. The cells were a mixture of small rods and cocci with little or no biofilm production. Continuous or dose stimulation with sodium citrate allowed the cells to grow throughout the sandstone and completely plug the length of the core. The resuscitated cells were larger than the starved cells (up to 1.7 ..mu..m) and were encased in glycocalyx.more » Scanning electron microscopic results of resuscitation in situ with half-strength brain heart infusion broth showed that a shallow skin plug of cells formed at the core inlet and that fewer cells were located in the lower sections. Starved cells also penetrated 200-mD cores and were successfully resuscitated in situ with sodium citrate, so that the entire core was plugged. Nutrient resuscitation of injected starved cells to produce full-size cells which grow and block the rock pores may be successfully applied to selective plugging and may effectively increase oil recovery.« less

  5. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study.

    PubMed

    Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch

    2010-06-01

    To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.

  6. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease

    PubMed Central

    Law, Amanda J.; Lipska, Barbara K.; Weickert, Cynthia Shannon; Hyde, Thomas M.; Straub, Richard E.; Hashimoto, Ryota; Harrison, Paul J.; Kleinman, Joel E.; Weinberger, Daniel R.

    2006-01-01

    Genetic variation in neuregulin 1 (NRG1) is associated with schizophrenia. The disease-associated SNPs are noncoding, and their functional implications remain unknown. We hypothesized that differential expression of the NRG1 gene explains its association to the disease. We examined four of the disease-associated SNPs that make up the original risk haplotype in the 5′ upstream region of the gene for their effects on mRNA abundance of NRG1 types I–IV in human postmortem hippocampus. Diagnostic comparisons revealed a 34% increase in type I mRNA in schizophrenia and an interaction of diagnosis and genotype (SNP8NRG221132) on this transcript. Of potentially greater interest, a single SNP within the risk haplotype (SNP8NRG243177) and a 22-kb block of this core haplotype are associated with mRNA expression for the novel type IV isoform in patients and controls. Bioinformatic promoter analyses indicate that both SNPs lead to a gain/loss of putative binding sites for three transcription factors, serum response factor, myelin transcription factor-1, and High Mobility Group Box Protein-1. These data implicate variation in isoform expression as a molecular mechanism for the genetic association of NRG1 with schizophrenia. PMID:16618933

  7. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  8. Sympathetic blocks for the treatment of complex regional pain syndrome: A case series.

    PubMed

    Gungor, Semih; Aiyer, Rohit; Baykoca, Buse

    2018-05-01

    To present the successful treatment of complex regional pain syndrome type -1 utilizing sympathetic blocks. Severe pain interfering with activities of daily living and temporary disability secondary to complex regional pain syndrome. Complex regional pain syndrome type-1 with involvement of lower extremity (2 patients), and upper extremity (1 patient). We report the management of 3 patients with diagnosis of complex regional pain syndrome type-1 by early institution of sympathetic blocks for diagnostic and therapeutic purposes. All 3 patients were able to tolerate physical therapy only after adequate pain relief had been achieved with institution of sympathetic blocks. All 3 patients responded very favorably to sympathetic blocks with dramatic reversal of pathology. All patients reported almost complete resolution of pain, symptoms, and signs within 6 months duration after diagnosis of complex regional pain syndrome. All 3 patients were able to wean their pain medications and achieve normal activities of daily living without any significant limitations. All patients were able to return to full-time employment. Treatment options are limited and there is lack of high quality research regarding the efficacy of sympathetic blocks in the treatment of complex regional pain syndrome. As presented in this case series, sympathetic blocks maybe very effective in the treatment of complex regional pain syndrome in a subset of patients. Thus, early institution of sympathetic blocks should be considered in complex regional pain syndrome prior to physical therapy and consideration of more invasive pain management interventions.

  9. Access block in NSW hospitals, 1999-2001: does the definition matter?

    PubMed

    Forero, Roberto; Mohsin, Mohammed; Bauman, Adrian E; Ieraci, Sue; Young, Lis; Phung, Hai N; Hillman, Kenneth M; McCarthy, Sally M; Hugelmeyer, C David

    2004-01-19

    To estimate the magnitude of access block and its trend over time in New South Wales hospitals, using different definitions of access block, and to explore its association with clinical and non-clinical factors. An epidemiological study using the Emergency Department Information System datasets (1 January 1999 to 31 December 2001) from a sample of 55 NSW hospitals. Prevalence of access block measured by four different definitions; strength of association between access block, type of hospital, year of presentation, mode and time of arrival, triage category (an indicator of urgency), age and sex. Rates of access block (for all four definitions) increased between 1999 and 2001 by 1%-2% per year. There were increases across all regions of NSW, but urban regions in particular. Patients presenting to Principal Referral hospitals and those who arrived at night were more likely to experience access block. After adjusting for triage category and year of presentation, the mode of arrival, time of arrival, type of hospital, age and sex were significantly associated with access block. Access block continues to increase across NSW, whatever the definition used. We recommend that hospitals in NSW and Australia move to the use of one standard definition of access block, as our study suggests there is no significant additional information emerging from the use of multiple definitions.

  10. Form, Content, and Gender Differences in Lego[R] Block Creations by Japanese Adolescents

    ERIC Educational Resources Information Center

    Kato, Daiki; Morita, Miyako

    2009-01-01

    This study examined general features of Lego block creations produced by Japanese adolescents with no known mental health disorders. The block creations of 33 participants were assessed for form, content, and gender differences. Time spent on the task, amount of area covered, and quantity and types of blocks used were measured and correlated with…

  11. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Benzodiazepine-associated atrioventricular block.

    PubMed

    Arroyo Plasencia, Anna M; Ballentine, Lynn M; Mowry, James B; Kao, Louise W

    2012-01-01

    Dysrhythmias, although common in overdose situations, are not often seen after benzodiazepine exposures. We report two cases of transient atrioventricular block after benzodiazepine misuse. Case 1 is a 4-year-old boy who was found unresponsive after an ingestion of clonazepam. An electrocardiogram (EKG) performed on emergency department presentation demonstrated first-degree atrioventricular block (PR 206 ms). After flumazenil administration, he developed second-degree atrioventricular block (Mobitz Type 1). EKG abnormalities resolved by morning. Serum clonazepam was 478 ng/mL (laboratory clonazepam reference range, 10-75 ng/mL with a dose of up to 6 mg/day) 5 hours after being found unresponsive. Case 2 is a 23-year-old man who presented to the emergency department after ingesting risperidone, combination hydrocodone/acetaminophen, and alprazolam. On arrival, his EKG demonstrated sinus bradycardia with a PR interval of 182 msec. He subsequently developed second-degree atrioventricular block (Mobitz Type I). Sinus bradycardia with resolution of his atrioventricular block (PR 200 ms) was seen on a third EKG performed 5 hours after presentation. These two patients demonstrated transient first- and second-degree atrioventricular block after benzodiazepine exposure. Benzodiazepines have been shown to alter L-type Ca2+ channel function. This alteration in function may account for the dysrhythmias seen in our patients. Together, these cases serve to remind clinicians of this rare but potentially serious complication associated with benzodiazepine exposure.

  13. A modular synthesis of teraryl-based α-helix mimetics, part 1: Synthesis of core fragments with two electronically differentiated leaving groups.

    PubMed

    Peters, Martin; Trobe, Melanie; Tan, Hao; Kleineweischede, Rolf; Breinbauer, Rolf

    2013-02-11

    Teraryl-based α-helix mimetics have proven to be useful compounds for the inhibition of protein-protein interactions (PPI). We have developed a modular and flexible approach for the synthesis of teraryl-based α-helix mimetics. Central to our strategy is the use of a benzene core unit featuring two leaving groups of differentiated reactivity in the Pd-catalyzed cross-coupling used for terphenyl assembly. With the halogen/diazonium route and the halogen/triflate route, two strategies have successfully been established. The synthesis of core building blocks with aliphatic (Ala, Val, Leu, Ile), aromatic (Phe), polar (Cys, Lys), hydrophilic (Ser, Gln), and acidic (Glu) amino acid side chains are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth

    NASA Astrophysics Data System (ADS)

    Jin, Xu-Hui; Price, Michael B.; Finnegan, John R.; Boott, Charlotte E.; Richter, Johannes M.; Rao, Akshay; Menke, S. Matthew; Friend, Richard H.; Whittell, George R.; Manners, Ian

    2018-05-01

    Easily processed materials with the ability to transport excitons over length scales of more than 100 nanometers are highly desirable for a range of light-harvesting and optoelectronic devices. We describe the preparation of organic semiconducting nanofibers comprising a crystalline poly(di-n-hexylfluorene) core and a solvated, segmented corona consisting of polyethylene glycol in the center and polythiophene at the ends. These nanofibers exhibit exciton transfer from the core to the lower-energy polythiophene coronas in the end blocks, which occurs in the direction of the interchain π-π stacking with very long diffusion lengths (>200 nanometers) and a large diffusion coefficient (0.5 square centimeters per second). This is made possible by the uniform exciton energetic landscape created by the well-ordered, crystalline nanofiber core.

  15. Polarization Science with the ngVLA: magnetic fields and dust properties in cores, disks and on larger scales

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda; Hull, Chat

    2018-01-01

    Polarization capabilities of the ngVLA will enable exploration of a wide range of phenomena including: (1) magnetic fields in protostellar cores and protoplanetary disks via polarized emission from magnetically aligned dust grains and spectral lines, including in regions optically thick at ALMA wavelengths; (2) polarization from dust scattering in disks, (3) spectral-line polarization from the Zeeman and Goldreich-Kylafis effects, and (4) magnetic fields in protostellar jets and OB-star-forming cores via synchrotron emission.We will discuss each of these science drivers in turn, with a particular emphasis on why the ngVLA provides a unique means of probing dust properties in the midplane of protoplanetary disks and hence the building blocks of planets in the innermost regions of disks.

  16. Ultrasound-Mediated Tumor Imaging and Nanotherapy using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions

    PubMed Central

    Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.

    2011-01-01

    Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed. PMID:21277919

  17. Calculating Path-Dependent Travel Time Prediction Variance and Covariance fro a Global Tomographic P-Velocity Model

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Hipp, J. R.; Encarnacao, A.; Young, C. J.; Begnaud, M. L.; Phillips, W. S.

    2012-12-01

    Seismic event locations can be made more accurate and precise by computing predictions of seismic travel time through high fidelity 3D models of the wave speed in the Earth's interior. Given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from SALSA3D, our global, seamless 3D tomographic P-velocity model. Typical global 3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.

  18. Remote p-type Doping in GaSb/InAs Core-shell Nanowires

    PubMed Central

    Ning, Feng; Tang, Li-Ming; Zhang, Yong; Chen, Ke-Qiu

    2015-01-01

    By performing first-principles calculation, we investigated the electronic properties of remotely p-type doping GaSb nanowire by a Zn-doped InAs shell. The results show that for bare zinc-blende (ZB) [111] GaSb/InAs core-shell nanowire the Zn p-type doped InAs shell donates free holes to the non-doped GaSb core nanowire without activation energy, significantly increasing the hole density and mobility of nanowire. For Zn doping in bare ZB [110] GaSb/InAs core-shell nanowire the hole states are compensated by surface states. We also studied the behaviors of remote p-type doing in two-dimensional (2D) GaSb/InAs heterogeneous slabs, and confirmed that the orientation of nanowire side facet is a key factor for achieving high efficient remote p-type doping. PMID:26028535

  19. Genetic characterization of Russian honey bee stock selected for improved resistance to Varroa destructor.

    PubMed

    Bourgeois, A Lelania; Rinderer, Thomas E

    2009-06-01

    Maintenance of genetic diversity among breeding lines is important in selective breeding and stock management. The Russian Honey Bee Breeding Program has strived to maintain high levels of heterozygosity among its breeding lines since its inception in 1997. After numerous rounds of selection for resistance to tracheal and varroa mites and improved honey production, 18 lines were selected as the core of the program. These lines were grouped into three breeding blocks that were crossbred to improve overall heterozygosity levels of the population. Microsatellite DNA data demonstrated that the program has been successful. Heterozygosity and allelic richness values are high and there are no indications of inbreeding among the three blocks. There were significant levels of genetic structure measured among the three blocks. Block C was genetically distinct from both blocks A and B (F(ST) = 0.0238), whereas blocks A and B did not differ from each other (F(ST) = 0.0074). The same pattern was seen for genic (based on numbers of alleles) differentiation. Genetic distance, as measured by chord distance, indicates that all of the 18 lines are equally distant, with minimal clustering. The data indicate that the overall design of the breeding program has been successful in maintaining high levels of diversity and avoiding problems associated with inbreeding.

  20. Production of UT Reference Blocks Containing Artificially Introduced Defects

    NASA Astrophysics Data System (ADS)

    Kaya, A. A.; Ucuncuoglu, S.; Kurkcu, N.; Kandemir, A.; Arslan, H.

    2007-03-01

    Metallic blocks of Inconel 718 and Ti-6A1-4V alloys that contain artificially introduced defects of known type, size, shape and location were prepared to serve as calibration standards in ultrasonic inspection. The synthetic defects employed to serve as reflectors were all pertinent to the specific alloy systems used, i.e. compositional defects termed as `dirty white' `white spot' and `freckle' for Inconel 718; `hard-alpha' for titanium alloy. Furthermore, as a defect type common to all three materials, spherical voids of various sizes were also incorporated into these calibration blocks. The aim of this study is to introduce defects of known type and size into metallic blocks made of superalloy Inconel 718 and titanium Ti-6A1-4V alloy. The scope of the study entailed determination of the correct parameters for manufacturing processes involved. Based on the results of the preceding phases of this study, it was decided that the method of Vacuum Hot Pressing (VHP) was to be used in this project to manufacture the metallic block containing artificial defects.

  1. Bridge effects on light harvesting of a DBfA type polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Hasib, Muhammad; Gavrilenko, Alexander V.; Devan, Joshua; Gavrilenko, Vladimir

    2016-09-01

    Plastic optoelectronic materials and thin film devices are very attractive in future optical sensor and solar energy applications due to their lightweight, flexible shape, high photon absorption coefficients, low cost, and environmental benefits. In this study, optoelectronic properties of D, D/fA blend, DfA, and a series of DBfA type of conjugated block copolymers has been investigated, where D is a donor type PPV conjugated block, B is a non-conjugated and flexible aliphatic hydrocarbon bridge chain containing different number of aliphatic methylene units, and fA is a fluorinated acceptor type PPV conjugated block. The optical absorptions of the D/fA blend, DfA, and DBfAs are typical overlaps of individual absorptions of D and fA blocks, while the solution steady state photoluminescence (PL) emission of D were quenched to different levels in blends and block copolymers, with DBfAs containing one methylene unit bridge (DB1fA) quenched most. This could be attributed to an intra-molecular photo induced electron transfer or charge separation in DBfA systems. Theoretical first principles study of the equilibrium atomic configuration of DfA reveals the existence of twisting angles between the D and fA blocks in DfA stable states which may account for a less PL quenching of DfA as compared to DB1fA. These results are important for designing and developing high efficiency polymer based optoelectronic systems.

  2. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures

    PubMed Central

    Jedari Salami, S.; Sadighi, M.; Shakeri, M.; Moeinfar, M.

    2013-01-01

    The effects of adding an extra layer within a sandwich panel and two different core types in top and bottom cores on low velocity impact loadings are studied experimentally in this paper. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Low velocity impact tests were carried out by drop hammer testing machine to the clamped multilayer sandwich panels with expanded polypropylene (EPP) and polyurethane rigid (PUR) in the top and bottom cores. Local displacement of the top core, contact force and deflection of the sandwich panel were obtained for different locations of the internal sheet; meanwhile the EPP and PUR were used in the top and bottom cores alternatively. It was found that the core material type has made significant role in improving the sandwich panel's behavior compared with the effect of extra layer location. PMID:24453804

  3. On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui; Ji, Yun; Liu, Wei

    2014-02-17

    In this work, the origin of electron blocking effect of n-type Al{sub 0.25}Ga{sub 0.75}N electron blocking layer (EBL) for c+ InGaN/GaN light-emitting diodes has been investigated through dual-wavelength emission method. It is found that the strong polarization induced electric field within the n-EBL reduces the thermal velocity and correspondingly the mean free path of the hot electrons. As a result, the electron capture efficiency of the multiple quantum wells is enhanced, which significantly reduces the electron overflow from the active region and increases the radiative recombination rate with holes.

  4. Comments on the Yule Marble Haines block: potential replacement, Tomb of the Unknown Soldier, Arlington National Cemetery

    USGS Publications Warehouse

    Mossotti, Victor G.

    2014-01-01

    Marble for the Tomb of the Unknown Soldier at Arlington National Cemetery was cut from the Colorado Yule Marble Quarry in 1931. Although anecdotal reports suggest that cracks were noticed in the main section of the monument shortly after its installation at the Arlington National Cemetery in Arlington, Virginia, detailed documentation of the extent of cracking did not appear until 1963. Although debate continues as to whether the main section of the Tomb of the Unknowns monument should be repaired or replaced, Mr. John S. Haines of Glenwood Springs, Colorado, in anticipation of the permanent closing of the Yule Quarry, donated a 58-ton block of Yule Marble, the so-called Haines block, as a potential backup. The brief study reported here was conducted during mid-summer 2009 at the behest of the superintendent of Arlington National Cemetery. The field team entered the subterranean Yule Marble Quarry with the Chief Extraction Engineer in order to contrast the method used for extraction of the Haines block with the method that was probably used to extract the marble block that is now cracked. Based on surficial inspection and shallow coring of the Haines block, and on the nature of crack propagation in Yule Marble as judged by close inspection of a large collection of surrogate Yule Marble blocks, the team found the block to be structurally sound and cosmetically equivalent to the marble used for the current monument. If the Haines block were needed, it would be an appropriate replacement for the existing cracked section of the Tomb of the Unknown Soldier Monument.

  5. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  6. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed

    Araque, A; Clarac, F; Buño, W

    1994-05-10

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses.

  7. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed Central

    Araque, A; Clarac, F; Buño, W

    1994-01-01

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses. Images PMID:7910404

  8. Essential Learnings in Environmental Education--A Database for Building Activities and Programs.

    ERIC Educational Resources Information Center

    Ballard, Melissa, Comp.; Pandya, Mamata, Comp.

    The purpose of this book is to provide building blocks for designing and reviewing environmental education programs and activities. This handbook provides 600 basic concepts needed to attain the environmental education goals outlined at the Tbilisi, USSR, conference and generally agreed to be the fundamental core of quality environmental…

  9. Engineering Education: A Clear Decision

    ERIC Educational Resources Information Center

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  10. International Children's Trade Books: Building Blocks for Character Education

    ERIC Educational Resources Information Center

    Young, Terrell A.; Hadaway, Nancy L.; Ward, Barbara A.

    2013-01-01

    The importance of character education has been emphasized since ancient times across cultures and religions as a way to develop morals and values of the younger generations. In this article, the authors highlight several award-winning international children's trade books that reflect the core values recurring in literature and scriptures…

  11. Food Preparation and Service, Course Description.

    ERIC Educational Resources Information Center

    White, Thomas C.; Anderson, Floyd L.

    Prepared by an instructor and curriculum development specialist of the Minnesota Work Opportunity Center, this course is designed to help dropout and/or hard-core unemployed youth develop knowledge and skills needed for food service occupations. Originally, students were allowed to enter training at any time and for any block of time, but this…

  12. Measuring Progressions: Assessment Structures Underlying a Learning Progression

    ERIC Educational Resources Information Center

    Wilson, Mark

    2009-01-01

    This article describes some of the underlying conceptualizations that have gone into the work of the BEAR Center in the development of learning progressions. The core of all of these developments has been the construct map, which is the first building block in the BEAR Assessment System (BAS). After introducing the concept of a learning…

  13. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    ERIC Educational Resources Information Center

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  14. Potential geologic hazards and constraints for blocks in proposed North Atlantic OCS Oil and gas lease sale 52

    USGS Publications Warehouse

    Carpenter, G.B.; Cardinell, A.P.; Francois, D.K.; Good, L.K.; Lewis, R.L.; Stiles, N.T.

    1982-01-01

    Analysis of high-resolution geophysical data collected over 540 blocks tentatively selected for leasing in proposed OCS Oil and Gas Lease Sale 52 (Georges Bank) revealed a number of potential geologic hazards to oil and gas exploration and development activities: evidence of mass movements and shallow gas deposits on the continental slope. No potential hazards were observed on the continental shelf or rise. Other geology-related problems, termed constraints because they pose a relatively low degree of risk and can be routinely dealt with by the use of existing technology have been observed on the continental shelf. Constraints identified in the proposed sale area are erosion, sand waves, filled channels and deep faults. Piston cores were collected for geotechnical analysis at selected locations on the continental slope in the proposed lease sale area. The core locations were selected to provide information on slope stability and to establish the general geotechnical properties of the sediments. Preliminary results of a testing program suggest that the surficial sediment cover is stable with respect to mass movement.

  15. Sequential time interleaved random equivalent sampling for repetitive signal.

    PubMed

    Zhao, Yijiu; Liu, Jingjing

    2016-12-01

    Compressed sensing (CS) based sampling techniques exhibit many advantages over other existing approaches for sparse signal spectrum sensing; they are also incorporated into non-uniform sampling signal reconstruction to improve the efficiency, such as random equivalent sampling (RES). However, in CS based RES, only one sample of each acquisition is considered in the signal reconstruction stage, and it will result in more acquisition runs and longer sampling time. In this paper, a sampling sequence is taken in each RES acquisition run, and the corresponding block measurement matrix is constructed using a Whittaker-Shannon interpolation formula. All the block matrices are combined into an equivalent measurement matrix with respect to all sampling sequences. We implemented the proposed approach with a multi-cores analog-to-digital converter (ADC), whose ADC cores are time interleaved. A prototype realization of this proposed CS based sequential random equivalent sampling method has been developed. It is able to capture an analog waveform at an equivalent sampling rate of 40 GHz while sampled at 1 GHz physically. Experiments indicate that, for a sparse signal, the proposed CS based sequential random equivalent sampling exhibits high efficiency.

  16. Deep drilling in the Chesapeake Bay impact structure - An overview

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.

  17. Polymorphisms in the lcrV gene of Yersinia enterocolitica and their effect on plague protective immunity.

    PubMed

    Miller, Nathan C; Quenee, Lauriane E; Elli, Derek; Ciletti, Nancy A; Schneewind, Olaf

    2012-04-01

    Current efforts to develop plague vaccines focus on LcrV, a polypeptide that resides at the tip of type III secretion needles. LcrV-specific antibodies block Yersinia pestis type III injection of Yop effectors into host immune cells, thereby enabling phagocytes to kill the invading pathogen. Earlier work reported that antibodies against Y. pestis LcrV cannot block type III injection by Yersinia enterocolitica strains and suggested that lcrV polymorphisms may provide for escape from LcrV-mediated plague immunity. We show here that polyclonal or monoclonal antibodies raised against Y. pestis KIM D27 LcrV (LcrV(D27)) bind LcrV from Y. enterocolitica O:9 strain W22703 (LcrV(W22703)) or O:8 strain WA-314 (LcrV(WA-314)) but are otherwise unable to block type III injection by Y. enterocolitica strains. Replacing the lcrV gene on the pCD1 virulence plasmid of Y. pestis KIM D27 with either lcrV(W22703) or lcrV(WA-314) does not affect the ability of plague bacteria to secrete proteins via the type III pathway, to inject Yops into macrophages, or to cause lethal plague infections in mice. LcrV(D27)-specific antibodies blocked type III injection by Y. pestis expressing lcrV(W22703) or lcrV(WA-314) and protected mice against intravenous lethal plague challenge with these strains. Thus, although antibodies raised against LcrV(D27) are unable to block the type III injection of Y. enterocolitica strains, expression of lcrV(W22703) or lcrV(WA-314) in Y. pestis did not allow these strains to escape LcrV-mediated plague protective immunity in the intravenous challenge model.

  18. Streambank Protection Guidelines,

    DTIC Science & Technology

    1983-10-01

    the types of rubble suitable for dumping on an eroding bank include broken pavement, bricks, building blocks , slag , and quarry waste. Large flat slabs...not provide any long-termn protection. blocks , and house brick. I rfbiae omrilgbo akt Completed gabion revetment made from prefabricated baskets...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be ypi i .,, p no- , ,,, ,hag ,.,.,,,,t

  19. Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts

    PubMed Central

    Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards

    2018-01-01

    Background There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Material and Methods Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey’s test (α=0,05). Results There was no significant difference of bond strength values among groups, regardless the surface treatment (p >0.05). There was significant difference on bond strength values for the different root thirds (p<0.05) (coronal>middle=apical). Conclusions The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words:Post and core technique, cad/cam, shear strength, hydrogen peroxide. PMID:29930778

  20. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from OIB/E-MORB to N-MORB lava geochemistry away from the Tacheng block. Comparisons with published data suggest that these positive isotopic values, stratigraphic, structural and geochemical relationships can be best understood as an analogue of the relationships between the Ontong Java oceanic plateau and the Pacific oceanic crust. Therefore we propose that the basement of the Tacheng block was an Early Paleozoic oceanic plateau. The southern part of the Tacheng block was an accretionary complex and the northern part was an oceanic basin in the Early Paleozoic, the configuration of which is similar to that of the present Ontong Java oceanic plateau situated on the Pacific oceanic crust, and its accretion into the Solomon accretionary complex. The presence of Ordovician SSZ-type ophiolites, early Paleozoic blueschist and Silurian SSZ-type intrusions in the BMTC, and Early-Middle Paleozoic continental arc-related intrusive rocks in the northern margin of the CBY provide further corroboration of a former subduction zone between the southern West Junggar and the northern margin of the CBY. Furthermore, consideration of the fact that the Kokchetav-North Tianshan range was collaged to the southern margin of the CBY in the Ordovician-Devonian indicates that both ranges were amalgamated synchronously with the CBY constructing the Early-Middle Paleozoic architecture of western Altaids.

  1. Blocked versus randomized presentation modes differentially modulate feedback-related negativity and P3b amplitudes.

    PubMed

    Pfabigan, Daniela M; Zeiler, Michael; Lamm, Claus; Sailer, Uta

    2014-04-01

    Electrophysiological studies on feedback processing typically use a wide range of feedback stimuli which might not always be comparable. The current study investigated whether two indicators of feedback processing - feedback-related negativity (FRN) and P3b - differ for feedback stimuli with explicit (facial expressions) or assigned valence information (symbols). In addition, we assessed whether presenting feedback in either a trial-by-trial or a block-wise fashion affected these ERPs. EEG was recorded in three experiments while participants performed a time estimation task and received two different types of performance feedback. Only P3b amplitudes varied consistently in response to feedback type for both presentation types. Moreover, the blocked feedback type presentation yielded more distinct FRN peaks, higher effect sizes, and a significant relation between FRN amplitudes and behavioral task performance measures. Both stimulus type and presentation mode may provoke systematic changes in feedback-related ERPs. The current findings point at important potential confounds that need to be controlled for when designing FRN or P3b studies. Studies investigating P3b amplitudes using mixed types of stimuli have to be interpreted with caution. Furthermore, we suggest implementing a blocked presentation format when presenting different feedback types within the same experiment. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages.

    PubMed

    Li, Qin; Li, Wei; Yin, Wen; Guo, Jia; Zhang, Zhi-Ping; Zeng, Dejun; Zhang, Xiaowei; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2017-04-25

    Macrophages are one of the major targets of human immunodeficiency virus (HIV-1), but the viral entry pathway remains poorly understood in these cells. Noninvasive virus labeling and single-virus tracking are effective tools for studying virus entry. Here, we constructed a quantum dot (QD)-encapsulated infectious HIV-1 particle to track viral entry at a single-particle level in live human primary macrophages. QDs were encapsulated in HIV-1 virions by incorporating viral accessory protein Vpr-conjugated QDs during virus assembly. With the HIV-1 particles encapsulating QDs, we monitored the early phase of viral infection in real time and observed that, during infection, HIV-1 was endocytosed in a clathrin-mediated manner; the particles were translocated into Rab5A-positive endosomes, and the core was released into the cytoplasm by viral envelope-mediated endosomal fusion. Drug inhibition assays verified that endosome fusion contributes to HIV-1 productive infection in primary macrophages. Additionally, we observed that a dynamic actin cytoskeleton is critical for HIV-1 entry and intracellular migration in primary macrophages. HIV-1 dynamics and infection could be blocked by multiple different actin inhibitors. Our study revealed a productive entry pathway in macrophages that requires both endosomal function and actin dynamics, which may assist in the development of inhibitors to block the HIV entry in macrophages.

  3. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform.

    PubMed

    Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon; Cho, Sungrae

    2017-01-01

    As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively.

  4. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform

    PubMed Central

    Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon

    2017-01-01

    As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively. PMID:28796804

  5. NASA/GE Energy Efficient Engine low pressure turbine scaled test vehicle performance report

    NASA Technical Reports Server (NTRS)

    Bridgeman, M. J.; Cherry, D. G.; Pedersen, J.

    1983-01-01

    The low pressure turbine for the NASA/General Electric Energy Efficient Engine is a highly loaded five-stage design featuring high outer wall slope, controlled vortex aerodynamics, low stage flow coefficient, and reduced clearances. An assessment of the performance of the LPT has been made based on a series of scaled air-turbine tests divided into two phases: Block 1 and Block 2. The transition duct and the first two stages of the turbine were evaluated during the Block 1 phase from March through August 1979. The full five-stage scale model, representing the final integrated core/low spool (ICLS) design and incorporating redesigns of stages 1 and 2 based on Block 1 data analysis, was tested as Block 2 in June through September 1981. Results from the scaled air-turbine tests, reviewed herein, indicate that the five-stage turbine designed for the ICLS application will attain an efficiency level of 91.5 percent at the Mach 0.8/10.67-km (35,000-ft), max-climb design point. This is relative to program goals of 91.1 percent for the ICLS and 91.7 percent for the flight propulsion system (FPS).

  6. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less

  7. Multivariate analysis of subsurface radiometric data in Rongsohkham area, East Khasi Hills district, Meghalaya (India): implication on uranium exploration.

    PubMed

    Kukreti, B M; Pandey, Pradeep; Singh, R V

    2012-08-01

    Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  9. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed Central

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-01-01

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859

  10. P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses.

    PubMed

    Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R

    1992-04-15

    We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.

  11. Spatial distribution of block falls using volumetric GIS-decision-tree models

    NASA Astrophysics Data System (ADS)

    Abdallah, C.

    2010-10-01

    Block falls are considered a significant aspect of surficial instability contributing to losses in land and socio-economic aspects through their damaging effects to natural and human environments. This paper predicts and maps the geographic distribution and volumes of block falls in central Lebanon using remote sensing, geographic information systems (GIS) and decision-tree modeling (un-pruned and pruned trees). Eleven terrain parameters (lithology, proximity to fault line, karst type, soil type, distance to drainage line, elevation, slope gradient, slope aspect, slope curvature, land cover/use, and proximity to roads) were generated to statistically explain the occurrence of block falls. The latter were discriminated using SPOT4 satellite imageries, and their dimensions were determined during field surveys. The un-pruned tree model based on all considered parameters explained 86% of the variability in field block fall measurements. Once pruned, it classifies 50% in block falls' volumes by selecting just four parameters (lithology, slope gradient, soil type, and land cover/use). Both tree models (un-pruned and pruned) were converted to quantitative 1:50,000 block falls' maps with different classes; starting from Nil (no block falls) to more than 4000 m 3. These maps are fairly matching with coincidence value equal to 45%; however, both can be used to prioritize the choice of specific zones for further measurement and modeling, as well as for land-use management. The proposed tree models are relatively simple, and may also be applied to other areas (i.e. the choice of un-pruned or pruned model is related to the availability of terrain parameters in a given area).

  12. Composition and Maturity of Apollo 16 Regolith Core 60013/14

    NASA Technical Reports Server (NTRS)

    Korotev, Randy T.; Morris, Richard V.

    1993-01-01

    Samples from every half-centimeter dissection interval of double drive tube 60013/14 (sections 60013 and 60014) were analyzed by magnetic techniques for Fe concentration and surface maturity parameter I(sub s)/ Fe(O), and by neutron activation for concentrations of 25 lithophile and siderophile elements. Core 60013/14 is one of three regolith cores taken in a triangular array 40-50 m apart on the Cayley plains during Apollo 16 mission to the Moon. The core can be divided into three zones based both on I(sub s)/FeO and composition. Unit A (0-44 cm depth) is compositionally similar to other soils from the surface of the central region of the site and is mature throughout, although maturity decreases with depth. Unit B (44-59 cm) is submature and compositionally more feldspathic than Unit A. Regions of lowest maturity in Unit B are characterized by lower Sm/Sc ratios than any soil obtained from the Cayley plains as a result of some unidentified lithologic component with low surface maturity. The component is probably some type of mafic anorthosite that does not occur in such high abundance in any of the other returned soils. Unit C (59-62 cm) is more mature than Unit B and compositionally equivalent to an 87: 13 mixture of soil such as that from Unit A and plagioclase such as found in ferroan anorthosite. Similar soils, but containing greater abundances of anorthosite (plagioclase), are found at depth in the other two cores of the array. These units of immature to submature soil enriched to varying degrees (compared to the mature surface soil) in ferroan anorthosite consisting of approx. 99% plagioclase are the only compositionally distinct subsurface similarities among the three cores. Each of the cores contains other units that are compositionally dissimilar to any soil unit in the other two cores. These compositionally distinct units probably derive from local subsurface blocks deposited by the event(s) that formed the Cayley plains. The ferroan anorthosite with approx. 99% plagioclase, however, must represent some subsurface lithology that is significant on the scale of tens of meters. The compositional uniformity of the surface soil (0-10 cm depth) over distances of kilometers reflects the large-scale uniformity of the plains deposits; the fine- structure reflects small-scale nonuniformity and the inefficiency of the impact-mixing process at depths as shallow as even one meter.

  13. A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition.

    PubMed

    Keller, Paul W; Huang, Rick K; England, Matthew R; Waki, Kayoko; Cheng, Naiqian; Heymann, J Bernard; Craven, Rebecca C; Freed, Eric O; Steven, Alasdair C

    2013-12-01

    Retrovirus maturation involves sequential cleavages of the Gag polyprotein, initially arrayed in a spherical shell, leading to formation of capsids with polyhedral or conical morphology. Evidence suggests that capsids assemble de novo inside maturing virions from dissociated capsid (CA) protein, but the possibility persists of a displacive pathway in which the CA shell remains assembled but is remodeled. Inhibition of the final cleavage between CA and spacer peptide SP1/SP blocks the production of mature capsids. We investigated whether retention of SP might render CA assembly incompetent by testing the ability of Rous sarcoma virus (RSV) CA-SP to assemble in vitro into icosahedral capsids. Capsids were indeed assembled and were indistinguishable from those formed by CA alone, indicating that SP was disordered. We also used cryo-electron tomography to characterize HIV-1 particles produced in the presence of maturation inhibitor PF-46396 or with the cleavage-blocking CA5 mutation. Inhibitor-treated virions have a shell that resembles the CA layer of the immature Gag shell but is less complete. Some CA protein is generated but usually not enough for a mature core to assemble. We propose that inhibitors like PF-46396 bind to the Gag lattice where they deny the protease access to the CA-SP1 cleavage site and prevent the release of CA. CA5 particles, which exhibit no cleavage at the CA-SP1 site, have spheroidal shells with relatively thin walls. It appears that this lattice progresses displacively toward a mature-like state but produces neither conical cores nor infectious virions. These observations support the disassembly-reassembly pathway for core formation.

  14. Fabrication of MPEG-b-PMAA capped YVO4:Eu nanoparticles with biocompatibility for cell imaging.

    PubMed

    Liu, Yue; Li, Xiao-Shuang; Hu, Jia; Guo, Miao; Liu, Wei-Jun; Feng, Yi-Mei; Xie, Jing-Ran; Du, Gui-Xiang

    2015-12-01

    A novel nanoparticle with multilayer core-shell architecture for cell imaging is designed and synthesized by coating a fluorescent YVO4:Eu core with a diblock copolymer, MPEG-b-PMAA. The synthesis of YVO4:Eu core, which further makes MPEG-b-PMAA-YVO4:Eu NPs adapt for cell imaging, is guided by the model determined upon the evaluation of pH and CEu%. The PMAA block attached tightly on the YVO4:Eu core forms the inner shell and the MPEG block forms the biocompatible outermost shell. Factors including reaction time, reaction temperature, CEu% and pH are optimized for the preparation of the YVO4:Eu NPs. A precise defined model is established according to analyzing the coefficients of pH and CEu% during the synthesis. The MPEG-b-PMAA-YVO4:Eu NPs, with an average diameter of 24 nm, have a tetragonal structure and demonstrate luminescence in the red region, which lies in a biological window (optical imaging). Significant enhancement in luminescence intensity by MPEG-b-PMAA-YVO4:Eu NPs formation is observed. The capping copolymer MPEG-b-PMAA improves the dispersibility of hydrophobic YVO4:Eu NPs in water, making the NPs stable under different conditions. In addition, the biocompatibility MPEG layer reduces the cytotoxicity of the nanoparticles effectively. 95% cell viability can be achieved at the NPs concentration of 800 mgL(-1) after 24h of culture. Cellular uptake of the MPEG-b-PMAA-YVO4:Eu NPs is evaluated by cell imaging assay, indicating that the NPs can be taken up rapidly and largely by cancerous or non-cancerous cells through an endocytosis mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    USGS Publications Warehouse

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  16. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachinger, Johannes; Muller, Walter; Marsat, Eric

    2013-07-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. Themore » most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or negligible porosity and a water impermeable structure. Structural analysis shows that the glass in the composite has replaced the pores in the graphite structure. The typical pore volume of a graphite material is in the range of 20 vol.%. Therefore no volume increase will occur in comparison with the former graphite material. This IGM material will allow the encapsulation of graphite with package densities larger than 1.5 ton per cubic meter. Therefore a huge volume saving can be achieved by such an alternative encapsulation method. Disposal performance is also enhanced since little or no leaching of radionuclides is observed due to the impermeability of the material NNL and FNAG have proved that IGM can be produced by hot isostatic pressing (HIP) which has several advantages for radioactive materials over the HVP process. - The sealed HIP container avoids the release of any radionuclides. - The outside of the waste package is not contaminated. - The HIP process time is shorter than the HVP process time. The isostatic press avoids anisotropic density distributions. - Simple filling of the HIP container has advantages over the filling of an axial die. (authors)« less

  17. Outcomes of polio eradication activities in Uttar Pradesh, India: the Social Mobilization Network (SM Net) and Core Group Polio Project (CGPP)

    PubMed Central

    2011-01-01

    Background The primary strategy to interrupt transmission of wild poliovirus in India is to improve supplemental immunization activities and routine immunization coverage in priority districts with a focus on 107 high-risk blocks of western Uttar Pradesh and central Bihar. Villages or urban areas with a history of wild poliovirus transmission, or hard-to-reach or resistant populations are categorized as high-risk areas within blocks. The Social Mobilization Network (SM Net) was formed in Uttar Pradesh in 2003 to support polio eradication efforts through improved planning, implementation and monitoring of social mobilization activities in those high-risk areas. In this paper, we examine the vaccination outcomes in districts of SM Net where the CORE Group works. Methods We carried out a secondary data analysis of routine monitoring information collected by the SM Net and the Government of India. These data include information about vaccination outcomes in SM Net areas and non-SM Net areas within the districts where the CORE Group operates. Statistical analysis was used to compare, between SM Net and non-SM Net areas, vaccination outcomes considered sensitive to social mobilization efforts of the SM Net. We employed Generalized Estimating Equations (GEE) statistical method to account for Intra-cluster Correlation (ICC), and used 'Quasi-likelihood under the independence model criterion (QIC)' as the model selection method. Results Vaccination outcomes in SM Net areas were as high as or higher than in non-SM Net areas. There was considerable variation in vaccination outcomes between districts. Conclusions While not conclusive, the results suggest that the social mobilization efforts of the SM Net and the CORE Group are helping to increase vaccination levels in high-risk areas of Uttar Pradesh. Vaccination outcomes in CORE Group areas were equal or higher than in non-CORE, non-SM Net areas. This occurred even though SM Net areas are those with more community resistance to polio vaccination and/or are have harder-to-reach populations than non-SM Net areas. Other likely explanations for the relatively good vaccination performance in SM Net areas are not apparent. PMID:21569256

  18. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers

    PubMed Central

    2017-01-01

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block. PMID:28994585

  19. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.

    PubMed

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W

    2017-10-25

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  20. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolutionmore » of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.« less

  1. Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome

    PubMed Central

    Pavlovic, Dragana M.; Vértes, Petra E.; Bullmore, Edward T.; Schafer, William R.; Nichols, Thomas E.

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems. PMID:24988196

  2. Newer regional analgesia interventions (fascial plane blocks) for breast surgeries: Review of literature.

    PubMed

    Garg, Rakesh; Bhan, Swati; Vig, Saurabh

    2018-04-01

    Surgical resection of the primary tumour with axillary dissection is one of the main modalities of breast cancer treatment. Regional blocks have been considered as one of the modalities for effective perioperative pain control. With the advent of ultrasound, newer interventions such as fascial plane blocks have been reported for perioperative analgesia in breast surgeries. Our aim is to review the literature for fascial plane blocks for analgesia in breast surgeries. The research question for initiating the review was 'What are the reported newer regional anaesthesia techniques (fascial plane blocks) for female patients undergoing breast surgery and their analgesic efficacy?.' The participants, intervention, comparisons, outcomes and study design were followed. Due to the paucity of similar studies and heterogeneity, the assessment of bias, systematic review or pooled analysis/meta-analysis was not feasible. Of the 989 manuscripts, the present review included 28 manuscripts inclusive of all types of published manuscripts. 15 manuscripts directly related to the administration of fascial plane blocks for breast surgery across all type of study designs and cases were reviewed for the utility of fascial plane blocks in breast surgeries. Interfascial blocks score over regional anaesthetic techniques such as paravertebral block as they have no risk of sympathetic blockade, intrathecal or epidural spread which may lead to haemodynamic instability and prolonged hospital stay. This review observed that no block effectively covers the whole of breast and axilla, thus a combination of blocks should be used depending on the site of incision and extent of surgical resection.

  3. The dense core vesicle protein IA-2, but not IA-2β, is required for active avoidance learning.

    PubMed

    Carmona, G N; Nishimura, T; Schindler, C W; Panlilio, L V; Notkins, A L

    2014-06-06

    The islet-antigens IA-2 and IA-2β are major autoantigens in type-1 diabetes and transmembrane proteins in dense core vesicles (DCV). Recently we showed that deletion of both IA-2 and IA-2β alters the secretion of hormones and neurotransmitters and impairs behavior and learning. The present study was designed to evaluate the contribution to learning of each of these genes by using single knockout (SKO) and double knockout (DKO) mice in an active avoidance test. After 5 days of training, wild-type (WT) mice showed 60-70% active avoidance responses, whereas the DKO mice showed only 10-15% active avoidance responses. The degree of active avoidance responses in the IA-2 SKO mice was similar to that of the DKO mice, but in contrast, the IA-2β SKO mice behaved like WT mice showing 60-70% active avoidance responses. Molecular studies revealed a marked decrease in the phosphorylation of the cAMP response element-binding protein (CREB) and Ca(2+)/calmodulin-dependent protein kinase II (CAMKII) in the striatum and hippocampus of the IA-2 SKO and DKO mice, but not in the IA-2β SKO mice. To evaluate the role of CREB and CAMKII in the SKO and DKO mice, GBR-12909, which selectively blocks the dopamine uptake transporter and increases CREB and CAMKII phosphorylation, was administered. GBR-12909 restored the phosphorylation of CREB and CAMKII and increased active avoidance learning in the DKO and IA-2 SKO to near the normal levels found in the WT and IA-2β SKO mice. We conclude that in the absence of the DCV protein IA-2, active avoidance learning is impaired. Published by Elsevier Ltd.

  4. Development of a single-shot CCD-based data acquisition system for time-resolved X-ray photoelectron spectroscopy at an X-ray free-electron laser facility

    PubMed Central

    Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya

    2014-01-01

    In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system’s design enables it to be controlled by an external trigger signal for single-shot pump–probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in ‘single-shot image’, ‘shot-to-shot image (image-to-image storage or block storage)’ and ‘shot-to-shot sweep’ modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in ‘ordinary sweep’ mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL. PMID:24365935

  5. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  6. Technology Solutions Case Study: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Basements in climates 6 & 7 can account for a fraction of a home's total heat loss when fully conditioned. These foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with the wall. As below-grade basements are increasingly retrofitted for habitable space, cold foundation walls pose increased challenges for moisture durability, energy use, and occupant comfort. To address this challenge, the NorthernSTAR Buildingmore » America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block foundation walls. The three main goals were to improve moisture control, improve occupant comfort, and reduce heat loss.« less

  7. Paraffin tissue microarrays constructed with a cutting board and cutting board arrayer.

    PubMed

    Vogel, Ulrich Felix

    2010-05-01

    Paraffin tissue microarrays (PTMAs) are blocks of paraffin containing up to 1300 paraffin tissue core biopsies (PTCBs). Normally, these PTCBs are punched from routine paraffin tissue blocks, which contain tissues of differing thicknesses. Therefore, the PTCBs are of different lengths. In consequence, the sections of the deeper portions of the PTMA do not contain all of the desired PTCBs. To overcome this drawback, cutting boards were constructed from panels of plastic with a thickness of 4 mm. Holes were drilled into the plastic and filled completely with at least one PTCB per hole. After being trimmed to a uniform length of 4 mm, these PTCBs were pushed from the cutting board into corresponding holes in a recipient block by means of a plate with steel pins. Up to 1000 sections per PTMA were cut without any significant loss of PTCBs, thereby increasing the efficacy of the PTMA technique.

  8. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Physicochemical properties of micelles of poly(styrene-b-[3-(methacryloylamino)propyl]trimethylammonium chloride-b-ethylene oxide) in aqueous solutions.

    PubMed

    Liu, Jingjing; Liu, Dian; Yokoyama, Yuuichi; Yusa, Shin-Ichi; Nakashima, Kenichi

    2009-01-20

    Polymeric micelles from a new triblock copolymer, polystyrene-block-poly[(3-(methacryloylamino)propyl)trimethylammonium chloride]-block-poly(ethylene oxide) (PS-b-PMAPTAC-b-PEO), were prepared in aqueous solutions and characterized by various techniques including dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The micelle consists of a PS core, PMAPTAC shell, and PEO corona. It was revealed by SEM and DLS measurements that the micelles have a spherical structure with a hydrodynamic diameter about 75 nm. The addition of tungstate to the micellar solution caused a morphological change in the micelles from extended to shrunken spheres, which can be attributed to the fact that electrostatic repulsion among the cationic PMAPTAC blocks is canceled by the negative charge of the bound tungstate ions. Effective incorporation of tungstate ions into the micelles were confirmed by TEM and zeta-potential measurements.

  10. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery.

    PubMed

    Li, Hongchun; Niu, Yongsheng

    2018-08-01

    A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Synthesis of Photocrosslinkable and Amine Containing Multifunctional Nanoparticles via Polymerization-Induced Self-Assembly.

    PubMed

    Huang, Jianbing; Li, Decai; Liang, Hui; Lu, Jiang

    2017-08-01

    Photo-crosslinkable and amine-containing block copolymer nanoparticles are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly of a multifunctional core-forming monomer, 2-((3-(4-(diethylamino)phenyl)acryloyl)oxy)ethyl methacrylate (DEMA), using poly(2-hydroxypropyl methacrylate) macromolecular chain transfer agent as a steric stabilizer in methanol at 65 °C. By tuning the chain length of PDEMA, a range of nanoparticle morphologies (sphere, worm, and vesicle) can be obtained. Since cinnamate groups can easily undergo a [2 + 2] cycloaddition of the carbon-carbon double bonds upon UV irradiation, the as-prepared block copolymer nanoparticles are readily stabilized by photo-crosslinking to produce anisotropic nanoparticles. The crosslinked block copolymer nanoparticles can be used as templates for in situ formation polymer/gold hybrid nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  13. What is Neptune's D/H ratio really telling us about its water abundance?

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-05-01

    We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.

  14. Thermal evolution and core formation of planetesimals

    NASA Astrophysics Data System (ADS)

    Suwa, Taichi; Nagahara, Hiroko

    2017-04-01

    Planetesimals did not get an adequate thermal energy by accretion to form large scale magma ocean because of smaller radii, masses, gravity and accretion energy, however, there are various evidences for the presence of core in planetesimals: 4-Vesta has a core and non-magmatic iron meteorites were segregated metal in bodies that did not experience silicate melting. It has been pointed out that accretion time of planetesimals controls melting and differentiation, because short lived nuclides are plausible heat source. Other factors such as radiative cooling from the surface and thermal conductivity, would also affect thermal evolution of planetesimals. Furthermore, percolation of Fe-S melt through silicate matrix is controlled by the porosity and grain size of silicates and dihedral angle between the melt and silicates. Therefore, the interior structure of planetesimals should be considered by taking the accretion, growth, and thermal evolution of the interior simultaneously. We make a numerical simulation with a spherical 1D model on the basis of the model by Neuman, which is a non-stationary heat conduction equation. We specifically pay attention to the process at temperatures between eutectic temperature Fe-FeS (1213K) and silicate solidus (1425K) and the surface tension of the melt that governs percolation. The model contains three free parameters, formation time, accretion duration, and final size of the planetesimals. The results show that the interior structure can be divided to four types: Type A is undifferentiated, Type B is differentiated to core and mantle of which core was formed by Fe-S melt percolation, Type C is partially differentiated to FeS core and mantle, where mantle retains residual Fe metal, and Type D is differentiated to core and mantle by metal separation in silicate magma. Type A would correspond to the parent bodies of chondrites, and Type B (and Type C?) core would be the source of non-magmatic iron meteorites. Type D would be parent bodies for 4 Vesta and angrites. The conditions for the four types of planetesimals are throuly investigated as a function of the three parameters, accretion time, accreting duration, and palnetesimal size. We found that the planetesimal interior is strongly controlled by the formation time: planetesimals formed after 3 Ma after CAIs would be undifferentiated (Type A) regardless of the planetary size, whereas most of them formed within 1 Ma are Type D (differentiated bodies with magmatically formed core). Types B and C bodies are preferentially formed between 1 and 3 Ma after CAIs. Longer accretion duration tends to be resulted in formation of Types A, B and C. The present work predicts the planetesimal interior structure if we know the formation age with the isotopic measurements of samples and the size of the body, which would be a very powerful tool for future explorations of small bodies except for very small (< 20 km) bodies.

  15. Proteolytic activities in yeast after UV irradiation. II. Variation in proteinase levels in mutants blocked in DNA-repair pathways.

    PubMed

    Schwencke, J; Moustacchi, E

    1982-01-01

    When the levels of three common yeast proteinases in exponentially growing cells of mutants blocked in different repair pathways are compared to that of isogenic wild-type cells, it can be seen that the level of proteinase B is enhanced in the mutants whereas the levels of leucin aminopeptidase (Leu.AP) and lysine aminopeptidase (Lys.AP) are similar in all strains. As in its corresponding wild type, the level of proteinase B activity is further enhanced after UV-irradiation in a mutant blocked in excision-repair (rad1-3). In contrast, following the same treatment the level of proteinase B remains almost constant in a mutant blocked in a general error-prone repair system (rad6-1) and in a mutant defective in a more specific mutagenic repair pathway (pso2-1). Cycloheximide, an inhibitor of protein synthesis, blocks the post-UV enhancement in proteinase B activity observed in rad1-3 indicating that, as in the wild-type cells, an inducible process is involved. The levels of Lys.AP and Leu.AP are, respectively, either unaffected or only moderately increased following UV-treatment of the repair defective mutants, as in wild-type strains. It is obvious that the induction of protease B activity following UV-treatment in Saccharomyces cannot be equated to the induction of the recA protein in Escherichia coli. However the correlation found between the block in mutagenic repair and the lack of UV-induction of protease B activity leads to questions on the possible role of certain protease activities in mutagenic repair in eucaryotic cells.

  16. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  17. 78 FR 34089 - Revision of a Currently Approved Information Collection for the Energy Efficiency and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Approved Information Collection for the Energy Efficiency and Conservation Block Grant Program Status... guidance concerning the Energy Efficiency and Conservation Block Grant (EECBG) Program is available for... Conservation Block Grant (EECBG) Program Status Report''; (3) Type of Review: Revision of currently approved...

  18. 78 FR 72874 - Revision of a Currently Approved Information Collection for the Energy Efficiency and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... Efficiency and Conservation Block Grant Program Status Report AGENCY: U.S. Department of Energy. ACTION... . Additional information and reporting guidance concerning the Energy Efficiency and Conservation Block Grant... Title: ``Energy Efficiency and Conservation Block Grant (EECBG) Program Status Report''; (3) Type of...

  19. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  20. [Influence of different types of posts and cores on color of IPS-Empress 2 crown].

    PubMed

    Li, Dong-fang; Yang, Jing-yuan; Yang, Xing-mei; Yang, Liu; Xu, Qiang; Guan, Hong-yu; Wan, Qian-bing

    2007-10-01

    To evaluate the influence of different types of posts and cores on the final color of the IPS-Emperss 2 crown. Five types of posts and cores (Cerapost with Empress cosmo, Cerapost with composite resin, gilded Ni-Cr alloy, gold alloy and Ni-Cr alloy) were made. The shifts in color of three points of IPS-Empress 2 crown surface (cervical, middle and incisal) with different posts and cores was measured with a spectroradiometer (PR-650). The L* a* b* values of zirconium oxide and gilded Ni-Cr alloy posts and cores with ceramic crown were the highest. The L* a* values of zirconium oxide posts composite cores were higher while the b* values were lower. The L* a* b* values of Ni-Cr alloy were lower than that of gold alloy and were the lowest. In combination with IPS-Empress 2 crown, zirconium oxide posts are suitable for routine use in the anterior dentition, and gilded Ni-Cr alloy and gold alloy posts and cores can be recommended for clinical practice. Ni-Cr alloy posts and cores can not be recommended for clinical practice.

Top